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Summary

In recent years the field of Deep Learning has been rediscovered and deepened,
in particular thanks to the development of neural networks, which are particular al-
gorithms able to decide autonomously, based on certain inputs given by the system.
The potentiality is given mainly by the possible application fields, which can range
from speech recognition to autonomous driving of vehicles, from recognition of pho-
tos and videos to much more, such as artificial vision. However it should be specified
that, although today the application of Deep Learning takes place in many sectors,
its potential is still very wide.
One of the several kinds of neural networks are the convolutional networks (Con-
vNet), so called because of the particular application of convolutional levels which
basically perform matrix-matrix multiplications. Given any input image, a ConvNet
has the faculty and the purpose of providing the classification output to which the
image belongs among the categories of classes available.
Lately the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has al-
lowed the advent of new models of networks (such as AlexNet, GoogleNet and oth-
ers) increasingly "deep" and therefore with an increasingly high computational load.
This large amount of operations is usually performed on CPU or GPU, but now we
try to run them on other devices, such as FPGA/ASIC, since the recent applications
require more and more speed of execution and reduced power consumption.

In this thesis work an FPGA-based hardware accelerator for ConvNet is designed
and implemented using a Xilinx Virtex 7 device mounted on a quad-board ProF-
PGA system.
The verification tests that have been performed, have been made on the AlexNet
model, even if what has been produced is applicable to every type of network.
Starting from the Caffe framework, chosen for processing the desired network, the
accelerator is designed to replace a particular library function called during the ex-
ecution (cblas_sgemm) to perform the operation C = A ∗ B ∗ alpha + C ∗ beta on
hardware, reducing the computational load at CPU level. Some improvements were
then applied to increase accelerator efficiency.
During the implementation we realized that the communication system available
was too slow to think about the whole of what we were planning, so we focused on
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optimizing only the accelerator applying improvements time to time. First of all, a
basic architecture was implemented that carried out the desired operation. At this
point, memories and a state machine were first introduced to manage the calculation
and then the architecture was parallelized to try to exploit the capacity of the device
on which it was working and improving the performance of the architecture itself.
In the last chapter it will be possible to verify the correctness of the work done and
the collected data related to the various versions of the accelerator created.
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Chapter 1

Introduction

1.1 An introduction to Deep Learning
In recent years we have had a great explosion of data in multiple fields. In order

to cope with the elaboration of these "big data" an answer was found in Artificial
Intelligence (AI). We can define as AI a software or hardware application that thinks
and solves problems as a human would do. Problems ranging from interpreting the
language to distinguishing what is inside an image to understand and to discern
different faces and people. What we have achieved so far is a narrow AI, that uses
specific algorithms and techniques to solve some specific problems.

Figure 1.1: Humans and AI [1]

Inside the AI field, we find Machine Learning (ML), which consists of using a
large data set and a number of classification algorithms to transform the normal
way we are used to programming. In our normal way of programming, we create
more and more complex algorithms, but we know exactly every single step of them.
The underlying idea of creating classificators is to recover large amounts of data
and simply create functions to understand which of these data we want and so
to improve the hand-handed results and get a system that without writing all the
algorithm, is able to make decisions based on the data it has available. Some of
these classificators follow mathematical formulas that we know, such as straight
lines, polynomial functions, statistical functions, and so on. Some of these are very
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1 – Introduction

good at predicting some sort of behaviour too complex to write in an algorithm
such as predicting the price of a house based on a historical series. Keeping on,
as a branch of ML we find a particular technique of data learning, known as Deep
learning (DL).

Figure 1.2: AI world [2]

The development of DL has taken place in parallel with the study in particular
of neural networks. It is characterized by the effort to create a multi-level automatic
learning model, in which the deepest levels take as inputs the outputs of the previous
levels, transforming them and becoming more and more astonished. This intuition
on learning levels gives the name to the whole field and it is inspired by how the
mammal brain processes information and learns, responding to external stimuli.

Figure 1.3: Mammal brain and Convolutional process [3]
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1 – Introduction

Each level of learning corresponds to one of the different areas that make up
the cerebral cortex. For example, the visual bark, which is responsible for image
recognition, shows a sequence of sectors placed in hierarchy. Each of these sectors
receives an incoming representation by means of flow signals that link it to other sec-
tors. Each level in this hierarchy represents a different level of abstraction, with the
more abstract features defined in terms of those of the lower level. When the brain
receives images, it processes the perception of shapes (from the primitive ones to
the increasingly complex ones) through various phases, such as edge detection. This
is the case for hierarchical representation of the image in the growing abstraction
level. Just as the brain learns by trying and activating new neurons by learning the
experience, even in DL architectures, the extraction stages change based on input
information received.

1.2 Purpose of this thesis
By giving an image as input to a Convolutional Neural Network (ConvNet), this

will produce, as output, a class which identifies that image.
The aim of this thesis is to create a hardware accelerator which performs the con-
volution operation, the most critical operation in a ConvNet.
To give an idea of the computational load of a ConvNet, in the AlexNet model, for
example, 90% of the processing time is occupied by convolution operations [14].
Furthermore the complexity of these network is strictly connected to their depth and
one of the main problems is that this kind of operation requires a lot of memory.
We will try to implement an architecture that performs this operation in an op-
timized way, and to apply techniques to minimize the number of accesses to the
external DRAM connected to the FPGA during convolution calculation. The dual
purpose is to exploit as much as possible on-chip memory to reduce latency in ac-
cessing data and reduce the energy cost of accessing external memory.

Figure 1.4: Whole system flow
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1 – Introduction

The idea, as shown in figure 1.4, is to stop the execution of the Caffe framework
by extracting some image data not yet processed and then give these ones as inputs to
the FPGA that will perform the convolution operation and will return the processed
data. At this point Caffe will read back the processed data and will finish the
algorithm to give as result the image classification.

1.3 Thesis’s outlines
In order to better visualize the content of this thesis, below are reported the

topics that will be analysed in the various chapters.

In Chapter 2 will be provided an overview of convolutional networks which will
explain its main features.

In Chapter 3 will be provided informations related to Caffe, the framework used. In
particular we will see why it was chosen for this work, what are its characteristics,
in particular how the GEMM library works, we will also see how to install it and
to conclude will be provided a brief tutorial on how to use it for image classifica-
tion/inference using Python as programming language.

In Chapter 4 we will see more in details the ProFPGA system, with all its hardware
and software components, used to implement the accelerator. We will analyse the
characteristics, the advantages offered, and the solutions found to the difficulties of
usage. In the last section, a sort of guide will be provided to explain in a simple
way how to use the system.

In Chapter 5 we will discuss the implementation of the accelerator’s architecture
and the various changes made during development to optimize it.

In Chapter 6 considerations will be given on the work done and suggestions on
how to deepen it in future works.
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Chapter 2

Convolutional Neural Network

2.1 Overview and Architecture
A CNN or ConvNet (Convolutional Neural Network) is so defined for the pres-

ence of at least one or more convolution layers then followed by fully connected
layers as in a standard multilayer neural network. They are designed for input with
a 2D structure as an image or a speech signal. These networks are easy to train and
respect to a fully connected layers have fewer parameters with the same number of
hidden units. Let’s see the structure of a typical ConvNet:

Figure 2.1: Standard Convolutional Neural Network [4]

We can highlight four main operations in a ConvNet as shown in the figure above:

1. Convolution

2. Non Linearity (ReLU)

3. Pooling or Sub Sampling

4. Classification (Fully Connected Layer)

5



2 – Convolutional Neural Network

These operations are the basic building blocks of every Convolutional Neural Net-
work.

2.1.1 Convolution

Convolution is the operation to which we will pay more attention since it is the
one we want to speed up on FPGA. Its purpose in ConvNet is to extract features
from the input image.
An image can be seen as a matrix of pixel values. One from a standard digital
camera will have three channel (RGB which stands for Red, Green and Blue) or just
one if it is a grey-scale image.
Assuming to have, for example, a 7x7 image whose pixel values are only 0 and 1
(note that it would be a special case) and also another 3x3 matrix, the convolution
can be computed as shown in the figure below:

Figure 2.2: Convolution Operation [5]

The 3x3 matrix, called filter or kernel or neuron, is multiplied by a portion of
the input matrix, until the values of all the elements of the output matrix, called
feature map, are computed.
Obviously you can have different filters so perform different operations such as edge
detection, sharpen and blur just by changing the numeric values (called weights) of
the filter matrix before the convolution operation.
It is important to say that when dealing with large inputs such as images, it is not
practical to connect neurons to all the neurons of the previous volume. Instead,
we will link each neuron only to a local region of the input volume. Looking to
the figure 2.3 you can see how each neuron in the convolutional layer (in blue) is
connected only to a local region in the input volume (in red) spatially, but to the
full depth (i.e. all colour channels). In this example you can note that there are 5
neurons along the depth, all looking at the same region in the input.

6



2 – Convolutional Neural Network

Figure 2.3: 3D view of a convolution operation [6]

But how many neurons are in the output volume or how are they arranged? Four
hyperparameters come into play when deciding the size of the output volume:

1. The depth. It corresponds to the number of filters we would like to use, each
learning to look for something different in the input as mentioned before.

2. The receptive field size of the Conv Layer neurons.We are talking about the
dimension of the filters.

3. The stride. When we slide the filter along the input we have to decide of how
many pixel per time we want do it.

4. The zero-padding. Sometimes it will be convenient to pad the input volume
with zeros around the border, usually a border of one pixel size is used.

Summarizing we can say that a Convolutional Layer:

• Accepts a volume of size W1 ∗H1 ∗D1

• Requires four hyperparameters:

– number of filters K
– their spatial extent F
– the stride S
– the amount of zero-padding P

• Produces a volume of size W2 ∗H2 ∗D2 where:

– W2 = (W1 − F + 2P )/S + 1
– H2 = (H1 − F + 2P )/S + 1 (i.e. width and height are computed equally

by symmetry)

7



2 – Convolutional Neural Network

– D2 = K

To better visualize how work a 3D convolution operation we report the following
example:

Figure 2.4: Convolution Demo [5]

The input volume (in blue) is of size W1=5, H1=5, D1=3, and the CONV layer
parameters are K=2, F=3, S=2, P=1. This means that we have two filters of size
3×3 (in red), and they slide, or convolve, around the input of two pixel per time.
Therefore, we can already compute the size of the output volume (in green) by ap-
plying the formula seen before obtaining a spatial size of (5 - 3 + 2)/2 + 1 = 3.
Moreover, notice that a padding of P=1 is applied to the input volume, making the
outer border of the input volume zero.

Anyway, we will see in chapter 3.1.2 the software approach to the convolution oper-
ation performed by the cblas_sgemm function used inside Caffe framework.

8



2 – Convolutional Neural Network

2.1.2 Non Linearity - ReLU

Usually, immediately after a convolutional layer, we find a non-linear unit, whose
purpose is to introduce a non-linearity precisely, since most of the real-world data
we would like our ConvNet to learn is non-linear, instead the convolution is a linear
operation (element wise matrix multiplication and addition). The most popular non-
linear function is the Rectified Linear Unit (ReLU ), but it is not the only one. In the
past, other functions were used such as tanh and sigmoid, but researchers found that
the ReLU layers work much better since it is possible to train the network faster
(thanks to computational efficiency) without there being a significant difference in
accuracy.

(a) ReLU function (b) Sigmoid function (c) Tanh function

Figure 2.5: Non linear functions

As you can see from the figure above, the ReLU layer applies the function f(x) =
max(0, x) to all of the values in the input volume. Basically, this layer just replaces
all negative pixel values in the feature map by 0.

2.1.3 Pooling

It is common to periodically insert a pooling level between the various layers of
a ConvNet. This is done in order to progressively reduce the spatial dimension of
the representation, the quantity of parameters and computation in the network, and
therefore also to control over-fitting. Specifically, the pooling layer operates on each
input depth slice and resizes it by generally applying the MAX operation (but this
is not the only applicable function as you can see from the Figure 2.6).

9



2 – Convolutional Neural Network

Figure 2.6: Possible Pooling Operation [7]

2.1.4 Fully connected layer
For regular neural networks and at the end of a ConvNet, the most common layer

type we find is the fully-connected layer, in which neurons between two adjacent
layers are simply fully connected between each other as shown in the figure below.

Figure 2.7: A three-layer fully connected [8]

10



Chapter 3

Caffe framework

Many frameworks have been developed to work in deep learning field. The table
3.1 provides an overview of some of the most popular frameworks used.
Caffe has been chosen among the available framework due to various reasons.
First of all it is a fully open source framework, maintained and developed by the
Berkeley Vision and Learning Center (BVLC ). In general, it provides all the nec-
essary tools and good documentation on all the possible approaches to a neural
network, so: training, testing and fine-tuning.
Even if, at the beginning, it was designed for design vision, then users also used and
developed it for speech recognition, robotics, neuroscience and astronomy.
The implementation is completely C++ based, which eases integration into existing
C++ systems and interfaces common in industry. A very useful fact also is that it
offers pre-trained models for free research on Model ZOO [15] that you can easily
use/download just going at the following link:
http://caffe.berkeleyvision.org/model_zoo.html.

Table 3.1: Comparison of popular deep learning frameworks

Framework Core
Language

Binding(s) CPU GPU Pre-
trained
models

Caffe C++ Python,
√ √

A lot from
MATLAB Model

ZOO
Tensor
Flow

Python -
√ √

Only
Inception

Theano Python -
√ √

Lasagne
Torch Lua -

√ √
-
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3.1 Anatomy of a Caffe model

3.1.1 BLOBs, Layers, and Nets
Caffe stores, communicates, and manipulates the information as BLOBs which

represent the standard array and unified memory interface for the framework. A
BLOB is generally used as a four dimensional ordered data structure: number,
channels, height, and width. Furthermore the channels, height, and width usually
describe a piece of data such as an image.

Figure 3.1: Data in Caffe: every layer takes input through bottom connections
and makes output through top connections

Each layer/level type defines three critical computations: setup, forward, and
backward. Levels have two key responsibilities for the functioning of the network as
a whole: a step forward that takes input and produces output, and a step backward
that takes the gradient with respect to the output and calculates gradients with
respect to parameters and inputs, which at they are propagated to previous levels.
The development of personalized levels requires the least effort due to the composi-
tional nature of the network and the modularity of the code.
The net is a set of linked layers in a calculation chart. A typical network starts
with a data layer that loads from the disk and ends with a loss level that calculates
the goal for a task such as classification or reconstruction.
Models are defined in the clear protocol buffer scheme (prototxt) while the learned
models are serialized as binary protocol buffer (binaryproto) .caffemodel files. The
format of the model is defined by the protobuf scheme in caffe.proto.
Caffe speaks Google Protocol Buffer for the following strengths: binary strings of
minimum size when serialized, efficient serialization, a human-readable text format
compatible with the binary version, and efficient implementations of the interface in
multiple languages, most notably C++ and Python. All of this contributes to the
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flexibility and extensibility of modelling in Caffe [16].

3.1.2 Inside Caffe: understanding GEMM
As already said in the previous sections, one of the main properties of Caffe is

its modularity. Since to make deep learning with neural networks faster and more
power efficient we need to focus on a function called GEMM, which is part of the
BLAS (Basic Linear Algebra Subprograms) library. Let’s go to analyse the C++
code that deals with the execution of convolution operations.

Figure 3.2: Diagram from Yangqing Jia’s thesis: it’s an analysis of the time spent
for convolution using Alex Krizhevsky’s deep learning architecture (AlexNet).
You can see that 89% of the time is spent in fc e conv layers that are implemented
using the GEMM library [9].

Specifically we will see more in detail the cblas_sgemm function which is called
inside the caffe_cpu_gemm fuction from the math_functions.cpp file of Caffe re-
ported below:

template <>
void caffe_cpu_gemm <float > ( const CBLAS_TRANSPOSE TransA ,

const CBLAS_TRANSPOSE TransB , const int M, const int N,
const int K, const float alpha , const float* A, const float* B,
const float beta , float* C)
{

int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cblas_sgemm(CblasRowMajor , TransA , TransB , M, N, K, alpha ,
A, lda , B, ldb , beta , C, N);

}

13
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So what is GEMM? It stands for GEneral Matrix to Matrix Multiplication, and it
essentially does exactly what it says, multiplies two input matrices together to get
an output one [9].
The operation is defined as:

C := alpha ∗ op(A) ∗ op(B) + beta ∗ C

where:

• op(A) = A′ if TransA is set, otherwise op(A) = A. For op(B) is similar.

• alpha and beta are scalars.

• A, B and C are matrices: op(A) is an m-by-k matrix, op(B) is a k-by-n matrix,
C is an m-by-n matrix as shown in figure 3.3.

A note about Caffe is that matrices are stored in row-major order in CPU but in col-
major order in GPU. So caffe_cpu_gemm computes C = A∗B while caffe_gpu_gemm
computes C ′ = B′ ∗ A′

Figure 3.3: GEneral Matrix to Matrix Multiplication [9]

But how can Caffe perform a 3D convolution as a 2D matrix multiplication?
Due to a previous linearization performed by the im2col operation.
And what are the two matrices A and B that are multiplied between them? A is
the weight matrix or, in other words, the filter that is applied to the linearized 3D
tensor B.
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3.2 Caffe installation
It is possible downloading and installing Caffe-BVLC from https://github.

com/BVLC/caffe (Master-version). But other prerequisites and packages are needed
to use the framework. Something changes depending on which is your version of
Ubuntu, moreover it is possible to train/run Caffe: only on GPU, only on CPU or
on both.
For the versions of Ubuntu from 16 up, a large amount of documentation exists in
case of any problem that can be found. You can found a very good manual for
Ubuntu 16.04 at:
https://github.com/BVLC/caffe/wiki/Ubuntu-16.04-Installation-Guide.
We have worked with a previous version, Ubuntu 14.04. The installation was a little
more difficult since it was necessary to install many non-existent dependencies in
the system. In particular, for only CPU mode, it was necessary to install:

• General Dependencies:
build-essential cmake git pkg-config, libprotobuf-dev, libleveldb-dev, libsnappy-
dev, libhdf5-serial-dev, protobuf-compiler, libboost-all-dev, libgflags-dev,
libgoogle-glog-dev, liblmdb-dev

• BLAS: libatlas-base-dev

• OpenCV: libopencv-dev

• Python: python-pip, python-dev, python-numpy
Once you’ve installed all the necessary dependencies, it is time to modify the Make-
file.config file with the correct settings you want to use. In our case, it was enough
to uncomment the line "CPU_ONLY := 1 " which simply allows the use of Caffe
only on CPU precisely.
At this point you can go to the compilation step launching the following commands:

• make all

• make test

• make runtest
At the end of the last command, if everything went as it should have been, you will
can read a message saying: [ PASSED ]

Figure 3.4: Correct Caffe installation
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3.3 Inference on Caffe
As already mentioned, Caffe allows you to perform different tasks, but what we

are interested in is to use it for image classification/inference.
To do this we can bypass the step for creating and training a network, instead we can
use a pre-trained network model from the Model ZOO. For example, some of these
network can be: AlexNet (figure 3.5a) and CaffeNet (figure 3.5b). Both networks
have already been trained in ImageNet data set which has 1000 class of classification
category.

(a) AlexNet diagram [17]

(b) CaffeNet diagram [18]

Figure 3.5: Networks from Model ZOO

From the pictures, you can notice how these two networks are almost equal. The
only difference in fact resides at the beginning of the networks in which we find two
levels reversed, specifically, norm1 and pool1.

Figure 3.6: Input picture: cat.jpg [10]

Just loading the wanted network through a Python script, giving as input a
certain image (figure 3.6), the chosen network will compute the final output as a class
that identify the processed image as well as returning other important information
(figure 3.7a and 3.7b).
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Therefore you can see how the small difference between the two networks previously
highlighted, let these come to a result, almost equal, but still different.

(a) AlexNet inference results

(b) CaffeNet inference results

Figure 3.7: Inference

# loading libraries
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
plt.rcParams[’figure.figsize ’] = (10, 10)
plt.rcParams[’image.interpolation ’] = ’nearest ’
plt.rcParams[’image.cmap’] = ’gray’
import sys
caffe_root = ’/home/galtamura/giulia/caffe/’
sys.path.insert(0, caffe_root + ’python ’)
import caffe
import os

caffe.set_mode_cpu ()

# load the model
# model_def = caffe_root + ’models/bvlc_alexnet/deploy.prototxt ’
# model_weights = caffe_root +
# ’models/bvlc_alexnet/bvlc_alexnet.caffemodel ’
model_def = caffe_root +
’models/bvlc_reference_caffenet/deploy.prototxt ’
model_weights = caffe_root +
’models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel ’

net = caffe.Net(model_def , model_weights , caffe.TEST)

# load input and configure preprocessing
mu = np.load(caffe_root +
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’python/caffe/imagenet/ilsvrc_2012_mean.npy’)
mu = mu.mean (1). mean (1)

transformer =
caffe.io.Transformer ({’data’:net.blobs[’data’].data.shape })

transformer.set_mean(’data’,mu)
transformer.set_transpose(’data’ ,(2,0,1))
transformer.set_raw_scale(’data’ ,225)
transformer.set_channel_swap(’data’ ,(2,1,0))

net.blobs[’data’]. reshape (1 ,3 ,227 ,227)
net.blobs[’data’]. reshape (1 ,3 ,227 ,227)

# load image in the data layer
im = caffe.io.load_image(caffe_root + ’examples/images/cat.jpg’)
net.blobs[’data’].data [...] = transformer.preprocess(’data’,im)

# INFERENCE
# compute
out = net.forward ()
output_prob = out[’prob’][0]

print ’Predicted␣class␣is:␣’, output_prob.argmax ()

labels_file = caffe_root + ’data/ilsvrc12/synset_words.txt’
labels = np.loadtxt(labels_file , str , delimiter=’\t’)
print ’Output␣label:␣’, labels[output_prob.argmax ()]

top_inds = output_prob.argsort ()[:: -1][:5]

print ’\nProbabilities␣and␣labels:’
print zip(output_prob[top_inds],labels[top_inds ])
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Chapter 4

ProFPGA system

The quad V7 proFPGA system can be seen as a complete, scalable and modular
multi FPGA prototyping solution. It can consist of several blocks such as a moth-
erboard block, a FPGA module, a cable and so on. Moreover the system provides
an extensive set of features and tools like remote system configuration, integrated
self and performance test, automatic board detection, automatic I/O voltage pro-
gramming, system scan and safety mechanism [12].

Figure 4.1: Photo of the whole system [11]

In particular, our proFPGA quad V7 system (figure 4.1) is equipped with a
Xilinx Virtex 7 XCV2000T FPGA module (highlighted in red) and a Zynq7000
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Z100 module (highlighted in blue), even if in this work thesis we will use only the
Virtex one.
It is possible to transfer data, from the workstation to the user design inside the
proFPGA and vice-versa, through the Module Message Interface 64 (MMI64). To
debug and verify your own architecture is quite hard but possible thanks to the
Integrated Logic Analyzer (ILA).
You have also to know that while the FPGA can be controlled remotely by means
of simple commands, the system’s motherboard can turned on/off only manually
using the appropriate switch (highlighted in yellow).
The figure 4.2 shows the main components which make up our system. Let’s take a
closer look at the characteristics of these devices in the next sections and how they
were used in this work.

(a) ProFPGA quad
motherboard

(b) proFPGA Mod-
ule V7 2000

(c) Xilinx programmer de-
vice

Figure 4.2: Profpga devices [12], [13]

4.1 Devices

4.1.1 Motherboard
It is possible to say that the motherboard (figure 4.2a) is the main component

of our system as it constitutes its infrastructure. As reported in [19] the ProFPGA
quad Motherboard offers several features. It provides:

• FPGA Modules: up to 4 proFPGA FPGA modules;

• Clock Management: 8 clock generators;

• Debug Interfaces: JTAG chain for Xilinx and Altera FPGA Modules;

• Host Data Exchange Interfaces: USB, PCIe 4Lane, Ethernet;

• Power Management: up to 1,2 kW;
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• Board Detection and Power Protection: automatic daughter board, cable and
FPGA modules detection and right power setting;

• and others.

In the proFPGA system we can identify two coordinates but since we use only one
motherboard we will be interested to identify only one of the two. We are talking
about the board coordinate system that describes the positions of the motherboard
connectors allowing the detection of the proFPGA modules.
A single FPGA module can be connected to up to four connectors and a code is
assigned to each connector as shown in the figure below.

Figure 4.3: Board coordinate system [11]

As you can see, the coordinate code consists of two letters and a number. The
first letter will be a T or a B that identify the top and bottom sides. In the
representation there is only the letter T since we will use only the top side. The
second letter (from A to D) and the number (from 1 to 4) indicate respectively the
column and row coordinates of the connectors.
The name of a module is identified by the code of its coordinate at the top left
(highlighted in dark green in figure 4.3).
As said before we have two FPGA modules available even if we will use only the
Virtex module. This one requires four connectors and in our configuration it uses
the connectors TA1, TA2, TB1 and TB2. Since the TA1 is the top left connector
code the Virtex 7 will be named fpga_module_ta1.
You can find more information about what was discussed in this section in [20].
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4.1.2 FPGA module: Xilinx Virtex XC7V2000T
The logic core of the system is the proFPGA Xilinx Virtex XC7V2000T (shown

in figure 4.2b). It is based on the Virtex 7 2000T, offers with its latest FPGA
technology maximum capacity of up to 12 M ASIC gates alone in one FPGA [21],
the World’s Highest Capacity FPGA, according to Xilinx.
In the figure below it is possible to see the content of one of the main configurable
logic block.

Figure 4.4: Configurable logic block screenshot

Instead in the following table are reported the main available cell:

Table 4.1: FPGA Cell Content

LUT FF BRAM DSP
1221600 2443200 1292 2160

4.2 ProFPGA Builder
ProFPGA Builder is one of the software provided by ProFPGA. We will use it

exclusively to generate the profpga.cfg file, which is the configuration file that will
set up our FPGA and through which the bitstream described in the user_mmi64.bit
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file will be loaded.
To launch the program, simply open a terminal and write the command:

> profpga_builder

A graphical interface will open and allow you to interact with the program (figure
4.5).

Figure 4.5: ProFPGA builder graphical interface

To use it is demand to create a project, in [22] you can find the description of
all the required steps to create a project and hence the configuration file. More or
less, the main operations you will need to perform will be:

• Enter location and name of the new project;

• Enter the ip address of the system you want to connect to (for our configuration
http://172.16.0.230);

• Enter the location of the board description files;

• Specify the FPGA image file for each FPGA in the system using the “Config-
uration −→ Image Files”menu command.
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4.2.1 The configuration file
In addition to the FPGA bitstream generated by the Vivado tool, the configu-

ration file is the basis for the use of the proFPGA system. Below is reported the
configuration file generated for our system:

name = "profpga";
profpga_debug = 0;
debug = 0;
backend = "pcie";
backends :
{

tcp :
{

ipaddr = "172.16.0.230";
port = 0xD11D;

};
pcie :
{

device = "/dev/mmi64pcie0";
};

};
system_configuration :
{

sysconfig_match = "FIT";
fpga_speedgrade_match = "FIT";
motherboard_1 :
{

type = "MB-4M-R2";
fpga_module_ta1 :
{

type = "FM-XC7V2000T-R2";
speed_grade = 1;
bitstream = "user_mmi64.bit";
v_io_ta1 = "AUTO";
v_io_ta2 = "AUTO";
v_io_tb1 = "AUTO";
v_io_tb2 = "AUTO";
v_io_ba1 = "AUTO";
v_io_ba2 = "AUTO";
v_io_bb1 = "AUTO";
v_io_bb2 = "AUTO";
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};
fpga_module_tc1 :
{

type = "FM-XC7Z100-R1";
speed_grade = 1;
v_io_ta1 = "AUTO";
v_io_ta2 = "AUTO";
v_io_ba1 = "AUTO";
v_io_ba2 = "AUTO";
boot_mode = "JTAG";
usb_mode = "DEVICE";
usb_id = "UNUSED";
ps_npor = "SWITCH";
ps_nsrst = "SWITCH";
geth_config2 = "GND";
geth_config3 = "LED1";

};
clock_configuration :
{

clk_0 :
{

source = "LOCAL";
};
clk_1 :
{
source = "60MHz";
multiply = 20;
divide = 24;
};
clk_2 :
{
source = "125MHz";
multiply = 8;
divide = 10;
};
clk_3 :
{
source = "125MHz";
multiply = 8;
divide = 20;
};
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clk_4 :
{
source = "125MHz";
multiply = 8;
divide = 40;
};

};
sync_configuration :
{

sync_0 :
{

source = "GENERATOR";
};
sync_1 :
{
source = "GENERATOR";
};
sync_2 :
{
source = "GENERATOR";
};
sync_3 :
{
source = "GENERATOR";
};
sync_4 :
{
source = "GENERATOR";
};

};
};

x_board_list = ( );
};

Starting from here, we highlight the settings to pay attention to:

• first of all, this file allows you to select which kind of connection, among
Ethernet and PCIe, you would like to use. Watching at the line:

backend = "pcie";

in case you decide to use the TCP connection you have to simply modify pcie
with tcp;
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• second thing, if the physical position of the FPGA module changes, is sufficient
to specify the new FPGA module name (figure 4.3).

• Third thing to note is the settings related to the clock. The clk_0 will be the
one that will be assigned to the HDL modules of the ProFPGA system and is
set at a frequency of 100 MHz.
The other clocks available in this case, from clk_1 to clk_4, are those that will
be supplied at the output then by the profpga_clocksynch modules represented
in figure 4.7 and which can be set as desired and used by the user for their own
designed module, in case a frequency is desired other than 100 MHz supplied
to the rest of the system.
Paying attention to clk_1 for example, this will provide a system frequency
of 50 MHz. It will also be necessary to modify the constraint file (located in
the appropriate folder in reference to the project structure shown in the figure
4.11) to have a correct analysis according to the desired clock. In our case, it
will suffice to specify that clk_p[1] must have a period of 20 ns (frequency 50
MHz) instead of 10 ns as for clk_p[0].

4.3 I/O: the Module Message Interface 64
The communication between the PC with the running software and the HDL

designs running inside the FPGA module on the proFPGA system is provided by
the Module Message Interface 64 (MMI-64 ) [23].

Figure 4.6: MMI 64 communication

From the picture above you can see that we can distinguish two side of the MMI64
communication: the C program and the HDL modules to be built in addition to the
user’s project.
It is possible to see the HDL modules as the implementation of a register file, whose
dimensions are defined according to the functions that can/must be executed in
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software by the C program. In particular we can have data of 8, 16, 32 or 64 bit
length.
Let’s take an example of which features the interface register file should possess.
Suppose your project has 5 input signals and 7 output ones, all of 12 bits. Each one
of these signals will be connected to a register, so it is necessary that the register file
is composed of at least 8 registers (8 > 7). It’s not necessary to have 16 (16 > 7+5)
registers because from everyone of them it will be possible both read and write.
Instead, as regards the data dimension, the registers must have a data length of at
least 16 (16 > 12) bits.

4.3.1 The C program side
With reference to the figure 4.11 you can look the file main.c in the directory

test.
As mentioned before, the MMI64 functions must be used according to the data size
of the register file, which can be 8, 16, 32 or 64 bit. Specifically, the following
functions are available:

To write registers To read registers
mmi64_regif_write_8_ack(); mmi64_regif_read_8();
mmi64_regif_write_16_ack(); mmi64_regif_read_16();
mmi64_regif_write_32_ack(); mmi64_regif_read_32();
mmi64_regif_write_64_ack(); mmi64_regif_read_64();

Each one of this function requires four parameters: the module, the starting
address of the register file, how many registers will be written and the pointer to
the variable containing the data.

Below is reported an example to clarify the use of these functions:
//Array of 8 uint32_t data , corresponding to the instantiated
// register file
uint32_t wdata [8];
// Reading variable
uint32_t rdata32;
//You can write one to all the words of the register file
wdata [0] = 10;
wdata [1] = 5;
wdata [2] = 9;
//Write 3 words (10, 5 and 9), from address 0 till third
// register
status = mmi64_regif_write_32_ack(user_module , 0, 3, wdata32 );
CHECK(status );
wdata [0] = 666;
//Write the value 666 in the address 5 (the sixth register)
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status = mmi64_regif_write_32_ack(user_module , 5, 1, wdata32 );
CHECK(status );
//Read 1 word at address 3
status = mmi64_regif_read_32(user_module , 3, 1, &rdata32 );
CHECK(status );

4.3.2 The HDL side
The figure 4.7 represents the architecture that will be deployed on the FPGA. It

is possible to distinguish different blocks:

• the PROFPGA CTRL is the one that allows the communication between the
program C and the user module, so it is the interface between motherboard
and Virtex.

• the PROFPGA CLOCKSYNC performs the synchronization, so it can be con-
sidered as a PLL. It is connected to a clock source from the motherboard and
receives as multiplication and division values the ones written in the configu-
ration file. There are four of these components.

• the MMI64 M REGIF is the interface with the usere module. At the time
of its instantiation it is possible to define the data width and the number of
registers that will constitute the REG FF.

It seems that the maximum values assignable to REGISTER_COUNT and REG-
ISTER_WIDTH are respectively 16 and 64 (16 · 64 = 1024). So, in this case, we
can have up to a maximum of 16 I/O signals, each one of 64 bits. Below is the
instantiation of the component with the maximum settable of the characteristics we
have just discussed:

signal reg_addr : std_ulogic_vector (3 downto 0);
signal reg_wdata : std_ulogic_vector (63 downto 0);
signal reg_accept : std_ulogic;
signal reg_rdata : std_ulogic_vector (63 downto 0);

USER_REGIF : mmi64_m_regif
generic map (

MODULE_ID => X"FEEDBACC",
REGISTER_COUNT => 16,
REGISTER_WIDTH => 64
)

For example, assuming you have a register file as user module of figure 4.7 described
as follows:
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signal data_in_s : std_logic_vector (7 downto 0);
signal data_out_s : std_logic_vector (7 downto 0);
signal sel_reg_s : std_logic;
signal register_addr_s : std_logic_vector (2 downto 0);
signal sel_mux_s : std_logic_vector (2 downto 0);

component register_file is
port ( Data_in : in std_logic_vector (7 downto 0);

clock , reset: in std_logic;
sel_reg: in std_logic;
register_addr: in std_logic_vector (2 downto 0);
sel_mux: in std_logic_vector (2 downto 0);
Data_out: out std_logic_vector (7 downto 0)

);
end component register_file;

The code of the process which manages the data exchange via the register file
(REG_FF) could be something like this:

-- Accept commands always , you must obey!
reg_accept <= ’1’;
REG_FF : process(mmi64_clk)

begin
if rising_edge(mmi64_clk) then

-- handle register transfers
if reg_en=’1’ and reg_accept=’1’ then

if reg_we=’1’ then -- write to registers
reg_rvalid <= ’0’;
reg_rdata <= (others=>’0’);

case reg_addr is
when "0000" =>

sel_reg_s <= std_logic(reg_wdata (14));
register_addr_s <= std_logic_vector(reg_wdata (13 downto 11));
sel_mux_s <= std_logic_vector(reg_wdata (10 downto 8));
data_in_s <= std_logic_vector(reg_wdata (7 downto 0));

when others =>
sel_reg_s <= ’0’;
register_addr_s <= (others => ’0’);
sel_mux_s <= (others => ’0’);
data_in_s <= (others => ’0’);

end case;
else -- read from registers

reg_rvalid <= ’1’;
case reg_addr is
when "0000" =>

reg_rdata (7 downto 0) <= std_ulogic_vector(data_out_s );
when others =>

reg_rdata <= (others => ’0’);
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end case;
end if;

else -- no transfer or not accepted
reg_rvalid <= ’0’;
reg_rdata <= (others=>’0’);

end if;

-- reset values
if mmi64_reset=’1’ then

reg_rvalid <= ’0’;
reg_rdata <= (others=>’0’);
sel_reg_s <= ’0’;
register_addr_s <= (others => ’0’);
sel_mux_s <= (others => ’0’);
data_in_s <= (others=>’0’);

end if;
end if;

end process REG_FF;
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Figure 4.7: RTL user_mmi64.vhd
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4.4 ILA Debug
As already explained, the MMI64 interface allows to write and read the i/o

signals of our VHDL top entity but despite this, it may be necessary, often indis-
pensable, to check how effectively these signals are exchanged. For this purpose,
Vivado provides a debugging tool named Integrated Logic Analyzer (ILA), a config-
urable IP core from Xilinx.
Below we will see the correct steps to generate and use an ILA core. However to
do this is also required a physical device, as shown follows, the Xilinx programmer
(Xilinx Platform Cable USB II represented in figure 4.2c). Specifically, this device
will be connected on one side to the PC via USB cable, on the other to the proFPGA
through a JTAG connection.
You can find further information about ILA-proFPGA debugging in [24], [25] and
[26].

Figure 4.8: Xilinx Programmer for ILA debugging

4.4.1 Creating Vivado Debug Project
Once the above mentioned device is correctly connected and the drivers config-

ured to use it, let’s see which steps are required to generate an ILA core to debug
our system:

1. Open Vivado and click on "Create New Project".

2. Following the instructions, choose a name and the path in which to save the
project.

3. Specify "Post-synthesis Project" as type.
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4. At this point will appear the window Add Netlist Sources. Click on "Add files"
and load, according to the structure in figure 4.11, the file:

profpga/vivado/output/user_mmi64_synthesized.dcp

Mark the option "Copy sources into project".

5. The next window will be Add Constraints (optional). As before, mark "Copy
sources into project", click on "Add files" and load:

profpga/vivado/constraints/user_mmi64.xdc

6. Now, in the "Default Part" windows, leave everything as it is, ensuring that
the selected device is correct (xc7v2000tflg1925-2).

If everything has been done correctly, you will see a confirmation window like the
one below.

Figure 4.9: Project confirm window

The Vivado graphical interface will now open with our uploaded project:

• First we start to open the netlist by simply clicking on the button "Open
Sythesized Design" highlighted in red in figure 4.10.

• At this point comes the most important phase needed to generate the ILA core,
we have to choose the signals which we want to observe. To do that there are
several ways, the one that I found most simple and understandable consists
in selecting, marking for debugging, the signals directly from the schematic of
the architecture.
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• Once selected the signals you want to see, you have to click on "Set Up Debug",
a "Synthesized Design" option under "Netlist Analysis". Be careful, because if
you forget some signals you cannot add them as in any simulation, but you
will have to repeat the ILA core creation steps.

• Click on "Next" in all the pop-ups. Just to know, it is possible to choose the
sample of data path (the default is 1024) which is, the content of the signals at
a certain moment. Since there is one sample every 3 MHz, it means that after
a trigger you can follow the signals for roughly 340 microseconds. Consider
that the more signals you choose to monitor, the more time will be required
for the implementation, the more resources will be consumed in the FPGA.

• At this point it is possible to generate the bitstream simply by clicking the
button highlighted in orange in figure 4.10. This operation will take time
depending on the size and complexity of the architecture.

After completing this last step, the program will have generated the file we need in
the following path:

ILA_debug/ILA_debug.runs/impl_1/user_mmi64.bit

You have to copy this file to the folder profpga/test. It is important to load the
bitstream through the ProFPGA Builder software mentioned before.
Now, first, turn on the motherboard switching on the flip. At this point, go back to
Vivado and follow the instructions below in the order presented:

1. Click on the "Open Hardware Manager" button highlighted in yellow.

2. On the Vivado command line write:

> connect_hw_target

3. At this point we have to turn on the FPGA. Go back on the linux shell and
launch the command:

> profpga_run profpga.cfg --up

4. Click on "Open Target" under "Hardware Manager" then select "Open New
Target".

5. Select local host as server and 3 MHz as Jtag frequency.

Your system is finally connected successfully. You can debug the chosen signals of
your architecture.
When you finished, through the Vivado line command write:
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> close_hw_target
> disconnect_hw_server localhost:3121

Once the target is established, you can directly select it via "Recent Target" instead
"Open New Target", jumping the steps number 4 and 5.

Figure 4.10: Vivado GUI
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4.5 Working flow
Assuming to work with files in a folder organized as in the figure 4.11, let’s see

what you need to do for the implementation of your architecture and what are the
various files with which we will work.

Figure 4.11: Work Directory

4.5.1 A simple test project
Initially, just to test the correct exchange of data between the PC and the FPGA,

I realized a basic component, specifically a register file.
I described it as a set of three sub-component: 8 8bit-registers to save my data, 1
decoder in input to select where to save the data and 1 multiplexer to select the
register from which take the output.
This four files will be put in the user_design directory. Obviously to be sure that
the described implementation was written correctly, a test-bench of the same was
created and simulated (see figure 4.12).

Figure 4.12: Register File simulation

At this point let’s see the steps to follow to test the correct functioning of our
user module.
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1. Move in the rtl directory to modify the user_mmi64.vhd file including our
design. The figure 4.7 shows the whole architecture that we will synthesized
on the FPGA.

2. Correctly edited the file, go to the vivado folder.

3. First of all, you need to modify the user_design.tcl file, including the files that
make up your architecture.

4. At this point all that remains is to launch the script synthesized_me.sh. If
everything has been properly modified, the synthesis will advance till creat-
ing the netlist of your architecture that will be saved in the output folder.
Otherwise, you should be able to read the errors and correct them.

5. Now that we have the synthesized netlist it is possible to set up the ILA core
(follow the steps in section 4.4.1).

6. Once the correct behaviour has been verified and the bitstream generated, you
must copy it in the test folder.

7. At this point the main.c file in the test foder must be adapted and compiled
through the script compile_me.sh. If there are no errors nothing will be shown
on the terminal and the usertest executable will be created. Every time you
modify the main.c file, you must repeat this step.

8. Now you have everything to start the emulation so turn up the FPGA module
and launch the command:

> ./usertest profpga.cfg

If you want to reboot the FPGA module just launch again the command:

> profpga_run profpga.cfg --up

When you finish all the operation, remember to turn down the FPGAmodule launch-
ing:

> profpga_run profpga.cfg --down

and then switch off the motherboard.

38



4 – ProFPGA system

4.6 Encountered problems

In this section we will try to give you useful information on the problems en-
countered during the use of the system.

4.6.1 PCIe connection

First of all, the use of the PCIe can be a little complicated because sometimes
it is not recognised by the system. If the error:

Failed to scan mmi64 domain - status: E_MMI64_IDENTIFY_FAILED

occurs, the only way to correctly use it is to follow the protocol below:

• power up the proFPGA motherboard

• reboot the workstation

• power up the proFPGA module

4.6.2 Using an ILA core

In another case it is necessary to follow a precise sequence of commands to
avoid problems: when creating the ILA core to debug the system. If the commands
to be used are not execute in the correct way, like described in section 4.4.1, the
Xilinx programmer will automatically disconnect from the PC, requiring the physical
disconnection and reconnection of the device. To verify that the device is still
connected to the PC, just simply launch the command:

> lsusb

If the programmer is correctly recognized, it will be shown something like this:

Bus 001 Device 003: ID 03fd:0008 Xilinx, Inc. Platform Cable USB II

Once verified that the device is actually connected you can follow the correct in-
structions previously provided for the creation of the core.
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Figure 4.13: Possible error message
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Chapter 5

Hardware Accelerator
Development

We know that in a pre-trained ConvNet the main operation in the forward prop-
agation path is the one of convolution. As already said, the implemented accelerator
has the purpose to perform the GEMM operation in the best possible way.
Although each network performs multiplications of different matrices for each level
and has a different number of levels from each other, being a C side of the system
that manages the sending of data, it has been possible to create a "general" archi-
tecture always valid which repeats the same operation in loop. This architecture is
made by simple elements such as registers, multiplexers and floating point units and
is designed to perform the specific operation:

C ′[m][n] = A[m][k] ∗B[k][n] ∗ alpha + C[m][n] ∗ beta

With reference to the theoretical notions previously reported, by means of some
in-depth analysis, it has been possible to ascertain that:

• This operation is performed not only for convolutional levels but practically
for almost all the levels of the network. The main difference lies in the fact
that, usually, the convolutional levels operate a matrix-matrix multiplication,
while other levels, such as, for example, max pooling, operate some other types
of multiplications like vector-vector or vector-matrix or dot-vector multiplica-
tions.

• Looking at the equation above, as already said, the matrix A is identifiable as
the weight matrix or, in other words, the filter that is applied to the portion
of image that is being treated, represented instead by the matrix B.

• It has also been found that, according to the execution in Caffe of the AlexNet
network, the GEMM function is recalled 20 times, eight of which to perform
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the convolution. Although in figure 3.5a it is possible to see the representation
of only 5 convolutional levels, these however coincide with the 8 function calls
since three of these perform 1 convolutional level in two parts.

The table below shows the layers of the AlexNet network in which the function
is called and for each of these the parameters: M (number of rows of matrices A
and C), K (number of columns of matrix A and rows of matrix B), N (number of
columns of matrices B and C), and the alpha and beta constants. The highlighted
levels correspond to convolution layers:

Table 5.1: Analysis of AlexNet Layers

LV M K N alpha beta
1 96 363 3025 1 0
2 96 1 3025 1 1
3 128 1200 729 1 0
4 128 1200 729 1 0
5 256 1 729 1 1
6 384 2304 169 1 0
7 384 1 169 1 1
8 192 1728 169 1 0
9 192 1728 169 1 0
10 384 1 169 1 1
11 128 1728 169 1 0
12 128 1728 169 1 0
13 256 1 169 1 1
14 1 9216 4096 1 0
15 1 1 4096 1 1
16 1 4096 4096 1 0
17 1 1 4096 1 1
18 1 4096 1000 1 0
19 1 1 1000 1 1
20 1000 1 1 -1 1

42



5 – Hardware Accelerator Development

5.1 Operations flow description
In the diagram below, a representation of the whole operations flow is given,

omitting the side of the accelerator that will be analysed later more in detail.

Figure 5.1: Operations flow

5.2 Used tool
Chapters 3 and 4 provide information regarding the framework chosen for this

thesis work and the system on which the accelerator has been implemented. In any
case, it is possible to say also that the operation of synthesis of the architecture was
carried out through the Vivado tool. Thanks to this tool it was also possible to use
IP cores customized specifically for the designed architecture (you can see in the
section 5.2.1 how to use these correctly in a non-project mode).

5.2.1 Designing with IP cores
Some "pre-packaged" cores from Vivado were exploited to build the designed

accelerator architecture. Specifically, floating point units (adders and multipliers)
and memories were used.
Since in order to synthesize the architecture I inherited a script that runs Vivado
commands in non-project mode, it was enough to insert simple commands to include
the IPs in the project.
Prior to this, the desired IPs were customized using the graphical user interface.
It is very important during this phase to select the "global" setting at the time of
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confirmation to generate the IP, as shown in the figure below, otherwise this will be
imported as black box.

(a) Global setting (b) Error Message in case of black box IP

Figure 5.2: IP setting

Returning to the changes to be made in the script (vivado.tcl), it was sufficient
to make the following additions:

# Specify the creation of a project
create_project -in_memory -part xc7v2000tflg1925-2

# Adding the .vhd genereted description of the IP with all the other
# user file
source user_design.tcl

# Generate output products to be able to use it in the synthesis
file mkdir IP/IP_name
file copy -force ../rtl/IP/IP_name/IP_name.xci ./IP/IP_name
read_ip ./IP/IP_name/IP_name.xci.xci
generate_target all [get_ips IP_name]
set locked [get_property IS_LOCKED [get_ips IP_name ]]
set upgrade [get_property UPGRADE_VERSIONS [get_ips IP_name ]]
if {$locked && $upgrade != ""} {
upgrade_ip [get_ips IP_name ]}
generate_target all [get_ips IP_name]

To have more information related to the usage of an IP you can see the documents
[27] and [28].
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5.2.2 Implementation settings chosen
Once the synthesis step is finished, the system can be debugged (see the section

4.4 for more detail) and implemented, in order to obtain the bitstream to be loaded
into the FPGA.

Initially we tried to implement the design at a frequency of 100 MHz with the
help of the "ExtraTimingOpt" setting, but since it was necessary to insert a decid-
edly high number of pipe stages, it was preferred to lower the frequency to 50 MHz.
Done this it was enough to implement the design with the default settings already
suggested by Vivado.

Figure 5.3: Implementation settings
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5.3 Implemented design

5.3.1 First basic design

Knowing that we will be dealing with the matrices A (size MxK), B (size KxN)
and C (size MxN), the first approach was to make a project based on the follow-
ing simple iterative algorithm that allows the complete execution of the equation
mentioned above:

for( m=0; m<rowA; m++)
for( n=0; n<colB; n++){

sum = 0;
for( k=0; k<colA; k++)

sum += A[m][k]*B[k][n];
C’[m][n]=sum*alpha+C[m][n]*beta;

}

Considering the architecture shown in the figure 5.4a, we have:

• the MAC block that will carry out the innermost loop performing the multi-
plication and accumulation of the elements A and B;

• the multiplexers will allow the multiplication of the sum group for the constant
alpha and of the element C for the constant beta;

• finally, the adder will give out the new calculated element C.

At last, these operations will be repeated until all the elements of the new calculated
C matrix are obtained.
This structure fully functional but not very good especially for the latency of the
communication system to synchronize the exchange of data. In any case, there would
be no advantage to using this architecture instead of a CPU or a GPU because it
did not perform well. Let’s see how the choices have evolved to improve this first
basic structure.

MAC unit

In the figure 5.4b is shown the MAC unit architecture. The floating point units
have a clock signal because they are pipilened: in particular, the multiplier has
two stage of pipeline, the adder instead just one. These decisions were reached after
testing different configurations to avoid timing violations during the implementation
step.
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(a) First designed Accelerator architecture (b) MAC architecture

Figure 5.4: First designed blocks

5.3.2 Simple Dual Port Memory introduction
Instead of sending to the architecture 3 data per

Figure 5.5: Simple Dual
Port Memory scheme

time (element A[m][k], element B[k][n] and element
C[m][n]), two memories (as shown in the figure on
the side) have been introduced that will contain, from
time to time, one, a vector of matrix A, and the other,
a vector of the matrix B.
The chosen memories are Simple Dual Port and, as
you can, they have two signal clock. This because
we set the frequency of our architecture to 50 MHz
due to the presence of the floating point units which
require a certain computing time, and the frequency
of the communication system to 100 MHz. So they
allow to perform the write operation exploiting the first clock (100 MHz) and the
read operation using the second clock (50 MHz).
After saving the two vectors in the two memories respectively, the start signal will
be given to a FSM (reported in figure 5.6) which will process the data, calculating
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an element of the new matrix C "automatically".

This improvement apparently allowed a gain of 30% from the point of view of tim-
ing performance thanks to the streamlining of the C side of the system. At this
point, checks have been made that have highlighted the excessive slowness of the
communication system, so it was decided to focus on optimizing only the computing
architecture. So we will see, in the next paragraph, how we tried to exploit the
availability of the FPGA with the parallelization of this structure.

Figure 5.6: ASM control chart
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Figure 5.7: Architecture with memory introduction

5.3.3 Architecture’s parallelization

As next step we modified a little the previous memories, increasing the width of
the output port allowing to read more than one location per time. As you can see
this also implies the reduction of the address bus that allows the reading of the data
obviously. In this way, starting with duplicating the MAC unit it was possible to
send, to each of these two units, half vector to be processed. As before, the writing
operation to save the vectors on the two memories is managed from the C side,
instead the read operation from the FSM.
The write operation includes:

• the load of the K value that will allow to the FSM to correctly manage the
address to read;

• the load of the C element;

• the sending of the start signal to the FSM that will compute the new C element.
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(a) Simple Dual
Port 1 to 2

(b) Simple Dual
Port 1 to 4

Figure 5.8: Modified Simple Dual Port Memory scheme

5.3.4 Two MAC units
In the figure below is reported the designed data-path, which is practically the

same as before, just the MAC block has been duplicated and a further downstream
adder has been added:

Figure 5.9: Parallelized architecture
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As for the FSM instead, it was sufficient to insert a single state to manage the
added adder downstream.

5.3.5 Increasing Parallelization
At this point, further parallelizing the architecture becomes quite simple. The

changes that must be made from time to time are:

• customizing the two memories specifically and consequently also the counter
which is necessary for the reading address of the same;

• duplicate the MAC units;

• duplicate adders and registers downstream;

• predict any state to manage the sums downstream

Like the two-unit MAC architecture described above, 4, 8 and 16 MAC drives have
also been developed. In the next chapter, you will see information about the per-
formance of the designed architectures discussed in this part.
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Chapter 6

Results and Conclusions

The first intention of this work was to create a complete system, ie the accel-
erator also equipped with its communication system. During the implementation,
however, it has been verified that the MMI64 communication system is too slow
for this purpose. Assuming for example to want to accelerate the third layer of the
AlexNet network, to transfer, vector by vector, the only filter matrix A extracted
from Caffe, which in this layer contains 384x2304 elements, the system takes about
6 seconds.

Once this was established, we focused on how to just optimize the accelerator,
moving from a basic structure, to adding memories and finally to parallelization.
It has also to be said that, given the complexity of the floating point units working
on 64 bits, has been chosen to decrease the frequency of the architecture to 50 MHz,
compared to the frequency of the communication ProFPGA system (100 MHz), in-
stead of complicating the architecture with an excessive number of pipe stages.

Below, in the next sections, you will find data collected from the different imple-
mented configurations such as occupied area, speed performance and power con-
sumption.
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6.1 Results’s verification

Despite the confirmation given by the Caffe framework on the correctness of the
calibres carried out by the architecture, a graph is shown below for demonstration
purposes.
Specifically, this test was performed on the calculation of the 128x169 elements of
the matrix C of the AlexNet layer 12 made through the 4 MAC units architecture.

Figure 6.1: Comparison between Caffe and FPGA computation

In the first two panels it is possible to see the plot of the results calculated
respectively by the FPGA and by Caffe. The two are almost identical, so to bet-
ter appreciate the differences, in the last box you can see in blue the difference,
in absolute value, element by element of the two calculated matrices, in yellow its
mean value and in red the relative error. The latter is the one that shows us the
actual correctness of the calculation performed, in fact, it is tending to zero (0,3749
precisely), but it is also interesting to see where instead the calculations seem to
have given different values thus bringing the average to that small deviation. Out
of curiosity it has been found that the maximum difference between two elements is
23,0554.
One of the reasons of this result can be the fact that while Caffe performs the cal-
culations on 32 bits, the architecture uses 64 bit, with a greater precision therefore.
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6.2 First basic design

For this first architecture (figure 5.4a) to which 3 data per time are sent directly
from the main.c, without there being an actual FSM that takes care of managing
the various signals, we can see the occupied area of the FPGA in the following 6.2a
image (highlighted in light blue).

(a) Device (b) Percentage resources

Figure 6.2: Occupied Area First Design

Specifically, moreover, we report in the following table the number of components
used:

Table 6.1: Report Cell Usage First Design

LUT FF BRAM DSP
5325 5367 4 16

For this architecture the timing will not be commented because the control sig-
nals as well as data are sent through the writing functions of the C program, thus
making everything decidedly too slow given the performance of the communication
system.
As last, in the figure below is shown the power consumption of the designed archi-
tecture:
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Figure 6.3: Power consumption first design

6.3 Simple Dual Port Memory introduction

Looking at the percentages of resource utilization reported in figure6.4b we can
see, as could be expected, that the only parameter relating to the area that changes
is that indicating the use of BRAMs. In fact, the only major change was the in-
troduction of two 64x16K memories and a FSM to manage the reading from the
memories and the same calculation algorithm. The 14 addressing bits were decided
according to the worst case, in this case on the basis of the vector containing the
maximum number of elements (9216).

(a) Device (b) Percentage resources

Figure 6.4: Occupied Area Second Design

As before, we report in the following table the actual use of the most important
cells.
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Table 6.2: Report Cell Usage Second Design

LUT FF BRAM DSP
5422 5448 61 16

About the speed performance of this algorithm, obviously regarding the latency
we can say that it depends on the length of the two vectors that are being processed,
as there is the loop of the MAC unit that will have to accumulate the sum of the
products of all the elements. Once the loop is done and therefore having the final
sum, the algorithm returns the final result in 3 cycles. You can see a more detail
evaluation in table 6.4 in the next section.

As for the area, we can see small differences in power consumption. While the
percentage of consumption given by the BRAMs had not been reported before, we
can now see it appear.

Figure 6.5: Power consumption second design
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6.4 Architecture’s parallelization

In this case, apart from the obvious increase of the various resources, we can see
specifically from the table 6.3 how the number of DSPs doubles from time to time.
This is because it is with these components that floating point architectures are built.
We have 2 units in the MAC block (a multiplier and an adder) and one downstream
of the accelerator (another adder), now having the architecture parallelized, in the
first case for example, we have 2 MACs and 2 adders downstream, so, exactly double.

(a) Device 2 MAC units archi-
tecture (b) Percentage resources 2 MAC units architecture

(c) Device 4 MAC units archi-
tecture (d) Percentage resources 4 MAC units architecture

Figure 6.6: Occupied Area TWO and FOUR MAC UNITS

From the figures above and below we can see just the change in the percentage
of use of the DSP components.
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(a) Device 8 MAC units archi-
tecture (b) Percentage resources 8 MAC units architecture

(c) Device 16 MAC units archi-
tecture (d) Percentage resources 16 MAC units architecture

Figure 6.7: Occupied Area EIGHT and SIXTEEN MAC UNITS

Following the table with the main resources used for the different architectures:

Table 6.3: Report Cell Usage Parallelized Designs

MAC units LUT FF BRAM DSP
2 7197 5826 61 32
4 10647 6855 61 64
8 17898 8156 61 128
16 29908 11224 68 256

Regarding the speed performance of the algorithm, depending on the architec-
ture, we will have the cycles spent in the loop greatly reduced by the increase of
the MAC units working in parallel, paying only with additional cycles for the final
calculation given by the adders tree that becomes more and more great as the par-
allelism of the whole structure increases.
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Assuming that we have two vectors of 2304 elements, we see in the following ta-
ble how the number of execution cycles necessary for the calculation of an element
varies.

Table 6.4: Evaluation of the number of execution cycles

MAC units Number of cycles
(1 cycle = 20 ns)

1 9219
2 4604
4 2309
8 1158
16 569

Also for the power we can see how the consumption varies in particular regarding
the various signals, the logic and the DSP components. We can highlight how, while
the static power remains almost unchanged, we have instead a significant variation
in the dynamic power.

(a) TWO MAC UNITS power (b) FOUR MAC UNITS power

(c) EIGHT MAC UNITS power (d) SIXTEEN MAC UNITS power

Figure 6.8: Power consumption Parallelized Designs
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6.5 Conclusions and future works
The ConvNet have proved to be an excellent solution for the image classifica-

tion and other applications. We also know, however, that with the increase in the
depth of these networks, the computational load increases exponentially, making
them therefore not very "portable".

In this thesis, therefore, an architecture was developed that would implement the
matrix multiplication operation carried out by a particular library function called
by the CPU for the execution of the convolutional layers and not only.
The FPGA on which the architecture was implemented, a Xilinx Virtex 7, promised
great things given its capacity, on the other hand the available communication sys-
tem, ProFPGAMMI64, turned out to be very poor performance preventing a system
optimization in a global sense.
So we concentrated on first doing something working and then optimizing by paral-
lelizing the MAC units of the accelerator alone.

But the applied optimizations are obviously not the only ones possible. For any
future work, therefore, it is possible, to begin with:

• given the bad performance of the communication system, trying to change it,
thinking of something completely different;

• opting for a different type of parallelization. Instead of increasing the MAC
units, allowing communication system, one might think of having even more
"accelerator" units in such a way as to multiply several pairs of vectors at a
time and then calculate more elements of the new C matrix in parallel.
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