
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

Master in Computer Engineering

Master’s Degree Thesis

An Architecture for Task and Traffic Offloading
in Edge Computing via Deep Learning

Supervisor
prof. Flavio Esposito
Saint Louis University, St. Louis (USA)
Co-supervisor:
prof. Guido Marchetto
Politecnico di Torino, Torino (IT)

Candidate
Alessandro Gaballo
ID: 231587

Academic year 2017 – 2018

This thesis is dedicated to my parents,
who taught me the value of respect and

unconditionally believed in me, giving me
the support and the strength I needed.

From the bottom of my hearth, thank you.

Acknowledgements

I cannot find words to express my deepest gratitude to my supervisor, Professor
Flavio Esposito, whose encouragement, guidance and support accompanied me
from the first to the last day of work, allowing me to successfully complete this
project.

I would also like to thank Professor Guido Marchetto, who made this expe-
rience in the United Stated possible and has always offered his guidance.

Finally, I want to thank all the close friends I’ve met in these past years, for
making me realize my potential, for their support in good and bad times, and
for their patience.

v

Abstract

The diffusion of smart mobile devices and the development of Internet of Things
(IoT) has brought computational power in everyone’s pocket, allowing people to
perform simple tasks with their smartphones. There are some tasks, however,
that are computationally expensive and therefore cannot be performed on a mo-
bile device (e.g., a fleet of drones capturing multi-layered images to be processed
with machine learning operations such as plate or face recognition); for these
delay-sensitive applications, computation offloading represents a valid solution.

Computation offloading is the process of delegating computationally expen-
sive tasks to servers located at the edge of the network; offloading is useful to
minimize response time or energy consumption, crucial constraints in mobile
and IoT devices. Offloading such tasks to the cloud is ineffective since cloud
infrastructure servers are too distant from from the IoT devices. One of the
fundamental mechanisms to reduce latency via edge computing is to choose a
proper path to the destination; commonly used shortest path algorithms are
performance (and so latency) agnostic: they ignore network conditions. One of
the hypothesis that we validate in this work is that cooperative routing-based
methods can steer (i.e. route or forward), edge traffic with (statistically) lower
end-to-end delays than reaction-based methods, such as load balancers (1).

To forecast path metrics, we use machine learning techniques, which in the
last few years have affected the way software is made (2). In particular, in
this project, we present an architecture for edge offloading orchestration: the
architecture design is modular so that the offloading policies could be easily
plugged into the system. One effective path prediction policy for the offloading
mechanisms that we have implemented is Long Short Term Memory (LSTM), a
deep learning approach. Our evaluation shows that our method performs better
than the traditional routing policies in terms of throughput.

vii

Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Related Work 5

3 Background 9
3.1 Software-Defined Networking . 9
3.2 Knowledge-Defined Networking 10
3.3 Routing . 10
3.4 Machine Learning . 11

3.4.1 Deep Learning . 12
3.4.2 LSTM . 12

4 Offloading Architecture 15
4.1 Task Offloading Architecture and

Offloading Protocol . 15
4.1.1 Offloading Architecture 15
4.1.2 Offloading Protocol . 17

4.2 Path prediction via Deep Learning 20
4.2.1 Dataset . 22

4.2.1.1 Topology . 22
4.2.1.2 Routing information 23
4.2.1.3 Router packet counter 25
4.2.1.4 Dataset Generation 25

4.2.2 Deep Learning Model . 27
4.2.2.1 Input/Output modeling 28
4.2.2.2 Neural Network Architecture 29

4.3 Implementation . 33

ix

5 Results 35
5.1 Learning from OSPF . 35
5.2 Overwriting OSPF Routing . 38
5.3 A critical scenario . 41

6 Conclusions and Research Directions 43

A Protocol messages implementation 45

B Configure mininet to run the Quagga routing suite 49

Bibliography 51

x

List of Tables

4.1 Dataset generation parameters. 27
4.2 LSTM architectures comparison. 31
4.3 LSTM architectures average training time. 31

5.1 Path predictions different and equal to OSPF. 39
5.2 Routing strategies retransmission rate comparison. 40

xi

List of Figures

3.1 LSTM cell overview.1 . 13

4.1 Offloading system architecture. 16
4.2 Offloading workflow: mobile devices and an offloading server or-

chestrate the request via an SDN controller 17
4.3 Model topology: R1-R6 are outer routers while R7-R10 are inner

routers. Each router runs a next-hop predictor based on LSTM. 23
4.4 Quagga router implementation in MiniNext. 24
4.5 Router packet counter explanation 26
4.6 Traffic generation algorithm . 27
4.7 Recurrent neural network and its unfolded version.2 28
4.8 Examples of paths connecting the validation target. 30
4.9 Comparison between training time and accuracy for 128 neurons. 32
4.10 Impact of input normalization on training accuracy and loss. . . 33

5.1 Training accuracy and loss progress on training and validation
data. 37

5.2 LSTM and DNN performance comparison. 37
5.3 Routing policies comparison. 39
5.4 Routing policies retransmission comparison. 40
5.5 Comparison of the number of (severely) lossy links traversed by

OSPF and LSTM. 41

xiii

Nomenclature

AI Artificial Intelligence

BGP Border Gateway Protocol

CNN Convolutional Neural Network

DNN Deep Neural Network

eBGP External Protocol

ECMP Equal Cost Multi-Path

iBGP Internal Gateway Protocol

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

KDN Knowledge-Defined Networking

KP Knowledge Plan

LSTM Long Short-Term Memory

ML Machine Learning

NN Neural Network

OSPF Open Shortest Path First

RL Reinforcement Learning

RNN Recurrent Neural Network

SDN Software-Defined Networking

xv

Chapter 1

Introduction

Data-intensive computing requires seamless processing power which is often not
available at the network-edge but rather hosted in the cloud platforms. The
huge amount of mobile and IoT devices that has become available in the past
few years, is able to produce a massive quantity of data, introducing several
(big) data challenges and opportunities. The majority of these devices do not
have or can not handle the computational requirements to process the data
they capture, outsourcing to the cloud the responsibility to perform (some or
all) computations. This process of transferring computation tasks to another
platform is called computation offloading and it is crucial to the mobile devices
because it results in lower processing time and energy consumption 1. In critical
scenarios, such as natural or man-made disasters, where the physical network
infrastructure may be highly unreliable or even unavailable, not only computa-
tion offloading becomes necessary, but latency requirements become more strict,
making path management solutions, such as (mobile-generated) traffic steering,
essential to satisfy application requirements. Current traffic steering or offload-
ing solutions are usually performance-unaware (e.g., OSPF, ECMP), achieving
therefore sub-optimal performance.

Data driven networking (3) is a recently adopted paradigm that has been
used to fill the performance-unaware gap of many network decision problems.

1Despite being a less popular practice, the process of offloading can also be run “back-
wards“, that is, tasks may be offloaded from the cloud to other (mobile) devices to lighten an
overwhelmed cloud server.

1

1 – Introduction

The idea behind Data-driven networking 2 is to wonder what data can do for
networking, so that the network’s control plane can be rethought and redesigned
to overcome current limitations. These limitations, caused bymanually designed
control strategies are becoming more and more ineffective because of growing
expectations of user-perceived Quality of Experience (4), a bigger decision space
for control decisions and an increasing number of application operating condi-
tions. Many researchers have proposed the use of machine learning techniques
to solve networking problems, including traffic classification (5), latency predic-
tion (6) and video streaming bitrate optimization (7); to our knowledge, this is
the first attempt to use Long-Short Term Memory (LSTM) (8) to train network
devices to steer traffic in a virtual network.

Routing is one of the most fundamental networking mechanism and, con-
sequently, has been widely researched to be optimized in a variety of context,
such as ISP networks and data centers. Usually route-optimization processes
produce configurations based on previously observed traffic conditions, or con-
figurations optimized for a range of feasible traffic scenarios, hoping to cover
the entire range. The purpose of using machine learning is to leverage past
traffic information to learn good routing configurations for future conditions. It
is reasonable to assume that the history of traffic contains information about
the future, for example, the traffic distribution at different times of the day.
The idea behind data driven networking is therefore to observe traffic demands
and adapt future routing decisions accordingly. In this work we develop an
architecture to be deployed at the edge of the network to assist the offloading
process and make use of machine learning techniques to perform path manage-
ment. Our hypothesis in this work has been to evaluate whether or not classic
(node or link) offloading policies can be outperformed in terms of latency and
throughput by learning implicit patterns in network traces.

In particular, in this thesis we make the following contributions:

• we design of an edge computing architecture for (node and link) offloading
management within edge computing, that is, identifying the mechanisms
(i.e. macro blocks) required for such a system

• we propose a simple yet effective protocol for mobile computation (task)
offloading

2An alternative term used for Data driven networking has been knowledge-defined net-
working (22, 19)

2

1 – Introduction

• we propose a deep learning based path prediction system as part of the
offloading architecture; this system is meant to be used as an offloading
policy in the proposed architecture

• we evaluate the performance of the proposed approach using different use
cases: we first evaluate the prediction system on its ability to learn from
an existing model, and then as a routing algorithm (replacing state of the
art solutions such as OSPF and ECMP).

The rest of this thesis is organized as follows:

Chapter 1 explains the motivation and the purpose of this work.

Chapter 2 illustrates a summary of the related work.

Chapter 3 contains a brief background about machine learning and network-
ing notions and overviews the main techniques used in this project.

Chapter 4 describes in details the architecture and the implementation of the
path predictor system.

Chapter 5 shows considerations and results of the implemented system.

Chapter 6 presents comments about the outcome of the project and possible
future developments.

3

Chapter 2

Related Work

In this chapter we describe the works related to this project, the relevant topics
are cyber-foraging or task offloading, and machine learning applied to network-
ing.

Cyber-foraging is a highly complex problem since it requires to take into con-
sideration multiple issues. Lewis and Lago (9) dive into those issues and present
several tactics to tackle them. Tactics are divided in functional and non-
functional, with the former identifying the elements that are necessary to meet
Cyber-foraging requirements and the latter the ones that are architecture spe-
cific. Functional tactics cover computation offload, data staging, surrogate pro-
visioning and discovery; non-functional tactics deal with resource optimization,
fault tolerance, scalability and security. They describe a simple architecture
which include an Offload Client running on the edge device and an Offload
Server running on the surrogate (cloud or local servers).

Wang et. al (10) report the state-of-the-art efforts in mobile offloading. More
than ten architectures are described, each one in a different possible offloading
situation. In particular the reported works face the single/multiple servers as
offloading destination scenario, the online/offline methods for server load bal-
ancing, the devices mobility support, the static/dynamic offloading partitioning
and the partitioning granularity.

In the last few years machine learning is being used to solve various challenges
but it is not being widely adopted in networking problems; however, many people
are trying to change this tendency. Malmos (11) is a mobile offloading scheduler
that uses machine learning techniques to decide whether mobile computations

5

2 – Related Work

should be offloaded to external resources or executed locally. A machine learning
classifier is used to mark tasks for local or remote execution based on application
and network information. To handle the dynamics of the network an online
training mechanism is used so that the system is able to adapt to the network
conditions. Malmos has proven to have higher scheduling performances than
static policies under various network conditions.

The problem of resource management can be effectively addressed with ma-
chine learning (12). Generally speaking, resource management is a complex
task that requires appropriate solutions depending on the workload. The au-
thors implement a job scheduler based on Reinforcement Learning (RL); the
results show a system that performs comparably to state-of-the-art heuristics,
responsive to different conditions and with fast convergence.

Machine learning is also being used for computation offloading in mobile edge
networks (13). Regression is used to predict the energy consumption during the
offloading process as well as the time to for the access point to receive the
payload. Available servers are represented in a feature space according to a
hyper-profile, then K-NN (K-nearest neighbor) is used to determine the closest
server based on metrics related to the hyper-profile. By using K-NN, if an
application needs to partition a task into multiple parts onto multiple servers,
one should simply vary the value of K.

Kato et. al (14) show the use of deep learning techniques for network traffic
control. A DNN (deep neural network) is used for the prediction of a router
next hop. The decision is based on the number of inbound packets in a router at
a given time and OSPF paths are used for training. By combining the next hop
decision for each router the system is able to predict the whole path from source
to destination. Results show that the system is able to improve performances in
terms of signaling overhead, throughput and average per hop delay with respect
to the classic OSPF algorithm.

Another use of machine learning in networking is described in (6). Bui,
Zhu, Pescapé & Botta designed a system for a long horizon end-to-end delay
forecast. The idea is to use measured samples of end-to-end delays to create a
model for long horizon forecast. Considering the set of samples as a discrete-time
signal, wavelet transform is applied which results in two groups of coefficient.
A NN (neural network) and a K-NN classifier are then used to predict the
coefficients. Once again ML techniques seem to provide good results when
applied to networking.

Valadarsky et al. (15) discuss the advantages of a data-driven approach to

6

2 – Related Work

routing, using two different machine learning techniques, in an intradomain
routing case study. Two scenarios are considered: learning future traffic de-
mands from past patterns or learning optimal routing configuration. To predict
traffic demands supervised learning is used, on the other hand, for the predic-
tion of routing configurations, the idea is to use reinforcement learning. The
results show that while supervised learning might be ineffective are irregular,
reinforcement learning is much more promising to generate effective routing
configurations.

7

Chapter 3

Background

Before describing our approach, we give a brief introduction of some of the
methods and concepts that are needed to understand our work. Specifically, we
first shortly describe the network technologies required to understand the aim
of this project; next, we give an introduction about machine learning and its
applications.

3.1 Software-Defined Networking
Software-Defined Networking (SDN) is paradigm that promises to break net-
works’ vertical integration of control and data plane, separating the network’s
control logic from the underlying routers and switches, promoting (logical) cen-
tralization of network control, and introducing the ability to program the net-
work. The separation of concerns introduced between the definition of network
policies, their implementation in switching hardware, and the forwarding of traf-
fic, is key to the desired flexibility: by breaking the network control problem
into tractable pieces, SDN makes it easier to create and introduce new abstrac-
tions in networking, simplifying network management and facilitating network
evolution (16). SDN is loosely built on four principles:

1. separate control and data planes: network devices are left responsible only
of packet forwarding

2. generalized (or flow-based) forwarding: packets are forwarded by looking
to a set of fields instead of only the destination, introducing greater flexi-
bility (17)

9

3 – Background

3. external control logic: the control logic is moved to an external entity
called SDN controller or Network Operating System (NOS), that is a soft-
ware platform that provides abstractions to facilitate the programming of
forwarding devices

4. programmable network: software running on top of the NOS allows to
program the network; this is considered the main value of SDN.

SDN has successfully opened the way towards a next generation networking,
creating an innovative research and development environment, promoting ad-
vances in switch and controller platform design, evolution of performance of
devices and architectures, security and dependability (18).

3.2 Knowledge-Defined Networking
Knowledge-defined networking (KDN) (19) is a new paradigm that promotes the
application of Artificial Intelligence (AI) to control and operate networks thanks
to the rise of SDN. SDN provides a centralized control plane, a logical single
point with knowledge of the network; moreover, current network devices have
improved computing capabilities, which allow them to perform monitoring oper-
ations commonly referred to as network telemetry (20). Information provided by
network telemetry are usually provided to a centralized Network Analytics (NA)
platform (21), that combined with SDN can bring to light the Knowledge Plane
proposed in (22). Knowledge-Defined Networking is the paradigm resulting from
the combination of these tools, specifically Software Defined Networking, Net-
work Analytics and Knowledge Plane. In the KDN paradigm, the knowledge
plane has a rich view of the network; this view is transformed into knowledge
via Machine Learning (ML) and used to make decisions. The ultimate goal of
KDN is to combined SDN, Network Analytics and Machine Learning to provide
automated network control.

3.3 Routing
In networking, routing is the process of selecting a path in or between net-
works. Routing directs network packets from their source toward their destina-
tion through intermediate network nodes by specific packet forwarding mecha-
nisms. Forwarding is performed on the basis of routing tables, which maintain

10

3.4 – Machine Learning

a record of the routes to various network destinations. Thus, constructing rout-
ing tables, is very important for efficient routing. Dynamic routing constructs
routing tables automatically thanks to the information carried by the routing
protocols, that are usually classified in distance vector and link-state algorithms.

BGP (Border Gateway Protocol) is a protocol designed to exchange routing
and reachability information among or within Autonomous Systems (AS). An
average AS is made by about 500 point of presences, and together ASes glue the
Internet together. When used to route packets across ASes of the same Internet
Service Provider (ISP) BGP is also referred to as Internal BGP, or iBGP. In
contrast, to route across ASes BGP uses other “External BGP“ protocols, or
eBGP. BGP is typically used by ISPs to establish routing between one another,
or in large private networks to join a number of large networks. Routing infor-
mations are exchanged between neighbor routers (or peers); to communicate,
these peers often require a manual configuration.

OSPF is a link-state algorithm and it requires IP. OSPF falls in the family
of iBGP and it is widely adopted in large networks. The majority of ISP use a
version of Open Shortest Path First (OSPF). It works thanks to a map of the
network, built by gathering link state information from available routers. The
maps is used to compute the shortest-path tree for each route using a method
based on Dijkstra’s algorithm (23). The OSPF routing policies are dictated by
link metrics associated with each routing interface, typically the interface speed.

3.4 Machine Learning
Machine learning is a field of computer science that studies the ability of making
computers learn without explicitly programming them (24). In machine learning
there are three main approaches: supervised learning, unsupervised learning
and reinforcement learning. Supervised learning is used to classify labeled data,
where the label is a sort of supervisor describing the class of an observation.
In unsupervised learning, data is unlabeled and the goal is to find the hidden
relation among data records. Reinforcement learning is learning what actions
to apply so as to maximize a numerical reward signal without being told which
actions to take but instead discovering which yield the most reward by trying
them (25). Among the several branches of machine learning, neural networks

11

3 – Background

and in particular deep learning, have recently attracted a lot of attentions.

3.4.1 Deep Learning

Teaching a computer to solve tasks that are hard to describe formally (e.g.,
speech recognition or routing) is challenging; the solution is to allow computers
to learn from experience and understand the world in terms of a hierarchy of
concepts, with each concept defined through its relation to simpler concepts.
The hierarchy of concepts enables the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
concepts are built on top of each other, the graph is deep, that is, it has many
layers (26). Deep learning can be described as the set of machine learning
techniques that concatenate multiple layers of processing units (typically non-
linear), for feature extraction and transformation (14).

The first working deep learning algorithm was a multilayer perceptrons de-
veloped by Ivakhnenko et al. (27). Later on, new techniques including Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
were developed; these techniques dramatically increased Artificial Intelligence
performance in tasks such as image recognition. More recently, deep learning
has been used to successfully play games, see AlphaGo (28).

3.4.2 LSTM

Long Short-Term Memory (LSTM) is a further development of Recurrent Neural
Networks (RNNs). They were developed by Hochreiter and Schmidhuber in 1997
and have been further improved ever since (29). The major flaw of a traditional
neural network that RNN improves, is that it does not capture the relation
between the input it currently looks at and the previous training example. Such
relation is, however, crucial for example to develop a (human) language model.
Making predictions about a subsequent word strongly depends on the semantic
of preceding words. In practice, RNNs are also not scalable when trying to
model long-term dependencies. This is due to numerical problems commonly
referred to as the vanishing/exploding gradient (30) when weight updates are
back-propagated through the time steps. During the backpropagation phase, the
weights of the network are updated according to the computed gradients; the
magnitude of gradients is affected by the weights and the activation functions.
If either of these factors is smaller than one, then the gradients may vanish in

12

3.4 – Machine Learning

time when propagating to the first layers of the network; similarly, if larger than
one, then exploding might happen. LSTMs overcome this problem and enables
capturing long-term temporal dependencies among the input elements. LSTMs
are considered state-of-the-art in numerous sequential prediction tasks such as
Speech Recognition, Handwriting Recognition, Language Translation and many
others.

The novelty of LSTMs compared to conventional RNNs is the introduction
of the LSTM cell. Figure 3.1 gives an overview over such a cell that is repeated
three times, each receiving the current input as well as the output of the previous
cell. For instance, the prediction ht+1 (through feed-forward) is based on the
corresponding input xt+1 as well as on the output of the previous cell. The LSTM
cell is responsible for maintaining and updating a state that keeps track of the
input that has been processed over time. Which information precisely should
be kept and which overwritten is decided during the training phase of the RNN.
Each cell has associated weights that are updated during each backward pass
such that the cell keeps the information that optimizes predictions. The major
advantage of introducing this cell is that the Back-propagation Through Time
does not need to flow through numerous activation gates between the hidden
layers. The transfer from cell to cell only flows through pointwise multiplications
and additions. This way the numerical problems of RNNs are avoided.

Figure 3.1. LSTM cell overview.1

1Taken from colah’s blog: <http://colah.github.io/posts/2015-08-Understanding-LSTMs/
>

13

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 4

Offloading Architecture

This chapter is organized as follows: section 4.1 illustrates the task offloading
architecture and its implementation, section 4.2 describes the path prediction
system and its details and finally, section 4.3, summarizes the tools adopted in
the development of the project.

4.1 Task Offloading Architecture and
Offloading Protocol

Edge computing is a recent computing paradigm whose main idea is to push
(i.e. delegate) data processing at the edge of the network for fast pre-processing
within latency-sensitive applications. The goal is to reduce communication costs
by keeping computations close to the source of data.

4.1.1 Offloading Architecture
Our proposed architecture is described in Figure 4.1; we consider a scenario in
which mobile devices wish to offload tasks to the edge cloud in network that
supports SDN.

The main components are:

• a mobile device interface: interface for communications between the mobile
devices and the offloading system

• an edge cloud interface: interface for communications between the edge
cloud and the offloading system

15

4 – Offloading Architecture

Figure 4.1. Offloading system architecture.

• offloading logic: offloading policy to be used to serve the edge client

• SDN controller: responsible of enforcing the offloading policies on the net-
work devices.

The mobile device interface supports the communication between the mobile
devices and the offloading mechanisms, providing a set of primitives necessary to
the two parties to communicate efficiently and formalizes the offloading request
requirements. The edge cloud interface has the same role of the mobile device
interface, but the involved parties are different: in this case the primitives are
meant for the communication between the offloading system and the edge cloud,
but the objective remains the same. The offloading logic is the main part of
the architecture, it contains the set of policies available as offloading criterion,
allowing the mobile devices to specify which one they intend to use and users to
implement their own. Finally, the architecture includes a SDN controller, that
we believe, must be part of it, because of the numerous possibilities that SDN

16

4.1 – Task Offloading Architecture and Offloading Protocol

offers in terms of network management.

4.1.2 Offloading Protocol
Through the edge and cloud interfaces, the parties communicate in order to com-
plete a task offloading process. For this communication to happen, a protocol
is required. In this context, the communicating parties are:

• mobile device: sends request to the offloading server

• offloading server: accepts request from the mobile device, enforces the of-
floading policy by talking to the SDN controller and forwards the tasks to
the edge server

• SDN controller: receives flows installation requests from the offloading
server

• edge server: receives the tasks that need to be offloaded.

Figure 4.2. Offloading workflow: mobile devices and an offloading server or-
chestrate the request via an SDN controller

Figure 4.2 shows the typical message sequence needed to complete an offload-
ing request; the required steps are the following:

1. the mobile device sends an offload request to the offloading server

2. the offloading server decides whether or not it is possible to accept the
request and if so, where to offload it according to a set of configurable, i.e.,
programmable policies

17

4 – Offloading Architecture

3. the offloading server asks the SDN controller to install on the switches the
flows required by the offloading policy 1

4. the offloading server forwards the offloaded task to the edge server

5. the edge server sends the computation result back to the offloading server,
that in turn forwards it to the device.

Task offloading is a complex problem, with a high number of factors in-
volved in the final decision. In the literature, task offloading is also known as
cyber-foraging (31). These factors include application requirements formaliza-
tion, task retrieval, edge server/cloud discovery. Before explaining the details
of our protocol (implementation), we describe some of these problems and how
our protocol addresses them.

Application requirements formalization
We assume that the application requirements are expressed in terms of CPU

ratio (average CPU used to execute the task on the mobile device), memory
footprint (quantity of memory required by the application) and desired la-
tency (specifying if the task, is urgent or it can wait).

Task retrieval
For the task retrieval problem we consider two different scenarios: in the first

one the task is hosted on the server with the possibility to retrieve it with a
unique identifier; in the second scenario, the task is sent to the server, wrapped
in a container (e.g., a java package JAR or a python package EGG).

Edge servers discovery
The implementation of a server discovering protocol is out of the scope of

this project: we assume that the offloading server is aware of the available edge
servers. Our implementation over mininet uses a Link Layer Discovery Protocol
(LLDP).

Abstract Syntax Notation With these assumptions in mind, we now de-
scribe the protocol messages definition using the Google Protocol Buffer (32)

1This step is optional because the required flows may be already installed

18

4.1 – Task Offloading Architecture and Offloading Protocol

abstract syntax notation; Google Protocol Buffer is a library that allows to eas-
ily specify structured messages through a .proto file. The complete .proto file
is available in the Appendix A at the end of the report; what follows is a brief
overview of the protocol main messages. An abstract syntax notation is nec-
essary to provide computer architecture independence as well as programming
language independent, and so to abstract out the implementation details. This
means that users may use our .proto files to write their own server or client
applications using for example, Java with a big-endian architecture for a server,
and C++ with a little-endian computer architecture on the client. Historically,
abstract syntax notations have been using ASN 1, and more recently, developers
use XML or JSON. XML or JSON are however text-based, while Google Pro-
tocol Buffer is binary based, and so serialize and deserialize messages is more
efficient with Google Protocol Buffer. An alternative could have been BSON,
but Google Protocol Buffer provides already compilers for many languages so it
has been our choice. We now describe the specifics of each message.

OffloadRequest is the message sent from the mobile device to the offloading
server and includes the requirements, the type of the task and optionally the
task itself.

The requirements consist of the specification of the amount of cpu and
memory necessary for the task to be executed and the level of latency needed.
The idea of having a latency level allows a better support for real-time applica-
tions.

The type of the task is needed to support serverless computing (33) (34)
and implies two possible scenarios. In case of serverless computing the type of
the task is set to LAMBDA and it is assumed that the task is already on the
server. If the type is set to STANDARD then the code to be executed is sent
as payload of the request.

The task could be an identifier (task_id) of the task on the edge server (in
case of a lambda application), or the task itself. In the latter case, the executable
and its type are included in the request in a message called TaskWrapper.

Response is a message used for several purposes; it is used to confirm the
reception of a message or to signal an error. Response is also used to send back
to the mobile device the result of the computation. It is important to notice
that protobuf messages are not self-delimiting, that means that it is necessary
to know its size in order to receive it. Every time a new message needs to be

19

4 – Offloading Architecture

sent, the sender starts with the message size first, if an OK response is received
then the message is sent.

Message is a wrapper for all the messages used in the system, its purpose is
to ease the parsing process by having a type field that can be one of the messages
defined above.

4.2 Path prediction via Deep Learning
Why Deep Learning? Deep learning is currently one of the most active area
of research. It has proven to be able to solve numerous problems in different
fields, but it is not adopted to solve networking problem as much as in other
contexts. In this work, we decide to use deep learning for two reasons: first
of all, deep learning has shown great computation performance, especially for
complex problems, furthermore, we want to understand if its poor adoption in
networking is due to a lack of interest in the area or because it is not the right
tool in this context. Before proceeding with this chapter, it is important to
keep in mind that the word deep in deep learning, is used every time a neural
network has more than one layer. The architecture described in Section 4.1.1
includes the offloading logic block, responsible of determining the criterion on
which the offloading is based. As a first offloading policy, we implement a deep
learning model capable of finding the path towards a destination, that should
be used in place of traditional routing policies.

One of the problems of traditional routing algorithms is that they do not
consider how the network load changes over time (they rely on TCP for conges-
tion and flow control, and hence, by design they are performance-unaware): the
path from a source to a destination is computed by taking into account static
parameters, such as the nominal interface speed. This lack of consideration of
the dynamic behavior of the network can cause traffic slowdown and packet loss
in case of congestion, an undesired behavior in circumstances where latency is
crucial. End-to-end congestion control when latencies are so important or when
the network is so disruptive (in case of a natural disaster) is not enough. The
intuition behind our project is that collaborative traffic steering should be able
to identify and avoid congestion situations, without using TCP or other active
queue management approaches such as Explicit Congestion Notification (ECN).
A collaborative policy requires, in some way, the participation of all the parties

20

4.2 – Path prediction via Deep Learning

in the decision process, however, achieving nodes collaboration in a network is
a complicated task. A simplified version of this collaborative mechanism could
be the following: instead of all nodes being directly involved in the decision
process, they could limit their role to notifying a central node of their current
status. This is made possible by the SDN paradigm: in our system the nodes
are connected to a SDN controller responsible of retrieving information about
the nodes status, in this case using the OpenFlow protocol (35). The infor-
mation used in our system is the number of incoming packets on a node: the
idea is that the packet distribution on the nodes, routers in this case, reflects
the network conditions; a high packet count on a router is an indicator of a big
load that is probably going to lead to packet loss and retransmission. Another
point to clarify before proceeding with the implementation details, is that the
distribution of packets on the routers is influenced by the routing algorithm:
nodes that appear in multiple paths will probably have an higher count than
less traversed nodes because they are responsible of forwarding packets for mul-
tiple source-destination pairs. If routers were able to see all possible outcomes
of a routing protocol in a network and extract the consequent traffic patterns,
they could try to choose the less busy path. This is exactly how we build our
deep learning model: we simulate a small network with ten routers, we choose a
routing algorithm (OSPF), we make it vary and record the traffic patterns. Af-
terwards, we use the collected data and the routing choices taken by the routing
protocol to build a model capable of predicting each hop of the path, from the
source to the destination. Learning from the algorithm we criticize and aim to
replace may sound confusing and counterintuitive, but learning is different from
copying. With our approach, we are correlating traffic patterns and routing
decisions, replicating as many different scenarios as possible, so that the final
model will have a complete view of the problem. The correlation between traffic
patterns and routing allows are system to dynamically adapt to the network
conditions, a behavior that wouldn’t occur with a traditional routing algorithm.

For this problem, to create a working deep learning model, two elements are
essentials: the dataset and the network architecture; the following sections de-
scribe the type of data, how we obtain them and what neural network architec-
ture we select.

21

4 – Offloading Architecture

4.2.1 Dataset
The performance of a machine learning model depends heavily on the data
used to train it. Creating a working model requires having good data in terms
of quantity and quality, namely the number of samples available to train the
model and how well these samples represent the domain you are trying to model.
Training a model with a dataset too small usually results in poor performance,
because there are not enough information for the model to learn from, causing
the system to deal with unknown scenarios; on the other hand, even a big
dataset that only covers a small portion of the domain of study, will perform
poorly because the system, will not be able to learn all of the different scenarios,
therefore losing the ability to generalize and creating an abstraction. Ideally, the
perfect dataset would be representative of the whole domain we are modeling.

Recently a lot of effort is being put in making datasets available to the ma-
chine learning community, with the aim of promoting research. In the context
of networks, there is plenty of dataset available (36)(37)(38); however those are
mostly network captures of datacenters or small portions of networks, and they
do not contain details about the underlying topology nor the routing strategies.

The elements needed to implement our path prediction system in a given a
network are:

1. the network topology

2. the routing informations

3. the packet count on each node.

Since we could not find a dataset fit to our needs, we have created our own.

4.2.1.1 Topology

The first component of our system is the network: we need to emulate a net-
work from which we can extract the data necessary to train the model and to
use to test the final model. Mininet (39) is a software commonly used in the
network virtualization research community, that can create a virtual network
running real kernel, switch and application code with support for OpenFlow
and Software-Defined Networking (35).

Figure 4.3 shows the topology used in our system: it is composed of ten
routers, R1-R6 which we denote from now on as outer routers, and R7-R10, from
now denoted as inner routers. The topology includes also fourteen switches, the

22

4.2 – Path prediction via Deep Learning

reasons of their presence is explained in section 4.2.1.3. For simplicity we assume
that traffic is being generated only by the outer routers, therefore the inners’ are
only responsible of forwarding other nodes packets. The topology is a partially
connected network with multiple paths connecting the same source-destination
pair; note that having multiple paths is crucial for the path prediction system:
in this way, during the training phase, our path prediction algorithm will learn
several different alternative paths from source A to a destination B.

Figure 4.3. Model topology: R1-R6 are outer routers while R7-R10 are inner
routers. Each router runs a next-hop predictor based on LSTM.

4.2.1.2 Routing information

The default behavior of Mininet is to create a layer 2 topology, with all the nodes
acting as a switch or a host in a local network. Our objective is to build a path
prediction system that learns from the routing algorithms, hence we need to
build a fully functional level 3 network with level 3 routers. The easiest way to
use Mininet as a layer 3 network is through MiniNext (40), a mininet extension

23

4 – Offloading Architecture

layer that support routing engines and PID namespaces. As a routing engine we
use Quagga (41), a routing suite providing implementation of routing protocols
for Unix platforms. The Quagga architecture consists of a core daemon, zebra,
that acts as an abstraction layer to the underlying Unix kernel and presents
the Zserv API over a Unix or TCP stream to Quagga clients. It is these Zserv
clients which typically implement a routing protocol and communicate rout-
ing updates to the zebra daemon. MiniNext allows us to place routers into a
mininet topology; the way it does this is by instantiating a regular Mininet host
node in a separate namespace and starting a routing process on it: different
namespaces are necessary so that each host can run the routing process without
interfering with the others. Figure 4.4 shows an outline of this architecture:
each Mininet host runs in a separate namespace and runs the zebra and the
routing daemons; each zebra daemon updates each router routing table with
the routing informations exchanged through the virtual network built with the
Linux Kernel.

Figure 4.4. Quagga router implementation in MiniNext.

24

4.2 – Path prediction via Deep Learning

4.2.1.3 Router packet counter

In section 4.2.1.1 we have described the topology without giving an explanation
of the presence of a switch between every pair of connected routers. The reason
for the switches is that we want this system to work in a SDN context: the only
way to use a SDN controller in Mininet is to use switches. There is also a sec-
ondary reason that justifies the switches presence: unlike the routers, switches
do not run in a separate namespace, allowing traffic analyzer tools such as Wire-
shark to capture traffic on all the network interfaces at once. Because of the
separate PID namespaces, if we wanted to capture traffic directly on the routers
interfaces we would need a Wireshark instance for each router, that would make
debugging extremely hard.

An SDN controller can retrieve switches information with the OpenFlow pro-
tocol; in this project we use Ryu (42), an SDN controller written in Python.
Since the controller is connected to the switch, getting the packet count on
the router is not trivial. On an OpenFlow enabled switch it is possible to get
the number of packet received on each port; given that each router is directly
connected to at least one switch, it is possible to infer the number of packets
directed to the router by counting the number of packets coming from a certain
port of the switches it is connected to. Figure 4.5 explains this concept with an
example: in the figure, the number of incoming packets on R1 at a given time is
the sum of the incoming packets on port1 of S1 and port2 of S2. By repeating
this procedure for all the routers in the network, the controller is capable of
retrieving, at any given time, the number of incoming packets on each router.

4.2.1.4 Dataset Generation

Up to this point we have a fully functional level 3 network, with a running
instance of the OSPF routing protocol, connected to a controller capable of
retrieving the packet count on each router when needed. To build our system
we need a set of labeled data from which the model can learn. More specifically,
we need a collection of samples containing at a given time, the packet counting
information together with the routing information. The detail about the data
format and how they are used are described in the following section 4.2.2; in
the rest of this paragraph we describe how we generate these data.

The idea is to simulate the traffic conditions in a regularly functioning net-
work, collect the traffic and routing information, and use it to train the network.

25

4 – Offloading Architecture

Figure 4.5. Router packet counter explanation

By default, a mininet network is static, in the sense that there is no traffic un-
less manually generated. One way to generate traffic is by using iperf (43), a
tool for bandwidth measurement in IP networks. As a second step, we need
to change the output of OSPF over time to explore the various paths in the
network. OSPF computes each path cost according to the speed of the network
interface; therefore, changing such speed is sufficient to force OSPF to compute
new routes.

We generate our training dataset as follows: for ospf_configurations times,
every ospf_conf_duration seconds, the network is teared down and rebuilt with
a new link speed, producing a new OSPF configuration; for each OSPF config-
uration, traffic is generated in the network by running the iperf Linux utility
between every source-destination pair, with a certain transmission_probability
and a transmission_time duration. In the meantime, the controller retrieves
the packets count every sampling_time seconds and saves it to a file, while an-
other script saves the routing tables of each router, every time that the OSPF
configuration changes. The pseudo-code of the algorithm is shown in Figure 4.6
while table 4.1 describes the algorithm parameters.

Using the parameter set of table 4.1, we obtain a dataset of 17696 samples;
85% of these samples form the training set, and the remaining 15% is used as
test set.

26

4.2 – Path prediction via Deep Learning

Figure 4.6. Traffic generation algorithm

for all ospf_configurations do
for all (src, dst) pairs do

p = random(0, 1)
if p < transmission_probability then

t = randint(0, transmission_time)
run iperf for t seconds

end if
end for

end for

4.2.2 Deep Learning Model

The deep learning model chosen for this project is a LSTM, a Recurrent Neu-
ral Network (RNN): recurrent neural networks are a class of neural networks
in which connections between nodes form a directed cycle (Figure 4.7). These
connections allow the nodes to memorize information about what has been com-
puted so far. The reason we choose RNNs is because of their ability to make
use of sequential information and to exhibit a dynamic temporal behavior. We
wanted our model to learn the correlation between changes in the packet distri-
bution and routing decisions over time.

So far we have discusses our machine learning model as if a single instance
would be able to predict every path for every possible source-destination pair;
however, given the complexity of routing, this scenario did not seem feasible.
Our solution is to train a separate model for every (s, d), resulting in several
simpler models rather than a single, very complex one. To give an idea of the
order of magnitude of this approach, a network with N nodes will result in
N(N − 1) models. These numbers need to be adjusted if each node has, like

Parameter Value Description
ospf_configurations 15 number of different OSPF configurations
ospf_conf_duration 20 m time after which a new ospf configuration is produced
transmission_probability 0.65 probability with which there is traffic between a pair of routers
transmission_time 0-5 s time in seconds to transmit for (iperf)
sampling_time 1 s sampling time of the packet count

Table 4.1. Dataset generation parameters.

27

4 – Offloading Architecture

in our case, more than one network interface; in this scenario, there will be
more models with respect to the previous case, each one describing a particular
(src_router, dst_address) pair.

Figure 4.7. Recurrent neural network and its unfolded version.2

4.2.2.1 Input/Output modeling

A machine learning model requires a proper representation of the input and
output; supervised learning involves a sample space X and a label space Y ,
with the network responsible of learning a mapping function from values in X

to labels in Y , for each (xi, yi) ∈ X × Y . Our input/output modeling follows
the same approach described in (44): given O the set of outer routers, and R

the set of all the routers in the network, for each (s, d) ∈ R × O, the system
learns the next hop for that particular target destination. Note that the fact
that inner routers are included in the set of sources nodes is not a conflict with
what stated in 4.2.1.1: even though these routers do not generate traffic, they
are still responsible for forwarding packets coming from other sources.

Each model learns the next hop for a particular destination, given
the packet count on each router at a given time t: the easiest way
to model the input is an N-dimensional array, with N being the number of

2Picture from: <http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-
part-1-introduction-to-rnns/>

28

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

4.2 – Path prediction via Deep Learning

routers in the network. The array is indexed by the router number, so the i-th
element of the array is the number of incoming packets on router i. The output
is modeled as a one-hot encoded, router indexed array, with a 1 in the position
indexed by the predicted next hop; the size of the output is again equal to the
number of routers in the network.

4.2.2.2 Neural Network Architecture

The architecture of a deep neural network is determined by the number of layers,
the number of processing units (neurons) per layer and the interconnections
between the layers. Choosing these parameters once at the beginning, hoping
to achieve good performance, is not feasible given the impossibility to derive
them from a formal description of the problem; thus, these parameters need to
be tuned in a preliminary phase. As a general rule, a network too small will
not be able to solve the problem and a network too big will probably overfit
on the training set; there is also consensus on the fact that for the majority of
the problems, adding additional hidden layers does not significantly improve the
performance.

To define the parameters of our network, we follow these three steps:

1. pick a source-destination pair that requires a complex model

2. cross-validate each combination of layer and neurons

3. choose the combination whose accuracy – loss pair is best.

It is important to clarify what we mean with “source-destination pair that
requires a complex model“: cross-validating the different architectures on all the
possible pairs would be excessively time-consuming, thus we decide to perform
the validation on a single target. From now on, a target is simply a source-
destination pair. For this validation to be meaningful, we need our target to
be representative enough of the problem we are modeling: since we want our
system to learn alternative paths, it would not make sense to choose a target of
two directly connected nodes, because the resulting model would be too simple.
As a consequence, we choose the target (R1, R4); Figure 4.8 illustrates some of
the 3-hop paths connecting the two routers.

As it is noticeable from the figure, there are several paths with the same
number of hops connecting the two routers, so, in the context of choosing a
representative model, the selected target seems a good candidate.

29

4 – Offloading Architecture

Figure 4.8. Examples of paths connecting the validation target.

In the cross-validation phase, we test 24 different configurations by trying all
the combinations of the following parameters:

• hidden_layers = {2,4,6,8}

• neurons = {4, 8,16,32,64,128}.

It is important to remind that each hidden layer is a recurrent layer with
LSTM cell. Each configuration is tested 10 times on different partitions of
the dataset, producing the results in table 4.2. The table shows two metrics:
accuracy (percentage of samples correctly classified) and cross-entropy loss (dis-
tance between predicted and true label distribution); it is evident that what
we described earlier about how adding layers does not significantly improve the
performance, applies in this case. All the noticeable improvements in the results
are caused by increasing the number of neurons in each layer (as you may notice
by reading the table line by line); instead, if you read the table column wise
(fixed number of neurons and increasing number of layers), you will not notice
any performance gain. A 4-layers 128-neurons achieves the best performance
in terms of accuracy whereas a 4-layers 128-neurons has the lowest loss; it is

30

4.2 – Path prediction via Deep Learning

worth noticing that overall, given a fixed number of neurons, the performances
typically differ by less than 1% in accuracy.

Neurons
Layers 4 8 16 32 64 128

Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss
2 86.59% 0.5147 88.82% 0.3946 92.95% 0.3026 94.85% 0.2159 95.60% 0.1659 96.08% 0.1368
4 76.48% 0.6416 87.69% 0.4644 92.99% 0.2435 94.90% 0.2045 95.70% 0.1554 96.58% 0.1214
6 64.90% 0.7727 88.82% 0.4450 92.72% 0.2515 95.25% 0.1663 95.38% 0.1541 96.14% 0.1149
8 65.84% 0.7953 87.42% 0.4914 91.01% 0.3340 95.08% 0.1718 95.83% 0.1374 95.73% 0.1361

Table 4.2. LSTM architectures comparison.

From this first analysis it is clear that to achieve the best accuracy, each layer
of the network needs to have 128 processing units; however, deciding what is the
optimal the number of layers is a challenging problem. Since the gain in perfor-
mance with an increase of the number of layers is not noticeable, we decided to
take into account other factors to choose the final architecture. Table 4.3 shows
the average training time for the different configurations: in this case the impact
of additional layers is evident. The training time seems to vary linearly with the
number of layers: if we double the layers we basically double the training time.
Figure 4.9 compares the different training times with the model performance
in terms of accuracy; it is clear that while the training time increases notice-
ably with additional hidden layers, the gain in accuracy is barely noticeable and
sometimes inexistent. Considering the limited computational power and time,
and the number of models we need to train, we decide to use a network with 2
layers and 128 neurons, as a good trade-off between performance and time.

Neurons
Layers 4 8 16 32 64 128

2 301.20 s 304.82 s 314.56 s 326.72 s 388.46 s 623.84 s
4 487.49 s 499.91 s 516.06 s 557.60 s 675.94 s 1129.96 s
6 686.25 s 705.11 s 722.09 s 781.28 s 961.83 s 1649.99 s
8 905.18 s 931.16 s 972.52 s 1029.73 s 1275.34 s 2121.93 s

Table 4.3. LSTM architectures average training time.

As a result of this analysis, the final architecture is composed as follows:

• input layer (10 neurons)

31

4 – Offloading Architecture

4 8 16 32 64 128
Number of neurons

250

500

750

1000

1250

1500

1750

2000

Tr
ai
ni
ng

 ti
m
e
[s
]

0

20

40

60

80

100

M
od
el
 a
vg
 a
cc
ur
ac
y
wi
th
 1
28

 n
eu
ro
ns
 [%

]2 hidden layers
4 hidden layers
6 hidden layers
8 hidden layers

Figure 4.9. Comparison between training time and accuracy for 128 neurons.

• two hidden layers (128 neurons ea., hyperbolic tangent activation 3)

• output layer (10 neurons, sigmoid activation 3)

Challenges of training a neural network. When training a neural network,
there are some precautions necessary to avoid problem such as overfitting and
increase training efficiency, avoiding exploding and vanishing gradient problems.
Input normalization is the process of transforming all variables in the input data
to a specific range, typically scaling the inputs to have mean 0 and a variance
of 1, in order to have the same range of values for each of the inputs, guaran-
teeing stable convergence of the network weights and biases. Regularization is a
technique to prevent overfitting, that is characterized by adding a regularization
term to the loss in order to prevent the weights to fit perfectly to the training
data, so that over all model is much more generalized. Dropout (45) is another
technique to address the overfitting problem; the idea is to randomly drop units
and their connections from the neural network during training, to prevent units
from co-adapting too much. In our case, we apply a batch normalization layer on
the input, dropout on both the recurrent and feed-forward connections, and L2

3The activation function defines the output of a node given an input (26)

32

4.3 – Implementation

regularization to the loss function. Figure 4.10 shows the impact of normaliza-
tion on the training performance: for both accuracy and loss, the normalization
layer dramatically improves the performance, with a gain of about the 20%.

0 20 40 60 80 100 120 140
Epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

Model Accuracy

Training accuracy
Training accuracy with normalization

0 20 40 60 80 100 120 140
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Model loss
Training loss
Training loss with normalization

Figure 4.10. Impact of input normalization on training accuracy and loss.

4.3 Implementation
To prototype our system we use the following tools:

• Ryu: SDN controller written in Python (42)

• Google Protocol Buffer: framework for serializing structured data (32)

• Mininet: virtual network creation tool (39)

• Quagga: routing software suite (41)

• Keras: high-level neural networks API written in Python (46)

• Tensorflow: as Keras backend for the deep learning implementation (47)

33

Chapter 5

Results

In this chapter we evaluate the path prediction system; first we describe how our
system can emulate OSPF by analyzing the results of the model training; finally
we discuss the performance of the path prediction model as a substitute to more
traditional routing algorithms. For a more complete analysis, we also implement
the same Deep Neural Network (DNN) described in (44), a traditional neural
network with four hidden layers and sixteen neurons in each layer. We use this
network to compare the performance between DNNs and LSTM for the same
task and understand if our hypothesis about RNNs is correct.

5.1 Learning from OSPF

Our system is built to learn the behavior of OSPF across different configurations,
and correlate it with different traffic patterns. We use a LSTM RNN as a
learning algorithm and build a model for each source-destination pair in our
topology (Figure 4.3): the total number of models is given by all the possible
source-destination pairs, with the destination addresses considered only on the
outer routers not considering the source; for any given a router, the number
of addresses associated to it is equal to the number of its interfaces. In our
considered scenario, this resulted into a set of 162 distinct models that are used
to determine the hop-by-hop path from a source router to a specific destination
address. The path is computed iteratively as follows: starting from the source,
the model for the selected destination is used to predict the next hop, then the
predicted next hop becomes the new source router; the process is then repeated
until the predicted hop is the final destination. Given their significant size, it is

35

5 – Results

unfeasible to analyze all models individually; we are interested in exploring the
overall performance. To do so, we analyze the average accuracy and loss over
all different models, as discussed in the previous chapter.

Figure 5.1 shows the model training progress over time in terms of accuracy
and loss: the plot shows the average of the metrics over all 162 models. The
slopes of the graphs give us an idea of what is happening during the training
phase: at the beginning (epochs 0-20), both slopes are very steep, indicating
that the model is abandoning the initial randomness and converging towards
a final stable solution. Afterwards, from epoch 20 to 60, as the gradient di-
minishes, the slope starts to decrease slowly, indicating that the gradient has
probably entered the region of the space in which it will converge to the problem
solution. Finally, the curve becomes almost flat, showing that the gradient has
reached its minimum. Note how in both graphs, the two curves have the same
behavior: this shows that the model is learning “without losing generalities“.
An increasing accuracy on the training set with a steady or decaying validation
accuracy would be a clear sign of overfitting, a situation in which the model be-
comes too specialized on the training data and it is not able to properly classify
new samples. The figure shows better performance for both accuracy and loss
on the validation data rather than on the train data; even if generally unusual,
the reasons of this behavior can be found in the dropout regularization tech-
nique. At training time, because of dropout, only part of the network is used;
on the other hand, when testing the development of the model on the validation
set, regularization mechanisms (i.e., dropout) are turned off, so the network is
used in its completeness. This means that the whole network is used to measure
accuracy and loss on the validation set but only a part of it is used for the same
metrics at training time: for this reason, the performance on the validation set
are slightly better than on the training set.

To understand how well our model can emulate OSPF we need to analyze
the performance on the test set; as we did for the training, we evaluate the
performance of the system by averaging the results of the single models. The
system achieves an average accuracy of 98.71%, with a loss of only 0.0496;
showing really promising results. With an accuracy of almost 99%, LSTM-
RNNs performs better than traditional DNNs (44), which achieves around 90%
of accuracy; however this comparison should be taken with caution, considered
that the topologies in the two experiments are slightly different and experiments
reproducibility is an open issue in machine learning (48). The comparison of
these two approaches is shown in Figure 5.2.

36

5.1 – Learning from OSPF

0 20 40 60 80 100 120 140
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Average Model Accuracy

Training data
Validation data

0 20 40 60 80 100 120 140
Epoch

0.2

0.4

0.6

0.8

Lo
ss

Average Model Loss
Training data
Validation data

Figure 5.1. Training accuracy and loss progress on training and validation data.

It is important to notice that in this case, the average accuracy could be
slightly misleading: the models that represent our model — a source-destination
pair connected by a single link — are oversimplified, hence it is very likely for
them to have an accuracy close to 100%. Nonetheless, only 32% (obtained count-
ing all directly connected targets including all the interfaces on the destination
router) of the models represents this situation, that means that even if they all
had 100% accuracy, the remaining models would have an average accuracy of
97.89%.

LSTM DNN
0

10
20
30
40
50
60
70
80
90

100

Ac
cu
ra
cy
 [%

]

LSTM DNN
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ss

Figure 5.2. LSTM and DNN performance comparison.

37

5 – Results

5.2 Overwriting OSPF Routing

To evaluate our model as OSPF substitution, we observe the behavior of the
path prediction system in a functioning network. In particular, we use the same
topology (Figure 4.3) and traffic simulator adopted in the dataset generation
phase; to ease the analysis process, all links are set to the same rate. Afterwards,
we select a source router and a destination address and examine the difference
in behavior between OSPF and our system.

In general, our system shows a dynamic behavior, predicting several paths
for the same destination in different traffic conditions. More specifically, we run
four traffic simulations, each of them for fifteen minutes, with a varying loss
rate on the link chosen by OSPF to connect source and destination; at the same
time, the path prediction system computes a new path every five seconds. The
selected target is (R1, R3), with the default path being R1, R2, R3 and the loss
being varied on the link between R1 and R2. Figure 5.3 compares the rout-
ing decisions made by the system in comparisons: being performance unaware,
OSPF always chooses the same path, even when the link has losses. Our system
on the contrary, shows the ability of behaving dynamically by proposing four
alternative paths.

By studying the system behavior in presence of losses, it is possible to under-
stand if our model is able to detect and overcome these problems. We test loss
rates of 0%, 5%,10%, 15% and count the number of predictions different from
OSPF (table 5.1). With the loss set to 0%, 43% of the time the predicted path
is different from OSPF; if the loss is increased to 5%, the ratio of path different
from OSPF slightly rises to 45%, indicating that the system is able to detect
the change. The same happens for a loss of 10%, with a much more noticeable
improvement in the system behavior; 63.5% of the proposed paths are in fact,
different from the one chosen by OSPF. For the successive loss rate, equals to
15%, the performance goes down a little with only a 59.5% different path ratio;
the reasons for this loss in performance are discussed in chapter 6. The ideal
behavior would be for the system to detect the link loss and consequently stop
predicting paths going through the damaged link. In our analysis this happens
only with a limited loss rate.

Table 5.2 compares the resulting retransmission rate of our system, OSPF and
Equal Cost Multi Path (ECMP) routing algorithm. The retransmission rate is
computed by taking into account how many times traffic would pass through the
leaky link, considering two equal-cost paths for ECMP and the ratios in table 5.2

38

5.2 – Overwriting OSPF Routing

Figure 5.3. Routing policies comparison.

for our system. Overall, the system we propose, has a lower retransmission rate
than the other strategies, reaching therefore a higher throughput. Figure 5.4
is a graphical comparison of the three strategies, showing the time difference
needed to transmit the same amount of data. If there is no loss, the three
approaches behave the same, however, as soon as a loss rate is introduced, the
gap between the curves increases. This increases with the loss rate; however,
while it is evident with respect to OSPF, the variation between ECMP and our
system is less pronounced.

Link loss Different path rate Same OSPF path rate
0% 43% 57%
5% 45% 55%
10% 63.5% 36.5%
15% 59.5% 40.5%

Table 5.1. Path predictions different and equal to OSPF.

There is another consideration that needs to be made when talking about
OSPF. It would be unfair to consider this protocol completely performance

39

5 – Results

Routing Strategy
Link loss rate OSPF ECMP DNN LSTM

0% 0% 0% 0% 0%
5% 5% 2.50% 2.70% 2.75%
10% 10% 5% 7.70% 3.65%
15% 15% 7.50% 9% 6.07%

Table 5.2. Routing strategies retransmission rate comparison.

5% 10% 15%
Link loss

0

2

4

6

8

10

12

14

Pe
rc
en

ta
ge

 o
f r

et
ra
ns

m
iss

io
n
%

OSPF
DNN
ECMP
LSTM

Figure 5.4. Routing policies retransmission comparison.

unaware; during our tests, we have noticed that starting from a certain point,
OSPF is able to detect the problem. In our case, with a link loss greater than
or equal to 20%, OSPF changes its output, selecting a new shortest path. This
behavior is caused by the fact that when the loss on the link is too high, the
HELLO (i.e., keep-alive) packets used by the protocol are lost, causing the link
discovery part of the algorithm to deviate to other routes. We believe that this
is a Mininet’s limitation and its way to interpret the loss as a fixed phenomenon
happening on the link. We know that in real networks losses don’t work this
way, therefore we are limited in the testing possibilities; nonetheless these results
look promising.

40

5.3 – A critical scenario

5.3 A critical scenario
To have a more clear idea about our system capabilities, we test it in a critical
scenario. We decide to simulate a network in which statistically, half of the links
are affected by a loss rate; we test the same loss rates of the previous experiments
(5%, 10%, 15%), ten times each, generating traffic between five different targets.
The purpose of this experiment is to understand if our system can tolerate better
than OSPF a condition where half of the network is not functioning properly.
To compare the performance of the two approaches we counted the number of
times the links with loss were used; the results are shown in Figure 5.5. The
chart compares the total number of defective links traversed in all the runs for
each link loss rate. From the results, it appears that our proposed system does
not introduce any significant advantage under critical circumstances; the chart
shows in fact, that overall, the performance of the two systems are similar, with
OSPF performing better when the link loss rate is set to 10% and 15%. The
reasons of these poor performance are to be found in how our system works: we
trained our model to predict alternative paths based on the network conditions;
even in this case, the proposed system is able to suggest alternative paths. The
main problem is that, given that half of the link in the networks is affected by a
loss, the majority of the proposed alternative paths passes through these links,
resulting in poor performance. In the conclusions (chapter 6) we give a few hints
on how to overcome such limitations of our system.

5% 10% 15%
Link with loss traversed

0

2000

4000

6000

8000

10000

12000

14000

16000

Lin
k
lo
ss

15600

13000 13000

15386

13437 13007

OSPF
LSTM

Figure 5.5. Comparison of the number of (severely) lossy links traversed
by OSPF and LSTM.

41

Chapter 6

Conclusions and Research
Directions

In this work, we presented an architecture designed in support of mobile devices
task and traffic offloading. Our architecture’s aim has been to provide guidelines
for task offloading protocol implementations; we prototyped our architecture
within a local virtual network testbed based on Mininet.

We focus our attention on a specific traffic offloading policy that leveraged
deep learning to predict the best path towards a destination, increasing through-
put and reducing perceived latency. Our results showed that despite some lim-
itations, machine learning could be a valid alternative to traditional routing
algorithms and can be leveraged to improve network performance. Our results
also showed that cooperative routing can steer traffic with better performance
than traditional methods, suggesting that applying machine learning in this
context is an area worthy of further exploration.

Our work has some limitations that are not impossible to overcome: we
noticed a prediction performance degradation with the increasing loss rate; we
believe this is most likely due to our limited training dataset. We also disclose
that the quality of our dataset is limited by constraints in both Mininet and the
available computation capability. Another problem that needs to be addressed
is the scalability of this approach: training numerous deep learning models
requires extensive computational power; being able to reduce the number of
models to train would save time and make this system more scalable.

As a future research direction, we suggest analyzing our method with a
broader dataset and in different scenarios. Additionally, one could perform

43

6 – Conclusions and Research Directions

a deeper performance analysis by deploying a network that completely replaces
OSPF with our system and collects measurements such as throughput and la-
tency. Finally, one could explore more recent machine learning techniques, espe-
cially, reinforcement learning, which appear to be promising in solving decision
problems.

44

Appendix A

Protocol messages
implementation

messages.proto

syntax = " proto3 " ;
message Off loadRequest {

message Requirements {
enum Latency {

URGENT = 0 ;
STANDARD = 1 ;
LOOSE = 2 ;

}

f l o a t cpu = 1 ;
in t32 memory = 2 ;
Latency la t ency = 3 ;

}

enum Type {
LAMBDA = 0 ;
STANDARD = 1 ;

}

message Task {
message TaskWrapper {

45

A – Protocol messages implementation

enum WrapperType {
JAR = 0 ;
EGG = 1 ;

}

s t r i n g name = 1 ;
WrapperType type = 2 ;
bytes task = 3 ;

}

oneof ta sk_locat ion {
s t r i n g task_id = 1 ;
TaskWrapper wrapper = 2 ;

}
}

Requirements requ i rements = 1 ;
Type type = 2 ;
Task task = 3 ;

}

message Response{
enum Result {

OK = 0 ;
INVALID_MSG_SIZE = 1 ;
INVALID_REQUEST = 2 ;

}

Result r e s u l t = 1 ;
s t r i n g msg = 2 ;

}

message Message{
enum Type {

OFFLOAD_REQUEST = 0 ;
RESPONSE = 1 ;

46

A – Protocol messages implementation

TASK = 2 ;
}

Type type = 1 ;
oneof msg_type {

Off loadRequest o f f_req = 2 ;
Off loadRequest . Task task = 3 ;
Response re sponse = 4 ;

}
}

47

Appendix B

Configure mininet to run
the Quagga routing suite

In the course of these six months of work, I have been slowed down by numerous
issues that came up as my reasearch was proceeding; these issues were due to
my inexperience with the software and its complexity. To implement the deep
learning model, I needed a functional network with running routing algorithms.
At first the solution looked simple, I just had to run the Quagga routing suite
on the mininet nodes. Accomplishing this result took me away a lot of time, so
I have decided to highlight here the problems I have faced. Here’s the list:

• by default, mininet doesn’t support loops in a topology: if you want to
have a complex closed topology you need to manually enable the spanning
tree protcol on every switch

• when you build Quagga from source, the link to the dynamic libraries are
not automatically created, to solve the problem run:
sudo l d c on f i g

• the Quagga service config in mininext relies on init.d scripts which are not
installed when you build it from source, the quickest solution is to install
quagga from the distribution repositories

• in mininet, the default ovs-controller doesn’t support more than sixteen
switches; if you need a bigger network you need to install the mininet
patched version of the openflow controller (<https://github.com/mininet/
mininet/wiki/FAQ#ovs-controller>)

49

https://github.com/mininet/mininet/wiki/FAQ#ovs-controller
https://github.com/mininet/mininet/wiki/FAQ#ovs-controller

B – Configure mininet to run the Quagga routing suite

• in miniNext, it is not possible to capture traffic directly on the hosts (in
my case quagga routers) because they’re in a different namespace. The
workaround is to set up a switch on every link (between each pair of routers)
and analyze the traffic on its interfaces; for the problem described in the
previous point, the number of switch limits the network size

• ryu is not able to talk with the mininet switches that do not have the
canonical name (s1, s2, ...)

• the output of OSPF depends on the nominal speed interface declared in the
Zebra configuration file, changing the link speed through mininet doesn’t
affect the algorithm

50

Bibliography

[1]SHUFF, P. Building a billion user load balancer. In: . Dublin: USENIX
Association, 2015.
[2]KARPATHY, A. Software 2.0. <https://medium.com/@karpathy/
software-2-0-a64152b37c35>.
[3]JIANG, J. et al. Unleashing the potential of data-driven networking.
In: SPRINGER. International Conference on Communication Systems and
Networks. [S.l.], 2017. p. 110–126.
[4]JIANG, J. et al. Eona: Experience-oriented network architecture. In:
ACM. Proceedings of the 13th ACM Workshop on Hot Topics in Networks.
[S.l.], 2014. p. 11.
[5]NGUYEN, T. T.; ARMITAGE, G. A survey of techniques for internet
traffic classification using machine learning. IEEE Communications Surveys
& Tutorials, IEEE, v. 10, n. 4, p. 56–76, 2008.
[6]BUI, V. et al. Long horizon end-to-end delay forecasts: A multi-step-ahead
hybrid approach. In: 2007 12th IEEE Symposium on Computers and
Communications. [S.l.: s.n.], 2007. p. 825–832. ISSN 1530-1346.
[7]MAO, H.; NETRAVALI, R.; ALIZADEH, M. Neural adaptive video
streaming with pensieve. In: ACM. Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. [S.l.], 2017. p.
197–210.
[8]HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, MIT Press, v. 9, n. 8, p. 1735–1780, 1997.
[9]LEWIS, G. A.; LAGO, P. A catalog of architectural tactics for
cyber-foraging. In: Proceedings of the 11th International ACM SIGSOFT
Conference on Quality of Software Architectures. New York, NY, USA:
ACM, 2015. (QoSA ’15), p. 53–62. ISBN 978-1-4503-3470-9. Disponível em:
<http://doi.acm.org/10.1145/2737182.2737188>.
[10]WANG, J. et al. Under submission: Edge cloud offloading algorithms:
Issues, methods and perspectives. In: . [S.l.: s.n.], 2017.
[11]EOM, H. et al. Malmos: Machine learning-based mobile offloading
scheduler with online training. In: 2015 3rd IEEE International Conference

51

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35
http://doi.acm.org/10.1145/2737182.2737188

Bibliography

on Mobile Cloud Computing, Services, and Engineering. [S.l.: s.n.], 2015. p.
51–60.
[12]MAO, H. et al. Resource management with deep reinforcement learning.
In: ACM. Proceedings of the 15th ACM Workshop on Hot Topics in
Networks. [S.l.], 2016. p. 50–56.
[13]CRUTCHER, A. et al. Hyperprofile-based computation offloading for
mobile edge networks. arXiv preprint arXiv:1707.09422, 2017.
[14]KATO, N. et al. The deep learning vision for heterogeneous network
traffic control: Proposal, challenges, and future perspective. IEEE Wireless
Communications, v. 24, n. 3, p. 146–153, 2017. ISSN 1536-1284.
[15]VALADARSKY, A. et al. Learning to route. In: Proceedings of the 16th
ACM Workshop on Hot Topics in Networks. New York, NY, USA: ACM,
2017. (HotNets-XVI), p. 185–191. ISBN 978-1-4503-5569-8. Disponível em:
<http://doi.acm.org/10.1145/3152434.3152441>.
[16]KREUTZ, D. et al. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, IEEE, v. 103, n. 1, p. 14–76, 2015.
[17]MCKEOWN, N. et al. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, ACM, v. 38,
n. 2, p. 69–74, 2008.
[18]KREUTZ, D. et al. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, v. 103, n. 1, p. 14–76, Jan 2015. ISSN
0018-9219.
[19]MESTRES, A. et al. Knowledge-defined networking. ACM SIGCOMM
Computer Communication Review, ACM, v. 47, n. 3, p. 2–10, 2017.
[20]KIM, C. et al. In-band network telemetry via programmable dataplanes.
In: ACM SIGCOMM. [S.l.: s.n.], 2015.
[21]CLEMM, A.; CHANDRAMOULI, M.; KRISHNAMURTHY, S. Dna:
An sdn framework for distributed network analytics. In: IEEE. Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium on.
[S.l.], 2015. p. 9–17.
[22]CLARK, D. D. et al. A knowledge plane for the internet. In:
ACM. Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. [S.l.], 2003. p.
3–10.
[23]DIJKSTRA, E. W. A note on two problems in connexion with graphs.
Numerische mathematik, Springer, v. 1, n. 1, p. 269–271, 1959.
[24]SAMUEL, A. L. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, v. 3, n. 3, p. 210–229,
July 1959. ISSN 0018-8646.
[25]SUTTON, R. S.; BARTO, A. G. Reinforcement Learning I: Introduction.

52

http://doi.acm.org/10.1145/3152434.3152441

Bibliography

1998.
[26]GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning.
[S.l.]: MIT Press, 2016. <http://www.deeplearningbook.org>.
[27]IVAKHNENKO, A.; LAPA, V. Cybernetic Predicting Devices.
CCM Information Corporation, 1973. (Jprs report). Disponível em:
<https://books.google.com/books?id=FhwVNQAACAAJ>.
[28]MASTERING the Game of Go with Deep Neural Networks and Tree
Search. Nature, v. 529, n. 7587, p. 484–489, jan 2016. ISSN 0028-0836.
[29]GREFF, K. et al. LSTM: A search space odyssey. CoRR, v. 1503, 2015.
[30]BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, IEEE, v. 5, n. 2, p. 157–166, 1994.
[31]SHARIFI, M.; KAFAIE, S.; KASHEFI, O. A survey and taxonomy of
cyber foraging of mobile devices. IEEE Communications Surveys Tutorials,
v. 14, n. 4, p. 1232–1243, Fourth 2012. ISSN 1553-877X.
[32]GOOGLE Protocol Buffer. <https://developers.google.com/protocol-
buffers/>.
[33]HENDRICKSON, S. et al. Serverless computation with openlambda.
Elastic, v. 60, p. 80, 2016.
[34]FOX, G. C. et al. Status of serverless computing and function-as-a-service
(faas) in industry and research. arXiv preprint arXiv:1708.08028, 2017.
[35]Openflow. <https://www.opennetworking.org/>.
[36]CENTER for Applied Internet Data Analysis. <http://www.caida.org/
home/>.
[37]ROY, A. et al. Inside the social network’s (datacenter) network.
In: Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication. New York, NY, USA: ACM, 2015.
(SIGCOMM ’15), p. 123–137. ISBN 978-1-4503-3542-3. Disponível em:
<http://doi.acm.org/10.1145/2785956.2787472>.
[38]THE Internet Topology Zoo. <http://www.topology-zoo.org/>.
[39]LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: rapid
prototyping for software-defined networks. In: ACM. Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. [S.l.], 2010. p. 19.
<http://mininet.org/>.
[40]MinineXt. <http://mininext.uscnsl.net/>.
[41]QUAGGA. <http://www.nongnu.org/quagga/>.
[42]RYU. <https://osrg.github.io/ryu/>.
[43]IPERF. <https://iperf.fr/>.
[44]KATO, N. et al. The deep learning vision for heterogeneous network
traffic control: Proposal, challenges, and future perspective. IEEE Wireless

53

http://www.deeplearningbook.org
https://books.google.com/books?id=FhwVNQAACAAJ
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.opennetworking.org/
http://www.caida.org/home/
http://www.caida.org/home/
http://doi.acm.org/10.1145/2785956.2787472
http://www.topology-zoo.org/
http://mininet.org/
http://mininext.uscnsl.net/
http://www.nongnu.org/quagga/
https://osrg.github.io/ryu/
https://iperf.fr/

Bibliography

Communications, v. 24, n. 3, p. 146–153, 2017. ISSN 1536-1284.
[45]SRIVASTAVA, N. et al. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
JMLR. org, v. 15, n. 1, p. 1929–1958, 2014.
[46]KERAS. <https://keras.io/>.
[47]TENSORFLOW. <https://www.tensorflow.org/>.
[48]OLORISADE, B. K.; BRERETON, P.; ANDRAS, P. Reproducibility in
machine learning-based studies: An example of text mining. 2017.

54

https://keras.io/
https://www.tensorflow.org/

	List of Tables
	List of Figures
	Introduction
	Related Work
	Background
	Software-Defined Networking
	Knowledge-Defined Networking
	Routing
	Machine Learning
	Deep Learning
	LSTM

	Offloading Architecture
	Task Offloading Architecture and Offloading Protocol
	Offloading Architecture
	Offloading Protocol

	Path prediction via Deep Learning
	Dataset
	Topology
	Routing information
	Router packet counter
	Dataset Generation

	Deep Learning Model
	Input/Output modeling
	Neural Network Architecture

	Implementation

	Results
	Learning from OSPF
	Overwriting OSPF Routing
	A critical scenario

	Conclusions and Research Directions
	Protocol messages implementation
	Configure mininet to run the Quagga routing suite
	Bibliography

		Politecnico di Torino
	2018-04-02T20:29:25+0000
	Politecnico di Torino
	Guido Marchetto
	S

