
Politecnico di Torino

Department of Control and Computer Engineering

(DAUIN)

Master Degree

in

Mechatronics Engineering

Implementation of a Decentralized Parameter Estimation

Strategy for Unknown Loads Through an Over-actuated

Robotic Platform

Supervisor:

Prof. Alessandro Rizzo

Company Tutor:

Prof. Antonio Franchi

Author:

Hosameldin Awadalla Omer Mohamed

April 2018

Acknowledgment

First of all, I would like to thank my family for always being caring, understanding and supporting

me throughout my life.

I am deeply grateful to my thesis supervisors Prof. Antonio Franchi and Prof. Alessandro

Rizzo. In spite of their great responsibilities, they managed to spare some of their valuable time to

advise and guide me throughout this work. Moreover, for responding promptly to my requests about

administrative procedures at LAAS and the Politecnico.

I would also like to express my sincere gratitude to Dr. Michele Furci, a former post-doc re-

searcher at LAAS-CNRS for the help and support I received from him throughout this journey. Spe-

cially his and input in programming and operating the robotic platform. I also thank Eng. Hermes

Tello-Chavez for providing me with pictures of the platform after I left LAAS.

My deep appreciation goes to Antonio Franchi's group at LAAS, for being very kind and welcom-

ing and for their valuable help and advices. Also to my friends in Turin, specially Osman Abdalla,

Talal Almutaz Abdalla and Dionysia Varvarigou for Their sustainable support and encouragement.

I

Abstract

The thesis deals with the cooperative manipulation control of a load on a plane by a team of mobile

robots moving in 2-D. The work is based on an algorithm, developed by the supervisors and co-

workers, which consists of a decentralized estimation of the parameters and the twist of the load

utilizing only local measurements of velocities of contact points and a decentralized controller of the

load's linear and angular velocities.

A rolling platform actuated by rotors to move on a plane, was used to validate the above mentioned

decentralized estimation strategy. It can apply forces, whose magnitudes are determined by the

rotational speeds of the rotors and are dictated by angles of rotation of servo-motors, to which the

rotors are attached.

The platform belongs to the Laboratory of Analysis and Architecture of Systems (LAAS), (a

CNRS research unit "Centre Nationnal de la Recherche Scienti�que"), where the experiments were

conducted.

The hardware of the Platform consists of an on-board computer (ODROID-XU4) running on

Linux to execute a high-level control algorithm (taking commands from the joystick, applying a force

trajectory to the actuators, recording the inputs and various measurements of the platforms in a text

�le, and other tasks), a �ight controller (Mikrokopter) that contains an Inertial Measurement Unit

(IMU), an Arduino micro-controller to control Servo-motors angles, the rotors brush-less controllers

and voltage regulators.

The Platform utilizes OptiTrack Motion Capture System that is installed at LAAS infrastructure,

moreover, it exchanges information through the network using a WiFi module and operates with a

LiPo battery.

The software utilizes the architecture and some modules of a software package developed at

LAAS known as Openrobots, and the collected data were applied to the algorithm in MAT-

LAB/SIMULINK environment.

The estimation algorithm consists two cascaded phases, a kinematic phase that takes measure-

ments of velocities of contact points and uses rigid body kinematics, and a dynamic phase that

uses the outcomes of the kinematic part in addition to force inputs, utilizing rigid body physics and

dynamics. The two phases contain cascaded stages of computation, linear parameter-estimation,

non-linear state-estimation and dynamic average consensus blocks.

The performance of the estimation algorithm was analyzed, and the algorithm was tested against

the uncertainties emerging from the conducted experiments, such as the noise in measurements, the

friction in the wheels and the accumulation of errors and uncertainties of the cascaded stages. The

implemented algorithm exhibit satisfactory performance in terms of e�ciency and conceptual �ow.

However, we observed that it is very sensitive to model uncertainties. Even though some sources of

disturbances have been modeled, additional work is necessary to include more accurate disturbance

models toward performing accurate estimations.

II

Contents

1 Introduction 2

1.1 What is Cooperative Manipulation? . 2

1.2 Adding Manipulators to Mobile Robots . 3

1.3 Control Architecture: Centralized VS Decentralized Cooperation 3

1.4 The De-centralized Algorithm Under Study . 4

1.5 What is the Purpose of the Thesis? . 6

1.6 Objectives . 6

1.7 How is the De-centralized algorithm validated? . 6

1.8 A brief Introduction to the Company . 9

1.9 Thesis Organization . 10

2 Literature Review 12

2.1 Overview . 12

2.2 Related Work . 12

2.3 The estimation algorithm problem formulation . 14

2.3.1 Robots Modeling . 14

2.3.2 Proposed Control Law [1] . 16

2.3.3 Overview of the Estimation Algorithm [2] . 17

3 Experimental Setup 19

3.1 Hardware . 19

3.2 Software Architecture . 20

3.2.1 OpenRobots Package . 20

3.2.2 Software Components . 20

3.3 The Procedure . 22

3.4 Computing reference values for comparison . 22

3.4.1 Orientations of the Platform and the Turrets 23

3.4.2 zij, zi and zC . 23

3.4.3 Input Forces fi . 23

3.4.4 The Mass and the Inertia of the Platform . 23

3.5 Communication Topology . 23

4 Kinematic Phase 25

4.1 Overview . 25

4.2 The Inputs to the Kinematic Phase . 25

4.3 żij Estimation (Stage 1) . 25

III

CONTENTS

4.4 yij Estimation (Stage 2) . 26

4.5 dij Estimation(Stage 3) . 27

4.5.1 Problem Formulation . 27

4.5.2 On-line Estimator: Recursive Least Square . 27

4.5.3 Selecting Trajectory for ‖dij‖ Estimation . 28

4.5.4 dij Sign Ambiguity . 28

4.5.5 Sign Tracking Algorithm: Complementary Filters 28

4.5.6 Results of the Sign Tracking Algorithm . 29

4.6 zij Estimation (Stage 4) . 29

4.7 Centroid Algorithm: zi Estimation (Stage 5) . 30

4.7.1 Overview of The Centroid Algorithm . 30

4.7.2 Results of the Centroid Algorithm . 32

4.8 ω Estimation (Stage 6) . 32

4.8.1 Obtained Estimation of ω . 33

4.9 Discussions about the Kinematic Phase . 33

5 Dynamic Phase 35

5.1 Overview . 35

5.2 The Inputs to the Dynamic Phase . 35

5.3 Rotational Dynamics . 36

5.4 Dynamic Average Consensus Algorithms: Estimation of η and fmean (Stages 7 and 8) . 37

5.4.1 Results of the Dynamic Average Consensus in Stage 7 38

5.5 Nonlinear State Observation: Estimation of zC and J (Stage 9) 39

5.5.1 Nonlinear System Observability Overview . 40

5.5.2 Observability Analysis . 41

5.5.3 Designing an observer . 41

5.5.4 Proof of Convergence . 42

5.5.5 Results of Nonlinear State Observation . 43

5.5.6 Gain Tuning: The E�ect of ke1 and ke2 . 45

5.6 vC Calculation (Stage 10) . 48

5.6.1 Utilized Kinematic Relations . 48

5.6.2 Results and Comments . 49

5.7 Estimation of the Mass (Stage 11) . 50

5.7.1 Results of the Linear Estimator . 51

5.7.2 Friction Non-linear Model . 51

5.7.3 Comments on the E�ect of the Friction on the Estimated Mass 53

5.8 Discussions about the Dynamic Phase . 53

6 Conclusion and Future Work 54

IV

CONTENTS

7 Appendix 55

7.1 Graph Theory Concepts . 55

V

List of Figures

1.2 Fully-decentralized cooperative manipulation with unknown load parameter, unknown

grasping parameters and unknown load state. each robot excerts a force fi and a torque

τi, can measure the linear velocity of its contact point vci, and is able to obtain some

information from the neighboring robots through wireless communication 5

1.3 The inputs and outputs of the estimation algorithm. fi is the force applied by robot

i, vci is the linear velocity of contact point of robot i and pci is its position, pc is the

CoM position of the load, pG is the geomentrical center of contact points, m and J

are the load's mass and inertia respectively, and ω is the angular velocity of the load . 5

1.1 A group of KUKA mobile manipulators cooperatively moving a rigid body, where Ci

fi and vci (i = 1, 2, ..., 5) are the location of the contact point of robot i, the force

applied by robot i, and the linear velocity of the contact point, respectively. [2] 6

1.4 The ROSPO platform . 7

1.6 One turret in ROSPO . 8

1.7 The ROSPO has a single on-board computer, but the software makes the turrets

(actuators) 'conceptually' distributed . 8

1.5 The ball bearing omni-directional wheels used to enable the rospo to move 9

2.1 Schematic of a rigid body showing the contact points Ci where i = 1, 2, 3..., n, their

position pci the CoM position pc and geometrical center of contact points pG 15

2.2 Overview of the distributed algorithm. In the kinematic phase, only the velocity

measurements and the rigid body kinematics are used. After this phase, the estimates

of the time-varying quantities zi(t) and ω(t) (in blue) become available to each robot

i. On the other hand in the dynamical phase, the knowledge of the forces and the

rigid body dynamics are used as well. After this phase, the quantities J, zC(t),vC and

m (in red) become available to each robot i. 17

3.1 ROSPO hardware. 19

3.2 Software Components used in the experiment setup, POCOLIBS as the middle-ware

to "glue" the software components in the PC, the onboard computer "ODROID" and

on the desktop "MAREY" that runs the Motion Capture System. 21

3.3 The adopted communication topology of the robotic network 24

4.1 Velocity of Contact point between each robot and the manipulated object 26

4.2 The implementation of Complementary Filters to estimate the correct sign of dij . . . 30

4.3 Angular Velocity Estimation Sign Estimation using vc1 and vc2 31

4.4 Estimating the centroid of a network of agents from relative measurements 31

VI

LIST OF FIGURES

4.5 Centroid Estimation algorithm . 32

4.6 Z4 Estimation by the agent 4 . 33

4.7 Angular Velocity Estimation by the 4 agents . 34

4.8 Zoomed View: Angular Velocity Estimation by the 4 agents 34

5.1 Applied Forces by the 4 Actuators . 36

5.2 η Estimation by the 4 agents . 38

5.3 Zoomed view: η Estimation by the 4 agents . 38

5.4 Average value of the applied forces Estimation by the 4 agents 39

5.5 zC Estimation . 43

5.6 Platform Inertia Estimation by the 4 agents . 44

5.7 zC Estimation by one of the agents. The input and output to the observer are taken

from the estimated signals of the previous stages . 45

5.8 zC Estimation by one of the agents. Comparing taking the data from the measure-

ments directly with using the estimated data from previous stages. 46

5.9 zC Absolute error of zC estimation by one of the agents. Comparing taking the data

from the measurements directly with using the estimated data from previous stages. . 46

5.10 the input u and the output y for linear system identi�cation applied to the experi-

mental data. 47

5.11 The output measurement y against the simulated output of the identi�ed linear system. 47

5.12 Inputs to the System . 48

5.13 States Estimation Using Nonlinear Observer . 48

5.14 CoM Linear Velocity vC Estimation . 49

5.15 Body Mass Estimation by agent 1 . 51

5.16 Sum of the applied forces and the Linear velocity of the platform expressed in Body

Frame - moving in x-direction . 52

5.17 Sum of the applied forces and the Linear velocity of the platform expressed in Body

Frame - moving in y-direction . 52

7.1 Three di�erent communication typologies for three agents. Subplot (c) is strongly

connected because there is a directed path between every pair of nodes. However, (a)

and (b) are not strongly connected . 56

7.2 Block-diagram representation of the fundamental consensus algorithm applied on 1st

order state dynamics . 56

VII

List of Tables

3.1 The Inertias of Various Di�erent Parts of ROSPO platform 24

1

Chapter 1

Introduction

This chapter introduces the topic of the thesis by de�ning basic concepts as a preface. In particular

it de�nes robots Cooperative Manipulation which is an important �eld in robotics, then addresses

adding a manipulator to mobile robotics and its usefulness and at the same time its additional

requirements on the control algorithm, speci�cally, distribution of the control law. Then introduces

an algorithm in which the thesis is interested in. After, it explains the purpose and the methodology of

the thesis. Following a brief description about LAAS-CNRS, where the thesis activities are conducted.

What is Cooperative Manipulation?

The term cooperative implies the willingness and ability to work with others 1. Cooperative work

means the joint work of the cooperators to achieve a common task or goal. The task can be controlling

the motion of an object.

Manipulating an object is performed with the aim of changing the space position or orientation

of object, tracking a given trajectory of it. If the manipulation is performed in cooperation, each

cooperator performs its own work, taking into account the state of the other participants in the

cooperation besides the manipulated object itself. In general, the cooperative system consists of

multiple stages which are: planning of the approach, approaching to the object, grasping, gripping,

lifting, transferring, lowering, releasing and withdrawing. The topic of the thesis is related to

the transferring phase, which consists of moving the object along a predetermined trajectory at a

predetermined orientation. The manipulators move in such a way as to force the object to satisfy

the preset motion requirements and/or produce the required gripping loads. [3]

Using multiple robots to perform a task has numerous advantages over a single robot, for instance,

it enables complex assembly tasks. Moreover, it allows manipulation of heavy and/or large objects

that are far beyond the capabilities of one robot. In addition, it enables dexterous manipulation

of objects (The dexterity can be de�ned as the capability of changing the position and orientation

of the manipulated object from a given reference con�guration to a di�erent one, arbitrarily chosen

within the hand workspace [4]).

1www.merriam-webster.com

2

CHAPTER 1. INTRODUCTION

Adding Manipulators to Mobile Robots

At the moment mobile manipulation is a subject of major focus in development and research envi-

ronments. Such systems combine the advantages of mobile platforms and robotic manipulator arms

and reduce their drawbacks. For instance, the mobile platform extends the workspace of the arm,

and the arm adds dexterity to the mobile platform.

Mobile manipulators, either autonomous or tele-operated, are used in many areas, e.g. space

exploration, military operations, home-care and health-care. However, within the industrial �eld

the implementation of mobile manipulators has been limited, although the needs for intelligent and

�exible automation are present. In addition, the necessary technology entities (mobile platforms,

robot manipulators, vision and tooling) are, to a large extent, available o�-the-shelf components [5].

Control Architecture: Centralized VS Decentralized

Cooperation

Much research has been done for the motion control of multiple robots manipulating an object.

However, most of the control algorithms proposed so far are designed based on the centralized

control system; that adopts a single controller to control all of the robots in a centralized way based

on the global information. The centralized control system may be e�ective in case of the coordinated

motion control of �xed manipulators since the number of the manipulators in coordination is usually

limited to two or three [6].

The use of mobile manipulators in the real world is more challenging than �xed manipulators,

considering the case where such mobile manipulators transport a single object in coordination, a

single controller could not control a large number of robots because of the real-time communication

problem around the robots and the computational burden of the single controller. Hence centralized

control is no more realistic to control a large number of mobile manipulators.

In addition, a mobile manipulator has slippage between its wheels and the ground and we could

not position the mobile manipulator precisely. Therefore, we could not apply the same control

principle of manipulators for controlling the multiple mobile manipulators, and the control system of

the mobile manipulators has to be redesigned robust against the inevitable positioning error of each

mobile manipulator.

Most of these control algorithms proposed so far have been designed under the assumption that

the geometric relations among the robots are known precisely. However, it is not easy to know the

geometric relations among them precisely, especially when the robots handle an unknown object in

coordination in a real environment, besides Mobile manipulator have slippage between its wheels and

the ground and we could not position the mobile manipulator precisely [6].

Considering a network of robots performing a control law. The control law is considered decen-

tralized if, for each robot i, the size of the communication bandwidth, the computation time (per

3

CHAPTER 1. INTRODUCTION

step) and the memory usage (storage of inputs, outputs and local variables) depend only on the

number of communication neighbors (|Ni|) and not on the number of robots (n). This property of

decentralized control makes them scalable [7].

The De-centralized Algorithm Under Study

The �eld of cooperative manipulation with multiple mobile robots has been deeply studied in the

past (see the next chapter 2). However in this thesis we are interested in a particular solution, which

is a recent work of (Franchi, Petitti, and Rizzo 2014 [8] ; Franchi, Petitti, and Rizzo 2015 [2]), in

which the authors studied and solved the problem of estimating in a fully distributed way all the

inertial parameters of an unknown load, and in (Petitti et al. 2016) [1], where the authors have

developed a robust decentralized controller for the cooperative manipulation with a distributed team

of networked mobile manipulators, based on the estimation method mentioned above can be used

to control the motion of the unknown load. Figure 1.1 explains the idea. The algorithm has the

following characteristics:

� All the parameters of the grasping, and the full state of the load are considered unknown to

the robots.

� Each robot only knows the local force it applies to the load, is able to measure the linear

velocity of its contact point with the load and to communicate only with its neighbors through

a wireless communication network.

� The algorithm is designed in 2-dimensional Cartesian space.

� The algorithm controls the linear and angular velocities of the load to follow a desired trajectory.

The idea of the decentralized control algorithm is further explained with the block diagram in

�gure 1.2.

So far the algorithm was tested only through numerical simulation, and has not yet been experi-

mentally validated. This thesis is interested in the experimental validation of the Estimation part in

Decentralized Control algorithm

The estimation algorithm is implemented in each robot to obtain locally the load's the dynamical

parameters; its mass and inertia, the load's linear velocity in World frame, the angular velocity (a

scalar value in 2D), and each robot obtain the distance of its contact point from the Center of Mass

of the load. All the estimated values are essential for the proposed control algorithm.

The inputs to the estimation algorithm are the applied force in World frame, a measurement

of the linear velocity of the contact point. In addition, the algorithm exchanges some signals in a

communication network with the neighboring robots. Figure 1.3 shows the inputs and outputs of

the estimation algorithm of one robot i. Thus the algorithm is considered decentralized because no

need for a central node to provide measurements of the object's parameters and state.

4

CHAPTER 1. INTRODUCTION

Robot i

Neighbors
of Robot i

Figure 1.2: Fully-decentralized cooperative manipulation with unknown load parameter, unknown
grasping parameters and unknown load state. each robot excerts a force fi and a torque τi, can
measure the linear velocity of its contact point vci, and is able to obtain some information from the
neighboring robots through wireless communication

From Neighboring Robots

Robotic
Network

Estimation Algorithm
of Robot

j

To Neighboring Robots j

i

Figure 1.3: The inputs and outputs of the estimation algorithm. fi is the force applied by robot i,
vci is the linear velocity of contact point of robot i and pci is its position, pc is the CoM position of
the load, pG is the geomentrical center of contact points, m and J are the load's mass and inertia
respectively, and ω is the angular velocity of the load

5

CHAPTER 1. INTRODUCTION

Figure 1.1: A group of KUKA mobile manipula-
tors cooperatively moving a rigid body, where Ci fi
and vci (i = 1, 2, ..., 5) are the location of the con-
tact point of robot i, the force applied by robot
i, and the linear velocity of the contact point, re-
spectively. [2]

The estimation algorithm consists two cas-

caded phases, a kinematic phase that takes mea-

surements of velocities of contact points and uses

rigid body kinematics, and a dynamic phase that

uses the outcomes of the Kinematic part in addi-

tion to force inputs, utilizing rigid body physics

and dynamics. The two phases contain cas-

caded stages of computation, linear parameter-

estimation, non-linear state-estimation and dy-

namic average consensus blocks.

What

is the Purpose of the Thesis?

The main purpose of this thesis is to test the

estimation algorithm on a robotic platform to

assess its ability to provide estimates that can

be utilized for successful decentralized control,

to identify its weak points and try to improve its

performance.

Objectives

My internship assignment was to experimentally validate the methods developed by my supervisor

and his colleagues. The main targets of the assignment are as follows:

� To study the methods used in the estimation algorithm and build the required background.

� To implement the estimation algorithm and assess its performance using the data collected

from the experiments.

� improvement of the algorithm based on experimental assessment.

How is the De-centralized algorithm validated?

Due to the unavailability of mobile manipulators another solution is adopted, the use of a rotor-

actuated platform to simulate the function of multiple mobile manipulators and the load too. The

platform is called (ROSPO) and is shown in �gure 1.4 and 1.4

The ROtor-graSPing Omnidirectional (ROSPO) platform, is a platform designed and manufac-

tured at LAAS-CNRS to test control algorithms. ROSPO is used in this thesis to validate the

6

CHAPTER 1. INTRODUCTION

(a) Perspective View (b) Top View

Figure 1.4: The ROSPO platform

decentralized estimation algorithm. It consists of a frame with four modules composed by a tilting

turret and amotor-propeller actuator. As compared to an unmanned aerial vehicle (UAV) , this

platform is simpli�ed because its dynamics is constrained to a 2D plane, having thus only 3 degrees

of freedom. The platform is able to slide on the �oor by 4 ball-bearing omni-directional wheels.

The wheels are shown in �gure 1.5. Each tilting turret consists of a motor and a propeller, and

servo-motor to tilt them to a desired angle, a zoomed view of the actuator is shown in �gure 1.6.

The idea is to simulate each mobile manipulator with a tilting turret, and the whole platform as

the common load, which means that we are simulating a system of four mobile manipulators rigidly

grasping a common load. Moreover, the ROSPO is equipped with an IMU (Inertial Measurement

Unit) and a Motion Capture system (section 3.1), and it is possible to utilize motors speed measure-

ments to compute the applied force using a speed-thrust model, all the inputs and the outputs and

the internal signals in the estimation algorithm can be either measured or directly derived from a

measurement, as will be demonstrated in chapter 3.

It is important to note that the estimation algorithms of the robots are implemented in a single

on-board computer that controls all the four actuators, however the software is designed to be

'conceptually' distributed in order to simulate the software in each robot and the communication

network, the idea is illustrated in �gure 1.7. This fact is expected not to a�ect the integrity of the

assessment, of course in this case the architecture assumes instantaneous communication between

the robots and we move on with this assumption.

7

CHAPTER 1. INTRODUCTION

Figure 1.6: One turret in ROSPO

Topology

Simulated
Robotic
Network

On-Board
Computer

On-Board
Computer

Estimation
Block

1

Estimation
Block

2

Estimation
Block

4

Estimation
Block

3

Estimate 1 Estimate 2

Estimate 3Estimate 4

Figure 1.7: The ROSPO has a single on-board computer, but the software makes the turrets (actu-
ators) 'conceptually' distributed

8

CHAPTER 1. INTRODUCTION

A brief Introduction to the Company

Figure 1.5: The ball bearing omni-directional
wheels used to enable the rospo to move

The CNRS "Centre Nationale de Recherche Sci-

enti�que" is a very well known French research

center. My internship took place in the LAAS, a

subdivision of the CNRS, which I will introduce

in this section.

CNRS

The CNRS is the French largest governmental

research organization. It was created during the

second world war (October 19th, 1939) in or-

der to gather all the state scienti�c organization

(specialized, pure or applied science) and to co-

ordinate them at a greater scale.

Then it has risen over the years until being as

known as it is today. Its governance is made

by Alain Fuchs (President of the CNRS). The

Research Center has a budget of 3309.13 Meuro

which is mainly subsided by the government. The labour force is formed with 31944 people with

11106 permanent researchers, 13511 engineers and technicians and 7327 temporary researchers or

students. In 2015, the CNRS hired 300 researchers and 300 engineers and technicians. The center

is also part of the Top 100 Global Innovators since 2011 and has been ranked �fth in the new Top

100 Thomson Reuters. Moreover, more than 43000 papers have been published last year and 60

percent of them are related to a foreign laboratory. Besides the CNRS has strong links and several

partnerships with higher education and companies

The CNRS is composed of 10 di�erent institutes, among all them, the "Institute for Engineering

and Systems Sciences" and the "Institute of Information Sciences and their interactions" are the

ones the LAAS is part of.

LAAS

The "Laboratoire d'Analyse et d'Architecture des Systemes" was created in 1968 by Jean Lagasse.

The �rst goal of this research unit was to build a laboratory of automatics and its spatial applications

which was, at this time, a tremendous international concern. From then, the notion of "system" was

more appropriated for the research which were being conducted, over the years the LAAS has become

what it is today.

LAAS Scienti�c research is distributed into eight main departments: Critical Information Processing,

9

CHAPTER 1. INTRODUCTION

Networks and Communications, Robotics, Decision and Optimization, MicroNanosystems RF and

Optics, Nano-Engineering and Integration, Energy Management and MicroNanoBio Technologies.

I did my internship in the Robotic department.

Robotic Department

The Robotics (ROB) theme area conducts research along several axes involving perception, motion,

manipulation, decision-making, communication and interaction between the robot and its environ-

ment: the other robots, humans and ambient intelligence systems.

The main research topics are:

� Environment perception and modeling

� Navigation, localization, motion planning and control

� Manipulation planning and control

� Natural, arti�cial and virtual motion

� Autonomous decision making, temporal planning, learning

� Control architectures, embedded systems, robustness and fault tolerance

� Human-robot multi-modal and decisions interaction

� Multi-robot cooperation

Antonio Franchi's Group

My supervisor at LAAS was Dr. Antonio Franchi, a Permanent Researcher at LAAS. Obtained Pro-

fessional Habilitation (HDR) from Toulouse Institute of Technology in 2016. In 2010, He obtained

his PhD in �Analysis and Control of Dynamical Systems� at �La Sapienza� university in Rome. He is

also an IEEE Senior Member and is an associated editor of the IEEE Transactions on Robotics, and

a co-chair of the IEEE RAS Technical Committee on Multi-Robot Systems. His research interests

include Multi-robot systems, Human/robot bilateral shared control, Human-in-the-loop, Swarm Tele-

portation, Cooperative Control and Estimation, Communication, Synchronization, Path Planning,

Distributed Algorithms, Exploration, Localization, Pursuit-evasion, Patrolling, Calibration. 2

Thesis Organization

The Thesis comprise of the following chapters (apart from the Introduction chapter):

2Antonio Franchi's homepage:http://homepages.laas.fr/afranchi/robotics/?q=node/1

10

 http://homepages.laas.fr/afranchi/robotics/?q=node/1

CHAPTER 1. INTRODUCTION

� Literature Review: we discuss the recent research about decentralized cooperative manipula-

tion, and a description about the theory behind the decentralized estimation algorithm under

test.

� Experimental Setup: we describe the hardware components and the adopted software archi-

tecture in the experiment, followed by a description of the steps undertaken to perform the

experiment, and to provide the signals needed for the implementation and validation.

� Kinematic Phase: we go through the theory and implementation of the kinematic phase stages

in detail, showing the obtained results and the discussions.

� Dynamic Phase: we describe the theory and implementation of the dynamic phase stages in

detail, showing the obtained results and the discussions.

� Conclusion and Future Work: we summarize the main outcomes of this thesis work and possible

recommendations for further work.

11

Chapter 2

Literature Review

Overview

This chapter starts with brie�y presenting recent and related work on decentralized cooperative

estimation and manipulation, highlighting the mean characteristics. Then focuses on the decen-

tralized estimation and cooperative control algorithm under study, starting with the mathematical

representation of a rigid body being grasped by multiple manipulators, going through the proposed

decentralized control low and �nally the mathematical formulation of the estimation problem.

Related Work

In [9] a decentralized control structure was developed in order to extend operational space method-

ologies for �xed-base manipulators to mobile manipulation systems. used the concepts of virtual

linkage and the augmented object to solve the coordination problem between manipulators. The

augmented object model is obtained by combining the dynamics of the individual mobile manipula-

tors and the object, while the virtual linkage is a way to model the internal forces associated with

multi-grasp manipulation. In this method, the needed measurements are the forces at the grasp

points, however, accurate knowledge about the load parameters is required.

In quite a recent work in [10], fully decentralized and recursive approach of online identi�cation

of unknown kinematic and dynamic parameters for cooperative manipulation of a rigid body. Each

robot must able to measure the linear and angular velocities at its contact point, the acceleration at

the contact point and the force and torque applied by the robot to the rigid body. The estimated

quantities are: rigid body transformation, the object mass, the center of mass and the inertia tensor

in sensor frame. The identi�cation is addressed in 3D and can be used for adaptive control.

On another framework, some works have addressed the decentralized cooperative manipulation

by adopting a leader follower scenario. one is by [11]. they have designed a leader-follower formation

in which the leader is aware of the object's desired trajectory and implements it via an impedance

control law, and the follower estimates it by observing the object's motion and imposes a similar

impedance law. the algorithm was designed for 3D and it adopts load sharing among the robots

according to their speci�c payload capabilities. In this method, both agents use solely their own

force, position and velocity measurements.However, the geometric and inertial parameters of the

mobile manipulators as well as of the object are considered known.

A similar idea is in the work by [12], which is known as Force-Amplifying N-Robot Transport

12

CHAPTER 2. LITERATURE REVIEW

System (Force-ANTS), where the leader applies a small force to guide the rest of the group, and

the follower robots amplify the e�ect of the force by synchronizing their forces to the leader's force,

this is done by locally measuring the motion of the object at their attachment points. No explicit

communication among the robots is required, instead, The robots instead use sensors that measure

the motion of the object itself to coordinate their actions. The leader (either a robot or a human) is

the only one who knows the desired trajectory. The leader steers the group towards the destination

by adjusting its own force, while the follower robots reinforce the leader's intention by aligning their

forces with the leader's. This method is suitable for moving an object that is too heavy for a single

robot, and is designed for planar motion (2D). However each robot must know the object mass, the

number of robots, the kinetic (static) and viscous friction coe�cients.

In [13] a decentralized cooperative manipulation methodology for mobile manipulators using

quaternions to represent the object orientation was developed. No measurement of the contact

force/torques is required in this method, in addition, the method enable load sharing among the

robot arms, for di�erent power capabilities. However each agent must know object's dynamic and

kinematic parameters, on another hand they have developed an adaptive version where the agents'

and the object dynamic parameters are considered unknown.

Another related work is the work of [14] in which the authors developed a Distributed cooperative

parameter estimation and manipulation of an unknown object. The robots cooperatively estimate

the object's kinematic and dynamic parameters by properly moving the object or by applying a

proper sequence of wrenches in such a way to determine a parameter of the load at each step. The

algorithm is developed for mobile manipulators in 3D. No explicit communication is required among

the robots. the only information they are assumed to share is the cardinality N of the team. The

estimated parameters are used in a distributed cooperative algorithm aimed at controlling the object

pose

Another algorithm where the object is assumed to be unknown is the work by [15] which have

obtained experimental results on a successful transportation by using multiple custom-made aerial

manipulators (hexa-copters), with 2 Degrees-of-Freedom arms. The algorithm implements an online

parameter estimation to obtain the parameters of the common payload such as mass and moment of

inertia, same as the above method, without the need of multi-axis force/torque sensors.

The authors in [16] were able to design a decentralized adaptive controller that allows teams of

agents to perform collaborative manipulation without communication or prior knowledge of object

parameters, the proposed algorithm can work in 2D or 3D, but at the moment it was experimentally

validated in 2D using planar robots.

The method adopts Adaptive Model Reference Control strategy and Lyapunov method to prove

the stability of the controller.

The method assumes that each agent can measure the linear velocity of the center of mass, and

the angular velocity of the object. Moreover each agent must be able to determine its orientation

with respect to the body frame.

The authors in [17] have developed a distributed cooperation control to grasp and transport

13

CHAPTER 2. LITERATURE REVIEW

an object. The method takes into account time delays and switching network typologies. The

method takes into account the redundancy of the manipulators for decoupling the task and null-

space motion, the mobile bases can be controlled in the null-space to maintain a formation, achieve

velocity consensus, and ensure collision avoidance, while the motion of the end e�ector was considered

to be the primary task of each manipulator.

Force measurements at the end-e�ectors are necessary for the algorithm. The work was validated

via simulation on a network of three non-holonomic mobile manipulators.

Joel M. Esposito in [18] developed a decentralized Cooperative Manipulation with a Swarm of

Mobile Robots. The method uses an online consensus estimate of the swarm's con�guration. However

the knowledge of object mass and inertia, moreover, the desired acceleration is essential for the control

to follow a variable velocity trajectory.

The results were veri�ed by simulation.

Alessandro Marino in [19] uses the results on distributed control of Lagrangian systems to coop-

erative manipulation of a rigid body tightly grasped by manipulators mounted on mobile platforms.

The method exploits consensus theory to distributively estimate the full state of the system and

the object dynamics to estimate the squeezing wrenches, and a local adaptive control law. The local

motion of the robot and the Force/Torque measurements are needed to be available by each robot.

The estimation algorithm problem formulation

The following section reviews in detail the decentralized estimation algorithm proposed by, Antonio

Franchi, Antonio Petitti, and Alessandro Rizzo (see [2], and [1] with Donato di Paola for the proposed

control algorithm).

Robots Modeling

n mobile manipulators on a plane, can be modeled as an undirected graph communication graph

G = {I, E} which is undirected. Moreover we assume that G is connected. The neighbors of a robot

i are de�ned as Ni = {j ∈ I : (i, j) ∈ E}.
Each robot i, is able to: exert a force fi ∈ R2, through a contact points Ci ∈ B, and assumed to

produce null torque. In addition, each robot i measures only the velocity ˙mathbfpci of Ci.

The load B, subject to the forces f1, f2, ..., fn, can be described by the following di�erential

equations (see grasping chapter in [20]):

14

CHAPTER 2. LITERATURE REVIEW

Ci

C1

C2

C3

C4

Figure 2.1: Schematic of a rigid body showing the contact points Ci where i = 1, 2, 3..., n, their
position pci the CoM position pc and geometrical center of contact points pG


v̇c =

1

m

n∑
i=1

fi

ω̇ =
1

J

n∑
i=1

(pci − pc)
⊥T

fi

(2.1)

Where m ∈ R is the mass of the object, vc ∈ R2 is the velocity of the center of mass (CoM) of

the object, J ∈ R is the moment of inertia of the body, ω ∈ R is the rotational rate of the object,

pc ∈ R2 is the position of the CoM and pci ∈ R2 is the position of the contact point Ci, for i = 1...n.

Also the symbol (.)⊥ represents a rotation of π/2, for example v⊥ = Qv = (
0 −1

1 0
)(
vx

vy
) = (

−vy

vx
).

The approach decomposes the term pci − pc into pci − pG and pG − pc, graphical representation
is shown in �gure 2.1.

Where pG = 1
n

n∑
i=1

pci is the geometric center (the centroid position) of the contact points.

The dynamics of the systems becomes as:

15

CHAPTER 2. LITERATURE REVIEW


v̇c =

1

m

n∑
i=1

fi

ω̇ =
1

J

n∑
i=1

(pci − pG)⊥
T

fi +
1

J
(pG − pc)

⊥T
n∑
i=1

fi

(2.2)

Where the motivation to the decomposition of pci − pc will be appear as we go through the

algorithm.

The control objective is to let the load velocity vc(t) and the angular velocity rate ω(t) follow a

given desired trajectory vdc and ωd(t) using only the available information (local applied forces

and local velocities), and a decentralized control law that is able to achieve the above objective,

without the need of:

� All-to-all communication.

� A central processor that computes the control actions

� The knowledge of the controlled quantities vc(t), ω(t).

� The knowledge of The internal state of the object pci − pc, and.

� The knowledge of the parameters of the dynamical system.

Proposed Control Law [1]

Given a load trajectory vdc and ωd(t), each robot i, where i = 1, ..., n ≥ 2, applying the following

control law:

fi =
m

n
uc +

Juω −m(pG − pc)
⊥T

uc
n∑
i

‖pci − pc‖2
(pci − pc)

⊥ (2.3)

Where:

uc = v̇dc + kv(v
d
c − vc)uω = ω̇d + kω(ωd − ω) (2.4)

Plugging fi into the load dynamics, and exploiting
n∑
i=1

(pci − pG) ⊥= 0 we get:

16

CHAPTER 2. LITERATURE REVIEW

v̇c = v̇dc + kv(v
d
c − vc)ω̇ = ω̇d + kω(ωd − ω) (2.5)

Which implies the convergence of the linear CoM velocity vc(t) → vdc(t) and the rotational rate

ω → ωd(t)

The control law at 2.3 implies that the quantities m, J ,
n∑
i

‖pci−pc‖2, vc, ω, pci−pG, pG−pc,

must be locally known by each robot in order for the control to be decentralized.

The above argument stimulates the design of a decentralized algorithm that each robots estimates

the quantities mentioned above, while each robot can only:

� Locally measure the velocity vci of the contact point Ci.

� Locally control the applied force fi.

� Communicate with its one-hop neighbors Ni (i.e. without the need of an intermediate router

between each robot and its neighbors).

Overview of the Estimation Algorithm [2]

Figure 2.2 shows a block diagram of various stages of the estimation algorithm, it contains two main

parts, the Kinematic and Dynamic part.

Figure 2.2: Overview of the distributed algorithm. In the kinematic phase, only the velocity mea-
surements and the rigid body kinematics are used. After this phase, the estimates of the time-varying
quantities zi(t) and ω(t) (in blue) become available to each robot i. On the other hand in the dy-
namical phase, the knowledge of the forces and the rigid body dynamics are used as well. After this
phase, the quantities J, zC(t),vC and m (in red) become available to each robot i.

17

CHAPTER 2. LITERATURE REVIEW

The Kinematic part takes measurements of velocities of contact points vi and vj where j ∈ Ni
(a neighbor of i. With the use of rigid body kinematics, it estimates the quantities zi = pci − pG,

and ω.

The Dynamic part uses the outcomes of the Kinematic part in addition to the force inputs fi and

vci, utilizing rigid body kinematics and dynamics delivers the estimates of the quantities J , vc, zc

and m.

In the next chapter we describe the experimental setup, then the theory and implementation of

the two phases in detail, showing the obtained results and the discussions.

18

Chapter 3

Experimental Setup

This chapter describes the hardware components used to perform the experiment, and how they

are interconnected, as well as the adopted software architecture, followed by a description of the

steps undertaken to perform the experiment, and �nally reporting how the parameters and states

mentioned in the mathematical model (in subsection 2.3.1) are obtained or derived.

Hardware

A block diagram showing hardware components of ROSPO and their connections is in �gure 3.1.

PC Running
Simulink

PC Running
MOCAP
“Marey”

Joystick Flight
Controller

USB

USB

USB

USB

Arduino

ODROID

Network

Servo-
motors

B-less
motors

ROSPO

Figure 3.1: ROSPO hardware.

The platform contains 4 brush-less motors that are controlled with a control board (Flight Ctrl

2.1) by Mikrokopter 1 containing an Inertia Measurement Unit (IMU), four Brush-less Controller (BL-

1http://www.mikrokopter.de/en/home

19

http://www.mikrokopter.de/en/home

CHAPTER 3. EXPERIMENTAL SETUP

Ctrl 2.0) with proprietary �rmware and four Brush-less motors (ROXXY 2827-35). The platform

also contains 4 servo-motors that are controlled by an Arduino board that receives serial commands

from the on-board computer (ODRIOD), the latter is equipped with a wi-� modem in order to be

connected to the network.

Motion Capture The Mocap, is an Optitrack system from NaturalPoint2, it consists of S250e

cameras and prime17W cameras and one pc station running windows and the Optitrack software

"Motive". In �gure 1.6 a part of ROSPO platfom in which the markers that are detected by the

cameras can be seen.

Software Architecture

OpenRobots Package

OpenRobots is a software that is being developed at LAAS/CNRS to tackle the study and design of

autonomous machines 3.

robotpkg is a compilation framework and packaging system for installing robotics software devel-

oped by the robotic community. It also contains packages for some general, third-party open-source

software that the robotics software depends on and that is not commonly packaged by major UNIX

distributions.

Software Components

Figure 3.2 shows a block diagram of the software components used to perform the experiment.

OpenRobots software packages used in the experiment (Figure 3.2) are shown below

� POCOLIBS (Middleware) is a real-time communication library between software components

(called GenoM components).

� GenoM (The Generator of Modules) is a tool to encapsulates software functions inside inde-

pendent components. genom3-pocolibs is a template that provides a GenoM template for

generating Pocolibs based components.

� MATLAB/Simulink is used to access control GenoM3 components using (MATLABGenomix)

package.

� tk3-mikrokopter package contains the brush-less Electronic Speed Controller (ESC) code com-

patible with BL-Ctrl board and the autopilot proper compatible with Flight-Ctrl boards.

2http://www.naturalpoint.com/optitrack/
3https://www.openrobots.org

20

http://www.naturalpoint.com/optitrack/
https://www.openrobots.org

CHAPTER 3. EXPERIMENTAL SETUP

POCOLIBS
Middle-ware

POCOLIBS
Middle-ware

JOYSTICKGENOMIX

SIMULINK
(Supervision/Plots)

MOTIVE

SERVO
CONTROL

GENOMIX

POM (x5)

MIKROKOPTER

ROSPO
CONTROL

OPTI-TRACK

PC ODROID

MAREY

ARDUINO

WI-FI

Mocap

HTTP
(WI-FI)

State

HTTP Motors
Speed

Commands

Motors
Speed

MeasurementsIMU
Measurement

Estimated
State of

The Body and
(x4)Turrets

Servo
Angles

Cmmands

Joystick
State

WI-FI Motors
Start/Stop

Commands
From SIMULINK

Figure 3.2: Software Components used in the experiment setup, POCOLIBS as the middle-ware to
"glue" the software components in the PC, the onboard computer "ODROID" and on the desktop
"MAREY" that runs the Motion Capture System.

� mikrokopter-genom3 is a low level hardware controller for tk3-mikrokopter quadrotors. This

component takes a desired wrench (forces + torques) control input in body frame and com-

putes the propellers velocities accordingly. It communicates with the tk3-mikrokopter software

running on board.

� Optitrack-genom3 exports motion capture data from the Optitrack system.

� pom-genom3 collects position/velocity/acceleration measurements from other components,

and generate a fused state estimation from these sources.

� joystick-genom3 is a GenoM3 component that exports the readings of any connected joystick

device.

� The component "ROSPO Control" is and application speci�c GenoM3 component, it gen-

erates Brush-less motors speed commands based on the Joystick state, logs in text �les the

estimated state of the body and the 4 turrets from "pom-genom3", the brush-less motors speed

measurements and the commands sent to the servo-control software in Arduino.

21

CHAPTER 3. EXPERIMENTAL SETUP

.

The Procedure

The experiment was performed by applying a force trajectory to the brush-less motors and the servo-

motors based on the command of a user that operates the platform with a joystick, at the same time,

the state of the platform is recorded, and saved in log �les.

Then the data in the log �les is applied to the algorithm implementation in Simulink in a worksta-

tion. Since we testing only the estimation algorthm in that stage and not the control part, There is

no need to implement the estimation algorithm on-board. Further, this helped to test the algorithm

as much as we needed without the need to perform a lot of experiments.

The tasks mentioned above are implemented in the GenoM3 component "ROSPO Control",

which generate the force trajectory and process the state of the Joystick was made in Simulink and

converted to C using an auto-generation tool.

The on-board computer (ODRIOD), contains linux operating system and can be accessed via

Secure-Shell (SSH) protocol through the wi-� connection. This enables controlling the execution of

the components remotely from the PC station, besides operating ROSPO platform with the joystick.

Computing reference values for comparison

The variables obtained from measurements are

� the orientations of the platform and the 4 turrets represented in quaternions4.

� The linear velocities of the platform and the 4 turrets in [meters/seconds], x and y components

vc and vci.

� Angular velocity of the platform ω.

� The positions of the platform and the 4 turrets in [meters] pci.

� Speeds measurements of the 4 brush-less motors, along with the speed sent from the software

ωti.

It is useful to note that the state of the platform is estimated from the date coming from Optitrack

and the data measured by the IMU, While the states of the turrets are obtained only from the

Optitrack, Which makes it more noisy.

All the above vector quantities are obtained in world (inertial) frame.

4Obtained by pom-genom3

22

CHAPTER 3. EXPERIMENTAL SETUP

Orientations of the Platform and the Turrets

The orientations of the platform and the 4 turrets are represented in quaternions qx, qy, qz and qw,

then they are transformed to yaw angles using the following formula.

Y aw = arctan 2(2(qwqz + qxqy), 1− 2(q2y + q2z))

zij, zi and zC

zij is computed from the turret positions pci, i = 1, ..., 4 and the position of the CoM of the platform

pc (see �gure 2.1). The same applies to zi and zC

Input Forces fi

The applied forces are computed from the speed measurements of the brush-less in [Hz] motors and

the orientation of the turrets in [rad], also the orientation of the platform. The magnitude of the

force can be obtained from the brush-less speed ωt by the following relation.

|f | = kωtω
2
t

Where kωt is the thrust coe�cient. The value for the used propellers is 6.5× 10−4[N/Hz2].

Then the force magnitude along with the orientation of the turret represent the force in Polar

coordinates, and can be easily converted to Cartesian coordinates.

Finally, the obtained force is represented in the body frame, therefore it is transformed to world

frame to be suitable with the theory. This is done by multiplying it with the transformation matrix

R(ψ) =

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]
, where ψ is the orientation of the platform in [rad].

The Mass and the Inertia of the Platform

The Mass of the platform was computed from mass measurements of the various parts of the platform,

and the inertial was estimated by approximating these parts to the basic shapes whose formulae are

known, with the latter and the part's distance from the center of mass of the platform, the rotational

inertia around the center of mass of the platform is computed.

The data of the mass and the inertia computation is shown in table no. 3.1.

Communication Topology

(See section 1.7 for recap). The adopted undirected graph topology is shown in �gure 3.3, which

represents the most "sparse" connected graph topology of a network of 4 agents. All the results

23

CHAPTER 3. EXPERIMENTAL SETUP

Table 3.1: The Inertias of Various Di�erent Parts of ROSPO platform

Part Mass (g) shape
Distance
from CoM

[cm]
w [cm] dp [cm] len [cm]

Inertia
around CoM
[kg m^2]

Box chassis 250
MK board 70

Arduino Board 40
Odroid Board 50
Electronics Box

(Includes all Boards)
410 Cuboid 0 18 18 10.5 0.002214

Battery 243 Cuboid 10 6.8 2.8 10 0.002539512
Turret 1 470 Cuboid 42 10 5 9 0.0833975833
Turret 2 470 Cuboid 39 10 5 9 0.0719765833
Turret 3 470 Cuboid 41 10 5 9 0.0794965833
Turret 4 425 Cuboid 41 10 5 9 0.0718852083
Bar 1 383.52 Cuboid 25 2 94 2 0.05222264
Bar 2 383.52 Cuboid 25 2 94 2 0.05222264
Bar 3 187.68 Cuboid 47 2 46 2 0.044774192
Bar 4 187.68 Cuboid 15 2 46 2 0.00753848
Bar 5 187.68 Cuboid 15 2 46 2 0.00753848
Bar 6 187.68 Cuboid 47 2 46 2 0.044774192
Bar 7 122.4 Cuboid 36 2 30 2 0.01678512
Bar 8 122.4 Cuboid 37 2 30 2 0.01767864
Bar 9 122.4 Cuboid 7 2 30 2 0.00152184
Bar 10 122.4 Cuboid 0 2 30 2 0.00092208
Bar 11 122.4 Cuboid 35 2 30 2 0.01591608
Bar 12 122.4 Cuboid 37 2 30 2 0.01767864
Wheel 1 152 Solid cylinder 20 2.3 0.006120204
Wheel 2 152 Solid cylinder 20 2.3 0.006120204
Wheel 3 152 Solid cylinder 20 2.3 0.006120204
Wheel 4 152 Solid cylinder 20 2.3 0.006120204
Total 0.6155633103

shown in the next chapters are with adopting this topology unless otherwise speci�ed.

Figure 3.3: The adopted communication topology of the robotic network

24

Chapter 4

Kinematic Phase

Overview

This chapter goes through the theory and implementation of the Kinematic Phase stages in detail,

showing the obtained results and the discussions.

The kinematic phase receives as inputs vci, vcj and ẑj where j ∈ Ni (the neighbors group), and
provides ẑi and ω̂ exploiting rigid body kinematics, linear on-line estimation and a consensus-based

centroid estimation algorithm.

The Inputs to the Kinematic Phase

The following �gure, (4.1 shows the measurements of vci, i = 1, 2, 3, 4, along with calculated

versions to show the di�erences between them. The calculated versions are obtained utilizing rigid

body kinematics and the measurement of ω and vc. The reading su�er from a fair amount of noise

and deviations from the calculated versions at various time intervals. Noted that the measurement

of vc2 is a bit worse than the other agents.

żij Estimation (Stage 1)

żij is computed from:

żij = vi − vj

For every j ∈ Ni.

żij is the rate of change of the distance between the contact point i and contact point j. All the

obtained quantities are in World frame, so we expect so get a value as long as the body is rotating

(‖vi − vj‖ 6= 0)

25

CHAPTER 4. KINEMATIC PHASE

0 20 40 60 80 100 120 140 160 180

time [sec]

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180

time [sec]

-1

-0.5

0

0.5

1

(a) Contact point 1 velocity: Reading VS Measurement

0 20 40 60 80 100 120 140 160 180

time [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180

time [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Contact point 2 velocity: Reading VS Measurement

0 20 40 60 80 100 120 140 160 180

time [sec]

-2

-1

0

1

2

0 20 40 60 80 100 120 140 160 180

time [sec]

-2

-1

0

1

2

(c) Contact point 3 velocity: Reading VS Measurement

0 20 40 60 80 100 120 140 160 180

time [sec]

-2

-1

0

1

2

0 20 40 60 80 100 120 140 160 180

time [sec]

-2

-1

0

1

2

(d) Contact point 4 velocity: Reading VS Measurement

Figure 4.1: Velocity of Contact point between each robot and the manipulated object

yij Estimation (Stage 2)

yij = Qzij/‖zij‖
Q(ṗci − ṗcj)

‖ṗci − ṗcj‖
(4.1)

Where Q =

[
0 −1

1 0

]
.

A lower limit for the norm of żij is set instead of exactly zero. yij is not updated as long as ‖żij‖
goes below the limit "żij < Th1"

26

CHAPTER 4. KINEMATIC PHASE

dij Estimation(Stage 3)

Problem Formulation

żij = dijẏij, (4.2)

The x component of the vector equation was feed into a Recursive Least Square Estimation to

obtain an Estimate of dij. Then the average of the two estimates is considered.

for the linear system described in (4.2), Which can be written as follows:

ẏ =
1

dij
u

On-line Estimator: Recursive Least Square

This algorithm was applied to in stages 3 and 11 (see �gure 2.2)

Then the linear system is discretized using (Backward Euler Method) as follows:

y(t)− y(t− 1)

Ts
=

1

dij
u(t− 1)

y(t)− y(t− 1) =
Ts
dij
u(t− 1)

h(t) = θu(t− 1)

(4.3)

Where t = 1, 2, 3, 4, ...

The adopted Recursive Least-Square algorithm:

S(t) = S(t− 1) + u(t− 1)2

K = u(t− 1)/S(t)

e = h(t)− (θ̂(t− 1) ∗ u(t))

θ̂(t) = K ∗ e+ θ̂(t− 1)

d̂ij =
Ts

θ̂

(4.4)

27

CHAPTER 4. KINEMATIC PHASE

The value of d̂ij is saturated not to exceed [-30, 30].

The end of the estimation is determined when the estimation (of both components) reaches a

steady-state. That is, when the di�erence between the current value of the estimation and the

previous value does not exceed a threshold for a certain amount of time. From the experiments

a threshold of 0.002m and a time of 10000 samples were found suitable to provide an acceptable

estimation.

In the previous experiment the threshold was 0.005m and the time was 5000 samples, Which puts

more constraints on the accuracy of the estimation before selecting a value for the next stages.

Selecting Trajectory for ‖dij‖ Estimation

Since dij changes the sign whenever the di�erence vi−vj (or we could say the sign of ω) changes the

sign. So it is preferable to select a motion trajectory that keeps the sign of the vi − vj unchanged

for a su�cient amount of time.

Therefore, at the beginning of the algorithm the turrets must apply forces to the platform in

order to keep the angular velocity ω in a constant sign until the estimation of d̂ij is complete.

The rest of the trajectory was performed simply by setting constant rotational speeds of the

turrets with the following orientations θ1 = 0o, θ2 = 0o, θ3 = 0o, θ4 = 0o, this will allow the platform

to rotate around its center with small amount of linear translations.

The linear estimator is albe to obtain an estimate with estimation error within the speci�ed

threshold (see the previous sub-section), thanks to the fact that we are certain of the model structure

in 4.2, the only uncertainty is introduced by the noise in the input velocities.

dij Sign Ambiguity

To solve the issue, two linear systems were implemented, one with the positive dij and the other with

negative dij.

Sign Tracking Algorithm: Complementary Filters

For stage 3, two linear systems were implemented, one with the positive dij and the other with

negative dij.

28

CHAPTER 4. KINEMATIC PHASE

The system can be described as the following:

ẏ = ±αu

yy = y + µy

yu = u+ µu

(4.5)

˙̂y1 = αyu + kp(yy − ŷ1)
˙̂y2 = −αyu + kp(yy − ŷ2)

(4.6)

Any of the equations above can be written in the frequency domain as follows:

ŷ1or2(s) =
kp

s+ kp
yy(s) +

s

s+ kp
(±α)

yu(s)

s
(4.7)

Equation (4.7) shows that the Complementary Filter can serve as a high-pass �lter to prevent

the drift resulting from the integration of yu(s) as well as a low-pass �lter that attenuates the high

frequency noise a�ecting the measurements.

Where the computation of yij stops and the current value is saved if the magnitude of żij is less

than a certain threshold ||żij|| < Th1, this is because the e�ect of the noise is higher at this region.

This stage was found more e�ective by using both components of equation (4.5). The implemen-

tation is shown in �gure 4.2.

Results of the Sign Tracking Algorithm

If an error in the dij sign tracking stage causes a wrong tracking of the sign, the wrong sign of dij

will lead to a �ipped sign of the next stages (for example ω will be computed with a �ipped sign).

The following �gure (4.3) shows the tracking of the sign of ω using the Complementary Filters

shown above, using the values of thresholds Th1 =
√

0.002. The plots show the sign tracking using

one component (x and y), and by adding both results.

In 4.3, the ability of the accumulated signal (in black), to follow the sign of the angular velocity

measurement, shows that it represents the correct sign of dij.

zij Estimation (Stage 4)

Computing zij is done by simply multiplying yij with dij

29

CHAPTER 4. KINEMATIC PHASE

+

-

+
+

+α

yu−X comp(s)

ŷ1 x (s)k p

+

-

+
+

−α

ŷ2 x(s)k p

y y−X comp(s) +

+
-

-

+

-

+

-

+
+

+α

yu−Y comp (s)

ŷ1 y (s)k p

+

-

+
+

−α

ŷ2 y (s)k p

y y−Y comp (s) +

+
-

-

+

-

e (s)

+

+

Figure 4.2: The implementation of Complementary Filters to estimate the correct sign of dij

Centroid Algorithm: zi Estimation (Stage 5)

Overview of The Centroid Algorithm

zi is estimated using distributed centroid estimation algorithm from relative positions zij. Based on

the work of [21], that they proposed a distributed technique for estimating the centroid of a network

of agents from noisy relative measurements. Figure 4.4 shows

30

CHAPTER 4. KINEMATIC PHASE

Figure 4.3: Angular Velocity Estimation Sign Estimation using vc1 and vc2

Graph Topology:

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

Figure 4.4: Estimating the centroid of a network of agents from relative measurements

Where zij = pci − pcj is the relative position between agent i and agent j, and zi = pci − pG is

the position of agent i relative to the centroid.

ẑi(t+ 1) = Wiiẑi(t) +
∑
j∈Ni∪i

Wij(ẑj(t) + ẑij(t))

Exploiting the current estimates of ẑij and the estimated states ẑj of the neighbors group (j ∈ Ni).

Wij are the Metropolis weights of the undirected version of the communication graph. They are

de�ned as:

Wij =


1

1+max{di,dj} if{i, j} ∈ }

1−
∑
{i,k}∈}

Wik ifi = j

0 otherwise

31

CHAPTER 4. KINEMATIC PHASE

Results of the Centroid Algorithm

The results are shown by �gure 4.5.

0 50 100 150 200 250 300 350

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

Actual z_1

0 50 100 150 200 250 300 350

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Actual z_1

(a) z1 Estimation by agent1

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

0.6

Actual z_2

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_2

(b) z2 Estimation by agent2

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_3

0 50 100 150 200 250 300 350

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

Actual z_3

(c) z3 Estimation by agent3

0 50 100 150 200 250 300 350

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Actual z_4

0 50 100 150 200 250 300 350

time [sec]

-0.5

0

0.5

Actual z_4

(d) z4 Estimation by agent4

Figure 4.5: Centroid Estimation algorithm

It is intuitive to assume that the communication network topology is a major factor in the quality

of estimation (see 7), the more sparse the network the less the estimation quality is. This is actually

the case here, and it is more relevant with the presence of errors in previous stages (the estimation of

ẑij), �gure 4.6 shows the estimation of ẑ1 with to topologies for communication, the �rst is the one

we are adopting in this thesis (see section 3.5), and the other one is all-to-all communication which

is the most dense topology that can be used. From that it is safe to assume that also increasing the

number of agents improves the quality of estimation.

ω Estimation (Stage 6)

The angular rate of the object can be computed locally from the quantities żij (from refStage 5)

and zij (from refStage 1) exploiting the rigid body kinematics.

32

CHAPTER 4. KINEMATIC PHASE

100 105 110 115 120 125 130 135 140 145 150

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

Actual z_1

105 110 115 120 125 130 135 140 145 150

time [sec]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Actual z_1

Figure 4.6: Z4 Estimation by the agent 4

ωzij = −ż⊥ij, (4.8)

Multiplying both sides by z6ij we get ω

ω = −(zTij ż
⊥
ij)(z

T
ijzij)

−1

Each robot i will then have as many estimates of ω as the number of its neighbors j ∈ Ni, These
estimates can be averaged to produced more accurate results.

Obtained Estimation of ω

The estimation of the 4 agents along with the measurement of ω is shown in �gure 4.7, a zoomed

plot of the same is shown in �gure 4.8.

The estimations of ω by the 4 agents shows that the sign tracking algorithm is following the

direction reverse of ŷij, which is re�ected in smoothness in the subsequent stages (ẑi and ω̂). Also

the fact that each agent has several estimates of ω̂ (depending on the topology) and it computes the

average among them, gives better estimates because it attenuates outliers.

Discussions about the Kinematic Phase

� The noise and deviations in the inputs a�ect the quality of the estimation considerably. mostly,

the computation of the unit vector ŷij consists of a division by the magnitude of ˆ̇zij the e�ect

is more severe when the latter is almost 0.

33

CHAPTER 4. KINEMATIC PHASE

Figure 4.7: Angular Velocity Estimation by the 4 agents

Figure 4.8: Zoomed View: Angular Velocity Estimation by the 4 agents

� Stages 3, 5 and 6 have the ability to attenuate the noise e�ect to some extent. Stage 3 particular

in tracking the sign using the complementary �lter.

� Stges 4, and 5 (ω̂ and the centroid algorithm) can produce better result if the communication

network is more dense and/or increases the number of agents.

34

Chapter 5

Dynamic Phase

Overview

This chapter goes through the theory and implementation of the Dynamic Phase stages in detail,

showing the obtained results and the discussions.

The Dynamic Phase receives as inputs the outcomes of the Kinematic Phase, ẑi and ω̂ and fi,

and also exchanges some signals with the neighboring agents. and provides ẑc, m̂, Ĵ and v̂c. It uses

non-linear state observation, dynamic average consensus algorithms and linear on-line estimation as

well.

The Inputs to the Dynamic Phase

Along with the estimates of the Kinematic Phase which are shown in the previous chapter, The

Applied forces are also inputs to the Dynamic Phase. They are shown in �gure no 5.1.

35

CHAPTER 5. DYNAMIC PHASE

0 100 200 300 400
-2

0

2

0 100 200 300 400
-2

0

2

0 100 200 300 400
-2

0

2

0 100 200 300 400
-2

0

2

0 100 200 300 400
-2

0

2

0 100 200 300 400
-2

0

2

0 100 200 300 400

time [sec]

-2

0

2

0 100 200 300 400

time [sec]

-2

0

2

Figure 5.1: Applied Forces by the 4 Actuators

Rotational Dynamics

Recalling that zc = pG−pc is a time-varying quantity that contains the information about the CoM

position. The rotational dynamical equation (??) can be re-formulated using the following identities,

the �rst is decomposing the local force fi(t) in two parts

fi(t) =
1

n

n∑
i=1

fi(t) + ∆fi(t) = fmean(t) + ∆fi(t) (5.1)

36

CHAPTER 5. DYNAMIC PHASE

and recalling

n∑
i=1

z⊥i
T

= 0 and
n∑
i=1

∆fi = 0. (5.2)

We can then write the rotational dynamics of the platform, using (5.1) and (5.2) as follows

ω̇ =
1

J

(
n∑
i=1

z⊥i
T

)
fmean +

n

J
z⊥C

T
fmean(t) +

1

J

n∑
i=1

z⊥i
T

∆fi

+
1

J
z⊥C

T
n∑
i=1

∆fi +
1

J

n∑
i=1

τi

=
1

J
z⊥C

T
nfmean︸ ︷︷ ︸

1
J
z⊥C

T
f̃

+
1

J

n∑
i=1

z⊥i
T

∆fi︸ ︷︷ ︸
1
J
η1

+
1

J

n∑
i=1

τi︸ ︷︷ ︸
1
J
η2

,

� f̃ = nfmean,

� η1 =
∑n

i=1 z
⊥
i
T

∆fi =
∑n

i=1 z
⊥
i
T
fi, and

� η2 =
∑n

i=1 τi, This term does not exist in the case of the ROSPO platform because the actuators

can only exert a force on the platform.

Rewriting the rotational dynamics

ω̇ = J−1z⊥C
T
f̃ + J−1η̃ (5.3)

where ω(t) is known from stage 6 and η̃ = η1 + η2 is locally known to each agent from stage 8

which is explained next.

Dynamic Average Consensus Algorithms: Estimation of η and

fmean (Stages 7 and 8)

Using the work of [22], Which is a discrete-time dynamic average consensus algorithm that allow a

group of agents to track the average of their reference inputs.

Utilizing the communication topology speci�ed by the Adjacency Matrix A.

37

CHAPTER 5. DYNAMIC PHASE

xi(t+ 1) = xi(t) +
∑
j 6=i

Wij(xj(t)− xi(t)) + (ri(t)− ri(t− 1))

Where xi and ri are the state and input of agent i respectively.

The Dynamic Average consensus algorithm is used to estimate three quantities η1 = J−1
n∑
i=0

z⊥i fi

and η2 = j−1
n∑
i=0

τi, and also the average of the applied forces fmean. The Dynamic Average Consensus

computes the average of z⊥i fi, i = 1, 2, 3, ..., n, i.e. η
n
. And n is assumed to be know by each agent.

This assumption is safe at this stages because there exist consensus-based algorithms that obtain it.

Results of the Dynamic Average Consensus in Stage 7

The estimation of η (stage 7) by the 4 agents is shown in �gure 5.2. A zoomed version is shown is

5.3. The estimation of the average applied force fmean is show in �gure 5.4.

Figure 5.2: η Estimation by the 4 agents

Figure 5.3: Zoomed view: η Estimation by the 4 agents

The results in both stages showed that the dynamics of the estimation is far faster then the

change of the rate of change of the averages, this comes in the expense of making the estimation

more sensitive to noise. The �gures show di�erentiation e�ect (a spike) at various instants. To reduce

that it could be useful to modify the algorithm to be less sensitive, (which I did not �nd a way to

38

CHAPTER 5. DYNAMIC PHASE

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

Figure 5.4: Average value of the applied forces Estimation by the 4 agents

do it), or to �lter/smooth the inputs to the stages, (I have tried o�-line median �lter which showed

e�ectiveness but it is not applicable in the algorithm because it has to be applied on-line.

Nonlinear State Observation: Estimation of zC and J (Stage 9)

Going back to (5.3), ω, J−1 and zC(t) can be selected as state variables and f̃ and η̃ are the inputs.

In order to complete (5.3) with the dynamics of zC(t) we recall that zC is a constant-norm vector,

rigidly attached to the object, hence

żC = ω z⊥C . (5.4)

Furthermore since we do not know how J changes, and anyway in practical scenarios they change,

they will change gradually, then we assume, for the design of the observer, that J̇ = 0. Combin-

ing (5.3) and (5.4), we obtain the nonlinear system

ẋ1 = −x2x3
ẋ2 = x1x3

ẋ3 = x4x1u2 − x4x2u1 + x4u3

ẋ4 = 0

y = x3

(5.5)

where (x1 x2)
T = zC = (zxC z

y
C)T , and x4 = J−1 are the unknown part of the state vector, x3 = ω

is the measured part of the state vector and, consequently, can be considered as the system output,

and (u1 u2)
T = f̃, u3 = η̃ are known inputs. The following subsections overview the observability

conditions from the literature for this class of non-linear systems and applies the de�nition to the

system in 5.5. Followed by the theoretical proof of convergence and a demonstration of the outcome

39

CHAPTER 5. DYNAMIC PHASE

of this stage.

Nonlinear System Observability Overview

Considering a general nonlinear system with a single output

{
ẋ = f(x) + g(x)u

y = h(x)
, (5.6)

Where f : Rn → Rn, g : Rn → Rn, assuming that f(.), g(.) are su�ciently smooth and that

h(0) = 0. We de�ne the following notation [23]

� xu(t,0x0): represents the solution of (5.6) at time t originated by the input u and the initial

state x0.

� y(xu(t,0x0)): represent the output y when the state x is xu(t,0x0).

Clearly

y(xu(t,0x0)) ≡ h(xu(t,0x0))

A pair of states (x10, x
2
0) s said to be distinguishable [?] if there exists an input function u such

that

y(xu(t,0x
1
0)) ≡ y(xu(t,0x

2
0))

Local Observability can be de�ned as follows: The state space realization (5.6) is said to

be (locally) observable at x0 ∈ Rn if there exists a neighborhood U0 of x0 such that every state

x 6= x0 ∈ Ω is distinguishable from x0. It is said to be locally observable if it is locally observable at

each x0 ∈ Rn [23]

This means that (5.6) is locally observable in a neighborhood U0 ⊂ Rn if there exists an input

u ∈ R such that

y(xu(t,0x
1
0)) ≡ y(xu(t,0x

2
0)) ∀t ∈ [0, t] ⇔ x1

0 = x2
0

Considering an unforced nonlinear system of the form

40

CHAPTER 5. DYNAMIC PHASE

{
ẋ = f(x)

y = h(x)
, (5.7)

Also f : Rn → Rn, g : Rn → Rn. Looking for Observability conditions in a neighborhood of

the origin x = 0, the state space realization (5.7) is locally observable in a neighborhood U0 ⊂ D

containing the origin, if [23]

rank



∇h
...

∇Ln−1f h


 = n ∀x ∈ U0 (5.8)

Observability Analysis

The theorem in (5.8) was applied to the nonlinear system in (5.5) in order to assess the Observability

of the system.

The computation of the Observability matrix for (5.5) requires a great e�ort of hand-writing.

The matrix contains a large amount of terms that it is di�cult to compute the determinant of the

matrix to assess whether it has full rank or not. Therefore MATLAB's tool called Symbolic Math

was used to compute the determinant and the expression is as follows

det(O) = −u3x33x24(u12 + u22) (5.9)

The Observability depends on the values of the states x3 and x4 in addition to the inputs. The

system is considered observable if x3 and x4 and u3 and at lease one of u1, u2 are not equal to 0.

Designing an observer

Consider the following dynamical system

˙̂x1 = −x̂2x3 + u2(y − x̂3)
˙̂x2 = x̂1x3 − u1(y − x̂3)
˙̂x3 = x̂1u2 − x̂2u1 + kx̂4u3 + ke(y − x̂3)
˙̂x4 = ku3(y − x̂3),

(5.10)

where ke > 0. If y(t) 6≡ 0, u3(t) 6≡ 0 and (u1(t) u2(t))
T 6≡ 0, then (5.10) is an asymptotic observer

41

CHAPTER 5. DYNAMIC PHASE

of a modi�ed version of (5.5), in which the following change of variable is done x̂4 → x4
k
, x̂1 → x1x4,

x̂2 → x2x4, i.e., de�ning x̂ = (x̂1 x̂2 x̂3 x̂4)
T and x = (x1x4 x2x4 x3 x4/k)T , one has that x̂(t)→ x(t)

asymptotically, which in turns also implies that (x̂1/x̂4 x̂1/x̂4 kx̂4)→ (x1 x2 x4) asymptotically.

Proof of Convergence

De�ne the error vector as e = (e1 e2 e3 e4)
T = ((x1x4 − x̂1) (x2x4 − x̂2) (x3 − x̂3) (x4/k − x̂4)))T ;

after some algebra, the error dynamics is given by

ė =


0 −x3 −u2 0

x3 0 u1 0

u2 −u1 −ke ku3

0 0 −ku3 0

 e (5.11)

De�ne the following candidate Lyapunov function: V (e) = 1
2
eTe, whose time derivative along the

system trajectories is

V̇ (e) =e1(−e2x3 − u2e3) + e2(x3e1 + u1e3)+

e3(u2e1 − u1e2 + ku3e4 − kee3)− e4ku3e3
=− e1e2x3 − e1u2e3 + e2x3e1+

e2u1e3 + e3u2e1 − e3u1e2 − kee23 + ku3e3e4

− ku3e3e4
=− kee23,

(5.12)

which is negative semi-de�nite. Since V̇ = 0 as soon as e3 = 0 and e3 can be of any value, we need

to study the invariant set imposing e3 ≡ 0, which implies, in particular, that e3 = 0, ė3 = 0, and

ë3 = 0.

Considering, for simplicity the case in which the inputs are step-wise constant, the last three

equation result in the following linear system:

(
u2 −u1 u3
−x3u1 −x3u2 0
−x23u2 x23u1 0

)(
e1
e2
e4

)
= E

(
e1
e2
e4

)
=
(

0
0
0

)
. (5.13)

The determinant of E is −u3x33(u21 + u32), if the assumptions of the theorem are satis�ed then E is

non-singular and therefore the only trajectory of the system that ensures V̇ = 0 is e = 0. Therefore,

this non-linear observer is an asymptotic observer 5.5.

42

CHAPTER 5. DYNAMIC PHASE

Results of Nonlinear State Observation

Figures 5.5 shows the estimtion of ẑc by agents 1, 2, 3, and 4 respectively, and �gure 5.6 shows the

estimation of Ĵ of all 4 agents, the estimate is plotted along with the computed version.

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

(a) zC Estimation by agent1

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

(b) zC Estimation by agent2

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

(c) zC Estimation by agent3

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

(d) zC Estimation by agent4

Figure 5.5: zC Estimation

43

CHAPTER 5. DYNAMIC PHASE

Figure 5.6: Platform Inertia Estimation by the 4 agents

Figure 5.7 shows the estimation of one of the agents using the estimated signals coming from

the previous signals.

The nonlinear observer is at stage 9, all its inputs and outputs are taken from previously estimated

quantities. To to study the e�ect of the accumulated errors on the performance of the observer, the

observer was implemented using the data coming directly with the measurements (or computed).

Figure 5.8 shows the the plot of the results in both cases, and for more insight, �gure 5.9, shows the

abs error (|zC − ẑC |) also in both cases.

Recalling that the inputs of the observer are: system inputs fmean, and η =
∑n

i=1 z
⊥
i
T
fi, and

system output ω.

Therefore the observer's performance is a�ected if the input and output are a�ected. However,

the observer performance is not optimum even with the use of better data.

This can be due to the following reasons

� The presence of friction in the wheels.The mathematical model does not describe accurately

the dynamics of the physical system. In particular, the presence of the friction in the wheels,

although it was reduced by attaching the wheels closer to the CoM to reduce the moment of

the friction forces. It still a�ects the dynamics in a nonlinear way.

� The inputs forces are not directly measured but computed from the propeller speed and the

orientation angle of each actuator, then applying The speed-thrust quadratic low with the use

44

CHAPTER 5. DYNAMIC PHASE

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

0 50 100 150 200 250 300 350

time [sec]

-0.4

-0.2

0

0.2

0.4

Actual z_c

Figure 5.7: zC Estimation by one of the agents. The input and output to the observer are taken
from the estimated signals of the previous stages

of the constant, and �nally applying a transformation from body-frame to world-frame (see the

Implementation chapter).

The e�ect of non-linearity is studied by arranging the rotational dynamics in the form ẏ = 1
J
u.

assuming y = ω and u =
∑n

i=1 z
⊥
i
T
fi + z⊥C

T∑n
i=1 fi.

Next MATLAB System Identi�cation tool was used to �t the "computed signals y and u to

the above linear system with. The input and output are shown in �gure 5.10, and the simulated

output against the measurement is shown in �gure 5.11. The "best �t" criteria in MATLAB System

Identi�cation toolbox was 52.21%. This result indicates the presence of non-linearity in the physical

dynamics which was not captured by the linear model. It also shows how model uncertainties a�ect

the estimation quality.

Moreover, the obtained linear model that achieves best-�t has the transfer function of y(s)
u(s)

=
0.7367
s+0.2243

, and in di�erential equation form ẏ+0.2243y = 0.7367. Which is a linear model with viscous

friction 0.2243[N.s/rad], and inertia J = 1
0.7367

= 1.3574 Which is close to the value obtained by the

nonlinear observer.

Gain Tuning: The E�ect of ke1 and ke2

To understand the e�ect of the gain ke2, the system in (5.5), is implemented in Simulink with the

following speci�cations:

� Automatic Solver with Fixed Step.

45

CHAPTER 5. DYNAMIC PHASE

0 50 100 150 200 250 300

time [sec]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Actual z_c

50 100 150 200 250 300

time [sec]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Actual z_c

Figure 5.8: zC Estimation by one of the agents. Comparing taking the data from the measurements
directly with using the estimated data from previous stages.

0 50 100 150 200 250 300 350

time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350

time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.9: zC Absolute error of zC estimation by one of the agents. Comparing taking the data
from the measurements directly with using the estimated data from previous stages.

� Sampling time = 0.002 seconds.

� Type of integration method: Backward Euler

� The input to the system are shown in �gure 5.12.

� The initial state of the system x = (0 1 0 0.1)

Figure 5.13 shows the state estimation of the observer when �xing the value of ke1: ke1 = 1 and

ke2 is varied between the values ke2 = 1, 15and20.

From �gure 5.13, in case of ke2 = 1 the convergence of x4 is extremely slow that it is for the

duration of the simulation, it is not able to converge to the preset value x4 = 0.1, while increasing

ke2 accelerate the convergence but also makes the response more aggressive.

46

CHAPTER 5. DYNAMIC PHASE

0 50 100 150 200 250 300

-3

-2

-1

0

1

2

y
1

Input and output signals

0 50 100 150 200 250 300

Time

-2

-1

0

1

2

u
1

Figure 5.10: the input u and the output y for linear system identi�cation applied to the experimental
data.

0 50 100 150 200 250 300

Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Measured and simulated model output

Figure 5.11: The output measurement y against the simulated output of the identi�ed linear system.

It was noted that the speed of response depends on the amplitude u3, for the selected amplitude

0.1Nm the response becomes very slow. This motivates using ke2 as a gain for u3 to speed up the

convergence, since u3 is an internal signal in the overall model that depends on fi and zi .

The e�ect of ke2 can be seen by looking at (5.10), in particular: ˙̂x3 and ˙̂x4. ke2 increases the e�ect

of e3 on the change of ė4.

Increasing the gain ke1 reduces the speed of convergence of the states x̂1, x̂2andx̂4. The reason is

because it increases the e�ect of the term (e3 = x3 − x̂3) on the rate of change of x̂3, which reduces

e3 itself, recalling that e3 is the factor that modi�es the values of the other estimated states.

47

CHAPTER 5. DYNAMIC PHASE

0 1 2 3 4 5 6 7 8 9 10

time [sec]

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

time [sec]

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

time [sec]

-0.1

-0.05

0

0.05

0.1

Figure 5.12: Inputs to the System

Figure 5.13: States Estimation Using Nonlinear Observer

vC Calculation (Stage 10)

Utilized Kinematic Relations

The velocity of the center of mass vC(t) is estimated locally by each agent i using the rigid body

constraint

d

dt
(pC − pCi

) = ω(pC − pCi
)⊥,

which can be rewritten as

vC = vCi
− ω(pC − pCi

) = vCi
− ω(pC − pG + pG − pCi

) = vCi
− ω(zc + zi)

whose right-hand-side elements are all known since:

� vCi
(t) is locally measured by agent i

48

CHAPTER 5. DYNAMIC PHASE

� ω(t), zC(t), and zi(t) are known by each agent i thanks to stages 6, 11 and 5, respectively.

The results are shown in the following subsection.

Results and Comments

Figure 5.14 shows the plot of v̂c estimated by each agent, along with the measurement.

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

(a) Estimation by agent1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

(b) Estimation by agent2

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

(c) Estimation by agent3

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

time [sec]

-1

-0.5

0

0.5

1

(d) Estimation by agent4

Figure 5.14: CoM Linear Velocity vC Estimation

From the �gures we can see that estimation error is large. It is evident that the accumulation of

errors throughout the previous stages a�ect deeply this particular stage. Because stage 10 itself is

not expected to introduce uncertainty because it is mainly an arithmetic equation.

It is useful to mention that ROSPO was arrange to maximize the distance (pci−pc) and in turn

maximize zc and zi respectively (zc ≈ 18centemeters), to assess their e�ect on vc. While in previous

experiments zc and zi were quite small (zc ≈ 2centemeters), therefore, v̂c was depending only on

vci which is a measurement, and ω̂ which did su�er from considerable error.

Nonetheless, recalling that the the state of ROSPO is obtained from fusion between the IMU

and Motion Capture measurements. Both of the measurements are based on a CoM location that

49

CHAPTER 5. DYNAMIC PHASE

depends on the person's judgment. The method I have used to determine the actual location of CoM

is prone to human error and there could be a possibility that the measurement su�ers from some

errors because of that. But the time of the internship was over before I was able to verify that.

Estimation of the Mass (Stage 11)

According to the theory, the estimation of the mass in each agent is a linear estimation problem

shown in (5.14) since the system is similar to the one in (4.2), which, similarly, can be solved by

using the recursive Least Square algorithm.

Re-writing (2.1) as

mv̇c = nfmean, (5.14)

Assuming n is assumed to be known. Further, fmean is distributively estimated from fi using

dynamic average consensus algorithm (stage 7) 5.4, and also vc is known locally by each robot i

from (stage 10) 5.6.

Since The friction on the wheels is not negligible, the viscous friction was added to the linear

system and was expected to improve the quality of the estimation of the mass, the modi�ed system

is shown in 5.15.

mv̇c = nfmean + βvvc, (5.15)

y(t)− y(t− 1)

Ts
=

n

m
u(t− 1) +

βv

m
y(t− 1)

y(t)− y(t− 1) =
Tsn

m
u(t− 1) +

Tsβv

m
y(t− 1)

y(t) = θ1y(t− 1) + θ2u(t− 1)

(5.16)

Where θ1 = 1 + Tsβv
m

and θ2 = Tsn
m

And the similarly to Stage 3, the following Recursive Least Square can be used:

50

CHAPTER 5. DYNAMIC PHASE

S(t) = S(t− 1) + φ(t)φ(t)T

K = φ(t)/S(t)

e = y(t)− (φ(t)T θ(t− 1))

θ(t) = K ∗ e+ θ(t− 1)

(5.17)

Where t = 1, 2, 3, ..., φ = [y(t− 1) u(t− 1)] and S can be initialized to (
1 0

0 1
).

Results of the Linear Estimator

The mass estimation by agent 1 is shown in �gure 5.15, the other agents produced similar results

so there is no need to show them.

Figure 5.15: Body Mass Estimation by agent 1

As shown in the �gures the estimation of the mass is not stable. This is due to the presence of

friction in the wheels. To go around this issue a static friction model was included:

Friction Non-linear Model

Modeling the friction in the wheels: The static friction forces were also included in addition to the

linear viscous friction to obtain a more realistic model.

51

CHAPTER 5. DYNAMIC PHASE

mv̇c =

βvvc if nfmean + βvvc −mv̇c 6 K

nfmean + βvvc −Ksign(vc) otherwise
(5.18)

Where βv ≤ 0 is the coe�cient of viscous friction, and K > 0 is a constant that can be determined

as follows.

By conducting an experiment of applying the forces of the turrets to the body only in x-direction

or in y-direction (in Body Frame). The forces to be applied gradually until the body starts moving.

The forces applied that made the body move can be used to compute the constant K. The outcome

of the experiment is shown in �gures 5.16 and 5.17.

0 10 20 30 40 50 60 70 80 90 100

time [sec]

-2

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

time [sec]

-0.2

0

0.2

0.4

0.6

0.8

Figure 5.16: Sum of the applied forces and the Linear velocity of the platform expressed in Body
Frame - moving in x-direction

0 10 20 30 40 50 60 70

time [sec]

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70

time [sec]

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5.17: Sum of the applied forces and the Linear velocity of the platform expressed in Body
Frame - moving in y-direction

For the force trajectory that was applied to the estimation algorithm, transforming the quantity

nfmean to Body Frame, showed that the amount of force required to move the platform against the

52

CHAPTER 5. DYNAMIC PHASE

friction forces in x or y directions was not exceeded yet we saw movements on vc plots, which shows

that the model used does not describe the friction in the wheels properly.

In summary, the static friction is very high that large applied forces are needed to keep move the

platform.

Applying large forces was not possible because of the low space in which the platform can move

into, and other technical issues such as the presence of a limit on the electrical currents absorbed

by the brush-less motors, and the Motion Capture is not able to precisely measure the state of the

platform and the turrets while moving fast.

Comments on the E�ect of the Friction on the Estimated Mass

One of the aims of the thesis is to try extend the estimation algorithm to include a realistic model of

the friction of the load. From the previous subsection, it might be intuitive to suggest a solution of

reducing the friction in the bearings, then apply the method mentioned in the previous section (i.e.

Applying coordinated forces and taking the value that moves the body), but that is not applicable

in a decentralized algorithm because it requires a central node to coordinate their applied forces.

Even if it is found possible to apply locally available forces to achieve the task, although it is still

considered decentralized, it is not the favorable direction to proceed.

Nevertheless, I was not able to reduce the friction in the wheels. The ball-bearing type is meant

to be used to transform heavy objects, and is not designed to have minimum friction coe�cients.

A possible solution (after �nding a way to reduce the friction coe�cient) is to use Hammerstein

(or Weiner) model structures, which consist of a linear block, and an input (or an output) nonlinearity

which is described by a polynomial model. Then apply a recursive estimation method to obtain the

parameter values.

Discussions about the Dynamic Phase

� Due to model uncertainties in rotational and linear dynamics, complete experimental validation

was not possible.

� Regarding the rotational dynamics, the friction in the wheels was reduced to some extent.

� If we change the model structure the non-linear observer will not guarantee achieving conver-

gence, and we will need to change the observer and possibly changing the approach.

� Regarding the linear dynamics the friction was very high that prevented from obtaining a

correct estimate even in a centralized manner.

� Judging The large error in estimating v̂c makes us say that it will not be suitable for the

decentralized control algorithm. Simply because v̂c is not only used in the control law, but

because its a controlled variable.

53

Chapter 6

Conclusion and Future Work

In summary and to the best knowledge of the author...

� It is necessary to implement also the decentralized control law along with the estimation to

have a de�nite say about its validity, this is done through observing both (estimation + control)

and evaluating the performance in the overall.

� The objectives of the thesis were not fully met mainly because the model uncertainties had

more impact than anticipated, besides some technical issues that made it less possible to tackle

them in all stages.

� It is recommended to �nd a way to reduce the friction in the wheels, then try to �nd a suitable

way of nonlinear state estimation for a model that includes nonlinear friction.

� We can adopt a nonlinear model (Hammerstein/Weiner) to describe the linear dynamics, or to

adopt a Linear Variable Parameter methods in estimation, along with adaptive control.

� With the current setup, it is possible to test most of the estimation algorithm (except stage 11

assuming we know the mass of the system), along with the proposed decentralized control law.

However on expects that the system will not behave as desired because of the presence of the

friction.

� Extending the work to 3D, is a higher goal after experimental validation of the algorithm.

54

Chapter 7

Appendix

Graph Theory Concepts

The basic idea of a consensus algorithm is to impose similar dynamics on the information states of

each vehicle. If the communication network among agents allows continuous communication or if

the communication bandwidth is su�ciently large, then the information state update of each vehicle

is modeled using a di�erential equation. On the other hand, if the communication data arrive in

discrete packets, then the information state update is modeled using a di�erence equation [24].

An average consensus algorithm with a scalar information state is over-viewed in the next para-

graphs, in which a scalar information state is updated by each agent using, respectively, a �rst-order

di�erential equation and a �rst-order di�erence equation.

Assuming n agents in the team. The team's communication topology can be represented by

directed graph Gn , (Vn, En), where Vn = {1, ..., n} is the node set and En ⊆ Vn×Vn is the edge set,
�gure 7.1 shows three di�erent communication typologies for three vehicles. The communication

topology may be time varying due to vehicle motion or communication dropouts. The form of a

continuous-time consensus algorithm is given by [24]

ẋi(t) = −
n∑
j=1

aij(t)[xi(t)− xj(t)], i = 1, ..., n (7.1)

Where aij(t) is the (i, j) entry of adjacency matrix An ∈ Rn×n associated with Gn at time t (see

Appendix A) and xi is the information state of the i th agnet. Setting aij = 0 denotes the fact that

agent i cannot receive information from agent j. A consequence of (7.1) is that the information state

xi(t) of agent i is driven toward the information states of its neighbors. The critical convergence

question is, when do the information states of all of the vehicles converge to a common value?

Although the equation (7.1) ensures that the information states of the team agree, it does not

dictate a speci�ed common value.

Further to (7.1), consider information states with single-integrator dynamics given by

ẋi = ui, i = 1, ..., n (7.2)

55

CHAPTER 7. APPENDIX

Figure 7.1: Three di�erent communication typologies for three agents. Subplot (c) is strongly con-
nected because there is a directed path between every pair of nodes. However, (a) and (b) are not
strongly connected

-
+

Figure 7.2: Block-diagram representation of the fundamental consensus algorithm applied on 1st
order state dynamics

Where xi ∈ Rm is the information state and ui ∈ Rm is the information control input of the ith

agent. A continuous-time consensus algorithm is given by

ui =
n∑
j=1

aij(t)(xi − xj), i = 1, ..., n (7.3)

aij(t) is explained above. Equation (7.3) is written for one agent i. It can be written for all

agents in compact form

u = −Lnx (7.4)

Equations (7.2) and (7.4) together make a closed-loop as shown in �gure no ?? [25].

The consensus algorithm (7.3) is distributed in the sense that each agent needs only information

from its neighbors.

From now on, we will consider only �xed communication typologies, which implies that the

Adjacency An and the Laplacian Ln matrices are time-invariant.

From 7, the properties of the Laplacian Ln are directly related to the associated graph Gn.
Further, based on the Laplacian Ln, the consensus algorithm converges if and only if the graph Gn is
connected [24]. To prove that we can rewrite (7.3) and (7.4) as a single line: ẋ = −Lnx, which is

56

CHAPTER 7. APPENDIX

a matrix di�erential equation that has the explicit solution of the consensus dynamics as follows

[24]

x(t) = e−Lntx0 (7.5)

Since Ln is a symmetric matrix, it can be nationalized by an orthogonal matrix U , such that

UUT = I. Therefore, L = UΛUT where Λ = diag(λi). Exploiting the latter we get e−UΛU
T t =

Ue−ΛtUT .

Then we get the state evolution as x(t) = Ue−ΛtUTx0. Which can be written as follows

x(t) = u1u
T
1 e
−λ1tx0 +

n∑
i=2

uiu
T
i e
−λitx0 (7.6)

Regarding the �rst term of (7.6) From the properties of Ln, it's known that λ1 = 0 and u1 = 1√
n

Thus (7.6) becomes

x(t) =
(1Tx0)1

n
+

n∑
i=2

uiu
T
i e
−λitx0 (7.7)

Regarding the second term of (7.7), if G is connected, then λ2 6= 0 and λn ≥ ... ≥ λ2 > 0, therefore

the term will decay with time because the presence of negative exponents (limt→∞ x(t) = (1Tx0)1
n

).

the latter term means that each agent state xi, ∀i is 1Tx0

n
the average of the initial state x0.

The result is that all the agent states xi converge towards a common value, that is, the average

of the inital state x0.

The rate of convergence is directly related to the value of λ2 (called the degree of connectivity of

the graph). This is evident from (7.7). The value of λ2 (smallest eigenvalue in the sum) dictates

the rate of the asymptotic decay of the sum of exponential function, accordingly if λ2 is large, the

exponential sum will decay faster. Moreover, λ2 is a measure of how dense the graph is.

All the above discussion was related to undirected graphs in which we could use the symmetry

property of Ln. In the case of directed graphs, limt→∞ x(t) = (1Tx0)1
n

is true when the directed

graph is balanced. a directed graph is called balanced if, for every vertex, the in-degree equals the

out-degree.

57

Bibliography

[1] A. Petitti, A. Franchi, D. Di Paola, and A. Rizzo, �Decentralized motion control for cooperative

manipulation with a team of networked mobile manipulators,� in Robotics and Automation

(ICRA), 2016 IEEE International Conference on, pp. 441�446, IEEE, 2016. (document), 1.4,

2.3, 2.3.2

[2] A. Franchi, A. Petitti, and A. Rizzo, �Distributed estimation for cooperative mobile manipula-

tion,� CoRR, vol. abs/1602.01891, 2016. (document), 1.4, 1.1, 2.3, 2.3.3

[3] M. D. Zivanovic and M. Vukobratovic, Multi-arm cooperating robots: dynamics and control,

vol. 30. Springer Science & Business Media, 2006. 1.1

[4] R. R. Ma and A. M. Dollar, �On dexterity and dexterous manipulation,� in 2011 15th Interna-

tional Conference on Advanced Robotics (ICAR), pp. 1�7, June 2011. 1.1

[5] M. Hvilshøj and S. Bøgh, � �little helper��an autonomous industrial mobile manipulator con-

cept,� International Journal of Advanced Robotic Systems, vol. 8, no. 2, p. 15, 2011. 1.2

[6] T. R. Kurfess, Robotics and automation handbook. CRC press, 2004. 1.3

[7] A. Franchi, �Decentralized estimation and control for cooperative mobile manipulation.� Pre-

sentation, 2016. 1.3

[8] A. Franchi, A. Petitti, and A. Rizzo, �Distributed estimation of the inertial parameters of an

unknown load via multi-robot manipulation,� in Decision and Control (CDC), 2014 IEEE 53rd

Annual Conference on, pp. 6111�6116, IEEE, 2014. 1.4

[9] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal, �Coordination and

decentralized cooperation of multiple mobile manipulators,� Journal of Field Robotics, vol. 13,

no. 11, pp. 755�764, 1996. 2.2

[10] T. Fan, H. Weng, and T. Murphey, �Decentralized and recursive identi�cation for co-

operative manipulation of unknown rigid body with local measurements,� arXiv preprint

arXiv:1709.01555, 2017. 2.2

[11] A. Tsiamis, C. K. Verginis, C. P. Bechlioulis, and K. J. Kyriakopoulos, �Cooperative manipula-

tion exploiting only implicit communication,� in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, pp. 864�869, IEEE, 2015. 2.2

[12] Z. Wang and M. Schwager, �Force-amplifying n-robot transport system (force-ants) for coop-

erative planar manipulation without communication,� The International Journal of Robotics

Research, vol. 35, no. 13, pp. 1564�1586, 2016. 2.2

58

BIBLIOGRAPHY

[13] C. K. Verginis, M. Mastellaro, and D. V. Dimarogonas, �Robust quaternion-based cooperative

manipulation without force/torque information,� IFAC-PapersOnLine, vol. 50, no. 1, pp. 1754�

1759, 2017. 2.2

[14] A. Marino, G. Muscio, and F. Pierri, �Distributed cooperative object parameter estimation

and manipulation without explicit communication,� in Robotics and Automation (ICRA), 2017

IEEE International Conference on, pp. 2110�21116, IEEE, 2017. 2.2

[15] H. Lee and H. J. Kim, �Constraint-based cooperative control of multiple aerial manipulators for

handling an unknown payload,� IEEE Transactions on Industrial Informatics, vol. 13, no. 6,

pp. 2780�2790, 2017. 2.2

[16] P. Culbertson and M. Schwager, �Decentralized adaptive control for collaborative manipulation,�

2.2

[17] G.-B. Dai and Y.-C. Liu, �Distributed coordination and cooperation control for networked mobile

manipulators,� IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5065�5074, 2017.

2.2

[18] J. M. Esposito, �Decentralized cooperative manipulation with a swarm of mobile robots,� in

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,

pp. 5333�5338, IEEE, 2009. 2.2

[19] A. Marino, �A decentralized adaptive control for tightly connected networked lagrangian sys-

tems,� in Decision and Control (CDC), 2017 IEEE 56th Annual Conference on, pp. 4656�4661,

IEEE, 2017. 2.2

[20] D. Prattichizzo and J. C. Trinkle, Grasping, pp. 955�988. Cham: Springer International Pub-

lishing, 2016. 2.3.1

[21] R. Aragues, L. Carlone, C. Sagues, and G. Cala�ore, �Distributed centroid estimation from noisy

relative measurements,� Systems & Control Letters, vol. 61, no. 7, pp. 773�779, 2012. 4.7.1

[22] M. Zhu and S. Martínez, �Discrete-time dynamic average consensus,� Automatica, vol. 46, no. 2,

pp. 322�329, 2010. 5.4

[23] R. Hermann and A. Krener, �Nonlinear controllability and observability,� IEEE Transactions

on automatic control, vol. 22, no. 5, pp. 728�740, 1977. 5.5.1, 5.5.1

[24] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control. Springer,

2008. 7.1, 7.1

[25] R. Olfati-Saber, J. A. Fax, and R. M. Murray, �Consensus and cooperation in networked multi-

agent systems,� Proceedings of the IEEE, vol. 95, no. 1, pp. 215�233, 2007. 7.1

59

	1 Introduction
	1.1 What is Cooperative Manipulation?
	1.2 Adding Manipulators to Mobile Robots
	1.3 Control Architecture: Centralized VS Decentralized Cooperation
	1.4 The De-centralized Algorithm Under Study
	1.5 What is the Purpose of the Thesis?
	1.6 Objectives
	1.7 How is the De-centralized algorithm validated?
	1.8 A brief Introduction to the Company
	1.9 Thesis Organization

	2 Literature Review
	2.1 Overview
	2.2 Related Work
	2.3 The estimation algorithm problem formulation
	2.3.1 Robots Modeling
	2.3.2 Proposed Control Law petitti2016decentralized
	2.3.3 Overview of the Estimation Algorithm Franchi2016DistributedEF

	3 Experimental Setup
	3.1 Hardware
	3.2 Software Architecture
	3.2.1 OpenRobots Package
	3.2.2 Software Components

	3.3 The Procedure
	3.4 Computing reference values for comparison
	3.4.1 Orientations of the Platform and the Turrets
	3.4.2 zij, zi and zC
	3.4.3 Input Forces fi
	3.4.4 The Mass and the Inertia of the Platform

	3.5 Communication Topology

	4 Kinematic Phase
	4.1 Overview
	4.2 The Inputs to the Kinematic Phase
	4.3 ij Estimation (Stage 1)
	4.4 yij Estimation (Stage 2)
	4.5 dij Estimation(Stage 3)
	4.5.1 Problem Formulation
	4.5.2 On-line Estimator: Recursive Least Square
	4.5.3 Selecting Trajectory for "026B30D dij "026B30D Estimation
	4.5.4 dij Sign Ambiguity
	4.5.5 Sign Tracking Algorithm: Complementary Filters
	4.5.6 Results of the Sign Tracking Algorithm

	4.6 zij Estimation (Stage 4)
	4.7 Centroid Algorithm: zi Estimation (Stage 5)
	4.7.1 Overview of The Centroid Algorithm
	4.7.2 Results of the Centroid Algorithm

	4.8 Estimation (Stage 6)
	4.8.1 Obtained Estimation of

	4.9 Discussions about the Kinematic Phase

	5 Dynamic Phase
	5.1 Overview
	5.2 The Inputs to the Dynamic Phase
	5.3 Rotational Dynamics
	5.4 Dynamic Average Consensus Algorithms: Estimation of and fmean (Stages 7 and 8)
	5.4.1 Results of the Dynamic Average Consensus in Stage 7

	5.5 Nonlinear State Observation: Estimation of zC and J (Stage 9)
	5.5.1 Nonlinear System Observability Overview
	5.5.2 Observability Analysis
	5.5.3 Designing an observer
	5.5.4 Proof of Convergence
	5.5.5 Results of Nonlinear State Observation
	5.5.6 Gain Tuning: The Effect of ke1 and ke2

	5.6 vC Calculation (Stage 10)
	5.6.1 Utilized Kinematic Relations
	5.6.2 Results and Comments

	5.7 Estimation of the Mass (Stage 11)
	5.7.1 Results of the Linear Estimator
	5.7.2 Friction Non-linear Model
	5.7.3 Comments on the Effect of the Friction on the Estimated Mass

	5.8 Discussions about the Dynamic Phase

	6 Conclusion and Future Work
	7 Appendix
	7.1 Graph Theory Concepts

		Politecnico di Torino
	2018-04-06T15:41:06+0000
	Politecnico di Torino
	Alessandro Rizzo
	S

