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Summary

Convolutional Neural Networks (CNN) have become the state-of-the-art in image
classification since the success of LeNet-5 architecture on MNIST dataset. Recent
developments have allowed to train very Deep Neural Networks (DNN) and achieve
high level accuracy in computer vision task. The key of their success is the significant
improvement on GPU performance and parallel computation, that allows DNNs to
be trained in a decent amount of time.
On the contrary, Deep Neural Networks are very memory and computationally
intensive. They are unfeasible to deploy in real time or mobile applications, where
power and memory are constrained. In real applications, DNN inference usually
exceeds the available resources on mobile platforms and does not meet real-time
constraints, because of GPU limited bandwidth.
For this reason, finding a good tradeoff between accuracy and memory footprint is
essential to achieve high efficiency in DNNs. We propose two different approaches
of optimization: improve the accuracy (without significant impact on power and
computations) on one side; reduce the memory occupied by the DNN model, limiting
the accuracy loss, on the other side. Both approaches require an increased training
time before obtaining the final model, but they achieve better results (respectively
in terms of accuracy or compression) then the baseline network. Having defined the
motivations of our research, we propose two methodologies for the two approaches,
supported by experimental results and analyses focused on some interesting aspects.

HyCNN: Employing Multi-Type SELU and RELU Activation Functions
for Hybrid CNN Architectures with Improved Accuracy
Among the various possibilities that lead to an accuracy improvement, we choose
to look at the activation function of the DNN. Rectified Linear Units (RELU) are
widely used in state-of-the-art DNNs, because of their simplicity. Moreover, RELU
activations, in order to keep the parameters at the same order of magnitude across
each layer, require normalization, which is a very compute-intensive process, but
it is necessary to make the training work properly. Recently, another activation
function, Scaled Exponential Linear Unit (SELU) has become very attractive, since,
for a specific choice of parameters, it has self-normalizing properties. Indeed, it leads

II



to zero mean and unit variance, which are similar to Batch Normalization (BN)
technique. The reason of this interesting property can be explained by looking at
the differences between RELU and SELU: while RELU is flat for negative inputs,
SELU has an exponential behavior (with nonzero derivative). This property leads to
a better training process overall with respect to RELU, because all the weights are
updated during backpropagation phase. Another important characteristic of SELU
is its self-normalizing property, which leads to an higher accuracy. Dropout method
becomes more critical when using SELU activation function, because it injects a
Gaussian noise on the weights at each iteration, in such a way that it contributes to
increase the variance. We can compensate this effect by setting the dropped weights
to the low variance value (limx→−∞ SELU(x) = −λα = α′). This method is called
”alpha dropout”.
Replacing RELU with SELU does not work optimally across every layer of the network.
For this reason, in our methodology, we allow another degree of freedom: choosing
different activation function for different layers. In this way, we obtain an Hybrid
CNN (HyCNN) that presents multiple types of activation functions. Our methodology
introduces a penalty of training time, because of increased exploration time, but it is
typically assumed affordable to achieve a better DNN design. Experimental results
show that for each network, our methodology generates the HyCNN version, and
results are compared with respect to the original version. Keeping RELU in fully
connected layers, while replacing RELU with SELU in the convolutional layers of
the CNN and properly tuning the ”alpha dropout” rate, we are able to achieve a
relative error reduction in the range between 8% (AlexNet on CIFAR-100) and 17%
for our DNN on CIFAR-10.

PruNet: Class-Blind Pruning Method for Deep Neural Networks
There are several different compression techniques and pruning criteria proposed by
recent researches. We target a magnitude-based pruning method, called Class-Blind,
that, despite its simplicity, lead to an interesting compression level. Class-Blind
method does not put constraints based on the sparsity of each layer, but it allows
non-uniform sparsity across each layer. In this way, we can achieve an optimal
compression ratio, better than the other state-of-the-art magnitude-based pruning
methods. We propose a general methodology, called ”PruNet”, that can be applied
to sparsify a neural network: iteratively pruning and retraining the network, until the
accuracy drops under a certain desired level. Moreover, pruning has a regularizing
property, because during the first stages of pruning, the sparse networks outperforms
the original one in terms of accuracy. This effect is beneficial in order to get high
compression ratios, without losing accuracy. After a certain level of sparsity, however,
the accuracy loss grows very rapidly: this is the best point to set the accuracy
threshold.
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Results from the experiments show that networks can be compressed from 63X
(AlexNet on CIFAR-100) to 191X (LeNet-5 on MNIST). Further analyses of weight
distributions demonstrate that Class-Blind method outperforms other magnitude-
based pruned methods, like Class-Uniform one, which penalizes more heavily the
layers with few weights, like for example the first convolutional layer of LeNet-5.
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Chapter 1

Introduction

In recent years, Deep Neural Networks (DNN) have achieved a great success in many
machine learning applications, like computer vision [31], speech recognition [15],
natural language processing [7] and machine translation [2]. In particular, Convolu-
tional Neural Networks (CNN) emerged as the state-of-the-art in computer vision
tasks [23, 31,42,44]. Accuracy have improved very quickly, so as the computational
complexity. The key of their success, however, is the significant improvement on GPU
performance and parallel computation, that allows DNNs to be trained in a decent
amount of time. Even though they can beat humans in image classification task [49],
they require a huge amount of storage and memory accesses. In real applications,
DNN inference is not easy to deploy because it usually exceeds the available resources
on mobile platforms and does not meet real-time constraints, because of GPU limited
bandwidth.
Accuracy and resource utilization are inversely proportional and a good tradeoff
between them is essential to achieve a good efficiency. We propose two different
approaches of optimization: improve the accuracy (without significant impact on
power and computations) on one side; reduce the memory occupied by the DNN
model, limiting the accuracy loss, on the other side. Both approaches require an
increased training time before obtaining the final model, but they achieve better
results (respectively in terms of accuracy or compression) then the baseline network.

1.1 Thesis outline

The rest of the thesis is organized in the following chapters.
Chapter 2 provides the theoretical background of Neural Networks and the algori-
thms that have been used in the following chapters.
Chapter 3 describes the methodology, called ”HyCNN”, that allows to obtain an
Hybrid CNN architecture, with different activation functions. Applying this method
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1 – Introduction

leads to an accuracy improvement with respect to the original CNN.
Chapter 4 explains an iterative, magnitude-based pruning method, that reduces
the number of parameters of Deep Neural Networks, without losing accuracy, thanks
to the retraining process.
Chapter 5 concludes the thesis and discusses future challenges.
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Chapter 2

Neural Networks overview

In this chapter, we introduce the basic concepts of Neural Networks, how they work
and the recent evolution of Deep Learning. Then we explore which are the challenges
that have motivated our research.

2.1 Neural Network Basics

2.1.1 What is Deep Learning?

Deep Learning is a subfield of Artificial Intellignece, concerned with algorithms
inspired by the brain, called Neural Networks. Figure 2.1 contextualizes Deep
learning and shows the nested connection with Artificial Intelligence.

� Artificial intelligence (AI) includes every task that is performed by a computer
or a machine, withut using human mind. It includes learning, reasoning and
self-correction.

� Machine Learning is a type of AI that ”gives computers the ability to learn
without being explicitly programmed” - Arthur Samuel, 1959.

� Deep Learning is a subfield of Machine Learning algorithms, where Neural
Networks are called ”Deep” because they have a deep level of astraction and
each successive layer uses the outputs of the previous layer as input.

2.1.2 Neurons

The fundamental basic block of a Neural Network is the neuron (artificial neuron).
It has been inspired by the biological neuron, which has mutual connections with
other neurons in the brain, but it has a general structure, as shown in Figure 2.2a:
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2 – Neural Networks overview

Figure 2.1: From Artificial Intelligence to Deep Learing. [Image source: Nvidia.]

many inputs, called dendrites, a nucleus inside the cell body and an output, called
axon. The artificial counterpart (Figure 2.2b) presents many similarities, because it
has several inputs, multiplied by weights, and a single output. The sum of weighted
inputs and bias is propagated toward the output through an activation function.

(a) Biological Neuron in a human brain.
(b) Artificial Neuron in a Neural Network.
[Image source: inspirehep.net]

Figure 2.2: Comparison between a Biological and an Artificial Neuron.

The activation function, which is the key element that characterizes the neuron, can
either be linear or nonlinear, depending on the application and on the position inside
the network. Neurons are connected together through connections. Each connection
contains a weight, that is multiplied by the signal of the connection. Connecting
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2 – Neural Networks overview

together many neurons, we form a Neural Network. It is composed by different layers,
where the first one is called input layer, the last one output layers and in between
there can be one or more hidden layers.

2.1.3 Learning

Learning (also called Training) is the process that adjusts the value of all the weights
in a Neural Network. The algorithm is quite complex and in this section we are
going through it.
First of all, we have to specify that there are different types of learning: supervised,
unsupervised and semi-supervised. Supervised learning is the simplest type, but
also the most effective with Neural Networks. The input data is labeled (it contains
the information of what is the expected output) and the goal is to make the Neural
Network predict correct outputs, given new inputs. In unsupervised learning, however,
labels are not present: the machine learning algorithm must then find some common
structures/features of inputs and automatically group them. Semi-supervised learning
is a tradeoff between the two: some data is labeled, but other inputs does not contain
any information.
The standard algorithm for supervised learning provides the iteration of the following
steps:

1. Feed the Neural Network with the input data.

2. Predict the outputs in the forward pass.

3. Compute the cost function, depending on the predicted outputs and the desired
ones.

4. Backpropagation: compute the gradient of weights with respect to the cost
function.

5. Update the weights, according to the gradient computed in the backpropagation
pass (gradient descent algorithm).

The dataset is typically divided into training set and test set. The training data
is used in the training process, while the test data is used only in the feed-forward
pass (process called inference) and do not contribute to change weight values. Since
usually there are many hyper-parameters to optimize, we reserve a part of training
data for validation (i. e., for hyper-parameter optimization), as shown in Figure 2.3.
A typical problem that we encounter with Deep Neural Networks is overfitting:
when the training set error is much lower than the validation set error. In such
scenario, the neural network has learned also some redundant features of input
data and cannot generalize well on new data (validation and test set). Several
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2 – Neural Networks overview

regularization methods have been proposed to reduce overfitting, including applying
some pre-processing (augmentation), weight decay and dropout. In particular,
dropout technique, proposed by Srivastava et al. [43], consists of randomly dropping
some connections between neurons.

Figure 2.3: How to divide the dataset in training, validation and testing set.

Training Neural Networks is a process that requires and consumes a lot of hardware
resources. Efficient hardware can improve the performances and can allow to use
deeper networks in order to achieve a better accuracy. At inference time, an efficient
hardware plays a key role, because it can reduce latency and energy consumptions,
allowing to deploy real-time and resource-constrained applications.

Figure 2.4: Explanation of the difference between training and inference (forward-
backward pass).

Since training is much more resource-consuming than inference, a very effective
compromise to get a reasonable accuracy is transfer learning: we start from a pre-
trained model and we fine-tune (i. e., retrain only the last layers of the network,
without updating the weights in the first layers) with another dataset. This process
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2 – Neural Networks overview

is made possible by the structure of the Neural Networks, where the first layers
extract general features of data that can be useful also for other datasets.

2.2 Deep Neural Networks

Neural Networks that have many layers are called ”Deep”. There is not a clear
distinction between a shallow and deep network, however, usually a Neural Network
that counts at least eight layers is considered Deep by the community. This section
gives an overview of the most used DNNs, with a particular focus on Convolutional
Neural Networks (CNNs).
There are several different versions of DNNs, that can be applied to different ap-
plications: MLP (Multi Level Perceptron), CNN (Convolutional Neural Network)
and RNN (Recurrent Neural Network) are among the most popular ones. A MLP
is composed by fully-connected layers, where each neuron of a layer is connected
to every neuron of the next layer. A CNN is particularly effective for image clas-
sification task [31], because it uses the spatial locality of input data (images) to
extract features of images at different level of abstraction. A RNN captures also the
temporal correlation of inputs and fits well with temporally correlated data, like in
language and speech recognition.

2.2.1 CNN

Convolutional Neural Networks emerged as the state-of-the-art in computer vision
tasks, since the success of LeNet-5 architecture [32], which introduced some basic
concepts and features that are still useful in recent architectures, like AlexNet [31],
VGGNet [42], GoogleNet [44] and ResNet [23]. A standard CNN architecture is
organized with convolutional layers, followed by pooling layers and local response
normalization layers. The last stages are composed by one or more fully-connected
layers.

� Convolutional layer
It consists on a set of filters with fixed size. Each filter is able to extract
features from an image, like edges of shapes. Applying convolution means that
each filter is convolved with the input: weight sharing and local connectivity
are obtained.

� Pooling layer
Reduce the size of the representation (subsampling), in order to reduce also
the number of weights, computation speed and power consumption. The most
commonly used pooling layers are average-pooling and max-pooling.
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2 – Neural Networks overview

� Local response normalization (LRN) layer
RELU neurons have unbounded activations and LRN is used to normalize their
response. The effect of LRN is a sort of lateral inhibition. It is particularly
effective in deep networks.

� Fully-connected layer
Every output of the ith layer is connected to every neuron of the (i+ 1)th layer.

2.3 Deep Learning Frameworks

Low-level programming Deep Neural Network for CPU or GPU execution requires
a great effort. However, the operations computed by Neural Networks typically
can be seen as few basic operations, like memory loads, matrix multiplications,
convolutions and memory stores. These operations are already optimized for using in
the mainstream efficient hardware, such as GPUs. Deep learning frameworks allow
the user to write few lines of code at high level to describe training and inference
algorithm for DNNs. We have used Caffe [29] and PyTorch [51] frameworks for our
experiments. They both use cuDNN library, with CUDA back-end, to access to
the optimized Single Instruction Multiple Data (SIMD) instructions for our GPU
installed on the system, Nvidia GTX 1070.

2.4 Challenges and motivations for our research

Neural Networks are getting deeper and deeper, to achieve high accuracy. Even
though they can beat humans in image classification task [49], they require a huge
amount of storage and memory accesses. For these reasons, we look into inference
optimizations for applications where resources are critical. In particular, we focus
our research in two aspects:

1. Increase the accuracy, without increasing computations and memory require-
ments → Chapter 3.

2. Reduce memory footprint, without reducing accuracy → Chapter 4.
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Chapter 3

HyCNN: Employing Multi-Type
SELU and RELU Activation
Functions for Hybrid CNN
Architectures with Improved
Accuracy

3.1 Introduction

Convolutional Neural Networks (CNN) are very popular among Artificial Intelligence
applications, like computer vision [31], speech recognition [15] and natural language
processing [7]. In particular, they emerged as the state-of-the-art in computer vision
tasks [23, 31, 42, 44]. The key of their success is the significant improvement on GPU
performance and parallel computation, that allows Deep Neural Networks (DNN) to
be trained in a decent amount of time.
DNNs usually require nonlinear activation functions. Rectified Linear Units (RELU)
are widely used in state-of-the-art DNNs, because of their simplicity. Moreover,
RELU activations, in order to keep the parameters at the same order of magnitude
across each layer, require normalization, which is a very compute-intensive process,
but it is necessary to make the training work properly. Ioffe and Szegedy [27] proposed
Batch Normalization (BN) technique, that allows to achieve a better accuracy and
speedup with respect to original CNNs. Recently, Klambauer et al. [30] introduced
Scaled Exponential Linear Unit (SELU) and demonstrated that, for a specific choice
of parameters, it has self-normalizing properties, because it leads to zero mean and
unit variance. Therefore, SELU can replace RELU activation functions in CNNs,
resulting in training speedup. Moreover, SELU function has a wider learning ability
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3 – HyCNN

with respect to RELU, because also the negative inputs are continuously updated.
As a consequence, SELU activations lead to a more efficient network in terms of
accuracy.
Now a key scientific question is: which RELU layers should be replaced by SELU
in order to improve performance and accuracy? To address the above question, we
propose a novel methodology that systematically analyzes common substructures of
the CNN and converges this analysis to select the best positions where to replace
RELU with SELU. Through this methodology, we can obtain a Hybrid CNN that
have RELU in some activation layers and SELU in others. Such HyCNN can improve
the accuracy with respect to the original network. Instead of replacing activation
functions in all the layers of the network, our methodology adds a degree of freedom
in CNN parameters, because different types of activation functions can be selected
in different layers. The final outcome is a network that has the best configuration,
among all the possibilities, for each activation layer. Quantitatively, we achieve from
8% to 17% test error rate reduction in our HyCNN architectures with respect to
original versions.
Section 3.2 presents the properties of state-of-the-art DNNs and SELU activation
function. Section 3.3 shows a comparison between RELU and SELU and analyzes
the reasons why SELU is more convenient. Section 3.4 describes our methodology.
Architecture configurations and experimental results are presented in Section 3.5.
Section 3.6 summarizes and concludes the work.

3.2 Related work

3.2.1 DNNs and Activation Functions

Convolutional Neural Networks have become the state-of-the-art in image classifica-
tion since the success of LeNet-5 architecture [32] on MNIST dataset. Classification
of much larger datasets (like ImageNet) requires an increase in the number of layers
and layer size. Many years later, Krizhevsky et al. [31] introduced some new concepts
regarding CNNs that have inspired further researches. Rectified Linear Units (RELU)
have become a de-facto standard for activation functions, because of their advantages
with respect to tanh or sigmoid function, as it has been shown by Glorot et al. [14].
Even if RELU does not require input normalization, a Local Response Normalization
(LRN) layer is desired to aid generalization. In addition, dropout technique, widely
used in state-of-the-art DNNs, inhibits overfitting.
Deeper Networks, like ResNet [23], apply very frequently Batch Normalization (BN)
layers instead of LRN. As described by Ioffe and Szegedy [27], BN contributes to
training speedup, because it allows to increase the learning rate and helps regulariza-
tion. Therefore, backpropagation is not affected by the scale of the parameters, since
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3 – HyCNN

weights tends to be more stable. While LRN is applied to the output of multiple
kernels belonging to the same layer, BN normalize each layer’s input independently,
obtaining zero mean and unit variance. As explained in Section 3.3, SELU activation
function can achieve the same properties.

3.2.2 From RELU to SELU

RELU activation function, introduced by Nair and Hinton [39], has shown its great
potentials in AlexNet [31] and other networks afterwards. Since it has zero derivative
for negative inputs, the backpropagation error is blocked in those conditions. This is
called the ”dead neuron problem”, because once a neuron reaches this condition, it
will not escape and can be considered dead because it cannot be updated. Many
researchers proposed solutions for that problem. Maas et al. [37] suggested to use
Leaky RELU, where also the negative part of the activation function has a positive
(linear) slope. Setting the appropriate value of the slope can be tricky, but He et
al. [22] showed a method to learn the slope automatically during backpropagation.
Another important direction of research is Exponential Linear Unit (ELU). Clevert
et al. [6] proposed ELU, an activation function with exponential behavior in the
negative part and linear in the positive one.
Another issue regarding RELU is that it introduces mean and variance shifts. This
effect is accentuated when the network becomes much deep. In order to compensate
it, Ioffe and Szegedy [27] implemented a new type of normalization, called Batch
Normalization. BN represents the key of success for ResNet [23] and gives the main
contribution to their accuracy improvement over the previous state-of-the-art DNNs.
Every activation function described above require BN layer to work properly. A
recent work made by Klambauer et al. [30], however, showed that Self-Normalizing
Neural Networks (SNN) have the intrinsic property to automatically converge to
zero mean and unit variance, without requiring explicit Batch Normalization. They
propose to use Scaled Exponential Linear Units (SELU) as activation function,
instead of RELU. In our work, we show how RELU can be systematically replaced by
SELU activation functions at the selected layer of a given DNN, in order to increase
the training performance, also in DNNs without BN layers in their original versions.
Chen et al. [4] and Harmon et al. [20] proposed to change activation functions in
CNNs, obtaining accuracy improvement. They introduced another degree of freedom,
allowing to choose a different activation function for each neuron of the same layer.
Although the accuracy improves, their approach cannot avoid completely branch
divergence, when the network is trained on a Single Instruction Multiple Data (SIMD)
based architecture, like GPU: since each neuron can be different from the others
in the same layer, Convolutional kernels are not spatially equal, then the SIMD
utilization-efficiency is not optimal.

11



3 – HyCNN

Our work differentiates from it because it introduces the possibility to change activa-
tions in different layers selectively, obtaining a Hybrid CNN, without degrading the
performance. Computational efficiency is maintained because each neuron belonging
to the same layer uses the same type of activation function.

3.3 SELU vs. RELU

RELU is a nonlinear activation function, expressed by Equation (3.1). It is very
simple to implement and the computational effort is minimal.

RELU(x) =

{
0, if x ≤ 0

x, if x > 0
(3.1)

SELU, however, is a more complex function, described in Equation (3.2). This
function introduces two new parameters, λ and α. They can be seen as two new
hyper-parameters of the network, because their values can affect significantly the
training process. In our experiments we follow the work made by Klambauer et
al. [30] and use their values, reported in Equations (3.4) and (3.5), in order to achieve
zero mean and unit variance.

SELU(x) = λ

{
α expx−α, if x ≤ 0

x, if x > 0
(3.2)

Figure 3.1(a) shows the differences between the two functions. While RELU is flat for
negative inputs, SELU has an exponential behavior. This property leads to a better
training process overall with respect to RELU, because all the weights are updated
during backpropagation phase. In other words, the dead neuron problem is avoided.
The main advantage of SELU with respect to RELU can be seen in the derivative
(Figure 3.1(b)). While, for positive inputs, the derivatives are pretty similar (except
for the vertical shift introduced by the parameter λ), SELU introduces a nonzero
derivative also for negative inputs. That property allows to back-propagate the
cost function toward the entire network. On the contrary, RELU activations block
backpropagation in their negative part.
Another important characteristic of SELU is its self-normalizing property, that
leads to the main motivation of our work: demonstrate that using SELU activation
functions leads to a better accuracy with respect to the original network. Klambauer
et al. [30] presented significant improvements when applying their proposed SNN. We
propose a more general approach to select which is the best architecture configuration.
We allow to choose a different activation function (RELU or SELU) on each layer.
The methodology and selection decisions are explained in more detail in section 3.4.
Klambauer et al. [30] proposed initialization and dropout techniques that fit well
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Figure 3.1: Comparison between RELU and SELU functions.

with SELU. We adopt these methods in the following sections, after having discussed
further about dropout in Section 3.3.1. In addition, we analyze the consequences
due to SELU of another hyper-parameter, the learning rate, in Section 3.3.2.

3.3.1 Dropout method

Dropout technique has been introduced by Srivastava et al. [43], in order to improve
the regularization and to avoid CNN overfitting. They are widely used in the most
common state-of-the-art networks because of their interesting properties and simple
applicability with RELU activation functions. He et al. [22] proposed a weight
initialization method that is efficient for RELU activations, because it limits the
variance. Kingma et al. [38] analyzed how variance changes when dropout is applied.
Klambauer et al. [30] revised it and proposed a new initialization method and a new
dropout technique, specific for SELU. Weights are initialized in such a way that
mean E(wi) = 0 and variance V ar(wi) = 1/n, where n is the number of inputs. This
methods leads to the global variance (sum of all variances of each weight in the same
layer) equal to 1. For example, each weight of a 100 input layer should be initialized
as a gaussian variable with zero mean and variance equal to 0.01.
Standard dropout is critical, because it injects a Gaussian noise on the weights at
each iteration, in such a way that it contributes to increase the variance. Dropout
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is well matched with RELU, because setting the weights to 0 (the default value)
corresponds to the low variance value. Therefore, dropout works fine with RELU in
order to preserve mean and variance. SELU, though, is a different function, because
the low variance value corresponds to limx→−∞ SELU(x) = −λα = α′. For this
reason, Klambauer et al. [30] proposed the technique called ”alpha dropout”, which
sets dropped weights to α′, in order to preserve mean and variance. Hence, in the
following sections, we adopt standard dropout when applied to RELU activations
and ”alpha dropout” when dealing with SELU ones. A similar approach has been
adopted by Hendrycks and Gimpel [25], when dropout is applied in networks with
batch normalization.

3.3.2 Learning rate analysis

The learning rate is a key hyper-parameter for CNNs and tuning its value implies large
changes in accuracy and training speedup. Moreover, different types of activation
functions respond in a different way, according to their first derivatives. As reported
in Figure 3.1 (b), SELU derivative has a peak equal to the product λα, when x→ 0−.
This behavior can cause an unwanted exploding gradient problem. In other words,
it is possible that for a small range of learning rate values, RELU activation can
learn well, but SELU activation can suffer from exploding gradient. This effect can
be compensated in two ways: either reducing the learning rate applied to SELU or
introducing ”alpha dropout” layers after SELU, as explained in Section 3.3.1. The
second option is preferable, because the former one results in an accuracy reduction,
since the learning rate is no more optimal.
Another remarkable aspect is the following: since SELU avoids dead neuron problem,
training performs better than RELU when the learning rate is in middle/small range.
Usually CNNs are trained with multi steps of decreasing learning rate, in order
to achieve speedup with respect to a fixed rate. Using SELU activations, weights
are updated even with a small learning rate, while using RELU the update is less
significant. This effect is even more evident in shallow CNNs [32]. This consideration
have been proved with an example using LeNet-5 on MNIST dataset, reported in
Section 3.5.2.

3.4 Methodology

The proposed methodology works for any type of DNNs, from very shallow nets to
the deeper ones. It introduces additional training time due to exploration, but it is
considered affordable to achieve a better DNN design in terms of accuracy. Figure 3.2
shows the steps to follow in a generic architecture, with an example applied on
AlexNet.
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First of all, we have to identify common substructures of the network. Looking at
the details of each layer, we can subdivide them into groups with similar features. A
first (coarse grain) approach consists of grouping together convolutional (CONV)
layers and fully-connected (FC) layers. CONV layers in DNNs, however, do not have
all the same configuration. Looking for instance at AlexNet architecture (Figure 3.3),
we can refine our structure if we consider also where Local Response Normalization
(LRN) is applied and where not. AlexNet architecture has LRN only in the first two
CONV layers. In this way, we can divide the layers in three groups:

� Group A: CONV1 & CONV2 → RELU+LRN

� Group B: CONV3, CONV4 & CONV5 → RELU

� Group C: FC6 & FC7 → RELU+DROPOUT

From now on, we process each group as a single entity, so we can analyze step by
step all the possible modifications of the network, obtaining a Hybrid CNN (called
HyCNN) that presents multiple types of activation functions.
In parallel to that, we have to define all the possible configurations that can be used
in each group. The rectangle box of Figure 3.2 on the right lists the possibilities for
AlexNet.
Starting from group A, we find out which is the best replacement by exploring one by
one all the possible configurations. Based upon experimental analysis, we select the
configuration that leads to a better accuracy. Some practical rules can be applied to
speedup parameter selection: keep LRN layers and change dropout rate after SELU
if the accuracy gets lower. A more detailed analysis about dropout method after
SELU (”alpha dropout”) is reported in Section 3.3.1.
Once the best configuration for the first group of layers has been found, we move
on to the next group, until all the groups have been processed. In this way, we can
obtain an hybrid CNN, where some layers have RELU activation function and some
others have SELU. Empirically, we can assert that SELU in CONV layers leads to
an higher accuracy, while FC layers perform better with RELU.
An example of the modified version of AlexNet, called HyCNN AlexNet, is shown in
Figure 3.4. Compared to Figure 3.3, the modifications are minimal, but the accuracy
improvement, reported in the last column of Table 3.2, is significant.

3.5 Experiments

We apply our methodology to two different CNNs, using different datasets, AlexNet on
CIFAR-100 and LeNet-5 on MNIST. After having analyzed the results, we generalize
our methodology as a systematic approach and validate it with two CNNs (a Custom
CNN and AlexNet) on another dataset (CIFAR-10).

15



3 – HyCNN

Figure 3.2: Workflow of general methodology, applied to AlexNet.
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Figure 3.3: Original AlexNet architecture Figure 3.4: HyCNN AlexNet architecture

We use Caffe framework [29] for training and inference, performed on Nvidia GTX
1070 GPU. Its specs are reported in Table 3.1 and the experimental setup, from
SW to HW is summarized in Figure 3.5. Accuracy results for different networks
and datasets are reported in Table 3.4. The relative error has been computed as in
Equation (3.3):

εr =
accHyCNN − accOriginal

100%− accHyCNN

(3.3)

Parameters λ and α of SELU layers have been selected according to the procedure
explained by Klambauer et al. [30]. Their values are reported in Equations (3.4)
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and (3.5).

λ = 1.050700987 (3.4)

α = 1.67326324 (3.5)

Figure 3.5: SW to HW setup

NVIDIA GTX 1070 specs
CUDA cores 1920

Memory 8 GB DDR5
Mem. interface width 256-bit

Mem. bandwidth 256 GB/s
Single precision Flops 6.5 TeraFLOPS

Power requirement 150 W

Table 3.1: GPU specs

3.5.1 AlexNet on CIFAR-100

CIFAR-100 dataset consists of 100 classes containing 600 images each, 500 for training
and 100 for testing. Evaluation have been made using ”fine” labels. Since each image
has size 32x32, while AlexNet was designed for 224x224 images by Krizhevsky et
al. [31], the first CONV layer has been modified in order to compensate it: instead
of kernel size 11x11 and stride 4, we apply a kernel with size 5x5 and stride 1.
We trained it for 70000 iterations using a batch size of 100, with momentum = 0.9
and weight decay = 0.0005. The initial learning rate of 0.005 has been scaled by
a factor 0.1 after 30000 and 60000 iterations. No preprocessing was applied to the
images.
Clevert et al. [6] reported 45.80% test error rate on original AlexNet for CIFAR-100,
while we achieve 45.39%.
Following our methodology, we obtained many different versions of AlexNet. The
results, in terms of how TOP1 accuracy is evolved, are shown in Figure 3.6. Version
configurations are described in Table 3.2. Final TOP1 accuracy values of the most
significant versions (original and best one, called HyCNN) are reported also in
Table 3.4. Our HyCNN AlexNet has SELU activation functions in all 5 CONV layers
(followed by ”alpha dropout” with rate 1%) and RELU in FC layers. It achieves a
relative error reduction of 8.12% with respect to the Original AlexNet.
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Note that empirically other choices imply worst results: not applying dropout after
SELU in CONV layers can lead to the exploding gradient problem, and lower accuracy
is obtained if we remove LRN layers. Dropout rate tuning is essential in order to
achieve an accuracy improvement.

Figure 3.6: Test TOP1 accuracy of AlexNet versions on CIFAR-100 dataset.

VERSION GROUP A GROUP B GROUP C TOP1 ACC.
1 (Original) RELU+LRN RELU RELU+DROP(50%) 54.61%

2 SELU+DROP(3%)+LRN RELU RELU+DROP(50%) 54.63%
3 SELU+DROP(1%)+LRN RELU RELU+DROP(50%) 55.20%
4 SELU+DROP(0.3%)+LRN RELU RELU+DROP(50%) 54.89%
5 SELU+DROP(1%) RELU RELU+DROP(50%) 44.17%

6 (HyCNN) SELU+DROP(1%)+LRN SELU+DROP(1%) RELU+DROP(50%) 58.02%
7 SELU+DROP(1%)+LRN SELU+DROP(1%) SELU+DROP(50%) 51.91%
8 SELU+DROP(1%)+LRN SELU+DROP(1%) SELU+DROP(80%) 52.47%

Table 3.2: Different versions of AlexNet for CIFAR-100. CONV1 and CONV2 belong
to group A; CONV3, CONV4 and CONV5 to group B; FC6 and FC7 to group C.

3.5.2 LeNet-5 on MNIST

MNIST dataset consists of a collection of handwritten digits (size 28x28), divided
into 10 categories. The set consists of 60000 training images and 10000 test ones.
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LeNet-5 architecture is described by LeCun et al. [32]. We trained it for 30000
iterations using a batch size of 64, with momentum = 0.9 and weight decay = 0.0005.
The initial learning rate of 0.05 has been scaled by a factor 0.5 after 10000, 20000,
25000 and 29000 iterations. No preprocessing was applied to the images.
Our HyCNN architecture achieves 9.86% relative error reduction with respect to the
original network. It has SELU activations (without dropout) in the CONV layers,
and RELU in FC. Instead of reporting a graph similar to Figure 3.6, we report
an analysis based on how the training process changes when the CNN is trained
with a different number of epochs. Figure 3.7 shows how the accuracy gap between
Original and HyCNN LeNet-5 varies with respect to a different training effort in
terms of number of epochs. Note that those values do not refer to intermediate steps
of training, but distinct training processes with a different setup of learning rates, as
reported in Table 3.3.

Figure 3.7: Accuracy gap between Original LeNet-5 and HyCNN LeNet-5, with
respect to different number of epochs.

3.5.3 Deriving Key Observations and Design Rules

Analyzing the results obtained in Sections 3.5.1 and 3.5.2, we can obtain a systematic
approach that can be applied also to other CNNs:
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Setup # epochs Init. learn. rate Scal. factor Epochs steps Final acc.

A 5 0.01 0.9 3, 4, 4.5
Original: 98.86%
HyCNN: 98.86%

B 10 0.01 0.9 5, 6, 8, 9
Original: 98.99%
HyCNN: 99.02%

C 20 0.05 0.5 6, 12, 16, 19
Original: 99.17%
HyCNN: 99.21%

D 30 0.05 0.5 10, 20, 25, 29
Original: 99.22%
HyCNN: 99.29%

Table 3.3: Setups A to D for LeNet-5 training on MNIST: for each setup, the table
shows number of epochs, initial learning rate, scaling factor, number of epochs where
the learning rate have been scaled and TOP1 final test accuracy.

� Replace RELU with SELU in CONV layers.

� If necessary, apply ”alpha dropout” after SELU, properly tuning the dropout
rate in order to achieve the highest accuracy. Note that the dropout rate is
not a parameter that can be set to a certain value for every CNN, but it is
strongly affected by network architecture and type of dataset.

� Maintain RELU activations in FC layers.

Following this procedure, we will obtain what we call HyCNN: an hybrid Convolu-
tional Neural Network with multi-type activation functions (SELU in CONV and
RELU in FC), that improves the accuracy over the original CNN with RELU in
every layer.
Results are reported in Table 3.4. The last column of the table shows the relative error
reduction obtained by our HyCNN architectures, computed using Equation (3.3).

3.5.4 Applying the Methodology to our DNN and AlexNet
for CIFAR-10

CIFAR-10 dataset consists of 10 classes of labeled images with size 32x32. The set is
composed by 50000 training images and 10000 test ones. Based on the analysis made
using the first two experiments, we designed a custom DNN, visible in Figure 3.8,
with 4 CONV layers and 3 FC layers. We trained it for 120000 iterations using a
batch size of 100, with momentum = 0.9 and weight decay = 0.0005. The initial
learning rate of 0.005 has been scaled by a factor 0.5 after 30000, 60000, 80000,
90000, 100000 and 110000 iterations. No preprocessing was applied to the images.
Following the design rules explained in Section 3.5.3, we replaced RELU with SELU
in all 4 CONV layers and searched the optimal value of dropout rate, which is 10%
in this case. Our HyCNN (Figure 3.9) reduces the relative error of 17.35%.
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We repeated again the procedure with AlexNet [31], whose architecture is the same
as Figure 3.3, except for FC8 that has only 10 outputs. We trained it for 70000
iterations using a batch size of 100, with momentum = 0.9 and weight decay =
0.0005. The initial learning rate of 0.005 has been scaled by a factor 0.1 after 30000
and 60000 iterations. No preprocessing was applied to the images.
Clevert et al. [6] reported 18.04% test error rate on original AlexNet for CIFAR-10,
while we achieve 16.84%.
Our Hybrid architecture (HyCNN AlexNet) has SELU activations (with 10% dropout)
in all 5 CONV layers and achieves 14.25% relative error reduction with respect to
the original network.

Figure 3.8: Original architecture of our
DNN

Figure 3.9: HyCNN architecture for our
DNN
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Dataset Network TOP1 Accuracy Relative error
CIFAR-100 Original AlexNet 54.61% -
CIFAR-100 HyCNN AlexNet 58.02% -8.12%

MNIST Original LeNet-5 99.22% -
MNIST HyCNN LeNet-5 99.29% -9.86%

CIFAR-10 our DNN (Original) 79.30% -
CIFAR-10 our DNN (HyCNN) 82.36% -17.35%
CIFAR-10 Original AlexNet 83.16% -
CIFAR-10 HyCNN AlexNet 85.26% -14.25%

Table 3.4: Experiment results in terms of accuracy improvement and relative error
reduction.

3.6 Conclusions

In this work, we have presented a systematic methodology to improve CNN accuracy
using Multy-Type activation functions. In particular, our approach fits well for
generic CNNs, like our proposed Custom DNN (Figures 3.8 and 3.9), that achieves
more than 17% TOP1 relative error reduction on CIFAR-10. Good results have been
obtained using SELU activation functions in CONV layers and RELU in FC layers.
Since our methods fits well with shallow and middle range depth CNN, a possible
future analysis can be performed on deeper CNN with more complex Datasets. A
further exploration analysis could cover also DNNs that already have BN layers in
their original versions.
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Chapter 4

PruNet: Class-Blind Pruning
Method for Deep Neural Networks

The work described in this chapter have been accepted for publication at the 2018
International Joint Conference on Neural Networks.

4.1 Introduction

Recent developments have allowed to train very Deep Neural Networks (DNN) and
achieve high level accuracy in computer vision [23, 31, 42, 44]. Even though they
can beat humans in image classification task [49], they require a huge amount of
storage and memory accesses. In real applications, DNN inference is not easy to
deploy, since it usually exceeds the available resources on mobile platforms and does
not meet real-time constraints, because of GPU limited bandwidth. For this reason,
many researchers in deep learning community have focused on DNN compression and
efficiency improvements. There are numerous variants of compression techniques,
that include different pruning methods and reduced precision representation.
We propose a magnitude-based pruning method, called Class-Blind, as described by
See et al. [41]. Our methodology requires many iterations of pruning and retraining,
but we are able to achieve a significant compression with respect to the baseline model.
As a side effect, pruning has a regularizing property, because during the first stages
of pruning, the sparse networks outperforms the original one in terms of accuracy.
The process of iteratively pruning and retraining is effective, because it allows to
progressively adjust the parameters and maintain a good level of accuracy. Our
methodology has been tested both on a simple task (digit recognition on MNIST
dataset, with quite simple networks, like LeNet-5 and LeNet-300-100 [32]) and
on more complex configurations (VGG-16 net [42] on CIFAR-10, VGG-16 [42],
AlexNet [31] and GoogleNet [44] on CIFAR-100). If we combine this work with an
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efficient coding for sparse networks, like CSC or CSR, we can achieve similar benefits
as reported in [18]. We do not discuss such coding methods in our work.
An overview of our work is shown in Figure 4.1. The rest of the chapter is organized
as follows: in Section 4.2 we recall and summarize the work by other researchers
on the same field subject; Section 4.3 explains what are the motivations of our
research and the reasons why we are choosing to work on this topic; in Section 4.4 we
present our methodology, that represents the fundamental aspect of our contribution;
Section 4.5 describes an example, which provides us useful intuitions; the experiment
section (Section 4.6) reports the most significant results; Section 4.7 concludes the
article.

Figure 4.1: General overview of our work.

4.2 Related work

Making DNN inference manageable on mobile applications has become a very
attractive topic and a large variety of ideas have been proposed. Vanhoucke et al. [46]
propose a fixed-point implementation, achieving a considerable speedup. Other works
include low-rank approximations for weight matrices (Denton et al. [11], Jaderberg
et al. [28]), weight sharing (Chen et al. [5], Han et al. [18]), reduced precision (Lin et
al. [35], Courbariaux et al. [10], Gupta et al. [17], Lin et al. Venkatesh et al. [47])
or even binary weights (Lin et al. [34], Courbariaux et al. [9], Courbariaux and
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Bengio [8]). Hinton et al. [26] proposed the ’distillation’ technique, that leads to the
teacher-student approach. These techniques are orthogonal to connection pruning,
as explained by Han et al. [18], where a good compression rate have been obtained.
There exist several varieties of pruning methods. Structured or channel pruning
(Anwar et al. [1], Li et al. [33], Wen et al. [48], He et al. [24]) allows to achieve a
significant inference speedup. Recently, Changpinyo et al. [3] demonstrated also
other benefits of channel-wise sparsity, but the accuracy drop limits its deployment in
practice. Based on Optimal Brain Surgeon (Hassibi et al. [21]), Dong et al. proposed
a layer-wise pruning approach [12] that leads to a significant compression ratio, but it
requires the computation of reverse Hessian matrix. Molchanov et al. [38] introduced
a new way to introduce sparsity in DNNs, called ”variational dropout”. The original
dropout technique, introduced by Srivastava et al. [43] is modified in a way that
some connections are permanently removed from the network. Inspired by this work,
Louizos et al. [36] applied successfully variational dropout, obtaining an efficient
coding scheme. Recently, Federici et al. [13] combined this work with Soft Weight
Sharing (Ullrich et al. [45]), obtaining state-of-the-art values of compression rates.
Another widely used pruning procedure is the so called magnitude-based method:
Han et al. [19] obtained a good compression ratio without sacrificing the accuracy
and demonstrated in [18] that pruning can be successfully combined with other
compression techniques, like weight sharing, quantization and Huffman coding. Zhu
and Gupta [50] showed that, having the same memory footprint, a large sparse
model (obtained by pruning and retraining) outperforms the small dense one in
terms of accuracy. The main drawback of this approach is the increase of time and
computation during training. In order to overcome this effect, Narang et al. [40]
proposed a way to prune the network during training, with the purpose of limiting
the overall computational effort during the training phase. However, this method
leads to an accuracy loss and the final sparsity which can be obtained is far from the
ones achieved with other approaches. Another important result has been obtained
by Guo et al. [16]: they were able to significantly compress the model without loss in
accuracy. Their approach is more complex than the other ones, because they exploit
two operations: pruning and splicing. The splicing operation is effective because
it allows to restore some important connections that were erroneously pruned in
the previous step. A deeper analysis on magnitude-based methods was made by
See et al. [41]. They showed that there are different pruning schemes leading to
different results, while in general, despite their simplicity, magnitude-based pruning
methods are effective also on Neural Machine Translation applications. A more
detailed explanation of these methods is reported in Section 4.3.2.
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4.3 Motivations

DNN pruning has become a hot topic nowadays because of its efficiency and it
is becoming widely used in everyday applications for improving the performance
efficiency of inference in embedded platforms. Our contribution is to propose a simple
and efficient method to reduce the memory requirements during inference in mobile
applications, where the memory occupied by the model and the power consumption
are an issue, as well as real-time constraints. For this reason, the overhead introduced
by an iterative approach of retraining, as explained in the work of Han et al. [19],
has been considered less relevant. Iteratively pruning and retraining the network
implies a much more intensive computational effort with respect to the standard
training. However, this process can be performed in large data-centers, provided
with powerful GPUs and optimized accelerators for Deep Learning, in such a way
that time and power consumed are still acceptable.
Since the number of parameters in a network is directly proportional to the number
of computations at the inference stage, an effective and commonly used parameter
to evaluate pruning methods is the Compression Ratio (CR: the ratio between the
number of parameters in the original model and in the sparse model, respectively),
as described in Equation (4.1).

CR =
# parametersoriginal model

# parameterssparse model

(4.1)

Consequently, once we have obtained a sparse structure, we can use the same
storing methods proposed by Han et al. [18], like Compressed Sparse Row (CSR) or
Compressed Sparse Column (CSC). Moreover, pruning represents only the first step
of DNN compression: works made by Han et al. [18] and Federici et al. [13] showed
that other compression techniques are orthogonal to pruning and can be applied in
further stages.
Our contribution focuses on an efficient way to apply pruning, based on Class-Blind
method, that outperforms the results obtained by Han et al. [19], without a relevant
accuracy loss. A detailed description of the Class-Blind method, compared to other
magnitude-based methods, is reported in Section 4.3.2.

4.3.1 Efficiency of magnitude-based pruning

Among all DNN compression methods analyzed in Section 4.2, we choose to use
a magnitude-based pruning method. Despite the effectiveness in terms of CR of
methods based on Variational Dropout by Molchanov et al. [38] and Bayesian
Compression by Louizos et al. [36], the complexity introduced by considering weights
as a distribution makes these approaches difficult to deploy in everyday applications.
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On the contrary, the results obtained by Han et al. [18,19] on AlexNet [31] and VGG-
16 [42] trained on ImageNet dataset look very attractive for what concerns accuracy.
However, some details of the pruning process (threshold value, number of retraining
iterations) performed by Han et al. have not been revealed in their publications. This
is another important motivation for our work: trying to obtain result comparable
with (or better than) Han et al. [19], using a clearer methodology. Moreover, See et
al. [41] showed as a side effect that magnitude-based pruning introduces a regularizing
effect. That is the reason why low pruned models outperform their respective baseline
models. As a consequence, our idea is to further prune and retrain the network (in
an iterative way) beyond the level where the accuracy increases, in order to maximize
the compression ratio, while keeping the accuracy loss acceptable.

4.3.2 Efficiency of Class-Blind method

See et al. [41] gave a great contribution to our work, because they analyzed three
different magnitude-based pruning schemes. Despite they applied those schemes on
Neural Machine Translation application only, their concepts are the key for our work,
because they can be applied also to other applications, like image classification. They
based the differences on the concept of ”class”, which means a group of neurons
performing similar operations. We revisited that concept for Feed-Forward Neural
Networks and we assume that each class can be seen as a weighted layer of the
network. In the work by See et al. [41], the concept of class was a little bit different,
because it is related to Recurrent Neural Networks for Neural Machine Translation
applications. In the followings, we refer to class and layer as synonyms.
The three pruning schemes that were presented by See et al. [41] are the following:

1. Class-Distribution (CD): select threshold T, common for every layer, and
compute the standard deviation σ of each layer. Then, for each layer, prune
parameters below σT. This method is used by Han et al. [19]. The threshold T
is equal across each layer, but the product σT can vary. Finding the optimal
value of T can be tricky.

2. Class-Uniform (CU): select a certain percentage x and, for each layer, prune
the smallest x% parameters. Easier to implement than CD. In this way pruning
is equally distributed among all the layers. However, the accuracy drop is not
minimized.

3. Class-Blind (CB): select a certain percentage x and prune the smallest x%
parameters, regardless of which layer they belong to. In this way some layers
are pruned more than others. This method is adopted by See et al. [41], showing
that it is the most efficient among these three.
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Based on the results obtained by See et al. [41], we decided to use the Class-Blind
method, not only because of its simplicity, but also because it outperforms the other
schemes.

4.4 Methodology

We now propose a general methodology, called ”PruNet”, that can be applied to
sparsify a neural network. We do not describe the baseline training procedure, since
it is out of the scope of our work. Then, we start from a pre-trained model of the
network, i.e., already trained over the same dataset that will be applied for the
pruning phase.
Figure 4.2 summarizes our methodology in a schematic way. First of all, we set the
hyper-parameters. Some intuitions about how to choose these values are explained in
Section 4.5.1. We reduce the initial learning rate with respect to the one used for the
baseline training (e.g., if the baseline initial learning rate is 0.01, the initial one in
each retraining phase could be 0.003). If the network contains some dropout layers,
the dropout rate must be changed according to the rule proposed by Han et al. [19]:

Dr = Do

√
Cir

Cio

(4.2)

where Dr is the dropout rate during retraining, Do the original dropout of the
baseline training, Cio and Cir are the number of connections of layer i for the original
network and the sparse one, respectively. The number of training epochs can be
scaled as well. While Han et al. [19] retrain convolutional layers and fully-connected
layers separately, we perform retraining on the whole network at the same time.
Another group of hyper-parameters to set is composed by the ones introduced for
our purpose: pruning percentage, maximum acceptable accuracy loss and pruning
iterations. We have to fix only the first two values, since the number of pruning
iterations depends on the other two. We choose to set the pruning percentage to a
mid-range value, according to the trade-off reasons explained in Section 4.5.1. In
this way, at each pruning iteration, the number of weights is reduced. The choice
of the maximum accuracy loss is delicate, because it depends on the application.
However, as shown in Figure 4.3, the curves become very steep toward high MSR.
As a consequence, the most appropriate value lies around the focal point of an
exponential fitting curve (black line of Figure 4.3).
Then, the iterative process starts. For each iteration we perform the following
operations:

1. Sort the weights of the whole network in ascending absolute value order and
mark the X% lowest ones according to the pruning percentage.
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2. Apply a mask for each layer: a 0 corresponds to a pruned weight, while a 1
stands for a not pruned weight.

3. Retrain the (sparse) network, then compute the accuracy loss.

Finally, if the accuracy loss is still below the threshold, loop back to the next iteration,
otherwise the process is terminated. Note that the final model is not the one at the
last iteration, but the previous one. Since we exit from the loop when the accuracy
is not acceptable, we have to restore the model at the previous step, so as to comply
with the constraint.

4.5 Case study of a simple task

This section will give some useful intuitions that have been essential to formulate the
more generic methodology described in Section 4.4, as well as a comparison between
our approach and the Class-Uniform method. For this purpose, we train and prune
LeNet-5 (developed by LeCun et al. [32]) on MNIST dataset. The network is quite
shallow, because it has only two convolutional layers and two fully-connected layers,
but it has been referenced as example throughout the literature very frequently.
MNIST dataset is a collection of handwritten digits, grouped in 10 categories. It
contains 60000 training images and 10000 test images.
We first trained the dense network, like described by LeCun et al. [32], obtai-
ning an accuracy of 99.13 %. Hardware and software setup is reported in Sec-
tion 4.6.1. Afterwards, several pruning experiments, varying some parameters, have
been performed.

4.5.1 Intuitions

The pruning process is delicate, because removing connections from the network
implies an accuracy loss. However, as successfully explained by Han et al. [19],
the retraining process is fundamental to recover from the errors. They suggest an
adjustment for the dropout rate, since the sparsity introduces itself another form of
regularization. Indeed, the dropout rate should be changed according to that.
Another important hyper-parameter to consider is the learning rate. Usually, it
is not constant during the whole training process, but it decreases after a certain
amount of training epochs. At the first training step, all the weights and biases of
the network are initialized as their default value. The pruning process, however,
does not change the remaining parameter values. That is equivalent to retrain the
sparse network from a pretrained model. As a consequence, the starting learning rate
during retraining can be lower that the respective value set for the first train. As a
demonstration of this intuition, See et al. [41] propose to divide by 2 the starting
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Figure 4.2: Summary scheme of methodology.
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learning rate of the original model. Selecting that value is not an easy task and
cannot be generalized for every setup, because it depends on the network and the
dataset. Moreover, at each retraining iteration it is possible to further tune this
value. Since the retraining process has some similarities to transfer learning (i.e., the
network is not trained from scratch), the total number of epochs during retraining
can be reduced with respect to the ones adopted for the baseline training.
Using Class-Blind pruning method, a new hyper-parameter has been introduced:
the pruning percentage. It represents how many weights are going to be pruned
away permanently from the network. Han et al. [19] demonstrated that iterative
pruning (and retraining) is more efficient than doing the same procedure in a single
iteration. In order to avoid possible terminology misunderstanding, we refer to
pruning percentage as the amount of parameters that are going to be pruned at each
iteration (e.g., after 50% pruning at the first iteration, if we prune again with a
pruning percetage equal to 50%, we obtain 25% parameters with respect to the
original model). It is worth noting that pruning percentage should not be confused
with the Compression Ratio (Equation (4.1)). If we neglect the overhead due to a
sparse memory coding scheme, the CR can be equaled to the Memory Saving Ratio
(MSR): the ratio between the amount of memory occupied by the original model and
the amount required by the sparse model (Equation (4.3)).

MSR =
memoriginal model

memsparse model

(4.3)

Choosing this value have a huge impact on the success of our procedure, since it
defines the ability of the network to recover the accuracy from the error introduced
by pruning. It has implications also on retraining time / retraining epochs, while
their respective relations are quite complex. Empirically, we can assume that:

� A low value of pruning percentage allows a lower retraining effort to restore
the accuracy, but requires high expense in training time due to more iterations.

� A faster approach can be obtained using an high value of pruning percentage,
but it implies higher damages to the network, that cannot always guarantee an
optimal recovery at the retraining stage.

According to the aforementioned considerations, a middle-range value looks more
attractive. At each iteration, the value could either remain constant or change.
While it is simpler to keep the pruning percentage constant at every iteration, a
possible design could be starting with high value in the first stages and progressively
decreasing it.
Since our final goal is to maximize the compression ratio, while maintaining an
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acceptable accuracy, we define another parameter, the Accuracy Loss (AL, Equa-
tion (4.4)), which is the relative difference of accuracy between the sparse and the
original model.

AL =
Accsparse model − Accoriginal model

Accoriginal model

(4.4)

Considering acceptable, for example, an Accuracy Loss of 0.1%, we are able to set the
number of pruning (and retraining) iterations such that the accuracy loss stays below
that threshold. Thanks to the regularizing effect of pruning, explained by See et
al. [41], for relatively low values of MSR, the Accuracy Loss reaches negative values,
while at a certain point it grows exponentially. The behavior is shown explicitly
in Figure 4.3 for our current setup (LeNet-5 on MNIST). The graph looks very
promising, because it outperforms by around a factor 10 the results obtained by Han
et al. [18] on a similar approach. This has been obtained by running simulations,
using Class-Blind method, with different (constant) pruning percentages, from 40%
to 90%, and setting the threshold of AL equal to 0.1%. Overall, the figure shows that
for low MSR, the sparse network outperforms the baseline, due to the regularizing
effect introduced by pruning. The accuracy loss remains quite stable, until a certain
point (around a MSR of 100X) where it starts growing exponentially. In the first
part the pruning percentage is not strictly relevant, since the accuracy loss lies in
the range [-0.2,0]. For higher MSR, however, the difference is more significant: while
for high pruning percentages the Accuracy Loss grows very quickly, a lower pruning
percentage allows to better recover from that error, thus pushing the MSR to the
maximum.
Figure 4.3, however, shows only the general behavior of the network, while many
aspects cannot be seen directly. Introducing a magnitude-based sparsity implies
removing weights that have a low absolute value. For this reason, showing the weight
distribution can be useful to understand the pruning process and what actually
happens inside the neural network. Figures 4.5a to 4.5l show the weight distribution
of our reference network, LeNet-5 (architecture reported in Figure 4.4), at each
pruning stage. Every figure shows a separate distribution for each layer of the
network, where L1 and L2 stand for the first two convolutional layers, and L3 and L4
stand for the third and fourth (fully-connected) layers. Each graph has been obtained
by subdividing the weights in intervals, counting the weight values belonging to
each interval and plotting histograms. Each red curve represents the fitting normal
distribution.
In the first figures, until the seventh pruning and retraining stage (Figure 4.5h),
the total number of parameters is progressively decreasing, but at the same time,
for every layer, there is a clear peak centered at 0. Thus the large majority of
weights have small absolute value. Starting from the eighth stage (Figure 4.5i), the
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Figure 4.3: Accuracy Loss with respect to Memory Saving Ratio in LeNet-5. Box A:
accuracy is slightly improved because pruning+retraining has a regularizing effect.
Box B: accuracy drops significantly because the number of parameters becomes too
low.

Figure 4.4: LeNet-5 architecture for our experiments.
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(a) After original training phase. (b) After the 1st stage, using CB method.

(c) After the 2nd stage, using CB method. (d) After the 3rd stage, using CB method.

(e) After the 4th stage, using CB method. (f) After the 5th stage, using CB method.

(g) After the 6th stage, using CB method. (h) After the 7th stage, using CB method.

Figure 4.5: Weight distribution of LeNet-5, across different pruning & retraining
stages, using the Class-Blind method.
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(i) After the 8th stage, using CB method. (j) After the 9th stage, using CB method.

(k) After the 10th stage, using CB method. (l) After the 11th stage, using CB method.

Figure 4.5: (continued)Weight distribution of LeNet-5, across different pruning &
retraining stages, using the Class-Blind method.

distributions are becoming smoother. Finally, in the last stages, the pruning effect
introduces a hole around zero. This result means that the network is approaching
its limit, because the retraining procedure is not able to recover completely from
the error generated by pruning. In other words, in the last stages, few weights
are remaining. Then, also the weights with middle range value are pruned. As a
drawback, the accuracy is getting lower.

4.5.2 Class-Uniform vs. Class-Blind

Similar experiments, setting the pruning percentage to 50%, have been carried on
using Class-Uniform method. This approach is less flexible, because it does not
allow to have sparsity unbalance across layers. Figure 4.3 shows also a comparison
between the two methods at the same conditions (pruning percentage of 50%): it
is clear that Class-Blind method outperforms the Class-Uniform one, since in the
latter configuration, the Accuracy Loss start growing rapidly after the 5th iteration
(MSR = 31), while the former one allows to reach the 8th one (MSR = 191). The
reason of that behavior can be explained again looking at the weight distribution
graphs. Looking at Figure 4.6, in particular at Figure 4.6e, that represents the weight
distribution across each layer of LeNet-5 after the fifth iteration, it is evident that
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sparsity penalizes very heavily the layer 1, that contains few parameters. On the
contrary, layer 3, that contains the majority of weights, could have been sparsified
more, as with Class-Blind method in Figure 4.5f.

(a) After the 1st stage, using CU method. (b) After the 2nd stage, using CU method.

(c) After the 3rd stage, using CU method. (d) After the 4th stage, using CU method.

(e) After the 5th stage, using CU method. (f) After the 6th stage, using CU method.

Figure 4.6: Weight distribution of LeNet-5, across different pruning & retraining
stages, using the Class-Uniform method.

4.6 Experiments

We apply our methodology not only to LeNet-5 on MNIST dataset, which corresponds
to the example provided in Section 4.5, but also on other tasks: LeNet-300-100 on
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MNIST (Section 4.6.2), VGG-16 on CIFAR-10 and CIFAR-100 (Section 4.6.3),
two other networks, AlexNet and GoogleNet, on CIFAR-100 (Section 4.6.4). A
summary of results is reported in Table 4.1, which shows quantitatively the Memory
Saving Ratio and the Accuracy Loss due to our proposed methodology. While a
shallow Convolutional Neural Network like LeNet-5 can be pruned to achieve the
best result in terms of MSR, also deeper networks (VGG-16 and AlexNet) are able to
achieve competitive MSR, compared to the other state-of-the-art methods reported in
Section 4.2. The complete setup, as well as the simulation environment, is described
in Section 4.6.1.

Dataset Network AL MSR
MNIST LeNet-5 0.11097% 190.75X
MNIST LeNet-300-100 0.07165% 107.072X

CIFAR-10 VGG-16 -0.2143% 115.382X
CIFAR-100 VGG-16 -0.8324% 91.462X
CIFAR-100 AlexNet 0.0772% 62.727X
CIFAR-100 GoogleNet 0.0772% 15.136X

Table 4.1: Experiment results in terms of Accuracy Loss and Memory Saving Ratio.

4.6.1 HW/SW Setup

We use pyTorch framework [51] for our experiments. We implement sparsity as
masked layers, where each mask is multiplied with the weight matrix during the
retraining process. The accuracy has been computed by running inference on the
validation set, while MSR has been evaluated as the ratio between the nonzero
parameters of the baseline model and the nonzero ones of the sparse model. The
experiments have been run on Nvidia GTX 1070 GPU, whose specs are reported in
Table 4.2. A schematic view of the process flow is reported in Figure 4.7.

4.6.2 LeNet-300-100 on MNIST

LeNet-300-100 is a Neural Network consisting of three fully-connected layers, as
described in [32]. We applied our methodology to this Network on MNIST dataset,
obtaining a sparsity percentage of 0.93%, which corresponds to a Memory Saving
Ratio of 107X. Such result has been achieved after the seventh iteration with constant
pruning percentage of 50%. The initial learning rate has been reduced accordingly,
from 0.01 of the train-from-scratch process, to 0.003 for retraining.
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Figure 4.7: SW to HW setup

NVIDIA GTX 1070 specs
CUDA cores 1920

Memory 8 GB DDR5
Mem. interface width 256-bit

Mem. bandwidth 256 GB/s
Single precision Flops 6.5 TeraFLOPS

Power requirement 150 W

Table 4.2: GPU specs

4.6.3 VGG-16 on CIFAR-10 and CIFAR-100

VGG-16 network is a quite deep neural network, with 13 convolutional layers and 3
fully-connected ones. The model used to be trained on ImageNet dataset is described
by Simonyan and Zisserman [42]. We applied some minor modifications to adapt it
for other datasets: CIFAR-10 and CIFAR-100. Both datasets are composed of 50000
training images and 10000 test images. While CIFAR-10 contains 10 different classes
of images, CIFAR-100 has 100 classes. We applied our methodology on this network
and the two datasets provide different results: we obtained a sparsity percentage of
0.87% on CIFAR-10 and 1.09% on CIFAR-100; the respective Memory Saving Ratios
are 115X and 91X. For both configurations, the starting learning rate has been set
to 0.003 and the pruning percentage to 50%.

4.6.4 AlexNet and GoogleNet on CIFAR-100

Again, CIFAR-100 dataset has been used for training other two DNNs, AlexNet [31]
and GoogleNet [44]. Since in their respective original papers, the two networks were
designed to be trained on input images of size 224x224, they have been adapted
to the size of CIFAR-100 images (32x32). For AlexNet we achieved a MSR equal
to 63X, while for GoogleNet 15X. Note that the MSR for GoogleNet is quite low
compared to the other experiments, because this DNN is already more sparse than
the others in the original form. For this reason, we are not able to compress much the
network without affecting the accuracy. The starting learning rate used for AlexNet
is 0.003, while the respective value for GoogleNet is 0.03. The pruning percentage
set for both processes is 50%.
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4.7 Conclusions

In this work we present a simple but at the same time effective methodology, based on
Class-Blind pruning scheme, to compress wide and dense Neural Networks (GoogleNet
is considered a less dense one, as explained in Section 4.6.4) from 60X to 190X, without
affecting the accuracy. This result allows to reduce memory and computational
requirements, making inference more feasible to deploy on mobile applications.
Since our ”PruNet” method is orthogonal with other compression techniques, like
quantization and weight sharing, the memory savings can be improved further.
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Chapter 5

Conclusions

Deep Neural Networks have revolutionized many Artificial Intelligence applications
in recent years. They have demonstrated to have great success, thanks to their high
level of accuracy that they can achieve. However, high-accuracy DNNs are difficult
(if not impossible) to deploy in mobile/embedded systems, which have strict resource
and power constraints. This challenge can be addressed by applying optimizations
to improve DNN efficiency. Optimizations can be applied on two aspects: improve
the accuracy and reducing memory requirements.
However, despite the success of our methodologies, accuracy improvements and
compression ratios are bounded and presents a limit that cannot be overcome. On
the other side, the computation requirements are growing fast as well. Guidelines
to design accurate and efficient DNNs from scratch are very difficult to generalize.
Moreover, incorporating also the training process in mobile devices would potentially
further improve the effectiveness of DNNs, because real-time training (and retraining)
allows application-specific and reconfigurable system solutions. Such scenarios must
be supported by efficient hardware architectures, that exploits parallelism, real-time
and resource constraints.
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