
MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Master's Thesis

Design and characterization of Variable

Latency adders for �oating-point

arithmetic units

Supervisor

Prof. Maurizio MARTINA

Candidate

Leonardo PEDONE

April, 2018

Acknowledgments

I would like to thank Professor Maurizio Martina for the opportunity to work

on this project for my thesis of the Master of Science in Electronic Engineer-

ing and for the support provided in this last months. Considering that in

these years of study the main �eld of interest were digital systems I con-

sider the work done to be very satisfying because it gave me the opportunity

to put most of the accumulated knowledge into practice. It was interest-

ing and challenging to learn more about adders architectures and study new

techniques like the speculative approach to increase their performances in a

practical application like the �oating-point addition.

At the end of this work I feel that I have increased my knowledge regarding

digital systems and improved the skills acquired during my studies.

I

Dedication

Because of the personal nature of this section and to make sure that the peo-

ple to whom it is addressed can better understand it, the language used is

Italian.

Alla �ne di questo percorso universitario presso il Politecnico che segna anche

la �ne del mio cammino di formazione, il primo pensiero va ai miei genitori

grazie ai quali non sarei potuto arrivare a questo traguardo e sopratutto non

sarei la persona che sono ora. Il loro appoggio sia dal punto di vista morale

che economico mi ha permesso di seguire la mie ambizioni e le mie passioni

e spero di essere riuscito almeno in parte a ripagarli e renderli �eri. Nat-

uralmente un grande sostegno è arrivato anche dal resto della mia famiglia

e parenti, perciò meritano tutti un ringraziamento a partire da mio fratello

Emanuele �no a tutti i nonni, zii e cugini.

La seconda persona che vorrei ringraziare è Alessia, per tutti questi anni in-

sieme, per essere cresciuti tenendoci per mano, per avermi supportato anche

nei momenti più di�cili, per non aver mai fatto ostacolo della distanza che

ci separava e per moltre altre cose ancora che lei sa.

Per ultimi, ma non per questo meno importanti vorrei ringraziare i miei am-

ici; i nuovi amici conosciuti durante il cammino universitario tra Ancona e

Torino e gli amici di una vita con cui sono cresciuto a Civitanova tra cui

Massimiliano e Francesco che oltre ad essere amici sono stati anche coin-

quilini e compagni di vita per questi anni al Politecnico.

II

Contents

1 Introduction 1
1.1 Main Pourpose and Goals . 1
1.2 Brief history of numerical computing 3
1.3 IEEE754 format for �oating-point numbers representation . . 5
1.4 Previous work . 9

2 Parallel pre�x adder 10
2.1 Parallel pre�x adders (PPA) 10
2.2 Speculative approach . 18
2.3 Error detection and correction 23

3 Floating point adder 26
3.1 Floating Point addition . 26
3.2 Arithmetic unit design . 29
3.3 Variable Latency Adder Implementation 39

4 Results 43
4.1 Adder characterization . 45

4.1.1 Timing . 45
4.1.2 Area . 48
4.1.3 Power . 53

4.2 Arithmetic unit characterization 57
4.2.1 Pipelining . 57
4.2.2 Timing . 59
4.2.3 Area . 62
4.2.4 Power . 64

4.3 Error evaluation . 68

5 Conclusions 70

III

Chapter 1

Introduction

1.1 Main Pourpose and Goals

The aim of this Master thesis is the study, design and validation of architec-

tures for �oating point addition that are based on a speculative approach.

Previous works showed that nowadays Graphic Processing Unit (GPUs) are

used in a vast range of application and are not limited to image/video pro-

cessing. This is because the high parallelism computation that a GPU can

provide, with respect to the classic CPU, can achieve better performances

when a big amount of data need to be analyses and processed.

What has been done previously was using a preexisting GPU model and

some benchmarks to found what type of operation frequently used were not

yet implemented. The results showed that �oating point addition are very

frequent in benchmarks, so the focus was to design an arithmetic unit and

implement it to improve the model with a hardware accelerator.

Starting from this results what has been done in this work was perform a

more exhaustive study of the arithmetic block in order to improve its perfor-

mances.

From the various classes of arithmetic blocks present in the literature the

one selected for the study is the Variable-Latency arithmetic unit based on

the concept of Speculation. Speculation means that the unit assumes that

1

CHAPTER 1. INTRODUCTION

the results of the operations is correct most of the times. Based on this, if

the application in which the architecture is implemented can a�ord some er-

rors, the results is produced by a fast_track, i.e. a computational path that

provide a faster result but with some approximations that could generate a

wrong solution.

In this speci�c case a parallel pre�x adder(PPA) is used and the assumption

is that the carry generated during the additions does not propagate more

that k bits. This is derived from the literature, where is pointed out that the

carry rarely propagates more than log2 (n) bits in a n-bit adder.

If the results must be exact all the times a error detection and correction,

i.e. a error_network, must be implemented. In case of an error the wrong

result from the fast_track is discharged and one more clock cycle is needed

to provide the correct result, from this the name Variable-Latency.

In the thesis a study was performed on arithmetic units with various levels of

speculation, with and without the error_network. Area, power and timing of

the various design were evaluated with the di�erent types of IEEE754 format

for �oating-point numbers and confronted with the standard implementation

in order to �nd the optimal con�guration for di�erent applications. At the

end the error rate was evaluated to have one more parameter for the study.

The �nal goal of the work is to provide a vast range of solutions for sev-

eral applications that could be implemented in GPU, but also in other IC

architecture as ASIC and FPGA.

2

CHAPTER 1. INTRODUCTION

1.2 Brief history of numerical computing

The concept of numerical computing has its root in the early history of civi-

lization [1], although with di�erent representations and methods all the pop-

ulation exploited the computation by mean of numbers (or other symbols) to

solve various problems of everyday life. With the advancement of technology

the rudimental tools like the abacus were replaced by more e�cients machines

like mechanicals calculators used untill the mid 70s where the advent of af-

fordable computers provides a big jump forward in terms of performances.

Starting from the �rst general purpose computer the ENIAC created during

WWII by what is considered the father of computers, Alan Turing, the de-

velopment of new architecture was steady and fast. The ideas of using the

binary format for numbers and storing the instruction to be executed in the

memory of the computer proposed by Jhon von Neuman lay the foundations

to modern computers.

Due to the high cost and the great size of the �rst machines the �rst uses

were limited to the scienti�c �eld and information processing for large com-

pany that did not use them for a purely numerical computation purpose.

Nowadays with the advance in technology everyone can a�ord a computer in

their home, but the main focus remains the processing of information (i.e.

text, video ,audio) but all the data are always converted into binary numbers

and so the numerical computing is still the core of the machines.

Today the main �eld which employs pure numerical computing is used are

still the scienti�c disciplines. In physics for the solution of models composed

by complex equations that describes from the micro structure of small par-

ticles to the expansion of the universe and to process big volumes of data

obtained from experiments. In the medical area for the analysis of clinical

data and imaging techniques. Atmospheric scientists use the computing per-

formances for weather prediction by elaborating an high number of variables

like moisture and atmospheric pressure. In the design industry (i.e. IC de-

sign, mechanical design, buildings design) the computing performances of the

3

CHAPTER 1. INTRODUCTION

CAD tools allow for more complex, accurate and reliable projects. In short

the computational science can be considered a newly fundamental branch of

science and the improvement of computational techniques gives access to the

creation of faster and more performing computers.

4

CHAPTER 1. INTRODUCTION

1.3 IEEE754 format for �oating-point numbers

representation

Floating-point number representation is the most used standard representa-

tion for data since the early days of computers [1]. Initially computer manu-

facturers developed their own �oating point system, usually to optimize some

aspects of their machines. An example was IBM that uses an hexadecimal

system in order to improve the range of the number that can be represented

and decrease the amount of shifts needed for the normalization, but the draw-

back was on the accuracy with respect of a binary system. The absence of a

common standard produced many di�culties like create a software able tu

run smoothly on every computer or the inconsistency of some �oating-point

properties. The solution was provided in the early 80s when a collaboration

between computer scientists and manufacturers gave birth to the �rst IEEE

Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std

754-1985) used until today with some minor modi�cations.

In this section a description of the IEEE754 standard for the �oating point

data is given. This is the data format implemented in the arithmetic unit,

its structure heavily a�ected the design of the architecture.

The last revision of the standard was published by IEEE in 2008[2] and its

main purpose is to provide a mean to perform �oating-point based compu-

tations that will yield the same results independently from the hardware

and/or software used. The standard speci�es formats for the binary and dec-

imal data, operations, conversions and exceptions handling.

A �nite number is described by three �elds:

� Sign

� Exponent

5

CHAPTER 1. INTRODUCTION

� Signi�cand

The number is written as displayed below, the base can be arbitrary and in

this case in 2:

number = (−1)sign x base(exponent−bias) x ((1.)significand) (1.1)

The sign is represented with a single bit and can be either 0 for positive

numbers or 1 for negative as in the standard binary numbers. The exponent

and the signi�cand are the �elds that displays the main properties of �oating-

point numbers.

The exponent is represented in a biased form, the bias is used to achieve only

positive values for the exponent although the original value may be negative.

As can be seen in 1.1 in order to obtain the biased exponent the bias must

be added to the original value:

Expbias = Exp+ bias (1.2)

.

The bias does not in�uence the �nal result when performing operations be-

cause the same quantity is added at all the numbers with the same format.

The signi�cand is always represented in a normalized form, this is used to

achieve compatibility and interchangeability between operands and results of

an operation.

The normalization for the IEEE754 format consist in shifting the number

until an unsigned fractional point form is achieved, by doing this the signif-

icand always have a leading 1 in the MSB position. After that the MSB is

discharged and only implicitly represented in the signi�cand �eld.

Often although the operands of an operation are normalized the �nal result

may not be in the correct form, this implies that a normalization must be

performed. When the signi�cand part of the result is shifted the exponent

part must be modi�ed accordingly for a correct result.

This makes normalization a critical part when designing an arithmetic unit

6

CHAPTER 1. INTRODUCTION

based on the IEEE754 format.

The IEEE754 format for �oating-point numbers provides various length for

data parallelism, they are represented in table 1.1. In the table are described

the most common parallelism used but the standard can be extended to all

length of data. Alternatives names can be used for the main formats, starting

from binary_16 they are: half-precision, single-precision, double-precision,

quad-precision.

IEEE754-2008

Field (in bits) binary_16 binary_32 binary_64 binary_128 binary_(n)

sign 1 1 1 1 1

exponent �eld width (w) 5 8 11 15 round(4 log2(n))− 13

trailing signi�cand �eld width (t) 10 23 52 112 n− w − 1

precision (p) 11 24 53 113 n− round(4 log2(n)) + 13

storage width (n) 16 32 64 128 1 + t+ w (multiple of 32)

maximum exponent(emax) 15 127 1023 16383 2w−1 − 1

bias 15 127 1023 1683 emax

Table 1.1: IEEE754-2008 standard

An example of number conversion to IEEE754 is provided in order to clarify

what as been said so far, the initial number is -43.34375 and the �oating-

point format chosen is binary_32.

Starting from the sign, the number is negative so the sign bit is 1. Now

we convert the absolute value of the number to a fractional binary number,

43.34375 becomes 101011.01011; now a normalization must be performed so

the number is shifted to the right by 5 position in order to obtain a 1 as MSB

of the fractional part, the result is 1.0101101011. Then the exponent is eval-

uated, the exponent must compensate for the shift in the opposite direction,

so its value is 5; this value need to be biased, the bias for binary_32 is 127

so the new value is E = 5 + 127 = 132 . The biased exponent is converted

to unsigned binary with length 8 bit imposed by the standard: 10000100. At

the end the missing LSBs of the signi�cand are �lled with zeros to obtain

the correct length of 23 bit and the leading 1 is truncated.

7

CHAPTER 1. INTRODUCTION

The result of the conversion is:

sign Exp(biased) signi�cand

1 10000100 01011010110000000000000

In order to design a �oating-point arithmetic unit that generates the right

results is essential to correctly understand the various formats and how

they works in the di�erent operations. In chapter 3 a detailed explanation

on �oating-point addition and subtraction is provided. Multiplication and

division are less complex because no pre-alignment or comparison of the

operands is needed, and the sign of the result is simply a xor between the

sign bits.

8

CHAPTER 1. INTRODUCTION

1.4 Previous work

In [3] a model for the AMD GPUs of the Evergreen family (Radeon HD

5000 series) was created thanks to the details provided in [4]. The model

was created using OpenCL, a standard based on C language that allow to

develop application for di�erent targets (i.e. CPUs, GPUs, DSPs), to imple-

ment the architecture but with only a single Compute unit for simplicity. A

OpenCL model can be tested by using various testbenches that evaluate the

performances in some speci�c scenarios and one common application is the

�oating-point addition. The instruction set up to that point was fully opera-

tive but not complete and as a matter of facts it was lacking the support to

�oating-point addition.

In [5] the model was expanded by creating a VHDL model of a �oating point

adder and adding the relative instructions. In order to improve the perfor-

mances various solution for the adder were tested and a �rst attempt to use

speculation was made but considering only a small subset of the possible

cases.

In this work the arithmetic unit is revisited and improved, and a deeper anal-

ysis of the various speculative solutions was performed to provide a complete

study of the architecture that can be used to evaluate the better implemen-

tation according to the �nal application.

9

Chapter 2

Parallel pre�x adder

Adders are one of the most common component in a digital architecture and

various types area available, from the most simple Ripple Carry Adder to

the more optimized Carry Look Ahead, Parallel Pre�x and more. Due to the

wide range of possibilities, the type of adder must be selected with regards

to the architecture in which is implemented so that the �nal performances

are maximized.In this thesis the architecture is designed to perform addition

of �oating point numbers, various formats are used but in all the cases the

parallelism of data is quite high. As proved in [6] when working with long data

the architecture with the best overall performances is usually the Parallel

Pre�x Adder. This because the other adders (i.e. Ripple Carry, Carry Skip,

Carry Select, Carry Lookahead) o�ers a linear dependency O(n)from the

data length for both area and delay, where PPA provides better results with

a logarithmic behavior O(log2(n)).

2.1 Parallel pre�x adders (PPA)

Starting from two n-bit operands A = an−1an−2...a0 and B = bn−1bn−2...b0

the resulting sum of the i-th couple of bit si and carry out ci can be evaluated

as:

10

CHAPTER 2. PARALLEL PREFIX ADDER

si = ai ⊕ bi ⊕ ci−1 (2.1)

ci = ai · bi + ai · ci−1 + bi · ci−1 = ai · bi + (ai ⊕ bi) · ci−1 (2.2)

In classic adders the carry out evaluation of the last bit must wait for the

correct carry to propagate from the stage of the adder where it has been

generated. In Carry Lookahead adders all the internal carries are evaluated

in parallel, this is possible because they depend only on the bits of the two

operands [7]. The concepts of carry propagate pi = ai⊕ bi and carry generate

gi = aibi signals are introduced, as the names implies propagate means that

a couple of bit pass on the carry in received and generate that those bit

produce a carry out. Now this two signals are used in 2.2:

ci = gi + pi · ci−1 (2.3)

This equation can be expanded by substituting ci−1 = gi−1+pi−1 ·ci−2 :

ci = gi + pi · gi−1 + pi · pi−1 · ci−2 (2.4)

The same can now be done with ci−2, if this procedure is repeated till c0 the

�nal result is:

ci = gi + pi · gi−1 + pi · pi−1 · ci−2 + ...+ c0 · p0 · ... · pi−1 · pi (2.5)

Equation 2.5 shows that there are only two ways to have a carry in in the

i-position, either the i−1-th bit generates one or it is generated from previous

bit and propagated till the i-th bit. The components required are only basics

AND−OR and the total delay of the architecture is quite good, if Tgate is the

delay of a single component, the total delay is 5Tgate (1 for p and g, 2 for ci,

2 for si). There are two problems with this solution for high value of n, �rst

there is a large area overhead because more components are required, second

11

CHAPTER 2. PARALLEL PREFIX ADDER

components need an high fan-in (n + 1). The Parallel Pre�x adder solve

this problems with the implementation of the Parallel Pre�x Network to

evaluate the terms needed in 2.5.

A schematic view of the PPA adder structure is illustrated in Fig. 2.1, there

are three main stages that produce the �nal sum:

1. Pre-processing

2. Parallel Pre�x Network

3. Post-processing

Figure 2.1: Block diagram of Parallel Pre�x Adder

The �st is the pre-processing stage where the pi and gi are generated in the

same way as said before. The second stage is the Parallel Pre�x Network

and is the main part of the adder. Two new terms are introduced, the group-

propagated carry Pi:j and the group-generated carry Gi:j de�ned as follows:

12

CHAPTER 2. PARALLEL PREFIX ADDER

Pi:j =

pi if i = j

pi · pi−1:j if i > j
(2.6)

Gi:j =

gi if i = j

gi + pi · gi−1:j if i > j
(2.7)

This two are the pre�xes used for the evaluation of the carry for every

weighted position and are considered as a pair (Pi:j, Gi:j). A new operator

is introduced to deal with this pair of signals and is called carry opera-

tor[8], it will be indicated with "◦". The behavior of the new operator is the

following:

(gi, pi) ◦ (Pi−1:j, Gi−1:j) = (gi + pi ·Gi−1:j, pi · Pi−1:j) = (Gi:j, Pi:j) (2.8)

The carry operator has the associative property:

[(gi, pi) ◦ (Pi−1:1, Gi−1:1)] ◦ (g0, p0) = (gi, pi) ◦ [(Pi−1:1, Gi−1:1) ◦ (g0, p0)] (2.9)

But it is not commutative because gi + pi ·Gi−1:j 6= gi−1 + pi−1 ·Gi:j.

Now all the elements to build the network are present, the associative prop-

erty of the carry operator o�ers the possibility to aggregate the intervals

in di�erent orders and also overlap them but obtaining the same result in

the end. This leads to various solution for the pre�x network, each provides

di�erent performances in terms of area and delay. In Tab.2.1 the existing

solution for the pre�x network are represented using two parameter:

13

CHAPTER 2. PARALLEL PREFIX ADDER

� Complexity: number of carry operator used in the network.

� Delay: number of levels in the that create the critical path of the

network.

Parallel Pre�x Network

Topology Complexity Delay

Ladner-Fischer[9] n
2
log2(n) log2(n)

Brent-Kung[10] 2n− 2− log2(n) 2 log2(n)− 2

Kogge-Stone[11] 2 log2(n)− n+ 1 log2(n)

Han-Carlson[12] n
2
log2(n) ceil(log2(n) + 1)

Table 2.1: Performances of the various topologies for the parallel pre�x net-
work.

Some observations can be done on the presented topologies, Brent-Kung(BK)

uses a smaller number of computational reducing the area but the depth of

the network increases and so the delay, Kogge-Stone(KG) achieves high speed

but the complexity of the circuit increases, Ladner-Fisher(LF) o�ers a good

trade-o� between the two[13]. Han-Carlson(HC) is an hybrid that uses the

outer rows of the BK and the internal rows of the KG [14] providing a delay

similar to the letter but with less complexity.

This last network is the one selected in this thesis and the motives are basi-

cally two. First is the delay, looking at Tab. 2.1 the best architectures should

be LF and KS, but another parameter that must be considered is the fan-out

(i.e. how many operators are connected at the output of a single operator),

the best solution in this respect is KG but its complexity is really high, so

a good trade-o� is HC that has slightly worse in delay and fan-out but it is

less complex. The second reason is that as proved in [14] the error_network

for a speculative HC adder has better performances than a KG one, more

details are in 2.3.

14

CHAPTER 2. PARALLEL PREFIX ADDER

(a) p=11 (b) p=24

(c) p=53

Figure 2.2: Han-Carlson networks for binary_16 32 and 64 precisions of
IEEE754 standard.

15

CHAPTER 2. PARALLEL PREFIX ADDER

Figure 2.3: Han-Carlson networks for all four precisions of IEEE754 standard.

16

CHAPTER 2. PARALLEL PREFIX ADDER

In 2.3 are the HC networks for the four IEEE754 standard considered in this

work, the number of bit is the precision)(p) of the various format because

the adder is used for the sum of the signi�cands. Each line of the network

receives as inputs the couple of (gi, pi) from the pre-processing stage, the

carry operators "◦" has in input a couple of (gi, pi) or a couple of (Gi:j, Pi:j)

from a previous operand. The �nal outputs of the network are the couples

(Gi:0, Pi:0) with p− 1 ≥ i ≥ 0. Lastly it is worth noticing how in the HC the

operators are placed in the even lines only at the last stage

The last stage of the adder is the post-processing, where the carries and

the �nal sum are evaluated as follow:

ci = Gi−1:0 + Pi−1:0 · c0 (2.10)

si = pi ⊕ ci (2.11)

Looking at Eq.2.10 it can be seen how each carry is independent from the

others, the only exception is the initial carry in of the adder. If there is no

input carry Eq.2.10 can be further simpli�ed, but the architecture designed

always allow a carry in so that both sum and subtraction can be performed.

This is not a problem because the carry is available from the start with the

two operators, so no delay is added.

17

CHAPTER 2. PARALLEL PREFIX ADDER

2.2 Speculative approach

Nowadays with the increment of ICs complexity more performing architec-

ture for components such as adders is required. The three key points in the

optimization of new digital ICs are speed, area and power. As said in [15] for

�oating point arithmetic units a critical point of improvement is the power

consumption because is much higher than �xed point signed/unsigned ar-

chitecture, and to improve the performances a inexact apprach is proposed.

This solution o�ers an overall improvement but provides an erroneous result,

this can be neglected in some applications like image processing but is not a

general solution.

Another possible approach to solve the problem is using speculation, �rst

introduced for asynchronous components in [16]. In this solution the datapath

is composed by two or more delay paths each with a di�erent length where

the shortest provide a result using the highest level of speculation and the

longest use standard computation. Speculation means that the unit makes a

guess during the computation of the result, if the assumption was right the

output is correct otherwise is wrong. In synchronous contest a variable la-

tency speculative adder was proposed in [17] using Kogge-Stone network,

but for the reasons explained in the previous section the solution choosed in

this work is the one in [14] which uses a Han-Carlson network.

In a parallel pre�x network as seen in Eq.2.10 the group-propagated and the

group-generated from the �rst position to the i-th are needed for a correct

carry evaluation, this because is assured that if a carry is generated from a

previous addition than is correctly passed on. But has been proven in [8] that

carry propagation longer that log2 bit rarely occurs, so the assumption that

has been made in the architecture is that the maximum propagation of

the carry is k = O(log2(n)) with k < n. This assumption allow to prune

some of the levels in the adder network. in particular the reduction is:

k =
n

2C
(2.12)

18

CHAPTER 2. PARALLEL PREFIX ADDER

Where k is the maximum carry propagation, n the number of bit and C the

collapsed levels. So the �nal number of stages in the network are:

N = ceil(1 + log2(k)) (2.13)

The pruned levels cause some variations in the group-generate and group-

propagate evaluation:

(Gi:0, Pi:0) for i ≤ k

(Gi:i−k+1, Pi:i−k+1) for i > k, i odd

(Gi:i−k, Pi:i−k) for i > k, i even

For the study various values of k were used for the main four IEEE754 stan-

dards, naturally longer formats can have more solution for the values of the

carry propagation. In Tab.2.3 an overview on the complexity and delay of all

the cases analyzed is provided(the precision p consider the non-normalized

signi�cand).

Han-Carlson Networks Delay and Complexity

Width Quantity Exact Speculative

n p k=4 k=8 k=16 k=32 k=64

Complexity 18 14 17

16 11 C-Reduction 22.22% 5.56%

Delay 5 3 4

D-Reduction 40% 20%

Complexity 56 34 44 52

32 24 C-Reduction 39.29% 21.43% 7.14%

Delay 6 3 4 5

D-Reduction 50% 33.3% 16.67%

Complexity 151 77 101 123 141

19

CHAPTER 2. PARALLEL PREFIX ADDER

64 53 C-Reduction 49% 33.11% 18.54% 6.62%

Delay 7 3 4 5 6

D-Reduction 57.14% 42.86% 28.57% 14.29%

Complexity 385 165 221 273 321 361

128 113 C-Reduction 57.14% 42.6% 29% 16.6% 6.23%

Delay 8 3 4 5 6 7

D-Reduction 62.5% 50% 37.5% 25% 12.5%

Table 2.3: Delay and complexity for all the IEEE754 format speculative
adders and improvements with respect to the exact adder.

It can be noticed that for a speci�c k the carry propagation length is �xed so

larger parallelism have a bigger reduction in the critical path. As an example

for k = 4 the pruned levels are 2 for binary_16 and 5 for binary_128,

consequently there is a big improvement on delay and area. An aggressive

approach seems to provide only positive aspects but there is the problem

related to the error. More accurate analysis is provided in 4.3, but a thing

can be easily said which is that in longer data the probability of an error is

grow with the speculation. This because the carry is more likely to propagate

more then 4 positions in a sum of 113 bit than 11 bit. A good solution is

�nd a trade-o� between performances and error that is compatible with the

application in which the adder is implemented.

For the sake of clari�cation in Fig.2.4 are represented the three speculative

Han-Carlson for the binary_32 as example.

20

CHAPTER 2. PARALLEL PREFIX ADDER

(a) k=4 (b) k=8

(c) k=16

Figure 2.4: Han-Carlson pre�x network for binary_32 format implemented
with three levels of speculation k = 4, 8, 16.

The �nal stage of post-processing has some variation too because now the

sum is evaluated using approximated carries:

21

CHAPTER 2. PARALLEL PREFIX ADDER

c̃i =

Gi:0 + Pi−1:0 · c0 for i ≤ k

Gi:i−k+1 for i > k, i odd

Gi:i−k for i > k, i even

(2.14)

s̃i = pi ⊕ c̃i (2.15)

22

CHAPTER 2. PARALLEL PREFIX ADDER

2.3 Error detection and correction

In the variable latency speculative adder when a wrong result is generated

this need to be detected and reported to the outside so that it can be dis-

charged and the correct result will be provided in the next clock period, the

details of this process are in 3.3.

An error_detection network must be created to �nd errors if some car-

ries have propagated more than the speculation, this network generates a

signal called detection that it is asserted when an wrong result is present.

From Eq. 2.14 the condition for the error on the i-th bit can be obtained and

is the following:

ei =

0 for i ≤ k

Pi:i−k+1Gi−k:0 for i > k, i odd

Pi:i−kGi−k−1:0 for i > k, i even

(2.16)

The detection signal is asserted if one or more errors are present, so it is

obtained from the sum of each i-th error.

D =
n−1∑

i=k+1, i odd

Pi:i−k+1Gi−k:0 +
n−1∑

i=k+1, i even

Pi:i−kGi−k−1:0 (2.17)

From Eq. 2.17 it can be noticed that the second summation is included in

the �rst, as an example the terms for i = 1, 2 are evaluated.

Pk+1:2G1:0 + Pk+2:2G1:0 = Pk+1:2G1:0 (2.18)

23

CHAPTER 2. PARALLEL PREFIX ADDER

Eq. 2.17 is reduced to:

D =
n−1∑

i=k+1, i odd

Pi:i−k+1Gi−k:0 (2.19)

Further simpli�cations can be applied to Eq. 2.19. Let's evaluate the errors

for n− 1 and n− 3:

Pn−1:n−kGn−1−k:0 + Pn−3:n−2−kGn−3−k:0 (2.20)

If now the term Gn−1−k:0 is rewritten as:

Gn−1−k:0 = Gn−1−k:n−2−k + Pn−1−k:n−2−kGn−3−k:0 (2.21)

Eq. 2.21 can be substituted in Eq.2.20 obtaining as a result that the terms

n− 1 and n− 3 are simpli�ed :

Pn−1:n−kGn−k−1:n−k−2 + Pn−3:n−k−2Gn−k−3:0 (2.22)

This process can be iterated for all odd pairs (i.e n− 3 and n− 5, n− 5 and

n − 7, n − 7 and n − 9,...) obtaining as �nal result a new equation for the

detection signal:

D =
n−1∑

i=k+1, i odd

Pi:i−k+1Gi−k:i−k−1 (2.23)

24

CHAPTER 2. PARALLEL PREFIX ADDER

However this �nal equation for the detection is still lacking. As has been

pointed out in [5] if the adder has an initial carry in input this can be propa-

gated along the network and so its contribution must be taken into account.

Considering that the �oating point arithmetic unit used in this work per-

forms both addition and subtraction by setting the input carry of the adder

to 1 or 0, a term must be added to Eq. 2.23.

D =
n−1∑

i=k+1, i odd

Pi:i−k+1Gi−k:i−k−1 + Pk+1:2Pk:0cin (2.24)

There is one thing to notice in Eq. 2.24, the term Pk:0 is evaluated in the

last layer of the network, this implies that the error_detection must wait

the full delay of the speculation net before evaluating the error. This did not

happen earlier because the detection were fully parallel to the last stage of

speculation. The aftermaths of this change are detailed in 4.1.1.

Last the error_correction network is treated. Its construction is quite

simple, it is composed by all the pruned levels of the pre�x network that are

connected to the last non-pruned level. This networks provides the correct re-

sult in parallel with the fast_track of the speculation, usually it has a longer

delay but this is not a problem because the exact sum can be evaluated in

two clock cycle.

25

Chapter 3

Floating point adder

3.1 Floating Point addition

Addition is usually the most used FP operation in digital ICs and can be

integrated with the subtraction by simply using number in 2's complement

format. Addition is theoretically more di�cult to perform with respect to

multiplication, this because it requires the two exponent to be equal and so

an accurate confront is needed.

In general when addition is required between two �oating point numbers A

and B in the following form[7]:

A = (−1)s1 ·N1 · 2E1−bias

B = (−1)s2 ·N2 · 2E2−bias

With s the sign bit and N the signi�cand and making the assumption that

both exponents base is 2, �rst the condition to be veri�ed is that 2E1 = 2E2 , if

this is not the case than a shift of the signi�cand with the smaller exponent

must be performed. Assuming 2E1 > 2E2 the signi�cand N2 is shifted by

26

CHAPTER 3. FLOATING POINT ADDER

|E1 − E2| to the right, the choice of the shift rests on the smaller exponent

to achieve a signi�cand shorter than 1 and so utilize a smaller adder.

The �nal result can be computed as:

C = ((−1)s1 ·N1 + (−1)s2 ·N2 · 2E1−E2) · 2E1−bias (3.1)

At the end some adjustments may be needed in order to have a �nal result

compliant to the format. If there is an excess in the signi�cand a shift to the

right is needed to achieve the form 1.XXX.., on the contrary if there are one

or more leading zeros (usually in subtraction) a shift to the left is used. The

exponent must be shifted accordingly to maintain the correctness of the re-

sult. More details on the addition are provided in the following section when

the actual arithmetic unit is designed.

Summarizing the main steps for an addition(or subtraction) of two �oating

point numbers are:

1. Evaluate the di�erence between the two exponents.

2. Shift the signi�cand of the number with the smaller exponent to the

right by |E1 − E2|.

3. Add the two signi�cand (with the 1. in the front) and set the �nal

exponent equal to the bigger initial exponent.

4. If needed shift the signi�cand to the right or left to match the format

used and change the exponent accordingly (normalization).

For the sake of clari�cation an example of the sum between two number is

provided:

A = 43.34375

B = 134.0625

27

CHAPTER 3. FLOATING POINT ADDER

The two number are converted to the IEEE754 binary_32 format:

A = 01000010001011010110000000000000

B = 01000011000001100001000000000000

The sign is positive in both cases so now the exponent are analyzed:

E1 = 10000100 E2 = 10000110

E2 > E1 =⇒ E2 − E1 = 102 → 210

The exponent of A is smaller that the one of B and so its signi�cand (de-

normalized)need to be shifted to the right by 2.

N1 = 1.01011010110000000000000 =⇒ N1 = 0.01010110101100000000000

Now the other signi�cand is de-normalized and the sum is performed:

N1 +N2 = 1.00001100001000000000000 + 0.01010110101100000000000

⇓

N3 = 1.01100010110100000000000

In this case there is no need for furthers shifts of the signi�cand, the �nal

result is:

C = 01000011001100010110100000000000→ 177.4062510

28

CHAPTER 3. FLOATING POINT ADDER

3.2 Arithmetic unit design

The �oating point adder described below is taken from [5] because it has al-

ready been implemented and validated in the GPU model of [3]. This choice

has been made in order to expand the previous work with deeper and larger

analysis and provide a compatible architecture for future study on GPU per-

formances.

Following steps described in the previous section in order to design a arith-

metic unit that works correctly the main components below are needed:

� Exponent comparator. The �rst step is to �nd which of the two

exponent is bigger, this is performed with a component that compare

the two exponents and send the result to the exponent updater that

handles this result and decides the direction and the shift amount.

Three signals are used to pass this informations:shift_amount is used

to evaluate the di�erence between the two exponent and so how many

shifts are needed, �ag and idem are used to indicate which exponent

is bigger or if the two are equal. A table with the possible combination

is reported below.

Exponent comparison result �ag idem

expa > expb 0 0

expa < expb 1 0

expa = expb 0 1

NaN 1 1

Table 3.1: Table of truth of exponent comparator generated signals

The VHDL description of the component is the following.

29

CHAPTER 3. FLOATING POINT ADDER

architecture behavior of exp_comparator i s

s i g n a l exp_a , exp_b , exp_di f f : s i gned (w downto 0) ;

begin

exp_a <= signed ('0 '& exponent_a) ;

exp_b <= signed ('0 '& exponent_b) ;

exp_di f f <= exp_a − exp_b ;

shift_amount<= unsigned (abs (exp_di f f)) ;

f l a g <= exp_di f f (w) ;

idem <= '1 ' when exp_di f f = 0 e l s e ' 0 ' ;

end behavior ;

It can be noticed how an extension is needed for both exponents in

order to correctly detect the case expa < expb.

� Right shifter. After the analysis of the exponent the signi�cand needs

to be shifted accordingly. The exponent updater uses the �ag signal to

drive a multiplexer that select the correct input signi�cand to the shifter

and then sends the previous evaluated shift amount that is used by the

component to shift the input to the right.

� Signi�cand swapper. If when evaluating the sign of the two numbers

they are di�erent some more considerations are required. The adder is

able to perform only addition, so in order to cope with this problem a 2's

complement must be performed on the correct operand. The component

drives some multiplexers that change the inputs of the adders from

the original to the inverted signi�cand. Then the signal add_sub is

30

CHAPTER 3. FLOATING POINT ADDER

set to declare if the operation is a sum (add_sub=0) or a subtraction

(add_sub=1), in the last case the carry_input of the adder is set to 1

to perform the �nal step of the 2's complement conversion.

� Adder. The sum of the two signi�cands is performed using the adders

described in the previous chapter. More details on the implementation

of the speculative adder with the error_network that can requires two

clock cycles to perform the correct sum is provided in the next section.

Now the focus is on when the carry_output of the adder need to be

considered because it can a�ect the addition result and the �nal sign

evaluation. In general the easiest case is when the two numbers have

opposite sign and di�erent exponent, in this case the carry is neglected

because the �nal sign is the one of the number with the biggest expo-

nent. The critical case is when the exponent is the same and the sign

is the opposite, if this happens the carry is essential to the sign eval-

uation because otherwise is not possible to �nd which number has the

highest absolute value. A table with that summarize the possible cases

is provided below.

Adder carry out evaluation

Sign comparison Exponent comparison Operation on carry out

equal equal disregard if 0, otherwise con-
catenate to the MSB of the
sum

equal di�erent disregard if 0, otherwise con-
catenate to the MSB of the
sum

opposite di�erent always disregard

opposite equal if 1 the �nal sum sign is 0,
otherwise the sign is 1

Table 3.2

31

CHAPTER 3. FLOATING POINT ADDER

� Sign logic. The carry out of the adder is not the only variable when

evaluating the �nal sign, but others parameters are needed. The signals

used in this component to compute the right sign with cout are: signA,

signB, flag and item. A boolean function is created starting from Tab.

3.3 where all the possible combinations of this signals are reported and

considering the sum of products (covering the 1s of the table). For the

sake of synthesis only the combinations that provides a 1 are illustrated

in the table.

cout signA signB flag idem finalsign

0 1 0 0 0 1

1 1 0 0 0 1

0 1 1 0 0 1

1 1 1 0 0 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 1 1

1 1 1 0 1 1

0 0 1 1 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 1 1 1 0 1

Table 3.3: Truth table for �nal sign evaluation

Once again is visible how the carry out is critical for the �nal sign eval-

uation, as written in Tab. ?? if the two exponents are equal and the two

signs are opposite all the decision are taken based on the carry value. If

32

CHAPTER 3. FLOATING POINT ADDER

the carry is 1 no further actions are needed, otherwise this mean that

the sign is negative and another operation must be performed which is

2's complement the result before passing it to the next component.

� Normalizer. This element has a fundamental importance because is

responsible for shifting the sum result until the standard form 1.XXX

is obtained. A VHDL description is provided for a better understanding.

architecture behavior of normal i z e r i s

begin

norma l i za t i on : process (raw_result , add_sub , c_out)

v a r i ab l e counter : integer := 0 ;

begin

i f add_sub = '1 ' then

f o r i in p−1 downto 0 loop

i f raw_result (i) = '0 ' then

counter := counter + 1 ;

end i f ;

i f raw_result (i) = '1 ' then

exit ;

end i f ;

end loop ;

norm_shifts <= to_unsigned (counter ,w) ;

r i g h t_ l e f t <= ' 1 ' ;

norm_signi f icand <= std_logic_vector

(s h i f t _ l e f t (unsigned (raw_result) ,

counter)) ;

e l s i f add_sub = '0 ' then

i f c_out (0) = '1 ' then

33

CHAPTER 3. FLOATING POINT ADDER

norm_shifts <= to_unsigned (1 ,w) ;

r i g h t_ l e f t <= ' 0 ' ;

norm_signi f icand <= c_out(0)& raw_result

(p−1 downto 1) ;

e l s i f c_out (0) = '0 ' then

norm_shifts <= to_unsigned (0 ,w) ;

r i g h t_ l e f t <= ' 0 ' ;

norm_signi f icand <= raw_result ;

end i f ;

end i f ;

counter := 0 ;

end process ;

The �rst operation is the leading zero count. If a subtraction is per-

formed there is a possibility that there is no 1 in the MSB position, so

a shift to the left is performed based on how many 0s are in the MSBs

position before a 1 appears. In case of an addition the carry out must

be take into account because an over�ow could occur and so a shift to

the right is needed.

� Exponent Update. This component mentioned before is now respon-

sible for the shifting of the �nal exponent accordingly to the shift per-

formed by the normalizer on the �nal sum.

� Exceptions detector. To provide a complete architecture able to han-

dle all the particular cases a �nal component is required, its VHDL

description is provided below for the binary_16 format.

architecture behavior of except i on s i s

constant zero_cmp : std_logic_vector (p−1 downto 0)

:= (o the r s => ' 0 ') ;

34

CHAPTER 3. FLOATING POINT ADDER

s i g n a l zero_check : std_logic ;

begin

zero_check <= '1 ' when ((sum = "00000000000" and

c_out = '1 ') or (exp_a = "00000" and exp_b

= "00000")) e l s e ' 0 ' ;

zero_process : process (zero_check , add_sub , idem ,

exp_a , exp_b)

begin

zero <= ' 0 ' ;

i f (add_sub = '1 ' and idem = '1 ' and

zero_check = '1 ') then

zero <= ' 1 ' ;

actual_exp <= "00000";

actua l_res <= "00000000000";

end i f ;

i f (exp_a = "00000" and exp_b = "00000") then

zero <= ' 1 ' ;

actual_exp <= "00000";

actua l_res <= "00000000000";

end i f ;

i f (exp_a = "00000" and not (exp_b = "00000")) then

zero <= ' 0 ' ;

actual_exp <= operandB (k−2 downto k−w−1);
actua l_res <= operandB (k−w−1 downto 0) ;

end i f ;

i f (not (exp_a = "00000") and exp_b = "00000") then

zero <= ' 0 ' ;

actual_exp <= operandA (k−2 downto k−w−1);

35

CHAPTER 3. FLOATING POINT ADDER

actua l_res <= operandA (k−w−1 downto 0) ;

end i f ;

end process ;

nan_process : process (exp_a , exp_b)

begin

nan <= ' 0 ' ;

i f (exp_a = "11111" or exp_b = "11111")then

nan <= ' 1 ' ;

actual_exp <= "11111";

actua l_res <= sum ;

end i f ;

end process ;

ovf_process : process (add_sub , c_out , exp_a , exp_b)

begin

ovf <= ' 0 ' ;

i f (add_sub = '0 ' and c_out = '1 ' and exp_a =

"11110" and exp_b = "11110") then

ovf <= ' 1 ' ;

actual_exp <= "11110";

actua l_res <= "11111111111";

end i f ;

end process ;

unf_process : process (add_sub , c_out , exp_a , exp_b)

begin

unf <= ' 0 ' ;

i f (add_sub = '1 ' and c_out = '0 ' and exp_a =

"00001" and exp_b = "00001") then

unf <= ' 1 ' ;

36

CHAPTER 3. FLOATING POINT ADDER

actual_exp <= "00001";

actua l_res <= "10000000000";

end i f ;

end process ;

d e fau l t_proce s s : process (add_sub , idem , c_out ,

exp_a , exp_b)

begin

i f not (add_sub = '1 ' and idem = '1 ' and zero_check

= '1 ') and not (exp_a = "00000" and exp_b =

"00000") and not (exp_a = "11111" or exp_b =

"11111") and not (add_sub = '0 ' and c_out = '1 '

and exp_a = "11110" and exp_b = "11110") and

not (add_sub = '1 ' and c_out = '0 ' and exp_a =

"00001" and exp_b = "00001") and not ((exp_a =

"00000" and not (exp_b = "00000")))and not ((not

(exp_a = "00000") and exp_b = "00000")) then

actual_exp <= exponent ;

actua l_res <= sum ;

end i f ;

end process ;

end behavior ;

There are four main "exceptions" that must be handled accordingly:

nan, over�ow, under�ow, zero and they are quite straightforward.

The �rst is the case when one or both inputs are not numbers, over-

�ow and under�ow means that the �nal results exceed the upper and

lower bound of the numbers that can be represented using the format,

lastly is the zero case that requires a more detailed description. Three

possibilities are possible: one of the operands is zero and so the result

37

CHAPTER 3. FLOATING POINT ADDER

is equal to the other operand, both operand are zero and so the result

is zero, the result of two non-zero operand is zero. If any of this cases

occurs a warning signal is generated.

Others additional standard components (i.e. registers, multiplexers, invert-

ers) are used to complete the architecture. A scheme including the main

blocks is in Fig. 3.1.

Figure 3.1: Floating point arithmetic unit basic blocks

38

CHAPTER 3. FLOATING POINT ADDER

3.3 Variable Latency Adder Implementation

The implementation of the speculative adder without error_network does

not require particular attentions, it can be simply replace the exact adder

if the input and output signals described in the same way, it is a di�erent

story for the speculative adder with the error_network. This last solution

always provides a correct result exploiting the variable latency approach. As

said before when the error in the result is detected a signal is generated and

the architecture requires another clock cycle to provide the correct result.

In this second clock cycle the output must switch to the exact one and the

inputs must remain constant because the adder evaluate the correct result in

parallel with the speculative one, it only need more time and so the critical

path considered is always the one of the speculative path. The architecture

need some modi�cations[17] to handle this situation, the adder along with

the additional logic circuit is provided in Fig.3.2.

Figure 3.2: Variable latency adder along with the components needed for the
implementation in the arithmetic unit.

The components added are a multiplexer to select between the speculative

and exact sum, a NAND gate, an INVERTER and a Flip-Flop. The behavior

39

CHAPTER 3. FLOATING POINT ADDER

can be understood better with the timing diagram in Fig.3.3. In the default

case the multiplexer select signal is set to 1 and the speculative sum is the

output, then when an error is detected the steps followed are:

1. The detection network is triggered by an error and the err_det signal

is asserted.

2. The NAND gate inputs err_det and select are both 0 so the enable is

set to 1.

3. The enable signal is memorized in the Flip-Flop and is sent to the input

registers to block the inputs.

4. The stall signal is generated inverting the select and is sent to the

extern to inform that the input data must be stopped.

5. In the second clock cycle the Flip-Flop sets the select to 0 and so the

multiplexer switch the output to the exact sum.

6. The select signal in input to the NAND assert the enable signal and so

default situation is restored.

Figure 3.3: Timing diagram of variable latency adder

The Flip-Flop is used to maintain for a clock cycle the exact sum as output

and then switch back to the speculative sum so that the exact sum is never

set as the output for more than 2 clock cycle.

The architecture need also another "exceptions" signal to report that a data

40

CHAPTER 3. FLOATING POINT ADDER

is wrong and so must be discharged. For this purpose inexact signal is intro-

duced along with the previous mentioned signals. All the "exception" were

used in previous work as �ag that are used in GPU models to highlight spe-

cial cases.

Figure 3.4: RTL representation of the �oating point arithmetic unit.

Finally in Fig.3.4 a complete Register Lever representation of the full arith-

41

CHAPTER 3. FLOATING POINT ADDER

metic unit is provided. The signal are classi�ed as follow:

� Green wires : std_logic_vectors with a width of p-bit with p the preci-

sion parameter of the corresponding IEEE754 format.

� Red wires : std_logic_vectors with a width of w-bit with w the exponent

parameter.

� Blue wires : std_logic that represent the sign bit.

� Black wires :internal wires with 1-bit width or more, as speci�ed on the

wire.

42

Chapter 4

Results

In this Chapter all the results for the designed architecture are presented di-

vided in three parts. First the characterization of the sole adder component is

provided along with the results of delay, area and power generated from the

synthesis. Then in the second part the same is done with the frequency, area

and power for the complete arithmetic unit. Last an evaluation and analysis

of errors in the speculative architecture for all the parallelism of the IEEE

standard is provided.

In the characterization process two main programs were used. For the func-

tional simulation of the componentsModelsim® developed by Mentor Graph-

ics and for the synthesis Design compiler® by Synopsys. Modelsim does not

require particular settings for the simulation but for Design compiler a more

detailed description of the setup must be provided.

Two libraries area speci�ed: the uk65lscllmvbbr_120c25_tc library, that

contains the descriptions of the UMC 65nm Low-K Multi-voltage Low Leak-

age RTV Tapless Standard cells used in the synthesis, and the DesignWare

Foundation library from Synopsys which allow Design Compiler to identify

basic components in the design (e.g. multiplexers, �ip-�ops, counters, ecc.) in

order to provide the best con�guration for a more e�cient implementation.

Others setting like RTL names preservation, clock period and uncertainty

43

CHAPTER 4. RESULTS

and inputs/outputs delays are used to provide a more better synthesis re-

sult, but in order to have a more realistic characterization a load must be set

for the output of the cells. The load must be reasonable and usually a bu�er

is used, setting a speci�c load for each cell is a di�cult task, so an alternative

and realistic solution is to use the same load for all outputs. Analyzing the

documentation of the cells library a good solution is using the BUFFM4R

bu�er as load.

For the sake of clari�cation a list of all the steps used in the characterization

of the adder and the complete arithmetic unit is provided:

� functional simulation with Modelsim using VHDL test benches created

ad hoc.

� synthesis with Design Compiler that creates a Verilog netlist of the

design with the �les to perform the power analysis and provides infor-

mation on delay and area.

� the generated netlist and �les are used along with a Verilog test bench

in Modelsim to record the switching-activity details on a �le.

� the previous �le with the switching activity is used a last time in Design

Compiler to generate the �nal report on the power consumption.

For the error analysis test vectors were generated using a C program. The

program use the rand() function to create a random integer number, then the

operator % is used to take the reminder of the division by 2 that can have

has results only 1 and 0. The vectors are provided as input to the architecture

and then the results are confronted with the ones generated by another C

program that simulates the same behavior of the exact architecture.

44

CHAPTER 4. RESULTS

4.1 Adder characterization

4.1.1 Timing

First the delay of the various adder architecture are analyzed. In table 4.1 are

the results for the speculative architecture without the error_network and

the ones for the exact architecture to provide a confront between the two.

Adder Delay [ps]

Width Exact Speculative without error_network

n p K=4 K=8 K=16 K=32 K=64

16 11 700 640 680

32 24 800 650 690 760

64 53 900 640 690 760 830

128 113 970 660 690 760 830 920

Table 4.1: Maximum delay confront between exact and speculative adder
without error_network.

This results were confronted with the theoretical ones in (table cap 2 ref) and

the delay improvements for the two cases area represented in Fig.4.1.

(a) Delay reduction for p=11 (b) Delay reduction for p=24

45

CHAPTER 4. RESULTS

(c) Delay reduction for p=53 (d) Delay reduction for p=113

Figure 4.1: Confront between theoretical and real delay reduction percentage
of the speculative adder.

As it can be seen the trend of the real curves in all the parallelism is similar

to the theoretic curves, this is more evident for high precisions because they

o�er a better resolution thanks to the more levels of speculation possible. The

noticeable thing is that the gain for the same level of speculation increase for

higher levels of parallelism, this because there are more pruned levels. The

major drawback visible is the lower reduction of the delay in the real case.

This is justi�ed by the real components used in the synthesis and by the fact

that the theoretical evaluation is based only on the reduction of levels in the

pre�x computation part of the PPA.

Adder Delay [ps]

Width Exact Speculative with error_network

n p K=4 K=8 K=16 K=32 K=64

16 11 700 680 710

32 24 800 750 760 800

64 53 900 800 830 890 940

46

CHAPTER 4. RESULTS

128 113 970 850 930 960 990 980

Table 4.2: Maximum delay confront between exact and speculative adder
with error_network

In table 4.2 are represented the delay results for the speculative adder that im-

plements the error_network. The delays for all the architecture of the adder

are represented in Fig.4.2 in order to compare the di�erent performances and

o�er a better analysis on the di�erences with respect to the exact solution.

It can be noticed that all the speculative solutions without error_network

provide clearly better performances in therm of delay in comparison to the

exact and speculative adder with the error_network, the shorter the propa-

gation of the carry in the speculation, the better is the delay. It may seem

that this is the better solution for an application, but another parameter

must be take into account and that is the possibility of a wrong results. The

analysis of the error in the speculative architecture is provided in 4.3.

For what concerns the adder that includes the error_network the results are

more interesting. Low values of k (4 for p=11 and ≤ 16 for the others) pro-

vides a smaller delay than the exact case, but when the speculation decrease

the critical path became equal or even longer than the standard architec-

ture, the cause can be found analyzing the synthesis reports. This behavior

is caused by the carry in of the adder, theoretically the part of the architec-

ture that provide the error_detection should decrease its critical path when

k increases as seen in section 2.3. But when an adder with a carry in is con-

sidered the situation changes a bit, because the error_network need a value

from the last stage of the speculative fast_track to correctly evaluate the

presence of an error. The �nal delay in this case is Tsum_spec + Tdetection, if

there was not a carry in it would have been max(Tsum_spec, Tdetection). For

high k the speculative sum path is close to the exact one, if the overhead of

the detection is included the critical path ends to be longer.

Last it can be seen how the speculative curves with and without the er-

47

CHAPTER 4. RESULTS

(a) Delay for p=11 (b) Delay for p=24

(c) Delay for p=53 (d) Delay for p=113

Figure 4.2: Confront between the delays of exact adder and speculative adder
with and without error_network.

ror_network tend to be closer when k increases, this con�rms how the delay

of the detection net decreases for low speculation levels.

4.1.2 Area

In table 4.3 are represented the results for area occupancy of the exact adder

and the speculative adder without error_network.

Adder Area

Width Quantity Exact Speculative without error_network

n p K=4 K=8 K=16 K=32 K=64

ports 265 241 259

nets 372 365 367

48

CHAPTER 4. RESULTS

cells 143 149 152

16 11 references 6 6 6

C-area [µm2] 215.64 180.48 209.16

NC-area [µm2] 378 378 378

T-area [µm2] 593.64 558.48 587.16

ports 649 517 577 625

nets 936 711 798 873

cells 374 269 304 335

32 24 references 6 6 6 6

C-area [µm2] 569.88 407.52 462.24 517.68

NC-area [µm2] 799.2 799.2 799.2 799.2

T-area [µm2] 1369.08 1206.72 1261.44 1316.88

ports 1567 1123 1267 1399 1507

nets 2227 1714 1751 1938 2114

cells 871 658 667 740 818

64 53 references 6 6 6 6 6

C-area [µm2] 1370.88 925.08 1028.52 1147.32 1277.64

NC-area [µm2] 1738.8 1738.8 1738.8 1738.8 1738.8

T-area [µm2] 3109.68 2663.88 2767.32 2886.12 3016.44

ports 3691 2383 2707 3019 3307 3547

nets 5234 3289 3727 4155 4568 4941

cells 2048 1247 1413 1577 1742 1899

128 113 references 6 6 6 6 6 6

C-area [µm2] 3223.08 1927.8 2189.16 2449.8 2716.2 2979.72

NC-area [µm2] 3682.8 3682.8 3682.8 3682.8 3682.8 3682.8

T-area[µm2] 6905.88 5610.6 5871.96 6132.6 6399 6662.52

Table 4.3: Area occupancy of exact and speculative adder without er-
ror_network. C stands for "Combinational", NC for "Non-Combinational"
and T for "Total".

As for the delay confront between theoretical and real area reduction for the

speculative adder is represented in 4.3. It can be observed that like in the

previous case the two behavior have the same trend, for low k the bigger

49

CHAPTER 4. RESULTS

number of pruned levels cause a smaller area. Like for the delay, real area

gain is smaller than the theoretical one for the same reasons.

(a) Area reduction for p=11 (b) Area reduction for p=24

(c) Area reduction for p=53 (d) Area reduction for p=113

Figure 4.3: Confront between theoretical and real area reduction percentage
of the speculative adder.

Area occupancy of speculative adder with error_network in comparison to

exact is in Table 4.4.

Adder Area

Width Quantity Exact Speculative with error_network

n p K=4 K=8 K=16 K=32 K=64

ports 265 356 356

nets 372 483 481

50

CHAPTER 4. RESULTS

cells 143 187 184

16 11 references 6 9 9

C-area [µm2] 215.64 277.92 267.84

NC-area [µm2] 378 518.4 518.4

T-area [µm2] 593.64 796.32 786.24

ports 649 828 828 828

nets 936 1149 1149 1152

cells 374 457 455 454

32 24 references 6 9 9 9

C-area [µm2] 569.88 706.68 704.52 695.52

NC-area [µm2] 799.2 1080 1080 1080

T-area [µm2] 1369.08 1786.68 1784.52 1775.52

ports 1567 1592 1592 1592 1592

nets 2227 2717 2730 2740 2788

cells 871 1084 1095 1101 1141

64 53 references 6 9 9 9 9

C-area [µm2] 1370.88 1733.04 1734.84 1716.48 1759.32

NC-area [µm2] 1738.8 2332.8 2332.8 2332.8 2332.8

T-area [µm2] 3109.68 4065.84 4067.64 4049.28 4092.12

ports 3109.68 4496 4496 4496 4496 4496

nets 5234 6239 6235 6238 6250 6261

cells 2048 2476 2470 2469 2473 2468

128 113 references 6 9 9 9 9 9

C-area [µm2] 3223.08 3985.92 3973.68 3962.52 3946.32 3910.68

NC-area [µm2] 3682.8 4924.8 4924.8 4924.8 4924.8 4924.8

T-area[µm2] 6905.88 8910.72 8898.48 8887.32 8871.12 8835.48

Table 4.4: Area occupancy of exact and speculative adder with er-
ror_network. C stands for "Combinational", NC for "Non-Combinational"
and T for "Total".

In 4.4 the area for all the con�guration of the adder is represented. As seen

before without the error_network the architecture is always smaller than

the other cases, reintroducing levels makes the area rise till nearly the ex-

51

CHAPTER 4. RESULTS

(a) Area for p=11 (b) Area for p=24

(c) Area for p=53 (d) Area for p=113

Figure 4.4: Confront between the area of exact adder and speculative adder
with and without error_network.

act adder. If the error_network is introduced the area increases as expected

and is always the biggest, this is caused by the error_detection and er-

ror_correction that provide a big overhead of about 23% with respect to the

exact architecture.

A zoom on this last curve is provided in Fig. 4.5 for a better understand-

ing. The expected behavior is con�rmed because the trend of the area is to

decrease with the increase og k, this because the detection net needs less el-

ements in order to �nd if there is an error. This results is the opposite of the

one without error_network. The only exception is for the double precision

case with k=32 where the total area increases and reach the biggest value,

this should be because Design Compiler adopts a di�erent strategy for the

synthesis to improve the performances.

52

CHAPTER 4. RESULTS

(a) Area for p=11 (b) Area for p=24

(c) Area for p=53 (d) Area for p=113

Figure 4.5: Zoom on the area behavior of the speculative adder with er-
ror_network.

4.1.3 Power

Below are reported respectively the power consumption for the exact and

speculative adder with (Table 4.5) and without (Table 4.6) error_network

obtained from the synthesis and switching activity.

Adder Power

Width Quantity Exact Speculative without error_network

n p K=4 K=8 K=16 K=32 K=64

CI-power [µW] 97.0488 90.997 95.6948

16 11 NS-power [µW] 14.8925 14.8021 14.265

TD-power [µW] 11.937 105.7991 44.7868

CL-power [nW] 50.8677 44.7868 49.7388

53

CHAPTER 4. RESULTS

CI-power 213.252 200.938 204.98 209.7357

32 24 NS-power [µW] 35.419 27.4835 30.3047 33.14

TD-power [µW] 248.67 228.4215 235.286 242.8757

CL-power [nW] 115.29 105.1089 108.993 112.4961

CI-power [µW] 475.887 386.7843 392.912 401.7049 445.473

64 53 NS-power [µW] 83.0988 66.7853 68.0098 71.2412 76.1693

TD-power [µW] 558.986 453.5696 460.921 472.9461 521.642

CL-power [nW] 263.544 234.124 240.119 248.3568 257.1

CI-power 1030.3 897.68 902.778 898.2141 991 1012.7

128 113 NS-power [µW] 187.689 108.4927 111.8 120.4226 162.126 175.18

TD-power [µW] 1218 1006.173 1014.58 1018.6 1153.1 1187.8

CL-power [nW] 580.538 498.6483 509.052 521.689 548.647 566.673

Table 4.5: Power consumption of exact and speculative adder without er-
ror_network. CI stands for "Cell Internal", NS for "Net Switching", TD for
"Total Dynamic" and CL for "Cell Leakage".

Adder Power

Width Quantity Exact Speculative with error_network

n p K=4 K=8 K=16 K=32 K=64

CI-power [µW] 97.0488 132.509 130.66

16 11 NS-power [µW] 14.8925 19.964 19.3148

TD-power [µW] 11.937 152.4732 149.975

CL-power [nW] 50.8677 67.8745 66.3543

CI-power 213.252 288.231 283.345 280.789

32 24 NS-power [µW] 35.419 47.2822 47.4872 46.742

TD-power [µW] 248.67 335.513 332.832 327.531

CL-power [nW] 115.29 152.628 150.879 148.181

CI-power [µW] 475.887 516.225 517.858 507.231 495.271

64 53 NS-power [µW] 83.0988 74.1009 65.7405 71.0583 77.3791

TD-power [µW] 558.986 590.325 583.599 578.29 572.65

CL-power [nW] 263.544 349.137 347.731 345.923 344.579

54

CHAPTER 4. RESULTS

CI-power 1030.3 1408.4 1378.6 1375.3 1365 1354.6

128 113 NS-power [µW] 187.689 237.97 244.689 244.2 240 230.896

TD-power [µW] 1218 1646.37 1623.3 1619.5 1605 1585.5

CL-power [nW] 3109.68 772.206 758.964 751.52 748.238 743.518

Table 4.6: Power consumption of exact and speculative adder with er-
ror_network. CI stands for "Cell Internal", NS for "Net Switching", TD
for "Total Dynamic" and CL for "Cell Leakage".

In Fig. 4.6 is seen how or the speculative adder without error_network the

dynamic power rises with k.

(a) Dynamic power for p=11 (b) Dynamic power for p=24

(c) Dynamic power for p=53 (d) Dynamic power for p=113

Figure 4.6: Confront between the dynamic power of exact adder and specu-
lative adder with and without error_network.

This results is quite obvious because some levels are reintroduced, but the

power always remains lower than the exact case. When the error_network

55

CHAPTER 4. RESULTS

is introduced the power decrease with k, this behavior follow the one of the

area and the cause is the same. The decrease of elements in the detection

network cause an overall drop of switching activity.

(a) Static power for p=11 (b) Static power for p=24

(c) Static power for p=53 (d) Static power for p=113

Figure 4.7: Confront between the static power of exact adder and speculative
adder with and without error_network.

The static power of the leakage has the same trend(Fig.4.7) but its weight in

the total dynamic consumption is negligible because it is an order of magni-

tude smaller than the dynamic power.

56

CHAPTER 4. RESULTS

4.2 Arithmetic unit characterization

4.2.1 Pipelining

Before substituting the exact signi�cant adder with the speculative one in

the full arithmetic unit a �rst analysis of the architecture was performed to

�nd the contribution to the critical path of each component. The results are

inserted in pie charts (Fig.4.8) to provide a better understanding.

(a) Division of delay binary_16 (b) Division of delay binary_32

(c) Division of delay for binary_64 (d) Division of delay for binary_128

Figure 4.8: Main contributions to the delay of the exact �oatingpoint arith-
metic unit for all the IEEE754 formats.

57

CHAPTER 4. RESULTS

What emerges from the charts is that starting from the binary_32 format the

component that contributes most to the delay is the normalizer, its weight

rises with the parallelism of data and makes up for nearly 90% of the total

delay for binary_128 format.

This result can be counterproductive to the study performed because the gain

in substituting the adder in the architecture is almost negligible. In the liter-

ature can be found some solutions to improve the normalizer performances,

but this implies to re-design all the arithmetic unit and so this approach was

discharged because it would require a separate thesis work.

Another solution that comes to mind is performing pipelining on the com-

ponent normalizer increasing the latency but reducing the critical path to

one comparable with the delay of the other components, with emphasis on

the adder. Performing a manual pipelining was put aside for two reason: �rst

architecture of the normalizer is described in a behavioral way in VHDL so it

is not possible �nd how are the internal connections, secondly even if it was

possible to �nd the internal structure the full arithmetic unit is quite complex

and so �nd a cut-set is nearly impossible. In the end the problem was solved

by relying on some functions provided by Design Compiler, thanks to them

it is possible to add some spare registers at the output of the arithmetic unit

and leave all the pipelining work to the program. Fist some spare registers

are added at the output of the arithmetic units before the real output reg-

isters, then after a �rst compile it is issued the command balance_registers

that moves the sequential components of the design to obtain a better cycle

time. In order to avoid that the input and output register are moved and

that other components besides the normalizer are pipelined, the attribute

dont_touch is applied.

Pipe levels are added until the critical path is changes and does not include

the normalizer, but only the adder and others elements. The �nal pipelining

is resented in Tab.4.7.

58

CHAPTER 4. RESULTS

Pipelining levels

IEEE754 Levels

binary_16 2

binary_32 3

binary_64 7

binary_128 16

Table 4.7: Number of pipelining levels added to the arithmetic unit to de-
crease the normalizer critical path

4.2.2 Timing

This section continues with an analysis of the performances of the arithmetic

unit using the exact adder and the two con�gurations of speculation for all

four data parallelism of the IEEE754 standard. In Tab.4.8 and Tab.4.9 are

the results of maximum achievable frequency for various architectures, this

�rst quantity is the one that provides the most interesting outcomes with

respect to the ones from the previous section.

Arithmetic unit Frequency [MHz]

IEEE754 Exact Speculative without error_network

K=4 K=8 K=16 K=32 K=64

binary_16 909.10 1282.05 1086.96

binary_32 404.86 485.44 462.96 444.45

binary_64 252.53 289.86 267.38 263.16 253.17

binary_128 136.61 152.21 147.49 142.25 140.45 138.89

Table 4.8: Maximum frequency confront between exact and speculative arith-
metic unit without error_network

59

CHAPTER 4. RESULTS

Arithmetic unit Frequency [MHz]

Width Exact Speculative with error_network

K=4 K=8 K=16 K=32 K=64

binary_16 909.10 111.11 952.38

binary_32 404.86 442.48 411.52 403.23

binary_64 252.53 272.48 259.74 253.8 252.525

binary_128 136.61 150.6 145.35 141.24 139.67 138.31

Table 4.9: Maximum frequency confront between exact and speculative arith-
metic unit with error_network.

The behaviors of the unit are better visible in Fig. 4.2.2. The �rst thing to

notice is that the arithmetic unit that uses the speculative adder without

error_network o�ers a frequency quite higher than the architecture with

the exact adder, this results respect the one from the sole adder analysis.

The only exception is the binary_64 case with k=32 where the frequency

is the same of the exact unit, this can be justi�ed by the di�erent synthesis

performed by Design Compiler. The most remarkable results concerns the

architecture with the error_network.

(a) Frequency binary_16 (b) Frequency binary_32

60

CHAPTER 4. RESULTS

(c) Frequency for binary_64 (d) Frequency for binary_128

Figure 4.9: Confront between frequency of exact �oating-point arithmetic
unit and the speculative ones with and without error_network.

For high levels of speculation (smaller k) an higher frequency was expected,

but for the other cases the results are always better or at most equal to the

exact unit contrary to what happened in the single adder. Another thing to

notice is that the frequency tend to approach the other speculative archi-

tecture for larger parallelism. This two results have the same explanation.

For low parallelism the critical path goes through the detection network and

so the results are equal to the single adder analysis, but as said before the

pipe levels used to reduce the overhead of the normalizer are not applied

to the other components, so when the length of data grow the delay of the

components after the adder grows. When this delay overcome the one from

the detection there is a shift on the critical path, this path equal for both

speculative architecture because the fast_track is the same and the path of

the corrected sum can employ two clock cycle.

This result is signi�cant because solve the problem caused by carry in of the

adder.

61

CHAPTER 4. RESULTS

4.2.3 Area

Area results for the three arithmetic unit in Tab. 4.10 and Tab. 4.11 are

aligned with the expectations.

The solutions without error_network has always a smaller area with respect

to the exact case (Fig. 4.10) and increases with k, the only exception is for

binary_64 with k=32 where they are equal. If the part for the error handling

is introduced the speculative solution increase its area and became the one

which larger surface.

Arithmetic unit Area

IEEE754 Quantity Exact Speculative without error_network

K=4 K=8 K=16 K=32 K=64

ports 943 913 924

nets 1815 1754 1802

cells 1045 997 1019

binary_16 references 59 56 56

C-area [µm2] 2154.6 2080.44 2136.64

NC-area [µm2] 1308.96 1308.96 1308.96

T-area [µm2] 3463.53 3389.4 3445.6

ports 1967 1835 1895 1924

nets 3833 3628 3717 3789

cells 2125 2040 2077 2112

binary_32 references 41 41 41 41

C-area [µm2] 3577.32 3408.48 3479.4 3535.19

NC-area [µm2] 4303.44 4305.24 4303.44 4303.44

T-area [µm2] 7880.76 7713.72 7782.84 7838.63

ports 5905 5461 5605 5737 5845

nets 12757 12113 12403 12589 12756

cells 7392 7142 7309 7381 7450

binary_64 references 58 57 58 58 58

C-area [µm2] 14013 13697.64 13861.8 13916 14008.32.32

NC-area [µm2] 14902.56 14902.56 14902.56 14902.56 14902.56

T-area [µm2] 28915.56 28600.2 28764.36 28818.56 28910.88

ports 4399 3091 3415 3727 4015 4255

nets 26161 24202 24820 25097 25525 25788

cells 19464 18647 18993 19010 19186 19237

binary_128 references 187 182 186 198 186 187

C-area [µm2] 47991.6 4644.32 46790.28 47344.32 47437.28 47704.68

62

CHAPTER 4. RESULTS

NC-area [µm2] 31736.16 31551.48 31778.64 3977.28 31651.92 31621.32

T-area[µm2] 79727.76 77995.8 78568.92 78913.08 79089.2 79326

Table 4.10: Area occupancy of exact and speculative arithmetic unit without
error_network. C stands for "Combinational", NC for "Non-Combinational"
and T for "Total".

Arithmetic unit Area

IEEE754 Quantity Exact Speculative with error_network

K=4 K=8 K=16 K=32 K=64

ports 943 997 997

nets 1815 1903 1887

cells 1045 1139 1085

binary_16 references 59 62 62

C-area [µm2] 2154.6 2426.3 2250.2

NC-area [µm2] 1308.96 1328.2 1328.8

T-area [µm2] 3463.53 3754.5 3579

ports 1967 2143 2143 2143

nets 3833 4387 4112 4098

cells 2125 2534 2247 2239

binary_32 references 41 47 46 46

C-area [µm2] 3577.32 4541.04 3853.44 3762.34

NC-area [µm2] 4303.44 4356.72 4305.6 4299.12

T-area [µm2] 7880.76 8897.76 8159.04 8061.46

ports 5905 6327 6327 6327 6327

nets 12757 13329 13303 13287 13268

cells 7392 7606 7578 7570 7567

binary_64 references 58 70 69 69 69

C-area [µm2] 14013 14518.08 14474.88 14456.48 14415.4

NC-area [µm2] 14902.56 1499.76 15001.56 14999.76 1499.76

T-area [µm2] 28915.56 29517.84 29476.44 29456.24 29415.16

ports 4399 4857 4857 4857 4857 4857

nets 26161 27035 26890 26978 26966 26945

cells 19464 19997 19844 19910 19902 19893

binary_128 references 187 193 199 197 188 187

C-area [µm2] 47991.6 49454.28 49063.68 49081.68 49021.2 48940.56

NC-area [µm2] 31736.16 31784.76 31734.72 31685.88 31704.6 31726.92

T-area[µm2] 79727.76 81239.04 80798.4 80767.56 80725.8 80703.48

Table 4.11: Area occupancy of exact and speculative arithmetic unit with
error_network. C stands for "Combinational", NC for "Non-Combinational"
and T for "Total".

63

CHAPTER 4. RESULTS

(a) Area binary_16 (b) Area binary_32

(c) Area for binary_64 (d) Area for binary_128

Figure 4.10: Confront between area of exact �oating-point arithmetic unit
and the speculative ones with and without error_network.

A �nal observation is that the area variation caused by the di�erent adder

choices does not have a big impact on the total area because of the huge

overhead of the other components in the arithmetic unit, especially the

adder.

4.2.4 Power

Arithmetic unit Power

IEEE754 Quantity Exact Speculative without error_network

K=4 K=8 K=16 K=32 K=64

CI-power [µW] 634.76 597.15 617.3

binary_16 NS-power [µW] 47.52 42.3 45.6

64

CHAPTER 4. RESULTS

TD-power [µW] 682.28 639.45 662.9

CL-power [nW] 235.4 214.2 227.6

CI-power [µW] 788.915 776.636 784.924

binary_32 NS-power [µW] 54.1036 50.4171 51.5518 53.4616

TD-power [µW] 843.018 827.053 836.476 841.42

CL-power [nW] 539.667 519.153 528.718 535.751

CI-power 1229.2 1156 1187.8 1212.8

binary_64 NS-power [µW] 55.1054 48.1446 54.412 55.156 56.1134

TD-power [µW] 1284.31 1204.14 1242.21 1267.96 1280.71

CL-power [nW] 2028 1919.6 2009.4 2019.5 2029.1

CI-power 1464.1 1435.3 1445.8 1457.6 1460

binary_128 NS-power [µW] 75.4065 75.4031 74.8052 74.6878 75.4031 75.6894

TD-power [µW] 1539.51 1510.11 1520.49 1533 1534.68 1535.29

CL-power [nW] 7465.6 7277.8 7328.8 7341.9 7364.8 7449.9

Table 4.12: Power consumption of exact and speculative arithmetic unit with-
out error_network. CI stands for "Cell Internal", NS for "Net Switching",
TD for "Total Dynamic" and CL for "Cell Leakage".

Arithmetic unit Power

Width Quantity Exact Speculative with error_network

K=4 K=8 K=16 K=32 K=64

CI-power [µW] 634.76 703.8 679

binary_16 NS-power [µW] 47.52 92.4 75.4

TD-power [µW] 682.28 796.2 754.4

CL-power [nW] 235.4 287.1 253.8

CI-power [µW] 788.915 896.228 873.279 864.653

binary_32 NS-power [µW] 54.1036 128.941 105.164 102.587

TD-power [µW] 843.018 1025.17 978.443 967.24

CL-power [nW] 539.667 665.137 565.373 562.193

CI-power 1229.2

binary_64 NS-power [µW] 55.1054 1649.3 1626 1613.1 1606.9

65

CHAPTER 4. RESULTS

TD-power [µW] 1284.31 133.032 131.219 129.7 131.535

CL-power [nW] 2028 2080.6 2075.4 2069.7 2061.9

CI-power 1464.1

binary_128 NS-power [µW] 75.4065 1562.4 1554.1 1553.9 1548 1546.5

TD-power [µW] 1539.51 135.891 128.132 127.59 127.305 127.81

CL-power [nW] 7465.6 7612 7574.4 7534.3 7531.4 7526.7

Table 4.13: Power consumption of exact and speculative arithmetic unit with
error_network. CI stands for "Cell Internal", NS for "Net Switching", TD
for "Total Dynamic" and CL for "Cell Leakage".

(a) Dynamic power binary_16 (b) Dynamic power binary_32

(c) Dynamic power for binary_64 (d) Dynamic power for binary_128

Figure 4.11: Confront between dynamic power of exact �oating-point arith-
metic unit and the speculative ones with and without error_network.

66

CHAPTER 4. RESULTS

Both dynamic and power consumptions have the same behavior of the area

for all the tested arithmetic units. As found before the changes caused by

the various type of adders do not in�uence by much the total power because

the overhead of the other components its really big, above all the pipe reg-

isters increase a lot the total switching activity (Fig.4.11)for binary_64 and

binary_128.

(a) Static power binary_16 (b) Static power binary_32

(c) Static power for binary_64 (d) Static power for binary_128

Figure 4.12: Confront between static power of exact �oating-point arithmetic
unit and the speculative ones with and without error_network.

67

CHAPTER 4. RESULTS

4.3 Error evaluation

The last section of the Chapter is about the errors in the speculative ar-

chitecture i.e. how many times the fast_track generates a wrong result and

so, in the case of the arithmetic unit with the error_network, another clock

cycle is required to provide the correct result. The analysis of the error is

fundamental when the most appropriate solution must be chosen for a spe-

ci�c application. In Fig.4.13 are shown the diagram of the probability density

function for each parallelism of the IEEE754 standard with the various levels

of speculation.

(a) Error rate binary_16 (b) Error rate binary_32

(c) Error rate binary_64 (d) Error rate binary_128

Figure 4.13: Probability density function (PDF) of the error occurrence for
all the IEEE754 parallelisms with the various levels of speculation

Various conclusion can be drawn by those diagrams. First for low levels of

speculation the occurrence of errors is smaller, this is quite obvious because

68

CHAPTER 4. RESULTS

the architecture is closer to the exact one. Then if a confront between the

various parallelism is done it can be noticed how for the same k the number

of errors is bigger for higher parallelisms, also the range of the errors is wider.

This means that the number is subjected to greater variation when multiple

input pattern are applied. The origin of this result can be found in the longer

length of the random generated input data that provides a bigger number of

combinations.

By looking at the single architectures it is possible to �nd a validation of

what has been decleared in 2.1, that is that the carry rarely propagate more

than log2(n) bit. For binary_16 the errors when k=8 is used is much smaller

than the one with k=4 and it is nearly 0, same thing in binary_32 for k=16.

Starting from binary_64 there were not errors for k=32 as well as k=64 in

binary_128.

This does not mean that there is never an error when using this architecture.

Although extremely rare there are some input patterns that can generate a

wrong result, an example are the pattern used to test the correct behavior

of the detection network during the simulation.

69

Chapter 5

Conclusions

Before drawing conclusions a small summary of the work done is provided.

The �nal aim was to improve the performances of a arithmetic unit for �oat-

ing point addition exploiting a speculative adder, so the �rst step was the

study of which adder was better suited for this purpose. Floating point nor-

mally have an high parallelism of data and so the choice has fallen upon the

type of adder better suited for this application, namely the Parallel Pre�x

adder. Then analyzing the performances of the possible Pre�x network im-

plementations the Han-Carlson topology was selected because it provided a

better trade-o� between delay, complexity and fan-out. To improve the basic

adder a speculative approach was selected, the speculation made was that

the internal carry did not propagate more than k-bit. Because some appli-

cations may need a result that is always correct the speculative adder must

be integrated with a network that is able to detect when an error occurs and

handle it, the solution was found in the Variable Latency Speculative adder.

This architecture uses a fast_track path that generates the speculative result

and so reduces the delay, in parallel a error_detection network evaluate if

there are some errors in the result and if this is the case a signal is generated

that makes the input remain constant for another clock cycle so that the

error_correction can compute the right result. The adder was then imple-

mented in VHDL and characterized for all the IEEE754 formats and with

70

CHAPTER 5. CONCLUSIONS

various level of speculation with and without the error_network to provide

a complete study on how the performances vary.

Then the adder was implemented in the complete �oating point architecture

and another characterization was performed for the evaluation of the per-

formances in the speci�c application. In order to have signi�cant result a

pipeline was performed to decrease the overhead of the normalizer compo-

nent in the arithmetic unit. Lastly an evaluation of the error occurrence of

the speculative architecture was performed because it plays a mayor role in

the evaluation of the arithmetic unit performances.

The results obtained can be understood more easily if the ones of the adder

are explained �rst. The speculative adder without the error_network pro-

vides always better results for what concerns delay, area and power with

respect to the variable latency and exact implementation. The drawback is

the possibility of a wrong result that can not be avoided, a marginal solution

to this problem is using a smaller level of speculation because if the errors

probability are considered, starting from a value of k=8 for almost all the

parallelism, the number of errors is really small but always present.

The variable latency adder that includes the error_network always o�ers a

correct result by employing an additional clock cycle, but if the errors are

frequent the latency may grow too much. From the results of the character-

ization some mayor drawbacks of this architecture emerged. The �rst and

most obvious are the area and power overheads caused by the addition of the

error_detection and error_correction networks that needs additional com-

ponents which bring a bigger static and dynamic power consumption. Under

this aspect the performances improve if smaller speculation levels are used

because the error_detection is implemented with less components. For what

concerns the delay the result are not as good as the ones expected, because

there is an improvement compared to the exact adder but only for high level

of speculation, otherwise the delay is equal or worse than the standard adder.

This behavior is caused by the carry-in of the adder because its presence re-

quire for the error_detection a value generated from the last stage of the

71

CHAPTER 5. CONCLUSIONS

speculative computation and so the total delay does not bene�t from the

reduced delay of the detection part because it is compensated by the specu-

lative part that for high value of k is almost similar to the exact adder.

The results from the characterization of the complete arithmetic unit are

aligned with the ones described before for what concerns area and power

but the interesting behavior it the one related to delay. For the architecture

including the adder with the error_network the frequency for high levels of

speculation is as expected, the things change for low level of speculation. In

this case the frequency achievable is higher than the one of the exact archi-

tecture and it is close to the other speculative solution. This happens because

for low value of k the critical path it is still the one through the detection

network, when k grows the delay overhead of other components overtakes the

error_detection and so the critical path its similar to the speculative architec-

ture without error_network. The �nal results concerns the error occurrence,

analyzing the density probability functions for all four standard of IEEE754

the errors became very rare starting from k=8 for binary_16 and binary_32

and k=16 for binary_64 and binary_128. This implies that this two level of

speculation are the most suitable for almost all kind of application because a

high improvement in all performances can be achieved with the speculation

without correction and if the error_network is added its overhead of area

and power is quite well balanced in terms of delay reduction and correctness.

In conclusion the results of this thesis work are quite satisfactory because

they provide a wide analysis of the pro and cons of employing a speculative

approach to improve the performances of a �oating point adder that can be

implemented not only in a GPU model but can be extended to all kind of

application from FPGA to ASIC and it is also reusable as a starting point

for future works.

Working on this thesis has proven itself quite challenging but also satisfactory

because allowed me to exploit all the knowledge and skills obtained during

this Master of Science in Electronic Engineering and to work on the design

of digital systems, a topic that I always liked.

72

Bibliography

[1] Michael L. Overton. Numerical Computing with IEEE Floating Point
Arithmetic. Society for Industrial and Applied Mathematics, Philadel-
phia, 2001.

[2] 754-2008 - IEEE Standard for Floating-Point Arithmetic. Aug 2008.

[3] Armando Aloisio and Stefano Ricci. A framework for gpu design and
simulation. Master's thesis, Politecnico di Torino, December 2014.

[4] AMD Accelerated Parallel Processing Technology. Reference Guide, 1.1a
edition, 2011.

[5] Stefano Capello. A speculative approach for �oating-point adders in
GPU models. Master's thesis, Politecnico di Torino, December 2016.

[6] Reto Zimmermann. Binary Adder Architectures for Cell-Based VLSI
and their Synthesis. Ph.D. thesis, Swiss Federal Institute of Technology,
Zurich, Diss. ETH NO. 12480, 1997.

[7] Israel Koren. Computer Arithmetic Algorithms. 1993.

[8] Behrooz Parhami. Computer Arithmetic: algorithms and hardware de-
signs, Second Edition. Oxford University Press, 2010.

[9] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. J. ACM,
vol. 27, no. 4, October 1980.

[10] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE
Trans. Comput., vol. C-31, no. 3, March 1982.

[11] P. M. Kogge and H. S. Stone. A parallel algorithm for the e�cient
solution of a general class of recurrence. IEEE Trans. Comput., vol.
C-22, no. 8, August 1973.

[12] T. Han and D. A. Carlson. Fast area-e�cient VLSI adders. Proc. IEEE
8th Symp. Comput. Arith. (ARITH), May 1987.

BIBLIOGRAPHY

[13] Swapna K. Gedam and Pravin P.Zode. Parallel Pre�x Han-Carlson
Adder. International Journal of Research in Engineering and Applied
Sciences, Vol. 02, Issue 02, July 2014.

[14] Esposito Darjn, De Caro Davide, Napoli Ettore, Petra Nicola, and
Strollo Antonio Giuseppe Maria. Variable Latency Speculative Han-
Carlson Adder. IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS I: REGULAR PAPERS, VOL. 62, NO. 5, May 2015.

[15] Liu Weiqiang, Wang Chenghua, O'Neill Máire, Lombardi Fabrizio, and
Chen Linbin. Design and Analysis of Inexact Floating-Point Adders.
IEEE TRANSACTIONS ON COMPUTERS VOL. 65 NO. 1, Jan. 2016.

[16] S. M. Nowick. Design of a low-latency asynchronous adder using spec-
ulative completion. IEE Proc. Comput. Digit. Tech., vol. 143, no. 5,
September 1996.

[17] Verma Ajay K., Brisk Philip, and Ienne Paolo. Variable Latency Specula-
tive Addition: A New Paradigm for Arithmetic Circuit Design. DESIGN,
AUTOMATION AND TEST IN EUROPE, Mar. 2008.

	Introduction
	Main Pourpose and Goals
	Brief history of numerical computing
	IEEE754 format for floating-point numbers representation
	Previous work

	Parallel prefix adder
	Parallel prefix adders (PPA)
	Speculative approach
	Error detection and correction

	Floating point adder
	Floating Point addition
	Arithmetic unit design
	Variable Latency Adder Implementation

	Results
	Adder characterization
	Timing
	Area
	Power

	Arithmetic unit characterization
	Pipelining
	Timing
	Area
	Power

	Error evaluation

	Conclusions

		Politecnico di Torino
	2018-04-03T22:32:01+0000
	Politecnico di Torino
	Maurizio Martina
	S

