
POLITECNICO DI TORINO
Master degree course in Mechatronic Engineering

Master Degree Thesis

Cloud Based UASs Traffic Management: a
Risk-Aware Map Manager

Supervisors
prof. Alessandro Rizzo
prof. Giorgio Guglieri

Candidate
Andrea Lorenzini

Internship Tutor
dott. ing. Stefano Primatesta

Anno accademico 2017-2018

This work is subject to the Creative Commons Licence

Abstract

Every day the usage of Unmanned Aerial Systems (UASs), also for civil application, increases. The
features that most characterize this new kind of flights are: low experience and capabilities of the
pilot/owner, complex urban scenario in which the UAS moves, low quality in the manufacturing of
the aircrafts and a lack of a common regulation, not only between different states, but also inside
the same national airspace. The result of such situation is, beside a huge quantity of confusion,
the impossibility of applying safety criteria and performing a coherent risk analysis of the drones’
flight.
In this context, a new research project at TIM Joint Open Lab in Politecnico di Torino began
to analyse the potentiality of cloud robotics, in order to build a completely new Traffic Manager
capable to handle the complexity of this environment and finally ensuring safety for people on
ground. The results, actually very encouraging, brought to the first implementation of a Cloud-
Based UASs Traffic Manager (CBUTM) in a ROS environment. Many different aspects (and issues)
came out while developing the whole system, and only a great team work could allow to reach a
complete knowledge of the traffic manager from every point of view. Thanks to the capability of
the cloud computing, it is possible to remove the men from the loop: drones are controlled by the
CBUTM from the planning of the flight till the landing, without the need of human intervention
in any of the phases.
In this thesis, the problem of risk assessment will be analyse in deep and the results will be used
for the construction of a completely new Risk-Aware Map Manager.
The first step to accomplish in this sense is to have a complete, coherent and standardized risk
metric. The state of the art will be so exposed, highlighting its pro and its lacks. Upon this, a
new and complete discussion about risk will be performed, in order to provide all the instruments
to calculate the risk, in a urban scenario but not only, as victims per hour of flight. Beside, an
analysis of the actually known legislations will allow us to find an upper-bound for the risk (or
victims’ rate) that can be easily adopted by all the Flight National Authorities.
After the definition of the metric, it’s possible to start the construction of a Map of the Risk (risk
map) of the environment in which the UAS flies. In order to accomplish this step, not only a
well-defined risk assessment procedure has to be defined, but also a set of techniques to correctly
find, acquire and analyse a 3D model of the operative scenario (Environmental Modelling) are
needed.
The capabilities of the cloud, as for example its great computational power and the real time
update of information through Internet connection are crucial for this part of the process, since
it can produce a dynamic risk map, function of space but also of time. This aspect of the work
is really innovative, and has been merged also with some planar robotics’ knowledge to define
completely the rules and settings of the risk maps.
Moving a moment apart from the risk field, the Map Manager has been developed to include also
other aspects of an Unmanned Mission: the study of this new kind of flight has shown many
different elements crucial to consider a mission successfully completed. To accomplish this need, a
framework capable to consider each requirement as a "layer", and merge it into a final Cost Layer

iii

(or cost map) according to each priority has been built.
Then, two last parts complete the work of the Map Manager. First, the Path Planner, which
works upon the Cost Layer to find the best trajectory for the drone to perform, and then the Path
Validator, which takes as input the trajectory and gives as output the authorization (or not, if
safety standard are not satisfied) to fly. Once again, a validation metric has been developed from
scratch.
What we are going to present in this thesis is just one of the aspect of the CBUTM, focused on
mapping the environment and on risk assessment, while the rest of the Traffic Management will be
treated by other thesis works. Finally, the Risk-Aware Map Manager is a modular element of the
traffic management, and can be easily extended in future in order to make it capable of accomplish
new tasks (or make it better), if needed.

iv

Acknowledgements

I want to thank all those who shared with me all, a good part, or just a piece of the road that has
brought me here. You are all equally important, because what we are in this moment is child of
the social, working, affective relationships, which we entertain throughout this long journey.
We are continuous exchanges, in life as in the thesis proceeding alone is only to put a stop to our
potential.
For this reason I want to thank sincerely my companion of life, it doesn’t matter how close, not
only for help and support but above all for allowing me to become what I am now.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Context Definition . 1
1.2 Thesis Structure and Contribution . 3

2 Ground Impact Risk Modelling 7
2.1 Unmanned Missions Risk: Introduction . 7

2.1.1 Main Concepts and Risk-Aware Map Manager 7
2.1.2 UAVs’ Types of Accidents and Equivalent Level Of Safety 8

2.2 Early Flight Termination Risk Modelling . 10
2.2.1 Evaluation of Exposed Inhabitants: Nexp 13
2.2.2 Estimate of fatalities probability for people exposed to crash: P (f |e) 15
2.2.3 Evaluation of Impact Kinetic Energy: Eimp 17
2.2.4 Estimate of Sheltering Factor: PS . 17

2.3 Mid-Air Collisions Risk Modelling . 19
2.3.1 Estimate of the Mid Air Collision’s Rate: fMAC 21
2.3.2 Evaluation of the Collisions Rate Between UAVs: fUAV 22

2.4 Ground Impact Risk Modelling: A Complete Framework 24

3 Cloud Based UASs Traffic Management 27
3.1 Unmanned Traffic Manager: State of the Art . 27
3.2 Cloud Robotics . 29
3.3 Cloud-Based UASs Traffic Management: General Architecture and Assumptions . 30
3.4 Map Manager . 33

3.4.1 Introduction and Risk Map . 33
3.4.2 Environmental Modelling and No-Fly Zones 35
3.4.3 Risk Map Normalization . 40
3.4.4 Risk Assessment: Analysis on UAVs Building Parameter 42
3.4.5 From Static to Dynamic Risk Map . 48
3.4.6 Mission’s Risk . 50
3.4.7 Objective Cost Function: From Risk Map to Cost Map 54

3.5 Path Planner . 56
3.5.1 Deterministic Algorithms . 58
3.5.2 Probabilistic Algorithms . 59
3.5.3 RRT* . 60

3.6 Path Validation and Risk Acceptance . 61

vi

3.6.1 Path Decoder . 63
3.6.2 Wireless Quality of Service Validator . 64
3.6.3 Risk Validator . 65

4 Implementation 69
4.1 Introduction . 69
4.2 Robotic Operative System . 69

4.2.1 Grid Map . 71
4.3 Cloud Based UASs Traffic Management: ROS Architecture 72
4.4 Risk-Aware Map Manager . 77

4.4.1 Environment-Related Layer . 77
4.4.2 UAS-Related Layers . 80

4.5 Path Validator . 81

5 Simulations 85
5.1 Simulation Environment . 85

5.1.1 Gazebo . 86
5.1.2 Distributed Architecture . 86

5.2 Map Manager . 88
5.2.1 Environmental Modelling . 88
5.2.2 UAV-Aware Risk Map . 90

5.3 Path Planning and Validation . 93
5.4 Path Following and Collision Avoidance . 95

6 Conclusions and Future Works 101

Bibliography 103

vii

List of Tables

2.1 P (fatality|exposure) evolution in function of PS 17
2.2 Sheltering Factor definition . 18
3.1 Risk normalizzation examples . 42
3.2 Risk Gamma correction . 42
3.3 Common drones risk assessment . 48

viii

List of Figures

2.1 NATO UAVs’ classification . 11
2.2 P (fatality|exposure) evolution respect to Kinetic Energy and Sheltering 16
2.3 P (fatality|exposure) evolution . 20
2.4 Gas model application . 23
3.1 Cloud Based UASs Unmanned Traffic Manager: Architecture 31
3.2 Risk-map construction flow-chart . 34
3.3 Example of Risk Map. Every area of the map has its own colour and height coherent

with the risk value calculated. Red squares are no-fly zone 36
3.4 No flight zones’ risk definition . 39
3.5 Linear Normalization of risk R respect to original risk value 41
3.6 Gamma Correction of risk R respect to original risk value 43
3.7 Vision of a typical urban scenario . 44
3.8 Evolution of P(fatality | exposure) in function of Mass 45
3.9 Evolution of impact area Aexp in function of drone’s length 46
3.10 Evolution of Risk fF,i in function of quacopter drone’s length and mass 47
3.11 Open chain cloud framework . 49
3.12 Closed chain cloud framework . 49
3.13 Mission’s risk managment and acceptance . 51
3.14 Exponential distribution: pdf and cdf . 53
3.15 Signal power cost map . 55
3.16 Weights assignment procedure . 57
3.17 RRT’s tree evolution in time . 60
3.18 Differences between RRT’s tree and RRT*’s one 61
3.19 Path Validation Flow Chart . 63
4.1 Node and Topics Architecture . 70
4.2 Example of Grid Map . 71
4.3 CBUTM ROS Architecture . 73
4.4 CBUTM logical Architecture . 74
5.1 Architecture of the distributed simulation environment 87
5.2 Open Street Map Buildings View . 89
5.3 Point Cloud Model . 90
5.4 No Fly Zone Layer . 90
5.5 Covered Areas Layer . 91
5.6 Signal QoS Layer . 92
5.7 Risk Layer . 92
5.8 Cost Layer . 93
5.9 Path Planning Example . 94
5.10 Test 1: 2 UAVs, only one moving . 95
5.11 Test 2: 2 drones, only 1 moving. Presence of a fixed obstacle 96

ix

5.12 Test 3: 2 drones, both moving. Presence of a fixed obstacle 96
5.13 Test 3: 2 drones, both moving. Presence of a fixed obstacle 96
5.14 Test 5: 2 drones, both moving one toward the other, in presence of a fixed obstacle 96
5.15 Test 6: 2 drones, both moving, crossing their path, in presence of a fixed obstacle . 97
5.16 Test 7: 3 drones, one moving . 97
5.17 Test 8: 3 drones, one moving, in presence of an obstacle 98
5.18 Test 9: 3 drones, two moving, 1 standing in the middle 98
5.19 Test 10: 3 drones, two moving in different directions, one hovering 98
5.20 Test 11: 3 drones, two moving, 1 standing, in presence of a fixed obstacle 99
5.21 Test 12: 3 drones moving in different directions . 100

x

Acronyms

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

GSM Global System for Mobile communication

GPS Global Positioning System

NCS Networked Control System

UTM UAVs Traffic Management

CBUTM Cloud-Based UASs Traffic Management

CCS Cloud Control Station

PTP Predictive Trajectory Planner

RAMM Risk-Aware Map Manager

IMU Inertial Measurements Unit

SITL Software In The Loop

xii

Chapter 1

Introduction

1.1 Context Definition
In the last ten years the usage of Unmanned Aerial Vehicles (also known as Drones) enormously
increased: from civil application to the most difficult military operation, it seems that UAVs can
be useful in almost every fields and situations. According to [1] this growth is not going to stop,
especially for what concerns the civil environment: by the end of 2021 commercial drones shipments
will reach 805,000, with a compound annual growth rate (CAGR) equal to 50%.
In parallel with this phenomena, a lack in a coherent legislation development has brought to
a situation in which every single state has a different policy on drones flight, very often not
appropriate since they are commonly too restrictive or too relaxed.
In order to better understand the environment in which this work is going to move, some central
concepts have to be presented, here and in the rest of this chapter.
First of all, it’s important to define formally the concept of Unmanned System. According to [2]:

Definition 1. An Unmanned System (US) is an electro-mechanical system, with no human op-
erator aboard, that is able to exert its power to perform designed missions. It may be mobile
or stationary. Includes categories of unmanned ground vehicles (UGV), unmanned aerial vehi-
cles (UAV), unmanned underwater vehicles (UUV), unmanned surface vehicles (USV), unattended
munitions (UM), and unattended ground sensors (UGS).

In particular, this thesis work will focus on Unmanned Aerial Systems (UASs).
The crucial point that characterizes each of this items is the non-presence of personal on board.
This is the key features of USs, since without the need of human operator on board they can
be smaller, lighter but most of all they can perform very dangerous tasks without any risks for
pilots. Furthermore, it’s interesting to notice that UAVs are very often used in boring or repetitive
missions, in order to not stress human personal.
But, if no human is needed on board to guide it, how an unmanned system can accomplish a
specific task? Let’s take a look to one of the most common classification for UAVs, based on their
level of autonomy (LOA), which influences the mode of operation of a mission.
The mode of operation of the Unmanned Systems can be [2]:

Remote Control A mode of operation wherein the human operator, without benefit of video or
other sensory feedback, directly controls the actuators of the US on a continuous basis, from
off the vehicle and via a tethered or radio linked control device using visual line-of-sight.

Teleoperator A mode of operation wherein the human operator, using video feedback and/or
other sensory feedback, either directly controls the actuators or assigns incremental goals,

1

1 – Introduction

waypoints in mobility situations, on a continuous basis, from off the vehicle and via a tethered
or radio linked control device.

Semi-Autonomous A mode of operation where the human operator and/or the US itself plans
and conducts a mission.

Fully Autonomous A mode of operation wherein the US is expected to accomplish its mission,
within a defined scope, without human intervention. Note that a team of USs may be fully
autonomous while the individual team members may not be due to the needs to coordinate
during the execution of team missions.

Unmanned Aerial Vehicles (UAV) and more in general all the Unmanned Systems (US) are one
of the more interesting technologies developed in the last years. The reason behind the growth in
their usage becomes evident if we look to the typical scenarios where this systems are involved.
An unmanned mission is commonly defined as:

Definition 2. An unmanned mission consists in a trajectory travelled by an Unmanned Systems,
that has both a starting and an ending geographical point and a particular task to perform.

Moreover, the state of the art of technologies allows to suppose that in future missions will have
to be completed in a fully autonomous mode, that implies no human in the loop neither driving
nor supervising. This condition obviously introduces a lot of issues, since the same safety level as
the one with a human operator must be guaranteed.
The idea of unmanned mission is not new, since the first attempt to build such kind of vehicle was
performed by Austria to attack Venice with bomb-filled balloons, in 1849 [29]. If we try to compare
manned aviation with USs, is easy to understand that the latters are incredibly more performing in
all the missions that are too dull, dirty and dangerous for humans. Although they were originally
used almost only in military operations, the rapid increase of new technologies opened the use of
unmanned systems also to civil application. Actually, the most common are:

• Cargo transport

• Agriculture

• Forest fire detection and monitoring

• Scientific research

• Recreational use

In all this kind of missions the usage of drones is crucial, since they can perform tasks repetitively,
fast and accurately [30]. Furthermore, if we look to the future, in the next ten years a massively
increase in the usage of Internet of Things (IoT) is expected: in this scenario, a fleet of "on demand
sensors" in the sky will have a fundamental role.
The analysis of the Unmanned Systems’ level of autonomy combined with their numerical and
technological growth shows why the actual legislation is completely inadequate: the new tech-
nologies allow us to imagine in a very near future a world in which a huge amount of drones will
daily flight over the cities, without any kind of human pilot (nor on board neither in a Ground
Control Station) at a quite low altitude and with complex tasks to accomplish. In a so confused
environment, it seems completely useless still imposing a sort of driving license for drones’ pilots
(like Italian laws do, [3]) while the need of a new kind of flight controller arises. This thesis will
address this problems almost from all its aspects, as will be shown in the following section and in
the rest of the work.

2

1.2 – Thesis Structure and Contribution

1.2 Thesis Structure and Contribution

If we imagine a future urban scenario, the growth in the use of small Unmanned Aerial Vehicle seems
on one hand unstoppable, both for the cargo usage by delivery company and for the increasing
recreational use, while on the other it arises safety problem actually not regulated coherently in
any legislation.
Starting from this new environmental, social and technological background, a research project has
born inside the TIM’s Joint Open Lab at Politecnico di Torino, and this master thesis is going to
shows just a single part of it. In this section, objectives, assumptions and structure of the work will
be presented, highlighting the results of the research group in parallel with a detailed description
of the main themes that instead will be treated in this particular thesis.
The main aim of the overall work is to guarantee safety during the flight of fully autonomous
systems operating in a urban environment. It’s crucial to understand that when talking about
safety, we are referring to the safety of people on ground that can be involved in an UAV crash.
This concept is fundamental, since it underlines that the center of this work are the people, not
drones.
In order to start facing this problems, a completely new Traffic Management system (which will
be formally defined in chapter 3) has to be developed. In particular, it will have to perform two
different functions:

1. Developing all the techniques needed to have an autonomous flight, as path planning, flight
control systems, collision avoidance systems, ecc.

2. To guarantee that the flights will respect the safety standards imposed by the local flight
authority.

So, in parallel with the development of the flight’s control techniques, a new metric has to be
introduced in order to correctly evaluate the safety (or the risk) of an unmanned mission. This
will be the core of the next chapters and of this specific thesis work.
It’s important to underline that we are facing a completely new situation in the field of air transport:
for the first time quite cheap air-vehicle are going to fly over cities without any human supervision
on it. Since this systems are low budget, and their price is going to decrease in the next years, they
will be both very easy to be bought (also by common people) and built with low quality standards.
Moreover, the operational field in which they are going to move is characterized by a real high
population density, that means an high probability of injuries for people if a crash happens. This
is not acceptable.
The aeronautic industry has always been very restrictive in evaluating the safety of an aircraft,
and thanks to this it’s actually capable to produce items with a failure rate equal to 1

109h. That’s
said, in order to receive the flight’s authorization from the proper national agency,it seems crucial
the introduction of a control system capable to measure and guarantee the correct level of safety.
The main features that this system has to implement are:

• Statistical and historical based risk assessment. It has to be capable to evaluate a priori the
risk of flight over a zone relying on the information it has on it.

• Real time risk assessment. The control system must update its risk analysis if the available
data are changed during the mission execution.

• Registration and Identification services. The system has to provide a "registration service",
for all those aircrafts that wants to join it. Beside, it has also to constantly monitoring the
activities and the status of its drones, in order to be aware of eventual critical situations.

3

1 – Introduction

• A priori and real time path planner. Starting from the risk analysis, a path planner have
to be dsegned in order to choose the safest path among all the possible ones. Moreover, it
has to be capable of changing in real time the established waypoints if something happens
during the flight (for example, the risk of an unpredicted collision).

• Trajectory follower, in order to follow the waypoints provided by the path planner. This
controller must consider the drone’s dynamic and provide the correct control input. Further-
more, a robust controller should be capable to detect failures in the flight system and apply
a correction.

• Collisions avoidance algorithms, to ensure that each drone is able to avoid obstacles during
the flight

All this characteristics have to be developed always focusing the work on safety, and can be
summarized in the construction of an Unmanned Traffic Manager (UTM), which in the last year
has been the central project of many different aviation agencies around the world (see chapter 3
for detail on state of the art).
Thanks to the Joint Open Lab’s experience in this fields, we decided to design a brand new UTM,
that differently from the others will rely and fully exploit the capabilities of cloud computing,
which also grew enormously in recent years. In chapter 3, a detailed explanation of the reasons
why we choose a cloud based framework will be provided. Introducing a Cloud Based UASs Traffic
Management (CBUTM) we will be able on one side to evaluate and consequently mitigate the risk,
on the other to handle all the critical situations (as collisions or internal failures) that can happen
in a crowd flight scenario.
Actually, the Cloud-Based UASs Traffic Management has been realized in almost all its parts, and
it is capable of providing all the features exposed before. In particular, this thesis works will focus
on the development and integration in the overall framework of a Risk-Aware Map Manager.
It’s role, in addition to being complex, is also at the base of the traffic managing system itself. It
has to:

• Model the environment in which the mission happens. It has to produce a map, consistent
with the geographical one, where eventual critical situations (as buildings, for example) are
marked as "no-fly zone".

• Make a risk assessment procedure, according with the most innovative techniques in this
field. The risk evaluation has to be function of the environmental map already seen, of the
constructive parameters (i.e. dimensions) of the Unmanned Vehicle and of the vulnerability
of the human body. The results will constitute the so called risk map, which associates a risk
value to each point of the map (see chapter 3).

• Update itself in real-time. In order to really ensure safety, it must be always consistent with
the real operative scenario, updating its data if something changes. In a crowded area, with
a quite small flight’s height, it must know everything about the static and dynamic objects
of the environment, otherwise the fatal event will be unavoidable. The idea of a real time
map capable to update itself is crucial to have a safe managing of the airspace.

• Establish a metric of path’s risk evaluation, being capable of comparing different trajectories,
between them and with a safety standard imposed by the national flight authority.

To understand the importance and the function of this platform, it is crucial to show some criticism
related to the operational environment we are considering.
The first issue in ensuring safety in an urban scenario is due to the huge number of people that can
be involved in a crash. As we will discuss in chapter 2, the risk is (obviously) strictly related to

4

1.2 – Thesis Structure and Contribution

the population density, which in the cities, and especially in the bigger ones, reaches values in the
range [5000 ab

km2 , 8000 ab
km2]. Furthermore, cities are often involved in big events, that can gather

huge crowd of people in a relatively small area. In order to reduce the risk, the traffic manager
should be aware of this and taking into account when and where are the most populated areas.
The second problem to face is the collision avoidance, both with static and dynamic objects. In
the first case, the urban environment implies the presence of buildings, very often with different
heights and structures. Since we are in a urban scenario, in order to reduce the risk the UAV that
we are going to consider will be very small and light. However, this implies a quite small flight’s
height, that will be around 25m, and consequently high risk of collision.
That said, the need for a Risk-Aware Map Manager becomes evident, since it has to guarantee safety
for people before the beginning of an Unmanned Mission (through a coherent risk analysis) and
during its progress, constantly updating its values and changing the drone trajectory if something
dangerous happens.
Furthermore, the importance of a cloud infrastructure, which main characteristics will be shown
in chapter 3, have to be underlined, since it allows to suppose a huge computational power, as well
as a real-time update of information from the Internet and a knowledge sharing between all the
elements that joins the Traffic Manager.
In this thesis the construction of this kind of system, with all its characteristics and issues will be
carried on. In particular, in chapter 2, the state of the art about risk assessment will be discussed,
and when possible improved. Then, in chapter 3 the overall structure of the Cloud-Based UASs
Traffic Management will be presented, firstly with an overview of the most important sub-systems
that constitute it, and then focusing in particular on the Risk-Aware Map Manager structure. In
chapters 4 and 5 the implementation of the CBUTM, in a ROS environment, will be discussed and
then a set of simulation, to validate our approach, will end the work. In particular, chapter 5 will
show the behaviour of the whole system, considering also the contribution given by my colleagues.
Finally in chapter 6 the most important results obtained will be resumed, and a brief set of future
works that should be done to improve the CBUTM will be presented.

5

6

Chapter 2

Ground Impact Risk Modelling

2.1 Unmanned Missions Risk: Introduction

2.1.1 Main Concepts and Risk-Aware Map Manager

Following what has been exposed in previous chapter, this part of the work is going to analyze the
concept itself of risk for an unmanned mission, proposing some definitions and analysis methods.
Furthermore, the idea of a Risk-Aware Map Manager (which is the core of this thesis project)
will be introduced, in order to provide an initial presentation of it, to better understand the risk
assessment equations that will be shown in the rest of this chapter.
First of all, when discussing about risk we are referring to the time frequency in which the drone
causes deadly (or very serious) injuries to one ore more people on ground [6]. It’s important to
focuses that the risk is not to be intended for the drone (for example a crash or an in-flight collision)
but for the people on ground. Our analysis aims to avoid hazards for all human beings that can
be involved in an UAV’s accident, not to avoid the accident itself. Obviously, as it will emerge in
the following chapters (and thesis’ works), avoiding drones’ crashes is one way (but not the only
one) to prevent fatal injuries. Since the avionic industry worked on safety for many years, actually
there are many ways to model the risk, each one with a specific level of accuracy [6].
Although different, each of them has been built taking into account four main standard criteria
that cannot be forgotten during the creation of a completely new model [9]:

• Transparency.

• Consistency.

• Clarity.

• Reasonability

Furthermore, it’s important to be very careful to not underestimate the risk, always preferring a
more conservative model respect to one that does not take into account all the available elements.
The main question we must answer at the end of a risk analysis is if a given Unmanned Aerial
Vehicle (UAV) can guarantee a required level of safety when flies over a given geographical zone in
a given time window. Moreover, if this analysis should give a negative result, our system must be
capable of suggesting one or more countermeasures to be taken in order to increase the mission’s
safety. This last part is called risk management [6]. The procedure to follow is usually organized
in four steps [9]:

7

2 – Ground Impact Risk Modelling

Mission Definition and Hazard Identification A description of the mission has to be pro-
vided and consequently a definition for the safety bounds is derived. In this particular
scenario, since we are working with civil operations in an urban environment, the risk’s limit
is imposed by the national flight authority and can be considered as constant. Practically,
this means that the Flight Agency has to decide a maximum rate of victim per hour, which
will be used by the Cloud-Based Traffic Manager has upper-bound for every mission.
Then, all the possible hazards that can happen during the flight have to be identified.

Risk Assessment Evaluate for every hazard the corresponding risk value.

Risk Reduction and Managment The overall risk is compared with the safety bound. If
greater, some countermeasure have to be taken to reduce it.

Risk Acceptance Once the risk is below the limit, the mission is approved and can starts.

Please notice that the hazard analysis can be very time consuming, especially for what concerns
the drone’s internal failure, and there are already many tools to perform it. It’s not matter of this
work to identify all the possible hazards, but instead aggregate them into a coherent risk value.
This concept will be clarified in next chapters, however we can suppose to divide hazards in two
categories: due to internal failures and due to external causes.
Finally, once the risk analysis has ended a Risk-Aware Map Manager must create the corresponding
risk map. It’s important to underline that, though similar, the risk assessment and the risk map
generation are two different process: the first, more theoretical, must be followed by latter, more
practical. The implementation of the risk map generator will be the core of the last part of this
work, while in this chapters the most innovative techniques to perform the risk assessment will be
discussed and possibly improved.
In our idea, the risk map have to be function both of space and time: while the first is evident, the
latter aims to takes into account the variation in time of the elements that practically affect risk:
for example, the number of people present in a zone significantly varies in function of the day’s
hour.
The creation of such kind of map allows the path planner to find the low risk path for the UAV to
accomplishes the mission.
In this context , the need of a Risk-Aware Map Manager (RAMM) arises. As an independent
"block" within the Cloud-Based UASs Traffic Management, its role is basically to control and
merge all the information available which affect risk for drones, then commute them into a co-
herent "map of the risk" for the drones’ flight. The RAMM has to manage in parallel static and
dynamic geographical structures, providing for each Unmanned System (US) its own risk-map
(also function of its constructive parameter). Moreover, it has to work in real-time, updating its
parameters when something change.
In the rest of this chapter a quantitative analysis of the risk is proposed, then in chapter 3 the
structure of the Risk-Aware Map Manager is presented, describing all its basic principles. Finally,
in chapter 4, an implementation of the concepts contained in 2 and 3 will prepare the reader to
the results obtained through a software simulation in chapter 5.

2.1.2 UAVs’ Types of Accidents and Equivalent Level Of Safety

Before starting the quantitative analysis to measure the risk, a brief introduction is needed to
present main UAVs’ type of accident.
According to [6] during missions the Unmanned Aerial Systems are involved in many types of
hazards, that can cause three different kind of accidents:

8

2.1 – Unmanned Missions Risk: Introduction

Drone Involuntary Mobility This category includes all the accidents that happen when the
drone is on ground and still have to take off. They are due mainly to human inattention or
error and involve the flight’s crew.
Since the scenario we want to analyze doesn’t care of the drone before the take off, this kind
of accident will no longer be treated in this work. Furthermore, the better ways to avoid
fatal injuries in this case just consists in applying correctly all the security protocols for the
drone managing [7].

Mid-Air Collisions This category includes all the accident due to in flight collisions, ad for
example between two UAVs, or against a building (the latter can be very common in urban
environment). Actually at the state of the art the study of mid air collision’s risk mainly
concerns the "flight’s victims" directly involved in the crash, as for example people present
on a line flight. Since we are just considering Unmanned vehicle, and we can easily suppose
to not impact with big airplanes in a urban environment, the analysis of mid air collision
will treat only the people on ground that could be killed by the falling debris following a
collision. [8]

Early Flight Termination In this case we consider all the hazards that can cause a loss of control
in drone’s flight and consequently an anticipation in the UAV’s landing. This operation
can be partially controlled or not and can ends on ground or in water: it’s interesting to
notice that the cloud could control this process in order to impose a desired landing zone or
certain velocity in order to reduce the probability of fatality [8]. However, as explained in
previous section the worst case scenario will be supposed during risk analysis, imaging that
no emergency control algorithm has been implemented.

This categories represent three different ways in which an unmanned vehicle can cause (directly or
indirectly) serious or deadly injuries to the people presents in the accident’s area.
It’s interesting to notice that when talking about injuries we have to consider both the physical, as
for example the pollution following the diffusion in the area of an harmful payload, and the social
ones: an high number of accident, though without death, will cause a repulsive feeling in common
people respect to UAVs’ missions and consequently a limitation on them [6].
Once again then, the need of a framework to quantify and reduce risk arises.
It has been interesting to find out that there is still not a commonly accepted definition of risk,
since its mean changes according to the operative scenario and the objectives that have to be
achieved. However, in the avionic environment it is often used the following one:

Definition 3. It is called risk fF of an Unmanned Aerial Mission the frequency of fatalities, in
term of victims per hour of flight, that a given drone, in a certain area will produce.

How to evaluate this number is the core of the risk assessment procedure. Key concept that
derives from the definition is that the risk have to be a frequency, so it must be linked with time t.
As said before, we will consider the risk concerning two kind of accident that both can cause on
ground victims: the correct evaluation of the number of fatal injuries per flight hour that a given
US can produce is the mission’s risk itself [6]. First of all the two accidents’ risk evaluation will
be studied separately in order to give a proper metric to both of them. At the end, they will be
merged and an overall ground impact risk model will be provided.
In order to be considered safe, the overall mission’s risk value must be lower that the objective
upper-bound imposed by the flight’s national authority. Practically, this limit can be used to
differentiate safe mission and from unsafe ones, so it’s interesting to understand how it can be
evaluated.
The fundamental principle used by the flight’s agency is the "Equivalent Level of Safety" (ELOS)
with the aircraft driven by humans. According to [11] this means that "all the operations or tests

9

2 – Ground Impact Risk Modelling

conducted by unmanned aircraft must demonstrate to have a risk for human life not higher then
the same operation conducted with on board pilot".
This definition doesn’t impose to use the same safety parameters actually used in classical avi-
ation: this one is on one hand more dangerous, since involves bigger systems with hundreds of
people on board, while on the other can be considered safer since doesn’t relays only on control
systems whose failure will produce the aircraft’s fall (in this case, the man in the control loop is
still considered a plus).
A better way to evaluate the correct maximum risk’s value is based on statistical studies [6][12]
taking in consideration only on ground victims instead of flight’s passengers. Starting from this,
it’s possible to increase the typical risk lower-bound, which is 10−7h−1 for classical manned avia-
tion,moving to a maximum fatalities rate for US mission in the range of:

fF,Max ∈ [10−5h−1, 10−4h−1] (2.1)

That means one fatal event almost every 105 hour of flight. However, and this will emerge along
all this thesis works, the risk-aware system we designed is independent from the value imposed as
upper-bound for the risk: it will be a task of the National Flights Authorities to calculate it, with
its own principles and parameters.
At the actual state of the art, a big range of UAVs is provided by the producers, with different
dimensions and characteristics. According to [31], Unmanned Aerial Systems can be categorized
in a variety of ways based on vehicle attributes as type of aircraft(fixed wing, multi-rotor,ecc.),
functionality, weight, speed,ecc. In our case, since we are going to produce a framework useful for
multi purpose UAVs (so we are not considering a specific kind of mission), it can be interesting
to have a look to a dimension based classification of the most common drones, in order to better
understand the items we are going to work with.
Figure 2.1 shows the NATO UAVs’ classification, dividing them in classes and categories and
providing some examples: According to what has been already exposed, to have a safe urban flight
only Micro and Mini UAVs will be allowed to operate in our framework, since they can guarantee
a small weight (under 2 kilos) in parallel with a satisfying mission radius (25 kilometers). From
now on, we will suppose to operate only with this kind of objects, assuming that no dangerous
payload is carried on.
That’s said, the quantitative risk analysis can begin.

2.2 Early Flight Termination Risk Modelling

The main aim of this section is to deduce an analytic expression that, given the flight conditions,
correctly evaluates the number of victims per hour due to an uncontrolled landing of the UAV.
The unexpected flight end can be caused by different problems, like internal failures or external
causes,but without considering mid-air collisions.
Thanks to the works provided in [6] and the fundamental principle exposed in previous sections,
the risk model is obtained as:

fF,EFT = Nexp × P (fatality|exposure)× fEFT (2.2)

where:
fF,EFT = fatalities frequency due to an early flight termination. Measure Unit: [peopleh]
Nexp = number of people exposed to the accident. Measure Unit: [people]
P (fatality|exposure) = probability that a person involved in the UAV’s crash will suffer fatal
injuries
fEFT = frequency of failures that cause an unexpected end of the flight. Measure Unit: [1

h]

10

2.2 – Early Flight Termination Risk Modelling

Figure 2.1: NATO UAVs’ classification

This apparently simple formula contains all the interesting parameters that affects an unmanned
mission. Furthermore, it combines them in a way that guarantees a risk analysis:

1. Coherent with the statistical data actually available.

2. Not expensive from a computational point of view.

3. Easy to extend in case some new interesting parameters emerges.

4. Independent from the dimension of the considered area. The analysis can be performed both
with very small and big resolution.

Finally, it is the best compromise between a too detailed analysis and an inconsistent one. All the
elements appearing in 2.2 will be explained in following sections, in order to explore the detail to
perform risk evaluation. In any case, it’s important to underline some interesting features.
First of all P (fatality|exposure) it’s probably the key point of the equation. First introduced
by [6] and then expanded by [17][18] it takes into account drone’s kinetic energy, human body’s
vulnerability and geographical sheltering factor to obtain the probability of having fatal injuries
after an Unmanned System collision with people.
Then, the number of exposed people Nexp can be easily evaluated as Nexp = ρ × Aexp where ρ
is the population density and Aexp is the drone’s impact area, whose exact formulation will be

11

2 – Ground Impact Risk Modelling

provided in the following section.
For what concerns the fEFT term, it has been a crucial element in the discussions that preceded
the beginning of this work. As explained before, this element contains the information about the
time frequency of the drone’s ground impact: practically, it introduces in the equation the time
element.
In the first stages of this thesis, many attempts were made to provide a framework able to correctly
evaluate this parameter working on the elements that could affect the crashes frequency. The
estimate of fEFT was obtained thanks to a probabilistic study, merging external causes acting on
the drone (as for example bad weather conditions) with the probability of an internal failure. This
approach however showed two criticism that couldn’t be ignored:

1. Evaluate the ground impact frequency starting from the hazards that can causes it strictly
implies the complete knowledge of all the possible hazards and the quantitative impact that
each of them has on the probability of having a crash. Ignoring even only one hazard or
underestimating its impact will falsify all the risk analysis, since the risk will be under or
over estimated.
An example of this criticism turned out when trying to provide the probability of having a
crash due to the high wind speed: it was possible to use the maximum wind speed predicted
by the weather report for the period in which the mission should be performed, but however
also the more detailed weather forecast cannot consider the wind’s gusts, which are the real
cause of crashes. Finally, this means that the risk analysis performed was quite meaningless.

2. Trying to give an estimate of fEFT means working with the probability that each hazard
can happens, and that after it will cause a crash of the UAV. The final result (whose trust-
worthiness has been discussed in previous point) turn out to be a probability too, without
any measure unit. The lack of time element is a critical issue, since as it’s been explained in
previous section the risk must be measured in fatal injuries per hour (according to the actual
standards). The need of time in the equation 2.2 will be explained in next chapters, when a
method to evaluate the overall risk of the mission will be provided.

After this considerations, it seems quite clear why we decided to avoid a complete pure probabilis-
tic approach in evaluating fEFT . Instead, according with [6] and [10] a statistical way has been
preferred.
Practically, the number of ground impact per flight hour is established looking at the history of
the drone: each producer have to makes a quite big number of test in order to produce the more
correct evaluation of the fEFT of its drone. If this value is not provided by the UAV’s builder,
it can be still estimated after a proper number of flight hour, using as initial value a very high
failure’s frequency. Finally, if a new model of UAV is designed starting from an already tested one,
it will be possible to initially assume the fEFT of the new drone equal to the one of the older UAV
and use it for the risk analysis. Obviously, also in this case it will be possible to update fEFT after
some hour of flight.
Although they seem simple, or not completely clear at this point, the concept described in the
previous lines are really crucial to deeply understand this work: we moved from an hazard analy-
sis, very technical and hard to perform, to a risk analysis in which the ground impact frequency is
simply assumed to be known. This could initially seems barely a simplification but it’s instead the
right change of point of view, since the aim of this framework is not to validate the work developed
by our aerospace colleagues but instead to provide the instruments to manipulate and manage the
information given by them in order to guarantee a safe mission.
According to [17] and [18], a realistic value of fEFT for light and cheap drones is fEFT = 0.01 impacth .
For this reasons, that number will be used in following chapters when simulations of the Map Man-
ager work will be provided.

12

2.2 – Early Flight Termination Risk Modelling

An interesting modification in equation 2.2 can be introduced in case we have very detailed infor-
mation about the sheltering of an area and the number of people in the zone that can be considered
sheltered from a possible fall of the UAV. This study can be performed for example merging sta-
tistical/historical data with the mobile phone signals, that can be analyzed by the cloud system
in order to estimate the number of people really present and covered.
Once the level of sheltering of each group of people is known, 2.2 can be re-formulated [6]:

fF,EFT =
∑

Ni,exp × Pi(fatality|exposure)× fEFT (2.3)

Where Ni,exp and Pi refers to the i-th group of people. However, in the rest of this work the risk
formula used will be 2.2.
In the following sub-section, all the elements that compose risk equation will be discussed deeply,
starting from their theoretical definition till the way it’s possible to calculate them. The approach
used is a top-down one: starting from the higher level expression of the risk (2.2), let’s go down in
the details of each part of it, showing how to calculate every term.

2.2.1 Evaluation of Exposed Inhabitants: Nexp

When evaluating the risk of an unmanned mission, it’s crucial to correctly estimate the number of
people that an eventual crash would involve. Since this work focuses on avoiding human victims
more than UAV crashes, every risk’s measure must be linked with the number of inhabitants present
in the overflown area. Obviously, minimizing the hazards that cause crashes is fundamental in order
to reduce the ground impact risk, and this is why the other part of this research project will focus
on cloud based algorithms to manage danger situations, as for example collision avoidance. As
presented before, the number of people exposed to an accident, in a given geographical zone is:

Nexp = ρ×Aexp (2.4)

where:
Nexp = number of people exposed to the accident. Measure Unit: [people]
ρ = population density in given area. Measure Unit: [peoplem2]
Aexp = exposed/impact area. Measure Unit: [m2]
We suppose an uniform population density(ρ) in the given area. Since the map resolution will be
around 25m2 (refer to following chapters for detail) this assumption doesn’t affect badly the risk
assessment. Now, let’s show how to estimate the last two parameters.
First of all, it’s important to underline that Aexp is defined as the lethal area of the drone, and it
have to be evaluated taking into account features like UAV’s glide angle, dimensions and human
mean height and radius [13]. A huge number of works have been published upon this topic, since
there are several methods (due also to the specific aircraft or a particular scenario) to calculate
the injuries-space of a falling drone.
According to [17], one optimal way to evaluate the impact area is the one exposed in FAA,2000:

Aexp = 2× (rp +RUAV)× d+ π × (rp +RUAV)2 (2.5)

where:
rp = 0.23m = mean value of human body radius
RUAV = maximum linear dimension of the US
d = Hu

tan γ = horizontal distance travelled by UAV during the fall. Measure Unit: m
Hu = 1.75m = mean value of human height
γ = glide angle
Please notice that in case the considered UAV is a quadcopter, then it is possible to suppose a

13

2 – Ground Impact Risk Modelling

vertical fall that will impose 2 × (rp + RUAV) × d = 0 since this term of the equation represents
the horizontal component of the fall. For what concern the fixed wing drones, instead, a glide
angle equal to γ = 45° should be used. This first results shows that quadctopter-like UAVs can be
consider safer then fixed wing, at least for what concern the impact area. The values chosen both
for Hu and rp are intended to modify the first version of 2.5 proposed in FAA,2000 in order to
make it more coherent with real statistical values, as exposed in [18].
Then, a discussion about population density ρ is needed, that since from the begin of this project
is been addressed as one of the key point where focuses the power of the cloud-based approach.
Once again, the people and not the drones are the center of this work, so a wrong knowledge of
this parameter would falsify all the rest of the risk analysis.
In the older works in the safety fields, like [6] and [19], it’s suggested to suppose ρ as a constant, that
in urban environment can be setted equal to 200peoplekm2 . This number came out trying to consider
all typical scenario of civil aviation, so its a mediation between moments in which the unmanned
system flies over very crowded zones and ones in which instead it is over sparsely populated areas.
It’s obvious that such approach in our context, where the operative scenario is almost always a
city, is too inaccurate, since oscillate from being too restrictive when the drone is passing over
parks, rivers, ecc. and instead not conservative enough in all the other situations.
In order to obtain a more realistic ρ, the idea is to consider for every area the corresponding
population density, already present on web: the cloud system can connects to internet (thanks to
the TIM network) and from here extract updated data about the population density. Practically,
with this second step we can move from an a priori estimate (200peoplekm2) to a measured value of ρ,
with a level of detail that can reach the district dimension.
This estimate,however, is still static and in some case not realistic. The main problems that arises
are:

1. It takes in account only the people that live in a certain zone (this is how population density
is commonly measured), excluding from the risk evaluation all the people that can be in the
area for other reasons.

2. The resolution level of population density maximum reaches the district scale. No more
detailed information (for example how many people live on a street or in a buildings) are
available on internet.

3. Still doesn’t take in account the time element. The day’s hour in which the mission takes
place is a crucial element, that drastically changes the number of people that the drone can
involves in a crash. In order to understand this concept, just think at the same street at 12
am and 12 pm. Furthermore, this approach doesn’t take in account all the special events,
like concerts or football matches, that can’t statistically be predicted and create big crowds
that an UAV must avoid.

During the discussions inside the TIM’s Joint Open Lab emerged the will to create a dynamic
framework, capable to collect data and provide a real time risk evaluation. This system must start
from a dynamic knowledge of the people that are in danger due to the drone’s flight. The final
result to which we are moving to is to change the classical expression of density from a function
of space to a function both of space and time (the time interval τ in which the mission will take
place). In formula:

ρ(x, y) −→ ρ(x, y, τ) (2.6)

Starting from the population density, also the risk will become dependent from the flight’s time
window.
Thanks to the cloud, it is possible to connect to the internet network in order to acquire data about

14

2.2 – Early Flight Termination Risk Modelling

the areas the drone is going to fly over: this allows the knowledge of events whose participation can
be estimated but also simply the historical information of the number of people usually present in
a given zone at a given time.
Furthermore, an higher level of precision can be obtained, thanks to the new technologies available.
Through it’s network, the TIM group can give an estimate of the number of mobile phone connected
to a particular cell. Merging this information with a known mean value for a given time hour, it
becomes possible to provide an estimate in real time of the variation of people present in an area.
The same approach is used by the most common maps provider in order to give an estimate of the
cars’ traffic on the streets.
Finally, the cloud framework will be capable of updating itself also during the drone flight, allowing
the path planner to find in real time the best path. Moreover, it will share and conserve the new
estimated ρ(x, y, τ), so that next time a mission will be planned in the same time and place its
value will be already updated.

2.2.2 Estimate of fatalities probability for people exposed to crash: P (f |e)
The term P (fatality|exposure) in the risk equation represent the probability (so it is an adimen-
sional number in range [0,1]) of having very serious injuries after the impact of the falling drone
with one or more inhabitants. To describe this probability, many studies tried to provide a model
of the human vulnerability taking into account factors as position, age and physical conformation
in order to estimate the damage that the body will suffer impacting with an Unmanned System at
a given speed. The most interesting works in this fields developed in the last twenty years are [14]
[15] [16].
Although this models will not be used, since the information they need to give a good estimate of
P (fatality|exposure) are too detailed and never available, their results have been the inspiration
of the framework we are going to present.
The core concept is to suppose P (fatality|exposure) as function both of the kinetic energy of the
falling drone and of the sheltering factor of the area in which the crash happens, whose metrics
will be provided later in this section. Thanks to the ideas exposed in [6] and [9] and modernized
by [17] and [18], it is possible to calculate P (fatality|exposure) as:

P (fatality|exposure) =
1− k

1− 2k +
√

α
β × (β

Eimp
)

3
PS

(2.7)

Where the elements of the equation are:

PS is the sheltering factor, defined in the interval [0,+ inf], used to take in account the natural and
artificial shelters that the area offers to protect the people from the UAV fall. Its mean value
is 1 and increasing PS correspond to decrease the P (fatality|exposure). In the following
paragraph a detailed description of how to evaluate this term will be discussed.

k = min(1, (β
Eimp

)
3

PS) is a term properly studied in [6] in order to provide a better estimate for
low level of kinetic energy.

Eimp is the kinetic energy of the UAV at the impact.

α is a term defined as the kinetic energy requested to have P (fatality|exposure) = 0.5 when
PS = 6 [6]. An optimal value to use is α = 34kJ

β is the lower level of energy needed to have a fatal event in absence of sheltering. According to
the previously presented studies on human body vulnerability, the correct value correspond
to β = 34J

15

2 – Ground Impact Risk Modelling

0 500 1000 1500 2000 2500

E [J]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(f

|e
)

Ps=1

Ps=4

Ps=6

Ps=10

Ps=20

Figure 2.2: P (fatality|exposure) evolution respect to Kinetic Energy and Sheltering

Figure 2.2 shows the behaviour of P (fatality|exposure) varying Ps and Eimp: The main problem
with this kind of formulation is the lack of a coherent metric in order to describe the sheltering
factor. Actually, there is not a tested method to deal with it and this create issues in correctly
evaluating P (fatality|exposure). For example: what does practically mean PS = 6?
In [6], that is the state of the art for what concern the sheltering factor computation, it is defined
as:

Definition 4. The sheltering factor of a geographical area is its capability of protecting people
on ground, through artificial or natural structures, from the fall of an Unmanned Aerial System.

This definition, more qualitative then quantitative, led to a quite confused situation in which
PS belongs to the range [0,+ inf], but this choice creates two problem: first we cannot deal with
PS as a probability (for example for people on ground to be protected from the UAV’s fall) since
it has to be from 0 to 1, and second it seems impossible to quantify PS simply looking at the
operative scenario, because there aren’t bounds for it.
Once again, we must give to PS a metric, such that it becomes possible to evaluate it according
to some interesting features of the field.
In order to do this, let’s have a look to the behaviour of P (fatality|exposure) when PS is varying.
First of all, it’s interesting to notice that when PS = 0 and people are without protection, the

16

2.2 – Early Flight Termination Risk Modelling

P (fatality|exposure) behaves like a threshold: when the impact kinetic energy is less then 34J [9]
the fatal event has zero probability, while when Eimp is over 34J then P (fatality|exposure) = 1.
An operative scenario with PS = 0 is considered to be very unrealistic, especially in an city, and
practically no UAV will guarantee the safety standard in a situation like this.
When it’s imposed PS = 1 instead an Eimp = 108J is requested to have P (fatality|exposure) = 0.5
while 1000J will guarantee the certainty of the fatal event. Obviously, also in this case under the
34J the P (fatality|exposure) turns out to be null. For increasing values of PS let’s have a look at
the following :
This computation has a very precise aim: to show that, though we can use infinite value of PS

PS P(fatality | exposure) = 0.5 P(fatality | exposure) = 1

1 108J 1000J
4 4KJ 100KJ
6 34KJ 1MJ
10 3.4MJ +∞

Table 2.1: P (fatality|exposure) evolution in function of PS

in P (fatality|exposure) in a real scale PS = 10 is already an upper-bound. As a matter of fact,
when the sheltering factor is equal to 10, 3.4MJ are required to have 50% probability of having
the fatal event. In order to better understand this number, let’s show a simple example. Since we
are considering quite light unmanned vehicle, with a weight equal more or less to 1Kg, this value
of kinetic energy can be obtained only with a speed in the order of 2600ms . Since a situation like
this one is absurd, we can suppose PS = 10 as the upper-bound of PS . Practically, a zone with
PS = 10 have to be consider as a complete recovered area, where there is no risk for people inside.
Concluding, in the rest of this work we will suppose PS ∈ [0,10]

2.2.3 Evaluation of Impact Kinetic Energy: Eimp

From equation 2.7 the need of evaluating the kinetic energy in the moment of impact has emerged.
Many different solutions about this have been proposed, some more accurate take in account
factors as air density or dragging, others simpler instead just use drone velocity and mass, in order
to simplify the computation [6]. Looking to the works exposed in [17]

Eimp =
1

2
×MV 2 (2.8)

where:
M is the vehicle’s mass
V =

√
2× g × h is the free fall speed from height h

2.2.4 Estimate of Sheltering Factor: PS

The sheltering factor PS is the item used to model and evaluate the protection level that the
scenario offers, through natural or artificial means, to the population on ground. Some example of
sheltering factors are the trees, rooftops,etc.
Although according to the previous paragraph it is not a probability, let’s start the discussion on
it supposing PS as the probability that the UAV’s fall will be stopped before it will hit someone.
The history and the state of the art of this parameter is quite interesting, since the definition of

17

2 – Ground Impact Risk Modelling

its metric has been a problem form the beginning of the risk analysis.
In the first approach developed, this factor didn’t appear, practically assuming that no protec-
tion was available [10]. The reason behind this choice was that one of the first risk models for
unmanned flight was taken from the aerospace field, where spatial debris were considered: due to
the enormous dimensions of them, it was useless to consider the environment protection. Such a
model was however too conservative and didn’t allow to anyone the flight, since also very light
UAV turned out to be too dangerous.
The introduction of the sheltering factor happened in [6], and as reported before, it was defined
in the range PS ∈ [0,+ inf]. This changed completely the study of the risk: for the first time the
protection, and this implies the characteristics of an area, were considered when evaluating the
risk, practically reducing it. Since we are dealing with high density zones, it is crucial to find a way
to reduce risk, otherwise it will be impossible to satisfy the risk bounds imposed by the national
authorities. Especially in the urban scenario, were there are many buildings (which roofs can cover
people) and light drones, the sheltering factor seems to be crucial in order to produce a correct
risk analysis.
Buildings, trees but also vehicles and other objects can drastically reduce the probability of having
a fatality, simply absorbing all or a part of the energy of the drone. For this reason, an analysis
of the kinetic energy required to penetrate inside an object is needed, taking into account the
materials with which it was built. After that, a way to map the covering skills of an area in the
range [0,10] have to be found.
First of all, let’s define the sheltering coefficient CS of a structure as its ability, once hit, of reducing
the drone kinetic energy. It’s important to underline that we are not considering just the ability
of a structure to stop the UAV, but also, in case it is not stopped, the amount of kinetic energy
reduced by the structure. Once again, this analysis should be conducted taking into account the
materials and the way a structure is built and also the minimum kinetic energy needed to penetrate
it. A complete analysis in this sense is contained in [9], while a simpler but however interesting
resume is the one produced by [17] and [18]. The results, taking into account the most common
features of an urban scenario, are exposed in this table:

CS Structure’s Tipology

0 Free Area
0.25 Shallow and Slightly Leafy Trees
0.5 Tall and Leafy Trees
0.75 Residential Buildings
1 Reinforced Concrete Buildings

Table 2.2: Sheltering Factor definition

Practically, CS = 1 means a building that completely stops the UAV’s fall, while CS = 0 will be
used for the completely open areas. Obviously, this is a very simple analysis since the ability of
resisting at the impact with a drone depends on the kinetic energy and dimensions of the UAV
itself. This means that in this works, as in the ones that preceded it like [6] [17][18], we suppose to
consider only drones that cannot penetrate reinforced concrete buildings (and it is quite credible,
due to their typical dimensions).
Once CS is known, the sheltering factor value can be calculated as:

PS = CS ×
AC
Atot

× 10 (2.9)

18

2.3 – Mid-Air Collisions Risk Modelling

where:
CS = Sheltering Coefficient.
AC = Covered Area of the zone. Measure Unit: [m2]
Atot = Total Area of the Zone. Its dimensions depend on the map resolution. Measure Unit: [m2]
The multiplicative factor 10 is used to scale PS , as to make it compatible with the 2.7 equation.
Moreover, the term CS× AC

Atot
evaluates the probability that the drone falls in a covered area times

the capacity of the zone itself to reduce its energy.
One way to modify equation 2.9 is to consider, inside the same area Atot, different values for the
sheltering coefficient CS . Obviously this operation can be done only if very detailed information
about the sheltering of the zone are available. In this case, since we are dealing with mutual
exclusive events (the drone can falls only in one point), the probability of the union is equivalent
to the union of the probabilities [20], weighted by the corresponding CS factor. Then:

PS = (

n∑
i=1

CS,i ×
AC,i
Atot

)× 10 (2.10)

Where CS,i is the sheltering coefficient of i-th sub-zone with area AC,i, while PS is the overall
sheltering factor. In this way, we can exploit all the power of the cloud, using all the information
available.
Once both the impact kinetic energy and the sheltering factor are known, the P (fatality|exposure)
term can be evaluated, and consequently it becomes possible for the cloud system to evaluate the
risk for people on ground to be deadly injuries due to an unexpected end of the flight.
It seems interesting to plot the evolution of P (fatality|exposure) respect both to the sheltering
factor and the kinetic energy, using this time a set of typical operative values. In our idea, the
cloud based mission manager should work in a urban environment, where only small and light
UAVs are allowed to operate. According to the most common UAVs’ datasheets and also to [28],
we can assume to move from the littlest UAV (M = 0.1kg and R = 0.1m) to the biggest one
(M = 1kg and R = 1m) Supposing to have a flight’s height of 25m,the results is that we will
deal only with kinetic energies from 60J to 250J . This kind of analysis is useful in order to plot
P (fatality|exposure) and to understand the order of magnitude we are going to manage (figure
2.3). This plot shows that though the value of P (fataluty|exposure) is defined in the range [0,1],
practically it is bounded below 0.4. Moreover, it appears crucial the role of the sheltering factor,
which in the extremest cases (with Ps moving from 7.5 to 1) reduces the killing probability of
the UAV around the value 0.01. This numbers are perfectly coherent with the risk analysis we
expected to perform, since they will guarantee the flight only in very sheltered environment or for
very light drones. However, this kind of study will be better discussed in the Simulation chapter.
With the sheltering analysis, ends the study of the risk associated with an early flight termination
of the drone. Practically, what we modelled in 2.2 and in the other equation is the number of victim
per hour of flight that the UAV can causes, considering only the situation in which the crash on
ground is due to an internal failure of the drone or to an external event without considering in-flight
collisions.
The results of this analysis, mixed with the ones proposed in the next section, will be discussed in
the Simulation chapter.

2.3 Mid-Air Collisions Risk Modelling
In this part of the work we will try to provide a way to model the risk, for the people on ground,
to suffer deadly injuries due to the impact with an unmanned system, whose fall is caused by a
mid-air collision. Once again, according to the National Transportation Safety Board ([12]), when
we are talking about mid-air collisions we refer to:

19

2 – Ground Impact Risk Modelling

0 50 100 150 200 250

E [J]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
(f

|e
)

Ps=2

Ps=5

Ps=7.5

Ps=10

Figure 2.3: P (fatality|exposure) evolution

1. Impact between two flying UAV

2. Impact with a building

3. Impact with other obstacles, like trees, birds and electric lines

The risk modelling of this kind of situations has always been very complicated, especially in a
quantitative way since it requires the knowledge of a lot of information very often impossible to
know a priori, as for example the exact trajectory that all the other UAVs will perform during
their flights [6]. We are not going to consider possible collisions with airplanes, which will cause
many more death since they have passengers on board. This allows to make some simplification
in modelling the risk.
First of all, the only possible victims are the people on ground involved in the crash, in particular
the ones that are hit by one or more of the debris following the mid-air collision [8]. So, as before,
in the risk evaluation the number of people present in the zone of the crash have to be considered.
Furthermore, we can assume that the debris falling on people has the same probability of cause
deadly injuries that the whole UAV: this can be easily proved because we don’t know how the drone
will break and in how many different parts, so we simply have to consider the worst case scenario,
in which there is a main debris with almost all the initial momentum of the drone. Moreover, if
we suppose the kinetic energy doesn’t vary after the mid-air collision, the result is that also the

20

2.3 – Mid-Air Collisions Risk Modelling

P (fatality|exposure) doesn’t change.
According to [6], the frequencies of fatalities due to in flight accidents can be modelled as:

fF,MAC = Nexp × P (fatality|exposure)× fMAC (2.11)

where:
fF,MAC = frequency of fatalities due to mid-air collisions. Measure Unit: [peopleh]
Nexp = number of people exposed to the accident. Measure Unit: [people]
P (fatality|exposure) = probability that a person involved in the UAV crash will suffer fatal
injuries
fMAC = frequency of UAV mid-air collisions. Measure Unit: [accidentsh]
Since we are still considering the on ground victim, the maximum acceptable value for fF,MAC

remains the same of previous section (fMax), and have to be evaluated with the same main criteria.
Looking at equation 2.11, it’s evident the similarity with formula 2.2: for this reason, three out
of four elements of the previous equation have been already explained, and the next section will
focus only on the evaluation of the mid-air collision rate fMAC .

2.3.1 Estimate of the Mid Air Collision’s Rate: fMAC

The term fMAC , whose measure unit is the number of accidents per flight’s hour, is needed in
order to have an estimate of the number of collision that can happen during a mission. In this
case, we are just considering in this parameter the collision with other UAVs, buildings,and others
unpredictable obstacles. In the estimation of accidents’ rate, the most common approach is to use
statistical methods based on a huge database of the last years’ accidents. The results is a very
small number, in the order of 10−7 accidents

h [6][12]. In formula, we obtain:

fMAC = fb + fUAV + fTBE (2.12)

where:
fb is the collisions rate with buildings. In this term we consider all the collisions that could happen
between the UAV and not expected buildings. It’s important to underline that all the known
structures will be handle as no-fly zone by the risk map (this procedure will be explained later on)
so fb has to be used only to parametrize the number of collisions with buildings that are due to a
lack of precision (or error) in the geographical map.
fUAV is the rate of collisions with other Unmanned Systems flying over the same area.
fTBE is here to parametrize all the unpredictable collisions, as trees, birds,ecc.
Obviously, the measure unit for all this three elements will be the classical one for the frequency.
Both fb and fTBE can be only estimated in a statistical way, after many hours of flight on the
same area. Since both this parameters model apparently unpredictable events, it could seem
obvious to include the first one in the latter. In our opinion, instead, though they are effectively
working on casual events, they have however a complete different meaning: while fTBE measures
unrepeatable and really casual events, fb instead describes fatal accidents due to a lack or simply
wrong information. For example, a building with a known height of 30m that is instead tall 40m.
This will produce a series of repeatable crashes that have to be avoided by the cloud-based UASs
traffic manager. According to this, it’s important to maintain this two parameters split, since they
have a different meaning for the cloud system that have to handle both differently in order to
choose the safer path for the UAV.
In next section, the theories behind the evaluation of fUAV will be explained. The other two
parameters instead, that can be only estimated through an empirical series of flights, will not be
analysed again.

21

2 – Ground Impact Risk Modelling

2.3.2 Evaluation of the Collisions Rate Between UAVs: fUAV

Following the discussion, a way to model the frequency of impact between two UAVs in the same
area is needed. Please notice that we are still talking about risk prevision, this means that we
are not going to provide here algorithms for the collision avoidance: this work has been developed
by other members of the team, and consists in a collection of real time procedure implemented in
order to allows two drones whose trajectories are going to collide, to avoid each other. In the risk
analysis work instead, we want to model the frequency of collision that a drone will have flying on
a precise area, knowing a priori some interesting information. Practically, one approach is used a
priori to provide a risk value for the path planner. The other instead is used in flight, and provide
a series of way point for the drone to avoid others unmanned systems.
For what concerns the estimate of fUAV , many different techniques have been developed in order
to obtain a correct measure. The main problem in this case is to known all the trajectories of
the drones over a defined area, instant by instant, in order to be able to evaluate the number of
collisions.
According to [6] and [22] we can write:

fUAV = E(CT)× P (collision|CT) (2.13)

Where:
E(CT) is the expected value of conflicting trajectories in a given zone. Measure Unit: trajectories

h
P (collision|CT) is the probability of having a collision, given two conflicting trajectories.
One of the most used techniques for the estimate of E(CT) is the gas model [6] [22], where a
volume of airspace V around the drone is considered. In this model, every other aircraft that can
impact with the UAV is considered starting from its exposed area: then, the volume that it will
occupy during its trajectory is evaluated. In formula:

E(CT) =
Aexp × d
V × t

(2.14)

Where:
Aexp is the exposed area of the drone. Measure Unit: m
d is the distance that the aircraft will cover in the volume V. Measure Unit: m
V is volume of airspace around the UAV. Measure Unit: m3

t is the time that the other aircraft will spend in the volume V. Measure unit: h
A practical way to understand this equation is to visualize it, as in image 2.4. Unfortunately, the
use of this kind of model is almost always ineffective [6] since it requires the knowledge of the exact
trajectory of all the other UAVs flying in the same area. This turns out to be absurd for two reason:

1. Even if a single Traffic Manager was used to plan all the trajectories (so a completely cen-
tralized approach) for the drones flying in our scenario, it still cannot forecast all the changes
in the path that can happen in real-time, due to flight control systems or simply for external
unexpected events.

2. The Risk-Aware Map Manager here proposed aims to quantify the risk for an area, providing
different values of risk according to its resolution, then finding the path that minimizes it.
This conflicts with the gas model approach, because in order to evaluate the risk for the
drone to fly in an given area it requires to know when it will be there, but this information
will become known just after the risk analysis.

That’s said,it seems we have to find a new method to evaluate E(CT). An interesting approach,
that is both simple and conservative, is a "statistical worst case analysis": knowing how busy

22

2.3 – Mid-Air Collisions Risk Modelling

Figure 2.4: Gas model application

is a given area in the time window in which the mission take place, it’s possible to provide a
coherent value for E(CT). According to simulations([6]), a typical value for high busy areas is
E(CT) = 4 × 10−5CT

h . Obviously, this value greatly changes in function of the dimensions both
of the considered airspace and of the aircraft. This means, as for other elements already seen of
this risk-aware framework, that only a huge number of simulations (maybe a Montecarlo ones) can
provide a coherent value for E(CT). Finally, we can conclude the mid-air collision risk analysis
with the study of the term P (collision|CT), that was originally introduced to take into account
the possibility that one ore both the conflicting UAVs implement on board collision avoidance
algorithms [6]. Practically in our scenario we cannot suppose to know if and what algorithms are
implemented on other drones, so this analysis should focus only on the UAV which is going to
perform the mission whose risk we are evaluating.
In our opinion, two different methods can be implemented to estimate P (collision|CT):

1. Analyze the algorithms implemented in the UAV in order to quantify its real ability in
avoiding collision and provide a number.

2. Simply assuming P (collision|CT) = 0 when the anti collision systems are implemented and
P (collision|CT) = 1 otherwise.

Today, the state of the art in collisions avoidance algorithm guarantees optimal performances,
also in complex scenarios as the one we are working with. Simulations also proved their capability
(chapter 5): thanks to this, and to the cloud-based traffic manager which implements the algorithms

23

2 – Ground Impact Risk Modelling

(and the connection with the drones), we can actually easily suppose P (collision|CT) = 0 for every
flight.

2.4 Ground Impact Risk Modelling: A Complete Framework
According to the first part of this work, to properly evaluate the risk we studied both the possible
accidents’ situation: lost of control during the flight, due to a failure of the UAV, and mid-air col-
lisions. Each of this hazards can bring to a ground crash, which is the real danger for the people.
The results we obtained, already exposed, relays on a simple metric: to every area, depending on
its peculiar characteristics and on map resolution, the risk assessment procedure is able to associate
two number (one for each type of accident) that coherently represents the risk.
The last step to complete the risk assessment problem consists in unifying the two metrics previ-
ously introduced, in order to provide just one value to describe the whole ground impact risk. This
process seems to be quite simple, starting from this assumption: in every area, just one of the two
kinds of accidents can happen. This practically means that the ground impact can be caused or by
an in-flight lost of control or by a flight’s collision, not from both of them. Since we are building a
conservative risk analysis, between the two risk values the framework must choice the bigger one.
In formula:

fF = max(fF,EFT , fF,MAC) (2.15)

That can be developed as:

fF = max(Nexp × P (fatality|exposure)× FEFT , Nexp × P (fatality|exposure)× fMAC) (2.16)

And finally becomes:

fF = Nexp × P (fatality|exposure)×max(fEFT , fMAC) (2.17)

Because the first two elements are the same for both the accident’s situations.
Equation 2.17 can be addressed as the final ground impact risk formula, since it contains all the
parameters of interest, in both the crashes’ scenarios. For what concerns our operative environment
however, some considerations must be done, that strictly follow all the risk’s discussion.
Beside Nexp and P (fatality|exposure), we have also to deal with fEFT and fMAC , which are the
only two parameters that differentiate (and this makes sense) one hazard from the other. According
to what has been said, let’s resume them in few words:

fEFT it’s the frequency of ground impact due to an internal failure of the aircraft, or in general
to everything that can causes an unexpected end of the flight in a zone doesn’t equipped
for landing. Unfortunately (for the traffic manager, that have to manage risk), for small
and cheap drones as the ones that fly over cities this kind of event is "quite" common. In
particular, according to [17] the order of magnitude is around fEFT = 1

100
1
h .

fMAC it’s the frequency of ground impact due to an in-flight collision between two drones, or more
in general between the aircraft we are considering and any kind of static or dynamic object.
As discussed in section 2.3, main components of this term are unexpected obstacles on the
trajectory (static elements) or other aircrafts(dynamic). For what concerns the first, we can
assume (and will be explained in chapter 3) that the Risk-Aware Map Manager will take
into account almost all the possible criticisms, and only a few of them, due to misleading
information, could produce real risky situation. Moreover, thanks to the collective learning
of cloud systems, the RAMM will improve over time, finally reducing to very low values both
fb and fTBE .
On the other side, we have seen that collisions between drones, which are theoretically the

24

2.4 – Ground Impact Risk Modelling: A Complete Framework

most affecting component of fMAC , can be assumed to be null (or tending to) if we implement
(as we did) on the Traffic Manager proper collisions avoidance algorithms. That’s said, and
according with section 2.3, the order of magnitude of fMAC in a generic instant is around
10−7 1

h .

For this reason, since is always fEFT � fMAC , equation 2.17 can be simplified omitting fMAC :

fF = Nexp × P (fatality|exposure)× fEFT (2.18)

Starting from the latter equation, we are now able to provide an operative and quantitative def-
inition of risk, as victims per hour of flight, that respects all the common standards of the most
important national flight’s agency. It’s interesting notice that, since the risk is defined as a fre-
quency it varies in the range (0,+ inf).
With this theoretical basis, the Cloud-Based UASs Traffic Manager is capable of developing a a
complete risk assessment procedure. However, we can easily imagine that each mission will be
performed through areas with different risk, and the path planner has to guarantee the safety for
the whole mission. In detail, as exposed in the first section, its possible to consider safe all that
mission that provides a number of victims per hour less then fF,Max = 10−5 1

h .
How to move from the risk definition based on areas to the risk for the complete flight’s of the drone
will be exposed in the next chapter, after the formal definition of risk map and of the Cloud-Based
UASs Traffic Manager architecture.

25

26

Chapter 3

Cloud Based UASs Traffic
Management

3.1 Unmanned Traffic Manager: State of the Art

An Unmanned Traffic Manager (UTM) is a "traffic management" ecosystem for uncontrolled opera-
tions that have to be complementary to the classical aviation ATM. Main objective of such system
is to identify services, roles/responsibilities, information architecture, data exchange protocols,
software functions, infrastructure, and performance requirements for enabling the management of
low-altitude UAS operations [54].
Actually, different federal agencies (in USA) or international research teams (in Europe), both
with the support of the sector’s industry, are working to define standards, metrics and functions
of a global UTM (for civil operation but not only). Thanks to the Unmanned Traffic Manager,
a co-operative interaction between drones’ operator and the National Flight Authority can be es-
tablished, in order to have a real-time (or near-real time) organization of the airspace and finally
increase the safety for people on ground. Furthermore, the development of new cloud technologies
will allow to remove the man (in this case the UAV’s pilot) from the control loop: the primary
means of communication and coordination between the UTM and the aircraft will be through a
distributed network of highly automated systems via application programming interfaces (API),
and not between pilots and air traffic controllers via voice [54].
According to the International Civil Aviation Organization (ICAO), an UTM framework will in-
clude many components, three of which are crucial:

1. Registration System to allow remote identification and tracking of each UAS

2. Communications Systems

3. Geofencing-like system

In the rest of this work, how we addressed this features will be treated in detail, focusing, for what
concern this thesis, on risk assessment and mitigation.
In order to build a completely new traffic manager (that in our case can be called Cloud-Based
UTM), the study of the most important already existing ones has been fundamental. In this
section, a brief review of two different UTM will be performed.
NASA’s UTM project started in 2015, thanks to a partnership between the National Aeronautics
and Space Administration and the Federal Aviation Administration (FAA). The development of

27

3 – Cloud Based UASs Traffic Management

the work is coordinated by a Research Transition Team (RTT), which maintain in contact the two
agencies and their industrial supporters [54]. Quoting [55]:

The UTM system would enable safe and efficient low-altitude airspace operations
by providing services such as airspace design, corridors, dynamic geofencing, severe
weather and wind avoidance, congestion management, terrain avoidance, route plan-
ning and re-routing, separation management, sequencing and spacing, and contingency
management.

One of the attributes of the UTM system is that it would not require human operators
to monitor every vehicle continuously. The system could provide to human managers
the data to make strategic decisions related to initiation, continuation, and termination
of airspace operations. This approach would ensure that only authenticated UAS could
operate in the airspace. In its most mature form, the UTM system could be developed
using autonomicity characteristics that include self-configuration, self-optimization and
self-protection. The self-configuration aspect could determine whether the operations
should continue given the current and/or predicted wind/weather conditions.

NASA envisions concepts for two types of possible UTM systems. The first type would
be a Portable UTM system, which would move from between geographical areas and
support operations such as precision agriculture and disaster relief. The second type
of system would be a Persistent UTM system, which would support low-altitude oper-
ations and provide continuous coverage for a geographical area. Either system would
require persistent communication, navigation, and surveillance (CNS) coverage to track,
ensure, and monitor conformance.

Crucial points that emerge from this description are the autonomy of the system from humans,
its capability of determining if a mission has the safety condition to continue and its real time
awareness of the geographical, atmospheric and congestion condition of the airspace.
NASA tests its progress through a series of experiments (of increasing difficulty) called "Technology
Capability Levels (TCL)". The next one, UTM TCL3 is scheduled for Spring 2018 and will be the
second-last before the ending of the project.
The second and last UTM to present is the so called U-Space. It is born inside SESAR (Single
European Sky ATM Research), a plane wanted by the European Commission and leaded by a
public-private partnership (SESAR Joint Undertaking) whose aim is to overhaul the european
airspace and its traffic management. Differently from its US analogue, in this case the project is
more focused on the problem of ensuring safety in a urban context, also without having a negative
impact on the natural environment [56]. Quoting [57]:

U-space is a set of new services relying on a high level of digitalisation and automation
of functions and specific procedures designed to support safe, efficient and secure access
to airspace for large numbers of drones. As such, U-space is an enabling framework
designed to facilitate any kind of routine mission, in all classes of airspace and all types
of environment - even the most congested - while addressing an appropriate interface
with manned aviation and air traffic control. The U-space blueprint proposes the
implementation of 4 sets of services to support the EU aviation strategy and regulatory
framework on drones:

U1: U-space foundation services covering e-registration, e-identification and geofencing.
U2: U-space initial services for drone operations management, including flight planning,
flight approval, tracking, and interfacing with conventional air traffic control.
U3: U-space advanced services supporting more complex operations in dense areas such
as assistance for conflict detection and automated detect and avoid functionalities.

28

3.2 – Cloud Robotics

U4: U-space full services, offering very high levels of automation, connectivity and
digitalisation for both the drone and the U-space system.

Although quite similar to NASA UTM, in U-space are very interesting its focus on dense populated
areas and the division of the work in four services. Such kind of structure has also inspired a part
of our innovative framework, and will be exposed in next section.
Moreover, the European Aviation Safety Agency is working to propose a common EU-wide set of
safety rule that have to be proportionate to the risk of the operation: this introduces the need of
a risk assessment procedure (and also a metric!) as the one we described in chapter 2.
In general, from both the cases of study, some features emerged as crucial for an efficient Unmanned
Traffic Manager:

• Registration and Identification

• Model of the Environment

• Risk Assessment

• Path Planning

• Collision Avoidance

• Real-Time Re-Planning

• High Level of Automation and Connectivity

All of them have been addressed by our research team through the new possibilities offered by
cloud robotics, creating a framework that we called Cloud-Based Traffic Manager (CBUTM).

3.2 Cloud Robotics
The term cloud robotics was first used in 2010 by James Kuffner, an American professor and
researcher who has a great impact in the robotic field. According to him, the cloud robotics
is a new paradigm in which robots and automatic systems exchanges information and execute
computations using a common on line network. The main benefits of such a system are ([24] [4]):

Big Data Access to an almost infinite database. Practically, the cloud offers a huge library of
images, maps and data that every robot can access.

Cloud Computing A big computational power, that allows the engineers to design and use also
very demanding (and complex) algorithms in their robots. This massively parallel compu-
tation is used for example in on demand path planning, motion planning and multi-robot
collaboration.

Collective Learning The robots connected to the cloud can exchange information, trajectories,
ecc. The knowledge can be instantly moved from one element of the network to all the other
systems connected to it (or just to the interested ones). Furthermore, humans can share open
source code and data, augmenting human-robot interaction.

Nowadays, cloud robotics is being deeply used in many applications, as for example autonomous
mobile robots, medical and domestic robots and industrial systems. It’ s importance is growing up
day by day since it perfectly merges with two other advanced technologies, machine learning and
internet of things. After this presentation, it becomes evident the reason of the choice of a cloud-
based framework to realize the controller described in the previous section. On one hand, there is

29

3 – Cloud Based UASs Traffic Management

the need for everyone who wants to quantify the risk in real time to exchange data, information
and geographical maps. In our idea, each UAV connected can transmit\receive to\from the cloud,
updating the common shared information if its sensor perceive something different from what the
cloud expected.
This will provide an always updated and common database for the risk analysis.
Finally, the study of many path planning and collision avoidance algorithms has shown the need of
a very high computational power, that only a cloud framework can provides. For this reasons, the
ideas and results that will be presented in the rest of this work have been developed supposing to
use a cloud network. Thanks to the Joint Open Lab’s resources, we were able to prove and verify
the results on a real cloud simulator (see chapter 5).
Please notice that for the first development of this framework, the cloud is supposed to be ideal:
practically, this means no latency or package loss during the drones’ flight. This assumption is
very strong, since the wireless connectivity to the network is one of the most important issues of
the cloud systems. According to [5] Cloud-based applications can get slow or unavailable due to
high-latency responses or network hitch. If a robot relies too much on the cloud, a fault in the
network could leave it “brainless". Since we are working in a very risky environment, a fault in the
cloud can cause people’s death, that is obviously unacceptable.
Future works are going to integrate in the framework new algorithms for the managing of this kind
of situations on the on-board controller presents on each UAV.

3.3 Cloud-Based UASs Traffic Management: General Archi-
tecture and Assumptions

Cloud Based Traffic Management (CUBTM) is an air traffic management solution based on the
Cloud Robotics paradigm and designed for small commercials UAS systems. Its final aim is
the creation of a structured low-altitude airspace which allows drones operations also in urban
environments while preserving a certain level of safety for humans.
Starting from the actual state of the art in the field of ATM, CBUTM expanded this concepts in
a completely new way, finally removing the men from the flight’s loop and ensuring safety along
the whole mission. The logical structure we developed is the described in figure 3.1, where each
block has its own purpose, crucial for the optimal work of the others. The flow chart here depicted
shows both the user’s and the authority’s point of view.
Basing on what seen in the previous chapter, in this one we show the general architecture of
CBUTM and the strategies we adopted in order to accomplish our objectives.

The idea is to provide a central gateway to the unmanned missions, both for customers and
authorities. One key characteristic of CBUTM is that it work on a standardized risk assessment,
and so is able to operate assuring the same safety level for each possible mission in the city.
The authorities have at the same time a unified access to monitor and to intervene on all those
parameters that condition the mission requirements and so the characteristics these missions will
have.

In our opinion this feature would be of interest particularly in the short term, accelerating the
ongoing tests and so the adoption on large scale as well as it accelerates the velocity of the feedback
loop for control agencies.

But also changing parameters, the metric could be maintained. This in turn would allow differ-
ent instances of CBUTM, each one under the control of the respective authorities, and at the same
time a common language (the metric itself) among them. In this way, for example, different cities
could use different requirements basing on the characteristics of the local environment, while con-
tinuing be inside the parameters’ range imposed by the national authorities. The same mechanism
can be applied even on a larger scale, like among different states of the European Union.

30

3.3 – Cloud-Based UASs Traffic Management: General Architecture and Assumptions

On the other side, a unified portal to access to unmanned missions and to the relative services
is offered to the citizenry as well as to private company that would receive huge benefits operating
in this field.

Figure 3.1: Cloud Based UASs Unmanned Traffic Manager: Architecture

In order to understand the overall way of function of CBUTM, it can be useful to have a better
idea of what happen when a mission’s request is submitted to the system. For this purpose, figure
3.1 is the optimal reference to consider. Please notice that what we are going to do here it’s just an

31

3 – Cloud Based UASs Traffic Management

introductory overview of the working principles of our Traffic Manager: the detailed explanations
of each blocks will be treated in a specific section.
As said before, if a drone wants to fly in the city’s airspace it must interact before with the Traf-
fic Manager, in order to join correctly the CBUTM. The first step it has to accomplish is the
"Registration". In this phase, the UAV communicates all its structural parameters, goals and
requirements it must fulfil to successfully complete its mission. The cloud system, from its side,
assign to the drone a coherent level of priority, according to its need, and a "virtual identity" that
will be the drone image in the CBUTM. Then, it’s possible to start the procedure to identify if the
requirements of the Unmanned mission are compliant with the safety standard of the Authority
that manages the traffic manager. From here till the moment in which it will receive the allowance
to fly, the drone has only to wait, since all the procedure will be performed transparently by the
cloud itself.
Beside the "Registration" process, there is the Environmental Modelling. This phase is not trig-
gered by the mission’s request but instead happens at a constant rate till the CBUTM stays online:
it must have, at any time, an update and coherent geographical map of the urban environment
where the flights are performed. Although not available for now, it is reasonable to suppose that in
future municipal offices will share their data on the city structure. Furthermore, this information
are going to be merged by the "Environmental Modelling" block with the ones received in real
time by the flying drones: finally, the result is the environmental map of the city we were looking
for. Differently from the rest of the flow chart, this part of the system is independent from the
drone that has advanced the request, and remains the same for ever aircraft joining CBUTM.
Once the environmental map is available, and the registration process has began, it is mandatory
to start the "Risk Assessment" for the specific UAV. Practically, this means to apply the Risk
Modelling techniques (already seen in previous chapter) to build a point by point map of the risk
that associates at each area of the geographical map its corresponding risk value. How to do this
in detail will be described later on in this chapter.
The risk map, function both of the geography and the UAS’s constructive parameters, is going
to be managed by the "Map Generation" block, which consider it just as a layer of a more com-
plex cost map, built weighting all the other requirements of the unmanned mission. As output,
it provides a cost map, this time function of geography, drone’s parameter and mission standard
objectives. "Environmental Modelling", "Risk Assessment" and "Map Generation" together form
the Map Manager structure.
The map coming from "Map Generation" becomes the input of the "Mission Planner", whose final
aim it’s dual: on one side, it must find the best (lowest cost) path for the drone to follow, on the
other it must evaluate if this trajectory is compliant with the standard (for example of safety)
imposed by the National Authority. This two different souls, called "Path Planner" and "Path
Validator" co-operate in this block, since the output of the first is the input of the latter.
At this point, three different situation are possible. In the first, the mission’s requirements are
impossible to be satisfied: the only solution in this case is to abort the mission, that’s unfeasible.
The second possible way instead happens when the choosen trajectory doesn’t satisfy the require-
ments, but it’s still possible to change the weights of the cost map and re-calculate another path.
Finally, the last scenario is when the trajectory accomplish the mission’s request and the safety
bound, so that the drone can be authorized to fly.
In this case, a controller of the in-flight operations is needed: inside CBUTM, the two blocks "Tra-
jectory Following & Collision Avoidance" (TFCA) and "Navigation Management" are implemented
for this specific purpose.
The first, as the name says, is responsible for the high-level navigation control. In brief it is a
system executed alongside every mission and it’s responsible to continuously translate a path (the
output of the mission planner) into a proper trajectory (a path plus a time law). The generated

32

3.4 – Map Manager

trajectory has to be equivalent to the received path as long as this doesn’t imply that the dis-
tance from other vehicles, that clearly depend on time, goes below a safety threshold. In that
case, TFCA has to produce a trajectory different as much as necessary to avoid this circumstance.
TFCA works in parallel with the Navigation Management, to which it sends instruction and from
which it receives a feedback on the actual state.
Navigation Management system, which is the only one to be on-board, translates high-level in-
structions into low-level ones, interacting directly with electromechanical actuators and with other
devices onboard, like sensors.
That’s said, we finally conclude the introduction to the Cloud-Based UASs Traffic Manager. In
the rest of this chapter, some of the concepts and blocks just presented will be extended, according
to the logical purpose of this thesis. In particular, we will focus on:

• The construction of a Cloud-Based Risk-Aware Map Manager, which will include Environ-
mental Modelling, Risk Assessment and Map Generation blocks.

• Path Planning Algorithms (Mission Planning).

• Validation of the UAV’s trajectory, defining a Path Validator system (Mission Planning).

In this way, this thesis contribution aims to cover all the features of an UTM, from the moment
in which the registration process ends till the beginning of the mission.
Finally, one structural comment: though the Map Managing and the Mission Planning are logically
two different parts of the traffic manager, they couldn’t be treated separately, since they both share
the "risk-aware" characteristics and, furthermore, the latter works upon the output of the first.
For this reasons, they will be both discussed and constructed in this work.
An first explanatory flow-chart of the overall process is depicted in figure 3.2.

3.4 Map Manager

3.4.1 Introduction and Risk Map
All the theoretical background exposed in the previous chapter aims to provide the instruments
to quantify the risk, measured as the number of victims per flight hour, of an unmanned mission.
As already discussed, the risk is both function of space, since it changes according to the area we
are considering, and of time, because we supposed to be able to handle useful information for the
mission (as population density for example) in different ways according to the time in which the
flight is performed. Finally, the risk also depends on the building parameters of the UAV itself, as
mass, maximum speed and collision avoidance algorithm implemented on it.
Starting from this concepts, the first step the Traffic Manager has perform to ensure safety is the
creation of a risk map for the drone’s flight: this map has to be built on the real geographical map
where the mission takes place, but it has to contain in every point the corresponding risk value
for people on ground when an UAV overflights that area. The resulting map will be analyzed by
the path planner in order to find the best trajectory for the drone, among al the possible path,
between the starting point A and the goal B.
The core of this chapter will be to explain how and why we decided to build this map. Moreover, we
will pass from the definition of risk of an area to the overall mission’s risk, providing all the means
to pass from the theoretical part (chapter 2) to the implementation part (chapter 4). Finally, also
the Path Planner and the Path Validator will be treated.

Definition 5. The mission’s risk map for an Unmanned Aerial Vehicle(UAV) is the map that
for every point of the geographical area were the mission takes place associates the corresponding
value of fF , function of time, space and building parameters of the aircraft.

33

3 – Cloud Based UASs Traffic Management

Figure 3.2: Risk-map construction flow-chart

fF will be evaluated with the risk assessment techniques exposed in chapter 2.
For a practical reason, though we are talking of punctual values, the risk map will not be really
punctual, but instead divided in sub-areas that will be considered uniform from a risk analysis’
point of view. This choice has two reasons:

1. Building a "point resolution" risk map requires a really high computational capacity. Al-
though we could handle this effort thanks to the cloud system, it seems however useless: no
one of the information required to evaluate the risk are defined in a point, but instead have
to be considered in areas.

2. Till now we have not consider the UAV’s dynamic. However, since the risk map will be used
by the path planner to provide a trajectory for the drone, it must be feasible for the UAV:
a punctual path planner will be useless because it will not guarantee the feasibility of the
flight.

Basing on this idea, we decided to build a risk map with a constant resolution of 25m2: the
result is a square grid were each sub area has its proper risk value. The path planner will provide
as coordinates for the UAV the coordinates of the center of the square. Please notice that the
dimensioning of the areas has not been causal, but it has been decided according to the works
and studies of prof. Guglieri on the typical flight characteristic of an urban drone. Practically,
the 25m2 squares guarantee the manoeuvrability of the UAV. However the map resolution can

34

3.4 – Map Manager

be easily modified during the implementation part, to better fit the standard requested by the
mission’s manger.
The idea of constructing a map of the risk was made possible (and more effective) by a particular
feature of "grid map", a C++ library which we decided to use in the implementation phase: the
layered structure. Without entering in detail that will be treated in next chapters, let’s show the
potentiality of this kind of environment.
According to definition 5, the risk map is a 2D plane, divided in cell, where each of them contains
the risk value fF,i of the corresponding geographical area. So, for each zone the cloud framework
will calculate the corresponding risk evaluated at the flight’s height h with equation 2.18, so it has
to know and handle:

1. Population density, varying in time

2. Mass of the drone

3. UAV’s flight height

4. Sheltering Factor of the area

5. Frequency of ground impact due to an early flight termination

Furthermore, the cloud have to know the number of no-fly zone on the map and where they are
located.
Each of the above information can be seen as a map itself, since as the risk it is associated to each
and all the cells of the map. The results is a layered structure, where each layer of the map is
a map itself, containing the geographical distribution of one of the parameter of interest for risk
assessment: the risk map is just the last and most important of the layer, obtained working on
data contained in the layer below.
Knowing all this information, we can collect them using formula 2.18 and find out the risk fF for
each sub-area of the map. The result of this operation, graphically evident in figure 3.3, is the
risk map for a particular drone, at a given time and flight’s height. At this point, one important
assumption has been done by our work group. Since we worked on this project from scratch, in
order to simplify the analysis and to reduce the computational power required, we supposed to
have a planar flight: the Unmanned Vehicle has its height of flight on the z-axis, but it cannot
modifies it. Practically, this means that it is possible to consider it as a planar robot moving on
the xy plane. Please notice that for different heights the risk manager will provide different risk
value: for example, a drone flying 10m from the ground will encounter many more buildings than
one flying at 50m, but will have a lower impact kinetic energy. From an implementation point of
view (detail in following chapters) this means to cut the geographical map at the drone’s height
and build the risk upon it.
The importance of this results must be stressed, since the first step to have a safe (and acceptable
from a legislative point of view) fly is to have a detailed and coherent risk map. Working on it, the
path planner will produce the safest path among all the possible ones, and with a particular metric
(that will be introduced later on) it will be possible for the cloud traffic manager to compare it
with the safety standard required by the national authority.

3.4.2 Environmental Modelling and No-Fly Zones

The first step to produce a coherent map of the risk of a given scenario, is to model the environ-
ment as accurately as possible, giving a particular attention to the buildings. As introduced when
dealing of mid-air collisions frequency, in a urban context a possible cause of crash is obviously the

35

3 – Cloud Based UASs Traffic Management

Figure 3.3: Example of Risk Map. Every area of the map has its own colour and height coherent
with the risk value calculated. Red squares are no-fly zone

impact with palaces, that have to be managed by the Risk-Aware Map Manager.
3D models of the world are today available on web, but the most famous one is property of a
single company, which doesn’t allow the sharing of its data. For this reason, a set of data less
accurate but open source has been used in CBUTM: Open Street Map (OSM). According to their
own definition:" OpenStreetMap is a map freely modifiable of the whole world. It allows anyone
to visualize, change and use geographical data with a collaborative approach". This means that
volunteer updates the map, that are provided as .osm files. It’s interesting to notice that thanks
to them, it’s possible to create a really effective Cloud-Based Traffic Manager that, once it will be
on-line, will be capable of updating with its drone the maps received. This is a really collaborative
approach.
However, OSM only provides 2D maps, useful for cars’ path planning but less for drones, which
are interested in buildings’ height. To solve this problem, another open source software have to
be used: OSM2World, which is "a converter that creates three-dimensional models of the world
from OpenStreetMap data. It can be used as a stand-alone tool, on a server or as a library in Java
programs."
Finally, 3D model of the city is obtained, which can be freely modified and used by the cloud. At
this point, a cut on the map have to be done, to find if ad where there are buildings taller than the
UAV’s flight altitude: in this case, they will be treated as no-fly zone, which have a special metric
exposed in the rest of this section.
Beside the pure structural information, also the distribution of population (density) and the shel-
tering factors information have to be collected as layer of the map, in order to be capable of
evaluating risk with formula 2.18. How to derive sheltering capability from 3D models (or images)
will be treated through neural network in another thesis works. In here, let’s suppose to have
already this information. Finally the risk map (or risk layer) will be built applying to every cell:

fF,i = Ni,exp × P (fatality|exposure)i × fEFT,i (3.1)

36

3.4 – Map Manager

Where each element is about the i-th cell. What emerges during the building of the risk map, an
this will be evident when looking at the simulation, are two different "risk situations" that the
cloud system have to handle when evaluating the risk of a particular area. On one side there are all
the map’s zones whose risk can (and have to) be calculated with the classical formula now exposed.
On the other side instead, there is a set of special areas that, for different reasons, must be managed
by the cloud as no-fly zone with fF = inf. This implies that for such areas the standard equation
must not be applied, while the risk manager have to recognize them and assign the proper value.
This issue, that can seems simple, turned out to be quite tricky since it introduces exceptions in
the regular risk assignment procedure
So, we must introduce a metric to handle and include them in the risk map. First of all, let’s
discuss what are the no-fly zones, and why we must manage them.

Definition 6. A no-fly zone or no-flight zone (NFZ), or air exclusion zone, is a territory or an
area over which aircraft are not permitted to fly.

Historically, the no-fly zone were introduced in military context, acting like a demilitarized zone
in the sky, and usually prohibit military aircraft from operating in the region. In the last years,
however, with the growth of the civilian use of Unmanned Systems, this terms started to be used
also in urban flight’s environment. In particular, it is possible to distinguish two kind of no-fly
zone:

Law-Imposed No-Fly Zone are all the areas where the drone cannot fly over due to some
legislative restriction. For example, important sportive events (like 2012 Olympic Games in
London) are very often considered as no-fly zone. This kind of no-fly zone must be handle
by the cloud framework merging information available on internet and data manually added
from an operator. Notice that this kind of NFZ still remain valid also varying the altitude
of fly.

Structural No-Fly Zone in this category it is possible to include all the no-fly zone that have to
be consider as that because there is some structural item (natural or artificial) that impede
the flight. The typical example of such element is a building taller then the height of the
UAV flight: it seems obvious that, if the drone will try to fly over the area occupied by the
building, it will fall down. Notice that for this kind of NFZ, varying the altitude can varies
the number of no-fly zone.

Practically, from a risk map point of view, this means an area with estimated fatality rate fF = inf.
How to manage a no-fly zone has created many discussion inside the team that developed this
project, because every different way has its pros and cons, but in the end we decided to follow the
most conservative idea. In the following part, some of the methods we studied are exposed. In
order to better understand them, let’s consider just the no-fly zones generated by obstacles that
can get in the way of the drone: practically we are working with an area which inside has one or
more (it depends on its dimensions!) buildings taller then UAV’s elevation.
The first approach we tried to implement was a probabilistic one that, starting from the covered
area taller then the flight altitude, provided the number of accidents per hour that happened flying
over that zone. In order to really evaluate this parameter, a Monte Carlo simulation has been
implemented. Let’s take into account that flying in a zone that contains one or more obstacles
doesn’t implies certainly a crash, since this event depends on the dimension of the buildings both
respect to the area considered and the UAV length.
The main advantage of this approach is that it doesn’t need to handle no-fly zone: to each area
that has a tall building a frequency of collision can be evaluated, then it can be added to the
formulation of fMAC previously exposed. The result is that such area has a bigger risk value then

37

3 – Cloud Based UASs Traffic Management

the other ones, and will naturally be avoided by the path planner. In this case, no special way to
manage the no-fly zone has to be introduced.
However, according to the meeting at TIM’s JOL Crab, we were convinced by our supervisors to
avoid this statistical methods. There a few but very compelling reasons to do this. First of all, it
soon emerged the uselessness of treating "probabilistically" known obstacles: trying to estimate the
number of collisions that an UAV will have flying over a zone where we known there is a building
taller then the drone’s height seems useless. Simply, we must avoid that UAV will fly over it, and
to do that we must introduce in the map, and consequently in the path planner, the concept of
no-fly zone. Furthermore, implementing the Monte Carlo simulation we noticed that it is very
hard to obtain coherent results, because they are strictly depending on the UAV’s trajectory (for
example a rectangular building is more likely to be hit by the UAV if it comes from the direction
perpendicular to its long side) and other external parameters, as the wind, not known.
The most conservative approach proposed, that is also the one we decided to use, is the following:
each sub-area, which we suppose is a 25m2 square, has its own risk evaluated with equation 2.18.
However, if inside that area there is even only a little part of a building that is taller then the
UAV’s flight height, then all the area is considered as no-fly zone. This means that its risk value
changes from it actual one and becomes inf. Practically, this means that all the area with buildings
will be surely avoided by the path planner. The ony way in which there may be a collision is if
the information on the buildings height and coordinates are wrong: this case however, is already
taken into consideration by the fb term in equation 2.11.
This approach has two interesting advantages:

1. We are still performing a conservative risk analysis. In the worst scenario, we marks as no-fly
zone an area that contains just a small part of a structure. This is negative on one side,
because it can brings to an over conservative approach, but on the other it seems good since
it creates "naturally" a buffer safety area around the buildings.

2. It automatically prevents the path planner to chose trajectory that may involves collisions
with buildings. Thinks at the following situation: two ways are available to go from point A
to point B, the first uninhabited but with very high buildings while the second is normally
populated with the typical 30m buildings. Since in the first case we have Nexp = 0, the risk
will be null, so the path planner will choose the less risky trajectory, but it will cause almost
surely a collision and a crash for the UAV. With the introduction of the no-fly zone instead,
we prevent the path planner to consider trajectories that are practically unfeasible for the
drone.

3. It allows us to handle also the "Law-Imposed" no-fly zone in the same way. For all the areas
that are not geographical obstacles emerging from the map,indeed, a special way to mark
them as no-fly zone was required, since no Monte-Carlo simulation could be performed (in
this case it’s not a matter of collision to avoid, but simply fly over prohibition).

In any case, the problem of creating and handling the no-fly zone has not a great impact on the
real mission’s scenario, since just a really small part of all the buildings in a city is taller then the
flight’s height, that usually is not less then 25m. However, during the implementation part some
issues occurred.
Practically, while implementing the software we simply cannot impose fF = inf. At the end of this
section, a way to provide an equivalent value for the no-fly zone will be presented.
The theory just exposed to evaluate the risk of a trajectory provides also the instruments to handle
the no-fly zones. As said before, a no-fly zone has to be considered as an area with risk equal to
infinite, but this is impossible to impose. Instead, we must find an equivalent finite number to
define this "special" areas. The idea is the following: every path that contains a no-fly zone has
to be considered unfeasible, and rejected by the mission acceptance routine.

38

3.4 – Map Manager

This must be true despite all the other risk value of the path. Practically this means that though
the UAV’s path is zero risky except for the no-fly zone (this is a limit case) it has to be refused by
the cloud framework. In figure 3.2 that extrem case is shown, where the grey areas have fF = 0,
the black area are the no-fly zones and the red square are the starting point and the goal. As

Figure 3.4: No flight zones’ risk definition

we see, we are in a situation in which the path includes an area where the drone cannot fly. If
it was possible to set fF = inf, then we would not have problems since the planner would have
automatically avoided this area itself. Instead, at a practical point of view, this is not possible.
So, what is the value of fF that insures this path will be avoided?
The first approach we developed was to impose:

NTraj ≥ NMax (3.2)

Where NTraj is the number of estimated victims on a given trajectory, obtained multiplying each
cell’s risk frequency (fF,i) by the corresponding time (τi)spent over it:

NTraj =

n∑
i=1

fF,i × τi = fF,NFZ × τNFZ (3.3)

Where:
fF,NFZ is the risk of the no-fly zone, to be defined.
τNFZ is the time spent by the drone over this area, already defined and constant.
So, we finally obtain:

NTraj = fF,NFZ × τNFZ = NMax → fF,NFZ =
NMax

τNFZ
=
fF,Max × τMiss

τNFZ
(3.4)

Where τMiss is the total time length of the mission.
In this case, however, some problems emerge, that seriously affects the coherency of this approach.

39

3 – Cloud Based UASs Traffic Management

Let’s enumerate them:

1. We don’t know τMiss a priori, because it depends on the path decided by the path planner.
Practically, different paths cause different τMiss, but the no fly zone has to be imposed in
the map generation phase, before that the trajectory has been chosen. An idea to overcome
this issue is to impose τMiss = τAut, where τAut is defined as the maximum flight autonomy
of the Unmanned Aerial Vehicle, but however this doesn’t really convince at all.

2. This approach allows the drone to fly over areas with local risk fF,i ≥ fMax, since it’s enough
that the overall trajectory goes also in very low risky zone to have still NTraj =

∑n
i=1Ni ≥

NMax. This also implies that longer trajectories will be preferred in the validation phase.

For all this reasons, that method was discarded.
The idea we decided to implement is the simplest, but also the more effective. Practically, what
we need to define a no-fly zone is an upper-bound for the risk: the NFZ has to be the more risky
area, and both the path planner and the validation blocks has to recognize it as different from the
other areas.
Supposing for example fNFZ = 10−5 people

h , this value will be the greater for all the risk map, and
has to be treated differently: in a very practical way, every path chosen that contains one ore more
of this areas will be automatically discarded (see validation section for details). It’s interesting
to notice that having an upper-bound for the risk is also useful because it allows us to normalize
the risk map, which values are in the range [10−7, 10−5]. Also this part will exploited later on.
Following this idea, it seems obvious that the risk value to assign to a no-fly zone will be:

fF,Nfz = fmax (3.5)

So the upper-bound for the risk, that is equal to fF,NFZ , is the one imposed by the legislation to
consider a flight safe.
Finally, every area that, for any reasons, as to be consider a no-fly zone, will be marked with a
risk fF,i equal to the maximum acceptable risk imposed by the National Flight Authority. The
Cloud-Based UASs Traffic Manager, which knowns this value, can easily perform this operation:
automatically for what concerns structural NFZ, or through an external input in case of law-
imposed ones. Later in this chapter we will see how this "marker" is used by the Path Validator
to find out not valid trajectories. Practically, with formula 3.5 we found a finite upper-bound for
the risk.

3.4.3 Risk Map Normalization

Once the risk map is completed, it can be imagined as a huge matrix, where each cell contains a
risk value in the range of [10−7, 10−5] more or less.
The idea of normalizing the values of the risk map came out for two reason. The first is a matter
of comfort: working with very low value can be stressing, especially when this little variation has
to be recognized on the map through changes in colour or height. The second reason instead is
more practical, and arises when we tried to unify the risk with other cost variables in a general
cost function (see section 3.4.7): for this operation, a known range for the risk is need, and has to
be equal to the one of the other elements.
According to the classical probabilistic definition, the normalization process is:

Definition 7. The normalization of ratings means adjusting values measured on different scales
to a notionally common scale, often in the range [0,1].

40

3.4 – Map Manager

According to this and to what exposed in previous sub-section, before developing the theory
behind the no-fly zone the normalization process wasn’t possible, since no upper-bound for the risk
existed. Calling x = fi

fMax
the ratio between a generic risk value and it’s upper-bound, this value

is the simplest way to linearly normalize the risk between [0,1]. Furthermore, since we commonly
decide to use variables for the cost function in range [0, 100], the first normalization technique
used was:

Ri =
fi

fMax
× 100 (3.6)

Where Ri is the risk value of each cell. Please notice that after applying this operation, the risk
becomes a pure number, without measure unit. This has no impact on the path planner, that can
use the risk as a weight from a cell to another. When validating the trajectory,instead, the time
spent on each area has an important role (as explained before): It will be easy at that point to
convert back from Ri to fi.
In figure 3.5 the results of this operation is shown. As expected, the result is a line from 0 to 100,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
i
 [ab/t] ×10

-4

0

10

20

30

40

50

60

70

80

90

100

R

Figure 3.5: Linear Normalization of risk R respect to original risk value

while the x-axis move from a generic lower-bound for the risk (in this case 10−7) to the upper-
bound, that in this case its supposed to be 10−4. Although the results seems good, when practically
working with this value an issue occurs: real risk values, moving in the range [10−7 , 10−5], are

41

3 – Cloud Based UASs Traffic Management

still too small with this normalization. This is obviously due to the fact that the upper-bound is
too bigger than them. In the next table some numerical result. From this examples, it emerges

fi R

10−7 0.1
10−6 1
10−5 10
10−4 100

Table 3.1: Risk normalizzation examples

that a great part of the normalized risk are mapped in the range[0.1,1], that it’s quite useless: a
different kind of normalization has to be found.
An interesting idea came out from the image processing techniques, and consists in using the
gamma correction technique as a normalization method.
According to [32]:

Definition 8. Gamma correction, or often simply gamma, is the name of a non-linear operation
used to encode and decode luminance or tristimulus values in video or still image systems. In
the simplest case, the gamma correction operation is defined as: Vout = A × V γin where Vin is the
non-negative input and Vout the output, typically in the range [0,1].

In the most common case, it is imposed A = 1. For what concern the gamma parameter, it has
to be chosen according to the need of each particular case: changing its value changes the shape
and the curvature of the gamma function. When γ < 1 the non-linear operation is called gamma
compression, otherwise gamma expansion.
In our case, we found the optimal formulation:

Ri = (
fi

fMax
)

1
2 × 100 (3.7)

So we are in the case of a gamma compression with gamma factor equal to 0.5.
The function plotted in figure 3.6 has a very huge shape for small number, while it becomes linear
when approach the upper-bound. In this way, small number are no more mapped in range [0.1,1].
Let’s have a look to some examples, in table 3.2. This normalizing approach seemed optimal to

fi R

10−7 3.1
10−6 10.3
10−5 31
10−4 100

Table 3.2: Risk Gamma correction

us, and it’s the one we adopted in CBUTM. However, as everything in this framework, it can be
changed according to the particular preferences of each user.

3.4.4 Risk Assessment: Analysis on UAVs Building Parameter
Now that we provided all the instrument to perform a correct risk assessment and create the
corresponding risk map, it is time to perform some calculation to show how the risk varies in

42

3.4 – Map Manager

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
i
 [ab/t] ×10

-4

0

10

20

30

40

50

60

70

80

90

100

R

Figure 3.6: Gamma Correction of risk R respect to original risk value

function of the most important building parameter of an aircraft. In this sense, we will show
the differences between quadcopter and fixed wing, increasing their length and masses. The final
results will be a quantitative constructive bound, that industries should take into account during
the design process of their drones.
Obviously, this results have not to be intended as a general rule, since their are just an example of
risk assessment, based on assumptions (for example on the density of the area) that are not always
true. What we are going to present has a dual effect, a practical one as example of risk evaluation,
and a theoretical one as case of study for a generic urban scenario.
In order to better understand the rest of this section, it is really important to have a complete
learning of the concepts and equations exposed in chapter 2, because for brevity reason it is
impossible to explain again all the terms of each formula.
First, let’s have a look to the main characteristics of the urban environment (in figure 3.7 a picture
of a typical flight area). One of the main aspects that differentiate the cities from all the other
flight situations is the massive presence of people, that for our framework means risk. In a city like
Turin, an average value for the population density is ρ = 6000 ab

km2 that must be converted in the
proper measure unit: ρ = 0.006 ab

m2 . Since the example we are developing is static, we can assume
ρ constant in time and equal almost in all the city: we are trying to provide bounds in nominal

43

3 – Cloud Based UASs Traffic Management

Figure 3.7: Vision of a typical urban scenario

conditions, that in our case means always using the most conservative values.
In order to calculate the risk, its mandatory to build a grid, in which each cell will have his own
risk value. As we said, a good dimension can be ATOT = 25m2, that is a quite big area for a small
drone. Starting from this, it is possible to evaluate the second crucial geographical parameter: the
sheltering factor. A previously discussed, to evaluate PS we have to know the shelter coefficient
of each element in the map, and the area it covers. A rough but useful division is the following:
Half of the Area is covered by Concrete Buildings: Cs = 1.
A Quarter of the Area is covered by tall trees: Cs = 0.5.
The last quarter is empty, for example streets. Cs = 0 .
Now we can apply the formula:

PS = (

n∑
i=1

CS,i ×
AC,i
Atot

)× 10 = [(1× 0.5) + (0.5× 0.25)]× 10 = 6.25 (3.8)

The result is a typical averaged value of sheltering in a urban environment, considering the most
common element that appears in the scenario and the mean area they occupy.
We end the geographical analysis underling that we are supposing to not fly over a no-fly zone:
this is obvious, because such a zone will categorically deny any kind of risk assessment.
At this point, we can move to the Unmanned System analysis: since what we aim to achieve is
the risk evolution in function of mass and length, this two parameters will remains variables and
not specified yet. However, a couple of consideration on the drone have to be done. The UAV
is supposed to fly at an height of 25m, considering as 0m the level of the street. This height
guarantees both to be over a great part of the buildings, and not having a too big acceleration in
case of fall (the higher is the drone, the harder is the crash). Moreover, we can assume that in case
of failure, the drone will be in a free fall condition (no initial velocity along y-axe): practically, we
are considering drone capable of recognizing internal failure and, if the situation appears critical,

44

3.4 – Map Manager

able to stop their engine. In this case, the kinetic energy at the impact can be evaluated as:

Eimp =
1

2
×MV 2 = M × g × h (3.9)

Where M is the drone’s mass, variable, and g the gravity’s acceleration.
Since we calculated both the kinetic energy and the sheltering factor, it is now possible to evaluate
the probability of having a fatality given a crash, in function of the mass of the drone. This
interesting result is shown both in formula 3.10 and in figure 3.8.

P (fatality|exposure) =
1− k

1− 2k +
√

α
β × (β

Eimp
)

3
PS

=
1− k(m)

1− 2k(m) +
√

34000
34 × (34

6.25)
3

6.25

(3.10)

Where both k and Eimp are function of the mass.
Once the drone falls, the area of exposure have to be calculated with the formula:

0 1 2 3 4 5 6 7 8 9 10

Mass [kg]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
(f

|e
)

Figure 3.8: Evolution of P(fatality | exposure) in function of Mass

Aexp = 2× (rp +RUAV)× d+ π × (rp +RUAV)2 (3.11)

where:
rp = 0.23m = mean vaulue of human body radius

45

3 – Cloud Based UASs Traffic Management

RUAV = max linear dimension of UAV, variable
d = Hu

tan γ = orizzontal distance travelled by UAV during the fall. Measure Unit: m
Hu = 1.75m = mean value of human height
γ = glide angle = 45°
The glide angle only exists for fixed-wing drones, since quadcopters are supposed to fall on their
vertical line (d = 0).
In this case, the variable parameter is the length of the UAV RUAV . Since we are working with
civil drone, it is possible to suppose a variation from 0.1m to 10m (that is a quite huge US) and plot
it to see the evolution of impact area in function of drone’s linear dimension. What emerges from

0 1 2 3 4 5 6 7 8 9 10

Length[m]

0

50

100

150

200

250

300

350

400

E
x
p

o
s
e
d

 A
re

a
 [

m
2
]

Fixed Wing

Quadcopter

Figure 3.9: Evolution of impact area Aexp in function of drone’s length

figure 3.9 perfectly matches with the theoretical considerations we did. First, it is interesting to
notice that, as for P(fatality | exposure), the evolution of Aexp respect to the Length is not linear.
Then, the superiority of quadcopter (in term of safety) that we supposed from the equations also
becomes evident, since for every value of Length the exposed area is extremely lower.
Finally, we impose UAV’s mean time between failure equal to 100h: consequently, the rate of
crashes will be λ = 0.01. At this point, we are able to compute the risk of the cell, applying the
famous risk equation:

fF,i = Ni,exp × P (fatality|exposure)i × λ = ρ×Aexp × P (fatality|exposure)i × 0.01 (3.12)

46

3.4 – Map Manager

That finally becomes:

fF,i(m, l) = Aexp(l)× P (fatality|exposure)i(m)× 6 ∗ 10−5 (3.13)

Where Aexp(l) and P (fatality|exposure) are variable and in function respectively of length and
mass.
Before evaluating the risk with equation 3.13, we have to impose an upper bound for the risk,
the so called fMax parameter. It’s choice is demanded to the flight authority, which knows the
level of safety for unmanned mission they want to impose. The actual state of the art for manned
aviation imposes a value of fMax = 10−7, that however is too conservative for drones. Following
the previous section, for this analysis has been chosen a less stringent value of fMax = 0.0001.
Obviously, independently from fMax , the risk analysis works well since it has been developed in a
parametric way. The only difference is that with a more conservative risk’s upper bound, to many
more drone will be denied the authorization to fly.
In any case, we proved that risk is both function of RUAV and Mass. This makes us capable to
plot in a 3D space the evolution of risk respect this two parameters. The results is shown in figure
3.10. The red plane cuts the curve at an height of fF,i = fMax = 0.0001: this means that all the

0

10

0.5

1

1.5

8
10

2

R
is

k
 [

a
b

/h
]

×10
-3

2.5

6 8

3

Length [m]

3.5

6

Mass [kg]

4

4

4
2

2

0 0

Figure 3.10: Evolution of Risk fF,i in function of quacopter drone’s length and mass

drones whose building parameters’ combination brings to the upper part of the curve cannot be
authorized to fly. Although the upper bound is not too much restrictive, however just a few kind
of UAV can fly on urban scenario, in detail only the ones that are more or less around the length
of 1m and the weight of 1 kg. The curve related to the fixed wing has not been reported, since it

47

3 – Cloud Based UASs Traffic Management

has the same shape but is obviously still more restrictive.
To complete the analysis of the risk in function of the UAV’s building parameters, we can apply
our risk assessment’s technique to a set of common civil drone. Remembering all the conditions
(urban environment, ecc.) previously exposed, the result we obtained, including the normalized
risk Ri, are presented in table 3.3. Once again, the fixed wing drones arises as less safe than the

Name Type Mass[Kg] Length[m] fF,i Ri

Mavtech AGRI 1900 Fixed Wing 2.5 1.9 1.16× 10−4 100
MavTech Q4E Quadrotor 2.6 0.6 1.1874× 10−5 34.45

DJI Phantom 4 PRO Quadrotor 1.388 0.35 3.9× 10−6 19.77
Parrot Bebop 2 Quadrotor 0.5 0.38 1.8945× 10−6 13.76

Husban FPV Fly Hawk Fixed Wing 0.18 1.2 2.96× 10−6 17.21
Drone ST 4 Quadrotor 0.035 0.165 0 0

Table 3.3: Common drones risk assessment

others. Moreover, it is interesting to notice that the Drone ST 4 is too small to have dangerous
effects on people (Kinetic Energy less than 34J)and its risk is equal to 0.

3.4.5 From Static to Dynamic Risk Map

At this point, we provided all the instruments and techniques to correctly generate a risk map for
an Unmanned Aerial Vehicle. Starting from the risk assessment concepts, we create a series of
methods to encapsulate all the information on a certain area and gives back a number to represent
the risk of flying there.
What we did is not so obvious since for the first time a cloud system, already programmed and
simulated, is capable of collecting all the data and analyze them in a coherent way. This is the
first step to a common standard to use in the drone’s flight.
However, what we realized it’s a kind of open chain system: all the input are provided to the "Map
Generator" block, that gives as output the proper risk map. In figure 3.11 the actual architecture.
This framework has many limits. The first is the impossibility for the drone to provide data back
to the cloud: it just receives the map, and cannot co-operate with the cloud, updating it with the
information provided by its on-board sensor (see also figure ??). Furthermore, according to figure
3.11, the input are received by the cloud just one time, before the mission starts. Once it provides
the risk map to the UAV, its work ends. This means for example that real-time updating on the
input are not handled by it, so are not communicated to the drone.
Many times during the previous sections we explained that many of the variables taken into account
should be in function of time. Once again, this part is crucial to have a real operative safety
framework. Our final aim is to have a dynamic risk map, that changes in times according to the
variation of its input. In figure 3.12 this architecture its represented. It’s important to notice that
on one side there is the "input" block, that in this case instead of being static, can dynamically
update the risk map according to new information. For example news about a particular event, or
IoT based sensors distributed in the cities. On the other side there is the drone itself, that receives
the path to follow and while flying can detect with its sensors on board if there is something
different from what expected by the map. An example can be a building, not present in the risk
map (maybe for a lack of information), but detected in real time by a laser scan on the UAV. What
we propose here is that the aircraft not only avoids the obstacle (with the algorithms developed
by my colleagues) but also update the cloud information, in order to have an every time more
coherent and precise risk map. The system we developed already is capable to handle time varying

48

3.4 – Map Manager

Map Generator

UASCloud FrameworkInput

Environment /
IoT

Statistical Data

Internet

Path PlannerMap Generator

Cloud Framework UAS

Figure 3.11: Open chain cloud framework

Map Generator

UASCloud FrameworkInput

Environment /
IoT

Statistical Data

Internet

Path PlannerMap Generator

Cloud Framework UAS

f(t)

Figure 3.12: Closed chain cloud framework

input, and consequently updates the map. For what concern the UAV’s sensor, instead, a more
complex discussion must be done. Today, in many application in which UAS are used there is no
need of a risk map, and the fly is almost completely sensor based: when an obstacle is detected,

49

3 – Cloud Based UASs Traffic Management

the proper avoidance algorithm is used. According to this point of view, one may argue that all
the other stuff presented is useless, or at least redundant. Some answers to explain why we didn’t
consider only on board sensors are needed.
First of all, what we developed is a framework independent from a specific kind of drone. We
aimed to have a very generic and multi-purpose system, able to work with almost every UAV on
the market. According to this, the assumption of considering each aircraft equipped with a sensor
is too restrictive. We don’t know if and which sensor is on board, so we must consider the worst
case scenario, where the UAV is blind. It’s important to notice that not-equipped drones are not so
uncommon as it seems: we are working in a urban environment with low price items. The presence
of measure instruments has three effects: it increases the weight and consequently the probability
of causing fatal injuries if it falls, reduces the flight’s autonomy and it also increases the cost for
building the aircraft.
The optimal scenario for us its a very light drone, also provided with sensor on board, but it’s very
hard with cheap objects. What we developed is a system capable of handling every aircraft that
wants to join the operative scenario.
Finally, one last thing is crucial to better understand the potentiality of this system. As we said,
very cheap UAS are very often blind, since there is no money and space to introduce sensors on
board. However, they will move in the same scenario of bigger drones, that thanks to their sensors
will update the map. Practically, less equipped aircraft will benefit from the presence of the other
ones, though they doesn’t give any input to the "Map Generator" block.
This makes our framework dynamic, conservative and cooperative.

3.4.6 Mission’s Risk
Once the path planner algorithm completes its job, the result is a series of geographical coordinates
(way points) that the unmanned vehicle has to follow to complete its mission minimizing the risk.
Practically, this means that the Traffic Manager knowns each cell that the drone will pass over,
and thanks to the risk map also the fF,i value associate to each of them.
However, we still miss the last step: on one side we have the trajectory, created to provide the
less risky path, on the other we have the maximum acceptable risk for the overall mission fF,Max.
Finally we must find a way to calculate, starting from its trajectory, the risk fF associated to the
mission in order to compare it with the maximum safety value imposed by the local national flight
authority. Then, two situations have to be faced:

fF ≤ fF,Max The path chosen by the path planner guarantees a safety level that satisfy the imposed
standard. The mission is approved.

fF > fF,Max The path chosen by the path planner doesn’t guarantee a safety level that satisfy the
imposed standard. The mission is not approved. It’s possible to change some parameters in
the risk map and trying again with the path planner.

Please notice that the mission’s risk analysis have to be done a posteriori, when the path has been
chosen. In figure 3.13 a schematic representation of all this framework is provided, while later in
this section the method to evaluate the fF will be explained.
Once the trajectory to follow is known, the cloud framework has to estimate both fF and fF,Max.
The first step in order to accomplish this is to calculate the overall mission’s time lenght τMiss and
the time spent in each sub area of the map τi. This procedure can be easily performed looking at
the data sheet of the unmanned vehicle: in it, it’s possible to find out the cruise speed v of the
drone, that is enough for this calculation. Infact, known the maximum linear length of the area,
we can apply the formula 3.14 to evaluate the time τi spent in each subzone.

τi =
li
v

(3.14)

50

3.4 – Map Manager

Figure 3.13: Mission’s risk managment and acceptance

Where:
li is the maximum linear length of the i-th area. Measure unit m.
The importance of knowing the time window the drone is supposed to spend in each area is evident,
since the risk is expressed in victims per hour of flight. What we do in equation 3.14 is just a rough
estimate of it, since it considers the drone flying always at its medium speed and straight along
the side of the squared area. Although this level of precision can be enough, a better estimate can
be otained thanks to the path planner.
As said before, at this point of the analysis we already know the trajectory that will be performed
by the aircraft (for detail, see the proper section). This means knowing the real line of flight (not
necessarily the square side) and the speed. Using this information in equation 3.14 will provide
the real time spent by the drone in each cell.
Finally, if we define n as the total number of cells overflown by the UAV and fF,i the risk associated
to each of them, the overall estimated number of victims NMiss for the mission will be:

NMiss =

n∑
i=1

fF,i × τi (3.15)

The operation just performed appears simple: on one hand we know which cells of the map will
be overflown by the UAV, and the time it will spend on each of them, on the other the victims per
hour of flight of that cells. The product of this two elements provides the number of victim per
cell that the aircraft will produce. Finally the sum of all the Ni of the trajectory gives back the
total number of victim of it.
I think it is important to stress one key concept that emerges at this point, that was very hard
to face at the beginning of this project. When we started, two different ways to evaluate the risk
were possible: the first one is the one already presented here, where the risk is in victims per
hour of flight. The second instead aimed to provide an estimate of the victims the drone could do
overflying a given area. Practically this second approach didn’t consider the time spent on each

51

3 – Cloud Based UASs Traffic Management

cell, providing just a probability of having a victim if the drone fly over that area. This approach
was interesting because worked with probability, but had a great problem due to the lack of time
in his expression. This can be explained with an example: in the first approach, the more an UAV
stays on a map’s cell the more the risk increase. This is correct. In the latter instead, the risk
didn’t change in time, so a drone that simply flies over the cell and a drone that instead loiters
on it had the same risk. This is wrong. Furthermore with the risk analysis here presented it is
possible to change the sub-area dimensions and this will consequently change the risk, since the
drone will spend more or less time on it. This feature also is key for our cloud framework.
Anyway, the idea of merging this two ways to approach the risk fascinated our work group, and
finally found its expression in the mixed approach we are going to present. Let’s have a look to
the flowchart of figure 3.13. What comes out from the "Map Generator" block is the risk map
of a big area (for example a city) for a given drone, at a given time and altitude (It’s important
to repeat this concepts to understand the overall approach we are proposing). In this map, each
sub-area, whose dimension is due to the risk map’s resolution imposed by the cloud framework,
has its own risk, which is in ab

t and is evaluated without considering the UAV’s trajectory (that is
obviously still unknown). At this time, the risk of each cell is independent from the other cell and
its position respect to them. The formula used is the one exposed in previous chapter:

fF,i = Ni,exp × P (fatality|exposure)i × fEFT,i (3.16)

Where each term is the one related to the i-th cell.
It’s important to notice that at this point the "time element" is introduced by the term fEFT,i,
that, as said in chapter 2, can be considered as the frequency of failure of the UAV, or as:

fEFT,i = λ =
1

MTBF
(3.17)

Where λ is the inverse of the Mean Time Between Failure (MTBF) of the aircraft.
Since λ is function of a constructive parameter of the drone, it will be the same for all the cells of
the risk map. Once again, when building the risk map each cell is treated without considering the
past path of the drone, but as it was just started.
Upon this map, the "Path Planner" block works to find the better trajectory, and then provides
its waypoint.
Finally, according to figure 3.13 is the turn of the "Mission’s Risk Manager" block, which has to
evaluate the overall mission’s risk, given the trajectory. This part of the work can be done as
explained before, or introducing a new probabilistic term, to take into account the probability of
having a crash. Practically, what we are going to do during the overall risk calculation is not
to consider each part of the trajectory as independent from the others, but instead taking into
account when it is going to be overflown by the UAV. This probability term will be both function
of λ and of the time interval spent of that area. In formula we have:

Ni = Ni,exp × P (fatality|exposure)i × P (C|NC)i,i+1 (3.18)

Where P (C|NC)i, i+ 1 is the probability of having a crash in the time interval [i,i+1] given that
the aircraft didn’t crash before time i. The result is the estimated number of victim for that area,
knowing how many time the drone will spend on it and when it is going to fly over it. This point
is crucial.
How to model P (C|NC)i, i+ 1 will be now exposed.
In probability theory and statistics, the exponential distribution (also known as negative expo-
nential distribution) is the continuous probability that describes the life length of a process that
doesn’t get old. In this kind of process, or Poisson point process, the events occur independently,
continuously and with a constant rate λ. This distribution is used in many different fields, in

52

3.4 – Map Manager

particular physics (to model the decay of radioactive particles), queuing theory and in all the ap-
plications of reliability theory. In figure 3.14 are presented its probability density function(pdf)
and the cumulative distribution function(cdf). In formula, the pdf and cdf are is:

(a) (b)

Figure 3.14: Exponential distribution: pdf and cdf

f(x, λ) =

{
λ exp−λx if x ≥ 0,
0 if x ≤ 0.

(3.19)

F (x, λ) =

{
1− exp−λx if x ≥ 0,
0 if x ≤ 0.

(3.20)

While the expected value E[X] is the Mean Time Between Failure:

E[x] =
1

λ
= MTBF (3.21)

The most interesting property of the exponential distribution is the memorylessness, crucial in the
case of conditioned probability (as our situation):

Pr(T > s+ t|T > s) = Pr(T > t) (3.22)

The probability of an exponential random variable exceeding the value s + t given t has the same
probability distribution as the variable originally exceeding that values, regardless of t. Practically
this means that past events has no effect on the future.
The choice of the exponential distribution has been made according to many studies about drone’s
reliability, also developed inside the aerospace department of Politecnico di Torino. However,
the modularity of this approach allows us to eventually change the model of P (C|NC)i, i+ 1 if
something new is found.
Finally, with this new metric is possible to provide the total number of victims of the chosen
trajectory:

NTraj =

n∑
i=1

Aexp,iρiP (fatality|exposure)P (C|NC)i, i+ 1 (3.23)

In this section we provided all the instruments to properly evaluate a trajectory in function of
the risk. We moved from the definition of a risk map till the definition of risk for a path, whose

53

3 – Cloud Based UASs Traffic Management

measure unit is in victims. We are now able in determining between different paths which is the
best, or eventually what changes should be done in order to have a safest trajectory.
As said before, we have now a safety metric.
One way to use it is to verify if the safety standard are satisfied: calling τMiss =

∑
τi the estimate

of the time length of the mission, the maximum acceptable number of people victim is:

NMax = fF,Max × τMiss (3.24)

That said, the criteria to evaluate if the mission satisfy the standard is:

NTraj ≤ NMax (3.25)

In the "Path Validation" section the procedure of acceptance of a path will be explored in depth.

3.4.7 Objective Cost Function: From Risk Map to Cost Map
Till now, we explored the main assumption and techniques that have been used in the Cloud-Based
UASs Traffic Manager to create a risk map for the drone’s flight. We focused, also in the previous
chapter, only on the risk topic, since this is the first step to perform in order to get the allowance
for the Unmanned systems to fly over cities.
However, is quite obvious that beside the risk there is also the mission itself, which has is goals
and features. When planning the path for the drone to follow, it is important to find also a way
that satisfies all the specifics imposed for that mission.
Practically, what we want is to to have a mission planner that tries to provide the best trajectory
for the UAV in order to satisfy all is goal: then it has to verify if the risk bounds are satisfied
and, if not, re-calculate another path. The risk map in this scenario becomes only a layer (the
most important one) of a more complex cost map that will encapsulate all the information useful
to accomplish the mission.
In order to better understand this concept, let’s imagine to have a map (fictitious, just as example)
that, cell by cell, describes the TIM’s signal quality of service (which will be better explained later
on) (see figure 3.15). The connectivity is a crucial point of this cloud based framework, since
without a link with the cloud the UAV is blind. Moreover, we are working on a civil scenario, so
let’s suppose to have a data streaming from the aircraft to the cloud (maybe a video recording of
the flying drone) that in order to be maintained has to provide a signal connection power greater
than a lower-bound Slb. In order to accomplish the mission, the path planner have not only to
find the less risky path, but also guarantee that this path will have always Si ≥ Slb, for every i
belonging to the trajectory, where Si is the signal power of each cell of the map.
As for the risk, let’s imagine to have a normalized signal map in the range [0, 100], where 0 means
no signal coverage and 100 the full power (blue and red areas of the figure). The cost map we are
going to generate has to merge this information with the risk, taking into account that the path
planner will minimize the cost of the path. How to define this cost is up to us.
The cost of every cell follows the formula:

Ci = α×Ri + β × (100− Si) (3.26)

Where:
Ci is the overall cost of the i-th cell.
Ri is the normalized risk of the i-th cell.
α and β are two weighting variables in the range [0,1]. β = 1− α
All this variables are without measure unit, since we are working with normalized values.
This way to parametrize the cost is the classical linear one. Every variable that affects it has its
own weight, α and β in this case, that can be used by the cloud traffic manager to change the

54

3.4 – Map Manager

Figure 3.15: Signal power cost map

impact that each parameter has on the mission. Once defined this two values, the variables are
simply added to evaluate the overall cost of the cell.
It’s important to notice that since we have a minimizing path planner, the signal value must be
subtracted to 100 in order to have the real cost: a cell with perfect signal (100 on its layer), should
be always chosen by the path planner, so it must be equal to cost (0), and vice versa.
This approach can be generalized for a multi variable mission, so extended to the case in which
the drone has different features to monitor in order to correctly accomplish the mission.
In formula:

Ci = α×Ri + β × (100− Si) + γ × Ii... (3.27)

Practically we can simply add each term, just taking into account that the final sum of the weighting
parameters must be:

α+ β + γ + ... = 1 (3.28)

In any case, from now on just the case with risk and signal power will be treated, in order to
provide a case of study that is however simply expandable to more complex mission.
What emerges from this section is that the most important action the Cloud Based Traffic Manager
has to perform is correctly choosing the weights: a too big α makes the risk too impactful on the
cost, and the signal standard required will be probably missed. On the other hand, choosing an
high value of β can brings to an unsafe situation, that will force the validation block to reject
the proposed path. The procedure of choosing the weights, that now will be proposed, has been
developed in parallel with the Path Validation, and can exists thanks to this: It’s important to
remember our framework is capable to recognize if a trajectory satisfy the requests (thanks to
the metrics proposed before) and refuse bad path. This part will be exploited later on, but to
understand the next part is important to know that the Validation block analyzes the path and
refuses it if doesn’t satisfy all the requests (in particular the risk bound): this practically means
also than from the aggregated cost of the cost map, it can come back to the corresponding de-
normalized risk value and signal power value.

55

3 – Cloud Based UASs Traffic Management

The procedure we adopted, whose block diagram is reported in figure 3.16, is here presented in the
proper order.

1. Set α = 0 and β = 1 − α = 1. In this way the risk doesn’t impact on the cost map and
consequently on the path decision.

2. Apply the Path Planner (P.P.) to the cost map. The trajectory found is the less costly one,
and in this case means the top signal quality’s trajectory.

3. Apply the Validation Block. Two situations can happen. One, the trajectory still doesn’t
satisfy the quality standard required for the mission. Since this is the best trajectory for the
signal power, the mission has to be considered unfeasible and refused. Two, the trajectory
satisfy the quality standard but not the risk one. In this case, another cost map has to be
produced, this time starting taking into account also the risk analysis: α = α + 0.1 and
β = β − 0.1. This new map is sent to the P.P, point 2.

4. The trajectory found by the P.P. satisfy both the requirements. This means that the mission
is accepted and can starts.

The idea we followed is simple: let’s start with the cost map only of the signal quality, without
considering the risk. The path found will be the best quality one, because the path planner wasn’t
affected by the risk while evaluating it. If this satisfy all the requirements, then the mission is
accepted. Otherwise, a change in the weights must be done: obviously, since no more importance
can be given to the signal quality, if it is not satisfied then the mission is unfeasible.
As it’s easy to imagine, the first set of weight (α = 0 and β = 1) improbably will provide an enough
safe path. Since the safety bound are very conservative, many iterations are required in order to
find a good path. Furthermore, the step of 0.1 to add (or subtract) to the weights has been chosen
arbitrary (it seems little enough but can be decreased) and can be changed. In any case, at the
end of this procedure, the best acceptable compromise between TIM’s signal quality and risk is
found.
Finally, a resume of this section. At the begin we provided the definition of risk map, th reasons
why we need it and how it can be built. Then we worked on risk, normalizing it and providing
numerical studies on drone’s safety. Then, a way to pass from the risk associated to a cell to the
overall risk of a given trajectory has been explained, providing a completely new metric.
Finally, we used the power of the "layered structure" to move from the risk map to a cost map, ex-
tending the mapping procedure to all the other variables that may be interesting for an Unmanned
mission. Then a formal way to build it has been shown, in the equations 3.29 and 3.27. In the end
we proposed a way to choose the weights, showing how the cost map have to change in order to
provide to the path planner an optimum compromise where is possible to find the best trajectory.

3.5 Path Planner

The path planning problem is a really well known task in literature, and many different approaches
can be used to solve it, according to the different needs of the robots that has to perform the
trajectory. According to a quite common definition [34]:

Definition 9. The motion planning problem is a term used in robotics to address the process of
breaking down a desired movement task into discrete motions that satisfies constraints and possibly
optimize some aspect of the movement itself.

56

3.5 – Path Planner

Figure 3.16: Weights assignment procedure

In other words, given the dynamic of a robot, the environment description and an ordered set
of goal states (one or more, doesn’t change), the path planner block of the Cloud Based Traffic
Manager has to find a sequence of waypoints on the map that will bring the aircraft from one state
to the following, till the last one is reached.
Please notice that, though we are working with Unmanned Aerial Vehicle, thanks to the assumption
of not varying the altitude of flight we can treat the path generation task as if it was for a planar
robot. Not considering the z-axe obviously have a great simplification impact.
During years, different algorithms were developed to accomplish this tasks. A quite rough but
useful classification is:

Deterministic Algorithms Simple to implement, not hard from a computational point of view.

Probabilistic Algorithms Involves high dimensional state space,ans its execution time tends to
infinite. Practically, if no solution exists it will run forever. [35]

At this point, an high level descriptive introduction to both this classes can be interesting and
helpful to understand the choices made by our Path Planning group. Since it’s not the main
purpose of this thesis to develop new motion planning algorithms, we will not go too much in deep
in this section, that will instead better explained by the other members of our research group.
Just a brief resume of the most important algorithms and the actual state of the art of our Cloud
Based Path Planner will be provided in here, in order to make the reader capable to understand
the following sections and especially the Simulations.
In order to properly conclude this introduction to the path planners’ world, It’s important to
underline the main features that we are looking to consider one algorithm better then the others.
As said before, every approach can be considered optimal, according to the context in which it will
is used.
Having a look to our environment, its crucial characteristics are:

57

3 – Cloud Based UASs Traffic Management

1. Big Map. We are going to plan motion over cities (km2) with a very high resolution. The
resulting cost map will be huge and detailed. This implies the need of a light algorithm or
the usage of a really great computational power, in order to have a solution in finite time.

2. Changing environment. The obstacles and many of the other risk parameter changes in time,
often during the flight. The path planner have to be dynamical, that practically means able
to change path in real time.

3. Critical Situation. While running during the flight, the path planner response have to be
really fast, in order to prevent collisions. Since we are working with aircraft, a latency in the
order of seconds can has catastrophic effects.

4. Drone’s Structure. The Path Planner has to consider that the UAV is not a point mass, but
instead has its own dynamic and structure. The trajectories have not only to be optimal in
theory, but also feasible for the Unmanned System.

Now, let’s have a look to the state of the art.

3.5.1 Deterministic Algorithms

The history of this branch of Path Planner starts with E. Dijkstra in 1959, who developed his
famous algorithm to find the shortest path between two nodes in a non-negative weighted graph.
Since the path planner iteratively follows the edges of the graph till it will find the goal, the Dijk-
stra one can be classified as a graph search algorithm.
Staring from this, that can be reasonably considered the father of all the motion planning algo-
rithms, many others were developed in the following years. In 1968, Hart, Nilsson and Raphael,
developed the A* algorithm, which is still a graph search algorithm but with an heuristic estimate,
which classifies each node estimating the best way that passes through it. The result of this process
is the shortest path (less costly one) between start and goal [36]. A typical drawback of A* is its
computational requirements: on large map (as the one used for drones flight) many states has to
be recorded, so a huge memory is needed. During the rest of the century, an impressive amount
of deterministic algorithms has been deployed, from scratch or modifying the previous to have a
more satisfactory solution. The most important are here resumed:

Dynamic A* or D*, was proposed by Stentz in 1994 [37]. It works exactly has A*, with the main
difference that weights between two nodes can changes at run time. Thanks to this feature,
it can be used to make real time re-planning of the path, if the robot is supposed to move in
a changing environment. The change of cost it’s usually detected by sensor mounted on the
Unmanned System, and for this reason it is considered a sensor based algorithm.
Stentz itself tried to improve its work, and developed first the Focussed D* and then the D*
lite algorithms [38][39]. Both of them are similar to D*, but save computational resources
and have beter perfomances.

Theta* developed by Nash et al. [40] is still an extension of A*. The main difference with is
predecessor is that for each vertex expansion there must be a line of sight between parent
node and its successor. A very similar path planner is phi*. Both of them allows the robot
to moves also along diagonal lines: this features, that also provides to them the name of Any
Angle Algorithms, really increase the power and the efficiency of the planner.

RA* developed by Guglieri [41], is very most recent one. This algorithm was developed strictly
for the risk analysis procedure, so it takes into account parameters as population density.

58

3.5 – Path Planner

Many other interesting works in this field has been developed (as Floyd-Warshall, which is a mile
stone, or Artificial Potential Field), but each of them has one or more characteristic that doesn’t
fit with the requirements of our particular scenario.

3.5.2 Probabilistic Algorithms
Probabilistic algorithms are the ones that have a degree of randomness as part of their logic.
Usually, the probabilistic (or randomized) algorithms have an auxiliary random input that guide
their behaviour in order to have good performance in the average case. The performances oh this
kind of systems is a random variable too, as also the running time and the output [42].
Typically, this algorithms works on nonconvex, high dimensional spaces upon which a random
space tree is built: in its construction is contained the randomness of the method, that usually
takes casual samples from the search space. More the samples, higher the probability of having
a correct solution. Furthermore, at every step (when a new sample enter in the tree) an obstacle
free trajectory is built, alays checking its feasibility.
Due to their intrinsic difficulty, this algorithms were developed later then the deterministic ones,
when computer had already a sufficient computational power to support them. The first path
planning randomized algorithm was the probabilistic road map (PRM), developed in 1996 [43].
As Dijkstra was crucial for deterministic algorithms, PRM can be considered the founder of the
probabilistic set. It basic idea is the following:

Pre-processing Phase Starting from n random samples, a set (roadmap) of collision free paths
is built.

Query Phase The shortest path between start and goal points is found in the roadmap.

The PRM works good in high dimensional space, but has a limit in the construction of the roadmap,
that can be challenging and some times infeasible.
In order to provide better performances, a set of new algorithms was developed starting from this.
The most important are listed here:

PRM* is a variant of PRM, in which the radius is scaled according to the number of samples.
The result is an asymptotic optimality and computational efficiency.

Rapidly Exploring Random Tree or RRT, was developed by LaValle and Kuffner in 1998 [44].
It is probably the most powerful and interesting algorithm presented till now, and one of its
variant has been implemented in our Cloud Based Framework. For this reasons, it will be
better exposed in a proper section.

Rapidly Exploring Random Graph also called RRG, is an evolution of RRT. Practically, it
is capable to provide quickly a first solution to the planing problem, and then monotonically
improving it if more time is available.

Ant Colony Optimization developed by Maniezzo in 1992 [45]. It is a classical evolutionary
algorithm, since its behaviour was inspired by real biological phenomena: in this case, ants
looking for a path between their colony and food. Although it seems incredible, ants always
find the shortest path, thanks to a random iterative process that leads to a common knowledge
sharing between all the components of the colony.
ACO algorithm is very powerful and can rapidly provide a good solution. However, its
converge time to the optimum is uncertain, and this can be a problem in applications like
ours.

Now that we had an overview of the most common path planner, and the principles upon their are
built, it’s time to describe the one we choose for the CBUTM: RRT*.

59

3 – Cloud Based UASs Traffic Management

3.5.3 RRT*

The algorithm we decided to implement to plan the route of our Unmanned Systems is the RRT*,
probabilistic and derived from the classical Rapidly Exploring Random Tree (RRT).
The history of this method is quite recent, since it was firstly developed in 1989, by LaValle
and Kuffner Jr, two American computer scientist and professors. It had also many variants and
evolutions, among which the most important are RRT* and RRG.
The procedure executed by this algorithm aims to build a tree of open loop trajectories for non
linear systems with state constraints: this capability of constructing feasible (for the UAV) paths is
one of the key features of RRT. The tree is built extracting random samples from the state space,
introducing also a bias to explore in the direction of unsearched areas. Every time a sample is
drawn, a connection between it and the nearest state of the tree is attempted: if this link satisfies
the constraints (practically, of it is feasible), the sample becomes part of the tree. Some kind of
limitations can be introduced for the tree, for example in the length of the connection between the
tree and the new state. A classical approach in case where the random sample is too far (i.e, it is
farther than the maximum allowed distance) is to substitute it with a new state, at the maximum
distance along the line that connects the sample to the tree.
Once this procedure is clear, it’s easy to understand the way the algorithm works. The tree borns
only with the initial state, than it starts to add random sample to it. This iterative procedure
ends as soon as the tree contains a node in the goal state region. In figure 3.17 a typical evolution
of RRT’s tree is depicted.

(a) (b)

Figure 3.17: RRT’s tree evolution in time

The advantages of such approach are many. First of all, it is simple and easy to implement.
Moreover, the tree always remains connected and guarantees a feasible path at every step. Finally,
it is proved to work better and faster then many other deterministic algorithms. The main drawback
instead is due to the need of saving at each step the overall tree, that implies an increase of the
computational time while the algorithm is running.
Starting from this, Karaman et al. developed in 2011 the so called RRT* algorithm, which really
increased the optimality of the solution obtained with RRT [46]. The mechanism the rules RRT* are
obviously almost the same of RRT, but it introduces two new interesting features: near neighbour
search and rewriting tree operation. The first finds the best parent node for the new sample that

60

3.6 – Path Validation and Risk Acceptance

aims to be inserted in the tree, while the second rebuilds the tree within an area of given radius,
in order to maintain always a minimal cost between tree’s connections. Thanks to this, RRT*
improves asymptotically the quality of its path as the number of samples increases, differently
from RRT. In figure 3.18 the differences between the two approaches are shown: it seems evident
that the tree built with RRT* is more ordered than the first one, thanks to the operation described
before. Obviously, this features have also a computational trade-off, that can however be overcome

Figure 3.18: Differences between RRT’s tree and RRT*’s one

with an high computational power cloud framework, as the one we have. Finally, after the studies
of our path planning team, it seems that RRT* is the best compromise between efficiency and
quality of the result. For this reason, it has been implemented in our framework as path planning
algorithm for Unmanned Aerial Vehicle.

3.6 Path Validation and Risk Acceptance
The "path validation" procedure is a crucial point for the whole cloud based traffic manager. All
the analysis and ideas exposed in the previous sections, from the risk assessment to the path plan-
ning, brings the system to this point. The aim of the Path Validator is simple to understand from
an high level point of view:

Definition 10. The Path Validator block of the Cloud Based Traffic Manager takes as input
the trajectory chosen by the Path Planner block, and provides as output the authorization (or
prohibition) to fly for the drone.

Starting from the definition, is easy to see the importance of this block, which has to decide
whether or not an UAV is able to fly guaranteeing the safety standard and all the other mission
features. From a practical point of view this means implementing all the state of the art exposed
in previous sections and chapter in order to properly analyze an Unmanned Mission. Furthermore,
when a mission is marked as not compliant with the mission’s requirements it has to propose
different solutions (when possible) according to the causes that made the chosen trajectory not

61

3 – Cloud Based UASs Traffic Management

feasible.

This last part is probably the hardest to implement: the Path Validator has to distinguish which
requirement has not been fulfilled, and how the cost function can be changed in order to have a
better trajectory (from this parameter point of view) coming out the path planner. This means
knowing the different metrics of each parameter, and implement a coherent routine. Moreover, it
has to assign the correct priority to each requirement, in order to avoid prevarications from one to
another. At this point, it’s important to remember that the primary feature for a mission is the
safety: the aim of all this work is to guarantee a certain standard in term of victim per hour, and
this bound cannot be crossed in any case, categorically. In this sense, a priority assignment to the
mission requirements can be done only starting from this assumption.
Let’s start going in deep with the path validation, starting from a quick overview of some of the
possible different characteristics that can be of interest for an unmanned mission: this features are
the ones (not necessarily all together) that the path planner will have to minimize (or maximize)
in order to provide the best trajectory for the Unmanned Aerial Vehicle:

Risk is the most important feature for an unmanned mission. It has to be always compliant with
the standard imposed by the national flight authority: practically, this means that the risk
bounds are not decided by the UAV’s owner, but are imposed to him. As already discussed,
it can be measured in victims per hour of flight or, once the overall time length of the mission
is known, in number of predicted victims.

Wireless Signal Latency is the time interval between the moment in which a packed information
is send by the Cloud Based Traffic Manager and the instant in which it is received by the
drone. The latency is usually measured in second (or milliseconds) using a ping procedure
and limits the rate of data that can be transmitted.
Furthermore, it is possible to define a latency upper bound after which the communication
cannot happens. It is evident that for a cloud controlled Unmanned System the latency can
have catastrophic effects.

Wireless Signal Coverage represents the capability of the connectivity provider to connect the
drone to the cloud. It is usually presented as a map, in which the areas where there is
no coverage are blackened. Usually, a cloud based unmanned mission cannot categorically
include this kind of area, since the drone will be blind for a quite long time.

Fuel Consumption is often crucial for the success of a mission. It’s important to remember that
we are considering civil and very often cheap drones, whose autonomy can be very low (in
term of flight hour). This impose a new bound to the path planner, since it cannot chose a
trajectory longer than the maximum autonomy of the unmanned system. In parallel to this,
fuel consumption also implies a cost for the owner, that usually aims to minimize it.

Flight Time it the overall time length of the mission. According to the need of the drone’s owner
and to the aim of the flight, some missions have to be completed within a give time windows:
exceeding the maximum time legnth (that means choosing a too long trajecotry) will affect
the success of the mission.

Given Areas’ Overflight is one of the most common ad useful features that can be imposed to
a mission. Practically, it means to decide when and where the drone has to be: let’s think
to a surveillance mission, it seems obvious that the mission manager will impose some way
points that the UAV have to pass.

Since we are not presenting a new wireless infrastructure, and we are not interested in technical
details, in the rest of the work the two parameters "Wireless Signal Latency" and "Wireless Sig-
nal Coverage" will be incorporated in a single fictitious one called "Wireless Quality of Service"

62

3.6 – Path Validation and Risk Acceptance

(WQoS) that it’s assumed to consider all the aspects of the connectivity between UAVs and the
Cloud Based Traffic Manager. Obviously, as said before, if one new requirement should become
of interest for the mission success, the cloud based validation block is, as all the one already pre-
sented, completely modular: once the quantitative description is provided, zone by zone, it can be
easily added as a layer of the map and then inserted (with a proper weight) in the cost function:
the final cost map, where the path planner works, will automatically incorporate this new feature.
The modularity of the presented framework is one of is key point, and it is crucial to underline it
when it’s possible.
In figure 3.19 the flow chart of the Path Validator block is presented.
Once again it emerges from the image the centrality of the risk, which has the last word upon

Figure 3.19: Path Validation Flow Chart

the authorization or not to the fly. For brevity reasons, only risk and wireless quality of service
will be discussed, since their relationships can be consider as a model for all the other possible re-
quirements. In the following, the blocks "Path Decoder","WQoS Validator" and "Risk Validator"
will be exploded.

3.6.1 Path Decoder

According to figure 3.19, the first block encountered by the trajectory’s waypoints(wp) coming out
from the path planner is the "Path Decoder". Although it can be considered a more implementative
object, it is interesting to explain now iy’s usefulness, in order to provide a complete overview of
what will be later on exposed in the future sections.
Starting from what we already discuss, we know that the path planner produces as output a series
of waypoints that the UAV has to flyover in order to accomplish the proposed path. The waypoints
are obviously not casual, but chosen in order to minimize a known cost function. A quite common
defnition of waypoint is, according to [33] the following one:

63

3 – Cloud Based UASs Traffic Management

Definition 11. A waypoint is an intermediate point or place on a route or line of travel, a stopping
point or point at which course is changed. In modern times, it usually refers to a set of coordinates
that specifies one position at the end of each leg (stage) of an air flight.

Starting from this, two points are crucial in order to better understand the rest of this section.
First of all, we are dealing with coordinates, in a local or global reference frame, which identifies a
point in the physical space, thanks for example to GPS system. Furthermore, the waypoints in the
path provided by the path planner are not the all the cells of the map where the drone is supposed
to fly, but just some "special" points at the end of each flight stage. Crucial aspect of the Path
Decoder is to retrieve the real path the drone will perform from a waypoint to the following.
Let’s have a look to the operation performed in this block, in a coherent temporal order:

1. Coordinate Transformation. The waypoints provided by the Path Planner are in a global
reference frame, so we are dealing with longituine and latitude. The first operation to accom-
plish is the conversion from this, to the local reference frame of the map. A typical example
is to convert each geo-referenced point in the corresponding "cell Index", obtained supposing
to center the map’s RF at the bottom-left side of the map. The "Index" obtained in this
way is a couple of number, the first expressing the cell position on the x-axe and the second
on the y one.

2. Path Decoding. Once each waypoints has its proper Index, it possible to retrieve the trajec-
tory of the Unmanned System. In particular, we know that waypoints are located in places
where the drone is supposed to turn (left or right, doesn’t matter). This means that from a
wp to the following, a straight line will be performed. Once the line is found(interpolating
with a first order polynomial or with a proper line iterator, see Implementation chapter),
also the cells crossed by the UAV are known.

At the end of the path decoding section, we are able to produce as output the Indices of all and
only the cells overflown by the aircraft. In the next section, how to use this information to validate
the path will be exposed.

3.6.2 Wireless Quality of Service Validator
As said before, the WQoS will be used in this part as example of validator, that can be extended
and re-used for many other mission’s parameter. The reasons why we decided to perform its
analysis before all the other possible characteristics are two: first, the way it can be analyze is
really archetypical, in the sense that it seems to be the more general validator case (not considering
the risk, that instead as its own approach). Moreover, the context we are considering: completely
autonomous cloud based aircraft. It’s simple to understand that without wireless connection there
is no possibility of having a safe flight. Once again, the WQoS is not a real parameter, but just a
fictitious merge of all the interesting characteristics of a cloud network. It’s usage in here is purely
demonstrative and didactic.
In order to better going in deep with this and the next section, it’s important to takes back the
concept exposed about the objective cost function and the flow chart in 3.16.
The validation procedure starts looking at the input of this block: a series of the indices of all
the cells crossed by the UAV. As we know, every cell has three information associated to it: Risk,
WQoS and Cost. The last one is the aggregation of the first two, according to formula:

Ci = α×Ri + β × (100− Si) (3.29)

Where all the parameters(Ci, Ri and Si) are normalized between 0 and 100 while α = 1 − β are
both in the range [0,1].

64

3.6 – Path Validation and Risk Acceptance

What is interesting for us, in this section, is just Si and how to vary α in order to have a valid
path.
First of all, let’s look at the metric of the WQoS parameter. Our idea was to consider it bounded
in a [0,100], where 100 is a full power signal and 0 means a complete lack. Since we are using a
path planner that minimize the total cost, in the cost map the S parameter is inverted, with the
(100− Si) operation: in this way, a cell with low quality signal will be more "expensive".
Then, it’s important to define which bound can be applied upon this parameter. A typical sce-
nario is the following: since the unmanned mission has to provide a continuous streaming of data
(for example transmitting a video from an on board camera), the WQoS cannot be less than the
lower-bound Smin. This bound is chosen or by the user, while defining the specs of the mission,
or automatically by the cloud traffic manager, in order to prevent the UAV from going in areas
where it cannot be governed.
Smin is still in range [0,100], with the same metric of Si.
The validation procedure appears now very simple: once the cells and the bound are known, the
cloud based traffic manager has to operate the following verification.

Si ≥ Smin (3.30)

This must be done for every cell in the path. Then, one of this two scenario are possible:

1. The dis-equation is verified for all the cells belonging to the path. This means that the
trajectory can be considered valid and consistent from a WQoS point of view. It can be
passed to the risk validator to complete the analysis.

2. The dis-equation is not verified for at least one cell. The trajectory is not validated. As seen
before, the cost function upon which the path planner works is built iteratively, changing
α parameter. Initially, it starts from 0, and then is increased if a not-valid path is found.
However, starting with α = 0 means building the trajectory taking into account only the
WQoS parameter, while the risk is not considered. Practically, this means that the α value
we are using is the best one, and no change can be done if the path is considered to be not
valid. The mission has to be marked as not feasible or Smin has to be decreased.

An important characteristic of the Wireless Quality of Signal emerges from this analysis, and can
be extended to all the other requirements of the same type: we are imposing a cell by cell’s bound,
that must be verified for each area of the map. This is quite different from the usual "path param-
eter" as the risk, that instead must be verified upon the overall trajectory and not on the single
cell. Every requirement that imposes a lower bound like this, can follow the proposed validation
approach.

3.6.3 Risk Validator
Finally, the last part of the validation block can be approached. The importance of this element
has no need to be underlined, since it has to approve or not the trajectory coming from the Path
Planner, and consequently starts the mission. This crucial function emerges also from its position
in the chain of the stateflow: at the end of the chain, it has the power to invalidate all the analysis
performed in the blocks upstream. Once again, it’s important to underline this concept: the main
aim of our framework is to guarantee safety for people on ground, when an unmanned mission is
going on.
The concepts here exposed are the natural continuation of the mission risk evaluation explained
in section 3.4.6. In this part, however, we will enter more in detail, approaching the problem from

65

3 – Cloud Based UASs Traffic Management

a path validation point of view.

According to the National Authorities standards, the Risk validator has to prove effectively that
the risk for human beings is always below that upper bound. No compromise can be done in this
sense, a path that exceed the maximum risk has to be marked as not valid, always.
Let’s have a brief resume of the main concepts exposed before, in order to better understand the
concepts we are going to face.
Once again, we have a series of cells crossed by the drone, which form the path of the drone eval-
uated in order to minimize a proper cost function, used also to build the corresponding cost map.
In parallel with the cost, in range [0,100], each cell contains also the risk associated to it, in range
[0, ff,Max], where ff,Max is the upper bound for the risk and is measured in ab

h .
As consequence of what discussed previously, two different objectives have to be achieved by the
Risk Validator:

1. To check if every cell exceed the maximum risk value fF,Max, i.e. is the path planner proposed
one or more no fly zone.

2. To check if the overall risk of the path exceed the upper bound. Practically this means to
verify NTraj ≤ NMax

For what concern the first point, it can be easily reached acceding to the risk value fi of each cell,
and verifying the dis-equation:

fi ≤ fF,Max (3.31)

As for the WQoS (same kind of bound) if even just a single part of the path doesn’t respect this
condition, the path has to be categorically refused. According to what we said before, no fly zone
cannot be accepted (and this is obvious even from their name!) in any case, since this will bring
certainly to a crash or to a law violation.
The order in which the validation operation are performed is still not casual: if this first condition
is violated, the second part of the risk validation procedure have to be avoided, since the path will
be invalid in any case.
In any case, once the first step is over, it is possible to operate the trajectory risk analysis, in part
already exposed previously: in detail, we saw from an high level point of view, hot to calculate
the number of predicted victims of a given path, and this provided to us a metric to be able to
differentiate a more risky path to a less one. This is not obvious.
Now, let’s go in deep.
What we have at this point is a dis-equation, that has to be valid not cell by cell but on the overall
path:

NTraj ≤ NMax (3.32)

Where the measure unit is in victim, not ab
h . How to evaluate this two element is the core of the

validation process.
In order ro perform this analysis, let’s suppose to know (and it reasonable) the cruise speed of the
drone v, constant and commonly available on the data sheet. Then, since the waypoints to cross
are known, it is possible to draw a stright line from one to the following (this is the trajectory the
drone will perform) and simply measure the distance in meter between them. Staring from this, it
is possible to evaluate:

τi,i+1 =
di,i+1

v
(3.33)

Where:
τi,i+1 is the time to fly from waypoint i to the following. Measure unit: seconds.

66

3.6 – Path Validation and Risk Acceptance

di,i+1 is the distance from waypoint i to the following. Mesure unit: meter.
v is the UAV’s cruise speed. Measure unit: m

s
Applying this approach iteratively to all the n waypoints we obtain:

τMiss =

n∑
i=1

τi,i+1 (3.34)

Where τMiss is the overall time length of the mission, in seconds.
Although quite rough (we didn’t consider the change of speed in turns), this approach provides
a quite good estimate of the time required to complete the path. In any case, it can be adapted
more precisely to every drone, once its characteristics are known. Since we are assuming to work
with generic unmanned systems, it is impossible to go more in deep with this.
However, at this point one of the two part of the main dis-equation can be evaluated:

NMax = fF,Max × τMiss (3.35)

For what concern the first term, we must take back the knowledge developed about the trajectory’s
risk evaluation. First, let’s remember how we calculated the risk associated to the i-th cell, in term
of abh :

fF,i = Niexp× P (fatality|exposure)× λ (3.36)

Where λ = 1
MTBF is the failure rate of the aircraft, supposed constant and generally equal to

0.01. The idea, already exposed, is to modify the risk calculated taking into account also the time
instant in which the drone approach the cell, in order to be able to evaluate the probability of
having a crash in that cell. This operation can be performed because we already know the path,
and consequently the time window associated to each cell. In formula, once we have the risk we
must remove the generic term λ and encapsulate it into the more complex expression of the crash’s
probability P (C|NC)i,i+1:

Ni = Niexp× P (fatality|exposure)× λ×MTBF × P (C|NC)i,i+1 (3.37)

Now, we are no more in the frequency of fatalities domain since we removed the time dependency.
The term P (C|NC)i,i+1 represents the probability of having a crash in the time window [i,i+1]
knowing that the aircraft didn’t crash before time i. The model we used to described it is an
exponential distribution with parameter λ, which is the same of the drone.
The evolution in time cane be seen in figure 3.14.
To evaluate the crash conditioned probability, we have to take back its cumulative density function:

F (x, λ) =

{
1− exp−λx if x ≥ 0,
0 if x ≤ 0.

(3.38)

To arrive to the final formula for P (C|NC)i,i+1, let’s define:
i is the time instant in which the US enters the cell.
i+ ∆t is the time instant in which the US exits the cell.
C is the event of a crash.
That said, what we want to calculate is the probability that a crash happens, in the time interval
[i, i+ ∆t], knowing that nothing happened till i:

P (i ≤ C ≤ i+ ∆t|C > i) =
P ((i ≤ C ≤ i+ ∆t) ∩ (C > i))

P (C > i)
(3.39)

That can be further developed, thanks to probability theory:

P ((i ≤ C ≤ i+ ∆t) ∩ (C > i))

P (C > i)
=
P (i ≤ C ≤ i+ ∆t)

1− F (i, λ)
=
F (i+ ∆t)− F (i)

1− F (i, λ)
(3.40)

67

3 – Cloud Based UASs Traffic Management

Now that we have the expression in term of cdf, just some algebra is needed:

1− e−λ(i+∆t) − (1− e−λi)
e−λs

= 1− e−λ∆t = P (C < ∆t) = F (∆t, λ) (3.41)

This results is perfectly in accord (practically, we demonstrate it) with the memorylessness of
the exponential distribution: doesn’t metter what happens before the time instant i, since the
probability is the same as if we considered i = 0.
Finally, we are able to evaluate the total number of victim of the path, simply adding the ones of
the single cells:

NTraj =

n∑
i=0

Ni (3.42)

Now we can apply dis-equation 3.32 to validate the path.Two scenarios can happen:

1. NTraj ≤ NMax. The path is approved and the Unmanned System is authorized to fly.

2. NTraj > NMax. The path is too risky to be approved. It is possible to find another path,
recalculating the cost map imposing α = α + 0.1. Obviously, if α = 1 the mission has to be
marked has not feasible.

At this end of this section, the flight can starts. As resume of this chapter, we provided all the
instruments to build the "Map Manager" part of a Cloud Based Traffic Manager. Starting from
the risk assessment seen in chapter 2, we developed a series of techniques to pass from a generic
definition of risk to a real risk map, with structured areas and well defined function. Furthermore,
we expanded the concept of risk map to the cost map, including also other interesting aspect of
the Unmanned Mission. Finally, we saw how to find an optimum path and the skills necessary to
validate it.
This structure, merging theoretical and practical aspects, is the solid base upon which a coherent
traffic manager can be deployed.

68

Chapter 4

Implementation

4.1 Introduction

The implementation of the cloud based unmanned traffic manager has been a crucial aspect of our
work. Although in this thesis we divided in theoretical (the first part) and practical (this one)
to perform a better exposition of our framework, actually the real work has been developed in
parallel: it has no sense to build a perfect conceptual background, that has no link with the real
environment in which its ideas has to be implemented. At the same time, it seems however useless
starting programming without a main line to follow.
The process used to create the Cloud Based Unmanned Traffic Management has been cooperative,
de-centralized and it has gradually brought us to define the theoretical standards while facing real
implementation issues. In this way, the results we present are really operative and at the same
time can be considered a step forward in the definition of a new state of the art for Unmanned
Traffic Managers.
In this section, the CBUTM’s flow diagram that we already saw in Chapter 3 will be presented in
a different way, showing not only the logical links that connect one block to the others, but also
the practical flow of data and information needed to properly works. Firstly, we will present the
environment in which we developed our framework, which is the quite famous Robotic Operative
System (ROS). Every results we presented, and each piece of code we wrote, has been obtained using
only open source materials and software, starting from ROS itself. This caused many difficulties
and slowdowns, but it is the only way to move in the actual scientific research environment. In
any case, facing more issues makes, in my opinion, our framework more robust and expandable.
What we built, and we are now going to presents, is not the result of the work of a single man,
but it’s the achievement of our group entirely. Just for a matter of brevity and coherence, in this
thesis only the map managing part will be explored in deep, while an introduction overview will
present that framework in its totality.

4.2 Robotic Operative System

Robotic Operative System (usually known as ROS) is an open source, meta-operating system for
robotic applications. More in detail, it is not a real operative system, but instead it better fits with
the definition of middleware, so a collection of software frameworks, tools and libraries for robot’s
sofftware development [49] [50].
According to the description provided by the ROS community, it provides services designed for het-
erogeneous computer cluster such as hardware abstraction, low-level device control, implementation

69

4 – Implementation

of commonly used functionality, message-passing between processes, and package management.
ROS processes can be described by a graph network, where each node is a process that exchanges
data with the others through the edges of the graph, called Topics. In this way, each applica-
tion (node) can transmits and receives simultaneously to and from the network a complete set of
messages, which can be the standard ones or custom defined by the users, as for example sensor
information, or the robot position in a map.
Nodes can be written using a huge set of libraries already existing in parallel with one or both the
two programming languages C++ and Phython (for them, the ROS client library are called roscpp
and rospy). The core library for the mapping is called Grid_Map, and will be presented more
accurately further on. More in detail, a node is a process that performs computation. Nodes are
combined together into a graph and communicate with one another using streaming topics, RPC
services, and the Parameter Server. The advantages of using such nodal architecture are many, in
particular an additional fault tolerance, since error are isolated inside the single node crash, and a
decreased code complexity respect to monolithic systems [51]. Each node has a name and a type,
used to identify it on the filesystem.
Two ways of exchanging data between nodes will be used in CBUTM:

Topic Topics are unidirectional streams of communication and can be represented as buses over
which nodes exchange messages. Each topic has a publisher and one or more subscribers:
nodes that are interested in data subscribe to the relevant topic, while nodes that generate
data publish to the relevant topic. This means that the process of creating information is
decoupled from the one of using it. Furthermore, usually nodes are not aware of who is using
the data they produce. Topics main feature is the type of ROS message they transmit: once
defined, only that type can be published upon it, and subscriber nodes can only receive this.
At the state of the art, ROS communication protocols are TCP/IP-based and UDP-based.[52]

Service are used to answer a very common need of distributed systems, which is the request / reply
interaction. Differently from the publish / subscribe model, this one solves the situations
in which one node needs a function provided by another one. Practically, this is done via a
Service, which is defined by a pair of messages: one for the request and one for the reply. A
ROS node offers a service under a string name, and a client calls the service by sending the
request message and awaiting the reply.
Like topics, services have an associated service type that is the package resource name of the
.srv file. [53]

In image 4.1, a representation of this concepts it’s provided. Finally,ROS is inherently open-source:

Figure 4.1: Node and Topics Architecture

this encourages collaborative work and software development, not only inside the same laboratory
but with all the researchers who join it. In this way, a very hard problem as the robotics software

70

4.2 – Robotic Operative System

development can be addressed not only by expert computer scientist but also by a large part of
robotic researchers.

4.2.1 Grid Map
Grid_map is a C++ library with ROS interface used to manage two dimensional grid maps with
multiple data layers [47]. Its usage is very common in the mobile robotics application and in
general in all the scenarios that requires both a real time mapping and an optimized computation
effort. The data storage is based on the linear algebra library Eigen, which is very popular and
provides versatile and efficient tools for data manipulation [48].
As said before, the key features of this packages are the layers and the way they can be used.
Starting for example from a geographical grid map, it happens very often the need to add additional
information to one or more of this cells. In this case, the grid map library uses the layers to store
different type of data about the same point. A graphical representation of the multi-layered grid
map concept is the one in figure 4.2. The Grid map library offers many functions in order to

Figure 4.2: Example of Grid Map

initialize, manage and work with the layers and the most useful will be descripted in the following
sections. In order to be consistent in the data’s representation, it is important to define some
geometrical parameters of the map [48]:

• Map’s Reference Frame. The map is aligned respect to a specific grid map frame that can
be set by the users.

• Map’s position, which is the center of the map in the previously defined reference frame.

• Map’s geometry, such as lengths and resolutions.

Once the map’s geometrical properties has been set, it’s possible to start working with the data
contained in the layers. In particular, we can access each cells of the layers in order to manipulate
the value stored in it.
For what concerns this work, we will apply the UAV’s risk analysis previously exposed using the
data contained in the cells as input, while the output will be the the corresponding cost value. The
layer structures allows us to assign one layer to each of the parameters that characterize the risk
assessment’s procedure. Moreover, it will be possible, if needed, to modify the value stored in one
or more layers at run time, while the drone is flying, thanks to the simple access tools provided by
this package. This will allow the dynamism of the cost map.

71

4 – Implementation

Finally, this will bring to the construction of a last layer containing in every cell the cost for the
Unmanned Systems that wants to fly over it, and it will be possible for the path planner to apply
the techniques discussed before to find an optimal trajectory.
It’s important to underline that, though each layer contains a different kind of information, the
map is built over a real geographical map, so the path evaluated by the path planner over the risk
layer is the real geographical path the drone should follow.
In order to visualize the grid map, the grid_map_visualization package provides a simple tool to
convert ROS grid map message in RViz. All the following images are obtained thanks to specific
RViz plugins.
RViz (or ROS visualization) is a 3D visualizer for displaying sensor data and state information
from ROS. In our case, it has been used to print the cost map on screen, and to visualize the
movement of drones upon it.

4.3 Cloud Based UASs Traffic Management: ROS Architec-
ture

In this section, the overall structure of the CBUTM architecture will be explored. Actually, each
one of the blocks that constitutes our traffic manager are completed and operative, and this will
be shown in the Simulation chapter. It’s important to underline that the implementation part has
been central in our work, and it is probably an important part of our contribution to the research:
an open source available Unmanned Traffic Manager, really implemented with the most advanced
risk based theories.
The working principle of the Robotic Operating System itself, with different instances, namely
nodes, running independently and communicating by means of topics and services, seems to be
perfect for describing how the CBUTM system works. It can be seen, in fact, as the cooperation
of 4 main nodes, each one main subject of the work of some colleague within the Joint Open Lab,
but in the whole result of the cooperation of each.
In any case, though the work was developed by the whole team, this thesis wants to focuses only
on the risk map managing so in this section just an overview of the CBUTM way to operate will
be provided, while in the next part of the chapter we will go in deep for what concerns the map
generation approach. The blocks that are not explained in detail here, will be obviously covered
by the works of my colleagues.
As always, the best way to represent the logical approach of a complex system as the one we are
describing, is using a flow chart of the nodes that constitute it. In particular, figure 4.3 has been
obtained through the ROS topic RQT Graph: "rqt_graph" creates a dynamic graph of what’s
going on in the system. It is part of the rqt package and shows nodes and topics currently running
and the relationships between them. For this reason, beside the nodes (and their name that we
choose) there are also the topics in which they can exchange information.
The situation reported in figure is characterized by the presence of three UAVs: Iris_1, Iris_2

and Iris_3. Since each of them has its own topics and data, the resulting diagram is quite complex,
and not easy to understand. The choice of having three aircrafts instead of one is due to the need
of showing the capabilities of our collision avoidance system also in a complex scenario. However,
to provide a better knowledge of how the CBUTM works, a logical flow chart has been developed
in figure 4.4. In this image, a middle way between the pure logical(3.1) and the pure low level(4.3)
is depicted. It is very useful to look at the ROS architecture in this simplified way, because it
shows the relationships between nodes without being over detailed.
The Cloud Control Station (CCS) node, our version of the classic Ground Control Station, is
meant to be the central entity of the system, the one in charge of holding relevant information’s
of the network and linking the other elements of CBUTM, managing the communication streams

72

4.3 – Cloud Based UASs Traffic Management: ROS Architecture

Figure 4.3: CBUTM ROS Architecture

within the system. It’s job starts as soon as a user wants to join the network, since it provides the
registration service, first step of the whole process. The user must call the aforementioned service
using a proper client, using the registration.srv message shown in 4.1, through which it transmits
its identity to the system (contained in the custom defined message shown in 4.2), and receives its
computed priority level and the authorization to fly.

Listing 4.1: registration.srv message type definition definition

id_message uav_id
−−−−−−−−−−−−−−−−−−−−−−−−
bool r e g i s t r a t i o n_s t a t u s
f loat p r i o r i t y_ l e v e l
bool re sponse

The definition and then the transmission of uav’s id happens through UAV node, which is intended
to be the drone’s virtual image on the cloud: in our idea, each aircraft that wants to join the urban
airspace has to create its digital double, which will be used to communicate with the cloud traffic
manager, to check its status regularly, and finally to guide the US during the flight.

Listing 4.2: id message type definition
s t r i n g uav_name
s t r i n g owner

73

4 – Implementation

Figure 4.4: CBUTM logical Architecture

u int8 type
s t r i n g model
f l o a t 6 4 weight
f l o a t 6 4 volume
f l o a t 6 4 payload

74

4.3 – Cloud Based UASs Traffic Management: ROS Architecture

f l o a t 6 4 cru i se_speed
f l o a t 6 4 mtbf
f l o a t 6 4 l ength

sensor_msgs/NavSatFix po s i t i o n
nav_msgs/Odometry odometry

bool has_goal
sensor_msgs/NavSatFix goa l_pos i t i on
u int8 mission_type
nav_msgs/Path global_path
nav_msgs/Path local_path

f l o a t 6 4 fmax
f l o a t 6 4 smin
f l o a t 6 4 a l f a

bool author i zat ion_to_f ly
f l o a t 6 4 p r i o r i t y_ l e v e l
bool r e g i s t r a t i o n_s t a t u s

Once the drone’s owner is in possession of all the information required for the registration (4.2),
UAV node can starts running. Without entering in detail of all the parameters in 4.2, just let’s
classify them in macro-areas to understand their role:

Construtive parameter as weight, mean time between failure,ecc.

Path-related parameter as start position, global path,ecc.

Mission’s requirement as maximum risk (fmax)

CBUTM’ service parameter as the registration status, the priority level computed by the traf-
fic manager,ecc.

Within the registration service routine (4.3), first the applicant is identified, and all the relevant
informations are collected. Some of them are then used to compute its priority level, that in our
tests has been supposed to be static and assigned at the beginning of the mission according to the
mission’s type and the vehicle characteristics. In a future moment, it could be turned in dynamic
element, looking to the mission’s priority in a specific time instant. Beside this, the registration
service also awakes the Risk-Aware Map Manager, which firstly provides a model of the operative
environment (working on point cloud, derived from .osm file), and then uses data contained in
uav_id message to calculate all the layer of interest for the drone’s mission. In following section,
a detailed explanation of this procedure will be provided.
Last step of the registration service is to refresh the UAV list, that must contain an up-to-date
database of the active vehicles, easy to check and fast to access for obtaining all the needed data.
To do so, objects of class map and set are used, that are associative containers that store elements
formed by a combination of a key value, used to uniquely identify the elements, and a value, that
store the content associated to the relative key.
The insertion of the aicraft in the list is followed by the creation of a direct link between the CCS
and the UAV nodes, aimed to the awareness of drone’s disconnection, with the former checking
if the latter’s process has terminated, either cleanly or by crashing. Practically this means the
presence of a specific topic in which the UAV node transmits a periodic signal (containing its id

75

4 – Implementation

reference) to the CCS, representing its heartbeat. Every time it’s received, an initialized timer
is restarted, while when the heart stop beating for a determined amount of time (more than 5
seconds reasonably) a timeout callback is run, advertising the crash and updating the UAV list.

Listing 4.3: Pseudo-code of the registration service
check_id ()
{ . . . }
compute_prior i ty_leve l ()
{ . . . }
c r ea te_layer ()
{ . . . }
start_heartbeat_check ()
{ . . . }

The UAV insertion-removal from the list allows the CCS to know which and how many drones
are flying in every moment, making it possible to build up an efficient tracking system. It is used
to monitor the position of every drone, and check the distance between all the registered vehicle
flying in the city airspace.
When the Map Manager ends its work, the registration phase is accomplished. At this time, the
mission didn’t start yet: a goal position has to be imposed, actually through Rviz’s interface.
Once start and goal are setted, the Path Planner node receives them thanks to a specific topic,
and applies RRT* algorithm to find the less costly trajectory, working on the cost_layer that the
Map Manager has built for the specific UAV.
Finally, Path Planner node calls the Path_Validation service, which aim is to guarantee the valid-
ity (respect to the mission’s standards) of the trajectory, providing a boolean value equal to true
they are satisfied. In this case, authorization_to_fly = true is setted, and the mission can starts.
It’s interesting to notice that, differently from all the others UTM, the CBUTM only needs an
autopilot (i.e. Ardupilot) on-board, while all the in-flight computations are done on the cloud sys-
tem itself. In particular, when the mission starts, the UAV node calls its function Follow_Path(),
which is actually the core of both the trajectory following and collisions avoidance and is in charge
of the control of the mission.
Its role is double:

1. To receive the path of the mission computed by the Path Planner,scanning the path in
accordance with the progress of the mission and providing the position of the next goal to
be reached. All this work is done by "Follow_Path()" function itself.

2. Optimizing the trajectory, returning the best one to reach the following waypoint. This
function is done by "Find_Trajectory()", called by "Follow_Path()".

The optimization part is crucial to finally provide a Traffic Manager capable of controlling its
agents avoiding risky situation or, in worst case, collisions. Practically, this led to the need of a
proper solver which could be used to obtain the optimal control input according to a proper cost
function: in CBUTM, we decided to use NLopt.
NLopt is an open-source library for non-linear optimization, callable from a variety of program-
ming language among which C++, which provides a common interface for a number of different
optimization routines [58]. They consist in a standard way to define all aspects relative to an opti-
mization problem, as for example: bound constraints, non-linear constraints, stopping criteria,ecc.
In this way, it is possible to impose an higher cost to area of the map as no fly zone (red from the
corresponding map layer) or which are in proximity of vehicles with higher priority.
Finally, Nlopt provides the "Optimize()" function, which solves the optimization problems finding
the corrects control input for each drone.

76

4.4 – Risk-Aware Map Manager

With this concepts, the implementation overview ends, since every part of the Cloud-Based UASs
Traffic Manager has been depicted from a low level point of view. In the rest of this chapter, only
the Map Manager and Path Validator will be further analyzed.

4.4 Risk-Aware Map Manager

4.4.1 Environment-Related Layer

In this section, the ROS nodes related to the map managing will be discussed. Although the code
is freely available to everyone, it seemed uselees to report it here in its totality. A better way
to explain what’s going on inside the Map Manager is instead a mix of pseudo-code and textual
reference, that can guarantee still a low level view but without the need of knowing Python or
C++.
The first node we developed was "Create_Map_Service" (CMS), in order to answer the demand
of a real urban mapping to make the drone fly safe. The aim of this node is to implement a
service that, when triggered by the CBUTM, is capable to provide a geographical map at a given
height level h. Practically, given a 3D environment, CMS has to operate a cut at the proper
value of z-axe, in order to obtain a planar map. Inside this node, two function are implemented:
"CreateNoFlyZone" and "CreateCoveredArea". The first’s output is the map of all the buildings
taller than h, that have to be considered by the UTM has no fly zone to prevent collisions. The
second instead works in the opposite way, since it returns a grid map object containing all and
just the structures with height less than h. The utility of this object emerges when evaluating the
sheltering factor of a given area, since flying over a concrete palace is many times safer than over a
street. In pseudo-code, refer to 1. The input of the function are the geographical coordinates of the

Function 1 Create_No_Fly_Zone
Require: Minimum and maximum longitude and latitude, map’s resolution, flight altitude h and

.osm file’s path
Ensure: Creates a layer of a grid_map containing no fly zones

GPStoMeter(minlat,minlon,maxlon,maxlat)
loadPolygonFileOBJ(mapdirectory, mesh)
cloud← mesh.cloud
for i ≤ cloud.point.size do

if cloud.point.z ≥ h then
AddPointToMap(cloud.point,NFZmap)

end if
end for
SaveMap(NFZmap)

vertex of the area considered, the directory where is contained the .osm file with the environment
in 3D (freely available on OpenStreetMap.org), the resolution and theflight altitude of the drone.
First, we have to convert the coordinates from GPS to meter, with the proper function. Then,
the .osm file have to be converted in point cloud, in order to be able to manage it. Once this
operations are done, every point’s z is compared with the flight altitude and, if it’s bigger then
it, eventually added to the final NFZmap. This object, is a GridMap element initialized with the
resolution passed as parameter of the function. Finally, SaveMap provides a .png file of the map
in the ROS directory. For what concerns "CreateCoveredArea", it works in the same way but
obviously inverting the if condition (see Function 2). It is interesting to notice that both this func-
tions are not drone-related, but instead can be considered general for all the aircraft joining the

77

4 – Implementation

Function 2 Create_Covered_Area
Require: Minimum and maximum longitude and latitude, map’s resolution, flight altitude h and

.osm file’s path
Ensure: Creates a layer of a grid_map with the buildings smaller then h

GPStoMeter(minlat,minlon,maxlon,maxlat)
loadPolygonFileOBJ(mapdirectory, mesh)
cloud← mesh.cloud
for i ≤ cloud.point.size do

if cloud.point.z ≤ h then
AddPointToMap(cloud.point,NFZmap)

end if
end for
SaveMap(NFZmap)

78

4.4 – Risk-Aware Map Manager

CBUTM: the maps we obtained (as .png images) are only function of the geography of the scenario.
The services provided by "Create_Map_Service" are invoked by the node called "Risk_Map_Node",
which is without doubt the core of the map manager: its main aim is to handle the layer of the
grid map, providing services to add/ remove them, and to calculate particular kind of layer (as for
example the risk one). As said before, each layer of the grid map contains particular information
that can be interesting for the risk assessment procedure. In detail, the ones we are considering at
the moment in CBUTM’s Map Manager are:

no_fly_zone is the layer that contains all the no fly zone of the scenario. Is loaded as a layer
from the .png image produced by "Create_Map_Service" node.

covered_area is the layer that contains all thecovered areas of the scenario. Is loaded as a layer
from the .png image produced by "Create_Map_Service" node.

pop_density is the layer that contains the number of ab
m2 of each sub-area of the map. For this

reason, its upper-bound has been set to 0.0073. We supposed to have an image containing the
density distribution, so as before this layer is loaded from a .png file- However, it’s possible
to take it in a different way, for example starting from a matrix of values.

sheltering_factor is the layer that contains the sheltering factor’s value of each sub-area of
the map. Its range is within [0,10]. In order to produce this layer,we have to merge the
information about the sheltering capabilities of each structure of the environment (contained
in a .png file or matrix called sheltering_map), with the covered areas. The result is a simple
if piece of code, that to each area associates its proper sheltering value, or the maximum one
if there is a building on it:
if covered_area then

shletering_factor = 10
else

shletering_factor = sheltering_map
end if

drone.uav_name +"/signal_layer" this layer contains the signal’s QoS for a specific drone,
whose name is contained in the label of the layer itself. For our purpose, a generic signal
map has been used, but in real operative scenarios is crucial to have this kind of information
from the cloud service provider.

drone.uav_name +"/risk_layer" is probably the most important layer of the map, since it
contains the risk information of each sub-area for a specific UAV (whose name is contained
in the label of the layer). How to build this layer, and the next one, will be described later
on more in detail.

drone.uav_name +"/cost_layer" It’s the last layer of the grid_map. The map manager
weights the two previous ones in order to build the "cost_layer" of the drone, with the
techniques exposed in chapter 3. Upon this layer, the Path Planner works to find the best
trajectory.

The framework is however expandable if some kind of new data should become interesting in fu-
ture.
Once the Map Manager is launched, "Risk_Map_Node" starts adding the layers. Firstly, the ser-
vice provided by "Create_Map_Service" are called and both "no_fly_zone" and "covered_area"
begin to form the map. Then, "pop_density" and "sheltering_factor" are added with the logics
previously exposed, looking to the images that correctly describe this information.
This part of the work is done every time the ros node is launched, no matter if there are no drones

79

4 – Implementation

registered to CBUTM, since this four layer will be the same of everyone. In next section, how to
build the remaining layers will be discussed.

4.4.2 UAS-Related Layers
At this point, three different services are defined inside "Risk_Map_Node" in order to provide the
instruments for the CBUTM to evaluate the last three layers. In particular, when a registration
request is advanced by an Unmanned System to the traffic manager, the "Control Station" node will
call in sequence this functions, that will build signal, risk and cost layer for the specific drone. Once
again, it is important to focus on this point: the layer which are independent from the drone’s
parameter are included in the map automatically, without any service and with the procedure
exposed before. The ones we are going to see now, instead, are added only when a specific request
comes from the "Control Station" node.
As it emerges from the name, this layers are deeply linked with the constructive (and not only)
parameters of the UAS: practically, they describes the quality of signal, the risk and the overall
cost for an UAV to fly over every area of the map. Upon each layer of a grid map an iterator can
be constructed, which moves from a cell to the following one: for every of them the proper analysis
must be done.
The first layer built is "drone.uav_name + /signal_layer" through the service "add_cost_layer".
This is the simplest among the three UAS-Aware Layers, since no real operation have to be done
to calculate it. As said before, it will be mandatory for the cloud operator to provide such a map,
that however should be adapted to each drone according to it capabilities (for example antenna’s
gain) in receiving signals. The range of value is within [0,100], where 0 is lack of signal and 100
maximum quality, in order to be easily compared with risk and cost.
In our case, since there were no map available, a simple scenario has been simulated. Thanks
to the "circular_iterator", which is a particular kind of iterator provided by "grid_map" library,
we deployed a map with 100% QoS exept for a circle of radius equal to 80 where the Qos starts
decrasing till the center which has zero value. Obviously, this is only intended for simulation
puropse, and doesn’t reflect real TIM’s map.
The second layer construction triggered by the UAV’s registration process is "drone.uav_name +
/risk_layer", which is the core of the whole Map Managing procedure. Inside the service which
create it("add_uav_layer"), many technical tricks have been used. In the following list, the most
interesting ones are underlined, in chronological order:

1. The layer is firstly initialized with the map dimensions, equal to the one of the previous
layers. At this time, each cell is imposed equal to NAN.

2. Evaluation of impact kinetic energy E, using two different formulas according to the type
(quadrotor or fixed wing) of drone: E = m× g × h for free fall and E = 0.5 ∗ g ∗ v2 where v
is the impact speed evaluated with glide angle equal to 45.

3. Calculation of impact area with eq. 2.5

At this point for each sub-area, identified with a classical iterator:

1. Evaluation of sheltering factor and population density. Thanks to the same iterator that
access "drone.uav_name + /risk_layer" it is possible to access also the corresponding cell
in "pop_density" and "sheltering_factor". Furthermore, we still improved the estimate
of this two parameter, introducing a mean between the value of the cell considered and
the surrounding ones, in a circular range of radius equal to 10 meters. In this way, when
calculating the risk of having a failure in a given area, we also consider the eventuality in
which the drone falls in a zone that is near the one where the fail happened.

80

4.5 – Path Validator

2. Calculation of cell’s risk, with equation 2.2. If "no_fly_zone" layer contains a value different
from 0 in the corresponding cell, the risk is imposed equal to fmax, according to what
discussed in chapter 3.

Finally, the last service called by the registration process is "add_cost_layer, which aim is to
implement the concepts about the cost function seen in chapter 3 and build "drone.uav_name
+ /cost_layer" . It have obviously to be the last layer to add because of its nature: it have to
aggregate the numbers contained in signal and cost layer, that for this reason must already exists
before start working on it. The first operation performed is this check, thanks to the grid_map
function’s "exists". Then, on each cell:

1. the corresponding normalized ([0,100]) risk is evaluated, using formula 3.7.

2. Cost value is inserted, using eq. 3.29.

The last thing to do is to make the map readable for the "utm_path_planning" node, so it is
published on topic "/risk_map_node/risk_map". That’s said, the map managing procedure it’s
over. Many (the biggest part!) of the implementation issues have not been presented in order to
make easier the reading of this part.

4.5 Path Validator

As discussed in chapter 3, the Path Validation is a crucial feature of CBUTM, since it has to mea-
sure the overall risk (and not only) of the trajectory and compare it with the required standard
(imposed by National Flight Authority, as explained in the flowchart 3.1).
According to figure 4.4, in our framework the node deputed to the Path Planning is called
"utm_path_planning", which receives the grid_map on topic "/risk_map_node/risk_map".
How the P.P. procedure has been implemented will not treated here, since this is not the scope
of this particular thesis. The only things important to know are that the RRT* algorithm (see
chapter 3) is the one chosen as Path Planner, and when it ends its task the trajectory is contained
in a message of the type nav_msgs::Path: this particular ROS object has been developed precisely
for mobile robotics, and contains an array of pose in space that the drone is supposed to follow.
In our case, both the z-position and the orientation can be neglected. It’s fundamental to notice
that not all the poses (that will be infinite!) are included in this message, but only the ones where
a change of direction in drone’s flight is needed.
Finally, the Path Planner’s starting point is contained inside the uav_id message that starts the
registration process, while the goal is received through RViz’s interface: this solution (that can be
easily changed) allowed us to makes a lot of different simulation without changing manually the
target position every time.
Once start and goal are known and the map available, the Path Planner finds the lowest cost path
that links this two points, working on the cost layer (which values’ range is from 0 to 100) of
the particular drone that demands the authorization to fly. This last task is the core of the path
validation.
Due to its intrinsic characteristics, we decided to develop "path_validation" as a service, which
returns true if the path satisfies all its constrains (so, it is valid) and false vice versa. The service
is called by the "utm_path_planning" node when the path has been chosen, and before returning
to the drone the authorization to fly: for this reason, the path validation is the last part of the
registration process.
The work’s flow of this service can be divided in three macro areas, which have to be faced in this
particular order:

81

4 – Implementation

Path Decoder which starts from the Path message and provide as output all the cells where the
drone is supposed to fly.

Signal Validation check if the Signal’s QoS of that path satisfies the mission’s requirements

Risk Validation check if the path’s risk is below the threshold.

Although in real code they are in the same function (path_validation), it’s easier for us to explain
in pseudo code this three parts as divided.
For what concern the path analysis, a particular iterator of grid_map, called LineIterator, is
used. Practically, given two points this object automatically interpolates them with a straight line,
finding all the cells between them. Once the path has been unwrapped, some information useful
for the following parts are collected, as for example the distances between two adjacent cells, the
time needed to pass from one to the following and the overall time’s length of the flight. In this

Function 3 Path_Decoder
Require: Path’s waypoint vector Path
Ensure: A set of arrays containing data on all the cells crossed by UAV

newarrays signal, risk, distances, times
loadPolygonFileOBJ(mapdirectory, mesh)
cloud← mesh.cloud
for i = 0, i < path.length− 1, i+ + do

initial_pose← Path(i)
final_pose← Path(i+ 1)
for LineIterator li(initial_pose,final_pose), !li.isPastEnd() do

risk ← risk_layer(li)
signal← signal_layer(li)
disances← getDistance(cost_layer(li), cost_layer(li+ 1))
times← distances/cruise_speed
mission_time← distances.sum/cruisespeed

end for
end for

way, the problem of finding out which cells are overflown is solved and the information that will
be used by next functions are provided as vectors, easy to be handled and accessed. Pseudo code
in funciton 3
The second "sub-function" we developed is "Signal_Validation", which works on the "signal"
vector obained as output of "Path_Decoder". As already discussed in chapter 3, many other
function like this one can be developed (using almost the same paradigm) according to the number
of parameters of the unmanned mission. The output is just a boolean variable "s_check", which
will be true of false if the path satisfies or not this requirement. Pseudo code in function 4
Finally, the risk validation have to be addressed. Once again, it is important to remember that this
function must be the last one, since only the risk assessment can decide whether or not the mission
is feasible: the output will be a boolean variable, call "validation", which can be considered as the
final output of the registration procedure. As discussed in chapter 3, in this function the theory of
crash probability have to be implemented (equation 3.41), in order to pass from the risk value in
people per hour of flight to expected victims. Moreover, it has to check if a no fly zone is crossed
and calculate the overall mission’s risk, called "Ntraj". Then, boolean validation is returned.
That said, the function provided by the Map Manager are over. We implemented a part of the
CBUTM that now is capable of handling .osm file (real open source map), doing a risk analysis on
it and finally finding an optimal trajectory and compare it with the requirements. This conclude

82

4.5 – Path Validator

Function 4 Signal_Validation
Require: The trajectory to validate, the signal lower-bound signal_lowerbound
Ensure: A boolean value check

s_check ← true
for i = 0, i < signal.length, i+ + do

if signal(i) < signal_lowerbound then
s_check ← false

end if
end for

Function 5 Risk_Validation
Require: The trajectory to validate, the risk upper-bound risk_upperbound
Ensure: A boolean value validation

Ntraj ← 0
for i = 0, i < risk.length, i+ + do

if risk(i) > risk_upperbound then
validation← false

end if
Ntraj ← Ntraj + risk(i) ∗MTBF ∗ Pc

end for
if Ntraj ≤ risk_upperbound then

if check then
validation← true

else
validation← false

end if
else if Ntraj > risk_upperbound then

validation← false
end if
return validation

83

4 – Implementation

the implementation section: in other thesis, also the trajectory following problem and collision
avoidance will be discussed deeper.

84

Chapter 5

Simulations

5.1 Simulation Environment

In this chapter, a complete simulation of a typical Traffic Management scenario will be provided:
we will show how the processes described in previous chapters really works, considering not only
the Map Managing but also all the other components of the Cloud-Based Traffic Manager, from
the registration to the in-flight control.
Before starting the simulation, let’s have a quick presentation of the main tools we used in it.
Simulation, testing and debugging have been performed in Gazebo 7, a robot simulation software
that will be presented more in detail at the end of this section, running on a ROS Kinetic distri-
bution. Our needing was to have a simulation environment, in which vehicles as much as some
on-board sensors (like the GPS transmitter) were simulated, and could send and receive messages
and commands through the MAVLink protocol: this one is a communication protocol, very com-
mon for Micro Aerial Vehicles and already presents in most of the ones actually commercialized.
For this purpose, Unmanned Capture the Flag (U-CTF, [65]) turned out to be very useful. It is
actually nothing more than a game developed in the ROS environment, in which swarms of drones
are flown in an Unmanned Capture The Flag match, that can be played both in the real world and
in the simulator. It consists of a complex system in which the simulator, the autopilot software
and a mission management interface are linked together, built up as provided by 3D Robotics in
a software-in-the-loop (SITL) environment.

Drones have been inserted by means of their Unified Robot Description Format (URDF) model,
that properly describes their dynamics. This is what has been done from UCTF developers, that
used a 3DR Iris quadcopter as simulated drone, together with a scaled down Cessna fixed wing,
that has not been used in our work, since for technical characteristics and flight dynamics, does not
fit with the purposes of this project. Both these vehicles are equipped with a autopilot software,
that, managing all the technical aspects of the flight, allows high-level interaction with the drone. It
could be chosen between a PX4 or an ArduPilot-copter, two of the most common autopilot software
in commerce: we decided for the latter for convenience. It is a full-featured, open-source multi-
copter UAV controller capable of a wide range of flight requirements, which can be programmed
through a number of compatible software ground stations. It uses the MAVLink communication
protocol ([60]), that is used for transmitting commands and informations between vehicles and the
control station. At this point, a Gazebo simulation environment is set up, with certain world and
environment models: Gazebo node then, through its plugins, simulates the behavior of inertial
measurements units (IMU) and GPS sensors, publishing messages about IMU, GPS position and
GPS velocity value on specific topics. This SITL can be spawned in multiple instances, modelling
multiple different copters to exist at once, allowing us to run at least three simulated drones on a

85

5 – Simulations

reasonably powered laptop.
We then used as interface the QGroundControl[61] software, a powerful Ground Control Sta-
tion which provides full flight control and mission planning for any MAVLink-enabled PX4- and
ArduPilot-powered UAVs. It has been configured according to the Software-In-The-Loop config-
uration, following the general guidelines, making it read from port 14000, where the simulated
drones are communicating via MAVLink. Its usage has been fundamental for a preliminary un-
derstanding of how the autopilot works and how to interact with it, while, once understood the
communication’s dynamics, it has been put aside, and the system extended to allow communica-
tion between our autonomy package and the autopilot, creating proper nodes to send and receive
messages and manage missions.
Last software involved in the simulation environment setup is Rviz, a 3D visualizer for the Robot
Operating System framework, already presented in 4.

5.1.1 Gazebo

Gazebo is an essential tool for developing robotics applications. It is free and supported by a
great community, making of gazebo one of the primary tools used by the ROS developers [59].
It consists of a robust physics engine, high-quality graphics, and convenient programmatic and
graphical interface, offering the ability to accurately and efficiently simulate robots in a complex
scenario, with everything being customizable according to the needing. By means of proper world
files is, in fact, possible to describe all the elements making up the scenario, while with model files
is possible to model any kind of robot. This is done in a specific format, called SDF, Simulation
Description File, even tough it is still possible to find robot model described in the old URDF
(Universal RObot Descriptio File) file, left apart because of the evolving needs of robotics.
SDF is a complete description for everything from the world level down to the robot level. It is
described using XML, is scalable, self-descriptive and makes it easy to add and modify elements.
The Gazebo server, the engine of the simulator, parses the description files given to it as input,
building up the simulation environment accordingly and simulating dynamics thanks to multiple
high-performance physics engines. It is shown thanks to the Gazebo graphical client, that connects
to a running gazebo server allowing its visualization. It utilizes OGRE’s graphics rendering engine,
providing realistic rendering of 3D scenarios. Gazebo uses then a number of enviroment variables
to locate files, and set up the communications between servers and clients.
Finally, many plugins offered within the Gazebo community provide a simple and convenient
mechanism to interface and interact with it, having direct access to Gazebo’s API and all its
functionalities. They are self-contained routines that can be added or removed from running
systems, allowing to include new features like, for example, the simulated GPS sensors used in the
present work.

5.1.2 Distributed Architecture

Introducing ROS we said how it is explicitly designed for distributed computing. Here we will see
how this possibility can actually be put in place, allowing us at the same time to show a simulative
context more coherent with the Cloud infrastructure we designed in this project.
The way in which the processes are managed by means of the nodes, and the methods of commu-
nication between them, analyzed in section 4, make it possible not only to allocate these processes
on different calculation units, but it is also possible to relocate the same processes at run-time to
match the available resources in the network.
This last possibility is very interesting as it is suitable for a new emerging technological paradigm:
edge computing.
This concept basically consists in revising the cloud infrastructures considering the changes that

86

5.1 – Simulation Environment

the internet of things (IoT) implies on the way of perceiving the internet itself. In fact, for years
now, the internet has ceased to be a virtual and intangible entity. In the age of IoT, we already see
it, Internet is not only present and directly affects many of the activities that each one performs
every day (appliances, the way we communicate or move or prepare food) but ends up generating
the knowledge itself, starting from the information that such devices collect to work.
This in some way shifts the "center of gravity" of internet itself: from large data centers thousands
of kilometers away, the measurements and the actuations of internet take place and will take place
practically everywhere.
Edge computing is exactly the paradigm for which the computation moves close to the source of
the data it collects and close to the actions it determines.
This paradigm is perfectly suited to being associated with 5G, which is "a collective name for tech-
nologies and methods that would go into the future networks" [62]. Given the importance of cloud
services also on mobile networks, the concept of Mobile Edge Computing (MEC) is recognized as
one of the key emerging technologies for 5G networks and it is therefore something that we will
deal with in the future.
Distributing the computation with ROS is very easy. It is required that each pair of machine have a
complete and bi-directional connectivity on all the port then, assuming that we want to distribute
the calculation only on two machines, we proceed to configure them as shown below:

Machine1 :
$ export ROS_HOSTNAME=Machine1
$ export ROS_MASTER_URI=http ://Machine1 :11311
$ export ROS_IP=machine_1_ip

Machine2 :
$ export ROS_HOSTNAME=Machine1
$ export ROS_MASTER_URI=http ://machine_1_ip :11311
$ export ROS_IP=machine_2_ip

Figure 5.1: Architecture of the distributed simulation environment

87

5 – Simulations

Using an architecture like the one in figure 5.1, it is possible to perform simulations more co-
herent with the real context of application. With such a configuration, it is possible to experiment
the distributed architecture and above all it is possible to introduce a certain latency in the com-
munication between the nodes. The latter was not considered in the course of the project and of
the simulations but it is possible to make however some considerations.
First we look at the criterion with which we assigned the nodes to the machines. PC 1 simulates the
real world: inside we have Gazebo and therefore two simulated drones with ArduPilot on-board.
Notice how here we refer to only two UASs, but clearly the discourse can be extended and then
actually applied to an arbitrary number of unmanned systems. All connections with PC 1 simulate
5G connections between vehicles and the cloud. The latency specifications of the next generation
of mobile network are not yet perfectly known, but we know that they should be in the order of
milliseconds.
It can be assumed that in general the latency of a network varies according to a normal distribu-
tion. Let’s see, with the following command, how we can add to PC 1 a normally distributed delay
with a mean value of 50ms and a variance of 20ms

tc qd i s c change dev wlan0 roo t netem de lay 50ms
20ms d i s t r i b u t i o n normal

These latency values should not affect the functioning of the architecture proposed here. In fact,
the frequency of the nodes involved in CBUTM never exceeds 5Hz.
PCs 3 and 4, as seen, execute the nodes related to the trajectory following; PC 2 all other CBUTM’s
nodes.
A consideration of the connections between PC 2 and PCs 3 and 4 can be traced back to the
previous discussion on edge computing. If we assume CBUTM as a centralized entity, PCs 3 and
4 are nothing more than virtual machines within which the nodes are executed. In this case the
connection will simulate the connection between the virtual machines, with extremely low latency.
On the other hand, if we assume to apply the paradigm of edge computing, PCs 3 and 4 can
be considered as independent units of calculation allocated near the mission area. In this case
the latency will depend on the way in which these machines are connected, and we can then use
the previous command on these machines too, assuming here also a communication based on 5G
technology.

5.2 Map Manager

5.2.1 Environmental Modelling

According to the concepts exposed in previous chapters, the first output that the Risk-Aware Map
Manager has to produce its a coherent model of the environment in which the mission takes place.
In particular, it has to provide two UAV-independent layers, which will be the same for every drone
that will fly (at the same height h, obviously) in this area: "no_fly_zone" and "covered_area".
Their role, already explained in chapter 4, is to describe two crucial features of the "world", that
for a planar robot (as the drone) is a simple "cut" of the geographical map at the flight’s altitude.
On one hand, there are all the buildings taller than this value, that for this reasons can be a danger
for the Unmanned Aircraft and have to be precisely identified. On the other, all the structures
lower than h that can offer a very good sheltering for people on ground, in case of UAV’s fall.
De to the high computational cost that such simulation requires, we decided to not consider an
entire city, but just a part of it, that can provides some particular features to show the capability
of CBUTM. The area we chose is the one contained in the rectangle defined by:

[min latitude,max latitude] = [45.0645000,45.0741000] (5.1)

88

5.2 – Map Manager

[min longitude,max longitude] = [7.6537000, 7.6732000] (5.2)

which is the part of Turin around the San Paolo’s skyscraper. In figure 5.2, the view from osm-
buildings.com is depicted. Obviously, the choice of this area is not casual, but has some criticisms

Figure 5.2: Open Street Map Buildings View

due to the presence of an over 100 meter building.
Starting from the corresponding .osm file, the input of the "Create_Map" service is a point cloud,
which can be obtained through specific open source softwares. The result is the one in figure 5.3.
Saving it as .obj file, it is finally the proper input for th modeling environment function. Besides
this, also other information are needed to compute the layers: height of flight and map’s resolution.
In this simulation case, we decided to impose h = 25m and a resolution of 25m2, which both are
in line we real operative situation. Converting the geographical coordinates in pure lengths, we
obtain a map of 1535× 1070m, that whit this resolution’s value correspond to 307× 214 cells.
Applying a cut at h = 25m we obtain the first two layers of the map (see fig 5.4 and 5.5). What
is interesting of this two layers is their complementarity: merging the two figure we obtain the
complete representation of the operative environment. In particular, in the first one, only the
skyscraper and the building next to it are depicted. As already said in this thesis, it’s not very
common to find tall palaces in city center. For the same reason, the covered areas layer is very
dense, since there are a lot of "small" structures, especially in high densely populated zone as this
one.
Two other layers are needed to complete the mapping of the environment: population density and
sheltering factor. For what concerns the first, we set a constant value of 0.0073 ab

m2 , that means a
flat layer (that for this reason will not be reported here). Finally, the sheltering has been modeled
as maximum (10) in the zones corresponding to the covered areas, or a generic mean value (6) in
all the other parts. In figure, it has the same shape of 5.5, but with different values.
Finally, the environment’s model is completed. It is structured in layers and published every 2
seconds on "risk_map_node/risk_map" topic.

89

5 – Simulations

Figure 5.3: Point Cloud Model

Figure 5.4: No Fly Zone Layer

5.2.2 UAV-Aware Risk Map

Once the model of the environment is available, is possible to accomplish to the registering proce-
dure advanced by the UAVs. In order to correctly do this, its necessary to merge the information
present in the first four layers with the drone’s characteristics. As discussed previously in this
thesis, three layers are UAV-Aware:

• Signal Layer, which represents the capability of the drone to receive Internet connection, in

90

5.2 – Map Manager

Figure 5.5: Covered Areas Layer

every area.

• Risk Layer, which represents the risk for the UAV, evaluated with equation 2.18.

• Cost Layer, which merges the first two according to proper weights.

In this simulation, the drones are supposed to have a length equal to 0.7 meters and a weight of
0.5 kilograms.
For what concerns the first layer, it is a generic measure of the Quality of Service of the Internet
Connection, and is used just as example to show the potentiality of the cost layer. In any case,
during this simulation we assume every drone has on board a 5G compliant antenna, to receive
TIM’s signal. Furthermore, in order to have some criticism, we supposed to have an optimal signal
reception, except for a circular area, as in figure 5.6. This is not strictly true, in particular in
urban environment where this kind of infrastructure are very powerful. However, it’s useful for a
better result of the simulation. According to the metric, the layer’s value is always 100 except for
the cone, where it goes down till 0.
Beside, also the Risk Layer of the drone can be computed. According to what we said in chapter
3, it follows the rule (for every cell):

if no_fly_zone then
Risk ← upperbound

else
Risk ← (N × P (f |e)× λ)

end if
In this case, as for the rest of the work, we impose upperbound = fmax = 10−5 victims

h . This
layer is probably the most important one, since the risk assessment is a crucial procedure in our
framework. It merges all the information present in the other layers, and the results have to be
consistent wit real empirical results. Finally, normalizing the risk in range [0,100], we obtain the
risk map in figure 5.7.

91

5 – Simulations

Figure 5.6: Signal QoS Layer

Three kind of areas emerges clearly from the figure:

Figure 5.7: Risk Layer

• Areas with the lowest value of sheltering (6), which has a green color in figure. Their risk is
equal to 7× 10−6, which normalized is 54.

• Areas with the maximum sheltering possible (10). They have a purple color ad the lowest
risk fF = 5× 10−6, that normalized become 19

• No-Fly Zone, which are red and have the higher risk fF = 1× 10−5 that corresponds to 100.

Obviously, many other values are present in the risk maps, but in a rough view they can be
summarized in this three categories.

92

5.3 – Path Planning and Validation

Since both risk and signal layer are in range [0,100], they can be summed in a final layer, called
Cost Layer. According to the theoretical concept exposed about it, this last map can be seen as a
weighted sum of the other two layers, obtained using coefficients α and β = 1 − α. In particular,
when α = 1, only the risk is considered, and the resulting map is the same as in figure 5.7. Instead,
when α = 0, only signal’s QoS affects the cost, and the layer turns out to be the opposite of the
one in figure 5.6. An example with α = 0.5 is provided in figure 5.8.
In particular, it’s possible to notice the no-fly zones and the area of no signal coverage, which in

Figure 5.8: Cost Layer

this case is no more an "hole" but instead a cone. This behavior is due to the fact that a low level
of signal corresponds to an high cost.
Finally, the Risk-Aware Map Manager ends its work, providing a set of layers common for every
drone, and three different layers specific for each aircraft. Upon the last one, the Path Planner
will evaluate the better trajectory to perform.

5.3 Path Planning and Validation

The map, understood as a collection of layer, is published on topic "/risk_map_node/risk_map"
with a frequency of 0.5 Hz. Every time a new layer is available, it is simply added above the
others. In particular, when the Cost Layer of a drone is completed, it is possible for the CBUTM
to start the mission planning phase. In this part, we suppose to have a known start position, and
to receive the goal of the mission as Rviz input. Each UAV registered to the cloud traffic manager
can provide its own end position, different from the other ones and on its specific layer.
Main aim of the Path Planner is to choose the less costly path, from point A to B, and then to
validate it through the Path Validation procedure already described in previous section. Since for
now we are not considering collisions with other aircrafts, its possible to show the capabilities of
this two algorithms just on a single drone, since it will have the same behavior on the others. In
figure 5.9 a typical path planning situation is shown, including also some criticisms due to the
presence of the skyscraper. The circle in red its the Unmanned Aerial System in its starting pose,
while the three axis frame is its final pose. In between, both the no-fly zones and the "signal hole"
are present, and easily identifiable.
What emerges its the Path Planner capability in working also in very small spaces: for example, the
drone’s trajectory is very close to the buildings but never hit them. Since we are also considering

93

5 – Simulations

Figure 5.9: Path Planning Example

an inflation area around them, we are almost sure that no collision will happen. Furthermore, the
feasibility of the path for what concerns the aircraft’s dimensions it’s guaranteed by the cells area,
which is big enough to allow any kind of maneuvers.
Once the path has been found, the Path Validation Service is called.
The first step to perform is the path decoding, where some useful information are extracted. For
this particular simulation, we are assuming a constant cruise speed for the drone equal to 3m/s
(10km/h). Founding out all the cells that belong to the trajectory, its overall length can be
measured and is equal to 1008m. From this value, also the time length of the mission can be
calculated, as: τmiss = length

speed = 336s.
At this point, the signal’s QOS validation can starts.
As we seen previously, once the path’s cells are known this is a quite simple operation, since the
validator only has to verify that each cell has a QOS value bigger than the lower-bound, which in
this case is set to Smin = 50. From image 5.9, we can see that the path covers for almost all the
time areas with signal’s QOS maximum value. Zooming around the hole, it can be verified that
a little part of it has a lower value, which however is never below 50. For this reason, the signal
quality validation can be considered successfully completed.
Finally, a risk-aware validation have to be performed. First of all, it have to check the presence
along the path of no-fly zone: as it’s possible to see in figure, none of them is crossed during the
flight. Furthermore, it have to ensure that the predicted number of victims of the trajectory Ntraj
is not greater than the maximum acceptable NMax. Since:

NMax = fF,Max × τmiss = 0.00336 ≥ Ntraj = 0.001239 (5.3)

The risk validation procedure is successfully completed.
Since the path is valid from all the point of views, the drone is authorized to start the mission,

94

5.4 – Path Following and Collision Avoidance

setting to true the boolean flag authorization_to_fly.

5.4 Path Following and Collision Avoidance
A set of tests and simulations has been performed to analyse the behaviour of the cloud-based traffic
management during the flight of the aircraft, in order to validate our approach. For this reason,
CBUTM has been seen in action in several operational situations, and the obtained results will be
here presented. Since our collision avoidance algorithm is priority-based, meaning that it is only
and always the lower priority drone avoiding the higher priority one, for an easier understanding
the following colours convention will be applied:

• red: lowest priority level drone

• orange: middle priority level drone

• green: highest priority level drone

The following sequences of screen-shots come from Rviz, where vehicles are represented with
a circle (a geometry_msgs :: PoinStamped), surrounded by their own safety area. This is the
forbidden area around every drone, where other drones are not allowed to fly, and it is to be
considered as a safety distance marker of 10 metres. Output of the collision avoidance algorithm
is the local trajectory the autopilot will follow, that is shown with a thicker line coming out of
the drone, while the dashed line the UAV leaves behind is its odometry trace. Buildings and fixed
obstacles are represented in a certain colour scale on the map: in the sequences below, the map
used is built on the no_fly_zone layer.

The first test is a basic one, where 2 unmanned vehicles, regularly registered within the network,
are flying in the same area, too close one to the other. In fig 5.10, the first test sequence is shown.
In this case, only one drone is flying - the red one - while the other, with higher priority level,
is standing in its position, hovering. As supposed, the red drone is the one forced to move from
its original path, as soon as the other drone is detected in 5.10b. The red drone starts slightly
moving out of its path, going around the green one, and finally going back to its original path,
and reaching its goal.

(a) (b) (c) (d)

Figure 5.10: Test 1: 2 UAVs, only one moving

The same situation in the neighbourhood of a noflyzone represented by a building is shown
in Figure 5.11. In this case, the red US, when looking for a way to escape from collision, tries
to go left-ward first, being that one the shortest way to she goal (5.11b). When the presence of
the building is detected (5.11b), it immediately changes direction, overcoming the green obstacle
going right (5.11c), and then coming back to the original path.

From now on, at least two vehicles will be in motion at the same time. The first, basic case
involves two drones flying one against the other, shown in the sequence in Figure 5.12. The time
requirements of this case are a bit more tight with respect to the previous one, since both the
drones are flying at their cruise speed of about 4m/s. The red drone then, once detected the
green one in 5.12b, must be faster than before in changing trajectory. This is done in the optimal

95

5 – Simulations

(a) (b) (c) (d)

Figure 5.11: Test 2: 2 drones, only 1 moving. Presence of a fixed obstacle

way shown in 5.12c, so that both the vehicles can safely accomplish their mission according to
their priorities.

(a) (b) (c) (d)

Figure 5.12: Test 3: 2 drones, both moving. Presence of a fixed obstacle

A slightly different circumstance is presented in the sequence 5.13 , where the two vehicles are
crossing their paths in a diagonal way.

(a) (b) (c) (d)

Figure 5.13: Test 3: 2 drones, both moving. Presence of a fixed obstacle

A bit more complex is the situation presented in 5.14, where both the drone are completing
their own mission, and their paths cross in front of a building. The green one, having an higher
priority level, keeps going in its direction, will the red one must again fly away from its path.
The operation is not performed along the shortest way because of the building, detected in 5.14b,
forcing the vehicle to go in the other direction, as can be seen in figure 5.14c.

(a) (b) (c) (d)

Figure 5.14: Test 5: 2 drones, both moving one toward the other, in presence of a fixed obstacle

96

5.4 – Path Following and Collision Avoidance

Sequence 5.15 shows a similar situation, with different dynamics: here, the green vehicle is
approaching the building, and its mission consists in hovering on a fixed position in front of it. In
the same moment, the red drone is coming from the left-hand side, passing next to the building
without stopping by. When it detects the higher priority UAV arriving, the Predictive Trajectory
Planner (PTP) computes the optimal deviation from its original path, predicting to go all around
the safety area of the green one (5.15b).

(a) (b) (c) (d)

Figure 5.15: Test 6: 2 drones, both moving, crossing their path, in presence of a fixed obstacle

Adding one more vehicle, the situation gets a bit more tricky, but same well managed by the
CBUTM system. In Figure5.16, the red vehicle coming from below finds two standing vehicles on
its path. When the first one has been detected in 5.16b, the vehicle starts moving left to avoid
it. Once it has been overcome, while trying to get back on its original path (5.16c), the red drone
comes across the second higher priority vehicle, and changes again its trajectory to avoid that one
too, as can be seen in 5.16d.

(a) (b) (c) (d) (e)

Figure 5.16: Test 7: 3 drones, one moving

Similar situation, with the only one moving drone meting the other two standing, is shown
next (fig:5.17) this time in presence of a fixed obstacle. The same considerations done so far can
be applied here.

In the next tests, both the red and the yellow drones are moving, while the green is standing
in its position. A first case is represented in the sequence 5.18, where the red and yellow vehicles
are moving one against the other, while the green one is hovering in the middle.

The first two vehicles are flying in different directions (5.19a), and both will meet someone
with higher priority on their path, forcing them to change trajectory (5.19b). While doing it, the
red will also come across the yellow, being forced to find another way. It solves the situation
computing the path in a way that some way-points are in the same position or close, resulting in
a deceleration of the vehicle, as can be noticed looking at its trajectory projection, that becomes

97

5 – Simulations

(a) (b) (c)

(d) (e) (f)

Figure 5.17: Test 8: 3 drones, one moving, in presence of an obstacle

(a) (b) (c) (d)

Figure 5.18: Test 9: 3 drones, two moving, 1 standing in the middle

shorter than usual (5.19c). After the yellow vehicle will be passed by, the way will be free for the
red one, that keeps going, knowing the path is safe.

(a) (b) (c) (d)

Figure 5.19: Test 10: 3 drones, two moving in different directions, one hovering

Again, we tested this intersection between three vehicles putting them close to a building.

98

5.4 – Path Following and Collision Avoidance

The result is shown in sequence 5.20. The two vehicles with lower priority are flying in opposite
direction (5.20a), until they will get caught between the highest priority one and a fixed obstacle.
When pointing toward the space in between the green drone and the building, not large enough for
both of them, the yellow has the precedence, while the red one searches for another way, finding
at its right-hand side (5.20b). They keep then flying their missions.

(a) (b) (c) (d)

Figure 5.20: Test 11: 3 drones, two moving, 1 standing, in presence of a fixed obstacle

Last interesting test is shown in the sequence 5.21. Two vehicles with lower priority meet the
green one, and start computing a different trajectory, that would bring them to move in the same
direction (5.21b). When the red one detects the yellow, it understands it must re-change the
plan, and so it does, after tending towards the opposite direction to avoid both the yellow and the
green vehicle (5.21c). In this operation, the predicted trajectory of the red drone is made up of
way-points which are closer one to each other, resulting in a deceleration of the motion, that allows
it to fly just behind the green one maintaining the safety distance (5.21d). The priority order is
then respected during the crossing, and the safety distance maintained, allowing all the drones to
reach their goal with a small deviation.

That’s said, the simulations end. In this chapter we showed the software environment we
used, and then the all the most important functionalities of the Cloud-Based Traffic Management,
treating not only the Risk-Aware Map Manager, but also the Path Planner, the Path Validator
and the Collision Avoidance algorithms. What emerges is that the framework is already operative,
and it is able to correctly manage not only an ideal operation, but also criticisms during flight.

99

5 – Simulations

(a) (b) (c)

(d) (e) (f)

Figure 5.21: Test 12: 3 drones moving in different directions

100

Chapter 6

Conclusions and Future Works

The need of a completely new UASs Traffic Manager to ensure safety for people on ground has
been discussed in deep during this thesis, underlining the features it must guarantee and the issues
that arises during the design procedure. Moreover, due to the peculiar characteristics of the urban
environment and its high degree of complexity, also the cloud-based technology has been treated,
showing how and why it can be used to realize a more effective Cloud-Based UASs Traffic Man-
agement.
In particular in this work some remarkable results has been obtained, that are on one hand in-
novative, while on the other provide for the first time a complete picture of the state of the art
of the risk analysis for Unmanned Mission, together with a possible way to use it inside a Traffic
Manager. For the first time, a Risk-Aware Map Manager has been designed, capable to produce
coherent risk maps, which are without doubt crucial for the future development of the Unmanned
Aviation.
Instead of proposing new methods for risk assessment of the vehicle itself, that would impose a
study of the aircraft in deep starting from its smaller components, we assumed this part of the work
already done by the UAVs producers. In this way, we moved to a risk assessment of a geographical
area more than an aircraft, really evaluating the risk for one or more people to be killed or seriously
injured by a drone crash (chapter 2). The results has been used by the Risk-Aware Map Manager
to produce a completely new idea of map (the risk map), which no longer takes into account only
the geographical elements (and obstacles), but all the characteristics that can affects the risk itself.
Given a drone, with its peculiar constructive parameters, it will be authorized to fly if and only if
a safe enough trajectory can be found for it.
To realize this, we developed in parallel a theoretical background and its implementation (chap-
ter 4), realized in an open source way (ROS) and freely available, modifiable and expandable by
everyone. In detail, a new risk metric has been proposed, merging together different researches
in this fields with new concepts, as for example the sheltering evaluation. Moreover, the risk as-
sessment procedure has been inserted in a more complex scenario, where also environmental and
legislative parameters had to be consider. The result of this operation is a Map Manager capable
of merging information, updating and finally building a risk map, with a given resolution function
of the cloud computing capability but also of the manoeuvrability of the drone itself (chapter 3).
The framework proposed is also modular and multi purpose, in the sense that it can be used in
any scenario, for any kind of drone: the more accurate the information it receives are, the more
performing the results.
Upon the risk map, handled and update by the RAMM, also a set of Path Planning algorithm
has been studied and presented, with a particular attention to Optimal RRT (or RRT*) which is
the one implemented actually in CBUTM. Finally, we moved from the risk assessment of a cell of

101

6 – Conclusions and Future Works

the risk map, to propose a completely new metric for the risk of a mission (or a trajectory). The
importance of this step is crucial, since it allows the Traffic Manager to choose between paths,
evaluating which one is the best and if it can be considered compliant with the standard imposed
by the national flight authority. This part of the work, called Path Validation, has been discussed
deeply and then implemented (chapters 3 and 4).
Inside the same project, all the other aspects that characterize a UASs Traffic Manager, that in
this thesis have only been presented, has been deepened and discussed. In particular, according to
[63] and [64], a complete registering and monitoring procedure has been developed, to guarantee a
constant tracking of all the aircrafts flying in a given moment and to ensure the capability of the
Traffic Manager to detect malicious drones. Furthermore a Predictive Trajectory Planner, mini-
mizing a proper cost function, is in charge of handling each drone’s dynamic, making it capable to
follow the pre-calculated waypoints and, if needed, to avoid collisions both with static and dynamic
obstacles.
All this results have been not only discussed, but also tested and simulated, as in chapter 5.
Once again, I want to stress the importance of team work to realize a so complex infrastructure.
Everything here presented was made possible through a continuous exchange of knowledge, meth-
ods and support, both scientific and human.
Since this is a thesis work, it wasn’t possible to complete everything and we really hope someone
next will finish it. In particular, some improvement can be done to the Risk-Aware Traffic Man-
ager to better exploit the cloud network. First of all, it is crucial to study and implement a set of
algorithms to make the risk map really dynamic (as discussed in chapter 3). In this sense, sensors
on board and a communication link between drones and cloud have to be studied, implementing
also a filtering on data and possibly a way to reduce battery consumption of all this "dynamic
structure", that can be really demanding. Then, to finally produce risk-coherent risk map, two
different features have to be implemented: on one hand the environmental map have to be provided
by the municipal authority, since they must be more accurate than they actually are. On the other,
a new set of algorithms, maybe through neural networks, have to be implemented to evaluate the
sheltering factor from satellite images.
In any case, we developed an already operative UASs Traffic Manager, with the hope that in future
the regulation of this new kind of air transport will meet the economical and social requirements,
always guaranteeing safety and wellness for people.

102

Bibliography

[1] Divya Joshi (2016), Commercial Unmanned Aerial Vehicle (UAV) Market Analysis – Industry
trends, companies and what you should know, Business Insider

[2] National Institute of Standards and Technology (2004), Autonomy Levels for Unmanned Sys-
tems(ALFUS) Framework, Volume 1: Terminology

[3] ENAC (2016), Mezzi Aerei a Pilotaggio Remoto
[4] Kehoe, Ben; Patil, Sachin; Abbeel, Pieter; Goldburg, Ken (13 September 2014), A Survey of

Research on Cloud Robotics and Automation, IEEE TRANSACTIONS ON AUTOMATION
SCIENCE AND ENGINEERING.

[5] Robotics-vo, (2014), A Roadmap for U.S. Robotics From Internet to Robotics 2013 Edition
[6] K. Dalamagkidis, K. Valavanis, L.A Piegl (2012),On integrating unmanned aircraft systems

into the national airspace system, Springer
[7] US Department of Defense (2007), Unmanned systems safety guide for DoD acquisition
[8] R. Clothier, R. Walker, N. Fulton, D. Campbell (2007), A casuality risk analysis for UAS

operations over inhabited areas
[9] Range Safety Group, Range Commanders Council (2007), Common risk criteria standards for

national test ranges:Supplement. Supplement to document 321-07
[10] Range Safety Group, Range Commanders Council (1999), Range safety criteria for UAV:

Rational and Methodology Supplement. Supplement to document 323-99
[11] Range Safety Group, Range Commanders Council (1999), Range safety criteria for UAV.

Document 323-99
[12] National Transortation Safety Board (2008), Accidents database and synopses
[13] Weibel,Hansman (2004), emphSafety considerations for operation of small UAV in civil

airspace, Master’s Thesis, Massachusetts Institute of Technology
[14] Neades DN, Rudolph RR (1984) Head injury prediction capability of the hic, hip, simon and

ulp criteria. Accident Analysis and Prevention
[15] Haber JM, Linn AM (2005) Practical models of human vulnerability to impacting debris
[16] Walker SH, Duncan DB (1967) Estimation of the probability of an event as a function of

several independent variables
[17] G. Guglieri, G. Ristorto, Safety Assessment for Light Remotely Piloted Aircraft Systems
[18] G. Guglieri, F. Quaqliotti (2014), Analisi di rischio: metodologie e considerazioni, Workshop

“mezzi aerei a pilotaggio remoto”
[19] European Aviation Safety Agency (EASA) (2005), Policy for UAV cerification, A-NPA,No

16/2005
[20] Sheldon M Ross, Probabilità e Statistica per l’ingegneria e le scienze
[21] Clothier, Reece A. and Walker, Rodney A. (2006), Determination and Evaluation of UAV

Safety Objectives, In Proceedings 21st International Unmanned Air Vehicle Systems Confer-
ence, pages 18.1-18.16, Bristol, United Kingdom

[22] Weibel,Hansman (2004), Safety considerations for operation of different classes of UAV in
civil airspace

103

Bibliography

[23] Primatesta, Capello, Antonini, Gaspardone, Guglieri, Rizzo (2017), A cloud-based framework
for risk aware intelligent navigation in urban environment

[24] Sara Giammusso, Cloud Robotics in real time application
[25] ROS.org, grid map package summary
[26] Fankhauser, Hutter (2016), A Universal Grid Map Library: Implementation and Use case for

rough terrain navigation
[27] https://www.thoughtco.com/population-density-overview-1435467
[28] La Cour-Harbo, Anders (2017),Mass threshold for harmless drones
[29] Centre for Telecommunications and Information Engineering, Monash University (2016) Re-

mote Piloted Aerial Vehicles: An Anthology
[30] Angela Schoellig (2014) The Role of Unmanned Aerial Vehicles in Future Urban Environments
[31] NCAR / EOL Workshop (2017) Unmanned Aircraft Systems for Atmospheric Research
[32] Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and Interfaces.
[33] Oxford Staff (January 26, 2017). Waypoint—Definition in English OxfordDictionaries.com.

Retrieved January 26, 2017.
[34] https://en.wikipedia.org/wiki/MotionPlanning
[35] S. Scheggi, S. Misra (1994) An experimental comparison of path planning techniques applied

to micro sized magnetic agents.
[36] Hart, Nilsson and Raphael (1968) A formal basis for the heuristic determination of minimum

cost path.
[37] A. Stentz (1994) Optimal and efficient path planning for partially known environment
[38] A. Stentz et al.(1995) The focussed D* algorithm for real time re planning
[39] M. Nosrati, R. Karimi, H.A. Hasanvand (2012) Investigation of the star search algorithms
[40] A. Nash, K. Daniel, S. Koenig, A. Felner (2007) Theta*: Any angle path planning on a grid.
[41] G. Guglieri, A. Lombardi, G. Ristorto (2015) Operation oriented path planning strategies for

rpas
[42] https://en.wikipedia.org/wiki/Randomizedalgorithm
[43] L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars (1996) Probabilistic roadmaps for

path planning in high dimensional configuration spaces IEEE transactions on Robotics and
Automation

[44] S.M. LaValle (1998) Rapidly Exploring Random Tree: a new tool for path planning
[45] Maniezzo (1992) Distributed optimization by ant colonies
[46] S. Karaman, E. Frazzoli (2010) Sampling-based algorithms for optimal motion path planning
[47] ROS.org, “grid_map” Package Summary
[48] Fankhauser, Hutter (2016)A Universal Grid Map Library: Implementation and Use case for

rough terrain navigation
[49] http://www.ros.org/about-ros/
[50] https://en.wikipedia.org/wiki/Robot_Operating_System
[51] http://wiki.ros.org/Nodes
[52] http://wiki.ros.org/Topics
[53] http://wiki.ros.org/Services
[54] https://www.faa.gov/uas/research/utm
[55] https://utm.arc.nasa.gov/index.shtml
[56] European Commission - Press release (2017) Aviation: Commission is taking the European

drone sector to new heights
[57] http://www.sesarju.eu/U-Space
[58] Peter E Hart, Nils J Nilsson, and Bertram Raphael A formal basis for theheuristic deter-

mination of minimum cost paths. IEEE transactions on SystemsScience and Cybernetics,
4(2):100–107, 1968

[59] http://www.gazebosim.org/

104

Bibliography

[60] https://github.com/mavlink/mavlink
[61] Dronecode QGroundControl - Ground Control Station for PX4 and ArduPilot UAVs
[62] https://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-

of-5g-networks
[63] E. Stabile (2018) Cloud-Based UASs Traffic Management:General Architecture
[64] F. Polia (2018) Cloud-Based UASs Traffic Management: Trajectory Tracking and Collision

Avoidance
[65] https://github.com/osrf/uctf

105

	List of Tables
	List of Figures
	Introduction
	Context Definition
	Thesis Structure and Contribution

	Ground Impact Risk Modelling
	Unmanned Missions Risk: Introduction
	Main Concepts and Risk-Aware Map Manager
	UAVs' Types of Accidents and Equivalent Level Of Safety

	Early Flight Termination Risk Modelling
	Evaluation of Exposed Inhabitants: Nexp
	Estimate of fatalities probability for people exposed to crash: P(f | e)
	Evaluation of Impact Kinetic Energy: Eimp
	Estimate of Sheltering Factor: PS

	Mid-Air Collisions Risk Modelling
	Estimate of the Mid Air Collision's Rate: fMAC
	Evaluation of the Collisions Rate Between UAVs: fUAV

	Ground Impact Risk Modelling: A Complete Framework

	Cloud Based UASs Traffic Management
	Unmanned Traffic Manager: State of the Art
	Cloud Robotics
	Cloud-Based UASs Traffic Management: General Architecture and Assumptions
	Map Manager
	Introduction and Risk Map
	Environmental Modelling and No-Fly Zones
	Risk Map Normalization
	Risk Assessment: Analysis on UAVs Building Parameter
	From Static to Dynamic Risk Map
	Mission's Risk
	Objective Cost Function: From Risk Map to Cost Map

	Path Planner
	Deterministic Algorithms
	Probabilistic Algorithms
	RRT*

	Path Validation and Risk Acceptance
	Path Decoder
	Wireless Quality of Service Validator
	Risk Validator

	Implementation
	Introduction
	Robotic Operative System
	Grid Map

	Cloud Based UASs Traffic Management: ROS Architecture
	Risk-Aware Map Manager
	Environment-Related Layer
	UAS-Related Layers

	Path Validator

	Simulations
	Simulation Environment
	Gazebo
	Distributed Architecture

	Map Manager
	Environmental Modelling
	UAV-Aware Risk Map

	Path Planning and Validation
	Path Following and Collision Avoidance

	Conclusions and Future Works
	Bibliography

		Politecnico di Torino
	2018-04-02T16:10:04+0000
	Politecnico di Torino
	Alessandro Rizzo
	S

