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Summary

Mobile Crowd Sensing (MCS) has recently gained popularity becoming an ap-

pealing paradigm for sensing and collecting data. MCS is sensing paradigm

that leverages active participation of citizens to improve existing infrastructures

without the need of further investments. Thanks to the exponential diffusion

of smartphones, MCS is considered an emerging area of interest for researchers.

The key fact is that mobile devices have not only computing and communication

resources, but they also offer the possibility to exploit a rich set of sensors for

enabling new applications across a large variety of domains. In MCS systems users

typically contribute data individually, forming groups in which users collaborate

to contribute data is an efficient solution. The key idea for each group is to

exchange data between peers and elect an owner, who is the only responsible

for data delivery. To this end, it is crucial to propose policies to form groups

and elect a responsible according to the requirements of the campaign (e.g., the

technology employed). From an energy perspective, it is well known that users

sustain costs mostly due to reporting than sensing operations. Hence, leveraging

device to device (D2D) communications within a group of citizens that sense the

same phenomena in the same area is a win-win strategy in specific domains of

interest (e.g., mapping air pollution). In this work, I propose and compare three

different policies to form groups and perform owner election, analyzing how to

allocate tasks to a group of peers instead of an individual. In order to evaluate the

proposed framework, this thesis focused in the improvement of CrowdSenSim

a simulator for MCS systems. The simulator is a discrete-event simulator in

which the participants contribute data to the MCS system. The renovation of the

simulator allows the participants to move in a real city environment of any place

ii



on Earth. The simulator is scalable thanks to a novel pedestrian mobility with

high level precision. I proposed a procedure to augment the precision (AOP) of

the graph describing the street network provided by OpenStreetMap. Moreover, i

implemented in the simulator two different mobility models one synthetic and

one based on a realistic dataset.
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Chapter 1

Introduction

1.1 Motivation

The breathtaking evolution of mobile devices has constantly increased in the

last years.Nowadays they are an essential part of people’s daily life embedding

computational and communication capabilities. This exponential diffusion has

promoted the proliferation of built-in sensors, making them a huge source of

data available for the application of the Internet of Things (IoT) paradigm, a

key component for making real the smart city vision [71, 53]. With the aim of

improving citizens’ quality of life, significant research efforts are undergoing to

provide citizens innovative and sustainable solutions for public services such

as environmental monitoring, social network analysis, health-care, intelligent

transportation systems, and public safety. To illustrate with a few examples,

HazeWatch[62] relies on active citizen participation to monitor air pollution and

is currently employed by the National Environment Agency of Singapore on

a daily basis. Creekwatch[40] is an application for smartphones developed by

the IBM Almaden research center. It allows the monitoring of the conditions of

watershed through crowdsensed collected data about the amount of water in the

river bed, the amount of trash in the river bank, the flow rate, and a picture of the

waterway. Garbage Watch[55] and WasteApp[7] employ citizens to monitor the

content of recycling bins with the objective of improving the recycling program.

Despite their growth,all these applications are facing different barriers. Some of
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1 – Introduction

them are technological, resulting from the heterogeneity of hardware/software

platforms,causing a raise of costs for development of MCS. A large participation

of users is fundamental for the success of a sensing campaign. User contributing

data sustain costs, e.g., energy consumption or cellular data plan and it is essential

to reward them fro joining the sensing campaign. In MCS systems users typically

contribute data individually, The key idea of this thesis is that there is no need of

each mobile device connected to WiFi or cellular interfaces. The presence of a local

authority avoid to send several times similar information, which represents a data

overhead to process (e.g., many samples of temperature from users in the place

at the same time). The main goal of this work is to form groups of contributing

users, in order to exchange data between them and elect an owner, who is the only

responsible for data delivery. The aim is to propose an efficient data collection and

the possibility to perform group-based task assignment instead on individual-basis.

To assess the performance of MCS systems requires the contribution from a large

number of participants. However, the development of large scale testbeds is often

not feasible. An essential solution is using simulations. However, the number

of existing simulation tools appropriate for inspecting MCS efforts is limited.

CrowdSenSim[23] is the first simulator for MCS systems, designed exclusively

for MCS purposes. It provide the researchers a tool capable of performing large

scale simulations over realistic urban environments. Unfortunately, the actual

version of CrowdSenSim presents different weak points, the most significant is

the absence of scalability in the mobility module. Performing simulations in

complex environments, such as modern cities, requires the simulation platform

to be scalable while providing at the same time precise and detailed information.

In order to fill these gaps I renewed CrowdSenSim changing many modules and

adding new features.

1.2 Contribution

This thesis investigates the feasibility of a novel solution for a MCS Framework

and analyzes advantages brought by it. This new model that I developed is based

on a collaborative framework (CF). The typical MCS architecture is composed by a

2



1 – Introduction

data collector and a set of participants . Typically MCS systems perform sensing

on individual basis, each user sends his amount of data collected during sensing.

Moreover the task allocation is managed by the DC, which assigns a task to a single

participant. The new architecture aims to enhance the user experience in terms

of energy efficiency and fairness between users. To reach such results with the

new CF I introduce the concept of group of users in MCS, these groups will have

multiple functions, first create efficient data collection through device to device

(D2D) communication and second give the possibility to data collector to manage

group-based task assignment instead on individual-basis. The idea behind the

collaborative sensing is that the users will not deliver their data directly to the DC,

but they will report it to an elected user through D2D connections, the elected user

will assume the role of group owner (GO) and will act as relay for other peers in

the same group. In this work I decided to exploit WiFi direct, formally known as

WiFi Peer to Peer. It is a communication between Wi-Fi devices which enables

to directly connect each other without connecting to a legacy access point. To

develop CF is required a cluster algorithm through which we will group different

devices. For each cluster a chosen node will take the role of GO, this choice has to

be taken according to different factors, in order to find the proper policy that will

give the best results. In this thesis i propose three different grouping strategies:

static, POI based , dynamic. Each one is composed by a cluster algorithm and a

group owner election, Furthermore to every strategy corresponds a different task

allocation need. For instance, the static approach can be applied for task in which

the main purpose is to cover all the territory with an equal density, the dynamic is

useful for tasks that aim to maximize the contact-time between the group, while

the POI can be used in case of task concerning a particular type of places inside

a city. Extensive simulation results are provided to demonstrate the advantages

of our proposed scheme. The Simulator used is CrowdSenSim, developed at the

University of Luxembourg. During my internship at UniLu, I became involved

in the elaboration of new releases of CrowdSenSim. The main contribution that

I gave to the simulator is in the mobility domain, i designed a novel pedestrian

mobility with high level precision for use in crowdsensing smart city simulators.

I proposed a procedure to augment the precision (AOP) of the graph describing

3



1 – Introduction

the street network provided by OpenStreetMap. Second, i implemented in the

simulator two different mobility models one synthetic and one based on a realistic

dataset. Through performance evaluation conducted with CrowdSenSim, I verified

the effectiveness of the adopted AOP approach and then evaluate the accuracy

obtained by the two arrival models by implementing metrics commonly employed

for pedestrian mobility such as the distribution of the contact rate and of the

contact stability. Moreover, I developed for CrowdSenSim other new features not

related with the mobility module, such as the profiling of energy consumption

based on realistic smartphone measurements and the implementation of different

data reporting mechanism and data collection frameworks.

1.3 Organization

The thesis is organized as follows:

• Chapter 2 starts describing the current state of the art concerning Mobile

Crowdsensing and its simulators, analyzing one of them in particular,

CrowdSenSim. Then it introduces the landscape of what has be done until

now on reporting strategies and task allocation, discussing the current

problems and limitations.

• Chapter 3 illustrates the new version of CrowdSenSim, describing the new

implemented mobility and other improvements.

• Chapter 4 proposes the collaborative framework for MCS, it is divided in

three sections. The first presents the methodology to create the groups of

users and the different way of clustering. The second section introduces

the task allocation methods algorithm. At the end the third evaluates the

framework with the results obtained through CrowdSenSim.

• Chapter 5 concludes the work and presents future research directions on the

topic.

4



Chapter 2

Background on Mobile

Crowdsensing

2.1 State of the art

In this chapter I introduce the main aspects of mobile crowdsensing, at first I

present a general background of MCS, in the second part I give an idea of the

simulation tools available for MCS, at the end of the chapter I focus my research on

explaining the fundamental characteristics of a specific simulator, CrowdSenSim.

Cloud Collector

Crowd

Mobile Devices

LTE

WiFi

Accelerometer Gyroscope Microphone Dual Camera Temperature

Sensors
Figure 2.1. Cloud-based MCS system [24]
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2 – Background on Mobile Crowdsensing

The global market of Internet of Things (IoT) reached 598.2 Billion USD in 2015

and the previsions talk about an increase that will reach 724.2 Billion USD by 2023.

The expected annual growth rate of the market is 13.2% until 2023. [35]

Modern IoT devices, as smartphones or wearables, constantly communicate

with each other and with users, to continuously enable computing power. They

are equipped with a set of sensors and have communication and computing

capabilities. They own several sensors capable of perceiving the surrounding

environment. The growing availability of different types of sensors on mobile

devices makes them suitable for the development of the so called smart cities.

It is difficult to find a homogeneous definition of smart city, as the concept of

“smartness” regards different fields: environment, quality of life, planning and

technology.

Smart cities aim to improve to improve the citizens quality of life. For

instance, it is possible to simplify the citizen daily routines, for example improving

public services or by developing novel solutions for healthcare and public safety.

Moreover, Smart cities have the ambition to promote the values of sustainable

development e rational use of resources in our metropolis. The IoT paradigm is

the fundamental candidate building block to develop sustainable ICT platforms

for Smart Cities. Mobile CrowdSensing (MCS) is an emerging paradigm that

exploits the diffusion of mobile devices in order to collect data in an efficient way.

In its applications, the key element is the human involvement: MCS employs

the devices’ sensors, daily carried by users, for larger scale studies. MCS is the

most natural form of co-operation between people living smart cities, It allow

users to contribute in complex problem solving. In this scenario, the network of

’sensors’ consists of people, the group of human users are called ’crowd’. Users can

exploit their modern smartphones and devices to collect and share several types

of data [27] The users devices have a large multi-sensing capabilities including

gps localization, movement, light, and audio and visual sensors. They become

citizen sensors by performing some form of sensing [28].

The human involvement might have positive and negative aspects. On the

positive side, MCS makes it easier to develop a low cost coverage network in the

area of interest and users take care of the nodes of this network, which are their

6



2 – Background on Mobile Crowdsensing

mobile devices. The downside is that there could be privacy issues and problems

related to the fact that the number of devices, the availability of sensors and the

quality of data are subject to unpredictable changes over time. There are two types

of crowdsensing [25] [49]:

• Participatory sensing

• Opportunistic sensing

In the first, the users decide what kind of data and when to collect it and report

it. An example is an user taking individual readings and reporting them to the

data collector. An example of it is the Participatory Urbanism project [48] which

recruits urban people in order to perform a collection of air quality data sensors

using mobile devices. Opportunistic sensing: data collection is performed on the

background, without the active involvement of users by do not let them know

about the active execution of sensing application. In opportunistic sensing the

user may not even be aware that he is actually participating. An example is

BubbleSensing [44] where they introduce an opportunistic protocol which collects

locaton data from mobile devices. In [17] Chen et al. Developed a distributed

algorithm for maximizing the utility of sensing data collection of smartphone

under a budget cost costraint. It is inspired by stochastic network optimization

and distributed scheduling.

The opportunistic sensing has to deal with some issues in terms of battery usage,

the user does not have a consciousness of his contribution to the campaign and

consequentially does not have the perception of the actual energy consumption due

to the collection of data in the background. On the other side, In the participatory

reveals the opposite problem. Users can correlate the battery drain of their devices

to the participation to the MCS campaign and as consequence their willingness to

contribute could decrease dramatically.

The management of a MCS process is a demanding task, as it involves a number

of technical issues, such as: the choice of region to monitor, the quantification of

the necessary sensors’ density to obtain accuracy, the valuation of a good balance

between accuracy and exploitation of resources. Moreover, social issues arise as

well: the choice of incentives for users’ active participations and the trust of people

7



2 – Background on Mobile Crowdsensing

involved. As Fig. 2.1 shows in MCS data collection architectures the participants

contribute information from mobile devices’ sensors. This information is then

delivered to a collector, typically located in the cloud. The collector receives the

data and proceed on processing and analysis it. The users deliver collected data

using cellular 3G/LTE/4G or WLAN interfaces. Therefore, it is essential to analyze

and assess the costs of sensing and data reporting for users, while maximizing

the utility of the collected information. Crowdsensing plays an meaningful role

in numerous application domains such as health care, collecting cartographic,

environment monitoring, urban sensing, transportation, social networks and safety.

To illustrate with few examples, AndWellness (Hicks et al., 2010) developed a

personal data collection system, where users through mobile devices can record

their individual habits . Thie system may have several outcomes, could be

employed to assess HIV+ patients monitoring their daily behavior. Another

system is Biketastic [56], which purpose is to make available to cyclists information

about different bike routes, in order to facilitate them for choosing right path. The

goal is obtained by collecting device sensors bikers during route experience. In

addition to the GPS It used accelerometer to sense noise level and roughness. An

example of participatory sensing for air monitoring is available at GasMobile [32],

while NoiseMap [59] bring us an application to map the noise pollution of a city.

A fascinating application is SenseMyCity [58]. The platform collects data and

information from sensors equipped in phones of vehicles drivers in the city of

Porto. Afterwards, they combined the acquired data to show the map of the fuel

consumption in the city and the bus drivers stress by using cardiac sensors.

MCS domain has to challenge with many issues, such as handling big data,

fusion of data sensors, privacy of users, or the development of multi platform

algorithms.

2.2 Task allocation

In participatory MCS, every user is engaged to collect data. The MCS system

assigns a particular task to an participants available, in order to accomplish it. As

mentioned before MCS can be seen as a problem-solving distributed system, where

8



2 – Background on Mobile Crowdsensing

a complex problem is divided above all the user of the campaign. This solution

requires a "chief brain" able to manage all the tasks and all the participants.

One of the most important issues regarding the MCS is the efficient allocation

of sensing tasks.

To execute a task in MCS typically, many parameters has to be defined, such as:

• the purpose of the task

• the type of effort that the specified task requires to the participant.

• the presence or not of user incentives and rewarding to compensate the

participants for their contribution.

• a level of required quality for sensing data.

• A given location (expressed as geographical coordinates) and a given ray,

defining a task area.

• The total amount of data collected to accomplish the task .

Most of the work about task allocation for MCS usually aim to maximize a set

of parameters, e.g., the amount/temporal and or spatial coverage of the contributed

data or the QoI while minimizing at the same time the costs, such as energy

consumption or monetary rewards [75].

Reddy et al. in [54] try to recruit a chosen number of participants in order

to maximize the spatial coverage. Other studies tried to extend this type of

coverage-maximization allocation, focusing their effort to give importance to

participants, aiming attention at incentive mechanism [37] or travel time budget

[33]. Meanwhile, work such as [61][1][30] attempts to minimize the incentive

budget and/or energy consumption under a full or high probabilistic spatio and/or

temporal coverage constraint.

Wu et al. [69] investigate the trade-off between the amount of acquired data and

the associated energy consumption. The authors present and analyze both off-line

and on-line settings for task allocation. In off-line case, the entire task information

is known a-priori and does not change over time, while in the on-line scenario

tasks are dynamically allocated in real-time without any information in advance.

9



2 – Background on Mobile Crowdsensing

The authors first provide an optimal algorithm for the off-line setting. Then, they

investigate the on-line setting where requests arrive dynamically without prior

information in a first-in-first-out (FIFO) manner or with an arbitrary deadline

(AD). Wang et al. [67] investigate the problem of scheduling multiple sensing

tasks with the objective of ensuring the quality of sensed data while minimizing

the energy consumption. Starting from basic cases in which sensing process

requires data from only one sensor, the authors define the Minimum Energy Single-

sensor task Scheduling (MESS) problem and design a polynomial-time optimal

algorithm. Then, they consider a generic case in which sensing tasks require data

from multiple sensors to be accomplished. To solve the problem of Minimum

Energy Multi-sensor task Scheduling (MEMS), the authors propose an Integer

Linear Programming (ILP) formulation as well as two effective polynomial-time

heuristic algorithms. In [74], the authors propose a fair energy-efficient allocation

framework whose objective is to minimize the maximum aggregated sensing time.

The problem is NP-Hard also when the information on the tasks such as arrival

and duration is known prior to the allocation. The authors first investigate the

off-line allocation model and propose an efficient polynomial-time approximation

algorithm with a factor of 2−1/m, where m is the number of mobile devices joining

the system. Then, focusing on the on-line allocation model, they design a greedy

algorithm which achieves a ratio of at most m.

Han et al. [31] propose an on-line learning algorithm, where a central authority

assigns tasks aiming at rewarding participants with a limited amount of budget. It

supposes a fixed minimum number of users who actively join the sensing process,

while the quality of collected data may vary. Liu et al. [43] propose a method to

efficiently select users for participatory crowdsensing. Contributors are dynam-

ically chosen considering their willingness to acquire data and their potential,

which is calculated considering the remaining battery in their smartphones. The

distribution of tasks aims to minimize the probability that an individual does not

accomplish the assigned task.
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2.3 Simulators for MCS

The main issue during the development of novel MCS application is the cost to

handle facing these large scale studies. Therefore becomes fundamental to perform

extensive analysis domain and risk assessments before start to develop a novel

MCS system.

Following this purpose, the first essential step is using simulations [60] [50] [52].

The creation of simplified representation of the domain of interest is an essential

solution for testing MCS.

Simulating MCS scenarios is useful to analyze the possible behaviours of the

crowd and assess if the system developed provide the required level of service

quality.

However, the number of existing simulation tools appropriate for inspecting

MCS efforts is limited. I will describe the main properties of each tool in the

following.

Network Simulator 3 (NS-3) is discrete-event network simulator, designed for

networking research and education. Tanas et al. presented [64] a cowsensing

simulation study basde on NS-3. The goal is to estimate the performance of a

crowdsensing network considering that the wireless interface in ad-hoc network

mode together with mobility properties of the nodes.

NS-3 is focused on ensure highly accurate estimations of network behavior. As

consequence of having such high accuracy on network properties, the simulation

has to face with a loose of scalability.

For this reason with NS-3, the emulation of tens of thousands of devices is not

feasible. The purpose is to capture specific network attitudes, such as the changes

of the TCP congestion window. Therefore the timing of a single simulation is not

in the order of hours or days but typically in minutes . Indeed, NS-3 is not able to

simulate the duration of real sensing campaigns.

In [22] the authors introduce instead a simulation environment adapted to

investigate performance of crowdsensing applications in an urban parking scenario.

The possible applications are only related to the parking domain, but the authors

assert that the simulation environment can be enlarged to other scenarios.
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However, only drivers are take in consideration as type of contributing users.

Farkas and Lendàk consider humans as participants only if they are travelling

between two parking spots. In order to be applicable in a large scale environment,

a crowdsensing simulator has to take into account data coming from IoT devices’

carried by human individuals, in any situation.

Mehdi et al. propose CupCarbon [45], a discrete-event wireless sensor network

(WSN) simulator for IoT and smart cities. It exploit the features of OpenStreetMap

in order to simulate WSN on realistic urban environments. The simulator is not

feasible for scenarios with thousands of users, who wants to start a simulation has

to deploy each node and sensors on the map.

2.4 CrowdSenSim

CrowdSenSim, is a discrete-event simulator for mobile crowdsensing developed

at University of Luxembourg. It enables simulations of crowdsensing activities in

large-scale urban scenarios. CrowdSenSim can be used to develop novel solutions

in data collection, task assignment, monitoring and resource management. For

instance this tool allows researchers and scientist to test and evaluate the goodness

and the feasibility of a crowdsensing application, trough the simulation of real

smart cities, where are walking a specified number of users involved on different

MCS campaigns. During my internship at University of Luxembourg, i worked

on a new release of the simulator, CrowdSenSim 1.1.0 (CS1). It is available

for download at [20], where can be found both the source code and a running

environment built on an Ubuntu virtual machine. This section introduces the

features and the characteristics of the old version of CrowdSenSim (CS0). The code

of the simulator is implemented entirely in C++ and is composed by independent

modules.

2.4.1 Architecture

Fig. 2.2 shows the structure of CS0, it is immediately apparent the division in

independents modules, this type of architecture was made to give a high level of
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scalability and allow future developers to implement and modify some modules

while keeping untouched others and preserving the main structure. This was

the aspect that has led the develop of my work on CrowdSenSim, in which i

completely renewed some modules which will be described in 3.2.

City Layout Module

In order to be included in the simulator, the layout of a city has to be represented

by a specific file containing a set of coordinates: <latitude, longitude, altitude>.

These coordinates are extracted by an online crowdsourced tool, such as Digipoint.

In fig. 2.3, we can see how this tool works, the use of Digipoint is strictly linked

to the precision of the user, who has to manually click on every point for which

he wants the coordinates. Therefore, to add new city in CrowdSenSim requires a

strong effort.

List of Events Module

This is the core module of the mobility in the simulator. Indeed, it is the module

where it is created the list of events. The whole mobility of the simulator is based

on the concept of ’Event’, it consists in tracking the moves of a user from one

position to another and associate them with the corresponding instant of time in

which they takes place. An example of an Event is:

UID | LAT | LON | DAY | HOUR | MINUTE

Where UID is the user id, LAT and LON are the geographical coordinates at the

time defined by HOUR and MINUTE. The simulator uses a sequence of events to

reconstruct the path of a user along the city. Afterwards, during the simulation

phase, each event is associated to a quantity of generated data. The position of

the first event of a user, it is defined by choosing a random location between the

coordinates of the city layout. To define the next movements of the user, for each

point pi on the layout, it is created a list of adjacent points, that are the points under

a certain distance from pi, the distance is measured with the haversin formula, the

positions reached by subsequent movements are randomly chosen among adjacent
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points. For each user it is defined an initial starting time, determined by the User

Mobility module, a speed uniformly distributed between [1,1,5]m/s and a total

amount of travel time ttravel. For every new event is calculated the time tnext that the

user employs to walk from the previous position to the current, using the distance

between the position (calculated with the Haversine formula) and the speed of the

user. Once computed tnext, it is subtracted from ttravel, the user stops moving when

ttravel ≤ 0.

User Mobility

In this module is defined the distribution of the users along the day hours,

Assigning to each user a corresponding leaving time, in which they start to walk.

Two mobility algorithm are implemented in CrowdSenSim :

Uniform Random Distribution It is the simplest mobility algorithm, the initial

walking time of users is randomly assigned, it is uniformly distributed between

8:30 AM and 1:30 PM, these are the default hours boundaries but it is possible to

modify them.

Time events User Distribution This algorithm was implemented to recreate a

feasible human mobility pattern. Each user has a probability to start walking in

a certain timeslot that follows a specific probability density function (PDF). An

example can be the PDF in fig. 2.4, where the firsts and the final hours of the

simulation have an higher probability, and so according to that the users will be

distributed mostly along the bounds hours respect to the middle ones.

CrowdSensing Inputs

In order to create the list of Events and during the simulation phase some input

parameters are needed, such inputs are provided by a setup file, in which are

defined:

• Days of simulation: total number of simulation days. It is a possible value

between 1 and 7

• Number of users: amount of pedestrians during simulation
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User MobilityList of Events

City Layout

SIMULATOR
CrowdSensing

Inputs

Results

Figure 2.2. Architecture of the old release of CrowdSenSim

Figure 2.3. Map of Luxembourg obtained with DigiPoint

• Minimum travel time, Maximum travel time: travel time per user uniformly

distributed between these values

• Start hour simulation, Start minute simulation

• Finish hour simulation, Finish minute simulation

• Kind of antennas: base antennas system used, allocated in the city

• Create a new list of events: it is possible choose to create a new list of events

or using the default one

• Ray: value in meters for the ray useful for list of adjacent
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Figure 2.4. One of the possibile user probaility distibution fuction

2.4.2 Weak points and possible improvements

In the old version of CrowdSenSim the weakest module is the mobility. Indeed, a

significant problem was that of direction of movement of users, the jumps on the

map of each participant were defined only through the list of adjacent, there was

the possibility that a user walked only between two adjacent points, doing always

the same round trip and repeating it along all the travel period. Another weak

point is the city layout, if we run simulations on a city different from the already

mapped (Luxembourg, Trento, Madrid ), we should manually take the coordinates

points of the desired city, using a tool to extract coordinates such as DigiPoint,

even though the granularity and precision of the points will be related to the

human factor of the person using the tool. A possible improvement concerns the

simulation module, in CS0 the participants are sensing along all their travel period

and they report the collected data in every timeslot, an a possible alternative is

that to develop new data collection framework. An other development for this

module would be update the current consumption of devices in each timeslot, in

CS0 this value is due to theoretical studies, while an alternative would be include

real battery consumption traces.
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CrowdSenSim

I developed a new version of the simulator, in order to solve the issues related to

the previously specified weak points,

The structure of CrowdSenSim continues to be strictly linked with the concept

of modular architecture. As shown in fig. 3.1 the core layout is the same as before,

the biggest difference is the introduction of a new module, the pre-processing.

This new module elaborates the new mobility features introduced in this release

of CrowdSenSim, during this phase the list of event is created taking account

of the inputs parameters obtained from the setup file. Furthermore, an other

essential contribution to the simulator is given from the new connection of the city

layout module to an extern python package called OSMnx, I will talk about it in

the following section. In the first section I will explain the new mobility and its

implementation. Afterwards, I will introduce new metrics to analyze simulations.

At the end I will describe all the the others features added in the new release of

CrowdSenSim.
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User MobilityList of Events

City Layout

SIMULATOR
CrowdSensing

Inputs

Results

(a) Old

Pre-ProcessingCity Layout User Mobility

OSMnx

List of Events

SIMULATOR
CrowdSensing

Inputs

Results

(b) New
Figure 3.1. Architecture of CrowdSenSim

3.1 Mobility Background

3.1.1 OSMnx

In order to obtain and re-utilize maps of a specified place, a researcher had to

click through many website and one at the time download all the shapefiles of the

required region. To simplify this issue Geoff Boeing introduced OSMnx [6] a new

tool to collect and analyze data of street networks. It exploits the graph theory

for urban design purpose. OSMnx is a free Python package able to download

and analyze geographical boundary, building footprints, and street networks

of any location in the world from OpenStreetMap, which is a map created by

people under an open license. It allows the user to build and visualize complex

graphs, representing street networks of different types: driving, biking, or walking

network. In order to be simple and easy to use OSMnx is written in python, many

functions need only few lines of code to be executed. OSMnx uses many famous

Python’s libraries such as NetworkX and geopandas. The main contributes of this

tool are:

• the automation of downloading political boundaries and building footprint;

• the construction of graphs based on street networks derived from Open-

StreetMap;
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• the simplification of network topology, the difference between OSM topology

and the simplified version produced by OSMnx is shown in Fig.3.3a and

Fig.3.3b

• the possible analysis of street networks,such as calculation of routes and

projection of networks.

3.1.2 Mobility in Simulators

Urban planners commonly rely on spatial distribution of citizens or locations to

inspect the complex dynamics of urban environments. For example, through

analysis of Foursquare checkpoints, Daggit et al. [21] explore how cities grow

and highlight spatial correlation as one of the most important growth factors. To

determine the most prominent location to open a new activity, Jenses [39] proposed

a mathematical model that characterizes the potentiality of locations. For example,

the candidate locations opening a bakery are those that mimics the features of

the average locations where actual bakeries are located. Another example is [3],

where the authors analyze how the growth and positions of craft breweries is

related with social and demographic evolution, captured through analysis of the

neighborhood change. For urban planning, the sole information of the location of

specific points of interest over time such as Foursquare check-ins can be sufficient.

Similarly, vehicular traffic simulators like SUMO [4] base the mobility models on

spatial vectors and rely on tools like NETCONVERT, which turns a OSM map into

a set of nodes defining road intersections and edges defining the roads. In order to

be scalable and to obtain meaningful statistical results [23], in MCS simulators the

complete path of all users participating and non-participating in the campaign

should be known in advance. For example, relying on spatial vectors would

increase the amount of computation performed over runtime to determine user

positions with fine time precision, lowering the scalability. This is a key element to

correctly compute the precise amount of collected data and its associated energy

cost under specific policies for data collection [12]. CrowdSenSim defines the

trajectory x of each user as a sequence of n steps x1, . . . , xn with n > 1, where each

of the xi steps uniquely defines the location in terms of time and spatial references,

19



3 – CrowdSenSim

i.e., latitude and longitude. This definition is in the spirit of previous research

on human mobility [15]. The vertices of street network graph have to be close

one with each other to ensure high precision of the sequence of n steps defining

user trajectories. The combination of CrowdSenSim with OSMnx would result

in a win-win strategy to enhance the flexibility of the simulator. To illustrate,

OSMnx-based walking maps would distinguish the two sidewalks of a street,

while the previous version of the simulator only sees the street.

3.2 New Mobility

OSM street nodes are inconsistent for direct use in CrowdSenSim because they

include dead-ends, intersections and all the points in a segment when streets curve.

OSMnx automatically simplifies and corrects topology through an algorithm,

removing those points and unifying each resulting set of sub-edges into single

edges. The approach is commonly used in different research domains to limit

the amount of data to be analyzed [47, 63, 72]. However, for MCS purposes the

resulting topology lacks of a sufficiently fine-grained level of details. First, the

distance between two points in the graph can be excessively large, making user

trajectories to be captured with a minimum of two points. Second, any statistical

information on the amount of sensed data would aggregate in a limited number of

locations, making the results not very informative To solve the lack of granularity

of both OSM and OSMnx nodes i proposed to use a procedure to Augment the

OSM Precision (AOP): it builds upon the OSMnx and has been included inside the

pre-processing module. i developed an exact solution (V-AOP) based on Vincenty’s

formula [65] and an approximated one, based on linearized version (L-AOP).

3.2.1 Pre-processing module

As mentioned before, the Pre-processing module contains the main innovations

in the mobility of the new CrowdSenSim. It is written in Python and it is built

on the OSMnx package. At First it downloads the street network of the desired

place,from which consequentially it creates an undirected graph. Afterwards, the
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desired granularity and the graph are send as input to the AOP algorithm. The

value of granularity has to be between 1 and 10 meters, indeed for larger numbers

the algorithm will not ensure the right density of points, this is due to the presence

of preexisting nodes downloaded from OSM. Lower granularity will give lower

percentage of errors. After the elaboration produced by AOP, the graph is ready for

the creation of the list of events. For each user is selected a walking time, uniform

randomly distributed between 20 and 40 minutes. In the same way also a speed is

associated to the user, this time the random distribution is between 1 and 1.5 m/s.

The speed and the walking time are both used to compute the walking distance

covered by the user. Consequently, the first step to generate the list of events of a

specific user is defining its route. To accomplish this task a random point in the

graph is selected as origin of the path. The tough part of this implementation was

to find the destination node, knowing the origin and the walking distance. At first

I have opted for an approach based on grid division and linear distance. I divided

the city layout in grids with an area of 1 Km2. After the choose of the origin I

look at the grid of it, then I pick a grid in the map with a linear distance bigger

than the walking distance of the user, this will be choose as grid destination in

which i choose the destination point. Once obtained both destination and origin

points, I use an OSMnx function called shortest_path to find the route on the street

network between the two nodes. The problem of this approach is that there is

not always correspondence among the linear distance and the network distance.

Moreover, there would be the possibility of places too small to provide the required

linear distance. To solve this issue I decided to exploit a Networkx function called

single_source_dijkstra, which discover all networks path in a graph, starting from an

origin node and cutting all routes after a certain network distance. The path with

the network distance equal to the required walking distance is selected as user

route, in case of no paths with the required network distance, it is selected the path

with longest length and the process is repeated, taking as origin the destination

point of the selected path and subtracting from the walking distance the length of

the path.

Once determined the route of the user, a starting walking time will be associated

to the user, the methodology of the hour distribution will be explained in the
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Subsection 3.2.3. Consequentially, it will be printed out in a text file the list of

events of the specific user, for each minute of the walking time will correspond a

position of the user route. After all users have printed out their routes the list of

events is completed and it is passed to the Simulator module.

3.2.2 AOP

OSM provides the graph of the street network GOSM = (V,E), where V is the set of

vertices or nodes and E the set of edges.

• Each node consists of different attributes, an unique code OSMID , the

latitude (y) and longitude (x) and a secondary parameter called highway

which characterizes the road of the node.

• Each edge consists of the following attributes: access, bridge, highway, lanes,

maxspeed, name, oneway, osmid, service, tunnel, u, v, width, where u and v

are the osmid of the adjacent nodes of an edge.

Let d(u, v) be defined the spatial distance between two generic nodes, being

u, v ∈ V. The objective of AOP is to increase the precision of GOSM to achieve a given

target distance D between any two adjacent nodes. The procedure guarantees that

D is also the maximum distance between two adjacent nodes, thus setting smaller

D augments the number of nodes in the graph and consequently its granularity. D

can be as low as 1 m. By taking as input GOSM and D, AOP generates a new graph

GAOP. Note that |VOSM|≤ |VAOP|. Higher precision means higher granularity, hence

the cardinality of |VAOP| increases.

I developed two algorithms to interpolate the position of the added nodes.

V-AOP is based on the exact distance between two nodes in the OSM, and L-AOP

is based on a linear approximation of the distance, reducing the computation time.

Fig. 3.3 compares the street network graph of different cities, Brancolino

and Luxembourg city. Specifically, Brancolino is a small town in Italy, while

Luxembourg is a medium-size city and capital of the homonym country. The

figure highlights the different precisions of the street network graph obtained with

OSM (see Fig. 3.3(a)), OSMnx (see Fig. 3.3(b)) and AOP (see Fig. 3.3(c)). AOP is
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general enough to be applied to any situation where the original precision of OSM

is not sufficient.

In the following I will describe the two implementations for the AOP procedure,

the first one, V-AOP, exact but computationally complex, and the second one,

L-AOP, approximated but less complex.

V-AOP Implementation

The V-AOP version is based on the Vincenty’s formula, developed by Thaddeus

Vincenty (1975) [65] which assumes the Earth as an oblate spheroid. The Haversine

formula [57] approximates the Earth as a perfect sphere, is commonly preferred in

GIS applications because is computationally less expensive than Vincenty’s exact

solution. However, I employ the Vincenty’s formula as the AOP procedure operates

offline while GIS applications typically run online over computationally-limited

mobile devices. Given a node z ∈ VOSM over e ∈ EOSM, it is possible to determine z0

over e through the azimuth across u and v so that their distance d(z, z0) = D. The

azimuth between u and v is the angle between a vector that points from u to v and

another vector pointing from u to the north (see Fig. 4.5).

azimuth(u,v)

a

u
k

vD

North

Figure 3.2. Geometry of azimuth determination process

To determine this angle measurement I exploit the trigonometric function

arctan2, which is a variation of arctan. It has two input parameters and is defined
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as follows:

atan2(x, y) =



arctan( y
x ) x > 0

arctan( y
x ) + π x < 0 ∧ y ≥ 0

arctan( y
x ) − π x < 0 ∧ y < 0

+π2 x = 0 ∧ y > 0

−
π
2 x = 0 ∧ y < 0

not de f ined x = 0 ∧ y = 0

(3.1)

V-AOP (see Algo. ??) is implemented as follows:

• For each edge e ∈ EOSM, V-AOP stores longu, longv, latu, latu, which are

respectively the longitude and latitude coordinates of u and v.

• V-AOP computes the azimuth a from u to v (see Fig. 4.5) as follows:

(3.2)a = atan2(sin(∆λ)·cos(φ2), cos(φ1)·sin(φ2)−sin(φ1)·cos(φ2)·cos(∆λ)),

where atan2 is a standard trigonometric function commonly implemented

in nowadays programming languages, ∆λ is the difference of longitude

in radians and φ1, φ2 are respectively the latitudes of u and v expressed in

radians.

• Then V-AOP determines the number of points P to create between u and v;

• V-AOP iterates over the edge e by adding an additional node on the edge at

each iteration. The position of a new node k is determined with the Vincenty’s

formula, which takes as input longu,v, latu,v, a and D, where D is the target

distance between k and u.

The new node k and the corresponding edge e(u, k) are added to GAOP,

while the value of k is assigned to u. After P iterations, the edge is fully

characterized and the last sub-edge e(k, v) is added to GAOP: V-AOP moves

on the next edge.
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Algorithm 1 V-AOP
1: procedure addPoints(EOSM,VOSM,D)
2: Input: GOSM = (EOSM,VOSM), D
3: Output: GAOP = (EAOP,VAOP)
4: EAOP = VAOP = ∅ . Initialization
5: for e ∈ EOSM do
6: u, v← adjacent nodes of e
7: VAOP ← VAOP∪ node(latu, longu)
8: VAOP ← VAOP∪ node(latv, longv)
9: a← azimuth (u, v)

10: L = d(u, v) . Distance from u to v
11: P = floor(L/D) . Number of nodes to add
12: for i = 1→ P do . For P iterations
13: k =Vincenty(a,D,latu, longu) . New node
14: VAOP ← VAOP∪ node(latk, longk)
15: EAOP ← EAOP∪ edge(u, k)
16: u = k . Assign the new k node to u
17: end for
18: EAOP ← EAOP∪ edge(u, v)
19: end for
20: end procedure

L-AOP Implementation

Starting from the observation that for short distances the Earth can be assumed as

flat, I proposed a simplified version of V-AOP called L-AOP. L-AOP exploits the

Euclidean distance, which only approximates the Vincenty’s optimal result, but is

simpler to implement and less computationally expensive.

The intuition is as follows: every edge e ∈ EOSM that is a real street, can be

approximated as a straight line l passing through u and v. Considering longitude

values on x-axis and latitude values on y-axis, L-AOP determines the equation of l

and then through iterations determines points over l with a granularity level D.

L-AOP (see Algo ??) operates as follow:

• For each edge e ∈ EOSM, L-AOP stores u and v and obtains for both the

corresponding latitude and longitude coordinates xu, xv and yu, yv.

• L-AOP computes the equation of the line l, given by the canonical expression

25



3 – CrowdSenSim

y = m x + q, where m is the slope and q is the y-intercept.

y = mx + q

m =
yv − yu

xv − xu
xv , xu

q = −(m ∗ xu) + yu

(3.3)

• Once determined l, L-AOP enters in a cycle with three cases:

1. Xu = Xv;

2. Xu < Xv;

3. Xu > Xv.

• In each of these cases, the objective is to find the coordinates xk,yk of a point

k along l at a distance D from the original node u of e (see Section 3.2.2 for

the definition of D). For this, L-AOP exploits the reverse Euclidean Distance:

R = |xv − xu|=
D

√

1 + m2
. (3.4)

• In case 1, L-AOP just adds T to yv and takes it as yk, while xk = xu.

• For cases 2 and 3, L-AOP computes xk, exploiting the reverse Euclidean

distance as follows:

case 2: xk = xu + R,

case 3: xk = xu − R.
(3.5)

• Afterwards, L-AOP checks if the new coordinate overcomes v. In positive

case, it breaks out from the cycle and continues with the next edge. Otherwise,

it computes yk by inserting xk in the l equation, then the new coordinates

are added to VAOP as new node. Finally, L-AOP continues iterating over the

same edge for the next node on l.
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Algorithm 2 L-AOP
1: procedure addPoints(EOSM,VOSM,D)
2: Input: GOSM = (EOSM,VOSM), D
3: Output: GAOP = (EAOP,VAOP)
4: EAOP = VAOP = ∅ . Initialization
5: for e ∈ EOSM do . For each edge in original graph
6: γ = 110250 m . Distance in one degree latitude
7: u, v← adjacent nodes of e
8: yu, yv ← latu, latv
9: xu, xv ← longu, longv

10: β = (yv − yu)/(xv − xu) . Assume xu < xv

11: δ = D/γ/
q

1 + β cos(latu)2 . Step in x-direction
12: x0 = y0 = 0 . Temporary coordinates
13: for x = xu; x < xv; x+ = δ do
14: y = yu + β(x − xu) . Linear interpolation
15: VAOP ← VAOP∪ node(x, y)
16: if x0 , 0 then
17: EAOP ← EAOP∪ edge(node(x0, y0),node(x, y))
18: end if
19: x0 = x, y0 = y . Store the last added node
20: end for
21: VAOP ← VAOP∪ node(xv, yv) . Add v
22: if x0 , 0 then . Add last edge
23: EAOP ← EAOP∪ edge(node(x0, y0), v)
24: else . u and v already close less than D
25: EAOP ← EAOP∪ edge(u, v)
26: end if
27: end for
28: end procedure
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(a) Brancolino - Precision of OSM (b) Brancolino - Precision of
OSMnx

(c) Brancolino - Precision of AOP

(d) Luxembourg - Precision of OSMnx (e) Luxembourg - Precision of AOP

Figure 3.3. Granularity for different cities. Blue circles denote the vertices provided
by OSM, red ones by OSMnx and green circles those created by AOP.

3.2.3 Pedestrian mobility models

CrowdSenSim exploits pedestrian mobility. I developed for the new release of the

simulator two user arrival models, which means how the users are distributed

along the hours of simulations. In the first model, the user arrivals are uniformly

distributed over the simulation period (U-MOB). The second mobility model

derives user arrivals from a dataset (D-MOB). Specifically, it exploits real traces

obtained from the well-known MCS ParticipAct framework [18]. The duration

of each user trajectory and the user walking speed are uniformly distributed

between [20, 40] minutes and [1, 1.5] m/s [23] respectively. The active users move

in a random walk over the street graph G generated by the AOP procedure. This

section provides details about the two models.
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The U-MOB Mobility Model

With U-MOB, user arrivals are uniformly distributed over the simulation period,

i.e., the average total number of users that start walking over a certain time window

is constant. Typically the time window is 1 hour long for comparison with D-MOB

(Subsec 3.2.3), as ParticipAct traces are given with such granularity. Users who

start and end their walking period in different hours are counted only once. At

the start of pre-processing module it is computed the expected number of users

per hour. During the allocation of users when the expected number is reached the

next user will start walking in the next hour.

The D-MOB Mobility Model

Chessa and al. [18] compare different human mobility datasets. In this work, I

focused on the ParticipAct dataset, originated from a MCS campaign of around

170 students in the Emilia Romagna region (Italy). Without having at disposal the

dataset, I extracted the profile of the average number of contacts during 7 days

and used as a reference to determine the user arrivals for D-MOB.

Specifically, given the total simulation period in days, I subdivide the period into

hours and then estimate the minimum number of users to be allocated so that the

average user contact follows the ParticipAct profile.

Note that a user contact occurs when two users are within a certain distance

R. For simplicity, I decided to count unique contacts even when users trajectories

intersect multiple times.

For D-MOB, the following two methodologies have been designed:

• The Contact-Only-Distribution (COD) assigns a number of users per hour to

reach the corresponding average number of contacts from the dataset. Once

this preliminary phase is completed, the remaining not assigned users are

divided proportionally to the per hour number of contacts. The method

favors hours with high number of contacts.

• The Contact and User-Distribution (CUD) method is hybrid. It operates

similarly to COD for the first phase, but in the second phase it assigns the
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remaining number of users proportionally to the number of hours of the

simulation period. This method favors equally hours with high and low

number of contacts.

Both methodologies operate the preliminary phase. Specifically, it consists in the

allocation of users in a fictitious hour where the expected number of users is due to

the average percentage of contacts of all hours. Once the factious hour is fulfilled

with the expected number of users, it is saved the number of contacts occurred.

The number of contacts expected during the allocation of users in the real hours

will refer to their corresponding percentage of contacts with reference to contacts

of the fictitious hour.

Accuracy of the D-MOB arrivals methods. To evaluate the accuracy of the

methods employed to generate the user arrivals according to the ParticipAct

dataset, I ran two different experiments using Luxembourg as city of interest.

In the first experiment, I put four scenarios with increasing number of users

in the system, and the simulation period is fixed to 12 hours. Fig. 3.6(a) shows

the relative error while comparing the methods COD versus CUD for D-MOB.

Note that the accuracy is high as the error remains lower than 0.25% and is nearly

constant for different values of users in the system. Note that the spike achieved

for 20, 000 users is negligible and due to the different initial spatial allocation.

In the second experiment, I evaluate the accuracy by increasing both the number

of users and the simulation period. Fig. 3.6(b) shows the results for different

increase factors. An increase factor equal to 1× corresponds to 10, 000 users in

the system and a simulation period of 24 hours. An increase factor equal to 4×

corresponds to have 4× the baseline number of users and simulation period. Hence,

4× corresponds to 160, 000 users over 96 hours. The results are pretty accurate and

the highest error is nearly 0.4 %. Unsurprisingly, the highest error occurs for the

lowest number of users in the system as achieving the target number of contacts

is more difficult and can only be alleviated by increasing the population in the

system.

30



3 – CrowdSenSim

Bran
colin

o (300)

Vaduz (5k)

Luxem
bourg

(107k)

Dublin
(567k)

Novosib
irsk

(1.5M)

St Pete
rsb

urg
(5M)

0

100

200

300

400

City (population)

C
om

pu
ta

tio
na

lT
im

e
(s

)

V-AOP L-AOP

Figure 3.5. Computational time and relative accuracy of V-AOP and L-AOP

10 k 20 k 50 k 100 k
0.00

0.05

0.10

0.15

0.20

0.25

Number of Users

E
rr

or
(%

)

(a) Simulation period fixed at 48 hours

1× 2× 3× 4×0.00

0.10

0.20

0.30

0.40

0.50

Increase Factor

E
rr

or
(%

)

(b) Joint increase of users and simulation period

Figure 3.6. Accuracy of mobility models

3.3 Novel key performance indicators

In this section i detail the new metrics that I inserted in CrowdSenSim. They differ

for how they evaluate different aspects of the simulation. First part introduces

metrics to analyze the new mobility, while in the second part are provided metrics

about fairness between users.
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3.3.1 Human mobility metrics

In order to assess U-MOB and D-MOB arrival models, I decided to implement

two new metrics for CrowdSenSim . For both metrics I simulated a population of

50, 000 users distributed over a period of 48 hours. I assume the time is slotted,

with a timeslot equal to 1 minute. Two users are defined as a neighbors if during

timeslot j their distance is below a given radius R. For the experiments, R is set

equal to 50 m, which is a reasonable distance for D2D communications based on

WiFi-Direct. The per-user average number of contacts UAC, specifically evaluated

for user i, is defined as follows:

UACi =
1
Ti
·

TiX
j=1

n j,i, (3.6)

where Ti is the amount of time user i is active, measured in timeslots, and n j,i is the

number of neighbors of user i in timeslot j.

The second metric is called stability coefficient SC [8] and for user i is determined

as follows:

SCi =
1
Ti
·

TiX
j=1

|n j+1,i \ n j,i|+|n j,i \ n j+1,i|

|n j,i|+|n j+1,i|
, (3.7)

where n j,i denotes the set of contacts of user i during timeslot j, |n j+1,i \ n j,i| is the

number of neighbors that user i loses between timeslots j and j + 1 and |n j,i \ n j+1,i|

corresponds to the number of neighbors that users i acquires between timeslots

j and j + 1. This metric determines on how frequent a user changes neighbors,

hence is relevant to determine to which degree the user is a valid candidate to

become group owner in D2D WiFi-Direct communications.

Fig. 3.7 illustrates the results in form of CDF (Cumulative Density Function) for

the distribution of the metrics evaluated across all the users. Fig. 3.7(a) shows the

UAC metric. Interestingly, with the considered high number of users in the system,

the U-MOB method with uniform arrivals approximates pretty well the D-MOB

arrival distribution, based on the ParticipAct data set. However, it should be

noted that the distribution of UAC metric depends on multiple factors, including

the total number of users in the system, the duration of the simulation, the size

of the urban environment and the spatial allocation policy, which is uniformly
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distributed in our case. Fig. 3.7(b) indicates that half of the users in the system

obtains values of SC different from 1, hence between two subsequent timeslots the

users remain in contact with their neighbors. On average, for the majority of the

users (75 %), nearly 30 % of the contacts is stable as the SC metric assumes values

below 0.7.
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Figure 3.7. Analysis of contact distribution and stability of contacts

3.3.2 Fairness

Ideally, MCS systems should gather information from the crowd by ensuring QoI.

At the same time, the collector should guarantee fair treatment to each of the

participants, i.e., it should not take advantage from a small set of users.

Intuitively, users that contribute higher amounts of data, sustain a higher

energy cost to produce such data and therefore need to be rewarded adequately.

This is the reason why I opted for the implementation in CrowdSenSim of a new

fairness metric.

To evaluate fairness between users, I decided to exploit the Jain Fairness

Index [38], which measures the equality of user allocation as follows:

FJ(x) =

 
NP

i=1
xi

!2

N ·
NP

i=1
x2

i

, (3.8)

where N is the number of users and xi is a generic resource allocated to user i. The
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quantity xi changes according to the allocation metrics, which depends on the

purpose of the study. If the objective is to distribute workload equally between all

users, xi indicates the allocation to user i. Otherwise, xi = αi/βi aims to allocate the

amount of total contribution with different weights, where βi is a weight to share

the resource to user i and αi is the allocated resource. In the first approach, the

index is 1 and the system is totally fair when all xi values are equal. For instance,

in [46] xi are the observations in a region of interest. In the second approach, the

fairness index assumes values equal to 1 when the resources are divided according

to different weights. For instance, if a user pays the double than other users for

a shared resource, the allocation algorithm gives twice as much as others to be

fair. I follow the second allocation metrics, exploiting different parameters xi

that correspond to a system allocating unequal fractions and corresponding to

different expected contributions from users. I adopt two different approaches,

one considering fairness as contribution of data, the other one considering battery

drain.

Intuitively, users that walk for longer time periods are expected to contribute

more data than others. I define the data contribution fairness index (FD) as follows:

FD =

 
NP

i=1
di

!2

N ·
NP

i=1
d2

i

, (3.9)

where:

di =
Di

DM
i

. (3.10)

Di is the amount of contributed data from user i and DM
i is the maximum amount of

information an individual could contribute in the corresponding time. FD assumes

values equal to 1 when users contribute data proportionally to the time spent

walking. However, this index presents a significant drawback if considered alone.

Indeed, FD does not distinguish between two users that walk for the same time

period, but have different initial levels of battery. For this reason, I introduce an

additional index that takes into account the battery level of the devices. Specifically,

a device with a higher battery level prior to the start of the sensing process is

34



3 – CrowdSenSim

expected to contribute higher amounts of data than devices with a lower battery

level. The index of battery fairness index (FB) is defined as:

FB =

 
NP

i=1
bi

!2

N ·
NP

i=1
b2

i

, (3.11)

where:

bi =
Bi

BT
i

. (3.12)

Bi and BT
i are measurements of battery level of the mobile device i (in mAh). The

former is the amount of battery drain experienced during the contribution process

and the latter is the total battery when the mobile device starts to contribute data.

I introduce the crowdsensing fairness index (FCS) to simultaneously take into

account both the battery drain and the amount of contributed data. Specifically:

FCS = σ · FD + (1 − σ) · FB, (3.13)

where σ is a balancing coefficient that assumes real values in [0, 1] and weights the

relative importance between the two indexes FD and FB.

3.4 New implemented features

This section contains all the others features added in the new release of CrowdSen-

Sim. At first I start talking about the new data collection frameworks (DCF), which

defines the set of steps necessary to produce and deliver the information from the

participants to the collector, consequentially I will introduce the novel data report-

ing mechanisms (DRM), which are the core of any DCF. Afterwards, Subsection

3.4.3 explains how I inserted real smartphone battery traces to profile real energy

consumption. Finally I will show the renewed Input-Output of CrowdSenSim.

3.4.1 Data collection frameworks

The organization of a MCS campaign requires to sustain costs to reward individuals

for their involvement and to verify the accomplishment of the tasks. Consequently,
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it is crucial to investigate how to maximize the efficiency of a Data Collection

Frameworks (DCF), which is defined in terms of the costs sustained by the organizer

and the revenues. The users sustain costs while contributing data too, i.e., the

energy spent from the batteries for sensing and reporting data and, eventually, the

data subscription plan if cellular connectivity is used for reporting.

Developing efficient DFC is crucial to regulate the degree of user involvement

and to prevent excessive battery drain from the mobile devices, which are fun-

damental limiting factors to foster user participation and contribution. At the

same time, a DCF has to gather a sufficient amount of data to ensure Quality of

Information (QoI) .

I implemented in CrowdSenSim three different DCFs. Each of them has specific

properties and features that are presented in the followings.

DDF - Deterministic Distributed Framework.

DDF is a DCF with the objective of fostering energy-efficient data collection in

opportunistic cloud-based MCS systems proposed in a former work [13]. It aims at

maximizing the utility of the cloud collector in receiving data from certain sensors

in a specific region of interest, while minimizing at the same time the energy

costs users sustain to sense and deliver information. The central collector sends

periodically beacons to the mobile devices to share the utility in receiving data

from specific sensors. Then, the mobile devices take sensing decisions locally and

independently one with each other. Sensing and reporting decision are driven by

several factors such as the environmental context, the potential cost for sensing and

reporting, the current level of battery and the amount of data already contributed.

When these factors are above predefined thresholds, the systems prevent users

from further contribution. Therefore, this mechanism is aware of the user-state, i.e.,

it considers the user history to drive the subsequent decisions. The DCF aims to be

fair in terms of the amount of energy spent by the users. To implement this DCF

in CrowdSenSim, i had to make a battery update procedure in every minute of the

simulation, in such a manner every users in each instant have the corresponding

actual battery level. Therefore, using DDF in the campaign, all users will continue

sensing and reporting data checking every minute their actual battery level and
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comparing it to the starting level, in case of level of battery consumed is greater

than the pre-specified threshold, the user will stop generating and reporting and

will exit from the active status for the remaining minutes of his walk.

PDA - Probabilistic Distributed Algorithm.

Montori et al. [46] propose a distributed algorithm based on probabilistic design

to acquire data in an opportunistic scenario. The algorithm is based on limited

feedback from the central collector and does not require users to complete specific

task. The objective of this algorithm is to regulate the amount of data contributed

from users in a certain region of interest to minimize data redundancy and energy

waste. Assuming that it is impossible to compute the number of participants

in a region of interest because their position can not be disclosed for privacy

reasons, the coordinator determines the number of participants through the

number of observations received. The ultimate objective is to control the number

of observations in an area in order to guarantee a desired value, i.e., the minimum

quantity of data to be harvested. To reach this goal, the mobile devices decide

independently from the collector and one with each other when to perform sensing

and reporting. The framework is memoryless. Unlike DDF, it does not take into

account the previous status of each user to determine the probability to report data

in a certain timeslot. Each timeslot has a probability Pt to asses if during it, the

device will deliver data to the Data Collector or not. In PDA, the users continuously

generate data and every minute they determine the probability of delivering the

acquired data. When no transmissions occur, because Pt is lower than the threshold

probability Pth data is stored locally on a buffer whose occupancy increases and

decreases with the number of successful delivery attempts.

PCS - Piggyback Crowdsensing.

PCS [41] is a DCF that reports data only during the so called smartphones oppor-

tunities, data is delivered during users phone calls. The main advantage related

to PCS is the lower energy consumption associated to reporting operations.The

reason of this is that the mobile devices do not have to wake up the radio interface
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to transmit the collected data on purpose. PCS does not include any feedback from

the collector to the users, hence it can not indicate urgency for additional data.

Furthermore, if smartphones opportunities are rare, the collector might suffer

because of missing data. According to these considerations, PCS is particularly

suitable for delay-tolerant MCS tasks that do not need data to be sent to the central

collector as soon as users sense it. PCS implements a buffer mechanism as well

to store the acquired data that is delivered during phone calls. The distribution

and the duration of daily phone follow the profile of weekday 1 in [68], that is

computed by normalizing the average call arrival rate and average calls duration

within 24 hours from a dataset of four different days

Collected data distribution

In order to show the different amount of data obtained in MCS campaign based

on different DCFs, I ran a simulation on CrowdSenSim for each DCFs and I will

introduce the results in the following.

Fig. 3.8 illustrates the trajectories of 5 participants walking in Luxembourg City.

The aim is to focus on the periods of active contribution and show the differences

between the DCFs. DDF allows the users to perform continuous contribution until

the mobile devices of the participants meet the conditions to stop to contribute

data. PDA shows an intermittent reporting, which is attributed to the probability

of performing data transmission. For example, the sections of the trajectories when

users perform continuously active contribution depend on the feedback of the

collector that asks for additional data. Hence, for all the users, the probability to

transmit is high. With PCS, the user active contribution is extremely limited and

totally depends on the probability of performing user calls and their duration.

Fig. 3.9 shows the spatial distribution of the total amount of collected data at

the end of the simulation period for Luxembourg city. The heatmap is normalized

between 0 and 1 and 1 indicates a total of 100 MB of data generated during the entire

simulation period. PDA achieves a high spatial distribution of amount of collected

data and this is because it collects data until the collector has gathered a sufficient

amount of data and lowers the transmission probability of the users. DDF shows a

lower amount of collected data in the center due to the stopping mechanism. PCS
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achieves the lowest amount of contributed data. Indeed, although users perform

continuous sensing, data reporting fully depends on the probability of performing

phone calls.

3.4.2 Data reporting mechanism

A DRM is the most important component of a DCF that defines the methodology

to perform delivery of sensed information to the cloud collector. Note that a DCF

consists of multiple components in addition to the DRM, such as mechanism

to inform the users about the urgency of sensing additional data. Every DCF

implements a DRM: the ones presented in the following paragraphs are three

methods that represent the most classical techniques for data delivery.

Continuous-DRM (CON)

Data can be delivered in a continuous fashion as soon as it is sensed. This approach

is needed for real-time applications where users need to feed the collector with

data constantly over time. However, such continuous stream of data incurs in

the highest energy cost from the user point of view as the mobile devices need to

maintain the connection active during the entire sensing operation period. The

CON method is implemented by DDF. It is useful for all applications that need

real-time data even if it could represent a higher cost to contributing users. It is

typically the most expensive approach in terms of battery drain and it is utilized

in a pure way only if strictly needed. Some constraints may be applied to make it

less consuming (e.g., data collection through context recognition).

Delayed-DRM (DEL)

With delayed reporting, data is sent after the sensing activity has ended. Hence,

this approach decouples sensing and reporting operations and is more conserva-

tive than CON from an energy-consumption perspective. Indeed, the network

interfaces do not have to be maintained continuously active for a prolonged period

of time. DEL is useful for delay-tolerant applications where the collector does not
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need to harvest data in real-time. DEL is implemented by PCS when the number

of smartphone opportunities equals 1.

Probabilistic-DRM (PRO)

This approach considers a probabilistic reporting. It is an intermediate solution

between the two previous approaches. During each timeslot, the algorithm

randomly generates a probability p that drives the decision of delivering the sensed

data. The parameter p is the checked against δ, a feedback provided by the collector.

This DRM is implemented by PDA and by PCS when the number of smartphone

opportunities is higher than 1.

Contribution No contribution Starting point F Ending point

(a) DDF

Contribution No contribution Starting point F Ending point

(b) PDA

Contribution No contribution Starting point F Ending point

(c) PCS

Figure 3.8. User trajectories with the associated data contribution in Luxembourg City

(a) DDF (b) PDA (c) PCS
Figure 3.9. Heatmaps of Luxembourg city with different DCFs

40



3 – CrowdSenSim

3.4.3 Real traces of smartphone energy consumption

In order to improve the assessment of the energy consumption for a sensing

campaign in real urban environments, I included in CrowdSenSim real traces of

energy measurements for sensing and reporting.

To profile Energy Consumption I used energy measurements obtained at the

University of Luxembourg using a crowdsensing Android application.

The app collect data of the same smartphone sensors considered by CrowdSen-

Sim (GPS, Proximity, Accelerometer), the reporting infrastructure is the WiFi and

it implements the various DRMs.

The mobile application can run over any Android-based smartphone. Java

is the programming language employed for the implementation, while PHP is

the server-side scripting language used for the web development. The minimum

supported version is Android Marshmallow 6.0 (API level 23), The server side, i.e.,

the cloud collector is a laptop used to perform data processing and storage.

The energy measurements were performed on the smartphone through a

power monitor. Specifically, the cost that each device experiences is computed

proportionally to the time of contribution. The reference power consumption

profiles were obtained from 30 min long sensing traces. Fig. 3.10 shows the CDF

of the energy spent on the various DRMs along all the 30 min experiment.

In order to insert such power monitor results in CrowdSenSim, I computed an

average per minute battery consumption, I obtained it exploiting the CDF of the

experimental results and making a translation to convert mA measure to a mA h

value. Consequentially in CrowdSenSim the battery of each contributing smart-

phone is updated every minute of traveling, decrementing from the current battery

value, expressed in mA h, the value of battery consumption of the corresponding

DRM adopted in the simulation campaign.

The decision about use or not the real battery traces for the simulation is easy

to change through the input parameters of CrowdSenSim.
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Figure 3.10. CDF of energy spent for different reporting approaches

3.4.4 Input and output improvements

3.4.5 GUI

An important update for the Input of CrowdSenSim is the development of a

Graphical User Interface. As before mentioned in Section 2.4.1, in the old versions

of CrowdSenSim all the inputs configurations were managed by a setup text file.

The Simulator-User had to fill it out with the desired parameters, in order to run

the simulation with inputs values different from the default ones. Fig. 3.11 shows

the first draft of the CrowdSenSim, it is very simple and easy to use, it is opened

to many future improvements. Starting from the top left, the first box is empty

for future options, the second shows the actual number of users and days, the

third box permits to change such numbers by inserting the desired values and by

clicking the ok button, the maximum number of days allowed is 7 while there is

no limit for users. The first box on the bottom left is where is possible specify the

name of the city or region to simulate, in this box are present two button one is

called save and the other save and run. The new release of CrowdenSim is able to

save list of events and allows the users to reuse it in next simulations, indeed the

two buttons are positioned in case an user wants to save the list that the simulator

will produce or just save it for future needs without running the simulation. The

second box is a catalogue of the list of events already saved in simulator, in case an
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user wants to run one of it, he has to select it and then click the run button, there is

also the possibility to delete one list from the catalogue pressing the button del,

in addition is possible to check the number of users and days of the selected list

looking at the frame at the bottom of the box. The third and last box contains the

run button that starts the simulation.

Figure 3.11. Graphical User Interface

Output

The statistics and output maps and graphs are shown at the end of the simulation

phase, in a HTML page. Fig.3.12a shows the first part of the page, the table at the

left bottom part contains the Settings of simulation .

The table in the top right part contains simulation statistics such as the Average

number of samples generated, related to all the type of sensors. Average amount

of data generated, represents the amount of data generated during the days of

simulation, Average amount of battery drain spent for sensing, measured in mA h,

counts the amount of battery consumed for sensing during the simulation, by

all the pedestrians smartphones. Between the two tables it is positioned a new

element for CrowdSenSim Outputs, the route of user, in particular I decided to

show the route of the first user during the first day of simulation. The path is drawn

above the open street map and two markers are located to define the starting and
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ending points The bar chart at the bottom illustrates the Average amount of battery

drain due to the data transmission per-user (J), ordered by day. In details, the previous

parameter represents the energy spent for the communication to the collector of

the sensing data collected during the simulation. Other studies underlined how

the Average amount of current spent for sensing is negligible comparing with the

energy spent for data reporting [11] [13].

In Fig.3.12b there is the second part of the HTML output page. The first map

at the top is the new heatmap of contributing users, it is related with the time of

the simulation, this because the heatmap changes every second showing the total

distribution of generated data during the first hour of simulation. The area with

an highest amount of reported data are denoted in red.

The pie chart in the bottom-left reports the information concerning the Statistics

users sensors. In details, are shown the quantities of data generated by the three

sensors used by default in CrowdSenSim as GPS, Proximity and Accelerometer.

The reported quantities are strongly dependents by the sampling frequency of

each sensor. The Table 3.2 shows the sensors equipment parameters using for

performance evaluation in the default scenario.

At the end in the bottom-right is included a new figure showing the Cumulative

Distribution Function of battery drain,which reports the CDF of the total battery

drain per user.

Sensor Parameter Value Unit

Accelerometer Sample rate 4 kHz
Sample size 6 Bytes
Current 450 µA

Proximity Sample rate 8.1 MHz
Sample size 2 Bytes
Current 150 µA

GPS Update period 10 s
Sample size 24 Bytes
Current 23 mA

Table 3.2. Pre-configured sensors

44



3 – CrowdSenSim

(a) First page

(b) Second page
Figure 3.12. Output web-page with results
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Chapter 4

Collaborative sensing framework

Typically users contribute data to MCS systems individually and independently

from others. On one side, it implies from the central authority the allocation

of tasks to each participants. On the other side, they should be able to report

data through available communication technologies, such as WiFi or cellular data

interfaces. Allocating task in a fair and efficient way is one of the most crucial

requirements in a sensing campaign. To accomplish a task, a user has to follow

different steps and allocation schemes Chatterjee et al. [16] investigate the main

issues in assigning tasks and propose efficient schemes that meet application

requirements under. iCrowd [70] is a framework which aims to optimally allocate

tasks considering incentive mechanisms under different time and space coverage

constraints. Specifically, it maximizes the overall k-depth coverage with a fixed

budget or to minimize the overall incentive payment while ensuring a predefined

k-depth coverage constraint. ActiveCrowd [29] is a framework to select workers

for multi-task campaigns. It aims to minimize the distance a user has to move to

the task intentionally.

In the last years, researchers have mainly focused on energy efficient data

collection that exploits individual reporting. To give a few examples, Piggyback

CrowdSensing [42] is a framework that leverages phone calls and usage of mobile

application to deliver sensed data, lowering energy consumption on individual

mobile devices. In [13], the authors propose a framework that maximizes the

utility of collector in receiving data while minimizing the energy consumption of
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smartphones, which deliver information individually. In MCS systems, exploiting

collaboration between users to efficiently report data still remains a field that

requires further investigations.

Collaborative sensing is based on the idea to form a group between users

in proximity and electing an owner, who is the only responsible to deliver

data to the central collector. Mobile devices within a group can be seen as

nodes or peers in the same network. They require only the knowledge on local

neighborhood to exchange data and select the next hop, which depends on location

and mobility of users. This mechanism can be seen as a position-based routing

over ad hoc network. As forwarding decisions require a precise knowledge

of current neighborhood not based only on forwarding node’s perception, all

suitable neighbors of the forwarding node are involved in the selection of the next

hop [26]. Users exchange data through device-to-device (D2D)communications

exploiting short range technologies, such as Bluetooth, WiFi direct, LTE direct,

Zigbee, near field communication (NFC) or ultrawide band (UWB) technologies. To

illustrate, De Benedetto et al. [5] propose to leverage LTE direct for D2D proximity

discovery and local data dissemination in next generation 5G networks. WiFi

Direct is another technology that provides the possibility to deploy opportunistic

networks between users that want to exchange data [19]. Asadi et al. [2] introduce a

channel-opportunistic architecture built on top of D2D features of 5G networks that

exploits D2D communication. They aim to improve the user experience in terms of

throughput, fairness, and energy efficiency, focusing on mobile devices that exploit

both WiFi and cellular interfaces to establish a D2D communication. In D2D

communication, users need efficient content discovery mechanisms to forward

their queries to the node in the neighborhood that is most likely to satisfy them,

without a central coordination authority. Casetti et al. [14] investigate this problem

exploiting WiFi Direct and proposing intra- and inter-group communication

methodologies. In addition, they investigate the group formation, aiming at

achieving full connectivity and efficient resource utilization. The policy adopted

to form a group is crucial in collaborative MCS systems. In [66], the authors

present a protocol that aims to enhance the user performance from an energy and

throughput perspective, managing the group size and the transmission power of
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each smartphone. Zhang et al. [73] investigate the limitations of WiFi Direct in

forming groups with more than two users, presenting a protocol for larger groups.

After group formation, it is crucial to elect a responsible of the group that manages

it and delivers data to the central collector. The decision to elect an owner is

typically left to the application layer. Jahed et al. [36] propose an optimized group

owner selection, which aims at enhancing the overall throughput.

In this Chapter, I investigate a collaborative framework that aim to form groups

of users who communicate and exchange data through WiFi-direct interfaces and

elect a group owner as the responsible for data delivery. At first I introduce the

standard of WiFi Direct, afterwards I propose three different grouping strategies and

compare them according to the requirements of the MCS campaign under analysis,

at the end I present the results of simulation obtained through CrowdSenSim in

order to evaluate the proposed framework.

4.1 Background WiFi Direct

Overview

Wi-Fi Direct represents a standard capable to enable Wi-Fi devices as, for example,

smartphones, laptops, Smart TVs, printers, cameras and other tools to inter-

conntect in a rapid and easy manner without the integration of an Access Point

(AP). Wi-Fi Direct is based on WLAN frame structure and is secured with Wireless

Protected Access – 2 (WPA2). It supports, as in normal Wi-Fi, a high data rates

up to 250 Mbps and its range connection reaches up to 200m (this contitutes the

theorical range; in fact practical range might be different). The main Wi-Fi Direct

feature are descriped in the following.

Network architecture

The core concept of Wi-Fi Direct architecture is the “WD Group”. A WD Group is

made up of a Group Owner (GO) and zero or more Clients. The GO takes the role

of a legacy AP, implementing all its functions within the other group members.

A device can dynamically take the role of GO or client. The roles of Devices are
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Figure 4.1. Example of Wi-Fi Direct use cases. Reproduced from [9]

usually negotiated before creating a WD Group and remain fixed while the Group

is active. No changes of roles are possible along the life period of a WD group.

Device Discovery

In order to form a WD Group, a Device needs to scan for other devices, that are

close to it in its wireless range and that are willing to step into a WD group. To

do such neighbor research the devices should execute a Device Discovery . The

procedure consists of two distinct phases: Scan and Find. In the Scan phase, the

Device simply performs a traditional Wi-Fi scan through all supported channels in

order to discover existing WD groups, legacy access points and nearby devices

with their informations such as the Device Name. Once the device completes,

the device steps into a Find phase. In the Find phase, the device chooses one of

the predefined social channel 1, 6 and 11 in the 2.4 GHz band, next the device

alternates between two states: Search and Listen. In the Search state, the sends

Probe Requests on the social channels . In the Listen state, the device waits

for Probe Request from other devices, listening on the previously chosen social

channel. In case the listening device receives a Probe Request, it will reply with a

Probe Response. The amount of time dedicated to each state is randomly chosen.

The Device Discovery process can induce some delay to let a Device discovers all
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Devices in its vicinity. This delay, can be significant high in case of many Devices

simultaneously performing Device Discovery in the same wireless range.

Service Discovery

Service Discovery is an optional feature in Wi-Fi Direct. The procedure starts after

the Device Discovery and prior to the Group Formation procedure. It allows a

device to query for services offered by nearby devices and to connect only to the

ones that makes available a specific service. The Discovery procedure is made

possible by the link layer Generic Advertisement Service (GAS) protocol, that

allows to transport higher layer protocols. Wi-Fi Alliance has defined a set of

standardized services supported by Wi-Fi Direct such as Play, Send and Print.

Figure 4.2. Standard Group Formation Mechanism. Reproduced from [9]

Group Formation

In this phase there is the real establishment of the WD Group. During the Group

Formation, the device that will act as GO is determined. There are three different
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way to form a group: Standard Group Formation, Autonomous Group Formation

and Persistent Group Formation. In Standard Group Formation two devices enter

in a negotiation phase, in order to assign the role of the GO between them and to

select the channel used bi the group. During the GO Negotiation the two devices

send to each other a Negotiation request, this message includes a randomly chosen

numeric value called “Intent value” and a tie breaking bit. The Intent value ranges

from 0 to 15, and it measures the willingness of the device to assume the role of

GO. There is not a standard definition of how to compute this value, but is left

to the application layer. The tie breaking bit is randomly assigned by the first

device sending the Negotiation request, while the responding device will reply

with the tie breaking bit negated. The device with the higher Intent value will

become GO, In case both devices Intent values sent are equal, the device with tie

breaker bit set to 1 shall become GO. Finally thee device selected as GO will start

a Group session, launching its soft-AP and the DHCP server. The other device

can then connect to GO , typically via WiFi protected setup, and exchange data.

At this point the group is established and also other devices can join the group as

clients. In Autonomous Group Formation there is not a negotiation phase, the role

is not chosen between some devices . Instead, a device announces itself as GO and

starts a WD group sending beacons. This process is similar to the legacy Wi-Fi

in which an AP directly sends beacons into the network to become discoverable.

The Autonomous Group Formation is simpler and faster than Standard Group

Formation. In Persistent Group Formation a device sends an invitation to another

device, in order to reinstantiate a previously established WD group. The role of

each device will remain the same as in the previous group. To establish a Persistent

group, the devices must assign a flag bit inside the beacons during the formation

of the group. If the flag is not set during Group Formation procedure, the P2P

Devices cannot re-instantiate a Persistent group. The Wi-Fi Direct standard does

not permit the Standard and Persistent Group Formation procedures between

more than two devices. Other devices can only join, as clients, an already formed

group. The solution is to use different methods to establish the GO, then wait for

the selected GO to create the group in autonomous mode and finally let the other

devices to connect to the formed group.
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4.2 Group Formation

When exploiting WiFi Direct communications, the first fundamental phase is to

establish a group of devices that participate. Then, it is crucial to elect an owner of

the group. In our work, the GO is crucial also because is the responsible to deliver

data of the group to the central collector. To form a group of peers and negotiate

the role of the group owner, different methodologies can be taken into account.

In [10], the authors define the most complex case as the standard case, and two

simplified cases as the autonomous and persistent ones. In this work, I exploit

the autonomous group formation for different reasons. First, it is simpler and

faster than the standard case because there is no negotiation phase. Differently

from the standard approach, a device announces itself as GO and starts a WD

group sending beacons. Second, WD standard does not permit the standard and

persistent Group Formation procedures between more than two devices. Other

devices can only join, as clients, an already formed group. After having formed a

group and elected an owner, other fundamental phases are the updates and the

destruction of a group. I will explain them later in details according to different

policies.

4.3 Group Formation Algorithm

This Section presents the proposed policies for group forming and group owner

election. In this Section, I propose three different policies and I will explain how

they can be effective according to different application scenarios. The first policy

is called static grouping (SG) and it presents a static grid that covers the whole

area of interest of the campaign. The second one is the point of interest-based

grouping (PG) that set a place as the center of the group. The last one is the

dynamic grouping (DG), which forms groups taking into account citizens staying

close in a certain distance and usually moving.
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Figure 4.3. Different grouping methods

4.3.1 Static

This is the simplest GFA, it is based on the division of the area through a grid,

where each quad has a sub-area of 50 m2. The dimension is due to the reasonable

distance of a WiFi Direct connection. In Fig. 4.8 we can see the city of Luxembourg

divided for the Static GFA. To every quadrant in the grid will correspond a WiFi

Direct Group. This GFA allows to cover the entire area of the MCS campaign.

It is useful for task requiring a full coverage of the map, for instance a noise

monitoring or air monitoring campaign. It allows easily to keep track if there will

be certain zone with no contributors, and from this can born an user rewarding

policy focused on solve the problem.

Figure 4.4. Luxembourg - grid division - Static GFA
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Algorithm 3 Static GFA at device J
1: Initialize: Group( j)=0 . Number of group of j, 0=NoGroup
2: GO( j)=false . Group Owner Boolean flag
3: for t = 1→ T j do . For all the minutes of j’s walk
4: procedure Initialization
5: Input: B j, R j, Pt

j, Pt−1
j , S j . Battery, RSSI, Position at t, Position at t-1, Speed

6: Output: GI j

7: nq j = findQuadrant(Pt
j) . j’s quadrant

8: αt
j ← bearing(Pt

j, Pt−1
j ) . Angle of direction from Pt−1

j to Pt
j

9: Pexit ← exitPoint(Pt
j, nq j, αt

j)

10: D = d(Pt
j,Pexit) . Linear distance from Pt

j to Pexit

11: Te = D/S j . Estimation time to exit from nq j

12: GI j = Wt · Te + Wb · B j + Wr · R j .Wt,Wb,Wr weights
13: end procedure
14: // Broadcast GI
15: // N j ←wifiDiscovery . List of j’s neighbors
16: procedure Neighborhood Discovery
17: Input: N j, nq j

18: Output: Glist j . List of j’s neighbors inside nq j

19: Glist j = ∅

20: for m ∈ Nj do
21: nqm = findQuadrant(m) .m’s quadrant
22: if nqm = nq j then
23: Glistj ← Glistj ∪m
24: end if
25: end for
26: end procedure
27: if Group( j)= nq j then
28: Continue
29: else
30: procedure GoElection
31: GO( j)=false
32: GImax = firstElement(Glist j)
33: if GImax = GI j then
34: GO( j)=true . j becomes GO
35: autonomousGroup() . j creates the WD group
36: else
37: connect(ID(GImax)) . j waits for the device with GImax to connect
38: end if
39: end procedure
40: end if
41: end for
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Initialization Phase

Every single user has previously downloaded the map and the grid division of the

area, therefore using it in combination with its own GPS sensor the user determines

the number of the quad in which he is walking, saving the corresponding limit

coordinates. Afterward, the user takes the coordinates of the actual position, those

of the last registered position and he combines them together in order to find the

angle of direction α, using as reference plane the true north. Fig. 4.5 shows an

example of the direction determination process, where p0 is the actual position and

p−1 is the last registered one, the device every 60 seconds saves the pair latitude

and longitude of its own position updating this variable, if during the calculation

of the user’s direction p−1 is equal to the initialization value (-1,-1) means that the

user is participating to the campaign since less than 60 seconds, as there is no

registered positions the direction is set to one of the default direction (North, East,

South, West) depending on th closest limit of the quadrant.

Direction_angle(pt−1, pt)

α

pt−1

pt

North

Figure 4.5. Angle of direction determination process

Next step is to compute the distance D between the actual position of the user

and the external limit of his quadrant, assuming that the user will continue to walk

along the same angle direction α. Fig. 4.6 shows an example of the determination

process of this exit distance. After obtaining D, it is determined an estimation

of the exit time Te, which is the remaining time that the user spends inside the

quadrant. Te is computed by multiplying D with the actual speed of the user Vu.

Finally, the user computes its own GOAI (GO Availability Index), that is the value

representing the willingness of an user to assume the role of GO in the WiFi Direct
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group. The GOAI is composed as following:

GOAI = Wt · Te + Wb · Bat + Wr · RSSI (4.1)

where Bat denotes the remaining percentage of battery of the user’s device, RSSI is

the received signal strength indicator, Wt, Wb and Wr are the weights corresponding

to the relevance inside the GOAI of the values that they multiply.

α
pt−1

pt

D

North

(a) Static

α POI
pt−1

pt

D

North

(b) Poi

Figure 4.6. Exit distance determination process

Broadcast

Each device encodes its own GOAI into human-readable ASCII characters between

[32,127] and insert it inside its own WiFi Device_name (DN), that is composed by:

DN = (NQ, ID,GOAI) (4.2)

where NQ is the number of the quadrant and ID corresponds to the last 2 Bytes of

the MAC address of the interface, so as to avoid ID collisions.

Neighborhood Discovery

During this phase, a device collect other devices parameters, reading their name

and saving into Glist only the GOAI of the nodes that have the same NQ of the

device. The Glist will be sorted in descending order.
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GO Election

Next, taking the first element of Glist, the device finds out the maximum GOAI

inside the Glist and the corresponding ID. In case of equal GOAI is considered

maximum the one with the biggest ID. if the ID corresponding to the maximum

GOAI match the device’s local GOAI, the device will start a WiFI Direct group in

autonomous mode, and it will assume the role of GO. Otherwise, the device will

simply wait for the elected ID to start the group and once that will happen, it will

connect to the new GO.

Updating and new members

Making changes in a WiFi Direct group is unfeasible, once the GO is decided, if we

want to change device that assumes that role, we will have to destroy the group

and create a new one. To this end, if a new user arrives in a quadrant where a

WiFi Direct group is already present, he will not create a new group but after the

Discovery phase where he will generate his Glist, he will directly connect to the

pre-existent group. In order to be prepared in case of disruption of the group, all

members should update their GOAI every 60 seconds, repeating the initialization,

the Broadcast and the Neighborhood Discovery phases. In the event that the

actual GO exit from the quadrant, the group will be destroyed. All the members

remained inside the quadrant will proceed simply with the GO election phase, this

is possible thanks to the update phase that allows the devices to have always an

up to date Glist.
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Figure 4.7. Phases Flowchart of different GFA

4.3.2 POI

The POI (Point Of Interest) GFA is very similar to the statistic one. What really

changes is the application use, in deed it does not permit to cover the entire area

but is focused on certain zones, defined by the position of specified type of POI.

The development of this algorithm is due to the willingness to operate targeted

MCS campaign, focusing only a certain category of areas. Fig. ?? shows an example

of division of the city of Luxembourg, choosing the Bus stops as selected POI

category.
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Figure 4.8. Luxembourg - Bus Stop POI division - POI based GFA

Differences with Static

Hence, the definition of the aggregation areas is not defined by a grid but through

the position of the bus stops and a specific ray, within which a device standing

there will be considered part of the group of that POI. The procedure is almost

the same of the Statistic GFA, the only changes are in the Initialization phase. The

device instead of determine in which quadrant it is, it will find out if it is inside the

ray of a bus station. If the device will stand between more than one bus stations

it will choose the closest one. Once the device has chosen the corresponding

bus station, it will continue the normal Initialization phase but now NQ inside

the device name will assume the value of the number of the assigned POI. The

determination process of the distance from the outside of the area will not be

calculated using the limits of the quadrant but instead will be used the borders of

the circle determined by the ray around the POI. An example is shown in Fig. ??

4.3.3 Dynamic

The dynamic GFA is designed to create group of devices going in the same

direction. The motivation of this choice is due to the willingness to create stable

group, limiting as much as possible destruction and recreation of groups, in order

to create long lasting groups. The generated groups are not related to some fixed

coordinates such as a grid or a POI. This GFA is based on the intent to establish
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groups with a long connection keeping time (CKT).

Broadcast

First, each device publish its own data, the current position, the angle direction

and the actual speed. In order to broadcast these data to other users, the values

are inserted in a string used as device name field advertised to other nodes in

proximity during the WiFI direct Discovery phase. The string looks like this

DN = (X, ID,LATt,LNGt,LATt−1,LNGt−1,V) (4.3)

where X represents the actual status of the device, in this phase is set to B (Broadcast

phase),ID corresponds to the last 2 Bytes of the MAC address of the interface,

LATt,LNGt are the coordinates of the current position, LATt−1,LNGt−1 are the

coordinates of the previous position, V is the actual speed of the user.

Discovery

In this phase, each device performs a simple WiFI direct device discovery, collecting

all the device names of the nodes nearby. Between all the device names, we only

take the ones that are in the status B and of these we save their parameters into a

NodeList.

Grouping

In this phase we use the measurement of connection keeping time (CKT), it is

an estimation of the time during which two devices will remain under a certain

ray R, in this work I used 50 meters, due to the WiFi direct working distance.

The computation of the CKT requires all the parameters provided by the devices:

current position, last registered position and actual speed. For each element in

NodeList, we compute CKT between the node in the list and the actual device.

If the CKT is lower than the threshold value Tth, which varies according to the

stability required from the MCS campaign, the corresponding node inside the

Nodelist is deleted.

In order to define the GO, we introduce the concept of connectivity of a device, that
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is described for each node as the number of neighbor devices around it, satisfying

the CKT condition. Each Device will compute its value of the connectivity C, which

will increase by one every time a neighbor of the device will satisfy the condition.

C can be simply calculated counting the number of nodes inside Nodelist.Next the

device computes its own GOAI, which is composed as following:

GOAI = Wc · +Wb · Lb + Wr · RSSI (4.4)

where Lb denotes the remaining percentage of battery of the user’s device, RSSI is

the received signal strength indicator, Wc, Wb and Wr are the weights corresponding

to the relevance inside the GOAI of the values that they multiply. Afterwards the

GOAI is published inside the device name and advertised to all neighbor, in this

phase the status x will change to R (ready). Now the device name will look like

this:

DN = (R, ID,GOAI) (4.5)

Finally now the device performs an additional WiFi discovery, collecting all the

device name of the neighbor and for each of them if the corresponding node is

present inside the Nodelist, the device add the GOAI to a Glist, sorted in decreasing

order.

GO election

In this phase the device finds the maximum GOAI from Glist. If the max GOAI

corresponds to the one of the actual device, it changes its status in the device name

to G (Group Owner) and it starts a new WiFi direct group in autonomous mode.

Otherwise, it waits until the status of the node with the max GOAI change to G,

consequentially the device change its status to m (member) and then connects to

the group as soon as the GO creates it. If the node with the max GOAI changes its

status to something different from G, the device deletes the corresponding node

from the Nodelist and select the new maximum GOAI. Then with the new max

GOAI, the device restarts the same previous procedure.
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Update and group destruction

In order to keep the Glist and Nodelist of each device up to date, each device every

60 seconds has to repeat the Broadcast, Discovery and Grouping phase, also if the

group is still standing. During an update, while repeating the Broadcast phase

the status will not be set to B but will change to MB in case of members or GB in

case of GO. While during the new Grouping phase the status instead of R will be

MR for members and GR for GO . In case of destruction of the group for the GO

disappearance or in case of a member moving away from his group, all the devices

that will be without a group has simply to redo the GO election phase, this because

they kept their Glist and Nodelist updated, thanks to the update procedure.

Fig. 4.15 shows the CDF of group duration during simulations. Dynamic

groups have the longest duration, while static are for 90% less than 2 minutes.

4.4 Performance Evaluation

This Section at first introduces the evaluation scenario (Subsection 4.4.1) by

explaining in detail the simulation setting, after provides details of the methodology

to assess the energy consumption(Subsection 4.4.2) and then presents the results

(Subsection 4.4.3).

4.4.1 Simulation Setting

For performance evaluation, I run experiments in the city center of Luxembourg

exploiting CrowdSenSim. I compare individual and collaborative data collection

and different collaborative approaches.

As explained in Section 3.2, the user arrival pattern exploited in CrowdSenSim is

based on realistic mobility traces and chosen simulation period is 12 consecutive

hours in one day. The PartecipAct dataset supplies information on the user

contact per-hour. Following this idea, the simulator assigns a certain number

of participants to arrive at the desired sum of contacts for each hour. Only one

mobile device for each user generates data. The users walk with an average speed

uniformly distributed between [1, 1.5] m/s in a period of time that is uniformly
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Algorithm 4 Dynamic GFA at device J
1: Initialize: GO( j)=false . Group Owner Boolean flag
2: for t = 1→ T j do . For all the minutes of j’s walk
3: procedure Initialization
4: Input: B j, R j, Pt

j, Pt−1
j , S j . Battery, RSSI, Position at t, Position at t-1, Speed

5: status( j)← B . Status of J
6: Broadcast(Pt

j, Pt−1
j ,S j)

7: end procedure
8: // N j ←wifiDiscovery . List of j’s neighbors
9: procedure Neighborhood Discovery
10: Input: N j

11: Output: Nlist j . List of j’s neighbors in B state
12: Nlist j = ∅

13: for n ∈ Nlist j do
14: if status(n) = B then
15: Nlist j ← Nlist j ∪ n
16: end if
17: end for
18: end procedure
19: procedure Grouping
20: Input: Nlist j, j
21: Output: GI j,Nlist j . Go index of j, list of j’s neighbors with CKT under Tth

22: C = 0
23: for n ∈ Nlist j do
24: CKT jn =computeCKT( j,n)
25: if CKT jn > Tth then
26: Delete n
27: else
28: C = C + 1
29: end if
30: end for
31: GI j = Wc · C + Wb · B j + Wr · R j .Wc,Wb,Wr weights
32: status( j)← R
33: Broadcast(GI j)
34: end procedure
35: Glist j = ∅

36: // Glist j ←wifiDiscovery
37: procedure GoElection
38: GO( j)=false
39: for g ∈ Glist j do
40: GImax = firstElement(Glist j)
41: if GImax = GI j then
42: GO( j)=true . j becomes GO
43: autonomousGroup() . j creates the WD group
44: else
45: if GImax) = true then
46: connect(ID(GImax)) . j waits for the device with GImax to connect
47: else
48: continue
49: end if
50: end if
51: end for
52: end procedure
53: end for
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distributed between [20, 40] minutes. Participants move over a street network in

a random walk fashion between a random generated starting and arrival point

respecting the walking time constraint. The number of users is set to 50 000. The

current battery charge is generated considering a value of full capacity and an

initial level. The full battery capacity is variable following most popular models of

smartphones available on the market and is randomly picked from a list including

2200 mAh (Huawei P8 Lite), 2550 mAh (Samsung Galaxy S6), 2800 mAh (LG G5)

and 3300 mAh (Samsung Galaxy J7). The initial battery level when users start

walking is uniformly distributed in the range [10-90]%.

4.4.2 Proposed methodology for energy profiling

ù The energy consumption model takes separately into account both costs asso-

ciated to reporting and sensing [13]. I denote with Ec
s the energy consumption

attributed to sensing and with Er
s the energy cost associated to reporting for sensor

s. Then:

Es = Ec
s + Er

s. (4.6)

The contribution Ec
s due to sensing operation is considered only if sensor s is

not already in use for personal usage or another application. Table 4.2a shows

the sensing equipment exploited for the simulations and their corresponding

parameters. Data reporting implies sending data generated from the set of sensors

S to the central collector using available communication technologies. Data

transmission is always executed at the beginning of the timeslot t for samples

generated during timeslot t − 1.

To compute the power consumption of communication equipment, I refer to[34].

I take into account the WiFi Direct power consumption for uplink and downlink

communications because devices exchange data, while only the uplink power

consumption of LTE because I exploit it for devices reporting data to the cloud

collector, that are users assuming roles of group owner or no group. Assuming

uplink throughput is Tu and downlink throughput is Td, the instant WiFi Direct
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power level for uplink is

PW
u = αW

u · T
W
u + βW (4.7)

and for downlink is

PW
d = αd · TW

d + βW (4.8)

The LTE power level for uplink is

PL
u = αL

u · T
L
u + βL (4.9)

The best fit α and β parameters are listed in Table 4.2b, the throughput T for

WifiDirect depends on the inter device distance and follows the curves described in

fig.4.9 that is taken from [51], while throughput for LTE communications depends

on curves taken from [34].

The interface used for the reporting depends on the role assumed by the user

in the timeslot t.

• Members transmit the sensing data to the group owner using only the WiFi

interface.

• Group owners use the WiFi interface to download data from members and

then upload it to the collector through LTE interface.

• No group users do not report data

The energy consumption spent for transmission Etx relative to the transmission

time τtx is defined as:

Etx =

Z τtx

0
Ptx dt, (4.10)

where Ptx is the power consumed for transmissions relative to the communication

interface used by the user.
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Figure 4.9. Best 10%, worst 10% and average WiFi direct throughput.

Table 4.1. Sensor and communication equipment parameters used for
performance evaluation

Sensor Parameter Value Unit

Accelerometer Sample rate 4 kHz
Sample size 6 Bytes
Current 450 µA

Proximity Sample rate 8.1 MHz
Sample size 2 Bytes
Current 150 µA

GPS Update period 10 s
Sample size 24 Bytes
Current 23 mA

(a) Sensor Equipment

Symbol Value Unit

LT
E αL

u 438.39 mW/Mbps

βL 1288.04 mW

W
iF

iD
ir

ec
t αW

u 283.17 mW/Mbps

αW
d 137.01 mW/Mbps

βW 132.86 mW

(b) Communication Equipment
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4.4.3 Simulation Results

For performance evaluation, I attend experiments to assess the different character-

istics of each grouping strategies. In particular i analyzed the energy consumption,

the amount of collected data and other aspect of each group, such as duration or

number of members.

Energy Consumption. Fig. 4.10 show the CDF of energy consumption for reporting

data to the cloud collector with different approaches. The CDF compares the three

grouping strategies with the consumption of an individual campaign, where users

send data to collector autonomously through LTE interface.

Interestingly, the difference between individual and collaborative approach is

substantial. Collaborative approaches spend less energy for approximately 70%

of users. The reason is that even though with collaborative there is an additional

quantity of energy caused by the WiFi Direct, the energy consumption spent

by members in a group is significantly less respect the one of a normal user in

individual approach. An other meaningful aspect is that in collaborative there is a

better selection of useful participants, as mentioned before in all the methodologies

there is a limit of contributing users, beyond which other users will not participate

to the campaign because are not needed.

To understand the energy consumption and the distinctions between the ap-

proaches, the percentage roles of users (Fig. 4.11) becomes crucial. As expected,

Dynamic is the most energy consuming approach, it allows the biggest percentage

of group owner, while for the other strategies there is a fixed maximum number

of possible groups due to the grid or the poi in dynamic the maximum number

of groups is related only with the number of users involved. The ratio among

the quantity of group owners and members is one third, while the percentage of

no group users is less than 25%. The consumption with statistic approach is not

so lower, this because the fixed number of groups is very high, in the area that

I simulate there are 700 grid of 50m^2. Moreover, the only no group users in a

campaign based on this approach derive from the excess of users on a specific

grid, due to the full coverage of the area there are not users walking alone and

not inserted in any group. Indeed the percentage of no groups is 50%. The poi is
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the most focused strategy, it has the lowest energy consumption and the lowest

participants to the campaign, due to the low coverage of the campaign area, the

percentage of no group users is close to 90%, while the ratio go/memebers is one

sixth.
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Figure 4.10. CDF of energy consumption.
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Figure 4.11. Percentage of roles assumed by the users during campaigns
based on different GFA’s.

As mentioned before, collaborative framework enables the majority of users

to spent less than in individual campaigns, fig. 4.13 shows the roles assumed by

users that spent more energy than the individual users and the average number of

members in case they became group owner during their participation, this figure

highlights that the percentage of group owners is clearly higher respect all users

and the average number of members in case of group owners is very close to the
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maximum value 10, except that for dynamic where this average is 4, the reason is

that in this approach we have many group owners and less members per group,

indeed the percentage of group owners is 75%.

On the other hand, fig. 4.12 shows the same aspects of fig. 4.13 but referring to

users that spent less than users in individual. It is clear how in this case for all

the grouping strategies we have an higher percentage of members and no group

users, while the average number of members is always lower than 3.
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Figure 4.12. Roles assumed by users that spent less than in individual approach
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Figure 4.13. Roles assumed by users that spent more than in individual approach

Fig.4.14 illustrates the comparison of per minute consumption per different

roles for each grouping strategies. At first, fig.4.14a shows that the group owners

in poi approach report consumption is much greater than other two approaches.

The reason of this is that poi grouping is characterized by an higher number of
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members, I will details it later with Fig.4.17.

Fig.4.14b compares the per minute consumption of members, here the differ-

ences are related only with the inter device distance that determines the power

consumption for the WiFi Direct. It is possible to note that in dynamic we have

longest inter device distances, this because most of the time in poi and static the

go is selected in the middle of the grid or close to the poi, in this way the average

inter distance will be half WiFi Direct range 25m, while in dynamic do not exist

any restrictions and groups can live until two users are closer than the WiFi Direct

range 50m.

As expected, Fig.4.14c shows that are not any differences between strategies

for the consumption of no group users.

Amount of Collected Data. Fig. 4.16 exhibits the total amount of data generated

from users with different grouping approaches during their existences. It shows

that static approach generated the lowest amount of data. The 75% of groups in

poi and static approaches generate the same amount of data, the reason of that can

be attributed to two different motivations: (i) the different times of existence of

groups, , as fig. 4.15 shows the 75% of groups in static and poi exist for 1 minute,

while dynamic according to its purpose creates longer standing groups, (ii) the

number of members per group in each timeslot, fig. 4.17 illustrates the CDF of

number of members per group, dynamic provides the lowest number of members,

while in poi and static respectively 50% and 25% of timeslots reach the maximum

number of members.
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Figure 4.14. Energy per minute spent for transmission for each role of users
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Chapter 5

Conclusion and Future Work

This thesis proposes a novel collaborative framework for task allocation and

data reporting in MCS systems. The framework aims at minimizing the energy

consumption for the participants in reporting while allocating tasks to a group of

peers instead of an individual. I proposed and compared three different strategies

to form groups and perform owner election.

The evaluation and the analysis of the collaborative framework is evaluated

through simulations in a real urban environment with a large number of partici-

pants. To perform simulations I used CrowdSenSim , a discrete-event simulator

for mobile crowdsensing developed at University of Luxembourg. The simulation

results confirm the convenience of the proposed framework, Collaborative ap-

proaches spend less energy for approximately 70% of users. Moreover, the energy

consumption spent by members in a group is significantly less respect the one of a

normal user in individual approach.

Using CrowdSenSim to perform extensive analysis, I investigated all the weak

points and the issue related to the simulator. In order to fill these gaps, I extensively

studied models for pedestrian mobility for smart city simulators. First, I applied

a procedure, AOP, to augment the precision of the street network provided by

OpenStreetMap. The optimal version relies on the Vicenty’s formula to determine

the distance between vertices in the graph. The linearized version approximates

this distance exploiting the Euclidean formula. The resulting graph is suitable

for inclusion in CrowdSenSim, a simulator for MCS. I implemented two different
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user arrival models, U-MOB and D-MOB. The latter is based on a well-known real

data set, ParticipAct. For performance evaluation, we assessed the scalability of

AOP, the accuracy of the mobility models and verified popular metrics such as the

average per-user number of contacts and the stability of the contacts. Interestingly,

the U-MOB mobility model approximates very well D-MOB. Thus, for simulations

with large population, uniform user arrivals provide an efficient method to obtain

realistic simulation for human mobility.

To extend current functionalities of the collaborative framework, as future

work it is possible to consider the development of an adaptive framework that

enables different device to device communication, such as LTE direct or Bluetooth,

changing communication technology basing on the purpose of the task and the

consumption of the users.

However, future development for CrowdSenSim are twofold. First, the im-

plementation of more accurate communication model to analyze in more details

the networking aspects of MCS systems. Second, the development of a mobility

where researchers can define directions of user movements on individual basis.
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