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Abstract  

In the late 1940s, Claude Shannon, a research mathematician at Bell Telephone 
Laboratories, invented a mathematical theory of communication that gave the first 
systematic framework in which to optimally design communication systems. The 
main questions motivating this were how to design communication systems to carry 
the maximum amount of information and how to correct for distortions on the lines. 
In relative, the contribution of Shannon theory is introduced the concept of 
information theory and information entropy, where defined a quantity of information.  
 
Shannon's ground-breaking approach introduced a simple abstraction of human 
communication, called the channel. The communication channel consisted of a 
transmitter (a source of information), a transmission medium (with noise and 
distortion), and a receiver (whose goal is to reconstruct the sender's messages).  
 
Information entropy is the most important feature of Shannon theory, which in order 
to quantitatively analyze transmission through the channel. It introduced a measure of 
the average quantity of information in a message or event. In general, the more 
uncertain or random the message is, the more information it will contain.  
 
To complete the quantitative analysis of the communication channel, Shannon 
introduced the entropy rate, a quantity that measured a source information production 
rate, and also a measure of the information carrying capacity, called the 
communication channel capacity. 
 
In information theory, the Shannon–Hartley theorem tells the maximum entropy rate 
at which information can be transmitted over a communications channel of a specified 
bandwidth in the presence of noise. In other word, Shannon's development of 
information theory provided the next big step in understanding how much information 
could be reliably communicated through noisy channels. Building on Hartley's 
foundation, Shannon's noisy channel coding theorem (1948) describes the maximum 
possible efficiency of error-correcting methods versus levels of noise interference and 
data corruption. 
 
Shannon's theorem shows how to compute a channel capacity from a statistical 
description of a channel. Given a noisy channel capacity and information transmitted 
at entropy rate, if entropy rate exceeds the channel capacity, there were unavoidable 
and uncorrectable errors in the transmission. In convert, there exists a coding 
technique which allows the probability of error at the receiver to be made arbitrarily 
small. This means that theoretically, it is possible to transmit information nearly 
without error up to nearly a limit of channel capacity bits per second. 
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As for the application, the initial motivation of Shannon theory is to remove the noise 
during communication, which gives the upper limit of the communication rate. This 
conclusion was firstly applied on the phone, and later applied on fiber, and now 
applied on the wireless communication. Today we are able to clearly take ocean 
telephones or satellite phones, which are closely related to the improvement of 
communication channel quality. Then, applications extend to biology and chemistry 
region, like genetic coding.  
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Chapter 1 

1   Shannon theory  

The most important contribution of Shannon theory is introduced the concept of 
information theory and information entropy, where defined a quantity of information.  

1.1 Information theory 

Information entropy is the most important feature of Shannon theory, which in order 
to quantitatively analyze transmission through the channel. It introduced a measure of 
the average quantity of information in a message or event. In general, the more 
uncertain or random the message is, the more information it will contain.  

1.1.1 Information entropy: a measure for information 

The quantity of information associated with an event x which has probability π of 
occurrence is defined as 

𝐼(𝑥) =  log2

1

𝜋
= − log2 𝜋 

The unit of measurement of the quantity of information is the information bit. 
 
More uncertain events have more quantity of information; less uncertain events have 
less quantity of information; sure events (those with probability 𝜋 = 1) have a 
quantity of information equal to zero. Note that, being  𝜋 ∈ [0, 1] , 𝐼(𝑥) ∈

[0,∞] which is to say that the quantity of information is always positive or null. 
 
Consider two events  𝑥  and  𝑦 , statistically independent and with probabilities 
p(𝑥) = 𝜋𝑥 and p(𝑦) = 𝜋𝑦. Then the probability that the two events occur at the same 
time (joint probability) is p(𝑥, 𝑦) = 𝜋𝑥𝜋𝑦, and the quantity of information associated 
with the occurrence of 𝑥 and 𝑦 at the same time is  

𝐼(𝑥, 𝑦) =  log2

1

p(𝑥, 𝑦)
= log2

1

𝜋𝑥𝜋𝑦
= log2

1

𝜋𝑥
+ log2

1

𝜋𝑦
= 𝐼(𝑥) + 𝐼(𝑦) 

Then the quantity of information of the joint occurrence of two statistically 
independent events is equal to the sum of their quantities of information. 
 
A communication system is essentially made of an information source which 
produces text, image, music, voice, and so on, and a receiver (or sink) who wants to 
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read the text, watch the images or listen to the music or voice. Between the source and 
the sink, there is the communication channel (whose structure will be described in this 
chapter). Note that there are two basic transmission systems: transmission between 
two points which are distant in space (typical for telephone, television, radio systems, 
some internet games played through a play-station or similar consoles, etc.) or in time 
(typical for storage systems like music or films stored in a CD or DVD disk, or text 
files or images in the computer hard disk, etc.). These two transmission systems have 
some peculiar differences so that a system which is suitable for a telephone system 
may not be suitable for file storage. The Shannon theory would be mainly denoted to 
the case of transmission between two distant points in space (e.g. phone system). 

1.1.1.1 Discrete source  

Consider then the simple case of a source which generates just one symbol  𝑥 , 
randomly choosing it in the set X =  {𝑥1, 𝑥2, … , 𝑥𝑁} (the source alphabet). In terms 
of probability theory, 𝑥 is a discrete random variable. 
 
Let P(𝑥 = 𝑥𝑘) = 𝜋𝑘 be the probability that the source chooses symbol 𝑥𝑘. Since the 
events 𝑥 = 𝑥𝑘 and 𝑥 = 𝑥𝑖  are all mutually exclusive for 𝑖 ≠ 𝑘 (it is impossible 
that the source generates both 𝑥𝑘 and 𝑥𝑖 at the same time), and for sure the source 
generates a symbol, then we must have (second1 and third2 axioms of probability 
theory): 

∑ 𝜋𝑘  

𝑁

𝑘=1

= 1 

The quantity of information associated with the event “the source generates 
symbol 𝑥”is 

𝐼(𝑥) =  log2

1

𝑃(𝑥)
 

and 𝐼(𝑥)  is a random variable, which takes value 𝐼(𝑥 = 𝑥𝑘) =  − log2 𝜋𝑘 with 
probability 𝜋𝑘; you can image that a nonlinear system exists such that, when the 
input is 𝑥 = 𝑥𝑘 ,the output is relatively as 𝐼(𝑥 = 𝑥𝑘) =  − log2 𝜋𝑘  , then 𝐼(𝑥) is a 
random variable obtained from nonlinear transformation of the input random variable 
𝑥. 
 
The average quantity of information associated with the generation of one symbol 
is  

                                                 
1 This is the assumption of unit measure: that the probability that at least one of the elementary events in the entire 
sample space will occur is 1. P(Ω) = 1 
2 This is the assumption of σ– additibity: Any countable sequence of disjoint sets (synonymous with mutually 
exclusive events) 𝐸1, 𝐸2, … satisfies: P(⋃ 𝐸𝑖

∞
𝑖=1 ) = 1 
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𝐻(𝑥) = 𝐸{𝐼(𝑥)} = ∑ 𝜋𝑘𝐼(𝑥 = 𝑥𝑘) 

𝑁

𝑘=1

= − ∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜋𝑘   

The average quantity of information 𝐻(𝑥) produced by the source each time it 
generates a symbol is called source entropy. Being the average of nonnegative 
random variable 𝐼(𝑥), the entropy is nonnegative (it can be zero). 
 
THEORM:  
The maximum value of entropy for a source with N symbols is 𝐥𝐨𝐠𝟐 𝑵 and it is 
obtained when the N symbols 𝒙𝒌 are all equally likely (i.e. 𝝅𝒌 = 𝟏/𝑵). 
 
PROOF: 

𝐻(𝑥) − log2 𝑁 = − ∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜋𝑘 − (∑ 𝜋𝑘

𝑁

𝑘=1

) log2 𝑁 

= − ∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜋𝑘  − (∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝑁 )

= − ∑ 𝜋𝑘

𝑁

𝑘=1

(log2 𝜋𝑘 + log2 𝑁 ) = ∑ 𝜋𝑘

𝑁

𝑘=1

log2

1

𝜋𝑘𝑁

=
1

ln 2
∑ 𝜋𝑘

𝑁

𝑘=1

(ln
1

𝜋𝑘𝑁
) ≤

1

ln 2
∑ 𝜋𝑘

𝑁

𝑘=1

(
1

𝜋𝑘𝑁
− 1)

=
1

ln 2
∑

1

𝑁

𝑁

𝑘=1

−
1

𝑙𝑛 2
∑ 𝜋𝑘

𝑁

𝑘=1

=
1

ln 2
(𝑁 ∙

1

𝑁
− 1) =

1

ln 2
(1 − 1) = 0 

 
The key point in the above proof is that  

ln 𝑥 ≤ 𝑥 − 1    ∀ 𝑥 > 0  
In brief, we can say that the discrete entropy is maximized by the uniform discrete 
probability density function.  
 
One useful inequality is the following: 

∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜋𝑘 ≥ ∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜌𝑘  

 
The proof is similar to the previous one: 
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∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜌𝑘 − ∑ 𝜋𝑘

𝑁

𝑘=1

log2 𝜋𝑘 = ∑ 𝜋𝑘

𝑁

𝑘=1

log2

𝜌𝑘

𝜋𝑘
 =

1

ln 2
∑ 𝜋𝑘ln

𝜌𝑘

𝜋𝑘

𝑁

𝑘=1

≤
1

ln 2
∑ 𝜋𝑘 (

𝜌𝑘

𝜋𝑘
− 1) =

1

ln 2

𝑁

𝑘=1

∑(ρk − πk)

N

k=1

=
1

ln 2
(∑ 𝜌𝑘 − ∑ 𝜋𝑘

𝑁

𝑘=1

𝑁

𝑘=1

)

=
1

ln 2
(1 − 1) = 0 

The quantity ∑ 𝜋𝑘log2
𝜋𝑘

𝜌𝑘

𝑁
𝑘=1  is called relative entropy, and we just showed it is 

always non-negative.  
 
Going back to entropy 𝐻(𝑋), for the simple case 𝑁 = 2, which occurs for example 
when the source generates ether “0” or “1”, the entropy of binary random variable 
with probability vector (𝑝, 1 − 𝑝) is  

𝐻(𝑋) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) ≜ ℋ(𝑝) 
Which is plotted in figure 1.1: the maximum of the function is 1 at 𝑝 = 0.5, whereas 
𝐻(𝑋) = 0 when 𝑝 = 0 or  𝑝 = 1 (in the last case, the source always generates 𝑥1 or 
always generate 𝑥2, thus producing no information at all).  

 
Figure1.1: Entropy of a binary source which generates symbol 𝑥1 with probability 𝑝 
and symbol 𝑥2 with probability 1 − 𝑝. 
 
If 𝑝 = 1/4, for instance, then symbol 𝑥1 carries log2 4 = 2 information bits, while 
𝑥2  carries log2(4/3) = 0.415  information bits; in the average the information 
quantity of source is  

𝐻(𝑋) =
1

4
× 2 +

3

4
× 0.415 = 0.811 [𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠] 

 
The source entropy can be seen as the average quantity of information necessary to 
know which symbol has been generated by the source. Consider the following “game”: 

a person 𝐴 observes the symbol generated by the source, whereas as a second person 
𝐵 must ask questions to 𝐴 in order to know the value of 𝑥. The game is such that 𝐵 
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can only ask questions that admit either answer “yes” or answer “no”. It is as if as 𝐴 
becomes a new source of information endowed with the two elements alphabet {“yes”, 

“no”}, and we have seen that the maximum entropy of 𝐴 is 1 bit, when the two 
symbols are equally likely; then 𝐵 gets the maximum information (1 bit), if it has 
question is such that the answer is “yes” with probability 0.5. Now suppose that the 

original source generate symbol {𝑥1, 𝑥2, 𝑥3, 𝑥4} with probabilities: 𝜋1 = 1/2, 𝜋2 =

1/4 and 𝜋3 = 𝜋4 = 1/8. 
 If 𝐵  is smart, he starts asking if  𝑥 = 𝑥1 , and 𝐴  answers “yes” with 

probability 𝜋1 = 1/2, so that 𝐵 wins the game with just 1 question. With this 
smart question, 𝐵 gets exactly 1 bit of information from 𝐴.  

 If 𝐴 answers “no” to the first question, then 𝐵 asks if 𝑥 = 𝑥2, and 𝐴 answers 

“yes” with probability 
𝜋2

𝜋2+𝜋3+𝜋4
=

1

2
 (this is the probability that the source 

generates 𝑥2, knowing that it has not generate 𝑥1). Also with this second question 
𝐵 gets exactly one bit of information from 𝐴. If 𝐴 answers “yes” to the second 

question then the game ends with two questions (and 2 bits of information 
provided from 𝐴). The probability that 𝐵 need two questions to know the value 
of 𝑥 is 𝜋2 = 1/4(the probability that the source has generated 𝑥2). 

 If 𝐴  answers “no” to the second question, then 𝐵  asks if  𝑥 = 𝑥3 , and 𝐴 

answers “yes” with probability   
𝜋3

𝜋3+𝜋4
=

1

2
; if 𝐴  answers “no” to the third 

question, then 𝐵 knows that the generated symbol is 𝑥4 and it is not necessary 
to ask other questions. 

Then the game ends with three questions (and 3 information bits provided by 𝐴). The 
probability that 𝐵 needs three questions to know the value of 𝑥, then 𝐵 needs an 
average number of questions equal to 

𝑛 = 1 ×
1

2
+ 2 ×

1

4
+ 3 ×

1

4
=

7

4
 

Noticed that the source entropy is  

𝐻(𝑋) = −∑𝜋𝑖

𝑁

𝑖=1

log2 𝜋𝑖  =
7

4
 

Which means that, in this case, the average number of questions exactly equal to the 
source entropy. Notice that how much 𝑛 is close to 𝐻(𝑋) depends on how smart is 
our friend 𝐵. 
 
If the symbols generated by the source are equally likely, then 𝐵 has the maximum 
uncertainty on the value of 𝑥; if the source generates always the same symbol 𝑥 = 𝑥1, 
then 𝐵 directly knows the value of 𝑥 (without any question); if the symbols are not 
equally likely (intermediate case between the previous two), then 𝐵 knows that one 
symbol is more probable and can use this knowledge to devise a smart strategy to 
reduce the number of questions. 
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On the basis of the above game, we can state that 𝐻(𝑋)  is the quantity of 
information that, in the average, must be provided to the receiver so that it can almost 
surely know (i.e. with error probability equal to zero) the symbol generated by the 
source. It is the task of transmission system, made of the modulator, channel, the 
demodulator, to give the detector inside the receiver the maximum possible quantity 
of information.  
 
In real life the source does not generate one symbol, but it continuously outputs 
symbols, one every symbol duration T𝑠 seconds. We talk about a memoryless source, 
if it does not build new symbol using previously generated symbols, or better, if the 
symbols generated by the source are statistically independent random variable taking 
values in the set 𝑋 = {𝑥1, 𝑥2 …𝑥𝑀}. Then the sequence of two consecutive symbols 
[𝑥(𝑛), 𝑥(𝑛+1)]  takes values in the (ordered) set of 
values 𝑋2 = {[𝑥1, 𝑥1], … [𝑥1, 𝑥𝑀], [𝑥2, 𝑥1], [𝑥2, 𝑥2], … [𝑥2, 𝑥𝑀], … [𝑥𝑀 , 𝑥𝑀]} , with M2 

symbols. The source is further divided into two categories, including memoryless and 
memory: 
 Memoryless source: 
If the source is memoryless, then 

𝑃(𝑥(𝑛) = 𝑥𝑘 , 𝑥(𝑛+1) = 𝑥𝑖  ) = 𝑃(𝑥(𝑛) = 𝑥𝑘)𝑃(𝑥(𝑛+1) = 𝑥𝑖) = 𝜋𝑘𝜋𝑖 

And the quantity of information associated with the event {𝑥(𝑛) = 𝑥𝑘, 𝑥
(𝑛+1) = 𝑥𝑖  } is 

the sum of the quantities of information associated with the two sample event 
{𝑥(𝑛) = 𝑥𝑘} and{𝑥(𝑛+1) = 𝑥𝑖}, which is to say that:  

I({𝑥(𝑛) = 𝑥𝑘 , 𝑥
(𝑛+1) = 𝑥𝑖} ) = I({𝑥(𝑛) = 𝑥𝑘}) + I({𝑥(𝑛+1) = 𝑥𝑖})

= − log2 𝜋𝑘 − log2 𝜋𝑖 
Then the average quantity of information of two subsequent symbols is  

𝐻(𝑋2) = 𝐸{I({𝑥(𝑛), 𝑥(𝑛+1)})} = 𝐸{𝐼(𝑥(𝑛)) + 𝐼(𝑥(𝑛+1))}

= 𝐸{𝐼(𝑥(𝑛))} + 𝐸{𝐼(𝑥(𝑛+1))} = 2𝐻(𝑋) 

Notice that memoryless source generates each symbol in the same way. I.e. the 
(𝑛 + 1)th symbol has the same entropy as the 𝑛𝑡ℎ symbol. 
 
Therefore, extending this result, if the source is memoryless, we get that 

𝑯(𝑿𝑵) = 𝑵𝑯(𝑿) 
I.e. the entropy of N symbols is N times the entropy of one symbol. 
 
 Memory source: 
If the source has memory, then 

𝑯(𝑿𝑵) < 𝑵𝑯(𝑿) 
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The proof is similar to the memoryless case: 
If the source has memory, then the symbol generation depends on the previous 
generated symbol. The probability of generation follows the Bayes’ Rule: 

𝑃(𝑥(𝑛) = 𝑥𝑘, 𝑥
(𝑛+1) = 𝑥𝑖  ) = 𝑃(𝑥(𝑛+1) = 𝑥𝑖  |𝑥

(𝑛) = 𝑥𝑘)𝑃(𝑥(𝑛) = 𝑥𝑘) 

And the quantity of information associated with the event {𝑥(𝑛) = 𝑥𝑘, 𝑥
(𝑛+1) = 𝑥𝑖  } is 

the sum of the quantities of information associated with the two sample event 
{𝑥(𝑛+1) = 𝑥𝑖 |𝑥

(𝑛) = 𝑥𝑘} and {𝑥(𝑛) = 𝑥𝑘}, which is to say that: 

I({𝑥(𝑛) = 𝑥𝑘, 𝑥
(𝑛+1) = 𝑥𝑖} ) = I({𝑥(𝑛+1) = 𝑥𝑖  |𝑥

(𝑛) = 𝑥𝑘 }) + I({𝑥(𝑛) = 𝑥𝑘}) 

Then the average quantity of information of two subsequent symbols is  

𝐻(𝑋2) = 𝐸{I({𝑥(𝑛), 𝑥(𝑛+1)})} = 𝐸{I({𝑥(𝑛+1) |𝑥(𝑛)}) + 𝐼(𝑥(𝑛))}

= 𝐸{I({𝑥(𝑛+1) |𝑥(𝑛)})} + 𝐸{𝐼(𝑥(𝑛))} = 𝐻(𝑋𝑛+1|𝑋𝑛) + 𝐻(𝑋𝑛)

< 𝐻(𝑋𝑛+1) + 𝐻(𝑋𝑛) = 2𝐻(𝑋) 
For the memory source, the key point of proof is  

𝐻(𝑋𝑛+1|𝑋𝑛) < 𝐻(𝑋𝑛+1) 

since observation of next symbol carries some information based on previous symbol 
and therefore the uncertainty next symbol is reduced. Extending the result, we get that  

𝐻(𝑋𝑁) < 𝑁𝐻(𝑋) 
 
As an example, consider the Italian language, for which letter “q” is almost always 
followed by “u”. Assume to repeat the same game of “guessing the symbol” 

described above, which, in this case, becomes “guessing the sentence”. Assume that 

𝐴 and 𝐵 are Italian guys and 𝐴 thinks of the word “questo”, and 𝐵 has to guess 
this word. Then 𝐵 starts with the first letter of the word and, after some questions 
and answers, knows that the first letter is “q”. Then 𝐵 has much less uncertainty on 
the value of second letter and start asking about the third letter, which, almost 
certainly, is a vowel (only 5 possibilities). This example shows that, while the first 
letter of the word has an entropy equals to log2 26 (being 26 the number of letters in 
alphabet), the second one has a much smaller entropy (it is not exactly zero, because 
𝐴 could think of a strange word, maybe an acronym). 

1.1.1.2 Analog source  

In some cases, the source generates a continuous random variable. For example, this 
occurs if we consider a voice random process sampled at 8000 hertz: each sample is a 
random variable, which is typically considered as a bilateral exponential (or Laplace) 
random variable. Let 𝑓𝑥(𝑢) be the probability density function of the continuous 
random variable x; remember that  
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P(a ≤ x ≤ b) = ∫ 𝑓𝑥(𝑢) 𝑑𝑢
𝑏

𝑎

 

Then, extending the definition of discrete entropy, we say that the differential 
entropy of the continuous source is  

ℎ(𝑥) = ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 = −∫ 𝑓𝑥(𝑢) log2 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 

1.1.1.2.1 Maximum differential entropy  

THEOREM:  
For a given mean 𝛍𝒙 and variation 𝝈𝒙

𝟐, whose definition are  

μ𝑥 = ∫ 𝑢 𝑓𝑥(𝑢)
∞

−∞
𝑑𝑢 , 𝜎𝑥

2 = ∫ (𝑢 − μ𝑥)
2 𝑓𝑥(𝑢)

∞

−∞
𝑑𝑢  

the probability density function that maximizes the differentially entropy is the 
Gaussian one: 

𝑓𝑥(𝑢) =
1

√2𝜋𝜎𝑥
2
exp {−

(𝑢 − μ𝑥)
2

2𝜎𝑥
2

} 

Relatively, the maximum differential entropy is 

 𝒉(𝒙) =
𝟏

𝟐
𝐥𝐨𝐠𝟐(𝟐𝝅𝒆𝝈𝒙

𝟐) 

 
For the Gaussian probability density function, the maximum differential entropy can 
be evaluated as follows: 

ℎ(𝑥) = ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢

= ∫ 𝑓𝑥(𝑢) [log2 √2𝜋𝜎𝑥
2 + log2 exp {

(𝑢 − μ𝑥)
2

2𝜎𝑥
2

}]
∞

−∞

𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 ∫ 𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 + ∫ 𝑓𝑥(𝑢) {
(𝑢 − μ𝑥)

2

2𝜎𝑥
2

}
∞

−∞

(log2 𝑒)𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 + ∫ 𝑓𝑥(𝑢) {

(𝑢 − μ𝑥)
2

2𝜎𝑥
2

}
∞

−∞

(log2 𝑒)𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 +

(log2 𝑒)

2𝜎𝑥
2

∫ 𝑓𝑥(𝑢)
∞

−∞

(𝑢 − μ𝑥)
2 𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 +

(log2 𝑒)

2𝜎𝑥
2

𝜎𝑥
2 =

1

2
log2 2𝜋𝜎𝑥

2 +
1

2
log2 𝑒

=
1

2
log2(2𝜋𝑒𝜎𝑥

2) 

 
It is interesting to note that the result does not depend on the mean μ𝑥, but only of the 
variance 𝜎𝑥

2: the mean does not carry information, while the information is “stored” in 

the variance of 𝑥. The mean is predictable, how much x is far from its mean is the real 
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information. The fact that ℎ(𝑥) does not depend on μ𝑥 is valid for any probability 
density function, even if it was shown just for the Gaussian probability density 
function. 
 
Proof:  
 We denoted by 𝑦 and 𝑥 the random variable with joint probability density 

functions 𝑓𝑦(𝑢)  and  𝑓𝑥(𝑢) . Let 𝑓𝑦(𝑢) and  𝑓𝑥(𝑢)  be respectively, a general 
probability density function and a Gaussian random variable probability density 
function, corresponding to the same variance, i.e. 

 𝜎𝑦
2 = 𝜎𝑥

2 

Since the mean value does not affect the entropy, we assume that in both cases the 
mean value is zero, 

μ𝑦 = μ𝑥 = 0 
 Note that if the differential entropy is 

ℎ(𝑥) = ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 = −∫ 𝑓𝑥(𝑢) log2 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 

for events with continuous support where 

∫ 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 = 1 

Extending this definition, we get  

ℎ(𝑦) = ∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑦(𝑢)

∞

−∞

𝑑𝑢 = −∫ 𝑓𝑦(𝑢) log2 𝑓𝑦(𝑢)
∞

−∞

𝑑𝑢 

∫ 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 = ∫ 𝑓𝑦(𝑢)
∞

−∞

𝑑𝑢 = 1 

 First of proof, note that 

∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 = ∫ 𝑓𝑦(𝑢) [log2 √2𝜋𝜎𝑥
2 + log2 exp {

(𝑢 − μ𝑥)
2

2𝜎𝑥
2

}]
∞

−∞

𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 ∫ 𝑓𝑦(𝑢)

∞

−∞

𝑑𝑢 + ∫ 𝑓𝑦(𝑢) {
(𝑢 − μ𝑥)

2

2𝜎𝑥
2

}
∞

−∞

(log2 𝑒)𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 +

(log2 𝑒)

2𝜎𝑥
2

∫ 𝑓𝑦(𝑢)
∞

−∞

(𝑢 − μ𝑥)
2 𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 +

(log2 𝑒)

2𝜎𝑥
2

∫ 𝑓𝑦(𝑢)
∞

−∞

(𝑢 − μ𝑦)2 𝑑𝑢

= log2 √2𝜋𝜎𝑥
2 +

(log2 𝑒)

2𝜎𝑥
2

𝜎𝑦
2 = log2 √2𝜋𝜎𝑥

2 +
(log2 𝑒)

2𝜎𝑥
2

𝜎𝑥
2

=
1

2
log2 2𝜋𝜎𝑥

2 +
1

2
log2 𝑒 =

1

2
log2(2𝜋𝑒𝜎𝑥

2) = ℎ(𝑥)

= ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 

Then we get  

ℎ(𝑥) = ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 = ∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢 
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 Next we calculate the difference and apply the inequality ln 𝑥 ≤ 𝑥 − 1 holding 
for every 𝑥 > 0: 

ℎ(𝑦) − ℎ(𝑥) = ∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑦(𝑢)

∞

−∞

𝑑𝑢 − ∫ 𝑓𝑥(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢

= ∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑦(𝑢)

∞

−∞

𝑑𝑢 − ∫ 𝑓𝑦(𝑢) log2

1

𝑓𝑥(𝑢)

∞

−∞

𝑑𝑢

= ∫ 𝑓𝑦(𝑢) log2

𝑓𝑥(𝑢)

𝑓𝑦(𝑢)

∞

−∞

𝑑𝑢 = ∫ 𝑓𝑦(𝑢) ln (
𝑓𝑥(𝑢)

𝑓𝑦(𝑢)
)

∞

−∞

𝑑𝑢 log2 𝑒

≤ ∫ 𝑓𝑦(𝑢) (
𝑓𝑥(𝑢)

𝑓𝑦(𝑢)
− 1)

∞

−∞

𝑑𝑢 log2 𝑒

= ∫ (𝑓𝑥(𝑢) − 𝑓𝑦(𝑢)) 𝑑𝑢
∞

−∞

log2 𝑒

= {∫ 𝑓𝑥(𝑢) 𝑑𝑢
∞

−∞

− ∫ 𝑓𝑦(𝑢)𝑑𝑢
∞

−∞

} log2 𝑒 = (1 − 1) log2 𝑒 = 0 

Obviously, this is an extension of corresponding inequality: 
ℎ(𝑦) ≤ ℎ(𝑥) 

which holds provided that 𝑦 and 𝑥 have the same variance and 𝑥 is a Gaussian 
random variable.  

1.1.1.2.1 Negative entropy  

The differential entropy can be negative. Thus the differential entropy loses the 
natural property of entropy of being positive. 
 
For examples: 
 Uniform distribution 
Consider a random variable distributed uniformly from 0 to 𝑎, so that its probability 

density function (uniform pdf 3 ) is 1

𝑎
 from 0 to  𝑎  and 0 elsewhere. Then its 

differential entropy is 

ℎ(𝑥) = −∫ 𝑓𝑥(𝑢) log2 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 = −∫
1

𝑎

𝑎

0

log2

1

𝑎
 𝑑𝑢 = log2 𝑎 

 

Note: for 𝑎 < 1, log2 𝑎 < 0, and the differential entropy is negative. If 𝑎 =
1

2
, the 

uniform pdf in [0, 1/2], we have  

                                                 
3 In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of 
symmetric probability distributions such that for each member of the family, all intervals of the same length on the 
distribution's support are equally probable. The support is defined by the two parameters, a and b, which are its 
minimum and maximum values. The distribution is often abbreviated U(a,b). The probability density function of 

the continuous uniform distribution is f(x) = {
1

𝑏−𝑎
, a < x < b

0, otherwise
. The information quantity is I(x) = log2

1

𝑏−𝑎
. 
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ℎ(𝑥) = −∫ 𝑓𝑥(𝑢) log2 𝑓𝑥(𝑢)
∞

−∞

𝑑𝑢 = −∫ 2

1
2

0

log22𝑑𝑢 = −∫ 2𝑑𝑢

1
2

0

= −2 ×
1

2
= −1 

Hence, unlike discrete entropy, differential entropy can be negative. 
 
 Gaussian distribution 
The entropy of the Gaussian density on R with mean 𝜇 and variance 𝜎2 is 

−∫
1

√2𝜋𝜎2
𝑹

𝑒
−

(𝑥−𝜇)2

2𝜎2 (− log2 √2𝜋𝜎2 −
(𝑥 − 𝜇)2

2𝜎2
)𝑑𝑥 =

1

2
(1 + log2(2𝜋𝜎2)). 

The mean 𝜇 does not enter the final formula, so all Gaussian with a common 𝜎2 
have the same entropy. 
 
For 𝜎 near 0, the entropy of a Gaussian is negative. Graphically, when 𝜎 is small, a 
substantial piece of the probability density function has values greater than 1, and 
there entropy −𝑝log2𝑝 < 0, where 𝑝 as the probability of one event. For discrete 
distributions, entropy is always positive, since values of a discrete probability 
function never exceed 1.  
 
 Exponential distribution 
The entropy of the exponential density on (0,∞) with mean 𝜆 is 

− ∫
1

λ

∞

0

𝑒−
𝑥
λ (− log2 λ −

𝑥

λ
)𝑑𝑥 = 1 + log2 λ 

As in the previous example, this entropy becomes negative for small 𝜆. 
 
Entropy is the amount of disorder that is in a system. Disorder is much more probable 
to occur than order in a random system. Negative entropy is reverse entropy. So if 
entropy is the amount of disorder, negative entropy means something has less disorder, 
or more order. In other words, negative entropy is the measure of “order”, which 

means organization, structure and function: the opposite of randomness or chaos, in 
system. 
 
The negative entropy has different meanings in information theory, thermodynamics 
and theoretical biology. 
 
 Information theory  
On the one hand, in information theory and statistics, negative entropy is used as a 
measure of distance to normality. Since out of all distributions with a given mean and 
variance, the normal or Gaussian distribution is the one with the maximum entropy 
(proof in section 1.1.1.2.1). Negative entropy measures the difference in entropy 
between a given distribution and the Gaussian distribution with the same mean and 
variance.  
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On the other hand, the information can be seen as negative entropy. In general, 
information can be defined as: information is the essential characteristics of the 
physical system movement, including the way, the state and the order of movement. 
And entropy is simply understood as disorder state in a system of material movement, 
so the negative entropy is an orderly state. For instances, as for learning, negative 
entropy can be transformed into the cerebral cortex of information; as for motion, 
negative entropy can be transformed into the muscle memory. The information is 
passed through the specific form of data being processed, and the information has an 
added value that exceeds the value of the data itself, which has the similar definition 
of the negative entropy. Therefore, we can think that the information is negative 
entropy. 
 
 Thermodynamics 
According to the second law of thermodynamics when we look at the system as whole 
entropy will always increase, as negative entropy must be balanced out by, most likely 
more, positive entropy. Negative entropy can only occur when we look at a small 
portion of the world. For instance, if you need to fold your shirt you are using energy 
and thus you are becoming more disordered. The shirt is now less disordered but you 
are more disordered and thus the system as a whole is in a state of either zero entropy 
or positive entropy although the shirt itself is in a state of negative entropy. 
 
We cannot simply look at a single object at a single point in time to determine if it has 
negative entropy. In order to determine entropy it must be compared either to itself at 
a previous or later point in time or to something else. For example, thinking about 
your room at this very instant, the bed may not be made and there may be a shirt on 
the floor. You may think about this as clean (ordered) or as a mess (disordered). If 
yesterday the floor was spotless and the bed nicely made then you are moving towards 
more disorder, so it is in a state of positive entropy. But if yesterday you didn't even 
have a sheet on the bed and all of your laundry was scattered across the floor then you 
are now moving towards less disorder so it is in a state of negative entropy. 

1.1.2 Source Coding  

An information source generates a sequence of symbols, and they carry information. 
Typically each generated symbol does not carry the maximum possible quantity of 
information, so that there is space for optimizing the system and reduce the number of 
generated symbols keeping the same information quantity. The source coder performs 
the operation of compressing the output of the original source, so that the information 
can be stored in a smaller file or it can be transmitted in a shorter time or in a smaller 
bandwidth. The system is then made of: the original source, the source encoder, the 
transmitter, the receiver, the source decoder, the final user or sink. 
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There are two main families of source encoder: 
1. The lossless source coders are those which preserve the quantity of information of 

the original source: the operation performed by the encoder is invertible and it is 
always possible to get the input of the encoder from its output; 

2. The lossy source coders are those which reduce the number of generated symbols 
with a process which is not exactly invertible; from the output of the encoder it is 
possible to build a sequence of symbols which “looks like” the true input of the 

encoder but is not exactly equal to it. 
 
Lossless encoders are used when the source produces text, executable files, etc.; lossy 
encoders are used for images, music, voice etc. In lossy encoders the similarity 
between the original symbols of the source and the symbols reconstructed by the 
source decoder is typically perceptual: a team of experts establishes the quality of 
compression. 
 
The lossless encoding technique contains the lossless Huffman source encoder; other 
lossless encoders are the arithmetic encoder, the Shannon encoder, the Lempel-Ziv 
encoder. The lossy encoders strictly depend on the source (whether itis voice or image, 
etc.); JPEG, MPEG etc. are examples of lossy encoders. 
 
In general, the source encoder takes an input symbol/sample (or a sequence of input 
symbols/samples) and outputs a sequence of binary digits (bits). Depending on how 
the mapping is performed, source encoders are further divided into two categories: 
 fixed length source encoders: they map m input symbols to the n output bits, 

where m and n are constant and fixed  
 Variable length source encoders: they map m input symbols to the n output 

bits, but n depends on the specific input. For example a variable length encoder 
might map the two subsequent input symbols 𝑥1𝑥3  into the sequence 
1100101(𝑚 = 2 and 𝑛 = 7), and the input symbols 𝑥1𝑥2 into 1011(𝑚 = 2  
and 𝑛 = 4). 

 
The source decoder takes the input bits and generates symbols/samples. In the 
preliminary analysis of source encoders, it is typical to assume that the transmitter, 
channel, and receiver are ideal, which allows to consider an equivalent system in 
which we have just the source, the encoder, the decoder and the destination/sink. 

1.1.2.1 A very simple fixed-length source encoder 

Assume that you have a discrete source with alphabet 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑀}  and 
corresponding probabilities𝜋1, 𝜋2, … , 𝜋𝑀, being M an integer power of 2. If 𝜋1 =

𝜋2 = ⋯ = 𝜋𝑀 = 1/𝑀, then the entropy of source is log2 𝑀 and each event 𝑥 = 𝑥𝑘 
carries the same information quantity log2 𝑀. The source encoder maps each symbol 



 

19 

𝑥𝑘 to a sequence of bits, and the number of bits required to represent and distinguish 
the 𝑀 symbols is log2 𝑀. The actual mapping is not important. Let us say that  𝑥1 is 
mapped to the binary representation of number 0  (using log2 𝑀  bits),  𝑥2  is 
mapped to the binary representation of number 1 and 𝑥𝑘 is mapped to the binary 
representation of number 𝑘 − 1. For example, for 𝑀 = 4, we have the mapping 
shown in table 1.1.  

k symbol mapping 
1 
2 
3 
4 

 𝑥1 
 𝑥2 
 𝑥3 
 𝑥4 

00 
01 
10 
11 

Table 1.1: Mapping between source symbols and their binary encoding, for the case of 
𝑀 = 4 equally likely symbols. 
 
The important point is that the mapping between symbol and its binary representation 
(or code word) is one-to-one: given the symbol we uniquely know its binary 
representation, or given the binary representation we uniquely know its corresponding 
symbol. Note that, once the mapping between symbols and their code words has been 
decided, the software or hardware that performs the direct or inverse mapping never 
makes errors. The fact that no errors are made means that all the information 
generated by the source is correctly received and managed by the source decoder, and 
this means that the binary code word made of log2 𝑀 bits actually carries log2 𝑀 
information bits.  
 
Then, the source generates a sequence of symbols, each of which carries log2 𝑀 
information bits, the source encoder outputs log2 𝑀 bits for each input symbol, the 
source decoder maps groups of log2 𝑀 input bits again into the symbol generated by 
the source, without making errors. If we look at the binary sequence generated by the 
source encoder, we can think that it is the output of an “equivalent” binary source. 

Now, if log2 𝑀  bits at the output of the source encoder actually carry 
log2 𝑀 information bits, then in the average each bit carries one information bit4. But 
only a binary source with equally likely symbols have an entropy equals to 1 
information bits, which means that the source encoder actually generates bit “1” with 

probability 1/2 and bit “0” with probability 1/2. Note that this is the best we can do: it 

is not possible that the “equivalent” binary source at the output of the source encoder 

can associate more than one information bit to each output bit. 
 

                                                 
4 Note the difference between bit, which is the output of the source and randomly takes one of the two values “0” 

or “1”, and the information bit, which is a measure of the information content of that bit. 
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1.1.2.2 Source coding theorem and Kraft inequality 

In information theory, Shannon's source coding theorem (or noiseless coding theorem) 
establishes the limits to possible data compression, and the operational meaning of the 
Shannon entropy. 
 
The source coding theorem places an upper and a lower bound on the minimal 
possible expected length of code words as a function of the entropy of the input word 
(which is viewed as a random variable) and of the size of the target alphabet. 
 
Kraft inequality is the sufficient and necessary condition to guarantee the code word 
uniquely decoded.  
 
The source coding theorem (Shannon 1948) shows that (in the limit, as the length of a 
stream of independent and identically-distributed random variable (i.i.d.5) data tends 
to infinity) it is impossible to compress the data such that the code rate (average 
number of bits per symbol) is less than the Shannon entropy of the source, without it 
being virtually certain that information will be lost. However it is possible to get the 
code rate arbitrarily close to the Shannon entropy, with negligible probability of loss. 

1.1.2.2.1 Source coding theorem 

The previous simple example allows us to understand that the ideal source encoder 
generates equally likely bits and each of these bits carries exactly one information bit. 
Moreover, if symbol 𝑥𝑘 has a quantity of information I(𝑥 = 𝑥𝑘), then it should be 
mapped into a number of bits 𝑛𝑘 equal to I(𝑥 = 𝑥𝑘) so that each generated bit 
carries exactly one bit of information.  Certainly, this is possible only if I(𝑥 = 𝑥𝑘) is 
integer; if I(𝑥 = 𝑥𝑘)  is not integer, then we can take 𝑛𝑘  integer with 𝑛𝑘  >

I(𝑥 = 𝑥𝑘). Note that we would like to have one information bit for each encoded bit, 
in the average, not for each symbol. This means that the choice 𝑛𝑘 > I(𝑥 = 𝑥𝑘), 
when I(𝑥 = 𝑥𝑘) is not integer might lead to inefficient codes, while the choice 
n𝑘 = I(𝑥 = 𝑥𝑘) when I(𝑥 = 𝑥𝑘) is integer for all values of 𝑘 is optimum. 
 
Let us consider the following case: source with alphabet 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑀} and 
associated probabilities {𝜋1, 𝜋2, … , 𝜋𝑀}, source encoder that maps symbol 𝑥𝑘 into a 
sequence of 𝑛𝑘 bits with 

I(𝑥 = 𝑥𝑘) < 𝑛𝑘 < I(𝑥 = 𝑥𝑘) + 1 
Note that in general I(𝑥 = 𝑥𝑘) = − log2 𝜋𝑘 is not an integer, while 𝑛𝑘 must be an 
integer; however, it is always possible to find an integer value in the range [I(𝑥 =

                                                 
5 In probability theory and statistics, a sequence or other collection of random variables is independent and 
identically distributed (i.i.d. or iid or IID) if each random variable has the same probability distribution as the 
others and all are mutually independent.  
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𝑥𝑘), I(𝑥 = 𝑥𝑘) + 1[. Define as 𝑛 the random variable corresponding to the number 
of bits produced by the source encoder, when its input is the random variable 𝑥. Then 
the mean value of 𝑛 (mean length of the source code word) is 

�̅� = E{𝑛} = ∑ 𝑛𝑘𝜋𝑘

𝑀

𝑘=1

 

And, being 𝐼(𝑥 = 𝑥𝑘) ≤ 𝑛𝑘 < 𝐼(𝑥 = 𝑥𝑘) + 1, 

∑ 𝐼(𝑥 = 𝑥𝑘)

𝑀

𝑘=1

𝜋𝑘 ≤ �̅� < ∑[𝐼(𝑥 = 𝑥𝑘) + 1]

𝑀

𝑘=1

𝜋𝑘 

Finally, we get the relationship between mean length of source code word and 
entropy:  

𝐻(𝑋) ≤ �̅� ≤ 𝐻(𝑋) + 1 
 
This last inequality 𝑯(𝑿) ≤ �̅� ≤ 𝑯(𝑿) + 𝟏 is called the source coding theorem 
and gives an upper and a lower bound to the mean length of the source code words.  

1.1.2.2.2 Kraft inequality  

However, we only proved that, if the source encoder use the 𝑛𝑘 as specified, then 
𝐻(𝑋) ≤ �̅� ≤ 𝐻(𝑋) + 1, but we did not prove that such a mapping exists and that the 
obtained code is uniquely denoted.  
 
First of all, it is necessary to give a formal definition to the word “uniquely 
decodable”: a source code is uniquely decodable if none of its code words is 
prefix of another code word.  
 
For example, assume that a source encoder uses the following three code words: 
“01111” for symbol 𝑥1, “01” for symbol 𝑥2 and “111” for symbol 𝑥3. Assume that 
the decoder has the input sequence “01111”: how can the decoder decider whether this 
bit sequence corresponds to 𝑥1 or to 𝑥2, 𝑥3? Both hypotheses are feasible and there is 
no way to find out which is the correct one. The code of this example is not uniquely 
decodable in that code “01” (for symbol 𝑥2) is prefix of code word “01111” (for 

symbol 𝑥1). 
 
One way to easily check whether a code is uniquely decodable is to arrange its code 
words into a (horizontal) binary tree like the one shown in Fig. 1.2. Starting from the 
root, and using the convention that the upper branch corresponds to bit “1” while the 

lower branch corresponds to bit “0”, it is easy to associate a node or a leaf of the 
binary tree to a code word. Figure 1.2 shows the position of code words “11”, “100”, 

“1100”, “0101” inside the tree of depth 4. 
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Then the code is uniquely decodable if no code word is father of another code word; 
in Fig. 1.2 it is easy to see that the node corresponding to code word “1100” is a son 

of node “11”, and therefore the 4 words given in Fig. 1.2 do not form a uniquely 

decodable code. This means that all the code words of a uniquely decodable code 
must be leaves of the tree. 

 
Figure 1.2: Example of association between code word “11”, “1100”, “100” and 

“0101” and nodes inside a binary tree. 
 
THEOREM (Kraft inequality)： 
A uniquely decodable code exists if and only if the lengths 𝑛𝑘 of its M code words 
satisfy the condition 

∑ 𝟐−𝒏𝒌

𝑴

𝒌=𝟏

≤ 𝟏 

PROOF: 
We must actually give two proofs, one to one that the condition is sufficient to obtain 
a uniquely decodable code and one to show that the condition is necessary (i.e. no 
uniquely decodable codes exist for which ∑ 2−𝑛𝑘𝑀

𝑘=1 > 1). We will only show in the 
following the sufficient condition, which is obtained through condition. Assume, 
without loss of generally, that  𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛𝑀 , so that 𝑛𝑀  is the maximum 
length of the code word. Consider a complete binary tree with depth 𝑁 = 𝑛𝑀, and 
start by placing the first code word 𝑥1 at a node with depth 𝑛1 (corresponding to 
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𝑛1 bits). This first code word must be a leaf of the final tree, and therefore eliminate 
2𝑁−𝑛1 leaves of the complete tree. Place the second code word 𝑥2 at a node with 
depth 𝑛2, which removes 2𝑁−𝑛2 leaves of complete tree, etc. The procedure stops if 
there is no node for code word 𝑥𝑗 at depth 𝑛𝑗  for some j ≤M. The number of 
available leaves after placing code word 𝑥𝑗−1 is equal to the total number of leaves 
of the complete tree, which are  2𝑁 , minus the leaves eliminated by code 
words 𝑥1, … , 𝑥𝑗−1: 

2𝑁 − ∑ 2(𝑁−𝑛𝑘)

𝑗−1

𝑘=1

 

and it is not possible to place code word 𝑥𝑗 if this number is smaller than 2(𝑁−𝑛𝑗). 

Thus the procedure stops only if, for some j ≤ M, the following inequality holds 

2𝑁 − ∑ 2(𝑁−𝑛𝑘)

𝑗−1

𝑘=1

< 2(𝑁−𝑛𝑗) 

which corresponds to  

1 − ∑ 2−𝑛𝑘

𝑗−1

𝑘=1

< 2−𝑛𝑗 

or 

∑ 2−𝑛𝑘

𝑗

𝑘=1

> 1 

But this is never the case because, by hypothesis, 

∑ 2−𝑛𝑘

𝑀

𝑘=1

= ∑ 2−𝑛𝑘

𝑗

𝑘=1

+ ∑ 2−𝑛𝑘

𝑀

𝑘=𝑗+1

= ∑ 2−𝑛𝑘 + 𝐴 ≤

𝑗

𝑘=1

1 

where  𝐴 is an integer number. Then, for any j ≤ M 

∑ 2−𝑛𝑘

𝑗

𝑘=1

< 1 − 𝐴 ≤ 1 

and it is never possible that 

∑ 2−𝑛𝑘

𝑗

𝑘=1

> 1 

Then the procedure can be completed if (sufficient condition) ∑ 2−𝑛𝑘𝑗
𝑘=1 > 1. The 

proof that this condition is also necessary is similar. 
 
Let us now go back to the source coding theorem. In order to complete the proof, we 
must prove that, by choosing I(𝑥 = 𝑥𝑘) ≤ 𝑛𝑘 < I(𝑥 = 𝑥𝑘) + 1 we satisfy the Kraft 
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inequality (we use the sufficient part of the Kraft inequality to prove that the uniquely 
decodable code exists). We have the following sequence of inequalities: 
 
 I(𝑥 = 𝑥𝑘) ≤ 𝑛𝑘 < I(𝑥 = 𝑥𝑘) + 1 
 

Our choice of lengths 

 − log2 𝜋𝑘 ≤ 𝑛𝑘 < − log2 𝜋𝑘 + 1 We substitute the value of I(𝑥 = 𝑥𝑘) 
  

 log2 𝜋𝑘 ≥ −𝑛𝑘 > log2 𝜋𝑘 − 1 = log2
𝜋𝑘

2
 Change sign 

 𝜋𝑘 ≥ 2−𝑛𝑘 >
𝜋𝑘

2
 Take 2 to the power of each of terms (the 

inequality signs are not changed since 2𝑥 
is a monotonic increasing function of 𝑥) 
 

 ∑ 𝜋𝑘 ≥ ∑ 2−𝑛𝑘𝑀
𝑘=1 > ∑

𝜋𝑘

2

𝑀
𝑘=1

𝑀
𝑘=1  Sum all the terms (the inequality signs 

are not changed) 
 

 1 ≥ ∑ 2−𝑛𝑘𝑀
𝑘=1 >

1

2
 (The sum of all the probabilities of the 

source symbol must be equal to 1, since 
the source certainly generates a symbol). 

 
Then on the left of the above inequality, 1 ≥ ∑ 2−𝑛𝑘𝑀

𝑘=1 , we exactly have the Kraft 
inequality, which means that we can build the uniquely decodable code starting from 
the chosen length value 𝑛𝑘 (and the Kraft inequality tells us how to build it). 
 
Then we proved that it is always possible, for any discrete source, to design a source 
encoder with average code word length �̅�  between  𝐻(𝑋) , the source entropy, 
and 𝐻(𝑋) + 1.  
 

1.1.2.2.3 Source coding theorem (Shannon 1948) 

In information theory, the source coding theorem (Shannon 1948) informally states 
that (MacKay 2003, pg. 81, Cover: Chapter 5): 

N i.i.d. random variables each with entropy H(X) can be compressed into more than 
N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if 

they are compressed into fewer than N H(X) bits it is virtually certain that 
information will be lost. 

 
For a given alphabet 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑀} and associated probabilities {𝜋1, 𝜋2, … , 𝜋𝑀}, 
it is always possible, for any discrete source, to design a source encoder to find t 
unique decodable source code such that  

𝑯(𝑿) ≤ �̅� ≤ 𝑯(𝑿) + 𝟏 
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Proof: 
 I(𝑥 = 𝑥𝑘) ≤ 𝑛𝑘 < I(𝑥 = 𝑥𝑘) + 1 For symbol 𝑥𝑘, pick a code word 

with length 𝑛𝑘 
 I(𝑥 = 𝑥𝑘)𝜋𝑘 ≤ 𝑛𝑘𝜋𝑘 < 𝜋𝑘I(𝑥 = 𝑥𝑘) + 𝜋𝑘 Multiple 𝜋𝑘  on both sides. The 

sign does not change, because of 
nonnegative probability 𝜋𝑘. 

 ∑ I(𝑥 = 𝑥𝑘)𝜋𝑘
𝑀
𝑘=1 ≤ ∑ 𝑛𝑀

𝑘=1 𝑘
𝜋𝑘 <

∑ 𝜋𝑘I(𝑥 = 𝑥𝑘)
𝑀
𝑘=1 + ∑ 𝜋𝑘

𝑀
𝑘=1  

 

Insert summation on both sides 

 𝐻(𝑋) ≤ �̅� ≤ 𝐻(𝑋) + 1 Source coding theorem is verified  
 
Then, in the average, each bit at the output of an encoder built according to the source 
coding theorem carries an information quantity η 

η =
𝐻(𝑋)

�̅�
 

with  

1 ≥ η >
𝐻(𝑋)

𝐻(𝑋) + 1
=

1

1 +
1

𝐻(𝑋)

 

Noted that η is also called efficiency of source code. This means that, in the best case, 
each bit at the output of the encoder carries exactly one information bit and we can 
say that the source followed by the source encoder corresponds to a binary 
memoryless source with equally likely symbols “0” and “1”. In the worst case, each 

bit at the input of the encoder carries an information quantity larger than 
𝐻(𝑋)

𝐻(𝑋)+1
; for 

H(X) sufficiently large, this bound can be approximated to 1, so that we can say that 
the system is equivalent to a binary source which almost memoryless and with equally 
likely symbols “0” and “1”, From the proof of source coding theorem, we see that 

η = 1 only if 𝑛𝑘 = − log2 𝜋𝑘, which is possible only if 𝜋𝑘 is an integer negative 
power of 2. 
 
It is interesting to analysis also the quantity 

ν =
1

𝜂
=

�̅�

𝐻(𝑋)
 

which represents the average number of bits (at the output of the source encoder) 
necessary to carry one information bit. Using again the same inequality, we get 

1 +
1

𝐻(𝑋)
=

𝐻(𝑋) + 1

𝐻(𝑋)
> ν ≥ 1 

which means again that, in the best case it is sufficient one bit to carry one 
information bit, but in the worst case we need 1 + 1/𝐻(𝑋)  bits, which might be 
practically equal to 1, if 𝐻(𝑋) is sufficient large. 



 

26 

 
One way to increase the mean information quantity η of the bits at the output of the 
source encoder is to use a source encoder which does not encode one symbol at a time, 
but 𝑁 consecutive symbols generated by the source. In fact, assuming the source is 
memoryless, then, 𝑁 consecutive symbols have the entropy equal to 𝑁𝐻(𝑋), being 
𝐻(𝑋) the entropy of each symbol. According to the source coding theorem, we can 
design an encoder which satisfies this new inequality:  

𝑁𝐻(𝑋) ≤ 𝑛𝑁̅̅̅̅ < 𝑁𝐻(𝑋) + 1 
being 𝑛𝑁̅̅̅̅  the average number of bits of a code word corresponding to N input 
symbol. Then it is as if each source symbol is encoded with  

�̅� =
𝑛𝑁̅̅̅̅

𝑁
 bits 

with  

𝑯(𝑿) ≤ �̅� < 𝑯(𝑿) +
𝟏

𝑵
 

which shows that the upper bound for �̅� can be arbitrarily decreased to 𝐻(𝑋) by 
taking 𝑁 sufficiently large.  
 
This last is the justification of the assuming which typically made when digital 
modulators are studied, i.e. that the modulator input bits are statistically independent 
and with equally probabilities. This is true if we assume that a sufficiently strong 
source encoder is used, such that each bit carries practically one information bit. 

1.1.2.3 Huffman coding and variable length source codes 

The source coding theorem gives us a theoretical way of designing an efficient source 
encoder, but the design might be impractical in many cases, due to a large value of 
𝑛𝑀 (the longest code word) or a large number of symbols. 
 
Much more practical is the encoding technique described by Huffman (Huffman 
encoder), which was proved to provide the optimum code word mapping, i.e. the one 
with minimum possible value of �̅� for the given source. 
 
The source encoder for a generic source with symbols {𝑥1, 𝑥2, … , 𝑥𝑀}  having 
probabilities 𝜋1, 𝜋2, … , 𝜋𝑀, can be build according to this procedure (see Fig. 1.3): 
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Figure 1.3: Example of Huffman code tree for the symbols and probabilities listed in 
table 1.2  
 
Step 1: Order symbols so that the symbol with higher probability is on the top 
(“bubble sorting”); without loss of generality, let 𝑥1 be the most likely symbol and 
𝑥𝑀 the less likely symbol. 
Step 2: Group the two symbols with the smallest probabilities (the two on the bottom) 
by drawing two branches which merge in a node; this node corresponds to an 
equivalent symbol with probability 𝜋𝑀 + 𝜋𝑀−1. The equivalent symbol corresponds 
to the event“the source generates 𝜋𝑀 or 𝜋𝑀−1”. 
Step 3: Decrease M by 1. 
Step 4: Repeat steps 1-3 until you have just one equivalent symbol with probability 1. 
Step 5: At this point you have a tree in which the symbols are the leaves; associate a 
code word to each symbol as follows: start from the root and follow the path which 
leads to the desired leaf/symbol, each branch going up corresponds to bit “1”, each 

branch going down corresponds to bit “0” (the first bit of the code word is the one 
related to the branch that merges in the root of the tree). 
 
The source encoder uses a look-up table which gives the correspondence between 
symbols and code words. The decoder can use the tree to perform decoding. It starts 
from the root and follows the path specified by the input bits: an input bit equal to “1” 

means “take the upper branch”, an input bit equal to “0” means “take the lower 
branch”. Once the decoder reaches the leaf of the tree, it generates the corresponding 
symbol, and starts again from the root. Note that the Huffman code is uniquely 
decodable by construction: no code word is prefix of another code word. 
 
An example of application of the Huffman encoding is shown in figure 1.3; the 
obtained code words are listed in table 1.2 
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Symbol 𝑥𝑖 Probability 𝜋𝑖 𝐼(𝑥𝑖) Code word Code word length 𝑛𝑖 
𝑥1 0.50 1.0 1 1 
𝑥2 0.30 1.7369 01 2 
𝑥3 0.10 3.3219 001 3 
𝑥4 0.03 5.0589 00011 5 
𝑥5 0.03 5.0589 00010 5 
𝑥6 0.02 5.6438 00001 5 
𝑥7 0.01 6.6438 000001 6 
𝑥8 0.01 6.6438 000000 6 

Table 1.2: Symbols and code words for the Huffman code shown in Fig.1.3 

 
For this example, the source entropy is 

𝐻(𝑥) = ∑ 𝜋𝑘𝐼(𝑥 = 𝑥𝑘) 

8

𝑘=1

= 1.9025 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠 

whereas the mean code word length is 

𝑛 = ∑ 𝜋𝑘𝑛𝑘 

8

𝑘=1

= 1.92 

The Huffman code allows getting the minimum value of  𝑛, which is, however, larger 
than 𝐻(𝑋), since the probabilities are not all integer negative powers of 2. In this 
example, 𝜂 = 1.09025/1.92 = 0.991 which is very close to 1; we can say that the 
Huffman encoder generates bits which are practically equally likely and statistically 
independent even if the source symbols have very different probabilities. Note also 
that the source code we can build using the technique described in the proof of the 
source coding theorem is less efficient than the Huffman code. 
 
Therefore, the output from Huffman's algorithm can be viewed as a variable-length 
code table for encoding a source symbol. The algorithm derives this table from the 
estimated probability or frequency of occurrence (weight) for each possible value of 
the source symbol. As in other entropy encoding methods, more common symbols are 
generally represented using fewer bits than less common symbols. 

1.1.3 Application of information theory to some games 

Let us consider again the game described in Sect. 1.1.1.1 and let us try to solve it 
using the Huffman encoder. There are 4 symbols with probabilities 1/2, 1/4, 1/8, 1/

8,  and we have to guess which of them has been generated by the source, using, in the 
average, the minimum number of questions with answers “yes/no”. Then this is 
equivalent to finding the minimum average number of bits which encode the 4 
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symbols, and we can use the Huffman encoding technique, which provides the same 
solution described in section 1.1.1.1. Let us consider instead the case in which there 
are the 8 symbols with the 8 probabilities listed in table 1.2: we apply the Huffman 
code and we get the tree of Fig. 1.3: How should we interpret that tree in terms of 
questions that 𝐵 has to ask 𝐴? The questions are the following: 
1. Is the symbol 𝑥1? With probability 0.5 the answer is “yes” and the game stops, 

otherwise 𝐵 moves to question 2. 
2. Is the symbol 𝑥2? With probability 0.3/0.5 the answer is “yes” and the game 

stops, otherwise 𝐵 moves to question 
3. Is the symbol 𝑥3? With probability 0.1/0.2 = 0.5 the answer is “yes” and the 

game stops, otherwise 𝐵 moves to question 4. 
4. Is the symbol 𝑥4 or 𝑥5? With probability 0.06/0.1 = 0.6 the answer is “yes” 

and 𝐵 asks the subsequent question 4.1: is the symbol 𝑥4? Which ends the game 
whatever is the answer? If the answer to question 4 is “no”, then 𝐵 goes to 
question 5. 

5. Is the symbol 𝑥6? With probability 0.02/0.04 = 0.5 the answer is “yes” and the 

game stops, otherwise 𝐵 asks question 6. 
6. Is the symbol 𝑥7? Whatever is the answer, the game stops. 
 
Consider the game in which there are 𝑁 coins, out of which is false and you want to 
find it out. Sometimes you know if the false coin weighs more or less than the true 
coins, sometimes you have to find it out. Sometimes you have a person to whom you 
have to ask questions with answers “yes/no”, sometimes you have a scale and you 

have to decide how to use it. There are many variants of the game, but in many cases 
you can find the solution of the problem using information theory. 
 
For example, consider the case in which you know that a correct coin weighs 10 g, 
while the false coin has a weight equal to 9 g. You have 10 coins, you don’t know if 

false coins are among them. Assume that you have a normal digital spring scale with 
infinite precision. Then, from a theoretical point of view, the quantity of information 
that the scale gives you each time you make a measurement is infinite, and, whatever 
is the problem, a solution should exist so that it is sufficient to use the scale just once 
to find the answer. In the current case, you can simply put all the coins on the scale: 
 if all the coins are true, the weight is 100 g 
 if one (and only one) coin is false, then the weight is 99 g 
 if exactly two coins are false, then the weight is 98 g 
 etc. 
Then, if 𝑤 is the measured weight, the number of false coins will be 100 − 𝑤. 
However, you do not know which coins are false. 
 
Let us consider a similar problem, in which you have the same scale, 10 coins each 
with nominal weight 10 g, you know that only 1 coin can be false, but you don’t know 
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whether it weighs more or less than a true coin. Then you can again put all the coins 
on the scale and get the total weight 𝑤. If 𝑤 = 100g, all the coins are true; if 
𝑤 = (100 + |∈|), then one false coin is present and it weighs (10 + |∈|)g; if 
𝑤 = (100 − |∈|) (it weighs more), then one false coin is present and it weighs 
(10 − |∈|)g (it weighs less). 
 
Let us consider the problem in which you have 10 coins, out of which 𝐾 are false, 
but you don’t know the value of 𝐾 and the weight of the false coin. In this case, it is 
convenient to use concepts of linear algebra: you have two unknowns 𝐾 and ∈, and it 
is not possible to find their values using just one equation. If the total weight is 
𝑤 = 102g, how can we know if there are 2 false coins and ∈ = 1g, or there are 4 
false coins and ∈ = 0.5g? The point is that, in principle, ∈ can take any value, so 
that its entropy depends on its probability density function, and the infinite 
information quantity provided by the scale is not sufficient to provide also the 
information required to find out 𝐾 (actually 𝐾 can take only 11 values, from 0 to 10, 
and its entropy is log2 11, since all the possibilities are equally likely). In real life, 
however, the value of ∈ will be small, not infinitesimal nor infinite, and a solution 
might be found but we need to know something more about ∈. 
 
Let us consider the case in which you have 𝑀 coins, one is false, your friend knows 
which one is false and you have to ask him questions with answers “yes/no” to find 

the false coins with the (mean) minimum number of questions. Then the information 
quantity you must obtain from your friend is 1 + log2 𝑀  (where log2 𝑀  is 
necessary to find the false coin, and 1 bit is necessary to find whether it weighs more 
or less than a true coin), your friend answer carries at most one information bit, the 
minimum (theoretical) number of questions is 1 + log2 𝑀, and the Huffman code can 
be directly applied to find the optimum solution. 
 
Let us consider the case in which you have 𝑀 coins, one is false, you can use only a 
balance scale. Then the information quantity you need is still 1 + log2 𝑀, and the 
balance scale gives you at most log2 3 information bits (the scale has three possible 
answers: the weight on the right is larger than the weight on the left, the weight on the 
left is larger than the weight on the right, and two weights are equal). From a 
theoretical point of view the (mean) minimum number of measurements is 1 +

log2 𝑀 = log2 3. In this case you need a ternary Huffman code (three branches from 
each node), and the interpretation of the tree is much more complex. In any case you 
should find a way to get from the balance the maximum quantity of information each 
time you use it; the maximum information quantity is log2 3 bits, which means that 
you must devise an experiment/measurement with three equally likely outcomes. 
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1.2 Mutual information  

1.2.1 Discrete channel matrix  

In the previous section we discussed source encoding, using information theory, and 
we assumed that the subsystem between the source encoder and decoder is ideal. Now 
we want to consider this inner subsystem, made of the digital modulator, the channel 
and the demodulator. 
 
Basically, the modulator maps the input symbol into a waveform, suitable for the 
specific channel (at baseband, at radio-frequency, with a given bandwidth, etc). The 
waveform travels through the channel which typically adds noise and sometimes 
introduces distortions. The demodulator performs the opposite operation of the 
modulator and maps the received waveform into one of the output symbols. For 
example, a 4PSK modulator has input 𝑥 which takes one out of 4 possible values, 
which we can simply identify as  𝑥1, 𝑥2, 𝑥3, 𝑥4 . The standard 4PSK demodulator 
outputs a symbol y which takes one out of 4 values 𝑦1, 𝑦2, 𝑦3, 𝑦4, and  𝑦1 = 𝑥1, 𝑦2 =

𝑥2, 𝑦3 = 𝑥3, 𝑦4 = 𝑥4; of course we would like that, being for example 𝑥2 the symbol 
at the input of the modulator, the output of the demodulator is 𝑦2, which means that 
the symbol was correctly receiver. However, we can imagine a non-standard 4PSK 
demodulator which outputs a symbol 𝑦 taken from a set of 8 possible symbols, and it 
is thus convenient to use in general two different alphabets for the inputs of the 
modulator and for the outputs of the demodulator. 
 
Then, in general the modulator has an input 𝑥 from the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁𝑇

}, 
whereas the demodulator outputs a symbol y taken from the set 𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑁𝑅

}, and it is 
possible that 𝑁𝑅 ≠ 𝑁𝑇. Whatever is the channel, there is a probability that an input 
symbol 𝑥𝑘  is received as 𝑦𝑛  for any 𝑘 ∈ [1,𝑁𝑇 ]  and any  𝑛 ∈ [1,𝑁𝑅 ] . The 
conditional probability 

𝑃(𝑦 = 𝑦𝑛|𝑥 = 𝑥𝑘) ≥ 0 

can be zero, but in general it is positive. Of course, 

∑ 𝑃(𝑦 = 𝑦𝑛|𝑥 = 𝑥𝑘) = 1

𝑁𝑅

𝑛=1

 

since an input symbol 𝑥𝑘 must correspond to an output symbol. 
 
The conditional probabilities 𝑃(𝑦 = 𝑦𝑛|𝑥 = 𝑥𝑘) are conveniently arranged into a 
matrix, which is called the discrete matrix 𝑷, where the adjective “discrete” is used 

to emphasize the fact that it is related to digital modulations with a finite number of 
symbols: 
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𝑷 =

[
 
 
 
 
 𝑃(𝑦1|𝑥1) 𝑃(𝑦2|𝑥1) 𝑃(𝑦3|𝑥1)

𝑃(𝑦1|𝑥2) 𝑃(𝑦2|𝑥2) 𝑃(𝑦3|𝑥2)

𝑃(𝑦1|𝑥3) 𝑃(𝑦2|𝑥3) 𝑃(𝑦3|𝑥3)
⋯

𝑃(𝑦𝑁𝑅
|𝑥1)

𝑃(𝑦𝑁𝑅
|𝑥2)

𝑃(𝑦𝑁𝑅
|𝑥3)

⋮ ⋱ ⋮
 𝑃(𝑦1|𝑥𝑁𝑇

) 𝑃(𝑦2|𝑥𝑁𝑇
) 𝑃(𝑦3|𝑥𝑁𝑇

) ⋯ 𝑃(𝑦𝑁𝑅
|𝑥𝑁𝑇

)]
 
 
 
 
 

  

The channel matrix is rectangular, with 𝑁𝑇 rows and 𝑁𝑅 columns.  

1.2.1.1 Symmetric channels 

Looking at the channel matrix P, it is possible to decide if the channel is symmetric or 
not, by applying the following definition. A channel is symmetric if its channel matrix 
has the following properties: 
1. either the following two conditions are satisfied (both must be satisfied and we 

have a strict-sense symmetric channel) 
 Each row of P has the same set of values (all the numbers in the first row are 

present in the second row, in the third, etc.) 
 Each column of P has the same set of values (all the numbers in the first 

column are present in the second column, in the third, etc.) 
2. Or (wide-sense symmetric channel) matrix P (with dimension NT times NR) can 

be divided into two or more submatrices of dimension 𝑁𝑇 × 𝑁𝑅
′  (𝑁𝑅

′ < 𝑁𝑅) such 
that each of the submatrices satisfy the properties in item 1. Note that it is always 
possible to exchange two columns of P (which means that the output symbols are 
simply re-ordered), or the rows of P (which means that the input symbols are 
re-ordered). 

1.2.2 The entropies associated with the discrete channels 

The discrete channels are characterized by an input alphabet 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁𝑇
} and 

an output alphabet 𝑌 =  {𝑦
1
, 𝑦

2
, … , 𝑦

𝑁𝑅
}, corresponding to the discrete channel matrix 

and it is possible to define the entropies for these two alphabets. With the following 
definitions: 

𝜋𝑖 = 𝑃(𝑥 = 𝑥𝑖)   𝜌𝑗 = 𝑃(𝑦 = 𝑦𝑗) 
We can define the following entropies: 
 Input entropy  

𝐻(𝑋) = 𝐸{𝐼(𝑥)} = −∑ 𝜋𝑖 log2 𝜋𝑖

𝑁𝑇

𝑖=1

 

The input entropy is the mean quantity of information that the source produces 
each time it generates a new symbol, but this is also the mean quantity of 
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information that the receiver needs, to exactly know which symbol 𝑥 was the 
source output/channel input. 
 

 Output entropy 

𝐻(𝑌) = 𝐸{𝐼(𝑦)} = −∑𝜌𝑗 log2 𝜌𝑗

𝑁𝑅

𝑗=1

 

The output entropy is the mean quantity of information of each received symbol. 
 

 Joint entropy 

𝐻(𝑋, 𝑌) = 𝐸{𝐼(𝑥, 𝑦)} = −∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

log2 P(𝑥𝑖, 𝑦𝑗)

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝑃(𝑥𝑖)

𝑁𝑅

𝑗=1

log2[P(𝑦𝑗|𝑥𝑖)𝑃(𝑥𝑖)]

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝜋𝑖

𝑁𝑅

𝑗=1

log2[P(𝑦𝑗|𝑥𝑖)𝜋𝑖]

𝑁𝑇

𝑖=1

 

The joint entropy is the mean quantity of information of the couple (𝑥, 𝑦). 
 

 Conditional entropy with condition on 𝑥  

𝐻(𝑌|𝑋) = 𝐸{𝐼(𝑦|𝑥)} = −∑∑P(𝑦𝑗, 𝑥𝑖)

𝑁𝑅

𝑗=1

log2 P(𝑦𝑗|𝑥𝑖)

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝑃(𝑥𝑖)

𝑁𝑅

𝑗=1

log2[P(𝑦𝑗|𝑥𝑖)]

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝜋𝑖

𝑁𝑅

𝑗=1

log2[P(𝑦𝑗|𝑥𝑖)]

𝑁𝑇

𝑖=1

 

The conditional entropy is the mean quantity of information carried by the output 
symbol 𝑦, being known the input symbol 𝑥. If, starting from an input symbol 𝑥𝑘, 
it is possible to obtain more than one output symbol, then 𝐻(𝑌|𝑋) > 0 (the 
channel introduces uncertainly); if, on the contrary, for each input symbol 𝑥𝑖, 
there is only one output symbol 𝑦𝑗, then 𝐻(𝑌|𝑋) = 0, since it is possible to 
exactly predict 𝑦 knowing 𝑥. 
 

 Conditional entropy with condition on 𝑦 or equivocation 
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𝐻(𝑋|𝑌) = 𝐸{𝐼(𝑥|𝑦)} = −∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

log2 P(𝑥𝑖|𝑦𝑗)

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝑃(𝑥𝑖)

𝑁𝑅

𝑗=1

log2[P(𝑥𝑖|𝑦𝑗)]

𝑁𝑇

𝑖=1

= −∑∑P(𝑦𝑗|𝑥𝑖)𝜋𝑖

𝑁𝑅

𝑗=1

log2[P(𝑥𝑖|𝑦𝑗)]

𝑁𝑇

𝑖=1

 

This conditional entropy is the mean quantity of information carried by the input 
symbol 𝑥, being known the output symbol 𝑦. In this case, the situation is that of 
the typical receiver, which knows 𝑦 and has to guess which was 𝑥. It is better to 
interpret 𝐻(𝑋|𝑌)  as the uncertainty that the receiver has on which 𝑥  was 
transmitted, once the receiver has observed 𝑦; on the other hand,  𝐻(𝑋) can be 
interpreted as the uncertainty that the receiver has on 𝑥, without having observed 
the channel output 𝑦. 
 
An ideal channel must have 𝐻(𝑋|𝑌) = 0. Once the channel output has been 
observed, the receiver has no uncertainty on the transmitted symbol. A “normal” 

channel has  𝐻(𝑋|𝑌) <  𝐻(𝑋)), since the observation of the channel output 
carries some information on the transmitted symbol and therefore the receiver 
uncertainty is reduced. A “useless” channel has 𝐻(𝑋|𝑌) =  𝐻(𝑋): the receiver 
uncertainty is the same, whether it observes the channel output, and therefore the 
symbol transmission is a waste of energy and resources, the channel is useless. 
 
We can think of 𝐻(𝑋|𝑌) as the mean quantity of information that the receiver 
must get (somehow) in order to remove all its uncertainty and know exactly 
which symbol was transmitted. If a demon (like the Maxwell’s demon) were 
present, then the receiver could ask the demon some questions (with answers 
yes/no) to know the value of 𝑥, and in the average, with an ideal game, the 
number of questions would be 𝐻(𝑋|𝑌). 

 
Note that 

𝑃(𝑥𝑖|𝑦𝑗) =
𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑦𝑗)
=

𝑃(𝑦𝑗|𝑥𝑖)𝑃(𝑥𝑖)

𝑃(𝑦𝑗)
= 𝑃(𝑦𝑗|𝑥𝑖)

𝜋𝑖

𝜌𝑗
 

and that 

𝜌𝑗 = ∑𝑃(𝑦𝑗|𝑥𝑖)𝜋𝑖

𝑁𝑇

𝑖=1

 

Therefore, the above entropies depend on the channel matrix P whose 𝑖, 𝑗 element is 

𝑃(𝑦 = 𝑦𝑗|𝑥 = 𝑥𝑖) and on the probabilities 𝜋𝑖. Some relationships exist among the 
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entropies, since they depend on the same quantities. 
 A first relationship is easily found using the Bayes’ rule: 

P(𝑥 = 𝑥𝑖 , y = 𝑦𝑗) = P(y = 𝑦𝑗|𝑥 = 𝑥𝑖)P(𝑥 = 𝑥𝑖) = P(𝑥 = 𝑥𝑖|y = 𝑦𝑗)P(𝑦 = 𝑦𝑗) 

from which, it is possible to obtain the following relationship in terms of 
information quantity: 

I(𝑥 = 𝑥𝑖, y = 𝑦𝑗) = I(y = 𝑦𝑗|𝑥 = 𝑥𝑖) + I(𝑥 = 𝑥𝑖)

= I(x = 𝑥𝑖|𝑦 = 𝑦𝑗) + I(𝑦 = 𝑦𝑗) 

Taking the mean of the above equation over all the possible values of 𝑥𝑖 and 𝑦𝑗, 
we get 

H(𝑋, 𝑌) = 𝐸{𝐼(𝑥, 𝑦)} = 𝐸{𝐼(𝑦|𝑥)} + 𝐸{𝐼(𝑥)} = 𝐻(𝑌|𝑋) + 𝐻(𝑋)

= 𝐸{𝐼(𝑥|𝑦)} + 𝐸{𝐼(𝑦)} = 𝐻(𝑋|𝑌) + 𝐻(𝑌) 
 
Note that the evolution of 𝐻(𝑌|𝑋) is in general easier than the evolution of 
𝐻(𝑋|𝑌), and the fact that 𝐻(𝑌|𝑋) + 𝐻(𝑋) = 𝐻(𝑋|𝑌) + 𝐻(𝑌) can be used to 
reduce the computation burden for 𝐻(𝑋|𝑌). 
 

 A second couple of relationships is the following (already partially described in 
words) 

𝐻(𝑋|𝑌) ≤ 𝐻(𝑋)        𝐻(𝑌|𝑋) ≤ 𝐻(𝑌) 
 
The formal proof of the inequality 𝐻(𝑋|𝑌) ≤ 𝐻(𝑋): 
Since 

𝑃(𝑥𝑖) = ∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

 

We can write  
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𝐻(𝑋|𝑌) − 𝐻(𝑋) = ∑∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

log2

1

𝑃(𝑥𝑖|𝑦𝑗)

𝑁𝑇

𝑖=1

− ∑𝑃(𝑥𝑖) log2

1

𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

= ∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

log2

1

𝑃(𝑥𝑖|𝑦𝑗)
− ∑[∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

] log2

1

𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

= ∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

log2

𝑃(𝑥𝑖)

𝑃(𝑥𝑖|𝑦𝑗)
= ∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

ln [
𝑃(𝑥𝑖)

𝑃(𝑥𝑖|𝑦𝑗)
]

ln 2

=
1

ln 2
∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

ln [
𝑃(𝑥𝑖)

𝑃(𝑥𝑖|𝑦𝑗)
]

≤
1

ln 2
∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

[
𝑃(𝑥𝑖)

𝑃(𝑥𝑖|𝑦𝑗)
− 1]

=
1

ln 2
[∑∑

P(𝑥𝑖, 𝑦𝑗)

𝑃(𝑥𝑖|𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖) − ∑∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

]

=
1

ln 2
[∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

∑
P(𝑥𝑖, 𝑦𝑗)

𝑃(𝑥𝑖|𝑦𝑗)

𝑁𝑅

𝑗=1

− ∑∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

] 

 
Since, based on the Bayes’ rules: 

𝑃(𝑦𝑗) =
𝑃(𝑥𝑖|𝑦𝑗)𝑃(𝑦𝑗)

𝑃(𝑥𝑖|𝑦𝑗)
=

𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑥𝑖|𝑦𝑗)
  

And 

∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

= ∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

= ∑𝑃(𝑦𝑗)

𝑁𝑅

𝑗=1

= 1 

Then we can write 

𝐻(𝑋|𝑌) − 𝐻(𝑋) ≤
1

ln 2
[∑∑𝑃(𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖) − 1]

=
1

ln 2
[∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

∑𝑃(𝑦𝑗)

𝑁𝑅

𝑗=1

− 1] =
1

ln 2
[1 − 1] = 0 

Obviously, we proved  
𝐻(𝑋|𝑌) − 𝐻(𝑋) ≤ 0 

i.e. 
𝐻(𝑋|𝑌) ≤ 𝐻(𝑋) 
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1.2.3 Mutual information  

Mutual information is the mean quantity of information that the channel carries from 
the input source 𝑋 to the output of the receiver 𝑌. The average information quantity 
that the receiver needs (from the Maxwell demon) to exactly know the transmitted 
symbol is 𝐻(𝑋) in the absence of channel, and 𝐻(𝑋|𝑌) < 𝐻(𝑋) in the presence of 
channel: this means that the channel provides the receiver with 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
information bits and this is the average flow of information through the channel, 
which we call the mutual information 𝐼(𝑋; 𝑌): 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)  [𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠] 
In the other way, based on the expression of conditional entropy (section 1.2.2), the 
mutual information between two variables can be defined as:  

𝐼(𝑋; 𝑌) = −∑∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

log2

P(𝑥𝑖|𝑦𝑗)

P(𝑥𝑖)P(𝑦𝑗)

𝑁𝑇

𝑖=1

 

More generally,  

𝐼(𝑋1, 𝑋2, … , 𝑋𝑛; 𝑌1, 𝑌2, … , 𝑌𝑚) = 𝐼(𝑋𝜋(1), 𝑋𝜋(2), … , 𝑋𝜋(𝑛); 𝑌𝜋′(1), 𝑌𝜋′(2), … , 𝑌𝜋′(𝑚))

= 𝐼(𝑌𝜋′(1), 𝑌𝜋′(2), … , 𝑌𝜋′(𝑚); 𝑋𝜋(1), 𝑋𝜋(2), … , 𝑋𝜋(𝑛)) 
for any pair of permutations 𝜋, 𝜋′. 
 
Since  𝐻(𝑋|𝑌) ≤ 𝐻(𝑋) , we get  𝐼(𝑋; 𝑌) ≥ 0 . I.e. the mutual information is 
nonnegative number. The proof is following:  

−𝐼(𝑋; 𝑌) = log2 𝑒 ∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

ln
P(𝑥𝑖)P(𝑦𝑗)

P(𝑥𝑖|𝑦𝑗)

𝑁𝑇

𝑖=1

≤ log2 𝑒 ∑∑P(𝑥𝑖 , 𝑦𝑗)

𝑁𝑅

𝑗=1

(
P(𝑥𝑖)P(𝑦𝑗)

P(𝑥𝑖|𝑦𝑗)
− 1)

𝑁𝑇

𝑖=1

= log2 𝑒 (∑∑P(𝑥𝑖)P(𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

− ∑∑P(𝑥𝑖, 𝑦𝑗)

𝑁𝑅

𝑗=1

𝑁𝑇

𝑖=1

) = 0 

 
Notice that the mutual information is invariant to the exchange of random variables. 
For example, 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋). The proof is following: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑋) − [𝐻(𝑋|𝑌) + 𝐻(𝑌)] + 𝐻(𝑌)

= 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − [𝐻(𝑌|𝑋) + 𝐻(𝑋)]

= 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐼(𝑌; 𝑋) 
This proof verifies that the information flow is bidirectional: it can be evaluated in the 
direction from 𝑋 to 𝑌 or in the direction from 𝑌 to 𝑋. In general, it is convenient to use 
the formula 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) 
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We can see that: 
𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) 

Then, we define the mutual information between continuous random variables by 
simply replacing the discrete entropies by corresponding differential entropies: 

𝐼(𝑋; 𝑌) = ℎ(𝑋) + ℎ(𝑌) − ℎ(𝑋, 𝑌) 
 
Moreover, we can use an analogy taken from hydraulics, where pipes transport water, 
whereas telecommunication channels transport information. The direct channel 
behaves like a pipe and the overall transported information depends on how much 
information 𝐻(𝑋)  is present at the input of the channel and how much 
information 𝐻(𝑋|𝑌) is lost in the channel. If a pipe has an input water flow, then the 
output flow is equal to the input flow minus the water flow that is lost due to 
understand but always present leaks. 
 
For the ideal channel, we have  𝐻(𝑋|𝑌) = 0  and thus the mutual 
information 𝐼(𝑋; 𝑌) = 𝐻(𝑋): the ideal channel carries all the information generated 
by the source. 
 
For the useless channel, we have 𝐻(𝑌) = 𝐻(𝑌|𝑋) and the mutual information is 
𝐼(𝑋; 𝑌) = 0, which means that it cannot carry any information at all. 

1.2.3.1 The symmetric channel  

In the case of symmetric channel, the evaluation of 𝐼(𝑋; 𝑌) is following: 

𝐻(𝑌|𝑋) = −∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

∑𝑃(𝑦𝑗|𝑥𝑖) log2 𝑃(𝑦𝑗|𝑥𝑖)

𝑁𝑅

𝑗=1

 

The summation over 𝑗 depends on the elements of the 𝑖𝑡ℎ row of the channel matrix 
P; but for a symmetric channel each row has the same elements (maybe with a 
different order) and therefore the sum does not depend on 𝑖. Then we can write: 

𝐻(𝑌|𝑋) = − [∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

]∑𝑃(𝑦𝑗|𝑥1) log2 𝑃(𝑦𝑗|𝑥1)

𝑁𝑅

𝑗=1

= ∑𝑃(𝑦𝑗|𝑥1) log2 𝑃(𝑦𝑗|𝑥1)

𝑁𝑅

𝑗=1

= 𝐴 

which depends only on the channel, not on the a-priori probabilities 𝑃(𝑥𝑖) = 𝜋𝑖. In 
order to evaluate  𝐼(𝑋; 𝑌) , we still need  𝐻(𝑌) , which depends on the 

probabilities 𝑃(𝑦𝑗) = 𝜌𝑗: 

𝜌𝑗 = ∑𝑃(𝑦𝑗|𝑥𝑖)

𝑁𝑅

𝑗=1

𝜋𝑖 

Then 𝜌𝑗  is evaluated using the 𝑗𝑡ℎ  column of P: for a symmetric channel the 
elements of each column are equal (at least in each submatrix), but this property does 
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not help since 𝜌𝑗  also depends on 𝜋𝑖 . In any case the mutual information for a 
symmetric channel can be written as 

 𝐼(𝑋; 𝑌) =  𝐻(𝑌) − ∑𝑃 (𝑦
𝑗
|𝑥1) log

2
𝑃 (𝑦

𝑗
|𝑥1)

𝑁𝑅

𝑗=1

 

and it depends on the channel and on the a-priori probability 𝜋𝑖. 

1.3 Capacity  

1.3.1 Capacity of a discrete channel 

We have seen the mutual information 𝐼(𝑋; 𝑌) depends on the channel itself and on 
the probabilities 𝜋𝑖 = 𝑃(𝑥 = 𝑥𝑖). This is natural if we think of the definition of 
mutual information: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
in which 𝐻(𝑋) (depends on 𝜋𝑖) appears explicitly. 
 
We can use again the hydraulics analogy. If a pipe has a small input flow, then the 
output flow is also small, and if we want to increase the output flow we must increase 
the input flow. Actually not all the water at the input of the pipe gets to the output, 
since some water is lost due to undesired but always present leaks. Each water pipe 
has a capacity (liters per second) and if the input flow is larger than this capacity, 
typically the pipe breaks. An experimental way to measure the capacity of a pipe is 
that of increasing the input flow until the output flow reaches a maximum (hopefully 
without breaking the pipe). Then, in analogy, we can define the capacity of a discrete 
channel as the maximum mutual information (or information flow) obtained by 
varying the input entropy, i.e. by varying the a-priori probabilities 𝜋1, 𝜋2, … , 𝜋𝑁𝑇

: 

C = max
{𝜋1,𝜋2,…,𝜋𝑁𝑇

}
𝐼(𝑋; 𝑌) 

We can guess that, at least in some cases, the capacity is obtained when 𝐻(𝑋) is 
maximum, i.e. when 𝜋𝑖 = 1/𝑁𝑇. The example is showed in section 1.3.1.1. 

1.3.1.1 The symmetric channel  

We have seen that the mutual information of a symmetric channel can be written as 

 𝐼(𝑋; 𝑌) =  𝐻(𝑌) − ∑𝑃 (𝑦
𝑗
|𝑥1) log

2
𝑃 (𝑦

𝑗
|𝑥1)

𝑁𝑅

𝑗=1

 

and capacity is 
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𝐶 = max
𝜋

𝐼(𝑋; 𝑌) = [max
𝜋

𝐻(𝑌)]  − ∑ 𝑃(𝑦𝑗|𝑥1) log2 𝑃(𝑦𝑗|𝑥1)

𝑁𝑅

𝑗=1

 

Since the second term does not depend on 𝜋𝑘, but only on the channel matrix P. Then, 
for the specific case of symmetric channels, the capacity is obtained by maximizing 
the output entropy 𝐻(𝑌). 
 
If P has the same elements in all its columns (condition 1 in the definition of 
symmetric channels, case of strict-sense symmetric channels), then the maximum of 
𝐻(𝑌) is obtained by setting 𝜋𝑖 = 1/𝑁𝑇 . In fact the maximum value of 𝐻(𝑌) is 
 log2 𝑁𝑅, and you can get it if and only if 𝜌𝑗 = 1/𝑁𝑅 for all 𝑗 = 1,…𝑁𝑅; but if 
 𝜋𝑖 = 1/𝑁𝑇, then we have 

𝜌𝑗 = ∑𝑃(𝑦𝑗|𝑥𝑖) 

𝑁𝑇

𝑖=1

1

𝑁𝑇
= (∑𝑃(𝑦𝑗|𝑥𝑖) 

𝑁𝑇

𝑖=1

)
1

𝑁𝑇
  

and this result does not depend on 𝑗, since all the column of P have the same set of 

probabilities 𝑃(𝑦𝑗|𝑥𝑖). Then we can write:  

𝜌𝑗 = (∑ 𝑃(𝑦𝑗|𝑥𝑖) 
𝑁𝑇
𝑖=1 )

1

𝑁𝑇
= 𝐴  Constant, independent on 𝑗 

Since 𝜌𝑗 = 𝐴  for 𝑗 = 1,…𝑁𝑅  and it must be that  ∑ 𝜌𝑗  
𝑁𝑅
𝑖=1 = 1 , then the only 

solution is 𝜌𝑗 = 1/𝑁𝑅. Then, if the channel is symmetric and 𝜋𝑖 = 1/𝑁𝑇 for all 𝑗′𝑠, 
we will have  𝐻(𝑋) = log2 𝑁𝑇 and 𝐻(𝑌) = log2 𝑁𝑅 (maximum entropies at both 
the input and output of the channel). Note also that, if the channel matrix is doubly 

stochastic, then ∑ 𝑃(𝑦𝑗|𝑥𝑖) 
𝑁𝑇
𝑖=1 = 1 for all 𝑗, and therefore 𝜌𝑗 = 1/𝑁𝑇.  

 
In a summary, the capacity of strict-wise symmetric channel is 

𝐶 = log2 𝑁𝑅 − ∑𝑃(𝑦𝑗|𝑥1) log2 𝑃(𝑦𝑗|𝑥1)

𝑁𝑅

𝑗=1

 

And it is obtained for 𝜋𝑘 = 1/𝑁𝑇, 𝑘 = 1, … , 𝑁𝑇. 
 
If the channel matrix is that of a wide-sense symmetric channel (condition 2 in the 
definition of symmetry), then it can be shown that the capacity is obtained for 𝜋𝑘 =

1/𝑁𝑇, 𝑘 = 1, … , 𝑁𝑇 (i.e. 𝐻(𝑋) = log2 𝑁𝑇), but in this case, the output symbol are no 
more equally likely (i.e. 𝜌𝑗 = 1/𝑁𝑅) and the entropy 𝐻(𝑌) has to be evaluated (it 
will be 𝐻(𝑌) < log2 𝑁𝑅). 
 
In the following we evaluate the capacity of some discrete channels, and, in the last 
section, the capacity of the analog AWGN channel. 
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1.3.2 Capacity of an AWGN channel  

Now we study the capacity of the analog AWGN channel, assuming that we do not 
use any digital modulator. Then the situation is the following (see figure 1.4): 

 
Fig.1.4: Block diagram for the AWGN channel 

 
 An analog symbol ξ  with a given probability density function 𝑓 ξ(𝑥)  is 

transmitted over the channel; it is assumed that the variation of ξ is equal to 𝜎𝜉
2 

and the mean 𝜇ξ is zero, but there are no further restriction on 𝑓 ξ(𝑥).  
 The AWGN channel adds ν, a Gaussian random variable with variance 𝜎𝜈

2 and 
mean value zero (the probability density function of 𝜈 is denoted as 𝑓 𝜈(𝑥)).  

 The receiver gets η = ξ + ν, a random variable with probability density function 
𝑓η (𝑥) = 𝑓 ξ(𝑥) ∗ 𝑓 𝜈(𝑥) (where ∗ stands for convolution). 

 
For the case of an analog AWGN channel, the capacity is obtained by maximizing just 
ℎ(𝜂). But we know from section 1.1.1.2 that the maximum entropy of an analog 
source 𝑋 is obtained when the analog source has a Gaussian probability density 
function. In particular we showed that, for a Gaussian source 𝑥  

ℎ(𝑥) =
1

2
log2(2𝜋𝑒𝜎𝑥

2) 

where 𝜎𝑥
2 is the variance of 𝑥. In this case, if the source ξ is Gaussian with zero 

mean, then also 𝜂 = 𝜉 + 𝜈  is Gaussian, being the sum of two statistically 
independent Gaussian random variable, and 𝜂 has mean equal to the sum of the 
means and variance equal to the sum of variance of 𝜉 and 𝜈. So if 𝜉 has variance  

ℎ(𝜂) =
1

2
log2[2𝜋𝑒(𝜎𝜉

2 + 𝜎𝜈
2)] 

and this is the maximum value of ℎ(𝜂) (for the given and fixed 𝜎𝜉
2). 

 
Let us then complete the evaluation of the conditional entropy ℎ(𝜂|𝜉). 

𝑓η|ξ(𝑦|𝑥) =
1

√2𝜋𝜎𝜈
2
𝑒𝑥𝑝 {−

(𝑦 − 𝑥)2

2𝜎𝜈
2

} 

ℎ(𝜂|𝜉) = −∫ 𝑓η|ξ(𝑤|𝑢)
∞

−∞

log2 𝑓η|ξ(𝑤|𝑢)𝑑𝑤 = (
1

2
log2[2𝜋𝑒𝜎𝜈

2]) 
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In the overall, when the input is Gaussian mutual information is  

𝐼(ξ; η) =
1

2
log2[2𝜋𝑒(𝜎𝜉

2 + 𝜎𝜈
2)] −

1

2
log2[2𝜋𝑒𝜎𝜈

2] =
1

2
log2

𝜎𝜉
2 + 𝜎𝜈

2

𝜎𝜈
2

 

But this is also the capacity of the AWGN channel: 

𝐶 =
1

2
log2

𝜎𝜉
2 + 𝜎𝜈

2

𝜎𝜈
2

 

So, each time the AWGN channel is used, it carries at most 𝐶 information bits, and 

𝐶 depends on the signal to noise ratio  
𝜎𝜉

2

𝜎𝜈
2
: if the noise variance reduces or the source 

increases, then the capacity increases.  
 
Let us consider now not just the transmission of one analog symbol 𝜉, but a sequence 
of symbols, and let us limit the problem to the case of a bandlimited channel, in 
particular a low-pass channel with bandwidth B. Then, only a process 𝜉(𝑡) with 
bandwidth at most equal to B can pass through the channel without being distorted, 
and we can represent the information content of 𝜉(𝑡)using just its samples, taken at 
sampling frequency 2B6. Then the entropy of the Gaussian source is  

ℎ(𝜉(𝑡)) = 2𝐵ℎ(𝜉) = 𝐵 log2(2𝜋𝑒𝜎𝜉
2) 

where 𝜎𝜉
2 is the variance of the process; remember that, if the process is statistically 

and ergodic, which we will assume then 𝜎𝜉
2 does not change with time and is equal 

to mean power 𝑃𝜉 of the process.  
 
The channel output process 𝜂(𝑡) is the sum of 𝜉(𝑡) and the white Gaussian noise 
𝜈(𝑡) having power spectral density 𝑁0/2. The receiver has an initial low pass filter 
followed by a sampler at frequency 2B, so that we can write that the input of the 
detector is a sequence of samples, generated as rate 2B samples per seconds, which 
are the sum of the samples of 𝜉(𝑡) and noise random variables with variance 

𝜎𝜈
2 =

𝑁0

2
2𝐵 = 𝑁0𝐵 

The entropy of 𝜂(𝑡) = 𝜉(𝑡) + 𝜈(𝑡), sampled at rate 2B, is  

ℎ(𝜂(𝑡)) = 2𝐵ℎ(𝜂) = 𝐵 log2[2𝜋𝑒(𝜎𝜉
2 + 𝜎𝜈

2)] 

The conditional entropy is ℎ(𝜂(𝑡)|𝜉(𝑡)) = 𝐵 log2[2𝜋𝑒𝜎𝜈
2] as before.  

The AWGN channel capacity is then  

𝐶′ = ℎ(𝜂(𝑡)) − ℎ(𝜂(𝑡)|𝜉(𝑡)) = 𝐵 log2

𝜎𝜉
2 + 𝜎𝜈

2

𝜎𝜈
2

 

We can substitute the values of the variances and obtain 

                                                 
6 According to the sampling theorem that states that if a signal 𝑥(𝑡) has bandwidth B, it is possible to exactly 
evaluate 𝑥(𝑡) from its samples, provided that the sampling frequency is larger than 2𝐵𝑥. 
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 𝐶′ =  𝐵 log2 (1 +
𝑃𝜉

𝑁0𝐵
) 

where now the unit of measure of 𝐶′is bits of information per second (not just bit of 
information). 
 
In brief, compare to 𝐶 and 𝐶′: 
 𝐶 is capacity per channel use 

 𝐶 =
1

2
log2 (1 +

𝑃𝜉

𝑁0𝐵
) [information bit per channel use] 

 𝐶′ is capacity measured, which use the channel 2B times per second. If we do 
not use the low pass filter, the capacity is zero for sure.  

𝐶′ =  𝐵 log2 (1 +
𝑃𝜉

𝑁0𝐵
) [information bit per second] 

 
Let us see if we can relate the discrete channel capacities with the AWGN channel 
capacity. We can imagine that process 𝜉(𝑡) is the output of a digital modulator that 
generates bits (real bits “1” or “0”) at rate 𝑅𝑏 bits/s, so that the power 𝑃𝜉 can be 

expressed as 𝑃𝜉 =
𝐸𝑏

𝑇𝑏
= 𝐸𝑏𝑅𝑏, where 𝐸𝑏 is the energy per bit. So we have, for the 

AWGN channel, 𝐶′ = 𝐵 log2 (
𝐸𝑏𝑅𝑏

𝑁0𝐵
+ 1) or 𝐶′

𝐵
= log2 (

𝐸𝑏𝑅𝑏

𝑁0𝐵
+ 1). 

 
It is not possible to get an error probability equal to zero if the input entropy is larger 
than the channel capacity. At most one bit transmitted by the digital modulator carries 
one information bit, so that we can say that the source entropy is 𝐻(𝑋) = 𝑅𝑏 
information bits per second, and, if we assume that we are working at the limit, i.e. 
the best case, with 𝐻(𝑋) = 𝐶′, we have 

𝐶′

𝐵
=

𝑅𝑏

𝐵
 

which leads to 
𝑅𝑏

𝐵
= log2 (

𝐸𝑏𝑅𝑏

𝑁0𝐵
+ 1) 

which provides a relationship between the signal to noise ration 𝐸𝑏/𝑁0 and the 
modulation efficiency 𝑅𝑏/𝐵 (measured in bits/second per hertz). In particular, we can 
write 

𝐸𝑏

𝑁0
=

2𝑅𝑏/𝐵 − 1

𝑅𝑏/𝐵
 

 If 𝑅𝑏

𝐵
= 1, then 𝐸𝑏

𝑁0
= 1 (0 𝑑𝐵);  

 if 𝑅𝑏

𝐵
→ 0, 𝐸𝑏

𝑁0
→ ∞;  

 if 𝑅𝑏

𝐵
→ ∞, then 𝐸𝑏

𝑁0
→ ln2 (−1.6 𝑑𝐵): 
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lim
𝑅𝑏/𝐵→∞

2𝑅𝑏/𝐵 − 1

𝑅𝑏/𝐵
= lim

𝑅𝑏/𝐵→∞

𝑒𝑅𝑏/𝐵 log𝑒 2 − 1

𝑅𝑏/𝐵
= lim

𝑅𝑏/𝐵→∞

1 − 𝑅𝑏/𝐵 log𝑒 2 − 1

𝑅𝑏/𝐵
= ln 2

= 0.693 
 
The last limit is quite interesting: it starts that it is possible to transmit with error 
probability equal to zero if the signal to noise ratio is  𝐸𝑏/𝑁0  > −1.6 𝑑𝐵, provided 
that the bandwidth B is infinite. Note that 𝐸𝑏/𝑁0 = 1.6 𝑑𝐵 in the case in which the 
noise variance 𝑁0/2  is equal to  0.72𝐸𝑏 , really very high. Another interesting 
consideration is that we can trade energy with bandwidth: if we increase the 
bandwidth, we can reduce 𝐸𝑏/𝑁0 and vice-versa. 
 
Note that it is not possible to get error probability equal to zero if, having fixed 𝐸𝑏/𝑁0, 
the spectral efficiency is higher than the value shown in the curve of Fig. 1.5; 
similarly it is not possible to get error probability equal to zero, if, having fixed the 
spectral efficiency 𝑅𝑏/𝐵, the signal to noise ratio is lower than the value shown in the 
curve of Fig.1.5. In principle, any transmission system specified by a couple of values 
(𝐸𝑏/𝑁0), (𝑅𝑏/𝐵) below the curve in Fig.1.5 can work with error probability equal to 
zero.  

  
Fig.1.5: Plot Shannon channel capacity curve of spectral efficiency 𝑅𝑏/𝐵 versus 
𝐸𝑏/𝑁0 for the AWGN channel (channel capacity limit) 
 
In summary, the Shannon channel capacity curve, meaning the theoretical tightest 
upper bound on the information rate of data that can be communicated at an arbitrarily 
low error rate using an average received signal power through an analog 
communication channel subject to additive white Gaussian noise of power: 

𝐶′ =  𝐵 log2 (1 +
𝑃𝜉

𝑁0𝐵
) 

where 
 𝐶′ is the channel capacity in information bits per second, a theoretical upper 

bound on the net bit rate (information rate) excluding error-correction codes; 
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 𝐵 is the bandwidth of the channel in hertz (passband bandwidth in case of a 
bandpass signal); 

 𝑃𝜉  is the average received signal power over the bandwidth (in case of a 
carrier-modulated passband transmission), measured in watts (or volts squared); 

 𝑁0 is the average power of the noise and interference over the bandwidth, 
measured in watts (or volts squared);  

 𝑃𝜉/(𝑁0𝐵) is the signal-to-noise ratio (SNR) of the communication signal to the 
noise and interference at the receiver (expressed as a linear power ratio, not as 
logarithmic decibels). 

1.4 Fano inequality  

Consider a channel with 𝑁𝑇 = 𝑁𝑅 = 𝑁 inputs and outputs, for which it is then 
possible to define an error probability 

P(𝑒) = ∑∑𝑃(𝑦𝑗|𝑥𝑖)

𝑁

𝑗≠𝑖

𝑁

𝑖=1

𝜋𝑖 

Intuitively, 𝐻(𝑋|𝑌) increases if 𝑃(𝑒) increased, but Fano inequality describe the 
exactly relationship between capacity and the error probability. Fano inequality 
states that 

𝑯(𝑿|𝒀) ≤ 𝓗(𝑷(𝒆)) + 𝑷(𝒆) 𝐥𝐨𝐠𝟐(𝑵 − 𝟏) 

being  ℋ(𝑃(𝑒)) = −𝑃(𝑒)log2𝑃(𝑒) − 𝑃(𝑐)log2𝑃(𝑐) , where 𝑃(𝑐)  called “correct 
probability”, defined by 𝑃(𝑐) = 1 − 𝑃(𝑒). 
 
The intuitive proof is the following: the receiver has observed the channel output y 
and it asks the Maxwell’s demon the following two questions: 
1. Has there been an error? 
2. If there was an error, which other symbol, different from the received one, was 

transmitted? 
The answer is to the first question is “yes” with probability 𝑃(𝑒) and “no” with 

probability 1 − 𝑃(𝑒), so that the average quantity of information provided by the 
demon is −𝑃(𝑒)log2𝑃(𝑒) − (1 − 𝑃(𝑒))log2(1 − 𝑃(𝑒)) = ℋ(𝑃(𝑒)); if the answer 
to the first question is yes, then the demon must answer the second question, and in 
that the case he provided at most log2(𝑁 − 1) information bits. It is possible that, 
once 𝑦 is known, P(𝑥𝑘|𝑦) is equal to 1/(𝑁 − 1) for 𝑥𝑘 ≠ 𝑦, and in this case the 
demon is like a source with 𝑁 − 1 eqaully likely symbols, thus providing log2(𝑁 −

1) information bits. But it is also possible (and in general this is the case), that some 
probabilities P(𝑥𝑘|𝑦) is higher than others, in which case the demon behaves like a 
source with an entropy smaller than log2(𝑁 − 1). Then, in the overall, the average 
information quantity provided by the demon is lower than 
ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1)  (note that the demon provides the answer to the 
second question only with probability 𝑃(𝑒). At the end of the game with demon, the 
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receiver exactly knows which symbol has been transmitted, and therefore all its 
uncertainty 𝐻(𝑋|𝑌) has been removed. Therefore, the uncertainty 𝐻(𝑋|𝑌) of the 
receiver is lower than ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1). 
 
The formal proof is instead following: 
𝐷 = 𝐻(𝑋|𝑌) − ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1)

= −∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑗𝑖

log2 𝑃(𝑥𝑖|𝑦𝑗) + 𝑃(𝑒) log2 𝑃(𝑒)

+ 𝑃(𝐶) log2 𝑃(𝐶) − 𝑃(𝑒) log2(𝑁 − 1)

= −∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑗≠𝑖𝑖

log2 𝑃(𝑥𝑖|𝑦𝑗) − ∑𝑃(𝑥𝑖 , 𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑗)

𝑖

+ 𝑃(𝑒) log2

𝑃(𝑒)

𝑁 − 1
+ 𝑃(𝐶) log2 𝑃(𝐶)

= ∑∑𝑃(𝑥𝑖, 𝑦𝑗)

𝑗≠𝑖𝑖

log2

𝑃(𝑒)

(𝑁 − 1)𝑃(𝑥𝑖|𝑦𝑗)

+ ∑𝑃(𝑥𝑖, 𝑦𝑗) log2

𝑃(𝐶)

𝑃(𝑥𝑖|𝑦𝑗)𝑖

≤
1

log𝑒 2
{∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑗≠𝑖𝑖

(log2

𝑃(𝑒)

(𝑁 − 1)𝑃(𝑥𝑖|𝑦𝑗)
− 1)

+ ∑𝑃(𝑥𝑖, 𝑦𝑗) log2

𝑃(𝐶)

𝑃(𝑥𝑖|𝑦𝑗)𝑖

}

=
1

log𝑒 2
{∑∑

𝑃(𝑒)𝑃(𝑦𝑗)

𝑁 − 1
− ∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑗≠𝑖𝑖

+

𝑗≠𝑖𝑖

∑𝑃(𝐶)𝑃(𝑦𝑖)

𝑖

− ∑𝑃(𝑥𝑖, 𝑦𝑖)

𝑖

} =
1

log𝑒 2
{

𝑃(𝑒)

𝑁 − 1
∑∑𝑃(𝑦𝑗) − 1 + 𝑃(𝐶)

𝑗≠𝑖𝑖

}

=
1

log𝑒 2
{

𝑃(𝑒)

𝑁 − 1
[∑∑𝑃(𝑦𝑗)

𝑗𝑖

− ∑𝑃(𝑦𝑖)

𝑖

] − 1 + 𝑃(𝐶)}

=
1

log𝑒 2
{

𝑃(𝑒)

𝑁 − 1
[𝑁 − 1] − 1 + 𝑃(𝐶)} =

1

log𝑒 2
{𝑃(𝑒) − 1 + 𝑃(𝐶)}

= 0 
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1.5 Relationship among P(e), C and H(X) 

We can further process Fano inequality to obtain a relationship among 𝐶, 𝐻(𝑋) and 
𝑃(𝑒). In fact: 

𝐶 ≥ 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) ≥ 𝐻(𝑋) − ℋ(𝑃(𝑒)) − 𝑃(𝑒)𝑙𝑜𝑔2(𝑁 − 1) 
Therefore, we get 

𝐻(𝑋) ≤ 𝐶 + ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1) 

which is always true, for any channel.  

 
Figure 1.6: Plot of C + ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1) 

 
If symbols 𝑥𝑖  are equally likely, then  𝐻(𝑋) = 𝐻(𝑌) = log2 𝑁 , and 𝐻(𝑋|𝑌) =

𝐻(𝑌|𝑋) =  ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1)  
 
Figure 1.6 shows the plot of 𝐶 + ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1). Any transmission 
system has 𝐻(𝑋) below the curve in figure 1.6: this means that it is not possible that 
a system exists with 𝐻(𝑋) > 𝐶 and 𝑃(𝑒) = 0, while it is possible that systems exist 
with 𝐻(𝑋) < 𝐶 and 𝑃(𝑒) = 0. If the input of the channel is 𝐻(𝑋) > 𝐶, then it is as if 
we had a pipe with more input water flow than allowed by the pipe capacity: the pipe 
breaks. Similarly the discrete channel “breaks” and the error probability is strictly 

larger than zero. However, the inequality does not say how we can get 𝑃(𝑒) = 0 
setting 𝐻(𝑋) < 𝐶. 
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1.6 The converse of the channel coding theorem  

 
Figure 1.6: Transmission system without channel coding  

Fig. 1.7: Transmission system with channel encoding  
 

The discussion, so far, considered the source of Fig. 1.7. Let us instead analyze the 
system of Fig. 1.7, where a channel encoder is placed between the source and the 
channel. The source generates word of 𝑘 bits, so that the source alphabet 𝑋 has 2𝑘 
symbols. The channel encoder maps 𝑘 input bits to 𝑛 output bits, the entropy of 𝑘 
input bits is 𝐻(𝑋) and the entropy of the 𝑛 bits at the output of the encoder is 
still 𝐻(𝑋), since the encoder does not add information. In order to be able to 
distinguish the various sections of the system, let the output of the channel encoder be 
denoted with 𝑊 (𝑛 bits per symbol). The channel is used 𝑛 times, so its capacity 
is 𝑛𝐶, being 𝐶 its capacity per use. The channel output 𝑍 (𝑛 bits) is processed by 
the channel decoder which outputs 𝑘 bits, identified as 𝑌; note that the channel 
encoder and decoders do not make errors in their mapping processes. Then the 
inequality 

𝐻(𝑋|𝑌)  ≤ ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1) 

is valid for the outer section, (𝑋 − 𝑌), but 𝑃(𝑒) is now the probability that a word of 
𝑘 bits is not correctly received (it is sufficient that one bit is wrong), and it is wise to 
identify it as 𝑃𝑤(𝑒); moreover the number of symbols of source 𝑋 is 2𝑘 (all the 
possible sequences of 𝑘  bits). These considerations lead to the more practical 
inequality, which based on the complete transmission system figure 1.7:  

𝐻(𝑋|𝑌)  ≤ ℋ(𝑃𝑤(𝑒)) + 𝑃𝑤(𝑒)log2(2
𝑘 − 1) 

Using the data processing theorem, we can say that 𝐼(𝑋; 𝑌) ≤ 𝐼(𝑊; 𝑍) and this 
means that 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) ≤ 𝐼(𝑊; 𝑍) ≤ 𝑛𝐶 

i.e. the mutual information of 𝑋 and 𝑌 is still upper bound by 𝑛𝐶. In particular, 
from the last inequality we get 

 𝐻(𝑋|𝑌) ≥ 𝐻(𝑋) − 𝑛𝐶 
Then, combing 𝐻(𝑋|𝑌)  ≤ ℋ(𝑃(𝑒)) + 𝑃(𝑒)log2(𝑁 − 1)  and  𝐻(𝑋|𝑌) ≥ 𝐻(𝑋) −

𝑛𝐶, we get the overall chain of inequalities 
𝐻(𝑋) − 𝑛𝐶 ≤ ℋ(𝑃𝑤(𝑒)) + 𝑃𝑤(𝑒)log2(2

𝑘 − 1) < 1 + 𝑘𝑃𝑤(𝑒) 
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which allows to find a bound for 𝑃𝑤(𝑒): 

𝑃𝑤(𝑒) ≥
𝐻(𝑋) − 𝑛𝐶 − 1

𝑘
 

In fact, the source generates one bit at a time and the bits are grouped into words of 𝑘 
bits. Then, if the entropy of the single bit generated by the source, taking into 
consideration also the source memory, is 𝐻(𝑋1) (between 0 and 1, and 𝐻(𝑋1) = 1 
only if the bits “0” and “1” are generated with equal probabilities by a memoryless 

source), then the entropy of the word source 𝑋 is 𝐻(𝑋) = 𝑘𝐻(𝑋1). This allows us to 
further simplify the inequality: 

𝑃𝑤(𝑒) ≥
𝑘𝐻(𝑋1) − 𝑛𝐶 − 1

𝑘
= 𝐻(𝑋1) −

𝑛

𝑘
C −

1

𝑘
 

Being 𝐻(𝑋1) a property of the source (which cannot be modified), the inequality 

shows that it is convenient to use large values of 𝑛

𝑘
, but certainly, if the right hand side 

of inequality is less than zero, the inequality obviously becomes 𝑃𝑤(𝑒) ≥ 0. The 
theorem is interesting because it gives a lower bound on the error probability and, 

therefore, we can say that as far as 𝐻(𝑋1) −
𝑛

𝑘
C −

1

𝑘
 is positive, then the error 

probability will be positive. But, a lower bound on the error probability is more useful, 
and this lower bound is provided by the channel coding theorem in the next section. 

1.7 The channel coding theorem (Shannon 1948) 

THEOREM (Shannon 1948): 
Given a binary information source with entropy 𝐻(𝑋) and a discrete, memoryless, 
channel with capacity 𝐶, there exist a channel encoder with rate (also called coding 

rate) 𝑅𝑐 =
𝑘

𝑛
 for which the word error probability 𝑃𝑤(𝑒) is upper bounded by 

𝑃𝑤(𝑒) < 𝑒−𝑛𝐸(𝑅), 𝑅 = 𝑅𝑐𝐻(𝑋) =
𝑘

𝑛
𝐻(𝑋) 

where 𝐸(𝑅) is a convex, decreasing, positive function of R for 0 ≤ 𝑅 ≤ 𝐶  and 
𝐸(𝑅) = 0 for 𝑅 ≥ 𝐶. 
 

 
Fig.1.8: typical behavior of function 𝐸(𝑅) 
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Fig. 1.8 shows an example of function 𝐸(𝑅). Let us assume, for simplicity and 
without loss of generality, that 𝐻(𝑋) = 1 information bit (we assume that an ideal 
source encoder has been used, or that a memoryless source naturally generates equal 
likely bits), so that 𝑅 = 𝑅𝐶 = 𝑘/𝑛. Then the channel coding theorem shows that it is 
possible to reduce the word error probability, for a given channel with capacity C (i.e. 
for a given function 𝐸(𝑅)), 
 If the coding rate 𝑘/𝑛 is decreased 
 Or, more important, if 𝑘/𝑛 is kept constant, but 𝑛 is increased (𝑘  is also 

proportionally increased to keep the ratio constant) 
Otherwise, it is possible to reduce 𝑃𝑤(𝑒) by increasing the capacity 𝐶, which is 
typically obtained by increasing the transmitted power, so that the signal to noise ratio 
𝐸𝑏/𝑁0 is increased. The increase of the capacity from 𝐶to 𝐶′ > 𝐶 corresponds to a 
new curve 𝐸′(𝑅) > 𝐸(𝑅) and therefore  𝑃𝑤(𝑒) decreases. This last solution to 
decrease the error probability is obvious, it works also if 𝑘 = 𝑛 = 1, and it is not 
necessary to use the channel coding theorem to understand it, it is sufficient to plot the 
error probability of the selected modulation scheme versus E𝑏/𝑁0.  
 
Actually, the unexpected result of the channel coding theorem is that you can reduce 
the error probability by increasing the length 𝑘 of the word (and the length 𝑛 of the 
code word), keeping  𝑘 = 𝑛 fixed. Actually, by increasing  𝑘 , we increase the 
complexity of the system, and therefore we get a reduced 𝑃𝑤(𝑒) at the cost of an 
increased cost of the system. In some cases, the complexity can be so high, that 
practical, real time, implementation of the system is unfeasible. Great improvements 
have been obtained in the recent years in the design of channel coding systems which 
can effectively reduce 𝑃𝑤(𝑒) keeping the complexity limited and affordable. 
 
A very important consideration is necessary: in the previous analysis (derivation of 
the coding theorem and its inverse), we always considered the channel capacity 𝐶 of 
the channel fixed, while we let the two parameters 𝑘 and 𝑛 vary. 
 
Assume that, in the absence of channel encoding, the channel transmits 𝑅𝐶  bits per 
second and that the source generates a total of 𝑀 bits at speed 𝑅𝑏 bits/s, so that the 
time required to transmit the generated bits is 𝑀/𝑅𝑏 . The channel bit rate 𝑅𝐶  in this 
scenario is equal to the source bit rate 𝑅𝑏 . 
 
Actually, there are two different scenarios when we include the channel encoder with 
coding rate 𝑘/𝑛 < 1: 
1. The channel bit rate 𝑅𝐶  is not modified, while the source bit rate 𝑅𝑏 is reduced 

to 𝑅𝑏
′; the time required to transmit 𝑀𝑛

𝑘
 channel bits is (𝑛/𝑘)𝑀𝑅𝑐 > 𝑀𝑅𝑏 : we 

need more time to transmit the data, since the channel encoder generates 𝑛 − 𝑘 
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redundancy bits every 𝑘 input bits, and the redundancy bits must be transmitted 
over the channel; of course 𝑅𝑏

′ = 𝑅𝑏 𝑘/𝑛. 
2. the source bit rate 𝑅𝑏 is not modified, which means that the channel now must 

transmit 𝑛 bits instead of 𝑘 bits in the same amount of time 𝑘/𝑅𝑏 ; this is possible 
only if the channel bit rate is modified, using 𝑅𝑐

′ = 𝑅𝑐 𝑛/𝑘 instead of 𝑅𝑐 . The 
increase of the channel bit rate can be obtained in two ways: 
1. The modulation scheme is not modified, but, since the encoded bits arrive at 

the input of the modulator with a higher rate, the duration of the waveforms 
generated by the modulator is reduced and the modulated signal bandwidth is 
therefore increased by a factor 𝑛/𝑘. Then we have two possibilities: 

i. We increase the modulated signal power from 𝑃  to  𝑃′ =
𝑃𝑛 𝑛

𝑘
, so                 

that the energy of the modulated symbol 𝐸 =
𝑃

𝑅𝑐 
=

𝑃′

𝑅𝑐
′  

ii. We do not modify the power 𝑃, but this means that the energy of the 

modulated symbol reduces from 𝐸 to 𝐸𝑘

𝑛
 when the channel encoder is 

included in the transmission system 
2. a new modulation scheme is used (for example we compare a 4PSK 

modulation without channel encoding and an 8PSK modulation with channel 

encoding and rate 𝑘

𝑛
=

2

3
) 

The coding theorem and its converse are valid only for cases 1 and 2(a)i, for which it 
is true that the capacity of the channel is not modified when the channel encoding 
scheme is included: in these two cases, the signal to noise ratio E/𝑁0 is not changed, 
but: 
 In the first case the reduction in 𝑃𝑤(𝑒) is paid in terms of increased duration of 

the transmission: this solution is allowed only in case of non-real time 
applications (we have to send an e-mail, a file, etc.) 

 In the second case the reduction of 𝑃𝑤(𝑒) is paid in terms of increased bandwidth 
and transmitted power, which is not always possible (you must typically change 
the amplifier, change the filters, pay for the excess bandwidth, etc.) 

 
Case 2b is interesting because, if the new modulation scheme is adequately chosen, it 
is possible that we can reduce 𝑃𝑤(𝑒) without increasing the bandwidth and without 
increasing the power, thus paying the reduced error probability just in terms of 
complexity. The design of the channel encoders for this case is quite complex. Note, 
in any case, that we keep all the main transmission parameters (power, bandwidth, 
source bit rate) unvaried, but we vary the channel and its capacity. 
 
Case 2(a) is the basis on the analysis of channel encoding schemes. In this case the 
channel matrix structure does not change but the conditional error probabilities in the 
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matrix change and the channel capacity (per use of the channel) actually reduces 
when the channel encoder is included in the transmission system. The challenge is 
therefore that of finding a channel encoding scheme that allows us to 
reduce 𝑃𝑤(𝑒) even if the channel capacity (per use) is reduced.  
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Chapter 2 

2   Applications 

George Gamow pointed out that the application of Shannon’s information theory 

breaks genetics and molecular biology out of the descriptive mode in to the 
quantitative mode, and Dr. Yockey develops this theme, discussing how information 
theory and coding theory can be applied to molecular biology.  
 
The genetic information system is segregated, linear and digital. It is astonishing that 
the technology of information theory and coding theory has been placed in biology at 
least 3850 million years (Mojzsis, S.J, Kishnamurthy, Arrhenius, G., 1998. Before 
RNA and after: geological and geochemical constrains on molecular evolution 1-47. 
In: Gesteland, R.F. (Ed.), The RNA World: The nature of Modern RNA suggests a 
prebbiobic RNA, second ed. Cold Spring Harbor Laboratory Press, Boca Raton, FL). 
The genetic code performs a mapping between the sequences of the four nucleotides 
of DNA and mRNA to the sequences of the 20 amino acids in protein. It is highly 
relevant to the origin of life that the genetic code is constructed to confront and solve 
the problems of communication and recoding by the same principles found both in the 
genetic information system and in modern computer and communication codes 
(Hubert P. Yockey *, 1999. Origin of life on earth and Shannon’s theory of 

communication, 1507 Balmoral Drive, Bel Air, MD 21014-5638, USA).  

2.1 Coding Theory and its applications  

Reliable information exchange and processing is a crucial need in biological systems. 
Without such reliability, living beings do not have much chance of survival. In 
artificial information processing systems, coding methods play an important role to 
guarantee the required reliability. In many cases, mutation due to chemical agents or 
radiation results in certain diseases, like cancer, and is also responsible for aging. 
DNA is replicated several million times in a lifetime of a species and if there were no 
error correction mechanism, the accumulation of errors during its lifetime and, on a 
larger scale, over millions of years of evolution would simply make genetic 
communication, and hence life is impossible. 
 
In following, we will discuss some applications of coding theory in postal service in 
United States and molecular biology. These applications contains analyzing error 
correcting methods in biological system, as well as using the code theoretical models 
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to implement various mechanisms in living systems. 
 
Firstly, we introduce the coding theory: coding is the technique which allows 
improving performances of system in terms of power, error rate, range, bit rate etc. 
The coding technique also affects the bit rate, latency and complexity. As for the 
concrete strategy, given the binary information sequence to be transmitted, coding 
adds redundancy. The redundancy is the exploited at receiver side to correct and 
detect errors introduced by channel. There exists a formula to express the relationship 
between the information, redundancy and code word, unit represented as bit: 

𝑘 + 𝑟 = 𝑛 
where 
 𝑘: the number of information bits; 
 𝑟: the number of redundancy bits; 
 𝑛: the number of code word bits, exactly transmitted amount; 

 
The redundancy bits are also called no-sense code, because they have no meaning 
assignment in the receiving alphabet. The information bits are called sense code to 
assign the information meaning. The combination of sense and no-sense code can 
defense the noisy channel to realize error correction and direction.  

2.1.1 postal ZIP+4 code 

In 1983, the United States Postal Service (USPS) changed its ZIP Code system to 
include the new ZIP+4. A ZIP+4 Code uses the basic five-digit code plus four 
additional digits to identify a small delivery segment such as a street, a city block, a 
group of apartments, or even an individual address that receives a high volume of 
mail. The "ZIP" stands for "Zone Improvement Plan". A postal ZIP code contains 
multiple items of information compressed into nine digits. The last 4 digits of a 
nine-digit ZIP Code, which called an error-detecting code. For the complete, 
nine-digit ZIP Code, it consists of two parts. The first five digits indicate the 
destination the national area, the region or city, and the delivery area or post office. 
The last 4 digits identify a specific delivery route or a post office box, within that 
overall delivery area. For example, in the fig. 2.1, the first five bits “98765” is five 
information bits, carrying the information of destination. The last four bits “4321” is 

distinguished by postal employee.  
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Fig.2.1An example of ZIP+4 postal code in United States 

 
Thus the source probability space of postal codes is binary source alphabet, with 32 
(25=32) members. The source alphabet is mapped to the receiver alphabet. In fact, the 
USPS has segmented the country into 10 ZIP Code areas. Starting in the northeast, 
they are numbered 0-9. Thus, the receiving alphabet is extracted by 10 members, from 
0 to 9. Thus ten members selected by five-bits alphabet are called sense code letters, 
carrying useful information bits. The assignment principle of sense code letters in the 
five-bits alphabet of the postal ZIP+4 is shown by the first row in Table 2.1. 
 

 
Table 2.1: The postal ZIP+4 code 

 
In realistic life, the postal ZIP +4 code is an error-detecting code application used in 
United States mailing address, because a single error cannot change one sense code 
letter to another code letter. If the sorter reads the unintended code letters, due to dirt 
or other malfunctions, the postal letter or package is rejected to be checked by the 
postal staff.  

2.1.2 The genetic code  

The genetic code is a set of rules for translating a DNA or mRNA sequence with a set 
of three nucleotides into the amino acid sequence of a protein for protein synthesis. 
Almost all organisms use the same genetic code, called the standard genetic code; 
even non-cellular viruses use standard genetic codes. The genetic code is a block code 
because all codons are triplets. Each nucleotide of triplet is chosen by one of four 
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types of nucleotides, including A, C, G, U. Thus, the source alphabet of the genetic 
code is the four nucleotides of DNA and mRNA. Then, there are 64 ( 𝐶4 

1𝐶4
1𝐶4

1 = 4 ×

4 × 4 = 64 ) possible triplets, to be translated into only 20 amino acids. The genetic 
code, shown in Table 2.2, shares a number of properties with the postal ZIP+4 code. 
Obviously, the translation process is several-to-one mapping, which the genetic code 
was believed to be degenerate and that some codons must be non-sense.  

 
Table 2.2: The mRNA genetic code 

 
In biological systems and processes, the need to obtain and exchange information in 
an effective and reliable manner is one of the requirements. This information can be 
used to process living things and survive, just like DNA, or it can be information 
about the external world that is transmitted through the nervous system and processed 
by the nervous system. In fact, in all cases of biological systems, whether it is a single 
cell or a complex human central nervous system (CNS), there is a reliable and 
efficient mechanism for exchanging and processing information, which is a crucial 
requirement. 
 
On the contrary, this medium of information exchange is not at all reliable. In the case 
of molecular biology, the culture medium is cytoplasm, which is an unfriendly noise 
environment during DNA replication, and in the case of the central nervous system, 
the entire pathway is noisy: the outside world, information generation, sensory 
systems and through it The neurons that transmit information are noisy environments. 
 
Despite this, we enjoy a fairly accurate processing system and a fairly reliable DNA 
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replication process. From an engineering point of view, having such a degree of 
reliability in the presence of noise is very alarming, and this is where coding theory 
comes into play. 
 
Occurring in the cell’s noisy environment, DNA replication process is not error-free. 
Genetic noise also occurs in all stages, during the transmission of genetic messages 
from the DNA to the protein tape as conceived in molecular biology, figure shown as 
fig.2.2. The transmission scheme is corresponding to the model of Shannon-Weaver 
model(1949), shown in fig.2.3.  
 

 
Fig. 2.2: The transmission of information from source to destination. The noise should 
be mentioned that occurs in all stages but is shown according to accepted practice. 
 
 

 

Fig. 2.3: The transmission of genetic messages from the DNA to the protein tape as 
conceived in molecular biology. Genetic noise occurs in all stages but is lumped in the 
figure to fix the idea.  
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There are some evidence on existence of error correction mechanisms in DNA. Firstly, 
as mentioned beginning of section 2.1, if there were no error correction mechanism, 
the accumulation of errors during its lifetime and, on a larger scale, over millions of 
years of evolution would simply make genetic communication, and hence life, 
impossible [3]. It would then be surprising to find out that the total error rate in 
decoding genes is as low as 10-9 per nucleic base and per replication. This value is 
noticeable as DNA replication procedure alone has an error rate of 10−3 to 10−5 [11]. 
One might argue that the final low error rate is a result of DNA’s internal proofreading 

mechanism: when copied, the helical structure unzips into two separate strands. DNA 
polymerase uses one strand to copy DNA and the other one to check the copied 
segment. Although this simple proofreading reduces the error rate to approximately 
10−6, it is still not sufficient to explain low error probabilities observed experimentally. 
Therefore, in biological system, there should be error correction mechanism to resist 
the possible error modification of nature life.  
 
In brief, for the biological systems, acquiring and exchanging information in an 
efficient and reliable manner is necessary and one of reliable needs. This information 
could be used to deal with the living and survival, as in DNA, or it could be 
information about the outside world transmitted through and processed by the 
neuronal system. 

2.2 Shannon coding theorem and the role of error in 

protein function and specificity 

Shannon’s channel coding theorem proved that codes exist that such that sufficient 
redundancy can be introduced so that a message can be sent from source to receiver 
with as a few errors as may be specified. Error detecting and correction codes are 
formed by going to higher extensions and using the redundancy of the extended 
symbols for error detection and correction, as mentioned in section 2.1.  
 
Note that in any case, the capability of any error correction mechanism is limited and 
if the number of errors increases a certain threshold (denoted as the code’s minimum 

distance) the errors could not be detected or corrected. Therefore, mutation could be 
viewed as uncorrected errors in this regards. Taking into account that mutation is 
necessary for natural. The redundancy just provides some protection from mutation 
error. That is why discuss the capability of correcting error and Shannon channel 
coding theory. Since Shannon coding theorem describes the maximum possible 
efficiency of error-correcting methods versus levels of noise interference and data 
corruption, which shows how to compute a channel capacity from a statistical 
description of a channel. 
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Since Shannon regarded the generation of a message to be a Markov process, it was 
natural to measure the effect of transfer errors due to the noise by the conditional 
entropy 𝐻(𝑋|𝑌), mentioned at section 1.2.2, between the source alphabet of the 
genetic code with the four nucleotides of DNA and mRNA, and the receiving 20 
letters alphabet of protein.  
 
The following proof uses the same definition mentioned at section 1.2, i.e. The 
discrete channels are characterized by an input alphabet 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁𝑇

} and an 

output alphabet 𝑌 =  {𝑦
1
, 𝑦

2
, … , 𝑦

𝑁𝑅
}, corresponding to the discrete channel matrix and 

it is possible to define the entropies for these two alphabets. With the following 
definitions: 

𝜋𝑖 = 𝑃(𝑥 = 𝑥𝑖)   𝜌𝑗 = 𝑃(𝑦 = 𝑦𝑗) 
 

The probability 𝑃(𝑥𝑖) = 𝜋𝑖  in source alphabet and probability 𝑃(𝑦𝑗) = 𝜌𝑗  in 

receiver alphabet, are related by the following equation: 

𝜌𝑗 = ∑𝑃(𝑥𝑖|𝑦𝑗)

𝑁𝑇

𝑖=1

𝜋𝑖 

 
The conditional entropy, 𝐻(𝑋|𝑌) is written in terms of the components of 𝜋𝑖 or 𝜌𝑗, 
and the elements of channel matrix P: 

𝐻(𝑋|𝑌) = ∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖|𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑖) 

 
The mutual entropy of the input and output is: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
It proves more convenient to deal with the message at the source and therefore with 
the 𝜋𝑖  and the 𝑃(𝑦𝑗|𝑥𝑖)  (Yockey, 1974, 1992). Based on Bayes’ theorem, 

conditional probabilities , we have(Feller, 1 968; Hamming, 1 986; Lindley, 1 965): 

𝑃(𝑥𝑖|𝑦𝑗) = 𝜋𝑖𝑃(𝑦𝑗|𝑥1)/𝜌𝑗 

Substituting this expression for 𝑃(𝑥𝑖|𝑦𝑗) in equation 

𝐻(𝑋|𝑌) = −∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖|𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑖) 

We have: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑌|𝑋) − ∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖|𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑖) 
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Where 

𝐻(𝑌|𝑋) = −∑𝜋𝑖𝑃 (𝑦
𝑗
|𝑥𝑖) log

2
𝑃 (𝑦

𝑗
|𝑥𝑖) 

The third term in 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑌|𝑋) − ∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖|𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑖) 

is the information that cannot be transmitted to the receiver if the source alphabet is 
larger than the alphabet at the receiver, that is, if the Shannon entropy of the source is 
greater than that of the receiver so that the source and the receiver alphabets are not 
isomorphic. 
 
For illustration we may set all the matrix elements of P, 𝑃(𝑦𝑗|𝑥𝑖) to the value given in 
Table 2.3 where 𝛼 is the probability of misreading one nucleotide. Substituting these matrix 
elements in equations: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑌|𝑋) − ∑𝑃(𝑥𝑖)

𝑁𝑇

𝑖=1

𝑃(𝑥𝑖|𝑦𝑗) log2 𝑃(𝑥𝑖|𝑦𝑖) 

And 

𝐻(𝑌|𝑋) = −∑𝜋𝑖𝑃 (𝑦
𝑗
|𝑥𝑖) log

2
𝑃 (𝑦

𝑗
|𝑥𝑖) 

And replacing the logarithm by its expansion, keeping only terms of second degree 
we have: 

𝐼(𝑋; 𝑌) =  𝐻(𝑋) − 1.7915 + 34.2018𝛼2 + 6.803𝛼log2𝛼 
The genetic code cannot transfer 1.7915 bits of its six-bit alphabet to the protein sequence 
even without errors. 
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Table 2.3: Genetic code probability matrix elements 𝑃(𝑦𝑗|𝑥1) 

 
Just as some error can be tolerated in human languages, some error can be tolerated in 
the process of protein formation. Specific protein molecules having amino acids that 
differ from those coded for in DNA may have full specificity if the mutation is to a 
functionally equivalent amino acid. It is only when the supply of essential proteins 
decays below a critical level that protein error becomes lethal. Eigen and Eigen and 
Schuster, find an ‘‘error threshold’’ to apply to the transfer of information from DNA 

through mRNA to protein. When calculated correctly, there is no ‘‘error catastrophe’’. 
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2. 3 Why life cannot be “protein first” 

The central dogma of molecular biology is an explanation of the flow of genetic 
information within a biological system. It is often stated as "DNA makes RNA and 
RNA makes protein," although this is an oversimplification. It was first stated by 
Francis Crick in 1958: 
 
“ The Central Dogma. This states that once 'information' has passed into protein it 
cannot get out again. In more detail, the transfer of information from nucleic acid to 
nucleic acid, or from nucleic acid to protein may be possible, but transfer from 
protein to protein, or from protein to nucleic acid is impossible. Information means 
here the precise determination of sequence, either of bases in the nucleic acid or of 
amino acid residues in the protein. ” 

— Francis Crick, 1958 
and re-stated in a Nature paper published in 1970: 
 
“ The central dogma of molecular biology deals with the detailed 
residue-by-residue transfer of sequential information. It states that such information 
cannot be transferred back from protein to either protein or nucleic acid. ” 

— Francis Crick, 1970 
 
The Central Dogma molecular biology suggested that information could flow from 
DNA to RNA and from RNA to protein, but not from protein to DNA or mRNA or 
from protein to protein. The questions emerged among molecular biology of how a 
four letter alphabet could send information to a 20 letters alphabet of protein. In the 
full glory of its mathematical generality it applies to all codes where the information 
entropy of source alphabet is larger than that of the receiver alphabet.  
 
It is obvious that if the source and receiver alphabets have the same number of 
symbols, and one to one correspondence between the members of the alphabets, the 
logic operation has a single valued inverse and information may be passed, without 
loss, in either direction. Thus since RNA and DNA both have a four letters alphabet, 
genetic message may be passed from RNA to DNA. The passage of information from 
protein to RNA or DNA is prohibited for three reasons, which speculates that life 
cannot be “protein first”: 
1. The logic OR gate is irreversible 
2. There is not enough information in the 20 letter protein alphabet to determine the 

64 letter mRNA alphabet from which it is translated.  
3. Kolmogorov proved that two sequences are not isomorphic unless they have the 

same entropy. The entropy of the DNA sequence is log261. The entropy of the 
protein sequence is log220. Obviously, these two sequences are not isomorphic. 
Therefore, a mapping or a several-to-one code must exist to send information 
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from DNA and mRNA to protein.  
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Conclusion 

Shannon theory is invented by Claude Shannon, in the late 1940s, a mathematical 
theory of communication that gave the first framework in which to optimally design 
communication systems. The main questions motivating this were how to design 
communication systems to carry the maximum amount of information and how to 
correct for distortions on the lines. In relative, the contribution of Shannon theory is 
introduced the concept of information theory and information entropy, where defined 
a quantity of information. Otherwise, Shannon's ground-breaking approach introduced 
a simple abstraction of human communication, called the channel. The 
communication channel consisted of a transmitter (a source of information), a 
transmission medium (with noise and distortion), and a receiver (whose goal is to 
reconstruct the sender's messages).  
 
Information entropy is described firstly in the thesis, for the most important feature of 
Shannon theory, which in order to quantitatively analyze transmission through the 
channel. Meanwhile, it introduces a measure of the average quantity of information in 
a message or event, which has the maximum value, described by maximum entropy 
theorems. In general, the more uncertain or random the message is, the more 
information it will contain. In terms of two source types, discrete and analog, the 
entropy defined by corresponding to discrete entropy and differential entropy. The 
differential entropy can be negative, called negative entropy. Thus, the differential 
entropy loses the natural property of entropy being of being positive.  
 
In information theory, Shannon's source coding theorem (or noiseless coding theorem) 
establishes the limits to possible data compression, and the operational meaning of the 
information entropy. The source coding theorem places an upper and a lower bound 
on the minimal possible expected length of code words as a function of the entropy of 
the input word (which is viewed as a random variable) and of the size of the target 
alphabet. 
 
To complete the quantitative analysis of the communication channel, Shannon 
introduced the entropy rate, a quantity that measured a source information production 
rate, and also a measure of the information carrying capacity, called the 
communication channel capacity.  
 
In information theory, the other coding theorem, Shannon's noisy channel coding 
theorem (1948) describes the maximum possible efficiency of error-correcting 
methods versus levels of noise interference and data corruption, which shows how to 
compute a channel capacity from a statistical description of a channel. Given a noisy 
channel capacity and information transmitted at entropy rate, if entropy rate exceeds 
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the channel capacity, there were unavoidable and uncorrectable errors in the 
transmission. In convert, there exists a coding technique which allows the probability 
of error at the receiver to be made arbitrarily small. This means that theoretically, it is 
possible to transmit information nearly without error up to nearly a limit of channel 
capacity bits per second. 
 
As for the application, the initial motivation of Shannon theory is to remove the noise 
during communication, which gives the upper limit of the communication rate. This 
conclusion was firstly applied on the phone, and later applied on fiber, and now 
applied on the wireless communication. Today we are able to clearly take ocean 
telephones or satellite phones, which are closely related to the improvement of 
communication channel quality. In the thesis, applications extend to biology region 
with genetic coding.  
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