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Abstract

Employing unmanned aerial systems (UAS) inside cities to perform different types
of operations would definitely bring huge benefits. However allowing such opera-
tions requires great attention because of the high density of human beings on those
environments. The people safety is in fact among the biggest obstacles to be ad-
dressed before such operations could start indeed. So this is the main goal of the
project related to this thesis.
Thus the project leads to the creation of a structured low-altitude airspace that
allows autonomous operations of low-cost unmanned vehicles, while preserving the
safety for people on the ground.
In traditional aeronautics this is done by a category of systems usually referred as
Air Traffic Managers (ATM). In this scenario we are facing with vehicles totally
different from traditional aircrafts, and a system able to cover the equivalent role
of an ATM is required. Such a system is usually called UTM (UAS Traffic Man-
agement). Reflecting the characteristics of low-cost unmanned vehicles, an UTM is
a system (or ecosystem) able to support safe and efficient UAS operations.
The upcoming generation of mobile networks, 5G, and the improvements in the
Cloud Robotics paradigm constitute a suitable framework to address the problem
into account here. So, after studying the state of the art of the involved technolo-
gies, we propose and developed a framework, called CBUTM (Cloud-Based UTM),
to provide a networked control system (NCS) able to accomplish the project’s goal.
As showed, an UTM has different aspects to relate with. For this reason the work-
ing group was divided into smaller ones, each one with different aspects to treat.
What will be covered here is in particular what concerns collision avoidance prob-
lem.
Since the sensing capabilities are out the objectives of the project in this phase, the
focus is on avoiding collision between vehicles able to communicate with the Cloud
Based UTM. These vehicles can be active or passive, depending on whether they
are controllable by CBUTM or not.
This problem can be treated ahead of time (planning), when it could occur (react-
ing), or the combination of both. Taken into consideration the dynamism of our
referring context (cities) and the probability of unforeseen circumstances, we de-
cided to start developing a reactive system that results to be yet compatible with a
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planning-approach system, when it will be available. This compatibility is achieved
unifying trajectory tracking and collision avoidance in a unique problem.
Strategies based on the principles of Receding Horizon Control (RHC) meet well
the above defined requirements. Furthermore, such approach is suitable to be im-
plemented in a decentralized manner, reducing the complexity of the optimization
problem (essential part of RHC) and making the system easily scalable. Moreover,
a priority based mechanism allow to treat with the same system both active and
passive agents.
In parallel with problem analysis, we developed an implementation of the outlined
framework. The implementation is based on ROS (Robot Operating System), that
we encountered here for the first time and that played a key role in this work.
Finally the performed simulations will be shown, substantiating both the choices
done and some design limitations while supporting further developments.
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Chapter 1

Introduction

The sectors related to unmanned aerial systems (UAS) are currently experiencing
a continuous and perhaps no longer surprising growth. The prospects that such
systems open in the most disparate fields are such that it is reasonable to believe
that this sector will continue to grow in the coming years, without having to report
any specific chart with the market growth forecasts. What can be interesting to
note is that, in addition to the two major sectors of this market, the military and
the consumer ones, a third sector is getting more and more space as drones begin
to be used in a range of commercial applications. The commercial segment is in
particular the one that is experiencing the fastest growth, above all related to con-
struction, agriculture, insurance and infrastructure inspection. The recent growth
of this sector is basically based on two factors.
The first is that the competition generated in the consumer market, from which
the commercial segment inherits origins and solutions, has led to a substantial re-
duction in costs and an improvement in the reliability of unmanned vehicles.
The second factor is the result of ongoing progress, however slow it may seem, that
national and international institutions are making about the regulation of these
systems and their use. The latter factor, on the other hand, has constituted and
certainly constitutes a brake on development, as it is the one that takes charge of
a set of issues that the development of such systems raises, first of all the risks
for privacy and safety of people. It is precisely on these aspects that the project
launched at the Joint Open Lab at the Politecnico di Torino is focused, and conse-
quently this work is based on these.
The idea is that by jointly exploiting the potential offered by cloud computing and
next-generation of mobile networks (5G), it is possible to provide an autonomous
framework to support commercial fully-autonomous UAS operations in a certain
airspace (i.e. a UAS Traffic Management system) and which at the same time
offers a unified approach to risk management that these missions involve and is
therefore able to ensure a certain level of safety for people on the ground. The
concepts present in this last sentence, as we shall see, are in fact more related to
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1 – Introduction

each other than it may seem. A framework that claims to be the only portal to
access unmanned missions and the tool with which to control them, on one hand
clearly requires a certain computing power, a big amount of available data and the
ability to communicate with vehicles beyond visual line of sight (and this brings
us back to the Cloud Computing and 5G concepts), on the other hand it trans-
lates into a potential advantage for the competent authorities: by equipping the
framework with a coherent metric for risk assessment, the authorities will have the
tool to monitor and systematically intervene on the execution of these missions.
In our opinion, a single access tool for individual users, companies and authorities
could lead, even in the short term, to accelerate experimentations and facilitate the
adoption of such technologies.

1.1 Thesis Structure and Contributions

The aim of the project is so the design and development of the above mentioned
framework (hereafter called Cloud-Based UAS Traffic Management or CBUTM). To
do this, the work was divided into sub-groups, each with a specific sub-objective.
However, the cooperation between the various groups was not only necessary to
ensure consistency and uniformity of the whole work, but was expressly desired
because, in our opinion, it is a condition that allows to accelerate the development
and to identify better solutions. The overall design of the architecture was in fact
conducted by the whole team, aware that the work of each one would be based on
this. This also led us to present in the thesis an overall overview of the project,
that is, including parts that involved the undersigned only with a certain degree of
collaboration and not with direct development. Specifically in this thesis there are
several references to the work done with and by Andrea Lorenzini [29] and Enrico
Stabile [42].
In the present work we will start, in chapter 2, offering an overview of some of the
concepts underlying the project. In particular, after having illustrated the state of
the art of the UTM, we will pass to an analysis of the functions that such a sys-
tem must provide and of the methodologies and technologies that can be adopted
to perform these functions. Furthermore, since the project focuses on safety, the
concept of risk and the techniques available in the literature to analyze it will be
treated.
In chapter 3, the designed framework will be exposed, illustrating its overall archi-
tecture and the high-level operating principle of its main components.
In chapter 4 we will discuss the central topic of this thesis: collision avoidance.
Starting from the exposure of the reference context, we will first define the problem
into account from a technical point of view and then analyze the solutions currently
present in the literature to address it. We will then see how we have come to unify
this problem with that of the Trajectory Following one, and how the solution of
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1.1 – Thesis Structure and Contributions

the combination of the two can actually be applied in the CBUTM’s framework.
Parallel to the design phase, the team proceeded to develop a framework imple-
mentation. This is based on the ROS development platform, and it is certainly the
part that took the most time to complete. In Chapter 5, implementation choices
are therefore shown at a high level, mainly focusing on how the trajectory following
with collision avoidance mechanism has been achieved.
The entire team finally proceeded to test the functioning of the framework in its
different parts, therefore in chapter 6 we will illustrate the results of the conducted
simulations as well as the way in which they were carried out.
Finally, in chapter 7 we draw the conclusions of our experience within the project
and on the work itself, highlighting the resulting benefits and criticalities and, above
all, the ways in which the latter could be mitigated in future work.
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Chapter 2

UTM: State of the Art

2.1 Introduction

Being able to perform unmanned missions (vd. 2.2.2) would definitely bring huge
benefits, especially in these missions could take place in urban environment. Quot-
ing EU Commissioner for Transport [4]: "Drones mean innovation, new services for
citizens, new business models and a huge potential for economic growth". However
allowing such operations requires great attention because of the high density of hu-
man beings in those environments. The people safety is in fact among the biggest
obstacles to be addressed before such operations could start indeed. In traditional
aeronautics this problem is addressed by a category of systems usually referred as
Air Traffic Managers (ATM).
But vehicles and missions we are talking about (unmanned mission performed by
low-cost commercial vehicle) are evidently different from those of traditional avi-
ation. That clearly imply a complete redefinition of such a Traffic Management
System. For this reason we will refer to a category of systems usually called UTM
(UAS Traffic Management). It is important to notice how these two kind of traf-
fic managements system still maintain a substantial convergence of objectives and
above all they must be able to cooperate with each other.
There is still not a common definition about what an UTM is and what an UTM
has to do exactly. We can state that an UTM is a system aiming to allow multi
UAS safe operations into low-altitude airspace, including urban environments. The
possibilities that such a system creates are clearly of big impact and it interest both
public and private sectors, so it not surprising if different initiatives in the world
are investigating this problem and that usually these initiatives involve regulatory
agencies and technological industry together, as we will see in the following.
According to the international Civil Aviation (ICAO), an UTM framework will
include many components, three of which are fundamental:

• Registration System to allow remote identification and tracking of each UAS
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2 – UTM: State of the Art

• Communications Systems

• Geofencing-like system

How we will see, these topics are threated in the rest of this work, alongside with
other not directly mentioned here.
So, before presenting our framework, we will briefly review the current state of the
legislation on the subject and the state of the art of the main UTM solutions under
development in the world.

UAVs - rules and limitations

The consolidation of technologies related to unmanned vehicles, with the consequent
reduction of costs, makes it imperative to face a series of issues, including security,
privacy and regulation. These issues are often more difficult to solve and require the
involvement of different entities, compared to those that are properly technological.
However, the effort to deal with them still seems inappropriate in most legislations.
Quoting the European Aviation Safety Agency: 1.

Especially smaller drones are increasingly being used in the Europe
Union (EU), but under a fragmented regulatory framework. Although
national safety rules apply, the rules differ across the EU and a number
of key safeguards are not addressed in a coherent way.

The European Aviation Safety Agency (EASA) is an official agency of the Eu-
ropean Union (EU) with the regulatory and executive tasks in the field of civilian
aviation safety.
On request by the European Commission, member States and other stakehold-
ers, EASA developed a proposals for an operation centric, proportionate, risk-
and performance-based regulatory framework for all unmanned aircraft. A general
concept, establishing three categories of UAS operations with different safety re-
quirements, proportionate to the risk, was proposed. According to that, UAVs have
been classified in:

Open category is a category of UAS operation characterized by low risks and so
are operations that can take place without requiring any prior authorization
by competent authority nor a declaration by the operator. Safety is so en-
sured through operational limitations, compliance with industry standards,
requirements on certain functionalities, and a minimum set of operational
rules.

1http://dronerules.eu, https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
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2.1 – Introduction

Specific category is a category of UAS operation characterized by a medium risk.
This kind of operations requires a prior authorization by the competent na-
tional authority before it can take place, alongside with a risk assessment and
the consequent mitigation measures.

Certified category is a category of UAS operation whose requirements are compa-
rable to those of traditional aeronautics in order to assure an appropriate level
id safety: certification of the vehicle, licensed pilot and an operator approved
by the competent authority.

Basing on comments received during months of consultation, they recently pub-
lished a proposal for a new European regulation for UAS operations classified as
’open’ or ’specific’ and taking into consideration the developments worldwide. The
main aspect of this proposed regulation are:

• it provides a framework to safely operate UAS while allowing industry to be
agile and to continue to grow. The risks for people on the ground, as well as
privacy, security and data protection issues are taken into account.

• it defines technical and operational requirements for the drones like, for exam-
ple, the remote identification of vehicles, systems of geoawareness, geofencing-
like control

• it addresses the pilots’ qualification topic. In brief, drone operators will have
to register themselves, expect they operate drones lighter than 250g.

• it combines product’s legislation with aviation’s one

• it allows a high degree of flexibility for EASA member states: they will be
able to define restricted and forbidden zones or instead areas where certain
requirements are relaxed.

Moreover, the proposed regulation aims to:

• implement an operation-centric, proportionate, risk- and performance-based
regulatory framework for all UAS operations conducted in the ‘open’ and
‘specific’ categories;

• ensure a high and uniform level of safety for UAS operations;

• foster the development of the UAS market; and

• contribute to addressing citizens’ concerns regarding security, privacy, data
protection, and environmental protection.

Our work starts from these principles.
However, there are some projects that aim to address all the perspectives introduced
by the unmanned missions, involving the interested entities already in the design
and development phases. Respectively in USA and Europe, the main ones are:
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2 – UTM: State of the Art

NASA UTM

The project started thanks to a partnership between the National Aeronautics and
Space Administration (NASA) and the Federal Aviation Administration (FAA) of
the United States. A specific team, called Research Transition Team, has the task
of coordinating the agencies between them and with the industrial partners. The
goal of the project are "exploring concepts of operation, data exchange require-
ments, and a supporting framework to enable multiple beyond visual line-of-sight
UAS operations at low altitudes" [3]i.e under about 120 meters above ground level,
remaining so separate but complementary to the FAA’s Air Traffic Management
system.

Quoting FAA’s referring page [1]:

UTM is a "traffic management" ecosystem for uncontrolled operations
that is separate but complementary to the FAA’s Air Traffic Man-
agement (ATM) system. UTM development will ultimately identify
services, roles/responsibilities, information architecture, data exchange
protocols, software functions, infrastructure, and performance require-
ments for enabling the management of low-altitude uncontrolled UAS
operations. [. . . ] Areas of focus include concept and use case devel-
opment, data exchange and information architecture, communications
and navigation, and sense and avoid. Research and testing will identify
airspace operations requirements[. . . ].

Finally, we want to underline the importance of the autonomy concept in a UTM,
quoting NASA [3]:

One of the attributes of the UTM system is that it would not re-
quire human operators to monitor every vehicle continuously. The sys-
tem could provide to human managers the data to make strategic de-
cisions related to initiation, continuation, and termination of airspace
operations. This approach would ensure that only authenticated UAS
could operate in the airspace. In its most mature form, the UTM
system could be developed using autonomicity characteristics that in-
clude self-configuration, self-optimization and self-protection. The self-
configuration aspect could determine whether the operations should
continue given the current and/or predicted wind/weather conditions.

In the following we will see how, having designed our UTM to be Cloud-Based, it
is definitely projected in an optics of complete autonomy.

U-Space

Another example of a cooperative development of an UTM solution is the U-Space
project. It is born inside SESAR (Single European Sky ATM Research), a project
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wanted by the European Commission and leaded by a public-private partnership
(SESAR Joint Undertaking) whose aim is to overhaul the european airspace and
its traffic management. This project seems to be more focused on safety in urban
environment respect to the NASA’s one, as our project actually is: The U-Space
will help unleash the potential of this new service market while ensuring the safe
and secure integration of these drones operations in our urban areas and country-
side.[38] The project and the implementative steps are summarized in the following
by SESAR-JU [38]:

U-space is a set of new services relying on a high level of digitali-
sation and automation of functions and specific procedures designed to
support safe, efficient and secure access to airspace for large numbers
of drones. As such, U-space is an enabling framework designed to fa-
cilitate any kind of routine mission, in all classes of airspace and all
types of environment - even the most congested - while addressing an
appropriate interface with manned aviation and air traffic control. The
U-space blueprint proposes the implementation of 4 sets of services to
support the EU aviation strategy and regulatory framework on drones:

U1: U-space foundation services covering e-registration, e-identification
and geofencing.
U2: U-space initial services for drone operations management, including
flight planning, flight approval, tracking, and interfacing with conven-
tional air traffic control.
U3: U-space advanced services supporting more complex operations in
dense areas such as assistance for conflict detection and automated de-
tect and avoid functionalities.
U4: U-space full services, offering very high levels of automation, con-
nectivity and digitalisation for both the drone and the U-space system

2.2 Basics and Requirements

2.2.1 Cloud Robotics

The expression cloud robotics is a relatively new paradigm according to which robots
and automatic/autonomous systems in general exchange information and execute
computations using a common online network. The main benefits are [19]:

Cloud Computing High computational power exploitable through Internet al-
lows to design and to use complex (and demanding) algorithms on multiple
robots at the same time.

Big Data Is an expression commonly referred to massive amount of data (both
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structured and non-structured) collected and managed to extrapolate knowl-
edge, and to the systems that allow such operations. The concept is clearly
related to the cloud computing.

Collaborative Learning Robots connected to the cloud exchange information
between them and with the cloud itself. The knowledge extrapolated by the
cloud is indirectly shared by the robots which belong to the network.

Cloud computing paradigm is used in even more applications, as mobile robotics,
medical and domestic robotics and industrial systems. Cloud computing also com-
bines two emerging technologies that will play an increasingly important role in
the future: machine learning and IoT. Such a paradigm naturally combines with
the framework presented here. The idea is in fact a central unit (the Cloud) that
collects data by vehicles. Collected data are not only available for other vehicles,
but are combined with other available ones (big data) to produce new information
and knowledge (big data analysis, machine learning). Through cloud, each vehicle
has access to information and knowledge produced by all the others (Collaborative
Learning).

2.2.2 Unmanned Missions

We have already seen how the UASs, and more generally all the unmanned systems,
are among the most interesting and promising technologies at the moment. The
reasons behind the incessant growth in their development is clearly due to the
potential that their employment offers in the most disparate fields. This potential
is due to that of any unmanned system to perform missions that are dirty, dull
or dangerous. We therefore introduce the concept of unmanned mission with the
following definition:

Definition 2.1. An unmanned mission consists in a geographical trajectory trav-
eled by an unmanned system while performing a particular task.

The technologies that allow an unmanned mission originally arise from military
researches. Nowadays they are clearly common also in civilian applications, like:

• Cargo transport

• Agriculture

• Environmental monitoring

• Recreational pursuit

Moreover, in our framework, the missions are assumed to be fully autonomous,
that implies no human in the loop. This condition clearly introduces a lot of issues,
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since we have to guarantee a certain safety level without relying on human’s ability
to manage unexpected circumstances.

Nowadays assuming fully autonomous agents could seems unsuitable. Never-
theless this is clearly the ultimate direction of the researches on unmanned vehicles
and will probably be a fact in some years. Internet of Things is another concept
that is going to be even more tangible day after day. In a such scenario, sensors
moving in the air are fundamental as well as their ability to be autonomous. In
short, fully autonomous vehicles and autonomous unmanned missions are going to
assume surely an important role in our cities in the next future. However laws,
regulation and systems to support that kind of operations while preserving safety,
are at most at developing phase. It is in this background that our work set up: a
cloud based traffic manager for unmanned vehicles, in fact, has different roles but
the main goals are to coherently evaluate and then coherently handle all those crit-
ical situations that could happen during an unmanned mission which could result
in harming people. It is important to remark the how this job is crucial, especially
into an crowded environment like cities are: safety is a fundamental requirement
to talk about unmanned missions into national airspace, and it is why risk is a
recurring topic in this project.

2.2.3 ROS and Gazebo

Robotics community is experiencing impressive progress day by day, and it is clearly
cause and consequence of increase in reliability and cost reduction of the required
hardware. In spite of this progress, robotics still present some significant challenges
for software developer.

For any single researcher/developer would be unthinkable to develop complex
robotics applications, if he need to start from scratch autonomously. At this point
we can introduce ROS, quoting its official description:

ROS is an open-source, meta-operating system for your robot. It pro-
vides the services you would expect from an operating system, includ-
ing hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

So we can have available a distributed architecture that contains the state of the art
algorithms implemented and maintained by experts widespread across the world.
In this way we can focus only on what we need to develop actually.
Regarding Gazebo, we introduce it by quoting the official website of the project 2:

2http://gazebosim.org/
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A well-designed simulator makes it possible to rapidly test algorithms,
design robots, perform regression testing, and train AI system using re-
alistic scenarios. Gazebo offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and outdoor environ-
ments.

In this section we were interested in introducing ROS and Gazebo from the point of
view of their high-level features, as they were a point of reference for both the design
and development phases. More information on their functioning will be provided
in the chapter 5.

2.2.4 Autopilots

An Autopilot (or Automatic Pilot) is a system ables to control different aspects
related to the flight of a vehicle without human involvement. Referring in particu-
lar to commercials UASs, autopilots are software suites commonly used to manage
different aspects related to the flight, like stabilization control, geofencing capa-
bility, actuators control etc. In other word they can guarantee different levels of
autonomy, from direction keeping to fully autonomy. Two of the most widespread
example in this field are ArduPilot and PX4.

Ardupilot is an open source software suite (typically referred to as Firmware
when it is specifically compiled for the target hardware) running on the vehicle
along with ground controlling system, i.e. with the ground based control centre
which traditionally provides the facilities for human control of unmanned systems.

For vehicle communications, ArduPilot has adopted a subset of the MAVLink
protocol command set, one of the most popular communication protocols between
drones and control stations.

Ardupilot capabilities can be extended with ROS (vd. 2.2.3 and 5.1.1) through
the use of mavros.

2.3 Risk
We have seen how safety is an essential focus for our project and for any UTM.
Although not the main purpose of this thesis, an overview of the risk and the
methodologies used to quantify it is necessary.

2.3.1 Unmanned Mission’s risk

Here we will analyze the concept itself of risk for an unmanned mission, proposing
some definitions and analysis methods. First of all, the term risk is referred to
the time frequency in which the drone causes deadly (or very serious) injuries to
people on the ground [16]. So in this context we do not consider the risk for the
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vehicle themselves. It’s clear, and will be remarked in the following, that collisions
between UASs can result in damage for people. Risk analysis in avionic field is
something the industry has worked on for years. There are actually different ways
to modeling the risk, each one with a different level of accuracy [16]. Beyond the
differences, there are four main standard criteria that has to be kept into account
in every risk model, include ours [15]:

1. Transparency

2. Consistency

3. Clarity

4. Reasonability

The main goal of our analysis is to determine whenever a UAS is able to guarantee a
certain level of safety flying over a given geographical zone in a given time window.
Moreover, if the result of this analysis is negative, the system should be able to
suggest (or directly apply) one o more countermeasures in order to increase the
safety level of the mission. The latter aspect is usually called risk management
[16]. According to [15], the steps to follow here are four:

Mission Definition and Hazard Identification In this phase we have to pro-
duce a description of the mission, i.e. a safety bound of it. Since this work
is focused on civil operations in an urban environment, the safety level for
a mission has to deal with those imposed by the national flight authority.
Furthermore, every possible hazard that could happen during each mission
have to be identified.

Risk Assessment According to a certain metric, assign to every hazard a corre-
sponding risk value

Risk Reduction and Managment Compare the imposed bounds with the ac-
tual safety level. If this latter doesn’t meet the requirements, needed coun-
termeasures are computed.

Risk Acceptance Once the risk satisfy the requirements, the mission is approved
and can starts.

We can divide hazards in two main categories: due to internal failures and due
to external causes. It is important to notice that an hazard analysis of internal
possible failure of vehicles is out the aims of this work, also because there are
already many tools to perform it. It is however objective of this project aggregate
them into a coherent risk analysis.
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In our framework, once the risk analysis is complete, a corresponding risk map
is created. We will discuss further about risk in 2.3 while in 3.3 our qualitative and
quantitative approach to risk is exposed.

We therefore begin to define the main hazards that may affect unmanned mis-
sions, that can be categorized into [16]:

Drone involuntary mobility this category includes all the accidents that could
happen when the drone is not operating, i.e when the vehicle is still on the
ground. This scenario will be not treated in this project.

Mid-Air Collisions this category includes the accident due to in flight collision,
and may concern two or more UAS or fixed obstacles, such as buildings. Tipi-
cally the analysis of this category is based on the "flight’s victims" involved
in the crash. Since we are dealing with unmanned vehicles, the analysis of
mid air collision will take into account the damage for people on the ground
due to debris or falling vehicles. This type of risk has been treated in the
project and in this thesis.

Early flight termination this category includes all the hazards due to a loss of
control of the UAS’s flight, and the consequent anticipation of the landing. In
some cases, the cloud can control this phase by imposing zones and method-
ologies for a safe landing.

It is important to underline how, referring to the damages for people, we mean both
physical and social damages: a high frequency of accidents, although not lethal,
can affect the common perception of such operations and therefore potentially limit
their use.
Thus, once again, the need arises to quantify the risk in order to be able to manage
it appropriately.
Although there is not yet a commonly accepted definition of risk, we can define it
based on a widely held concept in the field of traditional avionics:

Definition 2.2. It is called risk fF of an Unmanned Aerial Mission the frequency
of fatalities, in term of victims per hour of flight, that a given drone, in a certain
area will produce.

Evaluating risk, once defined, means carrying out a risk assessment. Let’s start
by observing that, having defined the risk in terms of frequency, it is implicitly
linked to the concept of time.
At this point, ensuring a certain level of safety for a mission means that the risk
value is always below the upper-bound of victims per hour imposed by the compe-
tent authorities.
Currently, the best way to assess the value of risk is based on statistical consider-
ations [16]. The maximum fatalities rate for a civil operation in an urban context
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has been evaluated as:
fF,Max = 10−5victims/hour

i.e one victim at most each 105 hours.
At this this point we have to deduce an analytical expression that given the

flight conditions, correctly evaluate the number of victims per flight’s hour. Here
we start from analyzing the risk due to an uncontrolled landing of the UAS: fF,UFE.
But notice how this latter event could be due to different causes both externals and
due to internal failures. According to [16], a proper analytical expression could be:

fF,UFE = Nexp × P (fatality|exposure)× fUFE (2.1)

Where:

fF,UFE fatalities’s frequency due to early flight termination [peole
h

]

Nexp number of people exposed to the accident [peole]

P (fatality|exposure) probability that a person involved in the UAS’s charh will
suffer fatal injuries

fUFE frequency of failures that cause an unexpected end of the flight [ 1
h
]

Such a simple formula turns out to be the right compromise between a too
detailed analysis and an inconsistent one, and contains all the parameters of interest
that can affect an unmanned mission. These factors are combined in such a way
that the resultant risk analysis is:

• Coherent with the statistical data actually available

• Not expensive from a computational point of view

• Easy to extend in case some new interesting parameters emerges

• Independent from the dimension of the considered area. The analysis can be
performed both with very small and big resolution

Some initial considerations on the elements present in the equation 2.1, which
will however be investigated further below:
P (fatality|exposure) takes into account the kinetic energy of the drone, the geo-
graphical sheltering factor and the vulnerability of the human body to obtain the
probability that the collision between an unmanned vehicle and a person is fatal.
For what concerns Nexp, i.e the number of exposed people, it can be evaluated as
Nexp = ρ × Aexp, where ρ is the population density and Aexp is the area involved
in the impact. Last note on fUFE, which contains information about the frequency
of the UAS’s ground impact: in practice, it introduces the time element inside the
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equation.
Initially, it was thought to perform a probabilistic analysis to calculate the fre-
quency of crashes, combining external causes with the probabilities of internal fail-
ures. However, as we have experimented, an approach of this kind requires the
perfect knowledge of all the possible causes of damage and the possibility of quan-
tifying them all. Instead, in agreement with [16], a statistical approach has been
preferred.
This apparently small change actually allows to better frame this work: it is not
among the purposes of this framework to carry out a hazard analysis on the used
components, but we can assume to know the ground impact frequency (from the
manufacturer, for example) and focus on providing an instrument able to manage
this information in order to guarantee the safety of the missions.

We have seen how the risk of a mission is proportional to population density ρ, so
further clarification is needed in this regard. Emerges how this system should know
the number of people in danger due to the UAS’s flight, and in general should be a
dynamic framework capable to collect data and provide a real time risk evaluation.
This perfectly suit with the Cloud System we are dealing with. A first idea to
evaluate ρ could be to acquire it from Internet. However, in this way it is only
possible to obtain information on the number of people living in a certain area,
which, however, does not reflect the real location of these people during the course
of the day. The level of detail also stops at that of the district. By exploiting the
potential of the cloud system at our disposal, we can think of making ρ a function
of time. To do this, it is possible to acquire from internet information about the
presence of eventual events, and it is also possible to estimate the influx of people
looking at the historical series of the participations. Such information can then be
combined with those obtained by monitoring the number of users connected to a
specific cell of the mobile communication network. The latter is an approach very
similiar to that used by some providers of service for cars’ navigation. Clearly,
being this information time dependent, the system should be able to constantly
update this and so to provide information on the population density in function
not only of the space, but also of the time.

In the equation 2.1 the term P (fatality|exposure) represents the probability
that a person reports serious injuries after the impact with a falling vehicle. To value
this probability, several studies have tried to define a model of vulnerability of the
human body, taking into consideration factors such as age, physical conformation
and posture taken at the time of impact, in order to estimate the damage that the
impact itself would have in relation to speed of the vehicle.

However, most of the information necessary to use these models is not usually
available. So, starting from those models, we can proceed to a series of simplifica-
tions. In the end, we can assume P (fatality|exposure) as a function of the kinetic
energy of the falling vehicle and of the sheltering factor of the area in which the
crash occurs. Figure 2.1 shows just how P (fatality|exposure) varies with varying
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kinetic energy and sheltering factor.
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Figure 2.1: P (fatality|exposure) evolution respect to Kinetic Energy and Shelter-
ing

The problem then is the lack of a metric that coherently describes the sheltering
factor. First of all, let’s start by providing a more precise definition of sheltering
factor, citing one of the reference works in this regard [16]:

Definition 2.3. The sheltering factor of a geographical area is its capability of
protecting people on ground, through artificial or natural structures, from the fall
of an Unmanned Aerial System.

Let’s see how this definition, not being quantitative, can induce us to assume
PS ∈ [0;∞]. However, in this way it is not possible to consider it as a probability
and above all it is not known how to assign a value to it.

After carrying out a series of empirical tests, the colleagues found that a credible
bound for sheltering factor is PS = 10. In fact, due to the small size of drones in
urban areas, the maximum kinetic energy released on impact it will be in the order
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of the KJ. By assigning a value greater than 10 to PS, 3.4MJ are required to have
a fatal event occurring at 50% probability. For this reason, in the continuation of
the work, I will be hired PS ∈ [0; 10].

2.3.2 Mid-Air Collisions Risk Modelling

Now let’s move on to the analysis of the other, and last, type of hazard previously
identified: the mid-air collisions. It is therefore a matter of finding a model for
the risk, for people on the ground, of lethal damage due to an in-flight collision of
one or more UAS. According to [16], the frequencies of fatalities due to in flight
accidents can be modeled as:

fF,MAC = Nexp × P (fatality|exposure)× fMAC (2.2)

Where:

fF,MAC frequency of fatalities due to mid-air collisions [people
h

]

Nexp number of people exposed to the accident [people]

P (fatality|exposure) probability that a person involved in the UAS’s crash will
suffer fatal injuries

fMAC frequency of mid-air collisions [accudents
h

]

So now it’s about understanding how to calculate fMAC . Let’s remember how,
speaking of mid-air collisions, we refer to the collisions that a UAS can have with:
one or more other UAS, buildings, other unpredictable obstacles. In formula:

fMAC = fb + fUAV + fTBE (2.3)

where:

fb is the collision rate with unexpected buildings. All the known buildings, in fact,
will be handle as no-fly zone (which are explained in the following). So fb
parametrize the number of collision with building due to a lack of precision
in the geographical localization

fUAV rate of collisions with other UAS flying in the same area

fTBE parametrize the unpredictable collisions, like those with birds etc

The measure unit of these three parameters is the one of frequency. Note how
both fb and fTBE can be only estimated my means of statistical tools. fUAV there-
fore remains to be analyzed. We underline that at this stage we are interested in
modeling the frequency of collision between vehicles flying in the same area based
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on some information known a priori, so we do not want to talk about the methods
used to prevent such collisions. This last argument, in fact, is the central part
of this work and will be dealt with in chapter 4. Different techniques have been
developed to estimate correctly the value of fUAV . According to [48] and [16], we
can write:

fUAV = E(CT )× P (collision|CT ) (2.4)

Where:

E(CT ) is the expected value of conflicting trajectories in a given area. The measure
unit trajectories

h
.

P (collision|CT ) is the probability of having an impact given two conflicting tra-
jectories

A technique known in the literature to estimate E(CT ) is the so called gas model
[16], [48]. Here, the functioning of such models will not even be elaborated as, once
again, an evaluation of this type is not compatible with the functioning and needs of
this context. From the simulations we can instead see how, a typical value for very
busy areas turns out to be E(CT ) = 4× 10−5[CT

h
]. This value is clearly dependent

on the size of both the vehicles and the region of space considered. Therefore, in the
final, as seen for the other elements of the risk, a coherent evaluation for EEE can
be obtained through a large number of simulations carried out with the Montecarlo
method.
To conclude the risk analysis for mid-air collisions, we propose two methods that
could be implemented to estimate the value of P (collision|CT ):

• quantify the real ability of the collision avoidance algorithms implemented in
the conflicting vehicles

• simply assume P (collision|CT ) = 0 if there is a collision avoidance algorithm
implemented in the conflicting vehicles, P (collision|CT ) = 1 otherwise

In particular, therefore, P (collision|CT ) = 1 will be followed in consideration of
the collision avoidance algorithms developed and shown in the chapter 4.

2.3.3 Ground Impact Risk Modelling: A Complete Frame-
work

We have just seen how, to properly assess the risk, the causes of accidents have been
evaluated. They are, we repeat, the loss of control during the flight due to internal
failures and the collision in midair. We have just seen how, to properly assess the
risk, the causes of accidents have been evaluated. They are, we repeat, the loss of
control during the flight due to internal failures and the collision in midair. Both of
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these situations can be dangerous for people and for both of them a metric has been
proposed to represent the risk. At this point it is therefore necessary to associate
each sub-area of the map (cells, as we will see later) with a certain resolution, a
single value that combines the causes of risk and represents the overall risk for
people on the ground.
To do so, we make the following assumption: any impact on the ground may be
caused either by the flight control loss, or by a mid-air collision, not by both at the
same time. Furthermore, to carry out a conservative risk analysis, the highest risk
factor will be the one that will be taken into account. In formula:

fF = max(fF,UFE, fF,MAC) (2.5)

that can be rewritten:

fF = Nexp × P (fatality|exposure)×max(fUFE, fMAC) (2.6)

Equation 2.6 can be considered the final formula for calculating the risk of a ground
impact, as it contains all the parameters of interest for both crash scenarios.
For our operational context, however, some considerations must be made. In par-
ticular, we have seen how fMAC encompasses the risk of mid-air collisions with any
type of static and dynamic object. The former are essentially static objects posi-
tioned on the path of a drone’s mission, but we can assume they are consistently
treated by the Risk-Aware Map manager, so collisions with static obstacles may
be due to incomplete information. However, by taking advantage of the collective
learning capacity typical of a cloud system, it can be assumed that even these pos-
sibilities tend to zero. Collisions with other vehicles therefore remain. However,
we have seen how it is reasonable to assume that they are independent of a spe-
cific geographic area and must be treated by specific collision avoidance algorithms.
These algorithms have in fact been developed and will be illustrated below.
In the final then it results that fUFE � fMAC and the equation 2.6 can be simplified
into:

fF = Nexp × P (fatality|exposure)× fUFE (2.7)

With this equation we are therefore able to offer a qualitative and quantitative
definition of the risk in terms of hourly victims, and therefore we can ensure the
fulfillment of the security standards usually imposed by the competent authorities.
Based on the latter, in the following we will assume that a mission can be considered
safe if it turns out:

fF < fF,MAX = 10−5 1

h

In the next chapter we will see how to move from the definition of risk based on
areas to the risk of a mission using the Risk-Aware Map Manager proposed within
this project.
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2.4 Path Planning
Trajectory planning is a classic problem of robotics, so in literature there are several
ways to solve it. According to [13] a common definition of this problem is:

Definition 2.4. The motion planning problem is a term used in robotics to address
the process of breaking down a desired movement task into discrete motions that
satisfies constraints and possibly optimize some aspect of the movement itself.

In our context, given a description of the environment, the dynamics of the
vehicle and the starting and arrival positions of a mission, the block of path plan-
ning of CBUTM will have the task of identifying an ordered sequence of points,
called waypoints, that the vehicle must follow to arrive at a destination respecting
the constraints (the no-fly zone, as shown in the following) and minimizing some
parameters (risk and traveled distance).
It should also be noted that, having assumed that the flight quota does not change
during the course of a mission, the problem of the path planning can be treated as
those of the planar robotics. At this point we can move on to analyze the many
solutions offered in the literature. A first, classical, categorization of these algo-
rithms is that between deterministic algorithms (which are simple to implement
and do not require much computing power) and probabilistic algorithms (which
involves high dimensional state space and whose execution time can be very high).
Despite the analysis and development of these algorithms is out of the scope of this
thesis, a high-level overview of these types of algorithms is necessary to understand
the choices made in our project and to understand the functioning of the framework
we are going to present .
Before proceeding to such analysis of these algorithms, it is important to identify
the characteristics of interest for our context. In particular we will deal with:

• high dimension maps. The path planner will have to work on maps of the size
of a city and with a rather high resolution. Although the computing power
is not a poor resource in a cloud system, the chosen algorithm must be light
enough to guarantee a solution in finite time.

• Dynamic environment. Obstacles as well as risk-related parameters change
over time, and often even during the course of a mission. The path planner
should therefore have the dynamism necessary to change its results in real
time.

• Critical situation. In the critical context of flight, response time is crucial.
The path planner will therefore have to guarantee acceptable latencies.

• Drone’s structure. The calculated route must clearly be feasible for the vehicle
to be driven. The path planner must therefore take into account the flight
dynamics of the vehicle during the computation.
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2.4.1 Deterministic Algorithms

The history of this branch of Path Planner starts with E. Dijkstra in 1959, who
developed his famous algorithm to find the shortest path between two nodes in a
non-negative weighted graph. Since the path planner iteratively follows the edges
of the graph till it will find the goal, the Dijkstra one can be classified as a graph
search algorithm.
Staring from this, that can be reasonably considered the father of all the motion
planning algorithms, many others were developed in the following years. In 1968,
Hart, Nilsson and Raphael, developed the A* algorithm, which is still a graph search
algorithm but with an heuristic estimate, which classifies each node estimating the
best way that passes through it. The result of this process is the shortest path
(less costly one) between start and goal [21]. A typical drawback of A* is its
computational requirements: on large map (as the one used for drones flight) many
states has to be recorded, so a huge memory is needed. During the rest of the
century, an impressive amount of deterministic algorithms has been deployed, from
scratch or modifying the previous to have a more satisfactory solution. The most
important are here resumed:

Dynamic A* or D*, was proposed by Stentz in 1994 [43]. It works exactly has
A*, with the main difference that weights between two nodes can changes at
run time. Thanks to this feature, it can be used to make real time re-planning
of the path, if the robot is supposed to move in a changing environment. The
change of cost it’s usually detected by sensor mounted on the Unmanned
System, and for this reason it is considered a sensor based algorithm.
Stentz itself tried to improve its work, and developed first the Focussed D*
and then the D* lite algorithms [44][34]. Both of them are similar to D*, but
save computational resources and have beter perfomances.

Theta* developed by Nash et al. [33] is still an extension of A*. The main
difference with is predecessor is that for each vertex expansion there must
be a line of sight between parent node and its successor. A very similar
path planner is phi*. Both of them allows the robot to moves also along
diagonal lines: this features, that also provides to them the name of Any
Angle Algorithms, really increase the power and the efficiency of the planner.

RA* developed by Guglieri [20], is very most recent one. This algorithm was
developed strictly for the risk analysis procedure, so it takes into account
parameters as population density.

Many other interesting works in this field has been developed ( as Floyd-Warshall,
which is a mile stone, or Artificial Potential Field), but each of them has one or
more characteristic that doesn’t fit with the requirements of our particular scenario.
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2.4.2 Probabilistic Algorithms

Probabilistic algorithms are the ones that have a degree of randomness as part of
their logic. Usually, the probabilistic (or randomized) algorithms have an auxiliary
random input that guide their behaviour in order to have good performance in the
average case. The performances oh this kind of systems is a random variable too,
as also the running time and the output [14].
Typically, this algorithms works on nonconvex, high dimensional spaces upon which
a random space tree is built: in its construction is contained the randomness of the
method, that usually takes casual samples from the search space. More the sam-
ples, higher the probability of having a correct solution. Furthermore, at every
step (when a new sample enter in the tree) an obstacle free trajectory is built,
alays checking its feasibility.
Due to their intrinsic difficulty, this algorithms were developed later then the de-
terministic ones, when computer had already a sufficient computational power to
support them. The first path planning randomized algorithm was the probabilistic
road map (PRM), developed in 1996 [25]. As Dijkstra was crucial for deterministic
algorithms, PRM can be considered the founder of the probabilistic set. It basic
idea is the following:

Pre-processing Phase Starting from n random samples, a set (roadmap) of col-
lision free paths is built.

Query Phase The shortest path between start and goal points is found in the
roadmap.

The PRM works good in high dimensional space, but has a limit in the construction
of the roadmap, that can be challenging and some times infeasible.
In order to provide better performances, a set of new algorithms was developed
starting from this. The most important are listed here:

PRM* is a variant of PRM, in which the radius is scaled according to the num-
ber of samples. The result is an asymptotic optimality and computational
efficiency.

Rapidly Exploring Random Tree or RRT, was developed by LaValle and Kuffner
in 1998 [28]. It is probably the most powerful and interesting algorithm pre-
sented till now, and one of its variant has been implemented in our Cloud
Based Framework. For this reasons, it will be better exposed in a proper
section.

Rapidly Exploring Random Graph also called RRG, is an evolution of RRT.
Practically, it is capable to provide quickly a first solution to the planing
problem, and then monotonically improving it if more time is available.
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Ant Colony Optimization developed by Maniezzo in 1992 [31]. It is a classical
evolutionary algorithm, since its behaviour was inspired by real biological
phenomena: in this case, ants looking for a path between their colony and
food. Although it seems incredible, ants always find the shortest path, thanks
to a random iterative process that leads to a common knowledge sharing
between all the components of the colony.
ACO algorithm is very powerful and can rapidly provide a good solution.
However, its converge time to the optimum is uncertain, and this can be a
problem in applications like ours.

We have here reviewed the most common path planning algorithms and the prin-
ciples on which they are based. In section 3.4 we will describe the path planning
algorithm chosen for CBUTM: RRT*.

2.5 Collision Avoidance
The problem of collision avoidance, a central part of this work, will be analyzed
and dealt with in depth in the chapter 4.
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Chapter 3

CBUTM: overall framework

3.1 Introduction and General Architecture

CBUTM is an air traffic management solution based on the Cloud Robotics paradigm
and designed for small commercials UAS systems. The aim is the creation of a
structured low-altitude airspace which allows UAS operations also in urban envi-
ronments while preserving a certain level of safety for humans.

In chapter 2 we seen what an UTM is, what are the tasks an UTM has to
deal with and finally in which ways these tasks can be accomplished according to
literature.

Basing on what seen in the previous chapter, in this one we show the general
architecture of CBUTM and the strategies we adopted in order to accomplish our
objectives.

The idea is to provide a central gateway to the unmanned missions, both for
customers and authorities. One key characteristic of CBUTM is that it work on
a standardized risk assessment, and so is able to operate assuring the same safety
level for each possible mission in the city. The authorities have at the same time a
unified access to monitor and to intervene on all those parameters that condition
the missions’ requirements and so the characteristics these missions will have.

In our opinion this feature would be of interest particularly in the short term,
accelerating the ongoing tests and so the adoption on large scale as well as it
accelerates the velocity of the feedback loop for control agencies.

But also changing parameters, the metric could be maintained. This in turn
would allow different instances of CBUTM, each one under the control of the re-
spective authorities, and at the same time a common language (the metric itself)
among them. In this way, for example, different cities could use different require-
ments basing on the characteristics of the local environment, while continuing be
inside the parameters’ range imposed by the national authorities. The same mech-
anism can be applied even on a larger scale, like among different states of the
European Union.
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On the other side, a unified portal to access to unmanned missions and to the
relative services is offered to the citizenry as well as to private company that would
receive huge benefits operating in this field.

In order to understand the overall way of function of CBUTM, it can be useful
to have a better idea of what happen when a mission’s request is submitted to the
system. For this purpose, figure 3.1 is the optimal reference to consider. Please
notice that what we are going to do here it’s just an introductory overview of the
working principles of our Traffic Manager: the detailed explanations of each blocks
will be treated in a specific section, in accordance with the aims of this work.
As said before, if a drone wants to fly in the city’s airspace it must interact before
with the Traffic Manager, in order to join correctly the Cloud-Based UASs Traffic
Manager. The first step it has to accomplish is the "Registration". In this phase,
the UAV communicates all his structural parameters, its goals and the requirements
it must fulfill to successfully complete its mission. The cloud system, from its side,
assign to the drone a coherent level of priority, according to its need, and a "virtual
identity" that will be the drone image in the CBUTM. Then, it’s possible to start
the procedure to identify if the requirements of the Unmanned mission are compli-
ant with the safety standard of the Authority that manages the traffic manager.
From here till the moment in which it will receive the allowance to fly, the drone
has only to wait, since all the procedure will be performed transparently by the
cloud itself.
Beside the "Registration" process, there is the Environmental Modelling. This
phase is not triggered by the mission’s request but instead happens at a constant
rate till the CBUTM stays online: it must have, at any time, an update and coher-
ent geographical map of the urban environment where the flights are performed.
Although not available for now, it is reasonable to suppose that in future municipal
offices will share their data on the city structure. Furthermore, this information are
going to be merged by the "Environmental Modelling" block with the ones received
in real time by the flying drones: finally, the result is the dynamic map of the city
we were looking for. Differently from the rest of the flow chart, this part of the
system is independent from the drone that has advanced the request, and remains
the same for ever aircraft joining CBUTM.
Once the map is available, and the registration process has began, it is mandatory
to start the "Risk Assessment" for the specific UAV. Practically, this means to
apply the Risk Modelling techniques (already seen in 2.3) to build a point by point
map of the risk that associates at each area of the geographical map its correspond-
ing risk value. How to do this in detail will be described later on in this chapter.
The risk map, function both of the geography and the UAS’s constructive param-
eters, is going to be managed by the "Map Generation" block, which consider it
just as a layer of a more complex cost map, built weighting all the other require-
ments of the unmanned mission. As output, it provides a cost map, this time
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function of geography, drone’s parameter and mission standard objectives. "Mod-
elling Environment", "Risk Assessment" and "Map Generation" together form the
Map Manager structure.
The map coming from "Map Generation" becomes the input of the "Mission Plan-
ner", whose final aim it’s dual: on one side, it must find the best (lowest cost) path
for the drone to follow, on the other it must evaluate if this trajectory is compliant
with the standard (for example of safety) imposed by authorities. This two different
souls, called "Path Planner" and "Path Validator" co-operate in this block, since
the output of the first is the input of the latter.
At this point, three different situation are possible. In the first, the mission’s re-
quirements are impossible to be satisfied: the only solution in this case is to abort
the mission, that’s unfeasible. The second possible way instead happens when the
chosen trajectory doesn’t satisfy the requirements, but it’s still possible to change
the weights of the cost map and re-calculate another path. Finally, the last scenario
is when the trajectory accomplish the mission’s request and the safety bound, so
that the drone can be authorized to fly.
In this case, a controller of the in-flight operations is needed: inside CBUTM, the
two blocks "Trajectory Following & Collision Avoidance" (TFCA) and "Navigation
Management" are implemented for this specific purpose, and will be illustrated and
discussed in the next chapter.
The first, as the name says, is responsible for the high-level navigation control
and in the following it will be implemented as a node called Predictive Trajectory
Planner (PTP). In brief it is a system executed alongside every mission and it’s
responsible to continuously translate a path (the output of the mission planner)
into a proper trajectory (a path plus a time law). The generated trajectory has to
be equivalent to the received path as long as this doesn’t imply that the distance
from other vehicles, that clearly depend on time, goes below a safety threshold.
In that case, TFCA has to produce a trajectory different as much as necessary to
avoid this circumstance. TFCA works in parallel with the Navigation Management,
to which it sends instruction and from which it receives a feedback on the actual
state.
Navigation Management system, which is the only one to be on-board, translates
high-level instructions into low-level ones, interacting directly with electromechan-
ical actuators and with other devices onboard, like sensors.
That’s said, we finally conclude the introduction to the Cloud-Based UASs Traffic
Manager. In the rest of this chapter, some of the concepts and blocks just presented
will be extended, according to the logical purpose of this thesis.
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Figure 3.1: CBUTM Flow Chart
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3.2 Registration, Identification and Monitoring

As previously stated, CBUTM provides a Networked Control System in charge of
coordinate unmanned operation assuring compliance with pre-established rules in
order to guarantee a certain level of safety. This clearly require the knowledge of
the vehicle belonging to the network and of their characteristics. This information
is collected and organized by the cloud system in the so called ’Registration’ phase.
Registration is the first step of the interaction between the cloud itself and the
drone that intends to carry out a mission.
Cloud side, there is a central entity in charge of this role called Cloud Control
Station (CSS) node.
When a UAS requests registration to CBUTM, CCS collects from it the information
necessary to determine whether it is suitable or not to participate in the network.
If so, the information collected is placed in a quick access database maintained by
CSS itself. This database meant to collect not only information required for the
registration, but also that required by the cloud in order to perform its coordi-
nation role and assure the require safety level. There are so also always up-dated
information coming from agents of the network. In general information can be both
static, like the ID, physical characteristics, its legal owner and so on; or dynamic
and change during the mission, like the actual positions, the predicted trajectories
and the priority level.
The Cloud Control Station is also in charge of maintaining an always updated list
of the UAS active in the airspace. This is done continuing to monitor the registered
vehicle through an heartbeat check setted up between the CSS and the UAS’s im-
age in the cloud, which in turn is in communication with the vehicle through the
MAVROS bridge. In this way any behavior or even an unexpected termination is
detected by the Cloud, which will then be able to notify an operator or in gen-
eral will be able to take the necessary countermeasures directly. This ’Monitoring’
phase is also required by other component of CBUTM, and will be detailed below.

Monitoring agents in the airspace is necessary also to perform coordination.
The mechanism of trajectory planning will be discussed in section 4.2, but we can
anticipate that it will be based on a distributed architecture, in order to exploit all
advantages in terms of efficiency and robustness of a distributed networked control
system based on a receding horizon control strategy. In particular it is a distributed
non-cooperative priority-based networked control system.
This means that the problem of coordination will be decomposed into as many
sub-problems as there are agents active in the airspace. Each of these subproblems
still requires the results of the other subproblems in order to be able to be solved
appropriately, and this requires that the results are easily usable. The result of
each sub-problem, as we shall see, is none other than the trajectory that the UAS
in question envisages, instant by instant, to carry out. It follows also that every
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Figure 3.2: CCS-PTP interaction

drone, or rather its image of the cloud, should be able to quickly access this kind of
information. This functionality, alongside with those seen in previous sections, is
provided by the Cloud Control Station Node, by mean of a specific ordered database
constantly updated with the information coming from the localization and with the
predicted trajectories.
As depicted in figure 3.2 and 3.3, CSS receives through MAVROS topics, the GPS
position data from every agents. These coordinates are so converted into cartesian
ones referred to the map reference frame. The converted coordinates are then
stored, and updated, into a specific container.
Basing on this container, the distance between different agents is computed and
monitored. When this distance goes below a certain threshold, set at 50m, the
Cloud Control Station advertise the involved agents with lower priority. This is
performed with a message containing the IDs of the vehicles they must take into
account and sending to them, or properly to their cloud’s images, through a topic
they always subscribe. At this point is sufficient to query the database to obtain
the needed information and achieve coordination.

3.3 Risk Assessment and Map Generation

A quick overview of what the risk of an unmanned mission is and how it is possible
to evaluate it was done in the previous chapter. It is now a question of constructing
a risk map for the unmanned mission, ie a map that associates to each geographic
point involved in the mission, the corresponding risk value for people on the ground.
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Figure 3.3: Graphical representation of monitoring phase

The resulting map will be used by the path planner in order to find a considerably
safe path that allow a UAS to reach its goal positions. Notice how, although we
speak of geographical "points", the map will not be punctual, but will be subdivided
into sub-areas, called cells, within which the risk will be reasonably assumed to
be uniform. In particular we have decided that each of these cells will have an
area of 25m2. For each of these areas, the cloud system will have to calculate
the corresponding risk based on information that it must be able to know and
manipulate, and which are:

• population density, varying in time

• the mass of the vehicle

• the flight height

• the sheltering factor of the area

• frequency of ground impact due to unexpected end of the flight

• the number and the positions of the no_fly_zone

Each of these values is contained in a specific layer of the map (we’ll talk about it
later) and the risk map is nothing more than the weighted overlap of these layers
made on the basis of the equations identified in the previous chapter.
The result of these operations will be similar to what shown in the figure 6.10.

It is important to remember one of the assumptions made in this first phase
of the project: the navigation of the UAS takes place on a plane parallel to that
of the ground. This means that it is possible to consider the flight as a planar
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Figure 3.4: Example of Risk Map. Every area of the map has its own colour and
height coherent with the risk value calculated. Red squares are no-fly zone

movement on the x and y axes, while the value of the z remains constant during
the execution of the mission. Note, however, that despite the height of the flight is
assumed constant, the risk of a mission is a function of it. Just think, for example,
how the presence of buildings (and therefore no_fly_zone) depends on the height
at which it was decided to fly.
In the final, once we have a risk map on which the path planner can decide the best
route to assign to a UAS, it is possible to define a metric that allows to determine
if the planned path meets or not the safety standards required by the national
authorities.
The procedure we adopted to coherently perform a risk assessment procedure, and
then building a risk map are described in figure 3.5. In the following part of this
section, a quick overview of its main features will be provided.

Any risk map must clearly model consistently the environment it represents, in
particular for what concerns the presence of structures and buildings. As already
stated during the risk analysis of Section 2.3, and in particular when talking about
mid-air collisions, the impact with this type of obstacle must be managed by Risk-
Aware Map Manager.
In chapter 5 we will see how to obtain such a model starting from the data currently
available publicly.
Besides the structural information from the model, we have to collect as map layer
also the distribution of population (density) and the sheltering factor. Finally, the
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Figure 3.5

risk map will be built applying to every cell:

fF,i = Ni,exp × P (fatality|exposure)i × fUFE,i (3.1)

where each element i is about the i-th cell. At this point it is important to underline
how on a risk map there are in some way two possible "risk situations" for each
cell. The first is the one in which the risk is calculated using the equation 3.1. The
other possibility concerns some particular areas for which, for different reasons,
some cells must be marked as no-fly zones and are cells for which the associated
risk is assumed infinite. A no-fly zone (NFZ) is trivially defined as an area above
which it is not allowed to fly. It possible to distinguish two categories of no-fly
zone:

Law-Imposed No-Fly Zone they are areas above which flight is prohibited due
to legislative restrictions. The reasons behind these limitations are mostly
related to security. Examples are the temporary no-fly zone imposed for major
sporting events, or however for events that collect large numbers of people,
or above sensitive targets. These areas must be appropriately managed by
the cloud system, which can retrieve updated information via the internet, or
can be manually entered by an operator. Notice how in this case the no-fly
zone is valid at any height.

Structural No-Fly Zone in this categories are included all possible zone in which
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is not possible to fly due to the presence of structural items (natural or ar-
tificial) that impede the flight. The typical example are the buildings taller
than the height of the UAS’s flight. It is so obvious that changing the height
of flight, the number of this kind of no-fly zone could decrease.

A complete risk map is in fact a large matrix whose cells contain values that
most often are within the range [10−7; 10−5]. It was therefore decided to normalize
these values both for not having to deal with such small numbers, and to be able to
relate the risk to other values of interest that are however expressed on a completely
different scale.
It was therefore decided to normalize these values both for not having to deal with
such small numbers, and to be able to directly relate the risk to other values of
interest, which however are expressed on very different scales. To normalize the risk
by comparing it to the appropriate scale, a technique derived from image processing
technologies is used. It is called gamma correction. As a result, the normalized risk
value of each cell is calculated with the following formula:

Ri =

(
fi

fMAX

) 1
2

× 100

The “Map Manager” structure, which aim is to build the map upon which the
Path Planner will works, at this point is capable of providing a coherent risk map,
that takes in account both the Drone’s building parameter and the environment in
which it will fly. Nevertheless, is quite obvious that beside the risk there is also
the mission itself, which has is goals and features. When planning the path for
the drone to follow, it is important to find also a way that satisfies all the specifics
imposed for that mission. According to figure 3.5 , all this aspects are modelized
as “Mission’s Requirements”, and each of them will have its own layer where the
“degree of satisfaction” for each zone is contained, normalized in range [0 , 100] as
for the risk layer. A typical example, that will be used also in the Simulation part
of this work, is the signal quality of service (QoS). The connectivity is a crucial
point of this cloud based framework, since without a link with the cloud the UAV
is blind. Moreover, we are working on a civil scenario, so let’s suppose to have
a data streaming from the aircraft to the cloud (maybe a video recording of the
flying drone) that in order to be maintained has to provide a signal connection
power greater than a lower-bound Slb. In order to accomplish the mission, the path
planner have not only to find the less risky path, but also guarantee that this path
will have always Si ≥ Slb, for every i belonging to the trajectory, where Si is the
signal power of each cell of the map. Practically, extending to a multi-requirements
mission, what we want is to to have a mission planner that tries to provide the best
trajectory for the UAV in order to satisfy all is goal: then it has to verify if the risk
bounds are satisfied and, if not, re-calculate another path. The risk map in this
scenario becomes only a layer (the most important one) of a more complex cost map
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that will encapsulate all the information useful to accomplish the mission. Since all
the layers are of interests are normalized between 0 and 100, it is possible to add
them into a single layer called “Cost Layer”, which will finally be provided to the
Path Planner in order to find the trajectory that best fits with the requirements.
However, since the risk is the core of this project, a Path Validation block is needed
at the end of this chain: its aim is to verify, at a first stage, that each specifics has
been satisfied by the chosen path, and finally to guarantee that risk’s upper-bound
has not been crossed. Once again the importance of the safety arises: while every
particular requirements can have its own priority level, to specify how much it’s
important is fulfilment, the maximum risk value instead can’t never be exceeded,
under penalty of not authorizing the flight.

3.4 Path Planning - RRT*

The algorithm we decided to implement to plan the route of our Unmanned Sys-
tems is the Optimal RRT (or RRT*), a probabilistic algorithm derived from the
classical Rapidly Exploring Random Tree (RRT).
The history of this method is quite recent, since it was firstly developed in 1989,
by LaValle and Kuffner Jr, two American computer scientist and professors. It had
also many variants and evolutions, among which the most important are RRT* and
RRG.
The procedure executed by this algorithm aims to build a tree of open loop trajec-
tories for non linear systems with state constraints: this capability of constructing
feasible (for the UAV) paths is one of the key features of RRT. The tree is built
extracting random samples from the state space, introducing also a bias to explore
in the direction of unsearched areas. Every time a sample is drawn, a connection
between it and the nearest state of the tree is attempted: if this link satisfies the
constraints (practically, of it is feasible), the sample becomes part of the tree. Some
kind of limitations can be introduced for the tree, for example in the length of the
connection between the tree and the new state. A classical approach in case where
the random sample is too far (i.e, it is farther than the maximum allowed distance)
is to substitute it with a new state, at the maximum distance along the line that
connects the sample to the tree.
Once this procedure is clear, it’s easy to understand the way the algorithm works.
The tree borns only with the initial state, than it starts to add random sample to
it. This iterative procedure ends as soon as the tree contains a node in the goal
state region. In figure 3.6 a typical evolution of RRT’s tree is depicted.

The advantages of such approach are many. First of all, it is simple and easy to
implement. Moreover, the tree always remains connected and guarantees a feasible
path at every step. Finally, it is proved to work better and faster then many other
deterministic algorithms. The main drawback instead is due to the need of saving
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(a) (b)

Figure 3.6: RRT’s tree evolution in time

at each step the overall tree, that implies an increase of the computational time
while the algorithm is running.
Starting from this, Karaman et al. developed in 2011 the so called RRT* algorithm,
which really increased the optimality of the solution obtained with RRT [24]. The
mechanism the rules RRT* are obviously almost the same of RRT, but it introduces
two new interesting features: near neighbour search and rewriting tree operation.
The first finds the best parent node for the new sample that aims to be inserted in
the tree, while the second rebuilds the tree within an area of given radius, in order to
maintain always a minimal cost between tree’s connections. Thanks to this, RRT*
improves asymptotically the quality of its path as the number of samples increases,
differently from RRT. In figure 3.7 the differences between the two approaches are
shown: it seems evident that the tree built with RRT* is more ordered than the first
one, thanks to the operation described before. Obviously, this features have also a
computational trade-off, that can however be overcome with an high computational
power cloud framework, as the one we have. Finally, after the studies of our path
planning team, it seems that RRT* is the best compromise between efficiency and
quality of the result. For this reason, it has been implemented in our framework as
path planning algorithm for Unmanned Aerial Vehicle.
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Figure 3.7: Differences between RRT’s tree and RRT*’s one
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Chapter 4

CBUTM: Trajectory Following

4.1 State of the Art Collision Avoidance
A critical aspect that arises when different UASs share the same airspace to ac-
complish their own tasks, is of course avoiding collisions. A collision is an accident
that happens when a vehicle impact against another object, which can be both
stationary (like buildings, trees etc) and moving (like other vehicles). According
to [32], collision avoidance problem can be broadly classified into global and local
problems.
Typically the solution to the global problem is one path that goes from the actual
position of the vehicle to the position it has to reach to perform its mission, avoiding
all obstacle that can be assumed to be stationary. A conventional path-planning
algorithm just deals with finding this path.
The local problem, that is the one usually simply referred as collision avoidance
problem, deals with avoiding unforeseen obstacles. Clearly this requires sensing
capabilities on-board. In [18] and [17] avoiding collisions, that are autonomous or
not, is a task that has to be assigned to each UAS and its on-board sensing system,
sustaining that "a UAS must handle the collision avoidance autonomously using
sensors to detect obstacles and change the route as well as the altitude by itself.
This works in the same way as autonomous cars in the research projects and the
actual civil aviation" [17].

On the other hand, since we have a Cloud to referring with, someone could
instead thinks to assign to it all the aspects related to flight management and so
also to collisions. In this way no particular sensing capabilities would be required,
increasing autonomy and decreasing equipment costs’ for each single flight. There
are unfortunately different scenarios in which this mechanism cannot be useful:

• no connection (even temporarily) between the vehicle and the Cloud system

• the collision happens before the items can react according to the solution the
Cloud computes and applies to them
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• the colliding object doesn’t belong to the Cloud control, but suddenly appear
in its airspace (i.e. an emergency helicopter)

• the colliding object is not controllable (i.e. birds)

In other words, despite collecting data from vehicles and use those data to extract
knowledge that vehicles can inherit is one of the aim of the cloud system, it’s often
not possible assume that it is sufficient to prevent any possible collision, especially in
real dynamical environment like cities. For these reasons some sensing capabilities
are obviously required on board, but they are out the purpose of this work.

Between all possible moving obstacles we surely find other autonomous vehi-
cles, in the following called also active agents, about which we can make different
assumptions respect any other kind of obstacles. The main assumption in this con-
text, is that there are not antagonistic vehicles, i.e. each vehicle in the network
communicates required data and follow received instructions. Another category
of interest is the that of the so called passive agents. Those are vehicle able to
communicate their actual and goal positions, but they don’t receive any command.
It’s the case of vehicles piloted remotely or directly on board, how those used for
emergency or security purposes.

At this point we have to solve the problem of collisions between an active agent
with on or more active/passive ones, without relying on sensing capabilities. In
particular, if an active agent is involved in the occurring collision, we will be able
to control it to prevent such a circumstance. If only passive agents are involved,
we will be only able to generate an alert for respective pilots.

So, the aim of the Cloud-Based UTM is to provide, when it is possible, a redun-
dant layer against collisions. In particular it has to prevent that the real trajectories
(i.e paths with relative time laws the UASs follow in practice, not only the origi-
nally planned ones) of two or more UASs under its control intersect in a dangerous
manner.

In literature a lot of different approaches are proposed with this aim. In the follow-
ing we investigate the majors of them to define the one we will use in our project.
The simplicity of the solution, at this stage, will be accounted as an important
design requirement.

According to [41] [23], two different approaches exist to achieve (local) collision
avoidance in robotics:

Planning provides feasible collision-free trajectories to each agent in the airspace
ahead of time.

Reacting consists in an online system able to responde adequately to dangerous
situations when they arise.
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As we will see, the two approach can be combined into hybrid solutions.
Starting from planning approach, we can cite [26], where collision-free trajectories
for a team of robots is achieved solving a mixed integer quadratic programming
problem in a centralized fashion. A similar approach was presented in [8], where
instead sequential quadratic programming technique are employed. However, dif-
ferent version of this complex problem are proved to be PSPACE Hard even in
static environment [40].
Furthermore, this kind of approach puts different limits to the adaptability of the
missions since it could require re-planning of all trajectories in the case one of these
needs to be adjusted [23]. But adaptability is crucial especially considering the high
dynamism of our referring context. Since at JOL the research on path planning
strategies and solutions continues, and in future steps could include some technique
relative to the planning approach to collision avoidance, we decided to start devel-
oping a reactive online system to prevent collisions. It is important to remark again
that in future the two different approaches can be combined to provide the pros of
each one. As we will be clear in the following, our reactive system is compatible
yet with a path planner of this type.
Also to maintain this compatibility, we decided to unify the trajectory tracking and
collision avoidance in a distributed manner, as just seen in [23]. In this way, the
trajectory generated by the path planner, however it works, can be applied directly
to our system without any modifications. This system will be able to carry out
trajectory tracking while, reactively, it will be also able to detach itself from it, as
much as necessary to avoid collisions with other vehicles. A path planner able to
provide collision-free trajectories, if available, would not require any modification
in the reactive system but clearly would decrease the risk of collisions and would
increase the safety of operations in the airspace.
Having opted for a reactive approach, we found in [7] something particularly related
to our context: a centralized control which, knowing the objects to be controlled
and their positions, uses a model predictive control to find the smaller steering angle
to be applied to the involved vehicles such that the occurring collision is avoided.
In fact, a cloud system is a central controller with whom each vehicle has to refer
with, communicating its parameters (position, velocity, mass of payload etc) and
receiving instruction to accomplish its task. So the cloud system has not only an
updated state of involved agents, but also the capability to modify their trajectory.
In this work the computational time is appointed as the major drawback. As sug-
gested by the same author, distributing the problem makes it easier to solve and the
system more robust at the same time, as explained in more details in [6] and below.
The problem of collision avoidance, as we will see later, is very often approached in
literature with control techniques based on the model predictive control [23], [40]
and for the generation of collision-free local trajectories [39].
In the following we are going into detail for what concern model predictive control,
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showing its working principle and why it results to be particularly adapt to accom-
plish control, in particular distributed control, into a Networked Control System
(NCS).

4.1.1 Networked Control System

Now we introduce the concept of Networked Control System (NCS), which consists
of dynamic subsystems interacting with each other using communication networks
over which they can exchange data. It immediately becomes clear how this concept
is particularly suited not to our project, but in general it lends itself to being a
reference paradigm with the advent and diffusion of the Internet of Things. A
more formal definition is present in [6]:

Definition 4.1. A NCS is an integration of network and actions, i.e.,the fields of
communications, computation, and control. It consists of multiple agents, which
communicate and interact over a time-variant network. Each agent has its own
controller and aims to achieve its goal while coordinating with other agents in the
NCS.

According to [10], advances in communications have ended up with affecting the
platforms usually used for control systems. There are, in particular, applications
that more than others seem to benefit from what results to be the advantages of
a "networked" approach. These applications are those that benefit from a control
system that is particularly prepared to be:

large-scale using a communication network, has both the benefit of making con-
trol loop actions independent of the physical distance that separates the dif-
ferent entities involved in the loop, and offers also the possibility of forming
additional control loops. This latter implies that it is possible to define fur-
ther control objectives at the same time. These possibilities make a NCS
suitable for use on a large-scale systems.

openess unlike most traditional control systems, in a NCS system it is possible to
reconfigure runtime for the operation of the system itself. This means that
it is possible for some subsystems to join the network and for others to leave
it without compromising the functioning of the control system. In many
situations, in fact, the control flows can be readjusted dynamically to the
current configuration. Note how this leads to benefits also for the modularity
of the overall system, including the possibility to easily update the control
algorithms.

These are fundamental characteristics for any UTM and therefore also for that
object of this work.
Interacting subsystems in an NCS are also called agents, and can be broadly clas-
sified into two categories:
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Passive agents are those dynamic subsystem that can communicate their data
(like current and future states) but that are without networked control.

Active agents use data exchanged trough the network as one of the input for their
controller, so that the controller can find the appropriate input to achieve their
goal while considering other agents, both active and passive.

Figure 4.1: Passive and Active agents in NCS

A traffic control system is one of the classic examples of networked control sys-
tems with active and passive agents.

A networked control system can also be classified, according to the agents par-
ticipating, in homogeneous or heterogeneous. To be homogeneous, all agents of an
NCS must have the same dynamic.
Another important feature, which will then be examined in more detail below, con-
cerns the interaction mode between the agents of an NCS: they can be dynamically
coupled or decoupled.

In an interconnected system, there are several ways in which control action
can be generated. These different modalities can be summarized in 3 different ap-
proaches to the control problem itself, each of which leads to different architectures
of the overall system. The advantages and disadvantages of each will be dealt with
in the following but, for the moment, we only intend to offer a quick overview:

centralized The control action is calculated from a single central entity, to which
all the agents are connected. In particular, the agents send the data produced
to this central unit and receive from it the control command to be applied to
pursue their objectives.
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decentralized each agent has his own controller and his own control action that
is independent from that of the other agents.

distributed it is a hybrid approach of the first two. each agent still has a dedicated
controller, but control action is achieved by interacting with the other agents.

Figure 4.2: Classical representation of differences between centralized, decentralized
and distributed approach

A recap of the classification criteria for a NCS is presented in figure 4.3

Figure 4.3: Graphical classification of NCSs

54



4.1 – State of the Art Collision Avoidance

Once the overview on Networked Control Systems is over, we would like to
quote [6]: In recent years, there has been much interest in Networked Control Sys-
tems (NCS) with time delays and constraints. MPC can be considered as a natural
control framework to handle NCS with coordinated and distributed agents as it can
deal with the action of other agents with respect to their future intention and even
their objective functions while making decisions of its own control inputs.

The MPC to which the author refers is an acronym for a category of control
algorithms called Model Predictive Control or Receding Horizon Control. It is
therefore appropriate to give an overview of the principles of operation of this
control strategy.

4.1.2 Model Predictive Control

In short, the principle behind this control methodology consists in choosing the
control action to be applied, by evaluating its effects on a model of the system to
be controlled on a finite time-horizon.
In other terms, starting from the state of the system sampled at the time t, itera-
tively applies a series of possible control actions on a dynamic model of the system
itself, thus predicting the future states in the time interval [t; t+HP ], where HP is
said horizon of prediction.
The simulations performed are then evaluated on the basis of a function specifically
defined, called the cost function, which assigns to each predicted state, and to the
actions required to reach them, a numerical value, said cost.
The best control strategy is therefore that which turned out to be at minimal cost
in the time interval [t; t+HP ].
In particular, however, at the instant of time t only the first step of this strategy
will actually be applied to the system to be controlled. The others are discarded.
Then the system is sampled again and the procedure starts from the beginning.
This mechanism is represented in figure 4.4

Choosing the best control sequence means solving an optimization problem.
The optimization problem is usually constituted, as we will see in more detail

in section 4.2 , by an objective function to be minimized (or maximized) and by
constraints.
The objective function is often formulated as a cost to be minimized, the constraints
represent the limit on the system states and input.
Traditionally a cost function J relative to the optimization part of a receding horizon
control algorithm, is defined:

J(u(k),x(k|k)) =

Hp−1∑
i=0

c(x(k + i|k),u(k + i|k) + Φ(x(k +Hp|k))

where:
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Figure 4.4: MPC and the receding horizon principle taken from [6]

x(k) is the state of the system at time k

u(k) is the control input at time k

HP is the prediction horizon
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c is the per-stage weighting function

Φ is the weight for the last state of prediction

x(k + i|k) indicates the state at time k + i computed with the data known at k

The control vector U(k) can be computed solving the optimization problem:

U∗(k) = min
U(k)

J(U(k),x(k|k))

subject to x(k + 1) = f(x(k),u(k))

U(k) ∈ R
x(k + 1|k) ∈ X

where the first constraint is the system dynamics, the second represent the con-
straints on control inputs and the third on the states.

The ability to limit future states and control actions simply by adding appropri-
ate constraints in the optimization problem is one of the advantages of MPC-based
strategies.
So what we obtain solving the optimization problem is a sequence of feasible control
input, one for each step over the prediction horizon. As previously said, only the
first is actually applied to the system. The problem is solved at every sample time
of the controller because of the obvious differences from the predicted states to the
real ones.
From a control point of view, the mechanism of prediction incorporates a feed-
forward logic, while the receding horizon computation introduces the feedback in
MPC.

In the course of these overviews we have seen why the concepts of Networked
Control System and Receding Horizon Control are suitable to be combined with
each other and are suitable to address the problem that is the subject of this thesis.
We can define:

Definition 4.2. A Net-MPC is a Networked System controlled by means of a
Model Predictive Control logic.

4.1.3 Networked-MPC

Now we are going to analyze different strategies of Networked-MPC (from now
Net-MPC).

Centralized MPC

All agents communicate with the central entity, which resolve the unique optimiza-
tion problem. In this problem objective functions and constraints of all agents are
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taken into account at the same time. In particular, the resulting objective function
is the summation of single objective functions (one for each agent) as well as the
resulting set of constraints is the union between the sets of constraints (one set for
each agent).

Solved the problem, it communicates to each agent its relative control input
just computed.

The disadvantages of this approach, according with [6], are:

• it has a high computational time that results in a long sample time which
affects the NCS performance

• in case of a large scale system it requires a complex communications network

• single point of failure

Due to these disadvantages, a centralized approach is often not applicable [6]. To
divide the problem into smaller parts, decentralized and distributed MPC are taken
into consideration.

Decentralized MPC

In a decentralized MPC, agents do not communicate with each other and no cou-
pling is accounted for in the optimization phase. Each one solves its own mini-
mization problem, considering only its objective function and its own constraints.
This means that: «Often, it is not possible to implement a functional decentralized
MPC as the coupling between agents must be taken into consideration» [6].

Distributed MPC

Distributed MPC is a hybrid between centralized and decentralized MPC. The
agents communicate and each agent has its own controller, which takes other agents
into consideration.
We distinguish two kind of Distributed MPC: Cooperative and Non-Cooperative.

Cooperative Distributed MPC

It can be seen as a decomposition of a Centralized MPC problem into smaller
problems. What cooperations means in this scenario is that resolving its own
optimization problem, each UAS considers its own benefits alongside with benefits
of other agents. This means also that the communication graph and the coupling
graph coincide. In other words each agent considers only its neighbors and the
coupling between them. If those graphs are not fully connected, the predictions
computed by an agent for its neighbors differs from the predictions computed by
those agents for themselves [6]. This is because those agents consider their own
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neighbors that are not necessary the same of the agent taken into account. If
instead the graphs are fully connected, the Coop. DMPC is equivalent to a CMPC
except for the communication structure. In this case results that:

• high computational time

• the communication network is simpler than in CMPC’s case

• reduces the safety hazard (a failure in one controller does not led to a failure
of all system)

The main drawback is increasing the number of agents leads to an increasing of
decision variables and constraints of the optimization problem that every agent has
to solve, and so to an higher computational complexity. Furthermore the advantages
are not so consistent due to errors in predictions and disturbances. One solutions
to this problem is adopting a Priority-Based Non-Cooperative Distributed MPC,
which is debated below.

Non-Cooperative Distributed MPC

Like in Coop. DMPC, also in this case each agents has an own controller which
solves a part of the overall optimization problem. This controller solves the opti-
mization problem relative to the agent itself, which takes into account only its own
objective function and constraints and coupling objective and constraints with its
neighbors. One of the main differences with the above case is that in Non-Coop
DMPC, agents don’t compute predictions for their neighbors, but instead use the
communication network to acquire predictions from their neighbors and to respect
coupling with them. This kind of approach fit quite well our requirements and
objectives. What still miss is a coordination method for adjust trajectory.

Example 4.1. Consider two vehicles traveling along the same line one towards the
other.

Step 1 As long as they are distant enough, each one will follow its initial trajectory.

Step 2 At a certain point the predicted trajectory of one will encounter the pre-
dicted trajectory of the other. At this point, based on the trajectory received
from the other vehicle, each will elaborate a new trajectory in such a way
that it is collision-free.

Step 3 At the next controller step, each vehicle, seeing that the trajectory of
the other has changed, could decide, for example, to relocate its predicted
trajectory on the initial straight line.
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Step 4 Acting both in the same way, the predicted trajectories would meet again
generating a risk of collision, as happened two steps before. This mechanism
could be repeated indefinitely.

This problem is known in literature and different solutions were presented. One
way, for example, is to solve the optimization problems of different agents in se-
quence and to iterate until they converge to a solution [27]. Another solution
consider to apply a constraint to the predicted control input that limits its devia-
tion from the control inputs sent to other agents [45]. These approaches succeeded
but have some drawback: the first approach requires a higher computational time
when agents became more; the second approach may limit the control actions also
in cases in which they are necessary according to the real actual state. In [6] a
Priority Based approach is proposed to solve this problem.

Priority-Based Non-Cooperative Distributed MPC

Priority is one of the possible way to manage the problem arises from Example 4.1.
To each agent vi of the network is assigned a priority value p(vi) by mean of an
injective function, which associate a different value of priority for every different
agent of the network. At this point every agent considers, alongside with its own
objective function and constraints, only the coupled objectives and constraints of
its neighbors with higher priority. In this way each agent communicates its opti-
mized trajectory to its lower priority neighbors and only one iteration is required to
converge to a solution. Assigning to passive agents (i.e. those outside the network’s
control but of which the network knows position and velocity) the highest values
of priority in the network, they will be properly considered by all active agents.

Example 4.2. Consider the same scenario of Example 4.1. Adding a priority
mechanism, we have that at the Step 2 only the agent with lower priority detects
the collision and adjusts its predicted trajectory according to the higher priority’s
one. At Step 3 both predicted trajectories are collision-free.

Therefore, PB-Non-Coop DMPC reduces the size of the optimization, and so
requires less computational time in comparison with other Non-Coop DMPC.

The Net-MPC strategies illustrated here are suitable for contexts in which the
subsystems (agents) are dynamically coupled and independently actuated [6]. In
fact, coupling takes place at the level of objective function and constraints. These
in particular are a function of both the states of the agent in question and a subset
of the states of its neighboring agents. This strategy is versatile, as well as for
collision avoidance (which we will investigate) for other problems such as flight
formation, platoon control and others.
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4.1.4 Application of Net-MPC strategies to the Collision
Avoidance Problem

Due to their predictive nature, receding horizon techniques results to be commonly
used to address a problem like path following with collision avoidance. In literature
such a control architecture is used to generate the input of motion actuators of the
vehicle into account, or to find the minimum deviation to be applied, respect to the
original a-priori trajectory, so that the collision is avoided. In the case of wheeled
robots, as in [6], the control parameter is typically the steering angle.

In our scenario we can refer to the autopilot of each vehicle, which already offers
the possibility to manage the vehicle and the flight at an higher control level, as
seen in 2.2.4 and depicted in fig. 4.5. In section 4.2 we will see how to apply this
techniques to our framework.

4.2 Trajectory Following with Collision Avoidance
in CBUTM

In section 4.1 we defined the problem into account here and found a suitable ap-
proach to solve it in section 4.1.3.
In that section we identified the collision of agents that interacts with the platform
as the problem to be addressed here, justifying why we opted for a reactive and
distributed approach that doesn’t rely on the sensing capabilities on-board to be
useful. This led us to choose a receding horizon strategy for the networked control
system we are facing with. Receding horizon strategies, in fact, result to address
quite well problems related to navigation [30].
According to [47], algorithms based on receding horizon strategies are the most
common control method used for trajectory tracking, mainly because:

• are easy to model

• have rolling optimization strategy with good dynamic control effect

• can correct the output by feedback, this improves the robustness of the control
system

• being a computer optimization control algorithm, it is easy to realize on a
computer

Some advantages of a distributed controller arise yet in section 4.1 analyzing
different strategies to address collision avoidance in networked control systems. In
particular:

Less computational power required: a unique and complex optimization prob-
lem is discomposed into smaller ones
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Scalability: also increasing the number of involved vehicles the complexity of the
controller doesn’t increase

Robustness to failures: with a centralized approach there is a single point of
failure for the system

In this section we will try to apply all of this to our referring framework, that
is the one depicted in figure 4.5.

This imply some substantial differences. The output of the optimization prob-
lem, that is the next control input of the system itself, will not to be applied directly
to electromechanical actuators, as usually seen in literature, but is the input for
Ardupilot (or for other autopilot systems, vd. 2.2.4). That allowed us to stay
focused on the problem from high-level point of view.

So it is with a such system that our receding horizon controller has to relate with.
The input accepted by Ardupilot are defined according to the MAVlink protocol,
and so it is according to MAVROS that we have to define our output. See [11] for
the complete list of command available in MAVROS.

We tried different approaches. They are showed, alongside with the analysis of
their differences, in the following subsections.

4.2.1 Context and Assumptions

The different approaches we tried maintain however a common topology, that is
depicted in figure 4.5.

We have seen in section 4.1.2 how an optimal problem is usually defined, showing
the classic formulation of the objective function and the optimization problem and
describing the terms that compose them. Now we report only the general form
of the objective function and the minimization problem because on these we have
to make some additional considerations with respect to those already made above
related to the reference context.

J(u(k),x(k|k)) =

Hp−1∑
i=0

c(x(k + i|k),u(k + i|k) + Φ(x(k +Hp|k))

U∗(k) = min
U(k)

J(U(k),x(k|k))

subject to x(k + 1) = f(x(k),u(k))

U(k) ∈ R
x(k + 1|k) ∈ X

Recalling that: u is the control vector to be found by minimizing J ; the constraints
are relative, respectively to the system dynamics, the control inputs and the states.
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Figure 4.5: PTP Topology

The state x is always assumed to be the position of the agent, expressed in a cer-
tain reference frame, so will be also called p. The control input u, instead, will
vary depending on the approach we followed, so it will be provided in the following
sections. Note also that we assumed a 2D environment for agents and their maneu-
vers, i.e. the plane resulting from a cut at a certain height (the height of flight) of
a real 3D environment.
Despite the current strategy of trajectory following and collision avoidance is con-
ceptually independent from the type of vehicle used, what follows has been specif-
ically calibrated, according to what emerged from the risk analysis, for copter-like
vehicles more than for fixed wing ones.
The following assumptions are also made, to which reference will be made for each
of the tried and tested approaches:

Goal Position: remembering the topology of this block (vd. fig 4.5)), we assume a
path coming from the Mission Planner, i.e. an array of poses said waypoints,
as input. So we call "goal position" the position of the next waypoint the
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agent must reach. In the following, without loss of generality, we will assume
that the goal position is outside the horizon of prediction, i.e, the destination
is the same for each step of the prediction x(k + i)

Forbidden set S: is the union set of all the forbidden areas for a certain agent.
It is comprehensive of areas occupied by buildings and all the safety area
of a certain radius relative to other agents, around both actually occupied
positions and around those they plan to occupy.

Agents: as stated in the previous chapter, agents are distinguished between passive
and active. Both of them communicates their positions and plans to CBUTM.

Obstacles: Every passive agent or every active agent with higher priority is con-
sidered an obstacle.

.

4.2.2 Equilibrium Point

Figure 4.6: Equilibrium Point Functional Block Diagram

The first approach we tried is partially based on [35] and is depicted in figure
4.6.
The optimization problem is used here to find the coordinates of a point (said
equilibrium point), in a radius of 40 meters from the current position of the vehicle,
such that: the trajectory that leads from the current position of the drone to that
point is the trajectory at minimal cost.
The evaluation of the trajectory takes place here by evaluating the succession of the
poses that compose it. In particular, the cost of each of these poses is calculated
in accordance with the following cost function:
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J(p(k),pG(k)) =

Hp−1∑
i=1

‖p(k + i|k)− pG(k)‖2

where:

p =
[
x y

]T is the predicted state at time (k+ i), representing the position of the
agent in a cartesian reference frame

pG(k) is the goal position

Note that what we still obtain from this problem are the succession of poses that
minimize the cost function, not directly a control input. But this will be obtained
from the dynamic model of the system.

So the optimization problem is in the form:

P∗(k) = min
P(k)

J(P(k),pG(k|k))

subject to p(k + 1) = f(p(k),pG(k))

P(k) ∈ P
p(k + i|k) /∈ S,∀i = 0, . . . , Hp

where:

f(·) is the dynamic model of the system

S is the forbidden set

P is the set of feasible states in the radius of 40 meters from the agent’s position

Here the control input is defined: u(k) =
[
vx vy

]T , where vx is the linear
velocity along x and vy is the linear velocity along y.
Found P∗(k), we can obtain u(k) by means of the dynamic model of the system.

The computed control input is send to the autopilot, according to figure 4.5 and
figure 4.6.

Figure 4.7: sim of equilibrium point

As a result of the above, we have that the predicted trajectories, in the case in
which there is an obstacle between the agent and its goal, result as in figure 4.7.
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The trajectories produced here, in fact, not only are not accurate, but do not trans-
mit the correct information content to those who use it.
This approach result so to be suitable for navigation and exploration purposes, but
since the quality of our distributed collision controller is based on the quality of the
predicted trajectories, since basing on them other agents will compute their own
trajectory, we started looking for something else.

4.2.3 Step by Step

In this case the optimization problem aims to find singularly the next waypoints
for the agent. Iteratively, each found waypoint constitutes the starting point for
the next optimization problem, till we reach the horizon of prediction or the goal
position.

Figure 4.8: Step by Step functional block diagram

For each step of the prediction, starting from the real agent’s position, the
optimization problem look for a position, in the neighborhood of 4 meters as close
as possible to the goal and out of the forbidden areas. Found such a pose, this is
assumed as a starting point for the next optimization problem and so on.

The cost function is here so defined:

Ji(p(k),pG(k)) = ‖p(k + i|k)− pG(k)‖2 , ∀i = 1, . . . , Hp − 1

The absence of the classical summation defining J, is due to the fact that an
independent optimization is performed every time we need to determine the suc-
cessive position of the vehicle, so for every step of the predicted trajectory.

The optimization problem results to be:
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p∗(k) = min
p(k)

J(p(k),pG(k|k))

subject to p(k + 1) = f(p(k),pG(k))

P(k) ∈ P
p(k + i|k) /∈ S,∀i = 0, . . . , Hp

As before, the command u(k) is derived from P(k) by means of the dynamic model
f(·).
The drawback of this approach is easily showed in figure 4.9. The problem is due
to the fact that each pose is evaluated alone, so it will be as close as possible to the
goal. In the case of an obstacle long its original path, however, it results in a late
deviation from the original trajectory, that not only means a not efficient (then,
smooth) trajectory, but also a not effective approach, since the vehicle is not able
to change its velocity vector as soon as possible. This translates into a trajectory
close to the obstacles’ safety area.

Figure 4.9: sim Step by Step Functional Block Diagram

4.2.4 Step by Velocity

Figure 4.10: Step by Velocity Functional Block Diagram

This approach is similar to the previous, but introduce one main innovation:
the control vector u(k) is now directly subject to optimization.
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So each position of the predicted trajectory is still found independently from the
others into an iterative process, as before, but now these pose are computed as result
of the action of a control input applied to their starting point (i.e. the previous
predicted pose) by means of the dynamical model of the agent itself.
As control input we still use a velocity command, to be sent to the autopilot to
properly apply it to the on-board actuators, so: u(k) =

[
vx vy

]T , where vx is the
linear velocity along x and vy is the linear velocity along y.

The problem is set to find u(k) such that it leads to a position that is as close
as possible to the goal.

So we have as cost function:

J(p(u(k)),pG(k)) = ‖p(k + i|k)− pG(k)‖2

where is made explicit the relation between p and u. The optimization problem as
the form:

U∗(k) = min
p(k)

J(p(u(k)),pG(k|k))

subject to p(k + 1) = f(p(k),pG(k))

U(k) ∈ U
p(k + i|k) /∈ S,∀i = 0, . . . , Hp

This approach has brought some benefits respect to the previous one, but it
has also highlighted the problems deriving from a velocity control action in such a
framework. Controlling by velocity a system require an accurate system dynamic
model and a control frequency much higher than those at our disposal. Further-
more, the quality of predicted trajectories was still not satisfying.
This has led us to change our approach and try to make better use of a component
we are already interacting with, but which can offer us vehicle control features at a
higher level: the autopilot on board. We will then pass, in the next versions, from
controlling the agent by velocity, to controlling it by position.

4.2.5 Optimizing-Traiettoria

In addition to the already mentioned novelty of position control, the following ap-
proach illustrated here introduced another major change.
As shown in figure ??, the output of the optimization problem is now a trajectory.
This means that are not single poses or velocities to be optimized, but the succes-
sion of way-points (WP) itself.
In this way the maneuverer needed to avoid a collision is properly addressed in
prediction phase and this results in a smoother predicted trajectory.
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Figure 4.11: Optimizing-Traiettoria Functional Block Diagram

The method actually implemented to optimize a trajectory will be explained in
detail in the section 5.4.2. For the moment we want to know that the result of the
optimization is an array that contains as many pairs of incremental polar coordi-
nates as there are steps of prediction. This array is the one indicated with arrayk
in the figure 4.11.
Note that the predicted trajectory is directly send as input for the autopilot: being
able to send to Ardupilot the entire trajectory predicted in the form of a "mission"
was a merely implementation step, but allowed us to obtain significantly better re-
sults than the other attempts, in which the control action imparted to the autopilot
was a velocity command or a goal position.
As usual, this control input is constantly updated according to the evolution of the
state variables. So we have that:

U(k) = P(k + 1|k)

Defined Ψ and Φ as the weights of the overall trajectory and of the last predicted
state respectively, we can write the cost function:

J(P(k),pG(k)) =

Hp−1∑
i=1

Ψ ‖P(k + i|k)− pG(k)‖2 + Φ ‖P(k +Hp− 1|k)− pG(k)‖2

The optimization problem has still the form:

P∗(k) = min
P(k)

J(P(k),pG(k|k))

subject to p(k + 1) = f(p(k),pG(k))

P(k) ∈ P
p(k + i|k) /∈ S,∀i = 0, . . . , Hp
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Figure 4.12: Sim Optimizing Traiettoria

4.2.6 Maximizing

In the tuning phase of the cost function, ie when we have quantitatively evaluated
the weights to be given to the different terms that compose the function itself, it
has emerged as ‖P − PG‖ ∈ [0; inf). The absence of an upper limit for this quan-
tity implies that the result of the optimization process, and therefore the behavior
assumed by the vehicle, is a function of the distance from the waypoint. However,
the waypoint position is decided by the path planner and is beyond our control.
We have therefore looked for ways to obtain costs in closed intervals.

The first solution was to relate this distance not directly to the goal, but to a
point that it was the projection of the goal itself on a circumference of a certain
radius. We called the projected point compass and explained how it works in the
section 5.4.2.
Another solution was identified, and although it yielded promising results, it re-
quired further analysis and experimentation to be included in the final implementa-
tion of this work. It will therefore only be presented in this section as a theoretical
approach. Defined:

dist1 = ‖pG − pi‖

dist2 = ‖pG − pi+1‖

reduction = dist1 − dist2;

It turns out that reduction ∈ [−ρ; ρ], where ρ is the maximum distance between
two consecutive poses. In this way it is possible to determine a more precise metric
for the costs to be assigned and make the behavior of the optimizer independent of
the distance from the next waypoint.
The problem is then overturned by the one of minimizing a distance to the one of
maximizing the approach to the goal. which should prevent some unexpected be-
haviors encountered, such as the tendency to deviate slightly behind the reference
trajectory. We expect that this will prevent some unexpected behaviors encoun-
tered, such as the tendency to deviate slightly late from the reference trajectory.
The cost function is thus formulated:

J(P(k),pG(k)) =

Hp−1∑
i=1

[
‖P(k + i|k)− pG(k)‖2 − ‖P(k + i+ 1|k)− pG(k)‖2

]
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The optimization problem has the form:

P∗(k) = max
P(k)

J(P(k),pG(k|k))

subject to p(k + 1) = f(p(k),pG(k))

P(k) ∈ P
p(k + i|k) /∈ S,∀i = 0, . . . , Hp
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Chapter 5

Implementation

Our work can be broadly classified into two parts: one theoretical, the other prac-
tical.
The analysis of the context, of literature and of the state of the art were clearly the
first steps of our work. After that we started developing a theoretical and qualita-
tive approach to the problem into account.
But in the course of this development we certainly could not exempt ourselves from
considering an essential as crucial part of our work: the implementation. So we
decided working in parallel on the two parts, clearly maintaining when possible the
theoretical part some steps ahead.
In this way we managed to study and then to propose something that was both
original and concretely achievable with the time and tools at our disposal. Also
the implementation, as the rest of the work, was conducted cooperatively by all the
team’s members and it was an opportunity for personal and professional growth.
Based on what we saw in chapter 2, after a short time from the start of the project
it immediately seemed clear to us how development should have started from an
instrument, completely unknown to us, which turned out to be as powerful as it
was indispensable: ROS.
Starting from scratch, understanding the functioning of ROS and becoming familiar
with this tool in order to develop what is necessary, was the first important step in
this part of the work, which clearly taken some time.
In the next section we will see ROS more in-depth, a necessary step to understand
the functioning of CBUTM, but here we can say that choosing such a framework as
a basis for our work has certainly made it more robust, integrable and expandable.

In chapter 3 and 4 we saw the main components of CBUTM and in figure 3.1
how these components link together logically.
Here we will show how the blocks were implemented singularly and how they are
interconnected in practice, following the real flow of data that are required, manip-
ulated and exchanges between these blocks.
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Figure 5.1: CBUTM topology

5.1 Software Environment

5.1.1 Robot Operative System (ROS)

We briefly introduced ROS in 2.2.3 with its official description. Here we are going
more in depth. As previously stated, understanding ROS’s main elements is a key
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step since on them and with them CBUTM works.
The reasons why ROS changed the robotics panorama, and in just few years is
widely adopted by academia and industry, are that it provides a distributed archi-
tecture and contains state of the art algorithms, implemented and maintained by
a large community.
The main concept of ROS we are going to use are [12],[36]:

NODES are independent executables and the respective processes able to com-
municate with other processes using topics, services, or the parameter server.
Using nodes is a way to separate the code and the functionalities providing a
robuster and simpler system. A node can be written using libraries of Python
and of C++.

TOPICS Topics are buses used by nodes to transmit data in unidirectional way.
Using topics the production and consumption of data are decoupled.Each
topic, in fact, has a publisher and can have an undefined number of subscriber.
A topic is strictly characterized by the ROS type of the message they transmit.
Once a node publish a topic with a certain type, other node can only subscribe
it as it is and as long as they have the same message type. Actually the
communication protocols are based on TCP/IP and UDP.

SERVICES When a communication can not be unidiretional, i.e. a reply is
needed, you have to use services. It is a request/reply messaging model.
With services, that are defined by the user (no default services exists) nodes
can expose functionalities to other nodes or exploits that provided by others.

PARAMETERS are another mechanism in ROS to get information to nodes.
Their use requires the presence of a central entity, called Parameter Server,
which keeps track of a collection of values. Nodes can can query the Pa-
rameter Server if they are interested in the value of any parameter. This
communication method is more suitable for information that will not vary
to much over time. We make use of parameters, for example, to make more
instance of a same node running in parallel from the others.

The working principle of the Robotic Operating System itself, with different
instances, namely nodes, running independently and communicating by means of
topics and services, seems to be perfect for describing how the CBUTM system
works. It can be seen, in fact, as the cooperation of 4 main nodes, each one main
subject of the work of some colleague within the Joint Open Lab, but in the whole
result of the cooperation of each. We also want to underline the importance of
the open source nature of ROS: this encourages collaborative work and software
development, making it simpler or even feasible within a global horizon.
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5.1.2 Gazebo

Gazebo is another open source project aimed at providing the tools needed to sim-
ulate a population of drones in any environment, outdoors or indoors. Using an
XML-based syntax, it is possible to create accurate, scalable and self-descriptive
descriptions of the environment (world files) and the robot (model files). A Gazebo
component, called Gazebo Server, parses these files and simulates the desired en-
vironment using a powerful physical engine. Thanks to another component, called
Gazebo Graphical Client, it is possible to interface to the server to visualize the
simulation itself through 3D rendering. The features of Gazebo can also be ex-
tended through the use of plugins. The community itself develops and releases
plugins, like the one that simulates a GPS sensor used in our project. Thanks
to its characteristics, Gazebo can be used alongside ROS for the development of
robotics applications. More details on the simulation environment will be provided
in the appropriate chapter.

5.2 Cloud Control Station

How we seen in previous chapter, the Cloud Control Station node is meant to be
the central entity of CBUTM, in charge of collecting relevant data and linking
together different components of CBUTM itself by managing the communication
steams within the system.
In particular it is responsible for what we defined before as the Registration and
Monitoring problems.
If a user want to accede CBUTM, it has to call the ’registration service’. To do
this it has to use a proper client, using the registration.srv message shown in 5.1.

Listing 5.1: registration.srv message type definition definition

id_message uav_id
−−−−−−−−−−−−−−−−−−−−−−−−
bool r e g i s t r a t i o n_s t a t u s
f loat p r i o r i t y_ l e v e l
bool re sponse

Using this custom defined ROS message, the user can transmits its identity and
receives a priority level and the confirm it is among the active agents of the Cloud
system.
Identity is a type of information defined in another custom message, which is used
to collect different types of information about the vehicle itself. Without going into
the details of all the parameters defined in the message called id_message we can
classify them in macro areas to understand their role:
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UAS parameters as the ID, the kind of vehicle, the weight, the mean time be-
tween failures, the nominal speed, etc

Mission parameters as start position, the goal position, the global path, the
local predicted trajectory, the mission type, the odometry of the flight, the
maximum acceptable risk, etc

service parameters as the registration status, the computed priority level, the
authorization to fly etc

It is important to underline how the point here is the functioning principle and not
the exact information exchanged, which can be easily expanded according to the
network requirement and the available information.
The priority level, for example, is be implemented in a static manner and it assigned
to the agent in the registration phase. Thanks to the underlying architecture it
would be easy to update this information dynamically, according to some logic or
particular events.
Besides the registration, CSS is responsible for collecting and distributing relevant
data among components of the network. To do this each agent is inserted in a quick
access database alongside with the collected data. In practice, objects of class map
and set are used. These classes allow to define associative containers that store
elements elements formed, as usual, by:

key used to uniquely identify the element

value that store the information value relative to the element

The container contains elements sorted following a specific ordering criteria, defined
by an internal comparison object. Furthermore, the container uses an allocator ob-
ject to dynamically handle its storage needs, assuring an high rate access also with
a growing number of elements contained. In this way elements are inserted ac-
cording to a fixed order and, although this method is slower to access individual
elements by their keys than that with unordered_set containers, it results suitable
for direct iteration on subset based on that order. This latter characteristics result
to be useful when a UAS need to obtain all the position of higher priority agents.
The insertion of an agent in the list of active agents, involves a direct link between
the CSS and the agent itself, aimed to make the CSS monitor the connection status
of the agent and to check whenever its relative process is terminated, both inten-
tionally or due to a crash.
This behavior is obtained by mean of a specific topic, on which the agent has to
transmit to CSS a periodic signal containing its id reference, and it is what is called
an heartbeat.
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Registration Service
check_id( )
compute_priority_level( )
create_layer( )
start_heartbeat_check( )
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Every time an heartbeat is received by CSS, it restarts a timer. The timer, set
at 5 seconds, determine the amount of time the CSS will be waiting for a signal
from the agents, past which a timeout callback is ran, advertising for an expected
malfunctioning and updating the list of agents active in the airspace.
This dynamic mechanism of insertion-removal UAS from the list of operative agents,
allows CSS to perform an efficient tracking system.
In this way CSS is not only aware of the active drones and their respective posi-
tions, but one of its functions is precisely that of verifying, from time to time, the
proximity (in a certain radius) of two or more agents. In this case the collision
avoidance procedure described below is started, simply by entering the ID of the
highest priority drones in the reference topics for each lower priority drone. Once
the IDs of interest are known, each agent will be able to reconstruct the predicted
positions and trajectories of the vehicles corresponding to these IDs, simply by
querying the database maintained by CSS.

5.3 Map Management

5.3.1 Grid Map

Grid Map is officially defined as "a C++ library with ROS interface to manage
two-dimensional grid maps with multiple data layers" [2]. It is particularly useful
in mobile robotics and in all those applications that require a supporting map
framework. Usually a map is a region of space divided into cells, for each of which
you can assign a value. The meaning of this value depends on the use that must
be made of the map. Frequently, in the case of navigation for the mobile robotics,
these cells are assigned a value that indicates the presence or absence of an obstacle
in the position that that cell represents. In this case we talk about occupancy grid.
Using Grid Map it is instead possible to define an arbitrary number of information
for each cell of the map. The peculiarity of Grid Map lies, in fact, in the possibility
of defining an arbitrary number of layers, all referred to the same region of space,
as depicted in figure 5.2. The layer mechanism is a way to add different types
of information about a given location on the map, and in particular one type of
information for each layer of the Grid Map.
In addition to the structure based on the layers, Grid Map provides a series of
libraries that allow you to efficiently perform operations of storage, manipulation
and acquisition of data from the maps. Cell values can be modified at run-time if
necessary, making the map dynamic.
For what concerns this project, for example, the values contained in the cells of the
different layers are the inputs for the risk analysis seen in section 3.3. In particular,
the layer structure allows us to assign each of the parameters that characterize
the risk procedure assessment to a different layer. The results of this procedure
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Figure 5.2: grid-map

constitute an additional layer, in which each cell contains the cost in terms of risk
for a UAS that should fly over the area the cell itself represents. In turn, this cost
layer will be used as input from the path planner to find the best trajectory.

5.3.2 Risk-Aware Map Manager

We have said how each layer of the Grid Map, in this project, contains the infor-
mation related to the parameters that characterize the risk analysis. Now we can
distinguish between two groups of layers.

Environment-related layers

A first node, devoted to the creation of this type of layer, is called "Create Map
Service" (CMS). This node is provided with a 3D description of the environment
in which it is desired to operate unmanned missions. When it is triggered, CMS
makes a cut of this 3D model at a given height h, returning a planar map on which
two different functions are applied:

CreateNoFlyZone returns the occupancy map relative to the buildings higher
than h, which then will constitute the layer of the no-fly zones illustrated
above and necessary in this project to prevent collisions between vehicles and
buildings.

CreateCoveredArea returns an object gridmap containing all and only the struc-
tures with a height inferior to h. The usefulness of this object is related to
the evaluation of the sheltering factor. Consider, for example, the fact that
it is certainly safer to fly over a building than over a street.

CMS is invoked by another node, called "Risk_Map_Node" (RMN), which is the
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core of the map management block. Its purpose is the management and manipula-
tion of the various layers, as well as the creation of further layers, such as the one
related to risk. As already mentioned, each layer relates to a particular information
that is of interest for the risk assessment procedure. Clearly the number and type
of layers present may vary depending on the information used in the procedure
itself. At the moment the following layers are created and managed by the Map
Manager:

• no_fly_zone

• covered_area

• pop_density

• sheltering_factor

• signal_layer

• risk_layer

• cost_layer

While the first 4 layers are created each time the RMN node is launched, the
other 3 are related to the individual vehicle, and are created during the registration
process of the vehicle itself.

UAS-related layers

Three different services are defined within RMN in order to provide the respective
layers related to each UAS. In particular, when an unmanned system requires reg-
istration, the Cloud Control Station node calls these functions sequentially in order
to build the signal, risk and cost layers. The first layer is the one related to the
signal, and is the simplest of the three because no particular calculation has to be
made. It basically translates a map of the 5G signal coverage, obtained from the
service providers, into a layer for the grid map according to the on-board antenna
capabilities.
The second layer is the one related to the risk, whose value is calculated in accor-
dance with what is seen in chapter 3. The cost layer must necessarily be built last,
as it aggregates those related to the signal and the risk that therefore must have
been already created.
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5.4 Trajectory Following and Collision Avoidance

5.4.1 The Solver: NLopt

As expected using a receding horizon control strategy, we deal with optimization
problems. This led to the need of a proper solver which can be used to obtain the
optimal control input according to a proper cost function. Without implementing
ourself a solver, we decided to use NLopt.
NLopt is an open-source library for nonlinear optimization, callable from a variety
of programming language among which C++, which provides a common interface
for a number of different optimization routines [22]. The common interface consists
in a standard way to define all aspects relative to an optimization problem, in
particular:

An objective function by mean of a function/method written in the used pro-
gramming language and which return a valuable output (i.e a double);

Bound constraints by mean of two consistent arrays, one containing the upper
bounds of the values the variables can assume, the other the lower bounds;

Non linear contraints by mean of a proper function/method which allows to
determine if the constraint, written ad f(·) ≤ 0 is satisfied or not, regardless
of the degree of f(·);

Stopping criteria which can be a maximum number of iteration performed, a
certain value of the cost function, when an optimization step changes the
objective function value by less that fixed or relative threshold or when the
computational time exceeds a predefined value;

Global and local optimization NLopt contains implementation of a variety of
well know optimization algorithms. They can be also broadly classified into
global and local algorithm. Global refers to finding optimal value of a certain
cost function among all possible solution, local optimization instead finds the
optimal value within the neighboring set of candidate solution [46].

5.4.2 Predictive Trajectory Planner

In section 4.2 we depicted the architecture and the functioning principles of the
trajectory planner we designed and whose current implementation is illustrated
below. The ROS node relative to this functionality is called Predictive Trajectory
Planner (PTP), and it’s topology is depicted in figure 5.3.

As discussed in sections 4.1 and 4.2, we decided to address the trajectory plan-
ning problem in a distributed manner. Remember how the CBUTM architecture

82



5.4 – Trajectory Following and Collision Avoidance

Figure 5.3: PTP functioning

actually require only an autopilot (i.e. Ardupilot) onboard, so every kind of com-
putation is carried out by the Cloud itself.

This imply that we must have a different instances of the same node running
in parallel in the Cloud, and in particular one instance for every active agent in
the airspace. In other words, every active agent has its virtual image in the cloud,
aimed to performed all the needed computations for its navigation. In ROS this
set up can be achieved using parameters and roslaunch.

The role of the optimization problem was properly described in previous chap-
ters, now we will see trough pseudo-code how any instance of PTP actually works.
We will begin by first showing a high-level description of the PTP node, then a
description of the main functions that compose it.

Being PTP the CBUTM interface for Ardupilot, it is responsible for requesting
registration of the vehicle, i.e inserting the vehicle in the list of active agents. This is
done exploiting the registration service (offered by the node CCS, as seen in section
5.2) and so providing it with a custom message called is_message containing its
identity and other required characteristics of the vehicle. As response the vehicle
can be logged in the system or not.
A mission can be planned once the vehicle has been successfully registered, but it
cannot start until the PATH VALIDATOR node (PV) communicate the authoriza-
tion to fly. The authorization can be grant or not by PV, depending on the risk
analysis of the vehicle and of the mission it has to perform (vd. section 5.3).
Once the vehicle has received the authorization, then its mission can begin. Control
of the mission is now entrusted to the FOLLOW_PATH() function for as long as
the mission requires.
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Node PTP
Require: path from Path Planner
Ensure: Trajectory Following

init( )
registered← Vehicle_Registration( )
if (registered) then

path← path planner
authorized← path validator(path)
if authorized then

Mission start( )
while node is running do

trajectory ← follow_path()
send_mission(trajectory) . Send trajectory to ArduPilot
publish(trajectory) . Communicate the predicted trajectory

end while
end if

end if
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The trajectory predicted are communicated to the CCS to be usable by other PTP
instances.

Function 1 FOLLOW_PATH
Require: path from Path Planner . Array of waypoints
Require: index i . index of the current waypoint
Ensure: the trajectory the vehicle has to follow

position←vehicle position in meters
goal← path[i]
distance← get_distance(position, goal)
if distance ≥ goal_tollerance then

trajectory ← find_trajectory(goal)
else if i < path.size() then

i← i+ 1
goal← path[i]
trajectory ← find_trajectory(goal)

else
mission completed

end if
return trajectory

Function 1 receives the path of the mission computed by the Path Planner,
scanning the path in accordance with the progress of the mission and providing
function 2 with the position of the next goal to be reached.

In Function 2 we find the optimization part. The definition of the optimization
problem was stated in section 4.2.5, here we implement that problem according to
NLopt (vd section 5.4.1).

What we want to achieve is the succession of poses that the drone plans to
assume in order to reach the next goal while avoiding obstacles. In order to obtain
this poses, we define an array k containing as many couples (ρ, α) as there are steps
of prediction. Where:

ρ is the module and determine the distance of the new pose from the previous one.

α is the angle respect to a fixed reference frame

Using such variables, we can easily impose that the evaluation of the predicted
trajectory take place at the most every ρ = 4 meters, which is approximately the
same as evaluating it every second in the flight simulation since we are assuming
a constant cruise velocity v = 4m/s. Note as with this assumption the time is
implicitly considered in the prediction.
The function OPTIMIZE is provided by NLopt, and require (vd. section 5.4.1) an
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Function 2 FIND_TRAJECTORY
Ensure: optimal trajectory

ρ_ub← 4 . bounds on optimization parameters
ρ_lb← 0
α_ub← 2π
α_lb← 0

5: nlopt.set_upper_bounds(ρ_ub, α_ub)
nlopt.set_lower_bounds(ρ_lb, α_lb)
nlopt.set_max_iter(6000) . Stopping Criteria
numStep← 10
define vector k[numStep] . k[i] contains ρ and α

10: k ←nlopt.OPTIMIZE(global alg, evaluate_trajectory, k)
k ←nlopt.OPTIMIZE(local alg, evaluate_trajectory, k)
ithpose← actual_pose
for i← 1, numStep do

ithpose← ithpose+ polar_to_cartesian(k[i])
15: trajectory[i]← ithpose

end for
return trajectory . optimal trajectory
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initialized vector variables (k in this case), which will be fulfilled with the optimized
value, an algorithm to perform the computation and a cost function, in this case
function 3.
The optimization itself is performed in lines 10 and 11, before with a global algo-
rithm and later with a local algorithm to make it more refined.
Note how, in order to be correctly evaluated by a function that assign cost to geo-
graphical points, as function 3 does, this array k (ρ, α) has to be converted into a
series of poses expressed in the map reference frame. This is done starting from the
actual position of the vehicle, expressed in the map frame yet, and incrementally
adding to it the two variables converted into cartesian quantities, how showed in
Function 3 (at lines 14 and 15) and graphically in figure 5.4.

Figure 5.4: Incremental position computation using polar coordinates

At line 16 of function 3, you can find the core of the optimization problem, i.e.
the quantity identified in 4.2.5 as the one to be minimized to reach the goal. Note
as the goal position is replaced by another position, called compass.
Compass is the goal itself if it is distant less than 40 meters from the pose to be
evaluated; otherwise is the projection of the goal on a circle of radius 40 meters
centered in the pose (i− 1)-th, as expressed in function 4.
In this way we solved a problem found tuning the weight of the cost function:
goal_distance had a lower bound, zero, but the upper bound depended from the
path planner and so was unknown. This problem had already been dealt with in
section 4.2, where there is also an alternative solution. However it is not acceptable
that the behavior of the system in the presence of an obstacle is conditioned by the
distance between the waypoints provided by the path planner, so we introduced
compass and results goal_distance ∈ [0; 44], allowing us to make different consid-
erations about the weight to assign to it.

Note also that the constraint identified in section 4.2.5 require the respect of a
safety distance between two agents. This translates into a circular area of radius
safety_distance = 10m built around the position of the obstacle, which are local-
ized by the system on the map and so in cartesian coordinates.

87



5 – Implementation

Function 3 EVALUATE_TRAJECTORY
Require: k vector of variables . output of solver
Require: actual_position . received from mavros
Ensure: the trajectory cost of the trajectory

ithpose← actual_position
numStep← 10
Q← 20 . weights
F ← 120

5: S ← 100
M ← 100
for i← 0, numStep do

if distanceToGoal > 40 then
compass← compute_compass(ithpose,goal)

10: else
compass← goal

end if
(ρ;α)← k[i]
ithpose.x← ithpose.x+ ρ cos(α)

15: ithpose.y ← ithpose.y + ρ sin(α)
goal_distance← get_distance(ithpose, compass)
for each drone with higher priority d do

d_traj ← its trajectory from CCS . vector of waypoint
safety_cost← assign_safety_cost(ithpose,d_traj)

20: end for
map_cost← map.no_fly_zone[ithpose]
if i = numStep then

last_dist← distance
end if

25: cost← cost+Q ‖goal_distance‖2 + F ‖last_dist‖2 + S ‖safety_cost‖2 +
M ‖map_cost‖2
end for
return cost
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Function 4 COMPUTE_COMPASS
Require: ithpose and goal positions

distance← get_distance(ithpose,goal)
if distance > 40 then

dx← goal.x− ithpose.x
dy ← goal.y − ithpose.y

5: angle← atan2(dy,dx)
compass.x← ithpose.x+ 40 cos(angle)
compass.y ← ithpose.y + 40 sin(angle)

else
compass← goal

10: end if
return compass
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So we decided to traduce these constraints into the cost function in form of huge
costs, as it was the simpler way to implement a circular constraint into a cartesian
reference frame.
The presence of fixed obstacles in a certain cell off the map is read from the map the
layer no_fly_zone (as seen in section 3.3), which eventually return a maxCost.
So each possible pose is evaluate according to:

• the distance with the goal (compass)

• the fact that is or not the last pose of prediction.

• the proximity to vehicles with higher priority

• the presence of no_fly_zones

The proximity to vehicles with higher priority is taken into account by function
5. Currently, for purely implementation reasons, the check over the reciprocal
distances of vehicles is statically performed inside this node for a limited number of
vehicles. However, according to what saw in the previous sections, the implemented
monitoring methodologies make it easy to overcome this implementation limitation.
As you can see, in order to model the uncertainty on the execution time of the
mission, the proximity of an i-th pose is compared not only with the i-th poses of
the higher priority vehicles, but also with their i− 1-th and i+ 1-th pose.

Function 5 ASSIGN_SAFETY_COST
Require: the pose to be evaluated ithpose
Require: the trajectory of a neighbor agent (d) with higher priority: d_traj
Ensure: the safety cost of ithpose relative to the presence of d

dist_i← distance(ithpose, d_traj[i])
dist_ip1← distance(ithpose, d_traj[i+ 1])
dist_im1← distance(ithpose, d_traj[i− 1])
dist← min(dist_i, dist_im1, dist_ip1)
if dist ≤ strictly_forbidden_dist then

safety_cost← maxSafetyCost
else if dist ≤ safety_area then

safety_cost← maxSafetyCost/sqrt(dist)
end if
return safety_cost

From simulations emerged how, in particularly congested situations, is better if
the cost of proximity is not a constant with a huge value but rather a value that,
after a certain radius (named strictly_forbidden_dist and set equal to 5 meters),
decrease with the distance from the obstacle itself. Otherwise for the optimizer it
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would be equally "expensive" go through few centimeters away from the obstacle
rather than several meters, and that ,in particular circumstances, could lead to a
dangerous scenario.
The function we finally use to link the distance (from the obstacle) to the corre-
sponding cost is plotted in figure 5.5.
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Figure 5.5: SafetyCost values
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Chapter 6

Results and Simulations

6.1 Simulation Environment

In this chapter, a complete simulation of a typical Traffic Management scenario will
be provided: we will show how the processes described in previous chapters really
works, considering all components of the Cloud-Based Traffic Manager, from the
registration to the in-flight control.
Before starting the simulation, let’s have a quick presentation of the main tools we
used in it.
Simulation, testing and debugging have been performed in Gazebo 7, presented in
section 5.1.2, running on a ROS distribution 5.1.1.
Our needing was to have a simulation environment, in which vehicles as much as
some on-board sensors (like the gps transmitter) were simulated, and could send
and receive messages and commands through the MAVLink protocol: this one is
a communication protocol, very common for Micro Aerial Vehicles and already
presents in most of the ones actually commercialized.
For this purpose, UCTF 1 turned out to be very useful. It is actually nothing more
than a game developed in the ROS environment, in which swarms of drones are
flown in an Unmanned Capture The Flag (UCTF, precisely) match, that can be
played both in the real world and in the simulator. It consists of a complex system
in which the simulator, the autopilot software and a mission management interface
are linked together, built up as provided by 3D Robotics in a software-in-the-loop
(SITL) environment.

Starting from the provided configurations, some modification have been applied
in the JOL, in order to adapt it to our case. From figure 6.1, it can be seen that a

1https://github.com/osrf/uctf
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Figure 6.1: Overview of the uctf system architecture

Gazebo simulation environment is set up with certain world and environment mod-
els. In that, the original scenario configuration has been removed, and replaced
with informations about buildings (position, occupancy and height) coming from
the OpenStreetMap Foundation, that provides open-source license .osm files con-
taining these kind of informations.
Drones have been inserted by means of their Unified Robot Description Format
(URDF) model, that properly describes their dynamics. This is what has been
done from UCTF developers, that used a 3DR Iris quadcopter as simulated drone,
together with a scaled down Cessna fixed wing, that has not been used in our work,
since for technical characteristics and flight dynamics, does not fit with the pur-
poses of this project. Both these vehicles are equipped with a autopilot software,
that, managing all the technical aspects of the flight, allows high-level interaction
with the drone. It could be chosen between a PX4 or an ArduPilot-copter, two
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of the most common autopilot software in commerce: we decided for the latter for
convenience. It is a full-featured, open-source multicopter UAV controller capable
of a wide range of flight requirements, which can be programmed through a number
of compatible software ground stations. It uses the MAVLink communication pro-
tocol, that is used for transmitting commands and informations between vehicles
and the control station.
At this point, a Gazebo simulation environment is set up, with certain world and
environment models: Gazebo node then, through its plugins, simulates the behav-
ior of imu and GPS sensors, publishing messages about IMU (Inertial Measurement
Unit), GPS position and GPS velocity value on specific topics.
This SITL can be spawned in multiple instances, modelling multiple different
copters to exist at once, allowing us to run at least three simulated drones on
a reasonably powered laptop.

Figure 6.2: QGroundControl graphical user interface

We then used as interface the QGroundControl software (vd. figure 6.2), a pow-
erful Ground Control Station which provides full flight control and mission planning
for any MAVLink-enabled PX4- and ArduPilot-powered UAVs. It has been con-
figured according to the Software-In-The-Loop configuration, following the general
guidelines, making it read from port 14000, where the simulated drones are com-
municating via MAVLink using UDP protocol. Its usage has been fundamental for
a preliminary understanding of how the autopilot works and how to interact with
it, while, once understood the communication’s dynamics, it has been put aside,
and the system extended to allow communication between our autonomy package
and the autopilot, creating proper nodes to send and receive messages and manage
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missions.
Last software involved in the simulation environment set-up is Rviz, a 3D visual-
izer for the Robot Operating System framework. It provides utilities for robotic
projects’ development and debug phases, allowing to visualize coherently different
kind of dynamic quantity defined in ROS (for example the map) and some kind of
interaction with it (for example, to indicate the position of the goal by clicking it
directly on the map). An example is showed in figure 6.3

Figure 6.3: Rviz interface. The 3 buttons on top are used to send goals to 3 different
UAS

6.2 Distributed architecture
Introducing ROS we said how it is explicitly designed for distributed computing.
Here we will see how this possibility can actually be put in place, allowing us at
the same time to show a simulative context more coherent with the Cloud infras-
tructure we designed in this project.
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The way in which the processes are managed by means of the nodes, and the meth-
ods of communication between them, analyzed in section 5.1.1, make it possible not
only to allocate these processes on different calculation units, but it is also possible
to relocate the same processes at run- time to match the available resources in the
network.
This last possibility is very interesting as it is suitable for a new emerging techno-
logical paradigm: edge computing.
This concept basically consists in revising the cloud infrastructures considering the
changes that the internet of things implies on the way of perceiving the internet
itself. In fact, for years now, the internet has ceased to be a virtual and intangible
entity. In the age of IoT, we already see it, Internet is not only present and directly
affects many of the activities that each performs every day (appliances, the way
we communicate or move or prepare food) but ends up generating the knowledge
itself, starting from the information that such devices collect to work.
This in some way shifts the "center of gravity" of internet itself: from large data
centers thousands of kilometers away, the measurements and the actuations of in-
ternet take place and will take place practically everywhere.
Edge computing is exactly the paradigm for which the computation moves close to
the source of the data it collects and close to the actions it determines.
This paradigm is perfectly suited to being associated with 5G, which is "a collec-
tive name for technologies and methods that would go into the future networks" 2.
Given the importance of cloud services also on mobile networks, the concept of Mo-
bile Edge Computing (MEC) is recognized as one of the key emerging technologies
for 5G networks and it is therefore something that we will deal with in the future.
Distributing the computation with ROS is very easy. It is required that each pair
of machine have a complete and bi-directional connectivity on all the port then, as-
suming that we want to distribute the calculation only on two machines, we proceed
to configure them as shown below:

Machine1 :
$ export ROS_HOSTNAME=Machine1
$ export ROS_MASTER_URI=http ://Machine1 :11311
$ export ROS_IP=machine_1_ip

Machine2 :
$ export ROS_HOSTNAME=Machine1
$ export ROS_MASTER_URI=http ://machine_1_ip :11311
$ export ROS_IP=machine_2_ip

2https://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-
ingredient-of-5g-networks
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Figure 6.4: Architecture of the distributed simulation environment

Using an architecture like the one in figure 6.4, it is possible to perform simula-
tions more coherent with the real context of application. With such a configuration,
in fact, it is possible to experiment the distributed architecture and above all it is
possible to introduce a certain latency in the communication between the nodes.
Latency was not considered in the course of the project and of the simulations but
it is possible to make however some considerations. First we look at the crite-
rion with which we assigned the nodes to the machines. PC 1 simulates the real
world: inside we have Gazebo and therefore two simulated drones with ArduPilot
on-board. Notice how here we refer to only two UAS, but clearly the discourse can
be extended and then actually applied to an arbitrary number of unmanned sys-
tems. All connections with PC 1 simulate 5G connections between vehicles and the
cloud. The latency specifications of the next generation of mobile network are not
yet perfectly known, but we know that they should be in the order of milliseconds.
It can be assumed that in general the latency of a network varies according to a
normal distribution. Let’s see, with the following command, how we can add to PC
1 a normally distributed delay with a mean value of 50ms and a variance of 20ms

# tc qd i s c change dev wlan0 roo t netem de lay 50ms
20ms d i s t r i b u t i o n normal

These latency values should not affect the functioning of the architecture proposed
here. In fact, the frequency of the nodes involved in CBUTM never exceeds 5Hz.
PCs 3 and 4, as seen, execute the nodes related to the trajectory following; PC 2
all other CBUTM’s nodes.
A consideration of the connections between PC 2 and PCs 3 and 4 can be traced
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back to the previous discussion on edge computing. If we assume CBUTM as a
centralized entity, PCs 3 and 4 are nothing more than virtual machines within which
the nodes are executed. In this case the connection will simulate the connection
between the virtual machines, with extremely low latency.
On the other hand, if we assume to apply the paradigm of edge computing, PCs
3 and 4 can be considered as independent units of calculation allocated near the
mission area. In this case the latency will depend on the way in which these
machines are connected, and we can then use the previous command on these
machines too, assuming here also a communication based on 5G.

6.3 Map Manager

6.3.1 Modelling Environment

According to the concepts exposed in previous chapters, the first output that the
Risk-Aware Map Manager has to produce its a coherent model of the environment in
which the mission takes place. In particular, it has to provide two UAV-independent
layers, which will be the same for every drone that will fly (at the same height h,
obviously) in this area: "no_fly_zone" and "covered_area". Their role, already
explained in chapter 5, is to describe two crucial features of the "world", that for a
planar robot (as the drone) is a simple "cut" of the geographical map at the flight’s
altitude. On one hand, there are all the buildings taller than this value, that for
this reasons can be a danger for the Unmanned Aircraft and have to be precisely
identified. On the other, all the structures lower than h that can offer a very good
sheltering for people on ground, in case of UAV’s fall.
De to the high computational cost that such simulation requires, we decided to
not consider an entire city, but just a part of it, that can provides some particular
features to show the capability of CBUTM. The area we chose is the one contained
in the rectangle defined by

[minlatitude,maxlatitude] = [45.0645000,45.0741000]

[minlongitude,maxlongitude] = [7.6537000, 7.6732000]

which is the part of Turin around the San Paolo’s skyscraper. In figure 6.5, the
view from osmbuildings.com is depicted. Obviously, the choice of this area is not
casual, but has some criticisms due to the presence of an over 100 meter building.
Starting from the corresponding .osm file, the input of the "Create_Map" service
is a point cloud, which can be obtained through specific open source softwares. The
result is the one in figure 6.6.
Saving it as .obj file, it is finally the proper input for th modeling environment

function. Besides this, also other information are needed to compute the layers:
height of flight and map’s resolution. In this simulation case, we decided to impose

99



6 – Results and Simulations

Figure 6.5: Open Street Map Buildings View

Figure 6.6: Point Cloud Model

h = 25m and a resolution of 25m2, which both are in line we real operative situa-
tion. Converting the geographical coordinates in pure lengths, we obtain a map of
1535× 1070m, that whit this resolution’s value correspond to 307× 214 cells.
Applying a cut at h = 25m we obtain the first two layers of the map (see figures 6.7
and 6.8). What is interesting of this two layers is their complementarity: merging
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Figure 6.7: No Fly Zone Layer

Figure 6.8: Covered Areas Layer

the two figure we obtain the complete representation of the operative environment.
In particular, in the first one, only the skyscraper and the building next to it are
depicted. As already said in this thesis, it’s not very common to find tall palaces in
city center. For the same reason, the covered areas layer is very dense, since there
are a lot of "small" structures, especially in high densely populated zone as this
one.
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Two other layers are needed to complete the mapping of the environment: popula-
tion density and sheltering factor. For what concerns the first, we set a constant
value of 0.0073 ab

m2 , that means a flat layer (that for this reason will not be reported
here). Finally, the sheltering has been modeled as maximum (10) in the zones cor-
responding to the covered areas, or a generic mean value (6) in all the other parts.
In figure, it has the same shape of figure 6.8, but with different values.
Finally, the environment’s model is completed. It is structured in layers and pub-
lished every 2 seconds on "risk_map_node/risk_map" topic.

6.3.2 UAV-Aware Risk Map

Once the model of the environment is available, is possible to accomplish to the
registering procedure advanced by the UAVs. In order to correctly do this, its
necessary to merge the information present in the first four layers with the drone’s
characteristics. As discussed previously in this thesis, three layers are UAV-Aware:

• Signal Layer, which represents the capability of the drone to receive Internet
connection, in every area.

• Risk Layer, which represents the risk for the UAV, evaluated with equation
2.6.

• Cost Layer, which merges the first two according to proper weights.

In this simulation, the drones are supposed to have a length equal to 0.7 meters
and a weight of 0.5 kilograms.
For what concerns the first layer, it is a generic measure of the Quality of Service
of the Internet Connection, and is used just as example to show the potentiality of
the cost layer. In any case, during this simulation we assume every drone has on
board a 5G compliant antenna, to receive TIM’s signal. Furthermore, in order to
have some criticism, we supposed to have an optimal signal reception, except for a
circular area, as in figure 6.9. This is not strictly true, in particular in urban en-
vironment where this kind of infrastructure are very powerful. However, it’s useful
for a better result of the simulation. According to the metric, the layer’s value is
always 100 except for the cone, where it goes down till 0.
Beside, also the Risk Layer of the drone can be computed. According to what we
said in chapter 3, it follows the rule (for every cell):

if no_fly_zone then
Risk ← upperbound

else
Risk ← (N × P (f |e)× λ)

end if
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Figure 6.9: Signal QoS Layer

In this case, as for the rest of the work, we impose upperbound = fmax = 10−5 victims
h

.
This layer is probably the most important one, since the risk assessment is a crucial
procedure in our framework. It merges all the information present in the other
layers, and the results have to be consistent wit real empirical results. Finally,
normalizing the risk in range [0,100], we obtain the risk map in figure 6.10.
Three kind of areas emerges clearly from the figure:

Figure 6.10: Risk Layer

• Areas with the lowest value of sheltering (6), which has a green color in figure.
Their risk is equal to 7× 10−6, which normalized is 54.

103



6 – Results and Simulations

• Areas with the maximum sheltering possible (10). They have a purple color
ad the lowest risk fF = 5× 10−6, that normalized become 19

• No-Fly Zone, which are red and have the higher risk fF = 1 × 10−5 that
corresponds to 100.

Obviously, many other values are present in the risk maps, but in a rough view
they can be summarized in this three categories.
Since both risk and signal layer are in range [0,100], they can be summed in a final
layer, called Cost Layer. According to the theoretical concept exposed about it,
this last map can be seen as a weighted sum of the other two layers, obtained using
coefficients α and β = 1−α. In particular, when α = 1, only the risk is considered,
and the resulting map is the same as in figure 6.10. Instead, when α = 0, only
signal’s QoS affects the cost, and the layer turns out to be the opposite of the one
in figure 6.9. An example with α = 0.5 is provided in figure 6.11.
In particular, it’s possible to notice the no-fly zones and the area of no signal

Figure 6.11: Cost Layer

coverage, which in this case is no more an "hole" but instead a cone. This behavior
is due to the fact that a low level of signal corresponds to an high cost.
Finally, the Risk-Aware Map Manager ends its work, providing a set of layers
common for every drone, and three different layers specific for each aircraft. Upon
the last one, the Path Planner will evaluate the better trajectory to perform.

6.4 Path Planning and Validation

The map, understood as a collection of layer, is published on topic
"/risk_map_node/risk_map" with a frequency of 0.5 Hz. Every time a new layer
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is available, it is simply added above the others. In particular, when the Cost Layer
of a drone is completed, it is possible for the CBUTM to start the mission planning
phase. In this part, we suppose to have a known start position, and to receive the
goal of the mission as Rviz input. Each UAV registered to the cloud traffic manager
can provide its own end position, different from the other ones and on its specific
layer.
Main aim of the Path Planner is to choose the less costly path, from point A to B,
and then to validate it through the Path Validation procedure already described
in previous section. Since for now we are not considering collisions with other air-
crafts, its possible to show the capabilities of this two algorithms just on a single
drone, since it will have the same behavior on the others. In figure 6.12 a typical

Figure 6.12: Path Planning Example

path planning situation is shown, including also some criticisms due to the presence
of the skyscraper. The circle in red its the Unmanned Aerial System in its starting
pose, while the three axis frame is its final pose. In between, both the no-fly zones
and the "signal hole" are present, and easily identifiable.
What emerges its the Path Planner capability in working also in very small spaces:
for example, the drone’s trajectory is very close to the buildings but never hit them.
Since we are also considering an inflation area around them, we are almost sure that
no collision will happen. Furthermore, the feasibility of the path for what concerns
the aircraft’s dimensions it’s guaranteed by the cells area, which is big enough to
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allow any kind of maneuvers.
Once the path has been found, the Path Validation Service is called.
The first step to perform is the path decoding, where some useful information are ex-
tracted. For this particular simulation, we are assuming a constant cruise speed for
the drone equal to 3m/s (10km/h). Founding out all the cells that belong to the tra-
jectory, its overall length can be measured and is equal to 1008m. From this value,
also the time length of the mission can be calculated, as: τmiss = length

speed
= 336s.

At this point, the signal’s QOS validation can starts.
As we seen previously, once the path’s cells are known this is a quite simple oper-
ation, since the validator only has to verify that each cell has a QOS value bigger
than the lower-bound, which in this case is set to Smin = 50. From figure 6.12,
we can see that the path covers for almost all the time areas with signal’s QOS
maximum value. Zooming around the hole, it can be verified that a little part of
it has a lower value, which however is never below 50. For this reason, the signal
quality validation can be considered successfully completed.
Finally, a risk-aware validation have to be performed. First of all, it have to check
the presence along the path of no-fly zone: as it’s possible to see in figure, none
of them is crossed during the flight. Furthermore, it have to ensure that the pre-
dicted number of victims of the trajectory Ntraj is not greater than the maximum
acceptable NMax. Since:

NMax = fF,Max × τmiss = 0.00336 ≥ Ntraj = 0.001239 (6.1)

The risk validation procedure is successfully completed.
Since the path is valid from all the point of views, the drone is authorized to start
the mission, setting to true the boolean flag authorization_to_fly.

6.5 Path Following and Collision Avoidance

A set of tests and simulations has been performed to analyse the behaviour of
the cloud-based traffic management during the flight of the aircraft, in order to
validate our approach. For this reason, CBUTM has been seen in action in several
operational situations, and the obtained results will be here presented. Since our
collision avoidance algorithm is priority-based, meaning that it is only and always
the lower priority drone avoiding the higher priority one, for an easier understanding
the following colours convention will be applied:

• red: lowest priority level drone

• orange: middle priority level drone

• green: highest priority level drone
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The following sequences of screen-shots come from Rviz, where vehicles are
represented with a circle (a geometry_msgs :: PoinStamped), surrounded by their
own safety area. This is the forbidden area around every drone, where other drones
are not allowed to fly, and it is to be considered as a safety distance marker of
10 metres. Output of the collision avoidance algorithm is the local trajectory the
autopilot will follow, that is shown with a thicker line coming out of the drone, while
the dashed line the UAV leaves behind is its odometry trace. Buildings and fixed
obstacles are represented in a certain colour scale on the map: in the sequences
below, the map used is built on the no_fly_zone layer.

The first test is a basic one, where 2 unmanned vehicles, regularly registered
within the network, are flying in the same area, too close one to the other. In
figure 6.13, the first test sequence is shown. In this case, only one drone is flying -
the red one - while the other, with higher priority level, is standing in its position,
hovering. As supposed, the red drone is the one forced to move from its original
path, as soon as the other drone is detected in figure 6.13b. The red drone starts
slightly moving out of its path, going around the green one, and finally going back
to its original path, and reaching its goal.

(a) (b) (c) (d)

Figure 6.13: Test 1: 2 UAVs, only one moving

The same situation in the neighbourhood of a noflyzone represented by a build-
ing is shown in figure 6.14. In this case, the red US, when looking for a way to
escape from collision, tries to go left-ward first, being that one the shortest way to
she goal (6.14b). When the presence of the building is detected (6.14b), it imme-
diately changes direction, overcoming the green obstacle going right (6.14c), and
then coming back to the original path.

(a) (b) (c) (d)

Figure 6.14: Test 2: 2 drones, only 1 moving. Presence of a fixed obstacle

From now on, at least two vehicles will be in motion at the same time. The first,
basic case involves two drones flying one against the other, shown in the sequence
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in figure 6.15. The time requirements of this case are a bit more tight with respect
to the previous one, since both the drones are flying at their cruise speed of about
4m/s. The red drone then, once detected the green one in figure 6.15b, must be
faster than before in changing trajectory. This is done in the optimal way shown in
figure 6.15c, so that both the vehicles can safely accomplish their mission according
to their priorities.

(a) (b) (c) (d)

Figure 6.15: Test 3: 2 drones, both moving. Presence of a fixed obstacle

A slightly different circumstance is presented in the sequence depicted in figure
6.16 , where the two vehicles are crossing their paths in a diagonal way.

(a) (b) (c) (d)

Figure 6.16: Test 3: 2 drones, both moving. Presence of a fixed obstacle

A bit more complex is the situation presented in 6.17, where both the drone
are completing their own mission, and their paths cross in front of a building. The
green one, having an higher priority level, keeps going in its direction, will the red
one must again fly away from its path. The operation is not performed along the
shortest way because of the building, detected in figure 6.17b, forcing the vehicle
to go in the other direction, as can be seen in figure 6.17c.

(a) (b) (c) (d)

Figure 6.17: Test 5: 2 drones, both moving one toward the other, in presence of a
fixed obstacle
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Sequence of figure 6.18 shows a similar situation, with different dynamics: here,
the green vehicle is approaching the building, and its mission consists in hovering
on a fixed position in front of it. In the same moment, the red drone is coming
from the left-hand side, passing next to the building without stopping by. When it
detects the higher priority UAV arriving, the Predictive Trajectory Planner (PTP)
computes the optimal deviation from its original path, predicting to go all around
the safety area of the green one (6.18b).

(a) (b) (c) (d)

Figure 6.18: Test 6: 2 drones, both moving, crossing their path, in presence of a
fixed obstacle

Adding one more vehicle, the situation gets a bit more tricky, but same well
managed by the CBUTM system. In figure 6.19, the red vehicle coming from
below finds two standing vehicles on its path. When the first one has been detected
in figure6.19b, the vehicle starts moving left to avoid it. Once it has been overcome,
while trying to get back on its original path (6.19c), the red drone comes across
the second higher priority vehicle, and changes again its trajectory to avoid that
one too, as can be seen in figure 6.19d.

(a) (b) (c) (d) (e)

Figure 6.19: Test 7: 3 drones, one moving

Similar situation, with the only one moving drone meting the other two standing,
is shown next (figure 6.20) this time in presence of a fixed obstacle. The same
considerations done so far can be applied here.

In the next tests, both the red and the yellow drones are moving, while the green
is standing in its position. A first case is represented in the sequence depicted in
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(a) (b) (c)

(d) (e) (f)

Figure 6.20: Test 8: 3 drones, one moving, in presence of an obstacle

figure 6.21, where the red and yellow vehicles are moving one against the other,
while the green one is hovering in the middle.

(a) (b) (c) (d)

Figure 6.21: Test 9: 3 drones, two moving, 1 standing in the middle

The first two vehicles are flying in different directions (6.22a), and both will
meet someone with higher priority on their path, forcing them to change trajectory
(6.22b). While doing it, the red will also come across the yellow, being forced
to find another way. It solves the situation computing the path in a way that
some way-points are in the same position or close, resulting in a deceleration of the
vehicle, as can be noticed looking at its trajectory projection, that becomes shorter
than usual (6.22c). After the yellow vehicle will be passed by, the way will be free
for the red one, that keeps going, knowing the path is safe.

Again, we tested this intersection between three vehicles putting them close to
a building. The result is shown in sequence of figures 6.23. The two vehicles with
lower priority are flying in opposite direction (6.23a), until they will get caught
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(a) (b) (c) (d)

Figure 6.22: Test 10: 3 drones, two moving in different directions, one hovering

between the highest priority one and a fixed obstacle. When pointing toward the
space in between the green drone and the building, not large enough for both of
them, the yellow has the precedence, while the red one searches for another way,
finding at its right-hand side (6.23b). They keep then flying their missions.

(a) (b) (c) (d)

Figure 6.23: Test 11: 3 drones, two moving, 1 standing, in presence of a fixed
obstacle

Last interesting test is shown in the sequence of figure 6.24. Two vehicles with
lower priority meet the green one, and start computing a different trajectory, that
would bring them to move in the same direction (6.24b). When the red one detects
the yellow, it understands it must re-change the plan, and so it does, after tending
towards the opposite direction to avoid both the yellow and the green vehicle
(6.24c). In this operation, the predicted trajectory of the red drone is made up
of way-points which are closer one to each other, resulting in a deceleration of
the motion, that allows it to fly just behind the green one maintaining the safety
distance (6.24d). The priority order is then respected during the crossing, and the
safety distance maintained, allowing all the drones to reach their goal with a small
deviation.

That’s said, the simulations end. In this chapter we showed the software en-
vironment we used, and then the all the most important functionalities of the
Cloud-Based Traffic Management, treating not only the Risk-Aware Map Manager,
but also the Path Planner, the Path Validator and the Collision Avoidance algo-
rithms. What emerges is that the framework is already operative, and it is able to
correctly manage not only an ideal operation, but also criticisms during flight.
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(a) (b) (c)

(d) (e) (f)

Figure 6.24: Test 12: 3 drones moving in different directions
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Chapter 7

Conclusions and Future Works

The goal of this work and of the project was the design and development of a
framework that would allow the creation of a structured airspace, i.e. a platform
able to regulate and manage the access and use of this airspace for the execution of
commercial unmmanned missions, with particular reference to urban environments
and focusing on the management of the risk that such missions may involve for
people on the ground.
Starting from the identification of the concepts involved, we have gone on defining
the problems raised and the techniques and methodologies that can be used to treat
them, often getting what is available in the literature of the sector.
In particular, we saw how the risk itself can first be defined, then treated. This
led to the definition of a standardized and coherent metric for risk analysis, which
is among the main advantages of the platform shown here. We then moved on to
the methodologies that can be used to monitor and control the airspace itself and,
especially in this work, to tackle the problems related to possible mid-air collisions
between unmanned vehicles. Based on the assumptions made at this stage of the
project, it was decided to design and develop a responsive system of trajectory
following that, based on receding horizon control strategies, could deal with the
problem in a decentralized manner in order to improve scalability and robustness
of the solution.
An essential part was the implementation of the framework itself, which led us to
know and use the potentialities offered by ROS. As we expected, after the initial
learning phase in which we invested time to get hold of the tool, the use of this
platform allowed and accelerated the entire development.
Once the system was implemented, it was possible to test the design results through
simulations that have been reported in this thesis. The simulations conducted fi-
nally validated the proposed framework, as they have shown how it is able to:
evaluate and guarantee a certain level of safety for the missions; identify, monitor
and manage the vehicles present in the framework; avoiding the risks due to colli-
sions between vehicles while achieving the missions themselves. The system seems
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to adequately manage traffic even when the original trajectories of multiple vehi-
cles intersect in a dangerous manner. In this phase we also had the opportunity to
directly experience the advantages of the modular and distributed architecture on
which ROS is based, and this allows us to underline how it is possible to continue
the development of the framework in a systematic way, adapting it to the perpetual
changes due to the real context as well as to some emerging principles of the cloud
paradigm.
Finally, we identified the next steps to continue the development and improve the
proposed framework. Specifically, the risk analysis, which converges as seen in the
definition of a risk map, can explicitly consider time and other information, such
as wind speed, which can be easily grouped and managed by a cloud system. The
monitoring mechanisms, already dynamic and expandable, can be lightened to ac-
tually work with an arbitrary number of vehicles. This dynamism can also directly
involve the collision avoidance system, to which a mechanism based on a planning
approach can be associated for redundancy. Further possible improvements con-
cern the overcoming of the 2D assumption during navigation, which would allow
more freedom for the necessary maneuvers. The latter could then follow standard-
ized behaviors, in order to make them more predictable and therefore more easily
managed by the vehicles involved, always in the distributed logic presented here.
The experimentation with real vehicles, missed in this phase of the project, would
certainly lead to being able to consider and face all those aspects that reality itself
entails.
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