
Politecnico di Torino

Master Degree Course in Computer Engineering

Master Degree Thesis

Evaluation of Blockchain Technologies for
Vehicular Applications

Supervisors
Carla Fabiana Chiasserini
Paolo Giaccone
Giovanni Malnati

Candidate
Michele Macagno

Academic Year 2017-2018

Abstract

Since the birth of Bitcoin in 2009, the blockchain, an immutable sequence of blocks
cryptographically linked to each other, has triggered the interests of people, at-
tracted by this disruptive technology aiming to revolutionize the interactions be-
tween people and machines. The blockchain deployment environment is totally dis-
tributed and characterized by the absence of trust between the parties and by the
absence of a central authority. The use of blockchain technology, originally restricted
to the cryptocurrencies, subsequently found a wide range of business applications,
including supply chain management, energy market, etc.
This thesis analyses the adoption of a blockchain in the context of ITS (Intelligent
Transportation System), as enabling technology to securely and transparently store
the messages exchanged between the intelligent vehicles. If the messages exchanged
by vehicles are stored, they can be used for many purposes, e.g. to identify the
drivers violating traffic rules, to locate stolen vehicles or to simplify the activities
of conflict resolution carried out by the insurance companies. The analysis of the
vehicular application requirements and blockchain characteristics highlighted some
limitations of the blockchain, including the low throughput, high transaction latency
and high energy consumption. The demystification of the traditional blockchain
technologies, also known as permissionless blockchains, has led to the identification
of the permissioned blockchains platform and, particularly of Hyperledger Fabric,
as the best candidates for the development of the thesis project. The permissioned
blockchains try to overcome some of the limitations of traditional permissionless
blockchains but introduce a central authority that constraints the access to network
to a limited set of authorized users. The final objective of the thesis is the evaluation
of the performance and scalability of the Hyperledger Fabric platform used in the
context of a data-intensive vehicular application.

Acknowledgement

I would like to thank my supervisors Carla Chiasserini, Paolo Giaccone and Giovanni
Malnati who have believed in me and supported me with patience.
I would also like to thank German Sviridov that helped me during the months of
this thesis.
A special thanks to my family that supported me every day of my life.

Contents

1 Introduction 1
1.1 Scenario analysed in the thesis . 1
1.2 Goals of this thesis . 1
1.3 Content of the thesis . 2

2 Blockchain and Permissionless Blockchains 4
2.1 Introduction to blockchain . 4

2.1.1 Alternative storage solutions 5
2.1.2 When to use a blockchain . 6
2.1.3 Blocks and hash pointers . 7
2.1.4 Transactions . 8
2.1.5 Consensus algorithms . 9
2.1.6 Scripting and Smart Contracts 11

2.2 Bitcoin . 11
2.2.1 Users of Bitcoin network . 12
2.2.2 Transactions . 13
2.2.3 Hash and SHA-256 . 14
2.2.4 Blocks and blockchain . 15
2.2.5 The Merkle tree . 16
2.2.6 Bitcoin consensus algorithm 17
2.2.7 Possible attacks . 22
2.2.8 Bitcoin scripting . 23

2.3 Ethereum . 24
2.3.1 Transactions, Blocks, State . 24
2.3.2 Ethereum smart contracts . 24
2.3.3 Ethereum consensus mechanism 25
2.3.4 Scalability . 26
2.3.5 Proof of Stake . 27
2.3.6 Advantages and Disadvantages 27

2.4 Limits of proof-of-work based blockchains 28

3 Permissioned Blockchains 30
3.1 MultiChain . 30

3.1.1 MultiChain consensus protocol 30
3.1.2 Scalability . 31
3.1.3 Multiple Chains . 32
3.1.4 Messaging . 32
3.1.5 Advantages and disadvantages 33

i

3.2 BigchainDB . 34
3.2.1 Data structure . 34
3.2.2 BigchainDB consensus mechanism 35
3.2.3 Scalability . 37
3.2.4 Advantages and disadvantages 39

3.3 Hyperledger Sawtooth . 40
3.3.1 Consensus mechanism . 40
3.3.2 Advantages and disadvantages 41

3.4 Hyperledger Fabric . 41
3.4.1 Data structures . 42
3.4.2 Architecture of Hyperledger Fabric 43
3.4.3 Hyperledger Fabric consensus mechanism 46
3.4.4 Chaincodes - Smart Contracts 47
3.4.5 Channels . 48
3.4.6 Advantages and disadvantages 48

3.5 Byzantine-Fault Tolerant consensus algorithms 49
3.5.1 Comparison between Proof of Work and BFT 49

3.6 Comparison between the analysed blockchain platforms 51

4 Blockchainless Distributed Ledger Technologies 53
4.1 IOTA . 53

4.1.1 Introduction to Iota . 53
4.1.2 Iota ledger data structure . 54
4.1.3 Iota consensus mechanism . 55
4.1.4 Throughput . 56
4.1.5 Tangle snapshots . 56
4.1.6 Possible attacks . 57
4.1.7 Advantages and disadvantages 57

4.2 Hashgraph . 59
4.2.1 Data structure . 59
4.2.2 Hashgraph consensus mechanism 59
4.2.3 Signed state . 63
4.2.4 Advantages and disadvantages 63

5 Distributed Ledger Technologies for Vehicular Applications 64
5.1 Description of the use-case . 64
5.2 CAM messages . 65

5.2.1 CAMs transmission . 65
5.2.2 The format of CAM messages 66
5.2.3 CAM security envelope . 67
5.2.4 CAMs and position verification algorithms 68

5.3 Reports of CAM messages . 68
5.3.1 Structure of a Report . 69
5.3.2 Tamper-proof characteristic of reports 70

5.4 The blockchain platform . 72
5.4.1 Why Hyperledger Fabric? . 72

5.5 Architecture overview . 73
5.5.1 Vehicles . 74
5.5.2 Base station - eNodeB . 74

ii

5.5.3 Architectural design choices 74
5.5.4 The role of network operators 76
5.5.5 Ledgers for the management of geographical areas 76
5.5.6 Validation of CAM messages 77
5.5.7 Limits of proposed architecture 80
5.5.8 Comparison with other existing architectures 80

6 Applications Developed to Test Hyperledger Fabric 83
6.1 Vehicular Mobility Simulation . 83

6.1.1 General description of the simulator 83
6.1.2 Description of the algorithm 86
6.1.3 Management of events . 86

6.2 Hyperledger Fabric project . 88
6.2.1 Set up of the working environment 88
6.2.2 Set up of a complete network 89
6.2.3 Chaincode for the management of vehicles reports 94

6.3 The Benchmarking Tool . 98
6.3.1 Operations executed by the tool 98
6.3.2 Parameters of the benchmarks 99
6.3.3 Limits of the proposed implementation 100

7 Experimental Results 101
7.1 Configuration of the test environment 101
7.2 Simulation traces used during the experiments 101
7.3 Evaluation of time of access to data 102

7.3.1 Time of access to the State Database 103
7.3.2 Time of access to the History Index 104

7.4 Effect of the blocks and transactions on the storage memory require-
ments . 105
7.4.1 Configuration of blocks . 105
7.4.2 Storage overhead of blocks . 106
7.4.3 Configuration of the transactions contained in blocks 108
7.4.4 Effect of transaction size on storage overhead 109
7.4.5 Effects of Transactions size . 112
7.4.6 Storage overhead of the hosting machine and containers 114
7.4.7 Final considerations on storage overhead 117

7.5 Scalability tests of Hyperledger Fabric 118
7.6 Effect of the number of peers of the blockchain 118

7.6.1 Experiments with 1 organization and many peers 119
7.6.2 Experiments with many organizations and 2 peers per orga-

nization . 124
7.6.3 Experiments with 2 organizations and many peers per orga-

nization . 126
7.7 Effect of the number of orderers of the blockchain 128

7.7.1 Storage of reports in the blockchain 128
7.7.2 Validation of all the CAMs stored in the blockchain 129
7.7.3 Querying of all the CAMs stored in the blockchain 130

7.8 Effect of the number of CAMs validated or queried by every transaction132
7.8.1 Validation of CAMs stored in the blockchain 133

iii

7.8.2 Querying of all CAMs stored in the blockchain 135
7.9 Comparison of validation with query and invoke 137
7.10 Experiments conducted in multi-process environment 139

7.10.1 Storage of CAMs with concurrent processes 141
7.10.2 Validation of CAMs with concurrent processes 142
7.10.3 Querying of CAMs with concurrent processes 143

7.11 Final considerations on the scalability 146

8 Conclusions 148
8.1 Permissionless and permissioned blockchains 148
8.2 Hyperledger Fabric and the thesis project 149

8.2.1 Comments on the results of the experiments 149
8.2.2 Alternative architectures . 149

8.3 Future research directions . 150
8.3.1 Hyperledger Fabric research topics 150
8.3.2 Permissionless blockchains scalability 151

iv

Chapter 1

Introduction

1.1 Scenario analysed in the thesis

This thesis deals with a densely populated vehicular environment, characterized by
a lot of vehicles exchanging messages each other. These messages are standardized
according to the European CAM format (Cooperative Awareness Message) proposed
by ETSI (European Telecommunications Standards Institute) and contain much in-
formation on the vehicles, such as their geographical coordinates, speed, acceleration
and direction. In the next few years, these messages could be regulated by European
laws becoming the de facto standard for the vehicular communication and, if stored
on common storage units, could be used to track the path of the means of transport,
locate stolen vehicles or to identify the drivers violating traffic rules. In the same
way, the insurance companies could access the information contained in the CAMs
to simplify the conflict resolution process of road accidents. In order to store the
messages, every vehicle must be equipped with an USIM 4G (Universal Subscriber
Identity Module), so that it can access the Internet by using the services provided by
the mobile network operators. The storage of CAMs is however not without prob-
lems. By storing the messages on a traditional centralized or distributed database
the system administrators could delete or tamper stored information without any-
one noticing; on the other hand, if the data were freely accessible, the user privacy
might be at risk. In addition, saving all the transmission and reception information
of the CAMs, the amount of stored data continuously grows and generates another
issue for the management of the system. Fig. 1.1 shows a vehicular environment
characterized by vehicles exchanging CAMs each other. The vehicles can receive
the CAMs only if they are in the radio range of the transmitter (represented as a
circle in the picture). Additionally, each vehicle is connected to the nearest base
station of the network operators to store the collected CAMs on a common storage
unit.

1.2 Goals of this thesis

This thesis deals with the evaluation of existing blockchain platforms, either permis-
sionless or permissioned, to figure out if this type of technology can be used to solve
the above-mentioned problems. The blockchain platforms, in fact, are characterized
by the properties of transparency and decentralization that distinguish them from
the other data storage solutions. By creating multiple independent blockchains,

1

Chapter 1. Introduction

Figure 1.1: Vehicular environment characterized by vehicles exchanging CAMs each
other and connected to the base stations to access the Internet.

each of which stores only the messages exchanged between the vehicles travelling
in a well-defined geographical area, it is possible to manage to the problem of the
huge amount of data that must be stored. The first part of the thesis summarizes
the state-of-the-art review, fundamental to evaluate the strengths and weaknesses of
the existing blockchain platforms and to identify the one that best suits the require-
ments of the vehicular application. The next step describes the design decisions of
the distributed system, the implementation of the application that must be used
to store the CAMs in the blockchain and the vehicular mobility simulator able to
generate the message traces exchanged between the vehicles. The final objective of
this thesis is the evaluation of performance and scalability of the different blockchain
networks used in the context of vehicular applications.

1.3 Content of the thesis

The remainder of this thesis is structured as follows:

� Chapter 2 gives an overview of the blockchain and distributed consensus prob-
lem, focusing the analysis on the permissionless blockchain platforms, such as
Bitcoin and Ethereum.

� Chapter 3 describes the existing permissioned blockchain platforms, including
MultiChain, BigchainDB, Hyperledger Sawtooth and Hyperledger Fabric.

� Chapter 4 concludes the scouting activity with the description of two Dis-
tributed Ledger Technologies that are not based on a blockchain, i.e. Iota and
Hashgraph.

� Chapter 5 deeply analyses the thesis scenario and describes the architecture
of the distributed system designed for the vehicular application.

2

Chapter 1. Introduction

� Chapter 6 shows some implementation details of the vehicular mobility simula-
tor, explains how to deploy a running Hyperledger Fabric blockchain network
and outlines the characteristics of the benchmarking tool used for evaluating
the performance of the blockchain.

� Chapter 7 describes the experiments conducted to evaluate the performance
and the scalability of the blockchain application.

� Chapter 8 concludes the thesis, summarizing the theoretical and experimental
results and describing the future research directions concerning Hyperledger
Fabric and the other blockchain platforms.

3

Chapter 2

Blockchain and Permissionless
Blockchains

This chapter introduces the blockchain technology. Sec. 2.1 focuses on the two
fundamental categories of blockchain platforms (permissionless and permissioned),
comparing them to the already existing storage solutions (centralized and distributed
databases); additionally, it analyses the main blockchain data structures (blocks
and transactions), the problem of the distributed consensus and the concepts of
script and smart contract. Sec. 2.2 describes the users of the Bitcoin network,
the transactions and blocks constituting the Bitcoin blockchain and the scripting
language. The detailed analysis of the proof-of-work, i.e. the Bitcoin consensus
algorithm, highlights the limitations and the possible attacks on the Bitcoin protocol.
Sec. 2.3 discusses the key aspects of Ethereum, one of the most widely used smart
contract blockchain platform, with particular focus on its proof-of-work consensus
algorithm and on the research effort that is necessary to switch to a consensus
mechanism based on proof-of-stake. Sec. 2.4 concludes this chapter, outlining the
limits and possible countermeasures that can be adopted to address the problems
of proof-of-work blockchain platforms.

2.1 Introduction to blockchain

The blockchain is a technology that can be used to safely store information. It is
also known as DLT - Distributed Ledger Technology and can be represented as a
distributed database composed by a chain of blocks logically linked to each other
and containing multiple transactions [1]. The blockchain is an append-only data
storage solution that is very difficult to tamper and that can be used as an alterna-
tive to the traditional databases. Its adoption is recommended when the integrity
of stored data is threatened by the existence of multiple readers and writers that
can write concurrently new data. The most popular application of the blockchain
concerns the cryptocurrencies, like Bitcoin. Bitcoin, the first real application based
on a blockchain, has been analysed in the context of this thesis to identify the
strengths and weaknesses of the blockchain platforms.
The blockchain was born as a totally distributed ledger solution, where users can
freely join the network, maintain a full replica of the ledger and execute transac-
tions. No third parties controlling the access to the ledger exist, nobody can prevent
the execution of transactions but all participants have the possibility to verify if the

4

Chapter 2. Blockchain and Permissionless Blockchains

Figure 2.1: A simple representation of a chain of blocks

transactions executed by the other users are reliable or not. These features, very
useful in the context of a cryptocurrency, where the total decentralization of the
concept of coins permits to transfer money without the interaction with a central
authority like a bank, represent a limitation for the applicability of blockchain stor-
age solutions to different scenarios. For this reason, two different types of blockchain,
characterized by different network access policies, can be described as follows [2]:

� Permissionless blockchain: it is a totally distributed blockchain, where
users can join and leave the network without restrictions. No central authori-
ties are involved and no certificates are released to users for their identification
[2]. The reliability of stored data is related to the presence of honest users in
the network. As long as most of the members is honest, the transactions
stored in the blockchain can be considered reliable. Examples of permission-
less blockchain solutions are Bitcoin [3] and Ethereum [4].

� Permissioned blockchain: it is a totally or partially centralized blockchain
characterized by a central authority, or a consortium of authorities that dis-
tribute the certificates and the permissions to the users to join the network.
The users can have different roles; some of them can only read the data
stored in the ledger, others can write new data or interact with the blockchain
to execute transactions. Some permissioned blockchain solutions, like Hy-
perledger Fabric [5], enable cooperation between different companies to cre-
ate shared ledgers and securely manage data. Examples of permissioned
blockchain platforms are Hyperledger Fabric [5] and MultiChain [6]. The per-
missioned blockchains can be distinguished in two other categories:

– Public permissioned blockchain: users can access stored informa-
tion without restrictions. The possibility to write new blocks in the
blockchain, instead, is reserved to a limited set of trusted participants
[2].

– Private permissioned blockchain: only the users authorized by a
Trusted Third Party (TTP) can read and write data. In this way, the
privacy of users’ data is guaranteed. [2]

2.1.1 Alternative storage solutions

It is a good practice to check the characteristics of the relational and non-relational
databases before adopting a blockchain in a project because they often best satisfy
the application requirements. These alternative storage solutions are described as
follows:

� Relational databases: they allow to obtain very high throughput in terms of
transactions handled per unit of time and provide a full-featured SQL language

5

Chapter 2. Blockchain and Permissionless Blockchains

for the execution of complex queries on data stored in user-defined tables. A
limitation of these systems is the centralization: the storage capabilities and
the computational power of the system are concentrated in a single machine
[7]. This means that the scalability of the system is obtained by increasing
the power of the hardware (vertical scalability) [7].

� Non-relational or NoSQL databases: they are different from the relational
databases because the data is not stored in tables [7]. Every NoSQL database
adopts his own storage solution (key-value pairs, document based, graph) and
a custom query language [7]. The most important property of these databases
is the horizontal scalability that consists in increasing the number of cooper-
ating machines to increase the storage and computational capabilities of the
distributed system. Each node of the distributed database maintains a replica
of a portion of stored data and only with the cooperation of all the servers it
is possible to rebuild the whole dataset [7]

2.1.2 When to use a blockchain

A blockchain is the best alternative to the traditional storage solutions in the event
that the applications require the characteristics listed below.

� Disintermediation. A blockchain must be used in a distributed environment,
where many users or organizations cooperate to safely store data without the
interactions with a central authority [2]. The permissioned blockchain, how-
ever, are characterized by the existence of a Trusted Third Party (TTP), an
intermediary that does not directly certify the operations but grants the per-
missions to the authorized blockchain users that cooperates to maintain the
state of the ledger [2].

� Append-only log of transactions and data integrity. In a blockchain it is not
possible to remove or modify the information previously stored in blocks and
it is necessary to store new data at the end of the chain [2].

� Creation of distributed applications. The code of the distributed applications
is run by multiple nodes of the network. After the execution of the code
associated to every transaction contained in the blocks, each node knows the
final state of the ledger [4].

� Transparency. In a permissionless or public permissioned blockchain, everyone
can read the data stored in the ledger. The transparency is achieved at the
cost of privacy. In the event that the privacy of users’ data must be preserved,
it is better to use a private permissioned blockchain that restricts the access to
data to a limited set of authorized users [2] or, alternatively, a permissionless
blockchain based on zero-knowledge-proof [2] The zero-knowledge-proof
is used in some cryptocurrencies, e.g. ZCash, and permits to preserve the
privacy of transactions. The participants of the network, in fact, can verify
the validity of the transactions without knowing the addresses and the amount
of coins transferred between the parties involved in the transactions [8, 9].

6

Chapter 2. Blockchain and Permissionless Blockchains

In the case the application requirements include the mentioned characteristics, a
blockchain is probably the data storage solution. On the contrary, the use of a
blockchain is discouraged by the existence of the drawbacks listed below.

� Low throughput in terms of the number of transactions executed per second.
The maximum throughput achieved with a permissioned blockchain is very
high if compared to the one of a permissionless blockchain but it is still many
orders of magnitude lower than the one of a traditional distributed or cen-
tralized database. The throughput values of the blockchain platforms vary
from a minimum of 7 transactions per second (tps) managed by Bitcoin [1],
to a maximum of about 110000 tps that can be achieved by Hyperledger Fab-
ric with the BFT-SMaRt consensus algorithm [10]. Many other permissioned
blockchains, like Ripple and MultiChain, allow to obtain a throughput value
of about 1000 tps [11].

� High latency of transactions. When a user executes a transaction, it is nec-
essary to wait some time before it is successfully validated and stored in the
ledger. The latency is strictly related to the concept of finality of transac-
tions [12]: in a permissionless blockchain, every transaction must be verified,
inserted in a new block, the block must be validated and distributed to the
other network participants. In addition, before the transaction can be consid-
ered as committed, a given number of blocks must be appended to the chain,
i.e. the transaction must receive a certain number of confirmations. This
number of confirmations is not predefined but, as a rule of thumb, in Bitcoin
it is necessary to wait at least 6 confirmations (about 1 hour) before consider-
ing as committed a transaction [1]. If this waiting time is not respected, the
transactions could be invalidated [12]. The problem of transaction finality is
evident in almost every blockchain platform, except for certain permissioned
blockchains [12].

� Full data replication. The majority of the blockchain platforms requires every
node to maintain a full replica of the stored data, so that the validity of
incoming transactions can be determined by simply accessing a local replica
of the blockchain, without any further interaction with the other members of
the network. However, in this way, when the size of the blockchain grows too
much, many users can no longer store the whole replica of the blockchain, i.e.
they have to trust the other members of the network, with a subsequent risk
of centralization of the decision-making power in the hands of a small subset
of users.

2.1.3 Blocks and hash pointers

The term blockchain comes from its base storage unit, the block. The first block of
the chain is called genesis block [1] and it is the starting point of an always growing
linked list of blocks that can be represented as a chain. Each block includes a list of
transactions, a timestamp and a hash of the previous block of the chain. The hash
of the current block, in fact, is stored as a field of the next block of the chain and
works as a hash pointer towards the previous block. This concatenation of blocks
provides the tamper-proof property of the blockchain because by modifying the data

7

Chapter 2. Blockchain and Permissionless Blockchains

stored inside a block, its digest (i.e. hash) varies too. This means that it is sufficient
to modify the content of a single block to invalidate all the subsequent blocks of the
chain [1]. A graphical representation of a chain of blocks is shown in Fig. 2.2.

Figure 2.2: Representation of a chain of blocks logically linked by the hash of the
previous block.

2.1.4 Transactions

The transactions are combined in blocks and represent the smallest units of data
that can be stored in the blockchain. The transactions are not standardized and
their content strictly depends on the applications for which the blockchain has been
conceived. Many blockchain platforms concern a transaction as a simple transfer of
ownership of coins. In this case, the members of the distributed network can verify
if a transaction is valid or not verifying if the issuer of the transaction is the current
owner of the asset and if he authorized the transfer of the coins by digitally signing
the transaction [1]. It is reductive to consider a transaction as a simple mechanism
for transferring assets because also general-purpose applications can be built on top
of a blockchain storage platform. For this reason, the transactions can be considered
as generic read/write operations that triggers the state changes of a shared state
database by executing arbitrary pieces of code [2, 11].

Money transfer transactions

As previously mentioned, the simplest transactions are used to transfer the owner-
ship of coins. Each user of the network is associated to a pair of asymmetric keys;
the private key is kept secret and is used to sign the transactions in order to autho-
rize the money transfer. If an attacker steals the private key, he obtains full control
on the digital money of the victim. The public key, instead, must be spread to the
network participants; it is used to verify if the signatures applied by the respective
private key are valid, i.e. to verify if the transaction has been authorized by the real
owner of the coins. The hash of the public key is computed to derive an address,
a pseudonym used to receive the payments and to improve the privacy of users.
After this brief recall on blockchain terminology, an example showing the transfer
of coins from Alice to Bob is given. Fig. 2.3 provides a graphical representation of
the process described below.

1. Suppose Alice owns some coins associated to her address. The address was
generated by computing the hash of her public key.

8

Chapter 2. Blockchain and Permissionless Blockchains

2. Bob calculates the hash of his public key to generate an address and shares it
with Alice.

3. Alice creates a transaction transferring a given amount of coins to Bob’s ad-
dress. She uses as source address the one mentioned in the first step. She
digitally signs the transaction with her private key to demonstrate to be real
owner of the transferred coins.

4. Alice distributes her public key to the network participants so that they can
verify her digital signature.

5. Bob and all the other peers of the network, using Alice’s public key, are now
able to verify the correctness of the digital signature calculated by Alice using
her private key. This verification demonstrates that Alice intentionally exe-
cuted the money transfer to Bob. They also verify if the hash of the public
key of Alice, the one used to verify the signature, corresponds to the source
address of the transaction. If the two matches and the digital signature has
been correctly verified, Alice for sure authorized the transfer of her coins.

The transactions are managed differently depending on the blockchain platform that
is used. This example only describes the use of asymmetric cryptography for the
management of blockchain transactions.

Figure 2.3: Representation of the lifecycle of a transaction.

2.1.5 Consensus algorithms

In a distributed system multiple parties interact each other to maintain an overall
coherent state of the ledger. Many users can simultaneously execute transactions
or access the ledger for reading and writing. The problem of the distributed con-
sensus requires that all the participants agree on the total ordering of the events
and maintain a replica of stored data, so that they can verify the validity of the
new transactions before appending them to the ledger [11]. The total ordering of
transactions is coupled with the state machine replication: all the nodes of the
network must be aware of the current state of the blockchain (shared state), and of
the events occurred over time (state changes) [11]. For this reason, the blockchain

9

Chapter 2. Blockchain and Permissionless Blockchains

platforms require that all the nodes store a full replica of the ledger. The full data
replication is necessary in the permissionless environments because the participants
can join or leave the network at any time. By using partial data replication, in
fact, if every node storing a replica of the same portion of the dataset goes offline,
it would be impossible to recover the final state of the ledger. Partial data replica-
tion is instead feasible in a permissioned environment, where the identity of users
is well-known. Among all the blockchain platforms analysed in this thesis, only
BigchainDB adopts the partial data replication and achieves the storage scalability
[13] .
In a distributed system, misbehaving or faulty network nodes have to be managed
[11]. The nodes, in fact, can accidentally crash, can be subverted by an attacker
or the network communication problems can compromise the interactions between
peers [11]. The two main categories of consensus algorithms that have been devel-
oped to deal with these faulty nodes can be described as follows:

� Crash-tolerant algorithms. They can be used in permissioned environments
and manage crashed or unreachable nodes. To reach consensus the subsequent
inequality must be respected: n ≥ 2f + 1, where n is the total number of
nodes of the distributed network and f indicates the number of crashed nodes.
Examples of crash-tolerant consensus algorithms are Paxos, Raft, Zab [11].

� Byzantine-fault tolerant algorithms. They manage crashed, unreachable
and intentionally faulty nodes. To reach consensus in a permissioned environ-
ment, the inequity n ≥ 2

3
f + 1 must be satisfied, where n is the total number

of nodes, f the number of misbehaving nodes. Examples of fault-tolerant
algorithms are PBFT and BFT-SMaRt [11].

The above-mentioned algorithms can be used in a permissioned environment where
the users can be identified. The permissionless blockchain platforms, like Bitcoin
and Ethereum, instead, require to use the Proof-of-Work (PoW) or Proof-of-
Stake (PoS) consensus algorithms because they do not require the identification of
users. Their main purpose consists in randomly selecting a user to create a new
block with a probability that is proportional to the amount of computational
power or coins controlled by the user [1]. Many other permissionless blockchain
consensus algorithms exist but all of them are characterized by the same goal of the
proof-of-work, avoiding the monopolization of the creation of blocks in the hands
of a small subsets of users [1]. To pursue this objective they introduce randomness
in the creation of the blocks of the chain, giving the possibility to many network
participants to decide which transactions have to be validated and inserted in the
blocks [1].

Byzantine Generals Problem

The Byzantine-fault tolerant consensus algorithms tolerate faulty nodes. The
term Byzantine comes from the paper The Byzantine Generals Problem written in
1982 by Lamport Leslie et al. [14]. In this paper, the author describes a war sce-
nario, in which Byzantine soldiers have to decide whether to strike an attack or to
retreat. The only way to successfully conclude an assault consists in involving simul-
taneously the whole army [14]. The existence of multiple generals, some of whom are
potentially malicious, requires a mechanism for reaching consensus on the decision

10

Chapter 2. Blockchain and Permissionless Blockchains

to be taken. The main problem is the existence of traitors between the generals.
The paper demonstrates that if at least the 66.6% of the generals are honest, all
the soldiers can converge to the same decision [14]. In distributed computing this
behaviour can be compared to a group of machines that acts honestly or tries to
tamper data. The existence of an asynchronous communication channel requires to
work with at least n ≥ 3f + 1 nodes to find an agreement [12], where n is the total
number of nodes of the network and f is the number of faulty nodes. Moreover, the
number of messages that must be exchanged between the nodes in order to reach
the consensus is proportional to the square of the number of participants of the
distributed network (Θ(n2), where n is the total number of participants) [14].

2.1.6 Scripting and Smart Contracts

The added value of the blockchain platforms is the possibility to write scripts,
notably programs whose execution is associated to the validation process of trans-
actions. This means that the scripts are not executed once during the creation of
a new block but they are executed every time a blockchain node verifies the trans-
actions before appending the block to the chain. This feature demonstrates that
it is possible to write general-purpose applications on top of the blockchain, more
complex than the simple cryptocurrencies. The blockchain scripting languages are
split in the two categories described as follows:

� Stack-based scripting languages. They are characterized by a limited set of
instructions and, among other things, do not allow to implement loops; the
only mechanism that can be used to repeat a sequence of instructions consists
in writing many times the same piece of code. This feature ensures that the
scripts are always executed in a finite time interval. The Bitcoin protocol is
based on a stack-based scripting language.

� Turing-complete scripting languages. They are full-featured programming
languages that allow to implement loops. The blockchain platforms based on a
Turing-complete scripting language implements a strategy to avoid the infinite
loops. The execution of an infinite sequence of instructions overloads the
computational capabilities of all the nodes of the blockchain that are running
the code of the script. The Turing-complete scripts of Ethereum and of the
other blockchain platforms are called smart contracts.

2.2 Bitcoin

Bitcoin was created in 2009 by Satoshi Nakamoto and it is the first permissionless
blockchain platform ever built [3]. There are many scientific papers covering this
topic and, for this reason, the identification of strengths and weaknesses of this
blockchain platform is eased. Bitcoin is a totally decentralized cryptocurrency char-
acterized by the absence of a central authority [1] where all the members of the
network store a local copy of the ledger containing the list of transactions. Every
node of the network, accessing his local copy of the ledger, checks if the users are
authorized to spend their coins and verifies that nobody tries to spend twice the
same coins [1]. The greatest problem of a totally distributed currency, in fact, is
the absence of a central authority acting as guarantor of money transfers. Malicious

11

Chapter 2. Blockchain and Permissionless Blockchains

users can try to double spend the same coins without anyone noticing [3]. Bitcoin
was the first distributed ledger technology able to solve this problem in a totally
distributed and permissionless environment (Sec. 2.2.7 provides additional details
on the double spending attack). The main concepts of Bitcoin are summarized as
follows:

� Bitcoin is a peer-to-peer protocol that allows users to exchange coins without
the interactions of a trusted third party (TTP).

� Money transfers are represented by transactions. Each transaction indicates
who sends the coins, who is the beneficiary and the amount of transferred
coins.

� The transactions are contained in the blocks that are cryptographically linked
to compose the blockchain.

� Each user of the network stores a local copy of the blockchain. The absence of
a central authority requires that the network participants replicate the content
of the blockchain so that they can execute read/write operations on the local
copy of the ledger.

� The proof-of-work consensus algorithm allows to select randomly a user for
creating the new blocks, increasing the reliability of the distributed network.

The remainder of this chapter deeply analyses the Bitcoin protocol by focusing on
the transactions, blocks, users and proof-of-work consensus algorithm.

2.2.1 Users of Bitcoin network

Bitcoin is a distributed peer-to-peer network developed to allow users to exchange
coins without interacting with a central authority [3]. Everyone can freely access
the network by generating a pair of asymmetric keys [1]. In particular, each user
is identified by means of the following pieces of information:

� Private key. Each user secretly stores a private key and uses it to digitally
sign the transactions for authorizing the money transfers. The private key
must be kept secret because if an attacker controls it he can steal the money
of the victim [1].

� Public key. It is generated with the private key and is used to verify the
correctness of the digital signatures calculated with the relative private key.
The signature verification process allows to verify if the money transfer has
been executed by the real owner of the coins [1].

� Address. It is derived by the public key by sequentially applying two hashing
functions (SHA-256 and RIPMED-160) [1]. The Bitcoin protocol uses the
addresses to identify the recipients of the money transfers and to avoid the
direct exposure of the public keys. In this way the difficulty to track the money
transfers is increased. Every address, in fact, creates a sort of pseudonym for
the user, making more difficult to date back its identity [1]. To improve the
privacy of users, a new pair of asymmetric keys and the relative address are
generated for every new transaction.

12

Chapter 2. Blockchain and Permissionless Blockchains

Each user can control many pairs of asymmetric keys (and addresses) by means of a
wallet, a piece of software developed to easily manage keys and to execute money
transfers on the Bitcoin network [15]. The users are advised to generate a new pair
of asymmetric keys and an address every time they need to receive a payment. In
this way it is more difficult to date back the identity of the users by reading the
history of transactions.

2.2.2 Transactions

The Bitcoin transactions allow to transfer the ownership of coins between users.
Each transaction is uniquely identified by its hash and is composed by many
inputs and outputs [16].

� Inputs. The inputs of a transaction refer to the outputs of the other trans-
actions that transferred the ownership of coins to the current owner. [17].

� Outputs. The outputs indicate who are the receipts of the transactions (even
more than one) and the amount of coins transferred to each of them [17].

Input and output sections of a transaction are composed by many fields.
Each input is composed by:

� Hash of the previous transaction. It is used to identify the transaction
whose output will be spent in the current transaction.

� Index. It is a number that allows to understand which of the outputs of
the previous transaction will be spent. Every transaction, in fact, can have
multiple outputs [16].

� scriptSig. It is a digital signature that proves that who executed the trans-
action is really the owner of the coins [1, 16].

Each output is composed by:

� Value. It indicates the amount of Bitcoin that must be transferred to a given
recipient [16].

� scriptPubKey. It is a script, i.e. a sequence of instructions that must be
executed to certify the money transfer. It contains the address of the recipient
of the coins that must be transferred. The widely used script is called P2PKH,
Pay-to-PubKeyHash and is used to transfer the coins between different users
[1, 16]. More complex behaviours can be obtained using different scripts.
[1, 16].

The above-mentioned fields must be replicated for every input and output of the
transaction. An output of a transaction that has not yet been referred as input of
another transaction is called Unspent Transaction Output - (UTXO) [1, 16]. Every
UTXO can be spent at most once [1, 16]. Every transaction can combine many
inputs and outputs to obtain every possible amount. Three main situations can
occur:

1. The sum of inputs is equal to the sum of outputs.

13

Chapter 2. Blockchain and Permissionless Blockchains

2. The sum of inputs is greater than the sum of outputs. In this case another
output is added to the transaction, whose beneficiary is the sender of the coins.
This represent the concept of change [16].

3. The sum of inputs is lower than the sum of outputs. In this case, other inputs
must be added to the transaction [16].

Typically, the sum of inputs is slightly greater than the sum of outputs. The dif-
ference is used as reward for miners for their contribution in securing the network
(transaction fee). For additional details see Sec. 2.2.6. Fig. 2.5 shows three trans-
actions (TX1, TX2, TX3). TX3 has two inputs, the first output of TX1 and the
first output of TX2. The Output 1 of TX3 is an UTXO because no other transac-
tions refer to it.

Figure 2.4: Transactions with multiple inputs and outputs.

Dissemination of transactions

After having executed the transactions, the users spread them to the other network
participants so that they can create new blocks with these transactions. The trans-
actions, to be effective, must be inserted in a new block, the block must be validated
and appended to the blockchain.

2.2.3 Hash and SHA-256

Before describing the blocks, it is necessary to introduce the hash functions that are
used to logically link the blocks of the blockchain. A hash function is a function
that computes the digest (or hash) of the input data, i.e. generates a fixed-length
string that summarizes the content of the input of the function. These functions
are non-invertible, i.e. starting from the generated output it is not possible to
recover the original text. An ideal hash function generates different outputs for
every different input. In reality, calculating the hash of different inputs there is a
remote possibility to obtain the same result, i.e. to generate a collision. The rate of

14

Chapter 2. Blockchain and Permissionless Blockchains

occurrence of collisions is very low and is inversely proportional to the length of the
digests generated by the hashing function. The fundamental application of the hash
functions is the data integrity verification. If a user generates and securely stores
the hash of a document, he can verify in every moment if the document has been
modified. It is sufficient to recompute the digest of the document and to compare it
with the original hash. In the event that the two values are different, this means that
the document has been modified [18]. SHA-256 is an example of hashing algorithm
that generates hashes of 256 bits. It is very important in the context of this thesis
because it is used by the Bitcoin protocol [1, 19].

2.2.4 Blocks and blockchain

The block is the main storage unit of a blockchain. It contains and persists data
relative to multiple transactions. The blocks create a chain in which every block
is related to the previous one by storing the hash of the previous block [1]. This
data structure permits to create an append-only, always growing list of blocks and
transactions. Blocks are essentially split in two sections, the header and the list
of transactions [20]. The header is composed by the following fundamental fields
[16, 21]:

� Version number of the Bitcoin protocol.

� Timestamp. The timestamp refers to the instant in which the block has been
created. The list of blocks is chronologically ordered. For this reason, the
Bitcoin protocol can be considered a mechanism of distributed timestamping
[1].

� Root of the Merkle tree. It is a hash (SHA-256) that summarizes the list
of transactions of the block. Additional details about Merkle tree are available
in Sec. 2.2.5.

� Previous block hash. It contains the hash of the header of the previous
block of the chain. It acts as a pointer between the current block and the
previous block of the chain.

� Difficulty. The difficulty, also known as Bits, indicates the computational
complexity of the cryptographic puzzle necessary to validate the block (addi-
tional details on Sec. 2.2.6).

� Nonce. It is a number that must be set to satisfy the difficulty of the block
(additional details on Sec. 2.2.6).

Every block also contains the list of validated transactions, each of them is in
turn composed by many fields (Sec. 2.2.2). Each block is uniquely identified by
the hash of its header, calculated with the SHA-256 algorithm. The hash is not
stored inside the block itself but in the next one. Furthermore, it contains a refer-
ence to the transactions of the blocks, given by the root of the Merkle tree contained
in the header of the block.
The time necessary to read the data stored in the blockchain is proportional to the
length of the chain. An indexing mechanism based on LevelDB has been introduced

15

Chapter 2. Blockchain and Permissionless Blockchains

in Bitcoin to speed up the read operations [1]. Fig. 2.5 shows a graphical represen-
tation of a blockchain; the first block of the chain is called genesis block. Except the
first block, the other blocks always contain a hash pointer to the previous block of
the chain (Previous block hash). The blocks do not contain the hash of the current
block.

Figure 2.5: Graphical representation of the chain of blocks of Bitcoin.

2.2.5 The Merkle tree

The Bitcoin protocol requires that all peers store a full replica of the ledger, intro-
ducing additional problems for all the users’ devices characterized by limited storage
capabilities. To overcome this problem, the Merkle Tree data structure has been
introduced. It allows to summarize the content of multiple transactions inside a
single hash value, the Merkle tree root. The generation of the Merkle tree consists
in the subsequent applications of the hash function (SHA-256 in the case of Bit-
coin). Fig. 2.6 shows an example of Merkle tree of the Bitcoin protocol (SHA-256
algorithm). Once the hashes of all the transactions have been calculated, the hashes
must be grouped in pair of two, concatenated and used again as input of the hash
function. This behaviour is repeated until only one hash value remains; it is called
Merkle tree root [1]. The generated data structure is a binary tree in which
every parent node is simply the hash of the concatenation of the two children.

Fig. 2.6 describes the generation of a Markle tree. Tx0, Tx1, Tx2 and Tx3 are
the four transactions of the block. Hash0, Hash1, Hash2, Hash3 are the hashes of
the four transactions:

Hash0 = hash(Tx0)

Hash1 = hash(Tx1)

Hash2 = hash(Tx2)

Hash3 = hash(Tx3)

When the hashes has been computed, the hash of their concatenation must be
calculated again:

Hash01 = hash(Hash0|Hash1)

Hash23 = hash(Hash2|Hash3)

16

Chapter 2. Blockchain and Permissionless Blockchains

Figure 2.6: Graphical representation of a Merkle tree [22]

The process is concluded when only one value remains (Merkle tree root):

Hash0123 = hash(Hash01|Hash23)

The Merkle tree root is stored in the block header and represents a snapshot of all
the transactions contained in the block. It is very important as it allows to divide
the nodes of the network in two categories:

� Full nodes: they store a local complete replica of the blockchain. The full
nodes can easily verify the reliability of transactions by accessing their own
local replica of the ledger [1]. At time of writing, the size of the Bitcoin
blockchain is about 178 GB [23] and constantly increases as a result of the
creation of new blocks.

� Lightweight nodes: they store only the header of the blocks and not the
whole set of transactions. To verify the transactions, the lightweight nodes
implement the SPV (Simplified Payment Verification). They download a por-
tion of the Merkle tree from the other peers of the network and verify the
correctness of the transactions with the help of the Merkle root that is stored
in the header of the blocks [1]. The lightweight clients are less secure than
the full nodes. For this reason, this type of clients is recommended only for
the devices with limited storage capabilities (e.g. mobile devices) and for the
validation of transactions transferring a limited amount of coins [1].

2.2.6 Bitcoin consensus algorithm

Bitcoin is a permissionless blockchain whose users can join and leave the network as
needed. The validation of blocks and transactions contained in it is executed by the
so-called miners without the interaction with a trusted third party. The miners are
the entities of the distributed network that validates the transactions and blocks.
They collect and verify the correctness of the transactions executed by the users
of the network. The validation of transactions consists in the execution of the

17

Chapter 2. Blockchain and Permissionless Blockchains

associated scripts and verification of the absence of double spending attempts [16].
In the event that both requirements are satisfied, the transactions can be considered
valid and inserted in a new block.

Composition of new blocks

The miners create the new blocks to append to the blockchain. The first transaction
of each block is the coinbase transaction or generation transaction [1]. It is a
particular type of transaction that transfers a predefined amount of Bitcoin to the
miner of the block as a reward for its job. Unlike other transactions, it does not
spend an UTXO but it creates new Bitcoins. The Bitcoin genesis block contains
only a coinbase transaction that distributed the first 50 Bitcoins to a predefined
user. The reward for the subsequent mined blocks depends on the number of blocks
already present in the chain (i.e. block height) [1, 16]. The following formula can
be used to compute the reward (r) of the block with block height hb [16]:

r =
50BTC

d hb

210000
e

The reward for the mined blocks is halved every 210000 blocks and makes the Bitcoin
a deflationary coin, introducing a limit on the maximum circulating supply [16].
The minimum reward for the mined blocks cannot be lower than 10−8 Bitcoin (1
Satoshi). When this limit will be exceeded, the coinbase transactions will no longer
provide a reward for the mined blocks. For this reason, the transaction fees have
been introduced as additional reward mechanism for the miners. As introduced in
Sec. 2.2.2, the transaction fee is equal to the difference between the sum of Bitcoins
referenced by the inputs of the transaction and the sum of the Bitcoins referenced
by the outputs of the transaction [1] The miners can freely choose the transactions
to insert into a block and they typically choose those transactions providing the
highest fees, in order to earn much money. To validate the blocks and to obtain the
relative reward, the miners compose the blocks and solve a complex cryptographic
problem called proof-of-work.

Proof-of-Work consensus algorithm

The proof-of-work (PoW) is the consensus algorithm implemented by the Bitcoin
protocol. It tolerates the crashed and unreachable nodes and faulty nodes subverted
by an attacker. The Bitcoin proof-of-work is similar to Hashcash algorithm [1] and
is executed by miners of the network for the validation of the new blocks. It consists
in varying the nonce stored in the header of the block, computing the SHA-256
hash of the header of the block and verifying if the result is numerically lower than
a given threshold (the difficulty of the block) [1]. The procedure must be repeated
until the last condition is verified. When a miner finds a valid solution for a block,
it spreads the new mined block to other network peers so that they can verify the
transactions contained in it and the solution to the proof-of-work. If everything is
correct they append the new block to their own replica of the blockchain, otherwise
they discard the block. The time required to find a valid solution to the proof of
work is known as block interval and depends on two parameters:

- the difficulty of the block (i.e. the maximum acceptable hash value) [1]

18

Chapter 2. Blockchain and Permissionless Blockchains

- the hashing power controlled by the miners of the network [1].

The difficulty of each block is stored in its header and is changed whenever 2016
blocks are mined. The Bitcoin protocol maintains constant at 10 minutes the block
interval: a shorter block interval implies a larger number of minted coins and a
depreciation of the currency. Since the computational capabilities of the devices
used for mining increases over time, to maintain constant the block interval it is
necessary to increase the difficulty of the blocks [1]. The proof-of-work introduces
a sort of randomization in the creation of new blocks: miners of the network
must solve a complex computationally expensive cryptographic problem such that
their blocks are accepted by the other peers of the network. The probability for
miners to create the subsequent block of the chain is proportional to the hashing
power they control. The higher the computational power, the higher the probability
of becoming the miner of the block [1]. The proof-of-work solves the problem of the
Sybil attack in the Bitcoin network. The Sybil attack simply consists in creating
false identities trying to obtain the voting majority of a distributed network [1].
In proof-of-work, the voting power of a user is given by its hashing power. The
computational power of a user is determined by the characteristics of the devices
under its control and not by the number of fake identities he creates [1].

The problem of forks

Mining is an asynchronous operation; different miners work autonomously and com-
pete to find the solution to the proof-of-work. In some cases many miners find the
solution to the proof-of-work of different blocks with the same height [1]. This im-
plies that many blocks refer to the same parent block. These two blocks potentially
contain conflicting transactions (e.g. transactions spending the same UTXO). This
behaviour describes the creation of a bifurcation of the main chain that is called
fork [1]. Since the bifurcations cannot exist in the blockchain, the miners create the
subsequent blocks and decide to which parent block they must be connected to. At a
given point in time, the peers will see two different branches with a different length:
only the transactions belonging to the longest chain are considered valid. The blocks
belonging to the shorter branches are called orphaned and their transactions do
not longer affect the final state of the ledger [1]. Since the occurrence of forks can
invalidate the transactions, it is necessary to wait some time before considering a
transaction as committed. The number of confirmations is the parameter that
must be controlled to quantify the risk of a transaction of being invalidated by a
fork. This number is defined as the number of blocks starting from the block con-
taining the transaction up to the end of the chain [1, 16]. As a rule of thumb in
Bitcoin it is recommended to wait a number of confirmations not lower than 6 [1].
The recommended number of confirmations is proportional to the amount of coins
transferred [1, 16]. This property describes the uncertainty of the validity of transac-
tions, called absence of finality of transactions [12]. Many blockchain platforms,
especially the permissionless ones, are affected by this characteristic. Fig. 2.7 shows
a graphical representation of a chain of blocks in which two forks occurred. Each
square represents a block of the chain, the black one is the genesis block, the grey
squares compose the main chain, while the orange squares are the orphaned blocks.
The blocks belonging to the different branches are characterized by the same block
height because they are connected to the same parent block (i.e. same Previous

19

Chapter 2. Blockchain and Permissionless Blockchains

block hash).

Figure 2.7: Graphical representation of a chain in which two forks occurred.

Solo mining and mining pools

The miners compete to find the solution to the proof-of-work before the others.
Only the miner that creates a block that is appended to the main chain obtains the
reward. The miners can decide to cooperate or not with the other users to find the
solution of the proof-of-work. For this reason, the miners can be subdivided in two
categories:

� Solo mining is the term used to indicate a device or a set of devices controlled
by a single person. This person tries to find the solution to the proof-of-work
without cooperating with other users. The probability of mining a block before
the other users is very low and is proportional to the computational power
controlled by the user [1].

� Mining pool is the term used to indicate a group of miners that cooperate
to find the solution to the proof-of-work for the new blocks. As soon as one of
the miner of the pool finds the solution of a block, the reward is split between
all the participants of the pool, accordingly to the amount of computational
power provided during this operation [1].

Today, if a user wants to start the mining operations, it is more profitable to join
a mining pool; the total computational power of the Bitcoin network is too high if
compared to the one that can be provided by a single machine. The risk of solo
mining consists in waiting a very long time, even infinite, before earning any amount
of money.

Devices and time required to compute the proof of work

The miners are also distinguished by the type of devices used for the mining opera-
tions. The time required to compute the proof-of-work for a block depends on the
hashing power of the devices. Three main categories of devices are used to compute
the proof-of-work:

� CPU

20

Chapter 2. Blockchain and Permissionless Blockchains

� GPU

� ASIC

The CPU mining is the most traditional technique and consists in exploiting the
computational power of the cores of the processors to compute the hashes. The GPU
mining allows to obtain better performances than CPU mining because every GPU
is composed by many cores. The computation of the hashes, in fact, is an operation
that can be easily parallelized and executed by the video cards. Today, the most
widely used alternative to the CPUs and GPUs is called ASIC (Application Specific
Integrated Circuit). The ASICs are special-purpose devices that are optimized to
quickly compute the SHA-256 hashes and to find the solution to the proof-of-work
[1]. The massive adoption of ASICs in mining factories makes nearly impossible
to earn money with CPU and GPU mining. In addition, the concentration of the
mining power jeopardizes the security of the Bitcoin protocol because concentrates
the mining power and the capability of creating blocks in the hands of a small subset
of miners.

Problems of the proof-of-work

The proof-of-work is an interesting solution to the problem of the distributed con-
sensus but it is affected by some important drawbacks:

� Low throughput. The number of transactions per second that can be com-
mitted is very low. The Bitcoin throughput varies from 4 to 10 transactions
per second, with an average value of 7 transactions per second [1, 2].

� High latency. It is necessary to wait a given number of confirmations before
considering a transaction as committed. In Bitcoin it is suggested to wait at
least 6 confirmations, i.e. about one hour [1, 12].

� Absence of finality of transactions. It indicates that the occurrence of a
fork can invalidate the transactions. This characteristic is strictly related to
the high latency of transactions [12].

� Concentration of the mining power in the hands of an attacker. The
attackers can monopolize the creation of blocks if they are able to concen-
trate more than the 51% of the total computational power of the network [1].
Even with a lower percentage of computing power a successful attack can be
conducted (25% could be enough) [12].

Modification to the Bitcoin consensus algorithm

The Bitcoin consensus algorithm can be modified and many improvements can be
introduced over time. However, differently from a centralized system in which the
administrators can take technical decisions, in Bitcoin and in other permissionless
blockchains the majority of the participants must agree on the updates of the consen-
sus algorithm [16]. The hard fork is a mechanism that allows to create a bifurcation
of the main chain introducing some modifications to the consensus algorithm. For
example, with a hard fork it is possible to modify the algorithms used to compute the
hashes or the digital signatures. Unlike the traditional forks described in Sec. 2.2.6,

21

Chapter 2. Blockchain and Permissionless Blockchains

the hard forks generate two coexisting chains that are unable to communicate. Both
chains grow independently and do not invalidate the content of the other chain [16].
In addition, the hard forks require to update the software; the users can install a
piece of software that is compatible with the older version of the protocol or can
install a new version of the program that is able to interact with the new branch
of the chain [16]. Depending on the version of the software installed by the users,
the latter can interact only with the supported branch. The blocks belonging to
the other branches are considered as invalid and automatically discarded. For this
reason, in the case an hard fork occurs multiple bifurcations can coexist [16].
A soft fork occurs in correspondence of a simple modification to the consensus
algorithm that is backward compatible with the older version of the client software
[16]. The old and the new versions of the software can coexist and cooperate working
on the same chain of blocks. In particular, all the operations executed by the new
version of the software are always interpreted and accepted by the older versions of
the software. The reverse might not be guaranteed because the soft forks introduce
restrictions to the consensus algorithm [16]. The term fork may be inappropriate in
case of a soft fork because no bifurcations are created; a soft fork, in fact, is only a
slight modification to the consensus algorithm [16].

2.2.7 Possible attacks

Many different threats affect Bitcoin and the other proof-of-work based blockchains.
The most important ones can be described as follows:

� Double spending. The double spending attack is very popular in the per-
missionless blockchains and consists in an attempt of spending twice the same
coins. The Bitcoin consensus algorithm aims to solve this problem without the
need of interacting with a trusted authority that verifies the reliability of the
money transfers. The miners, in fact, cannot include transactions that try to
spend twice the same amount of coins because the other peers of the network
detect the cheating attempt and discard the block [1]. Even if this problem
seems to be completely solved, forks can occur and the 51% attack can be put
in place.

� 51% attack. The 51% attack is possible if an attacker controls more than
a half of the computational power of the whole network and if it is able to
generate a secondary chain, i.e. a fork of the main chain. In this case he can
double spend the same coins. The main attack process is explained with an
example, where Alice is the attacker and Bob the victim. [1]:

– Alice, the attacker, buys some products sold online by Bob, the victim.

– Bob accepts payments in Bitcoin and Alice creates a transaction that
transfers the requested amount to Bob.

– The Alice’s transaction addressed to Bob is spread across the Bitcoin net-
work and reaches the honest miners (all the miners that are not directly
controlled by the attacker can be considered as honest).

– Honest miners receive and validate the transaction transferring the coins
to the victim. They also insert the transaction in a new block.

22

Chapter 2. Blockchain and Permissionless Blockchains

– Bob sees that the transaction has been inserted in a block, he eventually
waits a given number of confirmations and ships the product to Alice.

– Alice, in the meanwhile, creates another conflicting transaction spend-
ing the same UTXO of the transaction addressed to Bob. This second
transaction is a double spending transaction and is addressed to another
destination address that is under the control of Alice. Instead of spread-
ing this transaction to the whole Bitcoin network Alice sends it to the
miners under her control.

– The miners controlled by Alice create a fork of the main chain, they
generate a new block containing only the double spending transaction
and discard the transaction addressed to Bob. They continue the mining
process and append many blocks to the secondary chain, increasing the
number of confirmations of the double spending transaction addressed to
Alice.

– When the secondary chain is grown enough, i.e. it is longer than the main
chain, Bob ships the product to Alice and the miners under the control
of Alice spread the blocks of the secondary chain to the honest peers of
the network.

– Since the chain generated by the attackers is longer than the chain cre-
ated by the honest miners, the former becomes the main chain and the
transaction addressed to Bob is invalidated. Bob loses either the money
and the product.

The only safety measure that the victim can introduce consists in waiting a
greater number of confirmations for the transaction before shipping the prod-
ucts. This countermeasure can be insufficient if the attacker controls the ma-
jority of the mining power of the whole network [1]. The larger the amount of
computational power controlled by the attacker, the higher the probability of
successfully conduct an attack. Recent research activities demonstrated that
the proof-of-work consensus algorithm is susceptible to attacks when the 25%
of the total computational power is concentrated in the hands of a single entity
[12].

� Infinite delay of transactions. The miners have the possibility to delay,
even forever, the validation of some transactions avoiding to insert them in
new blocks. This type of attack can be considered as a denial of service
attack because prevents transactions from being committed [16]. The delay of
transactions is problematic if an attacker controls the majority of the mining
power of the network and is able to create all the blocks of the main chain; in
such a situation, the honest miners of the network are not able to create the
blocks inserting the transactions that the attacker intentionally discarded.

The Bitcoin consensus protocol does not permit to spend the money of other users
unless the private key of the owner of the coins is stolen.

2.2.8 Bitcoin scripting

As mentioned in Sec. 2.2.2, the Bitcoin protocol allows to implement scripts. The
most popular script is the Pay-to-PubKeyHash that is used to transfer money be-

23

Chapter 2. Blockchain and Permissionless Blockchains

tween users [1]. The Bitcoin scripting language is stack-based: the instructions
are managed by a stack and executed in a well-defined order, without the possibility
to repeat sequences of instructions (no loops) [1, 16]. The presence of infinite loops
could compromise the functioning of the network because the nodes involved in the
execution of an infinite loop cannot validate other transactions [1]. Since the Bitcoin
scripting language is deterministic, all the users obtain the same result regarding the
execution of the scripts. Thus, they can draw the same conclusions on the validity
or invalidity of the transactions.

2.3 Ethereum

Ethereum is another example of permissionless blockchain based on proof-of-work
consensus algorithm. It presents many differences and similarities from Bitcoin, and
it is based on a totally independent blockchain. The main goal of Ethereum consists
in giving the possibility to users to write smart contracts for the development
of DAOs - Decentralized Autonomous Organizations [4]. These two interesting
concepts guided the research activity to deeply analyse this technology.

2.3.1 Transactions, Blocks, State

Exactly as explained for Bitcoin in Sec. 2.2.2 and Sec. 2.2.4, Ethereum also intro-
duces the concept of transactions and blocks. The transactions execution is triggered
by the users with a mechanism similar to the Bitcoin one, based on a digital signa-
ture scheme: a user creates a transaction attaching a digital signature to prove his
identity [4]. The transactions are then validated by the miners and collected into
blocks logically linked to each other to create a chain. The Ethereum whitepaper
emphasizes the concept of state: at any given point in time, the whole blockchain
system is characterized by the current state, that is changed accordingly to previ-
ously executed transactions [4]. The current state allows to have a complete view on
the amount of coins owned by users, on stored information and on pieces of software
that can be run with the execution of transactions. All this information is associated
to participants and collected in accounts. There exist two types of account [4]:

� Externally owned account. It is based on the digital signature scheme and
can be used to transfer ownership of coins and to carry some text.

� Contract account. It is more complex than externally owned account be-
cause it is associated to a piece of code that must be executed, a smart contract.
Each contract is associated to a local storage solution based on key-value pairs,
allowing the management of the state of the account and a faster data retrieval.

An interesting feature of accounts consists in the possibility to exchange messages
between them. An intercommunication mechanism for accounts is this way imple-
mented and complex behaviours can be obtained [4].

2.3.2 Ethereum smart contracts

A smart contract is defined as a piece of software that is run by the blockchain
nodes and that can contain arbitrary instructions. With a smart contract it is also

24

Chapter 2. Blockchain and Permissionless Blockchains

possible to develop an oracle, an application able to influence its execution depending
on data stored outside of the blockchain, that can be obtained, for example, contact-
ing an external data source, like a website [4]. The Ethereum smart contracts are
more powerful than Bitcoin scripts because they are based on a Turing-complete
programming language, giving the possibility to execute any kind of operations,
including instructions that modify the execution flow of instructions, e.g. loops [4].
The possibility to repeat portions of code introduces the risk of creating infinite
loops. Since the code execution is performed by every node of the network, this
behaviour can be very dangerous because it can overload the computational capacity
of the nodes [4]. In such a situation, other transactions can no longer be executed
because the nodes of the network are managing an infinite sequence of instructions.
Ethereum introduces the concept of gas to overcome this problem. Unlike Bit-
coin, every Ethereum transaction presents two additional fields, STARTGAS and
GASPRICE, indicating respectively how many instructions will be potentially ex-
ecuted by the code triggered by the transaction itself, and the price that must be
paid for one instruction [4]. Every transaction, including simple payments, transfer
of data or the execution of more complex smart contracts, requires the payment of
gas, in other words, of fees. Considering the smart contract execution, in the case
the number of computational steps exceeds the expected one (i.e. the STARTGAS),
the gas is totally consumed. Since the execution of code has not yet been completed,
a rollback procedure is started. All the modifications applied to the state during
the execution of the code are discarded and the previous state of the contract is
restored; no intermediate states are possible. As an additional countermeasure, the
issuer of the transaction cannot receive back the amount of coins associated to the
spent gas. This characteristic is fundamental to discourage malicious users from
executing denial-of-service attacks: to conduct an effective attack overloading the
computational capacity of nodes, in fact, a large amount of coins must be spent.

DAO - Decentralized Autonomous Organization

The main purpose of Ethereum platform is the creation of DAOs, Decentralized
Autonomous Organizations, controlled by the execution of smart contracts. People
may interact to execute complex tasks without the intervention of a central authority
[2, 4]. People are grouped in organizations where decisions are taken by the majority
of members. The public Ethereum blockchain allows to enforce the trust between
unknown participants and preserves the correct execution of the smart contracts. In
a DAO, a lot of services can be required by customers and paid with cryptocurrencies.
A DAO can also be associated to a mutual fund that can be controlled only by the
majority of votes of participants [2]. Many proposals are available in [24] as projects
that can be built on top of Ethereum blockchain. One example out of many can
be the trading of electricity executed directly between customers producing it (for
example using photovoltaic panels), and users interested in buying it. Different
policies and costs can be decided by customers without the need of mediation of
power companies [24].

2.3.3 Ethereum consensus mechanism

The consensus mechanism underpinning Ethereum is based on proof of work. Sim-
ilarly to Bitcoin, it requires the solution of cryptographic problems. The algorithm

25

Chapter 2. Blockchain and Permissionless Blockchains

adopted by Ethereum is called Ethash [25, 26] and presents many differences from
Bitcoin Hashcash. One of the fundamental differences is the amount of main mem-
ory required to run this algorithm. To mine new blocks, in fact, it is necessary
to reserve at least 1 GB of main memory to store a complex graph [25]. The
latter is generated starting from a set of information of the whole chain and must be
recomputed after a well-known number of blocks is mined (30000 blocks) [4]. This
characteristic allows to classify Ethash a memory-hard consensus algorithm [25].
The mining algorithm for a block can be summarized with the following steps:

1. Generation of a seed. The seed is a number that depends on the headers of
previous blocks of the chain [25].

2. Generation of a cache. It depends on the value of the seed and is characterized
by low storage requirements [25].

3. Generation of a dataset. It is derived from the cache and is characterized by
high storage requirements [25].

4. Aggregation of random parts of the dataset for the computation of the hashes
[25]. These steps must be repeated as soon a valid hash value is found.

To correctly execute mining operations, a miner needs to store the whole dataset,
i.e. it must be a full node, while the verification of transactions and blocks can be
executed only maintaining a replica of the cache [25]. The high memory require-
ment, coupled with the high storage requirements for mining new blocks, weakens
the massive usage of ASIC devices for blocks mining, limiting the concentration of
computational power typical of Bitcoin [25]. This can be considered a good im-
provement for the security of the network, making more difficult to strike a 51%
attack.

Ethereum proof of work is different from Bitcoin. In Bitcoin proof of work miners
need to know only the header of the previous block and the valid transactions of
current block. A miner is not required to be also a full node, especially if it belongs
to a mining pool. In this case a Bitcoin miner simply receives an already composed
block and varies a nonce to compute sequentially the hashes to find a valid one. This
type of operation can be easily distributed among a multitude of nodes, even with
low storage and memory capabilities, increasing the possibility to create malicious
botnets, a set of devices subverted by an attacker whose job is computing a large
number of hashes to mine new blocks.

2.3.4 Scalability

Exactly as many solutions based on proof of work, the scalability of Ethereum
blockchain is limited. The maximum reached throughput is about 13 transactions
per second [27] with new blocks generated every 12 seconds (block interval) [26].
Throughput value is very low if compared to other storage solutions like centralized
databases. This limit the fields of applicability of Ethereum blockchain.

Talking about storage consumptions, the actual length of Ethereum blockchain
is about 315 GB [23]. Considering the Ethereum blockchain is born in the half of
2015 [27], the growth rate is higher with respect to Bitcoin blockchain.

26

Chapter 2. Blockchain and Permissionless Blockchains

2.3.5 Proof of Stake

The Ethereum community is working on the possibility to switch from proof-of-work
to proof-of-stake (PoS) consensus algorithm. Proof of stake is an alternative con-
sensus algorithm that can be adopted in byzantine environment like a permissionless
blockchain. Actually there exists alternative coins adopting proof of stake algorithm,
the most famous one is Peercoin [28]. Other implementations of proof of stake are
available, like the Delegated Proof of Stake of Bitshares [27], that promises to reach
higher throughput values with respect to proof of work.

The proof of stake implementation proposed by Peercoin is based on the concept
of coin age. The coin age is a numeric value that indicates how much coins a user
owns and from how much time (days) are hold. The higher the coin age, the higher
the probability of becoming the next miner of the block [1]. When a miner is chosen
to create the new block, he obtains a reward, but at the same time his coin age
is reset. In this way, for the next mined block, another miner will be potentially
chosen as candidate for the generation of blocks [1]. Over a long period of time,
even miners possessing a small amount of coins will be possibly selected as miners.
The computation of the coin age is made practicable by the existence of timing
information stored in blocks and transactions. The main objective of this technique
consists in avoiding long computationally expensive sequences of cryptographic op-
erations. The computation of hashes of the block still remain but the difficulty is
significantly reduced depending on the coin age of miners, in order to facilitate the
mining operations [28]. Of course, even in this scenario forks can occur. Instead
of choosing the longest branch as Bitcoin proof of work does, branches are chosen
accordingly to the coin age of blocks, in particular it is selected the branch with the
highest coin age [28].

Casper: proof of stake Ethereum proposals

Ethereum foundation is actively working on an innovative proof of stake algorithm
for Ethereum platform called Casper [29]. It aims to solve security problems of
traditional PoS algorithms (like the one introduced by Peercoin) introducing some
features typical of Byzantine Fault Tolerant algorithms [29] (for example resilience
to 33% of malicious users in a network [12]). The main goal of Casper consists in
finding an effective solution to fork problems. For this purpose, it introduces high
penalties for cheating miners. To take part to the validation process, each user must
bet an amount of coins (called deposit), the highest the amount, the highest the
probability of being chosen as block validator. A misbehaving miner is punished
losing the gambled amount. Since to be chosen as block miner it is necessary to bet
large amounts of coins, notably lower than the possible reward, misbehaving actions
are highly discouraged [29]. A detailed description of this algorithm and an analysis
on the possible attacks and countermeasure is shown in [29].

2.3.6 Advantages and Disadvantages

The Ethereum platform introduced some important features with respect to Bitcoin.
The main advantages are:

� Smart contracts based on Turing-complete programming language.

27

Chapter 2. Blockchain and Permissionless Blockchains

� Possibility to easily transfer text associated to transactions.

� Possibility to develop Decentralised Autonomous Organizations.

� Possibility to limit the concentration of mining power and introduction of
ASIC resistance.

Disadvantages of Ethereum are the same of all the blockchain solutions based on
proof of work, as explained in Sec. 2.4.

2.4 Limits of proof-of-work based blockchains

Analysing Bitcoin and Ethereum the main problems deriving from proof of work
consensus algorithms arises. The low throughput, high computational power and
energy consumption are the three main drawbacks making very difficult the adoption
of these solutions for some purposes. The main parameters that can be modified to
achieve better performances are:

� Block size. Increasing the block size it is improved the number of transactions
accepted per second, since the difficulty of proof of work does not change. At
the same time, a higher propagation time of blocks over the network increases
probability of forks. [30]. According to [30] it is better to avoid block sizes
larger than 8 MB to maintain secure the network.

� Time of generation of blocks. Each blockchain solution introduces a block
generation time (e.g. 10 minutes for Bitcoin, 12 seconds for Ethereum). Ac-
cording to [30], increasing the block interval it is also improved the security of
the blockchain, because of the probability of forks decreases. For this reason,
the Bitcoin blockchain can be considered more secure than the Ethereum one.

� Number of confirmations per block. Since proof-of-work algorithms does
not present consensus finality [12] it is necessary to wait a given number of
blocks are appended to the chain before transactions contained into an ar-
bitrary block are considered accepted by the network. In this time interval,
in fact, there is an high risk of forks that may invalidate the transactions.
To speed up transactions approval, it is possible to reduce the number of re-
quired confirmations but this is very dangerous because it increases the risk
of successful double spending attacks [1].

� Mechanism of blocks propagation [30] To reduce the latency of blocks
propagation, shrewdness on how new mined blocks are transmitted to neigh-
bours can be taken. An increased latency time, in fact, can increase the risk
of forks. Three techniques can be summarized:

1. When a block is ready, a notification is broadcasted to peers, and they
will require the transmission of the whole block if needed. This is the
technique adopted by Bitcoin [1, 30]. This solution increases the latency
but reduces, when possible, transmission of useless data.

2. When a block is ready, it is immediately broadcasted to peers. This
alternative reduces the latency i.e. the probability of forks [30].

28

Chapter 2. Blockchain and Permissionless Blockchains

3. Blocks are immediately broadcasted only to a subset of peers, while other
peers receive a notification. This trade-off is adopted by the Ethereum
platform [30].

Given the above, it is concluded that dealing with fundamental parameters of
proof of work based solutions can be very useful to improve performances at the
expense of the security of the network. According to [30], in a proof of work plat-
form with a good dimensioning of blockchain properties, it is possible to obtain a
throughput of about 66 transactions per seconds, maintaining a security level
similar to the one of Bitcoin network.

Some researches demonstrated it is not feasible to use permissionless blockchain
solutions for IoT applications, because of the too large amount of transactions to
be stored and managed [31]. This restriction is not only applied to IoT applications
but to all possible applications requiring to deal with a large number of transac-
tions per second. To overcome this problem it is necessary to consider alternative
solutions based, for example, on Byzantine Fault Tolerant consensus algorithms or
substitutable storage solutions, like Iota or Hashgraph.

29

Chapter 3

Permissioned Blockchains

The analysis of permissionless blockchain solutions revealed some limitations of these
platforms, for example the low throughput and the high latency of transactions.
This chapter describes many permissioned blockchain platforms able to overcome
the limitations of the permissionless ones but characterized by the existence of a
central authority. The survey is focused on the different consensus algorithms, like
the Proof of Elapsed Time, Round-Robin and BFT consensus algorithm. The first
four sections describe respectively MultiChain, BigchainDB, Hyperledger Sawtooth
and Hyperledger Fabric. Sec. 3.5 shows the differences between the BFT and proof-
of-work consensus algorithms and Sec. 3.6 concludes the chapter comparing all the
blockchain platforms analysed in this thesis.

3.1 MultiChain

MultiChain is one of the most popular open-source platforms that can be used to
create private permissioned blockchains, where only the authorized users can trans-
act, create blocks, send messages, etc. Users are identified with a pair of asymmetric
keys associated to a public key certificate. A particular type of transaction is used
to authorize new users to join the blockchain. When a new blockchain is created, in
fact, the genesis block provides all the permissions to only one user. The latter is an
administrator of the blockchain and has the possibility to release certificates and to
authorize new customers to join and interact with the network [6]. The source code
of MultiChain is derived from the Bitcoin Core because the MultiChain developers
want to keep similar functionalities to those of Bitcoin, so that future improvements
of the Bitcoin protocol can be easily implemented in MultiChain [6]. MultiChain
has been developed as a technology that can be used to facilitate the transfer of
assets, for example cryptocurrencies, and does not provide the possibility to write
smart contracts to be executed on the nodes of the network.

3.1.1 MultiChain consensus protocol

Unlike other private blockchain platforms, MultiChain is not based on a Byzantine
Fault Tolerant consensus algorithm. In MultiChain the concept of blocks, transac-
tions and miners still remain as well as a mechanism to validate blocks. Differently
from Bitcoin, mining in MultiChain is not based on a computational expensive proof-
of-work, but it is based on a Round-Robin (RR) scheduling technique to introduce

30

Chapter 3. Permissioned Blockchains

randomness in the selection of miners of new blocks [6]. When a user is selected
to become the miner of a block, for a well-defined number of following blocks he
will be automatically excluded from the mining operations. The mining diversity
(0 ≤ md ≤ 1) is the parameter enforcing this rotation of miners [6]. The adoption
of mining diversity avoids the concentration of the mining power in the hands of a
small subset of users but can compromise the efficiency of the blockchain. To obtain
a trade-off between security and efficiency it is necessary to select an appropriate
value of mining diversity (typically md = 0.75) [6]. The mining diversity is used to
compute the spacing i.e. the number of blocks that must be appended to the chain
after a miner has validated one block and before he can create another block [6].
The spacing can be computed with the following formula:

s = bmd · nminerse − 1

where s is the spacing obtained by decrementing by one the result obtained by
rounding the multiplication of the mining diversity (md) with the total number
of authorized miners of the blockchain network (nminers) [6]. The identification
of the miner of a block, necessary for the correct application of the Round-Robin
scheduling, is made possible by the introduction of a digital signature in every mined
block.

Forks

The consensus algorithm based on Round-Robin scheduling allows forks and indi-
cates the absence of finality of transactions. The frequency of forks is increased if
some miners remain isolated, for example for some problems on the network [6].
Similarly to Bitcoin, forks are solved considering as valid only the longest generated
chain of blocks [6].

3.1.2 Scalability

Data relative to scalability of MultiChain platform is available in [32]. The through-
put that can be obtained is assessed to 1000 transactions per second, while the
time required to create a block is indicated of only 2 seconds [32]. Concerning the
number of nodes that can take part to the blockchain, in [32] it is not estimated
an upper bound, but it is indicated that the number of nodes can be potentially
infinite [32]. Even if optimistic, this consideration can be considered truthful since
MultiChain is derived from Bitcoin and the latter is actually managing a very large
number of network nodes.

Time required for read-only operations

One of the most important drawbacks of MultiChain, common to many blockchain
solutions, is the long time required to retrieve stored information. Data is stored
in blocks, and the blocks must be read in sequence in order to find the required
data. For this reason, it is difficult to implement and execute complex queries. The
applications requiring continuous read-write operations on data are obstructed by
this problem. The whitepaper of MultiChain states that the future releases of the
platform will be provided with an interesting feature, an additional centralized
relational database that may be used to execute complex queries using the full

31

Chapter 3. Permissioned Blockchains

featured SQL query language [6]. This database will be installed in every peer of the
network, and will be populated with the data coming from the chain of blocks. The
blockchain will preserve the immutability of data, while efficient read operations
will be provided by the SQL database [6]. If really implemented, this feature should
become an important breakthrough for the adoption of MultiChain platform in
complex projects.

3.1.3 Multiple Chains

An important characteristic of MultiChain, emphasized by its name, is the possibil-
ity to create multiple blockchains [6]. Some users of the network, with adequate
permissions, have the possibility to generate secondary chains. A secondary chain
is identified by its own genesis block, its miners, its users, its permissions. It is a
totally independent blockchain that can work in parallel to other existing chains [6].
Different chains are able to cooperate to allow the exchange of information [6]. For
example, some users can simultaneously join multiple chains and transfer assets be-
tween them. This feature is very interesting in permissioned environments because
it allows to diversify the users according to data they can read and transactions they
can execute. In this way, the reliability of blockchain networks can be improved, by
promoting the adoption of the blockchain in business environments.

3.1.4 Messaging

Another interesting feature of MultiChain is the possibility to exchange messages
between nodes of the blockchain. Messages can be exchanged independently on
transferred assets, making easier the propagation of information [6]. MultiChain
provides different types of messages, unicast and broadcast messages. At time of
writing, unicast messages have not yet been implemented, their goal consists in pro-
viding an end-to-end communication mechanism between two nodes of the network.
Broadcast messages, instead, are already available and are called streams [33].
A broadcast message is sent to all the participants of the chain subscribed to a given
stream, providing an efficient mechanism of data distribution. Received messages
are locally stored by receivers, by adopting the typical data replication pattern of
blockchain platforms. The sender of a messages can be easily identified because
each message contains a digital signature [6, 33]. The format of messages can be
described as follows [6, 33]:

� Key [optional] that can be used for unambiguous identification of the message
stored in the form of a key-value pair.

� Timestamp

� Payload

� Hash to summarize the content of the message

� Digital signature applied by the sender. It is fundamental to prevent the
transmission of anonymous information.

32

Chapter 3. Permissioned Blockchains

Data confidentiality in streams

The data shared with streams is written in plain text and anybody can access
its content. It is important to introduce the possibility to encrypt the content of
messages so that data confidentiality can be preserved. As explained in [33] the
best technique to share the content of a message in a distributed environment, by
allowing only a limited set of recipients to access contained information, consists
in the use of symmetric and asymmetric cryptography [33]. The overall encryption
and decryption process can be described as follows [33]:

1. The sender of the message must collect public keys of recipients.

2. The sender encrypts the message with a symmetric key (the same key is used
for all potential receivers) and broadcasts the encrypted message to blockchain
users.

3. The sender broadcasts another message containing for each recipient of the
encrypted message, the symmetric key of step 2 encrypted with the public key
of the recipient. In this way, only authorized users will be able to decipher the
symmetric key and to access the transferred data.

Messages and Bitcoin

The developers of MultiChain created a particular Bitcoin wallet implementing the
message exchange functionality for the Bitcoin blockchain. This project is called
CoinSpark 1 and adds the possibility to store text attached to Bitcoin transactions
[6]. This feature can be very helpful to create official documents: once transactions
are validated by the blockchain, the content of these documents can no longer be
manipulated.

3.1.5 Advantages and disadvantages

Advantages

� Permissioned blockchain.

� No concentration of processing power due to Round-Robin scheduling adopted
by the consensus algorithm.

� The security of the network can be preserved also with a small number of
nodes participating in the blockchain.

� Discrete throughput (1000 tps).

� Low latency.

� No transaction fees and no rewards for miners.

� Multiple chains can be created and can exchange information.

� Messaging and streams feature.

1available at http://coinspark.org/

33

http://coinspark.org/

Chapter 3. Permissioned Blockchains

� Traceability of information. The messages are timestamped and digitally
signed by the sender.

� Consensus algorithm tolerant to maliciously misbehaving nodes.

Disadvantages

� Impossibility to develop smart contracts.

� Absence of finality of transactions (forks can occur).

� Read access time not optimized (future improvements).

3.2 BigchainDB

BigchainDB is an innovative open-source solution that tries to merge the scalability
of distributed databases and the security of blockchain platforms [13]. In particular,
BigchainDB promises to satisfy the following requirements [13]:

1. High throughput (up 106 transactions per second) and low latency of transac-
tions.

2. Finality of transactions.

3. Complete query language.

4. Tamper-proof data storage, with an immutable chain of blocks linked together.

5. Possibility to use the platform to manage the creation and the transfer of any
kind of asset.

BigchainDB is characterized by a permissioned environment where a well-known
set of authenticated users, called nodes, collaborates to safely store data without
the coordination activities of a central authority. Actually, BigchainDB tolerates
only accidental failures of nodes while Byzantine failures cannot be managed.
For this reason, it is considered a crash-tolerant and not a Byzantine-fault tolerant
blockchain platform [13].

3.2.1 Data structure

The data structure of BigchainDB is different from the typical chain of blocks of
other blockchain platforms. BigchainDB storage solution, in fact, is composed by
two distributed databases (RethinkDB or MongoDB instances can be used) char-
acterized by the following functions [13]:

� Database S, also known as transaction set or backlog . It collects the
transactions generated by the clients and not yet validated. At the beginning,
i.e. before the first transaction is generated, it is empty [13].

� Database C, also known as blockchain . It contains valid and invalid trans-
actions, grouped into blocks logically linked to each other. At the beginning,
i.e. before the first block collecting the transactions is generated, it contains
one empty block called genesis block.

34

Chapter 3. Permissioned Blockchains

The interactions occurring between S and C will be described in Sec. 3.2.2. The
use of two distributed databases allows to obtain a high transactions throughput.
Unlike many other blockchain platforms, in fact, these two databases are not com-
pletely replicated in each node of the network. They are split in smaller portions,
called shards, replicated a given number of times by a subset of all the participants
of the network [13] (replication factor is typically set to 3). In this way, adding
nodes to this distributed system implies increasing the amount of data that can be
globally stored, i.e. the scalability in terms of storage requirements is obtained [13].
On the other hand, the nodes of the network cannot execute operations based on
their own local replica of data, because it is necessary to merge all the shards owned
by different participants to obtain an overall view of stored data.

Transactions and blocks

BigchainDB maintains the concepts of blocks and transactions [13]. A transac-
tion can contain generic information and can be used, among other things, to cre-
ate and transfer assets between customers. Blocks are used to collect transactions
and are logically linked with previously generated blocks, similarly to a traditional
blockchain. Unlike the other blockchain platforms, blocks do not contain the hash
of the previous block of the chain in their header. This information is stored at
granularity level of transactions, i.e. for each transaction contained in the block
it is stored a reference to the previous block [13]. Each block, in fact, contains a
set of transactions that must be voted by the nodes of the network to decide if the
content of the transactions can be considered valid or not. The voting nodes attach
to every transaction of the block the hash of the previous block of the chain [13].
This is fundamental to demonstrate the transaction has been voted according to the
current state of the blockchain, identified by the previous block.

Absence of forks

In BigchainDB forks cannot occur. Each node, in fact, does not maintain a full
replica of data and must access to the same distributed databases in order to execute
read and write operations. Therefore, the overall state of the ledger is shared among
all the participants of the network and forks cannot occur.

3.2.2 BigchainDB consensus mechanism

In BigchainDB, the consensus algorithm is called BCA - BigchainDB Consensus
Algorithm, and it is executed by a well-known set of nodes of the network that
decides if the transactions can be considered valid or not [13]. This classification is
executed according to a voting mechanism strictly related to the concept of quorum:
when the majority of nodes (50%+1) agrees on the validity or not of a transaction,
a decision is taken [13]. The consensus mechanism is triggered by the generation of
new transactions executed by clients of the network, and can be outlined as follows
[13]:

1. One node of the network (n1) receives a new transaction and verifies if it
can be considered potentially valid (for example it queries S to see if it does
not contain an identical transaction) [13]. In the case this preliminary test is

35

Chapter 3. Permissioned Blockchains

passed, n1 stores the transaction in the backlog S and notifies another node
of the network (n2) that it will be in charge of managing that transaction
[13]. On the contrary, in case the transaction is not valid, it is automatically
discarded [13].

2. Node n2 collects a set of transactions stored in S, and creates a block [13].
This block is persisted into the blockchain database C, and contains only
transactions that must be validated. For this reason, the new block is classified
as undecided [13].

3. To execute the validation of blocks, voting nodes check the validity and express
a vote for every transaction contained therein. Each vote is relative to a single
transaction and it is composed by the hash of the previous block and by the
voting decision. The latter can assume only two values, valid or invalid. [13].

4. When the majority of voters agrees on the validity or not of a transaction,
the latter is classified. It is sufficient that only one transaction of the new
block is considered invalid to categorize the whole block as decided invalid,
otherwise it is marked as decided valid [13].

5. All the transactions contained in a decided valid block are committed, while
all the transactions of a decided invalid block do not affect the state of the
ledger. If a decided invalid block contains some valid transactions, they are
stored again in S so that they can be inserted in another block and committed.
Valid and invalid blocks will never be removed from C and generate an always
growing chain of blocks.

Figure 3.1: Example of backlog (S) and blockchain database (C).

Fig. 3.1 shows an example describing the BigchainDB consensus algorithm. In the
picture, S indicates the backlog and C the blockchain database. The blocks drawn

36

Chapter 3. Permissioned Blockchains

Figure 3.2: Example of backlog and blockchain database containing the transactions
T2, T7 previously stored in an invalid block.

in C with a white background are decided valid blocks, while the grey background
indicates the decided invalid blocks. The black background indicates an invalid
transaction stored in C. In the proposed example the backlog S contains 8 trans-
actions (T1, T2,..., T8). The network is composed by three nodes, n1, n2, n3, to
which are assigned some transactions that must be validated. The node n1 creates
a block (block 1) containing the transactions T1, T4, T5. The majority of nodes
voted as valid these three transactions, and therefore the block 1 has been marked as
decided valid and committed. The second block (block 2) is created by node n2 and
contains the transactions T2, T3 and T7. The transaction T3 has been considered
as invalid by the majority of nodes, thus the correspondent block has been marked
as decided invalid but it has not been removed from the chain of blocks. For this
reason, the third block (block 3) contains a set transactions that refer to block 2 as
the previous block of the chain. After the transactions have been inserted in valid
blocks, they are removed from the backlog.
Fig. 3.2 shows that the transactions T2 and T7 have been reinserted in S because
they had been marked as valid even if they were stored in a decided invalid block
(block 2). The two transactions have been subsequently stored in a new block (block
4) and validated.

3.2.3 Scalability

The authors of BigchainDB whitepaper [13] conducted multiple experiments to test
the scalability of the platform. The results shown in [13] are summarized in this

37

Chapter 3. Permissioned Blockchains

section.

Throughput

According to experimental results of [13], the throughput of BigchainDB varies from
1000 to 2000 writing transactions per second (tests conducted on a cluster of
32 and 64 nodes). The performances are strictly related to the number of processes
simultaneously writing to the databases. Additional details on the results are avail-
able in Table 3.1 and Fig. 3.3.
Table 3.1 summarizes the experimental results conducted by the authors of [13] to
evaluate the throughput of BigchainDB. ID indicates the identifier of the experi-
ment, Nodes indicates the number of nodes of the cluster, Writing processes indi-
cates how many processes simultaneously execute writing operations on BigchainDB.
ththeory and thexper represent respectively the theoretical and experimental through-
put values (expressed as thousands of transactions executed per second). The the-
oretical values refer to the first experiment (data taken from [13]).
Fig. 3.3 summarizes the experiments 1,2,3 shown in Table 3.1. The green line in-
dicates the expected throughput values (theoretical), while the violet line indicates
the experimental results (Data taken from [13]).

ID Nodes
Writing

processes
ththeory

(k tps)
thexper

(k tps)
1 32 64 - 1.0
2 32 80 1.25 1.2
3 32 96 1.5 1.4
4 64 64 1.0 1.0
5 64 96 2.0 2.0
6 64 128 1.5 1.5

Table 3.1: Scalability tests conducted by the authors of [13]

Figure 3.3: Results of the scalability tests conducted by the authors of [13].

38

Chapter 3. Permissioned Blockchains

Storage capabilities

Unlike other blockchain platforms, BigchainDB adopts sharding instead of full repli-
cation of data. This means that data is not completely replicated in each node of the
network but each participant stores only a portion of the whole dataset [13]. Each
shard must be replicated a defined number of times for fault tolerance. Typically,
replication factor is set to 3. In traditional blockchain platforms, the maximum
amount of data that can be stored depends on the storage capabilities of each node.
In BigchainDB, instead, it is proportional to the number of nodes composing the
cluster. Increasing the number of nodes of the cluster, the overall storage capabilities
of the distributed system are increased. Fig. 3.4 shows a graphical representation
of the storage scalability of BigchainDB. It represents how many terabytes of data
that can be stored varying the number of nodes. Each node can store at most 48
TB. The replication factor is set to 1 (data coming from [13])

Figure 3.4: Storage scalability of BigchainDB (data coming from [13])

3.2.4 Advantages and disadvantages

Advantages

� High throughput.

� Low latency.

� Finality of transactions.

� High storage capabilities (linearly dependent on the number of nodes).

� Full-featured query language.

� High performances in read-write operations.

Disadvantages

� Impossibility to write smart contracts.

� Absence of Byzantine fault tolerance (crash-tolerant consensus algorithm).

39

Chapter 3. Permissioned Blockchains

3.3 Hyperledger Sawtooth

Hyperledger Sawtooth is an interesting open-source project that allows people to
create permissioned (and permissionless) blockchains using an innovative consensus
mechanism called Proof of Elapsed Time (PoET) [34]. The goal of Hyperledger
Sawtooth consists in giving the possibility to users to create their own customized
blockchain solution to track and manage any kind of assets [35]. One interesting
application of a Sawtooth based blockchain is the management of supply chain and
traceability of fish, from the fishermen to end consumers [35]. Sawtooth provides
the possibility to develop user defined smart contracts, increasing the possible fields
applications of this technology. However, this solution is still under development; at
time of writing the first stable version 1.0 has been released [34].

3.3.1 Consensus mechanism

The consensus mechanism of Hyperledger Sawtooth is based on a Proof of Elapsed
Time (POeT). The goals of POeT are shown as follows:

� Avoiding the concentration of mining power in the hands of a small subset of
users.

� Identifying users in a secure and verifiable manner, either in permissioned and
permissionless environments.

Proof of Elapsed Time can be used to choose one user, among the whole set
of users, as the candidate to validate one block (called batch in Sawtooth lingo).
The selection of the leader for block validation, is executed imposing a random
waiting time to all users. Therefore, each potential miner of blocks is requested to
sleep for a given time interval before validating the batch. The first user of the
network that finishes this waiting time, becomes the validator of the block. The
problem of this solution consists in verifying if the miner really waited the requested
time. To solve this problem, an Intel based solution has been developed. Starting
from 2015, some Intel Core and Intel Xeon processors were equipped with the Intel
Software Guard Extensions (SGX) [36]. This piece of hardware allows to create a
trusted execution environment in which instructions can be executed, proving in a
verifiable manner the CPU completed the related operations. Therefore, SGX allows
to generate a random time, suspending the execution of instructions of the machine,
and proving the miners really waited the declared random time before creating
the block [11]. For debugging purposes, even CPUs not equipped with SGX are
authorized to participate in the validation process. In real execution environments,
especially permissionless ones where identification of participants is complex, it is
required that only devices providing an Intel SGX module can participate in the
validation of blocks [11].

PoET is a non-final consensus algorithm. Forks can occur and are solved choosing
the longest chain as the main chain.

The possibility for attackers to have a greater influence on the network is strictly
proportional to his availability of devices equipped with Intel SGX [11].

40

Chapter 3. Permissioned Blockchains

Scalability

A detailed analysis on this platform has not been conducted. According to [10],
throughput level that can be obtained with Sawtooth is about 1000 transactions
per second.

3.3.2 Advantages and disadvantages

Advantages

� Possibility to write smart contracts.

� Possibility to create a permissioned blockchain.

� Discrete throughput.

� Low power consumption required by consensus mechanism.

Disadvantages of this solution

� Specific hardware requirements (Intel SGX).

� Absence of finality of transactions.

3.4 Hyperledger Fabric

Hyperledger Fabric is one of the Hyperledger open-source projects maintained by
the Linux Foundation [37]. It is an innovative private permissioned blockchain
platform [37] developed using the Go programming language [38]. Unlike other
blockchain platforms it is not based on a native cryptocurrency but permits
the execution of chaincodes, i.e. smart contracts in the Hyperledger lingo [37].
Furthermore, it allows the cooperation of different members and organizations so
that they can maintain different replicas of stored data, execute the code associated
to transactions and verify the result of transactions executed by different members.
The fundamental characteristic of Hyperledger Fabric is the modularity [39]. Some
functionalities, like the consensus mechanism or the identification of users are not
standardized and can be replaced by the blockchain administrators, depending on
the needs of their applications. Hyperledger Fabric version 1.0 provides an inte-
grated crash-tolerant consensus algorithm based on a Kakfa cluster ordering
service and a ZooKeeper ensemble [37]. The administrators of a Hyperledger Fabric
blockchain are free to replace the existing consensus mechanism and to adapt their
favourite algorithm, also a Byzantine-fault tolerant one, so that it is possible to fit
the requirements of the applications [37]. For example, if the deployment environ-
ment of the blockchain is not susceptible to Byzantine failures, it is possible to use a
crash-tolerant consensus algorithm to achieve better performances. On the contrary,
a BFT-SMaRt consensus algorithm, like the one proposed in [40], can be used to
deal with malicious participants.

Hyperledger Fabric is also focused on the management of the privacy of infor-
mation, that can be obtained using a full-featured authentication and autho-
rization system to restrict the access to unauthorized users [37]. By default, the

41

Chapter 3. Permissioned Blockchains

management of user authentication is executed by the MSP module - Membership
Service Provider module [41]. The privacy can also be improved by creating multiple
independent ledgers, called channels, characterized by data access policies for the
different kinds of users [37, 42].

3.4.1 Data structures

Similarly to other blockchain platforms, the smallest piece of information that can
be managed in Hyperledger Fabric is the transaction. A transaction is associated to
the execution of a chaincode and to a change of state of the distributed system.

The overall view of stored data is managed by the ledger. The ledger of Hyper-
ledger Fabric is composed by three main elements:

� Chain. It is the chain of blocks. The blocks are logically linked to each other
and include in their header the hash of the previous block of the chain. Each
block contains a list of transactions and a hash summarizing this list [43]. The
chain provides the tamper-proof property to the blockchain, by creating an
append-only log of blocks and transactions [37].

� State Database. It maintains the current state of the ledger, generated by
the sequential execution of the transactions, in the same order they appear
in the chain of blocks. The entries of the state database are in the form of
key-value pairs and allow to speed up data retrieval, thanks to the use of
queries operating on the keys [37]. Every key-value pair is also associated
to a version number, useful to understand which was the last operation that
modified the value associated to such a key [37]. The state database allows
random access to data stored in the blockchain and increases the performances
of data retrieval operations. The chaincodes can read, write and delete the
values associated to the keys using the functions GetState, PutState, DelState
respectively [37].

Hyperledger Fabric version 1.0 allows to adopt two different database man-
agement systems [37]:

– LevelDB

– CouchDB

Both allow to retrieve the value associated to the keys, to execute range queries
on keys (indicating a minimum and maximum value that can be assumed by
a key) and to execute queries based on composite keys, i.e. keys composed by
many fields [44]. Furthermore, CouchDB allows to execute complex read-only
queries, by accessing the different fields of the value associated to the key. This
additional feature is possible provided that the value associated to the key is
a JSON document. [44].

� History index. The history index is another instance of LevelDB that allows
to execute queries to retrieve the full history of the modifications to the value
associated to a key [45]. For this purpose, it accesses data stored inside blocks
by using a LevelDB index to speed up the operations [45]. The function
GetHistoryForKey must be invoked in a chaincode to access the history index
and to retrieve the history of a key [45].

42

Chapter 3. Permissioned Blockchains

3.4.2 Architecture of Hyperledger Fabric

The traditional blockchain platforms, like Ethereum or Hyperledger Fabric up to
version 0.6, are based on a order-execute architecture [37]. Their consensus algo-
rithm generates new blocks by inserting a set of transactions in it. Then, every peer
of the network must execute the code associated to the transactions to verify their
correctness and to update the state of the ledger [37]. This architecture may impose
some limitations in terms of throughput of the system because all the peers of the
network must execute the same pieces of code. In addition, it is not compatible with
the execution of non-deterministic code [37] (the majority of programming lan-
guages, like Java, Go, etc. are non-deterministic). In the case many peers execute
the same set of non-deterministic operations and obtain different but potentially
valid results, the final state of the ledger might not be the same for all the users
[37].

Hyperledger Fabric, starting from version 1.0, introduced an innovative archi-
tecture, known as execute-order-validate architecture [37]. It is based on the
differentiation of the roles of different members of the network. The actors of this
architecture are divided in three categories:

� Clients. The clients are the users of the blockchain. They require the ex-
ecution of transactions, by submitting transaction execution requests to the
endorsing peers [37]. They collect the signed responses generated by endorsing
peers, check if enough endorsing peers have executed the transaction (i.e. if
the endorsement policy has been satisfied) [37] and broadcast the transaction
proposals to the orderers [37].

� Peers. Peers are divided in two categories:

– Endorsing peers. They receive transaction execution requests submit-
ted by clients and simulate the execution of transactions according to the
current state of the ledger [37].

– Committing peers. They receive blocks created by the ordering service
and verify the correctness of contained transactions. They also maintain
a replica of the ledger, including the whole chain of blocks, the state
database and the history index [37].

Every endorsing peer plays also the role of committing peer; the vice versa is
not guaranteed.

� Orderers. They are also known as Ordering Service Nodes (OSN). They re-
ceive the transaction results signed and broadcasted by clients, order them
chronologically and create the blocks. The latter are then distributed to com-
mitting peers for the validation [37]. Orderers execute many other operations
in the blockchain, for example they are in charge of applying modifications to
the permissions of the channels, by creating blocks containing the configura-
tion transactions [37]. The orderers are not aware of the current state of the
ledger and do not verify the correctness of the transactions that they insert in
the blocks [37].

The separation among different nodes of the previously described roles i.e. clients,
peers and orderers, allows the implementation of an execute-order-validate architec-
ture [37]. Every participant of the blockchain plays a specified role and only a subset

43

Chapter 3. Permissioned Blockchains

of the endorsing peers is in charge of executing chaincode functions. In this way,
the operations (i.e. endorsement, ordering and validation) can be parallelized and
the performances of the blockchain network can be increased [37]. By default, in
Hyperledger Fabric the peers and the orderers are executed inside different Docker
containers. In this way it is possible to test a working blockchain by using a single
hosting machine. However, in real deployment environments it is necessary to user
different hosting machines, each with a different role.

Membership Service Provider (MSP)

The management of different nodes and users requires a mechanism for the au-
thentication and the authorization of the participants of the blockchain. For this
purpose the MSP (Membership Service Provider) has been developed. As well as
other components of Hyperledger Fabric, also the MSP is modular. The default
MSP implementation, in fact, can be replaced with another module able to fulfil the
requirements of the applications [41]. The MSP executes the identification of the
participants with a procedure based on digital signature and signature verification
scheme [37]. It is based on a PKI - Public Key Infrastructure that includes
a hierarchy of X.509 certificates to allow members of different organizations (peers
and orderers) and clients of the blockchain to be authenticated and authorized for
the execution of the required operations [46].

For each organization taking part to the blockchain it is present a Root CA, a
Root Certification Authority and, possibly, a set of intermediate CAs that are dele-
gated by the root CA for the execution of its same operations [41]. They release and
distribute X.509 certificates for the authentication and authorization of peers and
orderers of the organization. An associated CRL, Certificate Revocation List, plays
a complementary role, by indicating that some certificates can no longer considered
valid and shall not be accepted for the authentication of the users [41].

Transactions Flow

The transactions flow of Hyperledger Fabric is divided in three main steps: [37]:

1. Execution

2. Ordering

3. Validation

Execution. The execution phase of a transaction begins with a transaction
request issued by an authenticated and authorized client that sends a signed request
to a set of endorsing peers [37]. This transaction proposal provides all necessary
information for the execution of a chaincode function, including the parameters of
the invoked function and the channel in which the chaincode must be executed [37].
In addition, a mechanism to avoid replay attacks permits to verify if it is the first
time that the same transaction is executed [37]. The proposal is digitally signed
by the client so that the receivers, i.e. the endorsing peers, have the possibility to
verify if the transaction issuer is authorized for the execution of the operation [37].
The endorsing peers receive the transaction proposal, verify if the digital signature
belongs to an authorized user and then start the execution of the code associated

44

Chapter 3. Permissioned Blockchains

to the transaction [37, 47]. The endorsing peers may read the current state of the
ledger by accessing the content of their own local replica of the state database. All
the key-value pairs read from the state database constitutes the read set of the
transaction [37]. For every key, it is also associated the version of the key, i.e. a
numeric value that allows to understand how many times the value associated to
such a key has been modified; it is fundamental for the validation phase [37]. At the
same way, during the simulation of transaction execution, some key-value pairs may
be stored in the state database, updating the relative version number of the key.
This set of updated keys constitutes the write set of the transaction [37]. Every
endorsing peer produces a signed response containing the results of the execution
of the transaction [37]. The signed responses are forwarded to the client requesting
the transaction execution. All the modifications to the state occurred during the
transaction execution are not committed to the ledger, i.e. to the state database is
not updated. [37].

Ordering. The issuer of the transaction, i.e. the client, collects the signed
responses generated by the endorsing peers, verifies if the number and identity of
the endorsers satisfy the endorsement policy and then broadcast the result, i.e. the
transaction, to the Ordering Service Nodes [37]. The orderers receive the trans-
actions, order them chronologically and insert them inside a new block [37]. The
orderers do not care about the content of the block and on the validity of contained
transactions, they simply create new blocks. The generated block is then distributed
to the committing peers for the validation phase [37].

Validation. The validation phase is executed by all the peers taking part to the
channel [37]. For each transaction stored inside the received block, the committing
peers check if the endorsement policy has been satisfied, i.e. if a sufficient number
of endorsing peers signed the transaction proposal [37]. Typically, the endorsement
policy requires that different peers, potentially belonging to different organizations,
sign the transaction so that the transaction result can be considered valid. In ad-
dition, the committing peers check the read-write set of each transaction [37]: for
each element in the read set, it is verified if the version number of the key accessed
during transaction simulation is equal to the version of the key of the current state
of the ledger. In other words, the transaction is considered valid if there are no
other transactions in the block that modified the version number of the key under
analysis [37]. Transactions are validated according to the order of appearance inside
the block [37]. Only the transactions satisfying the two steps of validation are com-
mitted and can modify the state of the ledger. On the contrary, they are marked as
invalid and do not affect the state of the ledger.

Fig. 3.5 shows a graphical representation of the transactions flow described as
follows:

1. A client submits a transaction proposal to the endorsing peers.

2. The endorsing peers execute the code associated to the transaction, generate
the read-write set and sign the result.

3. The signed result is sent back to the client.

4. The client collects a sufficient number of endorsements so that the endorsement
policy can be satisfied.

45

Chapter 3. Permissioned Blockchains

5. The client broadcast the transaction to the orderers.

6. The orderers collect transactions, order them chronologically and create a
signed block.

7. The orderers distribute the new block to all the peers (endorsing and commit-
ting peers).

8. The endorsing and committing peers execute the validation of the transactions
contained in the received block; they verify if the read-write set is coherent
with the current state of the ledger and if the endorsement policy has been
satisfied.

9. The client is notified of the result of execution of the transaction.

Figure 3.5: Transactions flow of Hyperledger Fabric version 1.0

3.4.3 Hyperledger Fabric consensus mechanism

Hyperledger Fabric version 1.0 consensus mechanism is based on a crash-tolerant
algorithm based on a Kafka ordering service and a ZooKeeper ensemble [37]. The
process to obtain consensus on the order of transactions is the one one described
as transaction flow in Sec. 3.4.2. Because of its consensus modularity, Hyperledger
Fabric allows to replace the consensus algorithm to better fit the requirements of the
application. Recent research activities are intensively working on the development of
BFT consensus algorithm for Hyperledger Fabric. In [40] it is shown an implemen-
tation of the BFT-SMaRt consensus algorithm applied to Hyperledger Fabric
version 1.0 that allows to obtain throughput values greater than 10000 transactions
per second, with a sub second latency [40].

46

Chapter 3. Permissioned Blockchains

3.4.4 Chaincodes - Smart Contracts

Hyperledger Fabric is a blockchain platform developed for the execution of chain-
codes, i.e. smart contracts in the Hyperledger lingo [37]. The chaincodes can be
written in any supported programming language, but the languages widely adopted
in version 1.0 of Fabric are Go and NodeJS [48]. The code of the chaincode functions
can be non-deterministic [37]. This characteristic differentiates Hyperledger from
all the blockchain platforms analysed so far and influences its performances. Another
important feature is the possibility to limit the number of peers executing the code
of the chaincode [37]. In other blockchain platforms, like Ethereum, smart contract
code was executed by all the peers of the network during the validation phase of the
transactions [4]. This imposes some limitations on the scalability of the platform in
terms of throughput. In Hyperledger Fabric, only a subset of peers identified as en-
dorsing peers must execute the transactions before they can be committed. This
means that different endorsing peers can simultaneously simulate the execution of
different transactions and the throughput can be notably increased. A set of rules,
called endorsement policies decides how many endorsing peers must execute the
chaincode, imposing additional constraints on the identity of peers: for example a
typical endorsement policy requires that the endorsement of the transactions must
be executed by at least one peer for each organization. By default, if an endorsement
policy is not specified, Hyperledger Fabric requires that at least one peer executes
the chaincode, regardless of the organization it belongs to [49]. The endorsement
policy is common to all the transactions of a given chaincode and can be decided by
the administrator of the network during the instantiation of the chaincode.

The possibility to limit the number of endorsing peers executing the chaincode
allows to increase the parallelization of the operations. Different endorsing peers,
in fact, can simultaneously run the code associated to different transactions [37].
On the other hand, by limiting the number of endorsers of transactions to one peer
only, it is not possible to verify if different peers obtained the same result during
the execution of the transaction [37]. This can be a problem if the code associated
to the chaincode is not deterministic [37]. To increase the security of the blockchain
application it is preferable to require that many peers endorse the same transaction.

The chaincode is available only in the channels in which it has been installed and
instantiated. In every channel it is also possible to deploy different chaincodes. Every
chaincode can access its current state, by using the GetState, PutState and DelState
functions. In version 1.0 of Fabric a chaincode can query the state of another
chaincode to retrieve stored information. According to Fabric documentation, in
future releases of the platform every chaincode may be able to update the state of
another chaincode by executing writing operations [50]. Every chaincode is always
executed in a separated Docker container with respect to the container of the peer
[37]. In this way, if some errors occur during the chaincode execution, the chaincode
container is stopped while the associated peer container can continue working [48].

Another category of chaincodes called system chaincodes is used to manage
the operations related to the architecture of the blockchain [37]. Some examples of
operations that can be executed by a system chaincodes are:

� Retrieval of single blocks of the blockchain [51].

� Execution of the digital signature of the transaction result proposed by an
endorsing peer [51].

47

Chapter 3. Permissioned Blockchains

� Execution of the required operations to validate and commit transactions [51].

The execution of the code of the system chaincodes is not managed by isolated
Docker containers [51].

Protection from DOS attacks

Similarly to other blockchain platforms, Hyperledger Fabric adopts a protection
mechanism against the execution of infinite loops in the chaincode functions. As
shown in Sec. 2.3.2, Ethereum introduced the concept of gas and gas price to avoid
denial-of-service attacks, by limiting the number of operations that can be executed
by a transaction. Hyperledger Fabric is not based on a cryptocurrency, thus it
cannot impose monetary penalties against very long lasting sequences of instructions
executed by a chaincode. For this reason, Fabric introduced the concept of timeout
of chaincode execution by imposing an upper bound on the execution time of the
transactions. If the timeout is exceeded, the transactions fail and their modifications
to the ledger are not committed.

3.4.5 Channels

In Hyperledger Fabric, every channel represents an independent ledger. Every peer
can participate in multiple channels and maintain a replica of different ledgers [42].
The use of channels is important to improve the privacy of the system. Each channel,
in fact, limits the access to information to a well-defined set of authorized users [42].
The development of a multi-channel blockchain is particularly useful in scenarios
characterized by the participation of different competing organizations. Different
channels can be used to separate shared information from confidential information
that cannot be disclosed to members not belonging to the organization [37]. Only
the peers that joined a channel, in fact, have the possibility to read data and issue
transactions in that channel. To join a channel and to maintain a replica of data it
is necessary to be authorized and authenticated [42]. A chaincode must be installed
and instantiated in every channel in which it must be used. The chaincode that is
executed by a peer can access another channel (different from the one in which the
chaincode is installed) to read stored data if and only if the peer that is endorsing
the transaction is authorized to access both channels (write operations are not per-
mitted). [42]. Fig. 3.6 shows a Hyperledger Fabric blockchain composed by 3 peers
and 3 channels. Peer 1 joined three channels A, B, C and maintains a replica of the
three chains of blocks, Peer 2 joined only channel A, while Peer 3 joined channels
B,C.

3.4.6 Advantages and disadvantages

Advantages

� Permissioned blockchain.

� High throughput and low latency of transactions.

� State database to speed up the execution of queries.

� Consensus modularity.

48

Chapter 3. Permissioned Blockchains

Figure 3.6: Example of a Hyperledger Fabric blockchain composed by 3 peers and
3 channels

� Possibility to create multiple independent ledgers (channels).

� Possibility to execute non-deterministic chaincode functions.

� Possibility to develop chaincodes in different programming languages.

No particular disadvantages have been identified for this platform.

3.5 Byzantine-Fault Tolerant consensus algorithms

The Byzantine fault tolerance is an important characteristic that must be main-
tained by distributed systems. It indicates that the system must be able to deal
with correctly working nodes, accidental crashes and, in particular, misbehaving
participants trying to prevent reaching consensus [12].

The content of this section is based on the paper of Vukolić et al [12], that
provides a very interesting and detailed analysis of the BFT - Byzantine Fault
Tolerant - consensus algorithms. In particular, the author focused his analysis on
the differences with respect to proof-of-work consensus mechanism, the one adopted
by Bitcoin, Ethereum and many other permissionless blockchains.

BFT consensus algorithms are actually implemented in some permissioned blockchains,
like Hyperledger Fabric, where the PBFT - Practicable Byzantine Fault Tolerant is
available for Fabric v0.6 and BFT-SMaRT available for Fabric v1.0 [11]. Another
blockchain platform adopting BFT-SMaRt is R3 Corda [11].

3.5.1 Comparison between Proof of Work and BFT

Identification of participants

BFT consensus algorithms can be applied in a permissioned environment, in which
a central authority monitors the access to network and is aware of the identity of

49

Chapter 3. Permissioned Blockchains

nodes. Before joining the distributed network, every user must be authorized and
must receive a valid certificate released from a Trusted Third Party (TTP) [12].
Furthermore, because of this controlled environment, users that want to take part
to the consensus protocol must be configured so that they can interact with other
peers [12].

In the networks based on proof-of-work consensus algorithm, the users can join
and leave the network without receiving any kind of permissions and it is sufficient
that users generate a pair of asymmetric keys to interact with other network partic-
ipants. This total freedom for network participants increases the risk that malicious
users try to tamper data [1].

Resistance to malicious nodes

BFT consensus algorithms are either crash tolerant and Byzantine fault tolerant.
These two properties indicate respectively that BFT algorithms can deal with acci-
dental failures of nodes (i.e. crashes of nodes or communication problems) and with
malicious participants trying to compromise the possibility to obtain the consensus
in the network [12]. Obviously, there exists a limit on the maximum number of
misbehaving nodes that can be tolerated. In the case more than 33.3% of nodes
maintains a faulty replica of data [52], it is not possible to reach consensus even
with the adoption of BFT consensus algorithms [12] [52].

Proof-of-work consensus algorithms can tolerate a maximum of 25% of compu-
tational power concentrated in the hands of an attacker before the consensus might
be compromised [12]. Therefore, the adoption of BFT algorithms implies also an
increased security level for the distributed network.

Throughput

BFT algorithms allow to obtain a very high number of committed transactions
per second (more than 10000 transactions per second) [12]. This value is huge if
compared to the results that can be obtained by Bitcoin proof-of-work (i.e. less than
10 transactions per second).

Number of nodes of the network

BFT consensus algorithms are not intended to work with a very large number of
nodes. An increase in the number of nodes taking part to the network, in fact,
implies a decrease of performances of the distributed system. According to [12],
experiments involving a large number of nodes have not yet been performed on
distributed networks based on BFT consensus algorithms. On the contrary, perfor-
mances and security levels of the networks based on proof-of-work are proportional
to the number of participants [12]. For this reason, proof-of-work algorithms are not
suitable to manage distributed networks characterized by a small number of nodes.

It is important to differentiate the concept of nodes and clients of the network.
The nodes participate actively to the consensus protocol by maintaining a replica of
the ledger and by taking part to the consensus mechanism. A client of the network,
instead, is simply a user, requiring a set of services. Both proof-of-work and BFT
consensus algorithms allow to obtain good results in terms of the number of clients
of the distributed system [12].

50

Chapter 3. Permissioned Blockchains

Finality of transactions

The concept of transaction finality is strictly related to forks. In proof-of-work, forks
can cause some transactions to be invalidated even after being included into blocks
[1], i.e. transactions cannot be considered final [12]. To deal with this problem it is
necessary to wait a given number of confirmations before considering the transaction
as confirmed and secure [1]. This characteristic can be very problematic, especially
if the blockchain is used in a scenario with legal repercussions.

BFT algorithms do not consider the occurrence of forks. As soon as a new
transaction is validated by peers, it is automatically committed, without an addi-
tional waiting time and without the possibility of being subsequently invalidated.
This means finality of transactions is immediately reached. The bottleneck of a
distributed system based on BFT consensus algorithms becomes the propagation
time of data over the network, and the number of messages that must be exchanged
between peers (Θ(n2), where n is the number of nodes of the network) [14].

Energy consumption

BFT algorithms are characterized by a very low energy consumption, notably lower
with respect to proof-of-work. In BFT consensus algorithms, in fact, it is not neces-
sary to solve complex cryptographical functions [52]. On the contrary, proof-of-work
based technologies are famous for the huge amount of wasted energy that is neces-
sary to maintain the system [52]. This introduces money troubles to maintainers
of the network (i.e. miners), and, in particular it is dangerous with regard to air
pollution.

Table 3.2 summarizes the comparison between proof-of-work and BFT consensus
algorithms. Data refers to [12]

Proof of Work
consensus

BFT
consensus

Access mode to network Permissionless Permissioned
Resistance to attacks 25% of computing power 33% of faulty replicas

Throughput <100 tps >10000 tps
Maximum number of nodes Very high Limited
Maximum number of clients Very high Very high

Consensus finality No Yes
Energy consumption High Low

Table 3.2: Comparison between proof-of-work and BFT consensus algorithms (data
coming from [12])

.

3.6 Comparison between the analysed blockchain

platforms

Table 3.3 compares the blockchain platforms analysed in this thesis.

51

Chapter 3. Permissioned Blockchains

Platform
Name

Permis-
sioned

Consen-
sus

Algo-
rithm

A

Fault
Toler-
ance

B

Smart
Con-
tracts

Cur-
rency

Through-
put
(tps)

Latency
Energy
Con-

sumption

Bitcoin No PoW BFT1 Yes3 Yes 7 60min High
Ethereum No PoW2

PoS
BFT1 Yes4 Yes 13 3min High

MultiChain Yes RR BFT1 No No 1-2k - Low
BigchainDB Yes BCA CFT No No 1k - Low
Sawtooth Yes/No PoET BFT1 Yes4 No 1k - Low
Fabric Yes Kafka

BFT-
SMaRt

CFT
BFT

Yes4 No 110k < 1s Low

Table 3.3: Comparison of blockchain platforms
A Consensus algorithms: Proof-of-Work (PoW), Proof-of-Stake (PoS), Round-Robin

(RR), BigchainDB Consensus Algorithm (BCA), Proof of Elapsed Time (PoET), Kafka-
based ordering (Kafka), BFT-SMaRt

B Fault Tolerance: Byzantine-Fault Tolerance (BFT), Crash-Fault Tolerance (CFT)
1 Resistance to Byzantine failures, not a strict BFT consensus algorithm implementation
2 PoW memory hard implementation (ASIC resistance).
3 Stack-based scripting language.
4 Turing-complete smart contracts.

52

Chapter 4

Blockchainless Distributed Ledger
Technologies

This chapter describes two blockchainless Distributed Ledger Technologies based
on a data structure different from the chain of blocks characterizing the blockchain
platforms. The blockchainless platforms aim to overcome the limitations of the
permissionless blockchains, like the low throughput and high latency, without nec-
essarily introducing a central authority that manages the access to network. Sec. 4.1
and Sec. 4.2 describes respectively Iota and Hashgraph.

4.1 IOTA

IOTA is a modern Distributed Ledger Technology released in 2016. It has been de-
veloped to become the “cryptocurrency for Internet-of-Things” [53]. It is considered
a blockchainless technology because it is not based on a chain of blocks. However, it
creates a tamper-proof log of monetary transactions shared among the participants
of the network. [53].

4.1.1 Introduction to Iota

Iota has been developed to allow the interactions of IoT devices [53]. These devices
are able to communicate with others, exchanging payments for required services
without the interaction of a central authority. One of the most important char-
acteristic of Iota cryptocurrency is the absence of fees [53]. Users can freely
exchange coins, so that even small amount of money can be transferred without any
kind of problems. A multitude of micro-payments can be issued by users to ex-
change small pieces of information [53]. One of the greatest problems of traditional
blockchain platforms, in fact, is the need to introduce transaction fees as incentive
for miners to secure the ledger, making impossible to adoption of a blockchain to
transfer very small amount of coins. The absence of transaction fees of Iota is com-
bined with the absence of miners. In Iota, there are no miners validating blocks
of transactions and there is not the need of a reward mechanism. This implies the
absence of new minted coins and a constant circulating coins supply.
The Iota network is permissionless, anybody can download the wallet application
1, generate a seed and start sending and receiving coins. A seed is simply a sort of

1available at https://github.com/iotaledger/wallet/releases

53

https://github.com/iotaledger/wallet/releases

Chapter 4. Blockchainless Distributed Ledger Technologies

identifier of the wallet, with which it is possible to generate addresses to send and
receive coins [54].

4.1.2 Iota ledger data structure

Iota is based on a data structure, called tangle, that is used as an alternative to
the chain of blocks. The tangle is a Directed Acyclic Graph (DAG), composed by
nodes and edges, indicating respectively the transactions and the verification
of transactions. The first transaction of the DAG is called genesis transaction and
can be reached by every node of the graph by following the directed edges. Notice
that, in Iota, the blocks do not exist, so the validation of data is executed at the
granularity of transactions. Each transaction can be connected to other transactions
with the edges. By using the example of Fig. 4.1, the Iota terminology is summarized
as follows [53]:

� A, B, C are three transactions.

� Transaction A is called genesis transaction because it is the first transaction
of the DAG.

� Transaction B directly approves transaction A. In the same way transaction
B validates transaction A because exists a directed edge that connects B to A.
This property is not revertible, i.e. transaction A does not approve transaction
B.

� Transaction C indirectly approves transaction A because exists a path from
C to A with at least an intermediate node.

� Transaction C is called tip because it has not yet been approved by any other
transaction.

Figure 4.1: A simple DAG composed by three nodes only.

Without going into technical details, the validity of a transaction is strictly re-
lated to the number of other transactions that directly or indirectly approve it [53].
Similarly to the blockchains based on proof-of-work, the transactions are not fi-
nal, i.e. they can be invalidated over time. In case of double spending attempts,
characterized by different conflicting transactions, in fact, a transaction should be
invalidated: Iota consensus algorithm treats as valid only the transaction with the
greatest confidence value, i.e. the one that has been approved more times by the
other transactions [53]. The number of confirmations required to consider a trans-
action as valid is not fixed. It strictly depends on the decisions taken by involved

54

Chapter 4. Blockchainless Distributed Ledger Technologies

parties exchanging money. The higher the confidence of the transaction, the lower
the probability for the recipient of transferred money of being scammed. In the
following paragraph it is shown an example to clarify the described concept.

Double spending attack in Iota

A seller accepts payments with Iotas. A malicious user decides to buy some goods
issuing an Iota transaction. After the transaction has obtained a reasonable level
of confidence, the seller executes the shipments of the merchandise. At this point
the attacker issues a double spending transaction directed to another wallet under
his control; if the second transaction obtains a larger number of confirmations, the
seller of the product loses his money because other nodes of the tangle consider the
original transaction as invalid [53].
In Iota, an attacker can successfully issue a double spending transaction if it is able
to create a sub-tangle that must be kept private as long as the double spending
transaction obtained a large number of confirmations. At this point the attacker
can spread the sub-tangle to other network participants and invalidate the original
transaction [53]. This behaviour is similar to the one described as double spending
attack of the Bitcoin protocol and shown in Sec. 2.2.7.

4.1.3 Iota consensus mechanism

Iota is totally distributed, each peer of the network needs to maintain a replica of
the ledger. For this reason, a distributed consensus mechanism is necessary to allow
the verifiability of the transactions. The absence of a chain of blocks and miners
requires an alternative solution to deal the problem of distributed consensus.
In Iota, every user that issues a new transaction needs to validate at least two already
existing transactions [53]. There are two fundamental operations in this process, the
first consists in deciding how to select the transactions to validate, while the second
is relative to the validation process of the previously selected transactions.

Tips selection algorithms

As part of the validation process of the transactions, it is necessary to decide which
transactions (in particular tips) to validate, in order to reduce the time required to
obtain multiple approvals for the transactions. The level of confidence of a transac-
tion does not depend only on the number of direct approvals, but also on the indirect
ones. There are many techniques that can be exploited to choose the tips to vali-
date. The simplest one consists in randomly selecting the transactions to validate,
but this method takes too long and the time required is not predictable. A user, in
fact, can decide to approve not only tips, but also already validated transactions,
by increasing the time required to approve new transactions and slowing down the
growth of the DAG [53].
Many other possibilities are shown in Iota whitepaper [53] but, actually, the most
providing one is based on the MCMC (Markov Chain Monte Carlo) algorithm.
MCMC consists in randomly choosing an arbitrary number of nodes of the graph,
in crossing DAG branches in their reverse order with the purpose of locating the
transactions not yet validated. The tips that have been reached with the lowest
number of steps become the candidates of the validation process [53].

55

Chapter 4. Blockchainless Distributed Ledger Technologies

Validation process of transaction

After having identified the transactions to validate, it is important to follow addi-
tional steps to conclude the validation: [55]

1. Computation of a digital signature [55]. Each transaction issuer must prove to
be the real owner of the coins he is going to transfer. Exactly as in the Bitcoin
protocol, the sender of coins must execute a digital signature of the inputs of
the transaction (i.e. the outputs of the previous transactions).

2. Verification of the absence of conflicting transactions [55]. There is the pos-
sibility that two conflicting transactions try to spend the same coins. To
identify the conflicting transactions, the validation algorithm requires to cross
the DAG, starting from the selected tips up to the genesis transaction, and
to check if there are double spending attempts in the whole path. In case
of cheating attempts, the validator discards the selected tips and restart the
procedure looking for other tips to validate [53].

3. Computation of a proof-of-work. It is necessary to prove the real identity of
the issuer of the new transaction. To do this, the hashes of the new generated
transaction must be computed in sequence by varying a nonce. The process
ends when the computed hash obtains a numeric value lower than a given
threshold i.e. it must satisfy the so-called difficulty of the proof-of-work. This
algorithm is similar to the one implemented by the Bitcoin protocol [55].

At a first glance, this consensus mechanism seems more complex than the Bitcoin
proof-of-work: in Iota, in fact, the computational puzzle must be computed for each
transaction, and not only for a set of transactions, i.e. a block. As a matter of fact,
the difficulty of the Iota proof-of-work is notably lower than the difficulty of the
Bitcoin proof-of-work. This implies that also the devices with low computational
capabilities are able to compute the results of the cryptographic problems in a
reasonable time interval [53]. In this way, the validation of the transactions is
distributed among all the users of the network and it is not concentrated in the
hands of a reduced number of miners.

4.1.4 Throughput

One of the advantages of Iota is the high transactions throughput. The value con-
firmed in May 2017 was about 180 transactions per second, with the objective
of reaching the value of 1000 transactions per second [55]. This value is large if
compared to other blockchain platforms but cannot be sufficient to deal with the
global volume of the transactions that can be generated by millions or billions of
IoT devices. The Iota foundation promises that the scalability of the tangle is pro-
portional to the number of users and to the number of issued transactions. In the
future, when a large number of devices will adopt Iota to store data, the throughput
should be notably boosted [55].

4.1.5 Tangle snapshots

The data stored in the tangle is replicated in every node, similarly to other dis-
tributed ledger solutions. In a scenario characterized by a multitude of devices with

56

Chapter 4. Blockchainless Distributed Ledger Technologies

low storage and computational capabilities, an ever-growing set of information could
introduce an important limitation for the adoption of Iota. For this reason, the Iota
developers introduced the snapshot functionality. A snapshot can be considered a
sort of picture of the current state of the tangle [56] and can be executed because
every Iota transaction is simply a transfer of coins. Therefore, every snapshot sum-
marizes in a new genesis transaction the total amount of coins owned by each user
at the time of snapshot execution. From this moment on, the new transactions will
refer to this new genesis transaction, with the possibility to delete previously stored
information [56]. Early Iota snapshots were associated to a claim procedure that
should be executed by every user in order to continue to interact with the tangle.
In the future, an automated mechanism will be adopted to introduce transparency
and simplicity on this process [56]. In this way, many more devices in the world
should be able to store and use the Iota tangle, even if equipped with limited storage
resources.

4.1.6 Possible attacks

The greatest risk of Iota is the double spending problem described in Sec. 4.1.2.
In practice, an attacker can create two transactions trying to spend the same coins.
One transaction is directed to a victim, and the other to a wallet under the control
of the attacker. The absence of finality of transactions allows the attackers to create
a private set of transactions validating the fake transaction. As soon as the latter
obtains enough approvals, the new portion of the DAG can be gossiped to other
nodes of the network. At this point, new incoming transactions will consider as
valid the double spending transaction because it has obtained a larger endorsement
[53].

A detailed description of other attacks and countermeasures is described in Iota
whitepaper [53]. At a first glance, the arguments shown in that document exonerates
Iota from potential attacks, including those based on quantum computing [53].
Actually, the academic literature has not yet proved these assumptions, so it is better
to wait much time before adopting Iota as an alternative to traditional blockchain
technologies. Even in detailed research activities, like the one conducted by Cachin
et al [11], the authors do not take a position about the security of this innovative
blockchainless solution.

A research of 2017 conducted by MIT Media Lab found some vulnerabilities on
the Curl hash algorithm adopted by the Iota proof-of-work [57]. The Curl hash
function, in fact, was not subjected to a long-time revision that is necessary to
test the reliability for the cryptographic algorithms [57]. Actually, Curl has been
replaced by Kerl, a more secure algorithm based on KECCAK-384 [58].

4.1.7 Advantages and disadvantages

Advantages

� Efficient consensus mechanism managed by every transaction issuer.

� No concentration of processing power because of the absence of miners.

� Low energy consumption. The consensus mechanism is not controlled by en-
ergy expensive algorithms.

57

Chapter 4. Blockchainless Distributed Ledger Technologies

� Scalability increased with the number of transactions. As indicated in [55], Iota
throughput should increase with the number of users and issued transactions.

� Snapshots. Iota provides a snapshot mechanism that allows to remove old and
no longer useful information from the tangle.

� No transactions fees and support for micro-payments.

� Resistance to quantum computing [53].

Disadvantages

� Permissionless environment.

� Absence of smart contracts.

� Absence of scientific results on the security of Iota consensus mechanism.

58

Chapter 4. Blockchainless Distributed Ledger Technologies

4.2 Hashgraph

Hashgraph is an innovative blockchainless Distributed Ledger Technology. Differ-
ently from the majority of solutions analysed in this thesis, Hashgraph is not released
with an open-source license, but it is a proprietary solution proposed by Swirlds,
Inc.

Hashgraph is not based on a chain of blocks but its fundamental data structure
is a DAG, Directed Acyclic Graph [59]. This alternative data structure allows to
obtain throughput values greater than the traditional blockchain platforms. Differ-
ently from previously analysed technologies, Hashgraph can work either in permis-
sionless and permissioned environment, where only authorized users can join the
network and maintain a replica of the ledger [60]. The latter is the most common
scenario in which Hashgraph is adopted, and tolerates up to the 33% of malicious
nodes to reach consensus on stored data [59].
Hashgraph, actually, is not associated to a cryptocurrency, no coins have been dis-
tributed and general-purpose applications can be developed on top of it.

4.2.1 Data structure

The hashgraph data structure is a DAG - Directed Acyclic Graph, an always growing
graph in which new nodes, called events, can be appended to already existing ones,
without the risk of generating loops in the data structure [59]. Fig. 4.2 shows
a graphical representation of a DAG composed by many chronologically ordered
events.
Similarly to Iota, in Hashgraph are not presents the blocks, but it is maintained
the concept of transaction. The transactions are stored inside nodes of the graph
and can contain any kind of information, depending on the requirements of the
applications.
The nodes of the graph are called events. Every event generated by a user must
be connected exactly to two previous events, the first generated by the same issuer
of current event, while the second created by another user [59]. Every event is
composed by many fields, graphically shown in Fig. 4.3, and described as follows:

� Timestamp. Indicates when the event has been generated [61].

� Transactions. This field is optional and can contain some transactions associ-
ated to the current event [61].

� Hashes. They act as pointers toward two previous events [61] (in Fig. 4.3 Hash
E1 refers to an event generated by the same user of the current event, while
Hash E2 refers to a gossiped event).

� Digital Signature. It is used to identify the user that generated the event [61].

The interconnections between different events are represented as edges in Fig. 4.2,
but, in reality, they are implemented as hash pointers stored inside the events.

4.2.2 Hashgraph consensus mechanism

The Hashgraph consensus mechanism is articulated and will not be deeply analysed
in this thesis. If the reader is interested in obtaining additional details on the topic

59

Chapter 4. Blockchainless Distributed Ledger Technologies

Figure 4.2: Hashgraph DAG composed by many events (image taken from [61]).

Figure 4.3: Graphical representation of an event.

he can refer to [59] and [61]. This section investigates the mechanism that stands
behind the consensus mechanism, the concept of gossip.

60

Chapter 4. Blockchainless Distributed Ledger Technologies

Gossip

The gossip is the technique adopted to spread data across all the nodes of the
network. Every time a node creates a new event it must notify the other peers
of this information. Differently from traditional blockchains in which the data is
broadcasted to all the interested users, Hashgraph adopts an innovative solution
called gossip, that consists in sharing all the known information to just one user.
This process [61] is explained with an example that involves four users A, B, C, D
(graphical representation in Fig. 4.4).

1. The user A must store some information and generates a new event contain-
ing one transaction. The current timestamp of A’s device is written in the
corresponding field of the event. For simplicity this event is called A1.

2. When this new event is generated, the node of the network randomly chooses
another user (B) and sends (gossips) him the new event. In addition, he also
attaches all the information received by other peers of which the recipient is
not yet aware of. This operation is called synchronization [59] because, after
its completion, user B knows exactly the same information of A.

3. The receiver, user B, creates a new event (B2) to notify the completion of
the synchronization. In case user B has some pieces of information to store,
this new event can contain an additional payload in the transaction field.
The fundamental characteristic of this event is the presence of the current
timestamp of the machine and of two pointers (hash values), one to the event
that triggered the synchronization (A1), and one to the previously generated
event of user B (B1).

4. Once the synchronization has been completed and the relative event correctly
created, user B must gossip this data to another randomly selected user, for
example user D. The latter creates a synchronization event D2, etc. and the
process goes on forever.

This consensus procedure is characterized by some interesting characteristics:

� It is fast [59]. Differently from the proof-of-work algorithm of traditional
blockchains it permits to obtain very high throughput values.

� Each event is timestamped [59]. When a new event is gossiped, receivers
must create a new event to record that the received information has been
stored. As soon as all the members receive the gossip of an event it is possible
to date the transaction time (computed as the average between the times-
tamps declared by the event issuer and by all the users that received gossiped
information). With reference to the example of Fig. 4.4 the timestamp of the
event is computed as the average of the timestamp declared by the events A1,
B2, D2, C2. With this technique, the global ordering of transactions is
always decided [59, 61].

61

Chapter 4. Blockchainless Distributed Ledger Technologies

Figure 4.4: Example of DAG generated as a result of event A1 created by user A.

Voting

Another important step of the consensus algorithm is the voting process [61]. Its
purpose consists in deciding if an event is famous (i.e. well-known by the majority
of members of the network) or not. If an event is famous, its content is considered
valid and is accepted by the network participants. The whole non-trivial voting
procedure is shown in [61]. What emerges from this document is that the voting
procedure shall be carried out by visiting the local copy of the DAG and verifying
which nodes (and users) received the gossip of the events (and users) [61]. This
process can be executed offline, i.e. each member of the network reads its local
replica of the Hashgraph and decides if an event can be considered famous or not,
without the need of interacting with the other members of the network [59]. This is
fundamental for performances reasons, because no additional data is spread across
the network [59].

Resistance to attacks

Offline voting introduces more resilience to attacks. As long as more than 66% of
members are honest and agree on ballot results, it is not possible to manipulate the
outcome of the voting procedure [59].
Furthermore, in Hashgraph, there is not the concentration of computational power
in the hands of miners. Blocks and miners, in fact, do not exist, while voting
is executed locally by every member. In traditional blockchain platforms, miners
could decide to delay (even forever) a transaction avoiding to insert it in new blocks
[1]. In Hashgraph, each member collaborates with the others to gossip the events
and to share known information with the other peers [59].

62

Chapter 4. Blockchainless Distributed Ledger Technologies

4.2.3 Signed state

In Hashgraph it is possible to discard the information belonging to old transac-
tions without losing the immutability property of data [59]. This behaviour can
be obtained by applying the concept of signed state. When a set of events are
considered famous, the previously existing nodes of the Hashgraph can be removed
because they are no longer required by the consensus algorithm. The information
contained in it can be stored in an alternative data storage solution, like a database
[59]. While updating the database, the same order of events generated by the Hash-
graph consensus mechanism must be preserved. This is fundamental to obtain a
final state coherent for all the members of the network. This final state, obtained
by feeding the database, is called consensus state and must be digitally signed
by the creator, inserted as payload of a new event and gossiped to the peers [61].
The receivers of this gossip event can recompute the consensus state and verify the
correctness of the digital signature. From this moment on, they have the possibility
to remove previous data from the Hashgraph to streamline it [59].

4.2.4 Advantages and disadvantages

Advantages

� High throughput (transactions per second).

� Consensus ordering. If an attacker tries to issue an event containing a wrong
timestamp, the real consensus time is obtained as average of the timestamps
declared by all the members of the network that received the gossip [61]. It is
impossible to issue transactions as they were generated in the past.

� No miners. There is not the risk some transactions are delayed or not included
in blocks.

� Possibility to remove old information from the Hashgraph after computing the
consensus state (signed state). It requires reduced storage capabilities.

Disadvantages

� Modern technology. The literature has not yet deeply analysed the possible
attacks and countermeasures.

� Closed-source project. The source code cannot be reviewed by research com-
munity to identify potential vulnerabilities.

� Impossibility to develop smart contracts.

63

Chapter 5

Distributed Ledger Technologies
for Vehicular Applications

This chapter analyses the use-case of this thesis, a urban mobility scenario composed
by vehicles able to exchange messages each other, and describes a blockchain based
architecture used to store and manage these messages.
Sec. 5.1 illustrates the scenario of the thesis; Sec. 5.2 describes the format and the
content of the messages exchanged between the vehicles while Sec. 5.3 explains how
to collect the messages into reports to subsequently store them in the blockchain.
The main advantages of the blockchain platform used to implement the proof-of-
concept applications are outlined in Sec. 5.4 and finally, Sec. 5.5 describes the the
overall architecture of the distributed system.

5.1 Description of the use-case

This thesis deals with the communication within a densely populated vehicular en-
vironment. Each vehicle can exchange messages with their neighbours. These mes-
sages, called CAMs - Cooperative Awareness Messages, are standardized by ETSI
- European Telecommunications Standards Institute and carry information like the
position, the speed, the acceleration, the direction of the vehicle and the timestamp
of generation of the message. This information, if stored, can be used to track the
history of the vehicles and to describe past events. In particular, insurance com-
panies could access this data to identify those responsible of road accidents and to
simplify the resolution of conflicts. The same information could be used for other
purposes, for example to identify drivers not respecting traffic laws, or to easily lo-
cate stolen vehicles. The fundamental problem of the applications based on CAMs
exchanged between vehicles is the reliability of information. Vehicles can distribute
false information because of malfunctions or because they have been tampered to
avoid the disclosure of confidential data. For this reason, information carried by
CAMs must be verified before it can be used for further applications. Literature
proposes different papers on the topic position verifications algorithms. The
latter are able to classify if the position declared by a vehicle can be considered
reliable or not, depending on mutual position of transmitters and of receivers of
the messages. To correctly apply these algorithms, receivers of the messages must
store additional information on their state, like the geographical coordinates, the
speed, the acceleration and the timestamp relative to the instant of reception of the

64

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

CAM. The messages transmitted and received by vehicles, together with reception
information, must be logged in a common data storage so that the position verifi-
cation algorithms can retrieve and estimate the reliability of information contained
in the messages. To store data, each vehicle is equipped with an USIM (Universal
Subscriber Identity Module) 4G, and can access to the Internet using the services
provided by mobile network operators. Vehicles create reports containing transmit-
ted and received CAMs and upload data to be logged.

5.2 CAM messages

CAM is the acronym for Cooperative Awareness Message. CAM messages are stan-
dardized by ETSI (European Telecommunications Standards Institute) [62] in the
context of ITS, Intelligent Transport Systems, and are used for the communication
between vehicles and between vehicles and infrastructure devices called RSUs (Road
Side Units). For this reason, they are split in two categories, V2V (Vehicle to Vehi-
cle) and V2I (Vehicle to Infrastructure) messages. I2V messages are also available.
These messages are intended for real time applications for cooperative awareness,
vehicles are able to learn information about the state of nearby vehicles.

Figure 5.1: V2V, V2I, I2V CAMs.

CAM format is a European standard that will be probably adopted in the future
in next-generation vehicles. If that is the case, the applications based on this type
of messages will increase their importance and applicability.

5.2.1 CAMs transmission

The transmission of CAMs is a broadcast transmission, all the vehicles in the
transmitter radio range are able to receive generated CAMs. The transmitter can
modify the range varying the transmission power. According to [62], the receiver
of a CAM cannot forward the same message to other vehicles. Delivery of CAMs
is not guaranteed. Some messages can be lost for a variety of reasons, for example
for the congestion of the transmission channel. For this reason, the fact that some
messages are not received cannot be considered a cheating attempt of the receiver.
The transmission of CAMs is periodic, but their generation frequency can change

65

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

over time depending on certain factors, for example upon the occurrence of dan-
gerous events, in case the vehicle breaks suddenly or depending on the congestion
of the transmission channel [62]. In accordance with the specifications of [62] the
CAMs generation frequency varies from a minimum of 1 to a maximum of 10 CAMs
transmitted per second. The transmission and reception of CAMs is managed by
the so-called, CA basic service facility layer [62].

5.2.2 The format of CAM messages

The format of CAM messages is predefined. Developers of applications cannot add
or remove fields as needed, they need to use the pieces of information described by
the standard. However, an enormous set of information is available in each CAM.
Not every field of a message is mandatory; for example certain fields are specific for
some types of means of transport. There are fields relative to vehicles for public
transports, special transports, emergency vehicles, etc.[62]. All these categories of
vehicles transmit CAMs carrying some specific additional information.

Description of most important fields

The application shown in this thesis is based on a set of fundamental information
contained in CAMs generated by all types of vehicles. A list of the most relevant
fields is shown in Table 5.1.

Field Description
Header It contains the identifier of the vehicle that generated the

CAM [62]. This value is not fixed but changes randomly over
time for privacy reasons [62].

Generation-
DeltaTime

It contains timing information, in particular it is relative to
the instant in which latitude and longitude of the vehicle have
been computed.
It is indicated in milliseconds but it is not an absolute value
like the unix timestamp. It can assume the maximum value
of 65536 (about one minute) [62].
Unit of measurement: 1ms. [62].

Position It is composed by latitude and longitude values.
Unit of measurement: 0.1 microdegree.
The accuracy of measurement is provided [63]. This informa-
tion can be calculated using the GPS receiver.

Speed It indicates the speed of the vehicle [62].
Unit of measurement: 0.01 m/s [63].
The accuracy of measurement is provided [62].

Heading It indicates which is the direction of the vehicle with respect
to North.
Unit of measurement: 0.1 degree.
The accuracy of measurement is provided [63].

66

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Acceleration It indicates the acceleration of the vehicle according to the
coordinates (latitude and longitude).
Unit of measurement: 0.1 m/s2.
The accuracy of measurement is provided [62].

Table 5.1: Format of a CAM

5.2.3 CAM security envelope

CAMs do not provide security features:

� Peer authentication is not guaranteed. If an attacker is able to send a message
stealing the identity of another user, for example using the identifier of another
vehicle, the receiver of the message cannot understand the message was sent
by a third party.

� Message integrity is not guaranteed. It is not possible to understand if the
content of a CAM has been forged by an attacker.

Security features are fundamental if CAMs are used for applications with legal reper-
cussions. Fortunately, the specification [64] provides the standardization of a secu-
rity envelope for CAMs. The most important fields of the security envelope are
shown in Table 5.2.

Field Description
Digest of a Public Key
Certificate

It allows the identification of the vehicle that trans-
mitted the CAM. It is used to verify of the digital
signature.

Timestamp It is expressed as an absolute value in ms.
(different from GenerationDeltaTime of CAM format
that can assume 65536 as maximum value).

CAM message It contains a CAM message, whose content is conform
to the standard described in Sec. 5.2.2.

Digital Signature It is computed with algorithm ECDSA-NISTP-256.
The signature introduces the following security fea-
tures: peer authentication, authentication and in-
tegrity of the message, non-repudiation.

Table 5.2: CAM security envelope

Summarizing, the security envelope increases the reliability of transmitted infor-
mation and provides the following security features:

� It allows the identification of the vehicle that transmitted the CAM.

� It does not permit to attackers to forge the data contained inside a CAM.

� It makes the transmitter legally responsible of the information contained into
in the CAM.

67

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

5.2.4 CAMs and position verification algorithms

The information transported by a CAM, like position, speed, acceleration, heading
and timestamp is fundamental for the application of position verification algorithms.
These algorithms allow to classify the position declared by a vehicle as valid or not,
considering mutual position of sender and receivers of the messages. Unfortunately,
CAMs are application level messages. The position and the timestamp contained in
a CAM are computed at application level, when the location of the vehicle has been
determined using the information provided by the GPS receiver (Global Positioning
System receiver). Position verification algorithms requires to estimate the time of
propagation of the signal through the transmission medium. The unspecified delay
introduced for the processing of the messages from the application layer to the phys-
ical layer prevents the use of information carried by CAMs for the application of
the algorithms. For this reason it is necessary to embed more accurate information
at physical layer concerning the location and the timestamp of the vehicles relative
to the instant the message is broadcasted. Receivers of the messages add the same
information at physical layer relatively to the reception instant, so that position veri-
fication algorithms considering can compute the estimated distance between vehicles
based on the time of propagation of the signal.

Receivers of CAMs can also store additional information that could be useful to
implement position verification algorithms. For example the following information
can be stored:

� Identifier of the receiver

� Timestamp in which the message was received

� Position (latitude and longitude) of the receiver at reception time

� Speed

� Acceleration

� Heading

Sec. 5.3 explains how to combine transmission and reception information to be
persisted inside the blockchain, while Sec. 5.5.6 indicates how to use this data to
execute the validation.

5.3 Reports of CAM messages

Vehicles transmit and receive a very large number of CAMs. To simplify the applica-
tion of position verification algorithms, a new data structure called report has been
implemented to collect many CAMs. Report data structure is not standardized
but it has been introduced in the context of this thesis.

A report is a data structure that collects generated and received CAMs. A
report is created by a vehicle in correspondence of the transmission of a CAM.
Every report contains:

� The last generated CAM.

68

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

� All the CAMs received which were not present in previously generated reports
of the vehicle.

For each received CAM it is also stored a set of reception information, like the
position, speed, acceleration, direction and timestamp of receiver, computed at the
instant of reception. A report is the data structure that must be persisted for the
subsequent application of position verification algorithms.

5.3.1 Structure of a Report

The data structure of a report must be well-defined because reports must used by
position verification algorithms. The structure of a report can be outlined as follows:

� Header. It indicates that the content of the message is a report of CAMs.

� ReportId. Identifier of the report. Each report is uniquely identified by a
string, obtained as the concatenation of the timestamp of transmitted CAM
(considered at physical layer) and the identifier of the vehicle generating it
(contained in the Header of CAM format). The ReportId can be identi-
fied also as GeneratedCamId because it depends only on information of the
GeneratedCam.

� GeneratedCam. It contains the last CAM message generated by the vehicle
that created the report. Format of CAM message is the one described in
Sec. 5.2.

� GeneratedCamHash. Hash of GeneratedCam computed using SHA-256 al-
gorithm.

� ListReceivedCams. List of CAMs received which were not present in the
report previously generated by the vehicle.

� PreviousReportId. Identifier of previously generated report.

� PreviousReportHash. Hash of previously generated report computed using
SHA-256 algorithm.

The ListReceivedCams is a complex field containing different pieces of informa-
tion replicated for each received CAM:

� ReceivedCamId. It is an identifier of received CAM, calculated as the con-
catenation of timestamp of transmission of the CAM (considered at physical
layer) and identifier of transmitter vehicle (contained in the Header of CAM
format).

� ReceivedCamHash. It is the hash of the received CAM.

� ReceptionInfo. It contains information relative to the reception of CAM.

The RepectionInfo includes the many fields relative to the instant of reception
of the message at physical layer. It can be outlined as follows:

� ReceptionLatitude: it it the latitude of the receiver.

69

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

� ReceptionLongitude: it is the longitude of the receiver.

� ReceptionT imestamp: it is the absolute reception timestamp in milliseconds.

� ReceptionSpeed: it is the speed of the vehicle.

� ReceptionAcceleration: it is the acceleration of the vehicle.

� ReceptionDirection: it is the direction of the vehicle with respect to the North.

The format of reports allows to store all the necessary information to execute position
verification algorithms and introduces the tamper-proof property of reports.

5.3.2 Tamper-proof characteristic of reports

The presence of hash values inside the reports allows to create a hash chain of
reports.

Hash chain of reports

As shown in previous paragraph, every report contains one field called PreviousRe-
portHash. It is simply the hash of the previous report generated by the same vehicle.
It allows to generate a sort of chain of all the reports generated by a vehicle. Sim-
ilarly to many blockchain solutions, the hash of the current report (i.e. block in
blockchain context) is not stored but must be recomputed on the fly the verify the
correctness of the chain. The first report of the chain is called genesis report and it
is relative to the first CAM generated by a vehicle. Fig. 5.2 shows a chain of reports
logically linked to each other. The following rules must be satisfied so that the chain
of reports can be considered valid:{

PreviousReportIdn = ReportIdn−1

PreviousReportHashn = Hash(Reportn−1)

where Reportn indicates the whole content of the nth report, and Hash(x) indicates
the result of the application of the hash function to x.

The hash chain of reports makes very difficult to tamper data stored inside
reports. Every time a vehicle adds a new false report to the already existing chain
of reports, a “fork” occurs. The cheating attempt can be identified by the existence
of a bifurcation in the chain of reports.

Hash of received CAMs

The ListReceivedCam contains a set of information for each CAM received by a ve-
hicle. Among other things it contains the ReceivedCamId and the ReceivedCamHash
that allow to logically link the reports generated by nearby vehicles.

� ReceivedCamId is the identifier of received CAM and corresponds to the Re-
portId stored in the report of transmitter.

� ReceivedCamHash is the hash of received CAM and corresponds to the Gen-
eratedCamHash stored in the report of the transmitter.

70

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Figure 5.2: Chain of reports logically linked to each other.

In this way a report contains hashes of all received CAMs. Vehicles cannot store
in a report a different CAM from the one broadcasted to nearby vehicles.
It is enough to check the correspondence of hashes to identify a cheating attempt.
The following example (graphically represented in Fig. 5.3) is used to clarify the
concept.
Two nearby vehicles identified as x and y are able to exchange CAMs. The following
stream of CAMs is generated:

1. x sends a CAM and generates a report with ReportId = 01x

2. y receives the CAM identified by ReceivedCamId = 01x.
y computes the hash of the received CAMReceivedCamHash = Hash(Cam01x)

3. y sends a CAM and generates a report with ReportId = 01y
(including ReceivedCamId = 01x and ReceivedCamHash = Hash(Cam01x)
in the list of received CAMs)

4. x receives the CAM identified by ReceivedCamId = 01y
x computes the hash of the received CAMReceivedCamHash = Hash(Cam01y)

5. x sends a CAM and generates a report with ReportId = 02x
(including ReceivedCamId = 01y and ReceivedCamHash = Hash(Cam01y)
in the list of received CAMs)

6. This process is repeated for all the CAMs exchanged by all the vehicles.

This process is represented in Fig. 5.3 where R01x, R02x, R03x, R...x indicate
the reports generated by the vehicle x and R01y, R02y, R...y indicate the reports
generated by the vehicle y. The black arrows indicate the hashchain of reports
generated by the same vehicle. The blue arrows, instead, indicate how the reports
generated by different vehicles are connected, i.e. the concatenation that is obtained
with the hashes of received CAMs.

Summary of tamper-proof property of reports

Each reports contains two types of hash pointers:

71

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Figure 5.3: Tamper-proof reports generated by the vehicles.

� An hash to connect the current report to the previous report generated by the
same vehicle.

� A set of hashes to connect the current report to the reports generated by
nearby vehicles.

This configuration makes very difficult to tamper data stored inside reports by
inserting fake information.

5.4 The blockchain platform

The blockchain provides a tamper-proof data storage solution that makes possible
to store reports. Position verification algorithms for the validation of CAMs can be
implemented in the form of smart contracts.
The detailed analysis of available Distributed Ledger Technologies was completed
with the identification of Hyperledger Fabric as the best candidate for the devel-
opment of a blockchain based architecture for vehicular applications.

5.4.1 Why Hyperledger Fabric?

Hyperledger Fabric is the blockchain platform that fits better to the requirements
of the project under analysis. The main features are shown as follows:

72

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

� High throughput. Hyperledger Fabric allows to manage a number of trans-
actions per second much higher than that of the other blockchain platforms.
The high number of CAMs exchanged between vehicles, in fact, requires to
execute many transactions per second to store generated reports.

� Low latency. Blocks are committed to the ledger as soon as they are created
by ordering service nodes and validated by peers. Sub-second latency may be
achieved.

� Transactions finality. It is not possible to create forks in the ledger. Valid
transactions contained into blocks cannot be invalidated over time.

� Permissioned environment. Members of the blockchain are identified by
public key certificates. Only authorized users may access the blockchain issuing
transactions and accessing contained information.

� Privacy. Unauthorized users cannot access data stored into the blockchain.
Sensitive information of users are not disclosed.

� Transparency. The members of the blockchain can verify executed transac-
tions by playing the roles of committing peers and endorsing peers.

� Possible cooperation of different organizations. Different mobile phone
network operators and other companies, e.g. insurances, can interact main-
taining the state of the ledger and can trust stored information.

� Disintermediation. Different companies can interact and manage the ledger
without the intervention of a trusted authority controlling the whole process.
The role of the trusted authority is limited to the issuing of certificates to
authorized members of the blockchain.

� Chaincodes. Smart contracts allow to implement position verification algo-
rithms to check the reliability of messages exchanged by the vehicles.

� Parallel execution of chaincodes. Different endorsing peers can concur-
rently execute transactions to store data collected by different base stations.

� Channels. It is possible to create multiple independent ledgers, maintained
by different subset of peers. This feature can be exploited to implement ledgers
containing data relative to limited geographical areas.

� Pluggable consensus. It is possible to implement the preferred consensus
algorithm, either crash-tolerant or Byzantine-fault tolerant to better fit the
application requirements.

5.5 Architecture overview

This section describes the overall architecture of the distributed system, including
all the design choices and the roles of different participants of the blockchain.

73

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

5.5.1 Vehicles

Vehicles are the fundamental users of the system. They travel, exchange CAMs with
nearby vehicles and create reports to be stored in the blockchain. Vehicles do not
interact directly with the blockchain, i.e. they are neither clients nor peers. They
generate the reports and upload them to base stations using the internet connection
provided by their mobile phone network operators. In the event that a vehicle is
located in an area characterized by the absence of telephone coverage, reports can
be locally stored and must be uploaded as soon as the connectivity is restored.

5.5.2 Base station - eNodeB

What is an eNodeB

The eNodeB, often indicated with eNB, is the acronym for Evolved NodeB and can
be considered the evolution of the base station for LTE networks. The eNodeB is
an element of LTE network which role is to create a bridge, using wireless commu-
nication, between user devices, called UE - User Equipment (in this case the vehicle
adopting a 4G USIM), and the mobile network [65]. The access of UE to the mobile
network is authenticated thanks to the usage of a USIM [66], in this way it is difficult
for an attacker to forge the identity of another user.

Role of the eNodeB in the architecture

The eNodeBs play a fundamental role in the architecture of the distributed system.
They provide internet connectivity and authenticate vehicles thanks to the usage
of an USIM. Authenticated vehicles can upload reports and are discouraged from
providing false information because they can be easily identified.
The base stations acts as clients and peers of the Hyperledger Fabric blockchain.

� Clients. The base stations execute the transactions to store the reports up-
loaded by vehicles in the blockchain. Furthermore, they can execute transac-
tions for the validation of stored CAMs. It is a good rule they issue transac-
tions for the validation of the CAMs associated to the reports they requested
to store.

� Endorsing peers. The base stations execute the chaincode functions necessary
to store the reports and to validate CAMs logged in the blockchain.

� Committing peers. The base stations verify the transactions executed by en-
dorsing peers and update their local copy of the ledger. They also maintain a
full replica of the ledger.

5.5.3 Architectural design choices

In Hyperledger Fabric blockchain it is possible to identify different participants, with
different roles:

1. Clients

2. Endorsing peers

74

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Figure 5.4: Overall architecture of the system.

3. Committing peers

4. Orderers

Base stations act as clients, endorsing peers and committing peers of the blockchain.
The role of Ordering Service Nodes is executed by a cluster of Kafka and ZooKeeper
nodes. This cluster is set up by different network operators and allows to separate
the endorsement and the validation of transactions from the block creation, increas-
ing the efficiency of the blockchain.
The vehicles do not interact directly with the blockchain for performance reasons.
The number of vehicles is large and Hyperledger Fabric would require vehicles to be
authenticated and authorized to issue blockchain transactions. This model would
generate an increase in the number of transactions to be managed and a higher
computational overhead.
Vehicles cannot play the role of peers or orderers of the blockchain. They cannot
be considered trusted members, their availability is not guaranteed, and they are
characterized by low computational and storage capabilities.
On the contrary, the strategy adopted in this thesis allows vehicles to upload their
reports to the eNodeBs. After a limited number of reports has been collected, each
eNodeB can issue a transaction to store multiple reports simultaneously into the
blockchain. This strategy permits to reduce the computational overhead required
by the endorsement, ordering and validation of transactions. In addition, the au-
thentication of users is delegated to mobile phone operators, blockchain is unaware
of the real identity of vehicles.
Fig. 5.4 shows the architecture of the system and the data stored by the participants.
Each vehicle store the hash chain of reports generated over time. The green and red
chain of blocks shows that the base stations are interconnected and locally store a
complete replica of the ledger containing all the reports generated by the vehicles.
Fig. 5.5 describes the interactions between the actors of the system. In step 1 the
vehicle uploads the report to the base stations. In step 2 and 3 the base station
invokes and endorses the transaction to store the collected reports in the blockchain.
The transaction is then transmitted to the ordering service nodes, based on Kafka
cluster, that order the transactions and create the block (step 4). Finally, the cre-
ated block is distributed to the committing peers so that it can be validated and

75

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

committed (step 5).

Figure 5.5: Interactions between the actors of the distributed system.

5.5.4 The role of network operators

Hyperledger Fabric allows the cooperation of different organizations, identified by
their trusted root certification authority and by their members. Each organization
can manage different members like peers, orderers and clients and interacts with
other organizations to maintain a replica of the ledger.
In the described architecture, different organizations correspond to different mobile
phone operators. Each mobile operator manages its base stations, that correspond
to clients and peers of the blockchain. Base stations of different mobile phone
operators interacts to manage to store reports and to validate contained CAMs.

5.5.5 Ledgers for the management of geographical areas

Hyperledger Fabric allows to create different channels, namely separated ledgers
that allow to increase the privacy of stored information. Only peers belonging to
a channel can access and retrieve stored data. Peers can access simultaneously to
different channels.
In the described architecture, the channels can be used to create different ledgers
relative to well-defined geographical areas of competence. Fig. 5.6 shows many
base stations that, depending on their geographical position, store data of different
channels. The letters A, B, C, D, E, F, G identify the channels and the relative
geographical areas. A base station must join the channels corresponding to the areas
covered by its own cell site and by those of neighbouring base stations (potentially
of different network operators). Reports collected by a base station are stored only
in one of the channels of the blockchain. Instead, the validation of reports requires

76

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

to retrieve data stored in different channels, so that it is possible to obtain an overall
view of all CAMs stored in the distributed system. This architecture offers many
advantages:

� Each peer of the network maintains a replica of a reduced portion of data, cor-
respondent to joined channels. The validation and endorsement of transactions
are executed only by peers belonging to the channel.

� The possibility to interact with different channels allows to have a broader
view of neighbouring geographical areas, enabling to safely apply algorithms
of position verification.

On the other hand, the complexity of the system is increased because of the manage-
ment of different separated ledgers. In fact, to apply position verification algorithms
it is necessary to retrieve CAMs stored in different channels, increasing the number
of interactions with the blockchain.

Possible attacks to a multi-channel architecture

Another problem relating to the management of different channels is the identifi-
cation of cheating vehicles. When an attacker steals the identity of another user,
it can send CAMs as if they came from the victim’s vehicle. In a scenario char-
acterized by one channel only, it is possible to execute a query to understand that
the victim’s vehicle is simultaneously located in different geographical regions. The
management of different channels makes it difficult to identify this anomaly. In
fact, it is to execute different queries to different channels to identify the cheating
attempt. This problem is mitigated by the use of the CAM security envelope for
CAMs transmission (see Sec. 5.2.3) and by the adoption of the tamper-proof data
structure of reports (see Sec. 5.3.2).

5.5.6 Validation of CAM messages

The application of position verification algorithms to CAMs contained in reports is
possible only after the data has been committed to the ledger.

Hyperledger Fabric requires that the blocks containing the transactions are com-
mitted by peers before the state of the ledger is updated. Two subsequent trans-
actions, the first used to store a CAM and the second used to apply a position
verification algorithm to the same CAM could be incompatible. If the first transac-
tion has not yet been validated by committing peers, i.e. the block containing the
transaction has not yet been committed, the transaction used to verify the position
of the vehicle cannot access the CAM previously stored. Furthermore, position ver-
ification algorithms require to access the reports potentially generated by different
transactions and peers. In practice, it is necessary to introduce a waiting time be-
tween the the storing and validation procedures. This characteristic does not allow
to apply position verification algorithms in real-time.

Overall validation process

As mentioned in previous paragraphs, the execution of position verification algo-
rithms requires that the reports are stored in the blockchain. The overall validation
process is shown in Fig. 5.7 and can be summarized as follows:

77

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Figure 5.6: Architecture composed by many channels storing data of different geo-
graphical areas.

1. Some vehicles exchange CAMs, generate reports, and upload the reports to
the base station to which they are connected.

2. The base station, playing the role of client of the blockchain, issues a transac-
tion to store in the blockchain the reports received by vehicles.

3. After the transaction has been committed, the base station introduces an
additional waiting time to ensure that neighbouring eNodeBs have stored the
previously collected reports in the blockchain.

4. The base station issues one or more transactions to apply position verification
algorithms to CAMs previously stored in the blockchain.

5. The base station collects and analyses the result of the validation as soon as
the transaction has been committed.

Position verification algorithms

The literature proposes many papers about the possible implementations of position
verification algorithms, like [67] and [68]. In this thesis, a simple algorithm has been
implemented in the form of a Fabric chaincode to test the performances of the

78

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

Figure 5.7: Process of storage and validation of the CAMs

proposed architecture. This algorithm is executed by the endorsing peers of
the blockchain as a result of a transaction request issued by a client to require the
validation of the CAMs. The algorithm can be outlined as follows:

1. The chaincode function reads the identifier of the CAM that must be verified.

2. A query is sent to the state database of the blockchain to retrieve the report
containing the transmitted CAM and all the reports of the nearby vehicles
that received the CAM under analysis.

3. Two variables are initialized to zero. They are used to count how many vehicles
consider the transmitted CAM as potentially valid or not valid.

4. For all the reports of the vehicles that received the CAM, it is estimated if the
position declared by the CAM under analysis is compatible with the reception
information of the CAM. Depending on the result, the counter indicating if the
position is potentially valid or not valid is incremented. The estimate depends
on the instant of transmission and reception, the propagation time and the
mutual position of transmitter and receiver of the CAM.

5. The algorithm is concluded comparing the values assumed by the two counters.
The greatest value is used to classify the transmitted CAM as valid or not.
The blockchain is updated to store the result of the position verification.

This procedure must be repeated for all the CAMs passed as parameter to the
chaincode function. A problem derived by the implementation of position verifica-
tion algorithms consists in the update of the ledger. The append-only property of
the blockchain does not permit to overwrite already stored data and implies that

79

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

information of the validated CAMs is duplicated. This problem can be mitigated
by updating only the information of the CAMs marked as not valid.

Importance of the validation

Validation of CAMs is fundamental to use data stored into reports for legal pur-
poses. For example, in case of a road accident, insurance companies must start a
procedure to resolve the conflict, identifying the faulty car for the attribution of
damage. The information collected via exchanged CAMs can be very useful but it
must be validated, it is necessary to understand if data provided by both vehicles
can be considered reliable or not. There is the possibility some vehicles provide
wrong information because of malfunctions or because they have been tampered.
Validation of CAMs stored into the blockchain can be executed periodically to iden-
tify vehicles systematically providing wrong information. Results of validation pro-
cess can be analysed and further inspections can be executed to understand the
reasons of these faults.

5.5.7 Limits of proposed architecture

The proposed architecture faces an important problem: a very large amount of
data must be stored in the blockchain nodes. Storing the reports generated
by vehicles requires to manage not only data relative to generated CAMs, but also
the overhead relative to reception information (see ReceptionInfo in Sec. 5.3.1). Hy-
perledger Fabric requires that the committing peers of the blockchain maintain a
complete replica of the ledger. No other alternatives like sharding are possible. The
blockchain platforms, in fact, produce an always growing record of transactions and
blocks. If intermediate blocks are removed it is violated the tamper-proof property
of the blockchain. Hyperledger Fabric adopts a pruning functionality to remove
invalid transactions from the local replica of the ledger [50] (at time of writing this
functionality has not yet been implemented). In view of the fact that the majority of
transactions is valid, the benefits derived from pruning can be considered negligible.
The multi-channel architecture explained in Sec. 5.5.5 allows to mitigate the prob-
lem, by reducing the amount of data that must be stored by the peers of the
blockchain.

5.5.8 Comparison with other existing architectures

The literature proposes vehicular applications based on blockchain storage solution
characterized by an architecture notably different from the one proposed in this
thesis. Some examples are [69] and [70].

Architecture proposed by Leiding et al.

The solution proposed in [69] is based on the Ethereum smart contracts.
Each vehicle directly interacts with the blockchain using its pair of asymmetric keys.
The vehicles require the execution of a set of applications and pay transactions fees
(gas) for this purpose [69]. The payment of transaction fees may seem inadequate,
especially for the services that are required by law. On the other hand, fees can
be used to cover the infrastructure maintenance costs, including the RSUs and

80

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

the electricity required by miners [69]. This architecture, in fact, is based on a
permissionless blockchain and requires the existence of miners. The role of miner
can be covered by some infrastructure devices like RSUs and base stations.
The architecture proposed in this thesis is probably more efficient than the one
proposed in [69]. Table 5.5.8 shows some differences of the two architectures.

Architecture of [69] Architecture of this thesis
It is based on permissionless
Ethereum blockchain platform.

It is based on permissioned Hy-
perledger Fabric blockchain plat-
form.

The vehicles interact directly
with the blockchain

The vehicles do not interact with
the blockchain, they only upload
data to base stations.

The vehicles pay transaction fees
for all the required services. The
fees depend on the number and
type of transactions executed.

The vehicles do not pay transac-
tions fees.

High number of transactions due
to the high number of clients of
the blockchain (vehicles).

The number of transactions can
be tuned according to the num-
ber of reports stored with a single
transaction (decided by the base
stations).

Creation of a global vehicular
blockchain infrastructure (very
high storage requirements for
nodes).

Possibility to create channels rel-
ative to limited geographical ar-
eas (lower storage requirements
for nodes).

Table 5.3: Comparison of the architecture proposed in [69] and the one proposed in
this thesis.

Architecture proposed by Sharma et al.

Authors of [70] proposes a totally different blockchain architecture for vehicular ap-
plications focused on scalability and availability.
In this architecture, vehicles are divided in two categories, miner nodes and ordinary
nodes, corresponding to different roles. These roles are assigned to the vehicles by
an authority [70].
Controller nodes identify the infrastructure devices, e.g. base stations. They inter-
act with other nodes of the network by sharing data. Ordinary nodes can only access
data provided by miner nodes and by controller nodes [70]. Miner nodes manage
data collected by different sensors, process and store it locally so that this informa-
tion can be distributed to other network participants [70]. Controller nodes operate
similarly to miner nodes but provide higher computational capabilities. They create
a network to allow the exchange of information between vehicles [70].
Drivers and vehicles are represented by means of smart contracts to provide a mul-
titude of services, for example the management of a wallet for payments, the iden-
tification of fuel stations, car-pooling service, etc. This architecture faces with an
important problem, the availability. Vehicles are not guaranteed to be available and

81

Chapter 5. Distributed Ledger Technologies for Vehicular Applications

to be able to provide sufficient computational capabilities.
Comparing this architecture with the one described in this thesis it is possible to
highlight some important differences. Table 5.5.8 shows some differences of the two
architectures.

Architecture of [70] Architecture of this thesis
Not based on a previously exist-
ing blockchain platform. Ad hoc
blockchain architecture.

Based on permissioned Hyper-
ledger Fabric blockchain plat-
form.

The vehicles play different roles
(miners or ordinary) and interact
with the blockchain nodes.

All the vehicles play the same
role, they upload data to the base
stations and do not interact di-
rectly with the blockchain.

Miner vehicles store collected
data locally.

Vehicles store collected data only
temporarily before the submis-
sion to the base stations.

Table 5.4: Comparison of the architecture proposed in [70] and the one proposed in
this thesis.

82

Chapter 6

Applications Developed to Test
Hyperledger Fabric

This chapter describes the programs developed to test the performance of Hyper-
ledger Fabric when it used to implement the vehicular application. Sec. 6.1 describes
the vehicular simulator that creates the traces of reports containing the CAMs trans-
mitted and received by the vehicles. Sec. 6.2 shows how to deploy a working Hyper-
ledger Fabric blockchain and some implementation details of the chaincode functions
used to manage the CAMs. Finally, the chapter describes the benchmarking tool
that has been developed to test the performance of Hyperledger Fabric (Sec. 6.3).

6.1 Vehicular Mobility Simulation

The vehicular mobility simulator is an application used to simulate the movements
and interactions of vehicles in a urban area. A simple implementation of a vehicular
simulator has been implemented using the Python programming language. The sim-
ulator is able to simulate the exchange of CAMs between vehicles and the generation
of reports.

6.1.1 General description of the simulator

The simulator implements a simplification of Random Waypoint Mobility Model
[71]. In a Random Waypoint Model, the vehicles execute arbitrary paths in a pre-
defined area, without constraints on the parameters characterizing the movement.
Vehicles randomly generate the places of departure and destination and travel with
a constant speed [71]. Speed of vehicles is uniformly distributed between a minimum
and a maximum value [71]. When a vehicle reaches a destination, it waits a random
pause time, it generates a new destination and a speed and it restarts travelling [71].

Simplifications of the proposed implementation

The developed simulator is characterized by a set of simplifications described as
follows:

� Speed of vehicles is fixed to 10.0 m/s.

� Acceleration of vehicles is fixed to 0.0 m/s2

83

Chapter 6. Applications Developed to Test Hyperledger Fabric

� Vehicles start a new journey as soon as they reach their destination.

� The algorithm is executed on a squared simulation area.

� Collisions between vehicles are not considered.

Input parameters of the simulator

The proposed implementation allows to customize some simulation parameters:

1. The number of travelling vehicles.

2. The number and the location of RSUs (expressed in a Cartesian landmark).

3. Width of the squared simulation area (in meters)

4. CAMs transmission radio range (radius in meters of a circular area).

5. CAMs generation frequency (expressed as number of seconds elapsed between
two consecutive CAMs transmissions)

6. Simulation time (seconds)

7. Cheating probability (probability that a vehicle transmits wrong information
inside a CAM. It is expressed as relative frequency).

Output of the simulator

The output of the simulator is in a text file containing the list of all reports generated
by vehicles in the form of JSON documents. Optionally, it is possible to generate
a chart describing the paths of the vehicles. Fig. 6.1 represents the result of a
simulation executed with 2 vehicles that travel in a squared area of 1km2 in a time
interval of 200s. The black circles represent the starting position of the vehicles
while the red and green dotted lines represent the paths of the first and second
vehicle respectively.

Management of CAMs and reports

The simulator manages the exchange of CAMs between nearby vehicles according to
an ideal model. All the vehicles of the simulator transmit and receive CAMs. Every
vehicle receives a CAM transmitted by another vehicle if the following inequality is
respected :

d(tx, rx) < rr

where d(tx, rx) indicates the Euclidean distance between the transmitter and re-
ceiver computed at transmission time, and rr is the radio range passed as parameter
to the simulator. The time of generation of CAMs at application layer coincides with
the time of transmission of the CAM at physical layer. Each CAM is propagated at
the speed of light. As a consequence, the time of transmission of a CAM is different
from the reception time. Every time a vehicle receives a CAM, the reception infor-
mation (position, speed, acceleration, direction, timestamp) is stored. The reports
are generated just after the transmission of CAMs. They contain all the CAMs that
the vehicles received since the previously generated report.

84

Chapter 6. Applications Developed to Test Hyperledger Fabric

Figure 6.1: Results of a simulation conducted with 2 vehicles.

The example of Fig. 6.2 shows a vehicle (Tx1) transmitting a CAM. The vehicle
Rx1 receives the CAM because d(Tx1, Rx1) < rr, while Rx2 does not receive the
CAM.

Cheating vehicles

It is possible some vehicles broadcast CAMs containing false location information.
The probability that a vehicle sends false information is related to the cheating
probability. If a vehicle is identified as a cheater, it always broadcasts wrong location
information. On the contrary, if a vehicle is honest, it always provides correct
information.

Versions of the simulator

Two versions of the simulator has been implemented:

1. Version without tamper-proof reports. It has been used for the majority of
experiments of this thesis. Reports are not logically linked to previously gen-
erated one.

2. Version with tamper-proof reports. Each report contains the hash of previously
generated report and the hashes of all received CAMs.

85

Chapter 6. Applications Developed to Test Hyperledger Fabric

Figure 6.2: Transmission and reception of a CAM

6.1.2 Description of the algorithm

The developed simulator is event-based. It is based on a chronologically ordered
list of events. All the operations executed in the system are modelled as an event,
characterized by a timestamp that is used to define the handling order of events.
The event with the lowest timestamp value is the first to be removed from the list
in order to be executed.

Figure 6.3: Management of the events of the simulator.

6.1.3 Management of events

The simulator manages three types of events:

1. Event for the management of a vehicle reaching its destination.

86

Chapter 6. Applications Developed to Test Hyperledger Fabric

Figure 6.4: UML diagram describing the main classes of the simulator

2. Event for the transmission of a CAM and for the creation of a report (vehicles)

3. Event for the generation of a report (RSUs)

Set up

The algorithm starts configuring the simulation according to parameters provided
by the user and initializing an empty list of events.
For each vehicle the departure and destination coordinates are randomly generated
together with the timestamp of the departure. The events correspondent to the
transmission of the first CAM and to the arrival of the vehicle to its destination
are inserted into the list of events of the simulator (arrival time can be computed
because the speed of vehicles is considered constant).
For each RSU it is created an event to manage the generation of a report. The event
is inserted into the list of events of the simulator.
The simulator starts and infinite loop extracting and managing events in sequence.

Event for the transmission of a CAM and the creation of a report (vehi-
cles)

Every time a vehicle transmits a CAM it updates its geographical coordinates, it
creates a report containing the new CAM and the list of received CAMs. The report
is appended to an output file and the list of received CAMs is cleared.
The nearby vehicles of a transmitter update their location, add reception information
of the CAM and append the result to their local list of received CAMs.
The transmitter schedules the next event of transmission a CAM. The latter is then
inserted into the list of events of the simulator.

87

Chapter 6. Applications Developed to Test Hyperledger Fabric

Event for the generation of a report (RSUs)

Every time a RSU generates a report, it clears the list of received CAMs and appends
the report on an output file. The RSU schedules another event for the generation
of a report. The latter is inserted into the list of events of the simulator.

Event for the management of a vehicle reaching its destination.

Every time a vehicle reaches its destination, it updates its location, generates new
destination coordinates and computes the travel time. A new event for the manage-
ment of the vehicle reaching the new destination is scheduled and inserted into the
event list.

6.2 Hyperledger Fabric project

This section analyses the sequences of operations that must be executed in a single
hosting machine to set up a working Hyperledger Fabric blockchain, starting from
the installation of fundamental software components, up to the deployment of the
chaincode. This section is not intended to be a replacement of the documentation,
but it is used to explain the fundamental concepts behind the deployment of an
Hyperledger Fabric blockchain. For the technical details and instructions necessary
to install Fabric, the reader must refer to the official documentation written by the
community and continuously updated1.

6.2.1 Set up of the working environment

Hyperledger Fabric is compatible with Linux, Mac OSX, and Microsoft Windows
and the set of tools and components is common to all the supported operating
systems. The operating system used for the development of this thesis project is
Ubuntu 16.04, thus all the commands shown in the following sections refer to it.
The Hyperledger Fabric version that has been installed and used for the whole thesis
project is version 1.1.0-preview.

Software prerequisites

Hyperledger Fabric and all the required software components are released with an
open-source license and can be freely downloaded from the Internet. The list of
software that must be installed to run Hyperledger Fabric is shown as follows:

� cURL (latest version)

� Docker (version 17.06.2-ce or greater)

� Docker-compose (version 1.14.0 or greater)

� Go programming language (version 1.9.x)

� Node.js (version 8.9.x - version 9.x is not supported)

1Documentation available at: http://hyperledger-fabric.readthedocs.io/en/latest/

88

http://hyperledger-fabric.readthedocs.io/en/latest/

Chapter 6. Applications Developed to Test Hyperledger Fabric

� Npm (version 5.6.0)

� Python (version 2.7)

� Hyperledger Fabric Examples 2

� Hyperledger Fabric Binaries (in a fabric-samples folder). They include

– cryptogen

– configtxgen:

– configtxlator

– peer

The Hyperledger Fabric examples folder contains a set of useful network configura-
tions that can be used to test the installation of Hyperledger Fabric.

6.2.2 Set up of a complete network

Hyperledger Fabric requires to execute multiple operations to create a working
blockchain network and to interact by means of the execution of transactions. The
list of operations can be described as follows:

1. Generation of the cryptographic material.

2. Generation of the channels configurations.

3. Configuration of the network participants and deployment of Docker contain-
ers.

4. Creation and participation to channels.

5. Set up of chaincodes and execution of chaincode functions

All these steps are analysed in detail in this section and refer to the deployment of
a Hyperledger Fabric network on a single hosting machine.

Generation of the cryptographic material

As shown in Sec. 3.4.2, Hyperledger Fabric is composed by multiple entities, i.e.
peers, orderers and clients, that must be provided with valid X.509 certificates to
interact with the network.
The cryptogen tool must be used to generate the cryptographic material required
by the network participants. This program reads a configuration file (named crypto-
config.yaml 3), indicating how many organizations, peers and orderers cooperate in
the system [44]. This set of information is fundamental because cryptogen creates a
folder (called crypto-config) containing the set of public key certificates, public and
private keys necessary for the authentication and authorization of all the members
of the blockchain [44].

2Examples available at https://github.com/hyperledger/fabric-samples.git
3Example available at: https://github.com/hyperledger/fabric-samples/blob/release/

first-network/crypto-config.yaml

89

https://github.com/hyperledger/fabric-samples.git
https://github.com/hyperledger/fabric-samples/blob/release/first-network/crypto-config.yaml
https://github.com/hyperledger/fabric-samples/blob/release/first-network/crypto-config.yaml

Chapter 6. Applications Developed to Test Hyperledger Fabric

Generation of channels configuration

The different peers and orderers must interact with different channels, maintaining a
copy of the ledger. In addition, multiple organizations can simultaneously cooperate
and exchange data.
The configtxgen tool can be used to set up the different channels and organizations,
and to define the so-called anchor peers that permits the interaction with the peers
belonging to other organizations [44]. These configurations must be specified in a
appropriate file, named configtx.yaml4. In this file it is possible to identify four
main sections:

� Profiles section. It is used to define the consortium of organizations that can
interact, the name of the channels and the set of organizations authorized to
participate in the channels.

� Organizations section. It is used to characterize the different organizations
that will take part to the system, including their name, their unique identifiers
and the set of anchor peers.

� Orderer section. It allows to specify some information about the orderers of
the system, including their hostname and port used for the communication.
In addition it is possible to define some parameters about the blocks that will
be created in the blockchain, like its maximum size, the maximum number of
transactions that can be contained, etc.

� Application section. It is used to configure the organizations to which the
clients of the blockchain belong to.

The confitgxgen tool generates three different outputs, described as follows [44]

� The genesis block used by orderers for the creation of the blockchains.

� The configuration transactions of the different channels characterizing the
blockchain.

� The anchor peer transactions that are used to configure the inter-organization
communication of peers.

Network configuration and deployment of Docker containers

The different members of the blockchain are deployed inside isolated Docker con-
tainers. The network configuration can be defined in the docker-compose.yaml
file5, that includes the definitions of the containers of all the different participants of
the system (with the exception of clients). In particular, it defines the configuration
of the following types of containers:

4Example available at https://github.com/hyperledger/fabric-samples/blob/release/

first-network/configtx.yaml
5Example available at https://github.com/hyperledger/fabric-samples/blob/release/

first-network/ or https://github.com/hyperledger/fabric-samples/blob/release/

basic-network/docker-compose.yml

90

https://github.com/hyperledger/fabric-samples/blob/release/first-network/configtx.yaml
https://github.com/hyperledger/fabric-samples/blob/release/first-network/configtx.yaml
https://github.com/hyperledger/fabric-samples/blob/release/first-network/
https://github.com/hyperledger/fabric-samples/blob/release/first-network/
https://github.com/hyperledger/fabric-samples/blob/release/basic-network/docker-compose.yml
https://github.com/hyperledger/fabric-samples/blob/release/basic-network/docker-compose.yml

Chapter 6. Applications Developed to Test Hyperledger Fabric

� Peer container. For every peer it is defined its hostname, IP address and ports,
the timeout of execution of the chaincode, the addresses of the anchor peers
it must refer to for communicating with the members of other organizations,
the IP address and port of the CouchDB state database (optional), etc.

� Orderer container. For every orderer it is defined the IP address, ports, host-
name, etc.

� Certification Authority container. It is the CA that releases the certificates to
enable secure TLS communication between peers, orderers and clients of the
blockchain.

� CLI container. The CLI containers allow to ease the execution of command
line instructions. The commands issued inside a CLI container, in fact, are
forwarded to the other containers as if the were executed directly by the peers
or by the orderers. A single CLI container can be used to communicate with
different peers by simply configuring the appropriate environment variables.

� CouchDB container. It is the container that hosts the CouchDB state database.
It allows to configure the IP and ports to allow the interaction of the peers
with the CouchDB state database. This container is deployed only if CouchDB
is used as state database. The adoption of LevelDB as state database, in fact,
does not require an ad-hoc container because its process is executed by the
peer container.

The docker-compose.yaml file is passed as argument to the docker-compose ap-
plication to automatically deploy all the containers defined in the configuration.

Creation and participation to channels

When the containers of the different members of the blockchain has been started,
it is necessary that at least one channel is created and that all the authorized peers
join the channel so that they can interact with each other. For this purpose, one of
the peers of the organizations must interact with the orderers to require the creation
of a new channel by issuing the following command:

peer channel create [flags]

This command is used to submit a request to one of the orderers of the blockchain,
so that it can create the channel genesis block. The create command requires to
specify as parameters the name of the new channel and the configuration transaction
file previously generated with the configtxgen tool. As a result of this operation, the
orderers create the genesis block for the new channel and send it to the peer. The
latter stores this file locally so that it can be used to allow all the authorized peers
of the blockchain to join that channel.

All the peers of the blockchain must join the channel to be able to interact with
the other members. This can be done with the following command:

peer channel join [flags]

91

Chapter 6. Applications Developed to Test Hyperledger Fabric

specifying which is the genesis block of the channel they need to join.
The overall procedure is then concluded with the definition of the anchor peers

of the different organizations taking part to the channel. This step is fundamental
to allow peers of different organizations to interact with each other. This operation
can be executed with the command:

peer channel update [flags]

Set up of chaincodes

When all the peers of the blockchain have been successfully configured to com-
municate in a channel, they can interact by using the same chaincodes. In this
paragraph it is supposed that the chaincode has already been developed (as shown
in Sec. 6.2.3) and it is only necessary to configure it for the interactions of the dif-
ferent peers. Many chaincodes can be installed in the peers of the blockchain so
that they can endorse and validate the transactions. The following command can
be used to install the chaincode in a peer:

peer chaincode install [flags]

Before it can be used, the chaincode must be initialized by using:

peer chaincode instantiate [flags]

During the initialization it is possible to define the endorsement policy of the
chaincode.

Endorsement Policy definition In version 1.0 of Fabric the endorsement policy
is defined at chaincode granularity, i.e. all the functions associated to the chaincode
must satisfy the same endorsement policy. The endorsement policy can be specified
by as an option of the instantiate command [44]. The policy is defined by using
boolean operators (and, or) and specifying the number and the identity of peers
of the different organizations that must endorse the transactions so that they can
be considered valid by committing peers [44]. If the endorsement policy is not
specified, the default one is used, considering as valid every transaction endorsed by
at least one peer of one organization. Some examples of valid endorsement policies
are described as follows:

1. -P OR (org1.member, org2.member) : it requires that at least one member
of the two organizations endorse the transactions.

2. -P AND(org1.member, org2.member) : it requires that at least one member
of each of the two organizations endorse the transactions

The endorsement policy is fundamental for characterizing the performances of a
Fabric blockchain, because it is strictly related to the number of transactions that
can be simultaneously endorsed in the blockchain.

92

Chapter 6. Applications Developed to Test Hyperledger Fabric

Chaincode functions invocation

Two different commands can be used to execute read or write operations:

peer chaincode invoke [flags]

This command can be used to execute write operations. It requires the endorsement,
ordering and validation of the transactions. Every executed transaction is inserted
in a block and recorded in the blockchain.

peer chaincode query [flags]

This command can be used to execute read-only operations. If the chaincode func-
tions contains operations that updates the state of the ledger, the execution of the
query does not fail but the modifications to the ledger are not persisted, i.e. no
new blocks are created to record the execution of the transaction. The execution of
queries, in fact, do not require the execution of ordering and validation phases of
transactions; the result of the queries is passed to the client application as soon as
the endorsement has been completed.

Chaincode upgrade

It is possible to modify to the code of existing chaincodes and to upgrade the chain-
code so that the modifications become effective [44].
The following commands can be used to update an already existing chaincode [44]

peer chaincode install [flags]

peer chaincode upgrade [flags]

Before upgrading the chaincode it is necessary to install the new version in all the
peers of the blockchain [44]). Then, one of the peers issues the upgrade command
to switch to the new version of the chaincode. In this way the initialization of the
chaincode is executed again [44].

Comments on the set up of the networks

In this thesis project different blockchain networks has been set up. Because of
the complexity of the overall procedure described in previous paragraphs, a bash
script has been written to speed up the deployment of the Fabric networks. The
Hyperledger Fabric example folder contains some scripts to deploy basic network
configurations 6. The configuration of the networks composed by many peers can be
problematic, especially if they are characterized by different organizations, because
a lot of configuration files must be edited. For this reason, do deploy some complex
network configurations, it has been used the netcomposer tools 7 that allows to
simplify and speed up the set of operations.

6Example of a script for configuring the network available at https://github.com/

hyperledger/fabric-samples/blob/release/first-network/byfn.sh
7netcomposer available at https://github.com/ibm-silvergate/netcomposer

93

https://github.com/hyperledger/fabric-samples/blob/release/first-network/byfn.sh
https://github.com/hyperledger/fabric-samples/blob/release/first-network/byfn.sh
https://github.com/ibm-silvergate/netcomposer

Chapter 6. Applications Developed to Test Hyperledger Fabric

6.2.3 Chaincode for the management of vehicles reports

In Hyperledger Fabric it is possible to write the chaincodes with Go or NodeJS
programming languages. The application of this thesis for the management of the
CAMs exchanged by the vehicles, has been developed in Go because it is the first
language officially supported by Fabric. The functions that can be execute with the
thesis chaincode can be described as follows:

1. Storage of the reports generated by the vehicles (write only operation).

2. Verification of the position declared by transmitted CAMs through the appli-
cation of position verification algorithms (read-write operation).

3. Query to retrieve stored CAMs (read-only operation).

4. Query to retrieve the history of modifications of the stored CAMs (read-only
of the history index)

The implementation of these operations is fundamental to test the performances
read and write performance of Hyperledger Fabric.

1. Storage of the reports generated by the vehicles

As shown in Sec. 5.3.1 every report is composed by different fields and, among other
things, it contains:

� The last CAM transmitted by the vehicle.

� The list of CAMs received by the vehicle (paired with the reception informa-
tion).

This application manages the reports formatted as JSON documents, exactly as
they have been generated by the vehicular simulator. Storing the reports in the
form of JSON documents is not a good solution because it requires to execute com-
plex queries operating on the fields of the JSON document to retrieve transmitted
and received CAMs. As mentioned in Sec. 3.4.1, the execution of complex queries is
possible for read-only operations, and if only if CouchDB is used as state database
[44]. In reality, the complex queries can be used also for read-write transactions
but their adoption is discouraged because the key-value pairs accessed with a com-
plex query are not considered part of the read-set of the associated transaction [44].
Therefore, the committing peers, during the validation phase of transactions, might
accept some transactions whose read-set is not complete and potentially in conflict
with respect to the current state of the ledger [44]. In the light of these considera-
tions, it has been decided to manipulate the content of the reports to create many
key-value pairs for each report, one for each transmitted and received CAM. This
processing is executed directly by the chaincode function that is in charge of storing
the reports. In particular, every key of the key-value pairs is a string formatted as
follows:

<timestamp>_<transmitterID>_<receiverID>

94

Chapter 6. Applications Developed to Test Hyperledger Fabric

where timestamp is the absolute timestamp (in milliseconds) of the transmission of
the CAM, while trasmitterID and receiverID are the identifiers of the transmitter
and of the receiver of the CAM (these identifiers are the ones contained into the
header of the last CAM that each vehicle has transmitted).
In every report, it is always contained a transmitted CAM; the key-value pair asso-
ciated to this CAM is characterized by the value of receiverID equal to the value of
trasmitterID.
The value associated to a key, instead, is formatted as a JSON document and in-
cludes the transmission and reception information of the CAM, i.e. all the pieces
of information that have been exchanged by the vehicles. This particular key-value
pairs format allows to easily retrieve the transmission and reception information of
the CAMs, that are necessary to apply the position verification algorithms.
Note. In Hyperledger Fabric it is possible to create the so-called Composite Keys,
i.e. keys composed by different fields that can be exploited to execute range queries
based on different fields and information [46]. For simplicity, the keys used in this
application are not composite keys but they have been implemented as a unique
strings, obtained as the concatenation of the different fields.

Design choices of the storage function The storage function has been im-
plemented to store multiple reports with a single transaction. The computational
overhead introduced by the execution of the transactions increases the time required
to store the data in the blockchain. For this reason, the storage function has been
designed to read a local file containing many reports collected by the base station.
With a single blockchain transaction is this way possible to store many reports and
to speed up the storage operation of the CAMs.

Alternative reports storage solution An alternative storage function has been
implemented to store the reports without processing their content. This alternative
implementation is fundamental to test the storage overhead introduced by the blocks
and by the transactions, but it has never been used to apply position verification
algorithms.

2. Query of the chaincode

A chaincode function was implemented to execute the range queries on the CAMs
stored in the blockchain. For this purpose, it is necessary to provide two parameters,
indicating respectively the lower and upper bound of the keys to retrieve.

3. Validation of the position of CAMs

The position verification algorithm implemented as a chaincode function is a simpli-
fication of the algorithm proposed in [67]. The purpose of this simplification consists
in testing the read and write performance of the blockchain but it is not conceived
for real applications. The classification of the cheating vehicles, in fact, is possible
only if the geographical coordinates declared by the cheaters are notably different
from their real location. To allow the correct classification of the CAMs, the vehicles
traces generated by the simulator take into account this simplified implementation
of the position verification algorithm, i.e. the cheating vehicles always declare a false
position which is at least 250 meters away from their real location.

95

Chapter 6. Applications Developed to Test Hyperledger Fabric

The problem of amount stored data The application of the position verifica-
tion algorithm requires that all the transmitted and received CAMs have already
been stored in the blockchain. The verification of the location declared by the ve-
hicles cannot be executed while storing the CAMs in the blockchain because the
reports generated by the receivers of the CAM that must be verified may not yet
be stored in the blockchain, i.e. they cannot be used for the validation. The val-
idation estimates the reliability of information contained in the CAM and ends by
storing in the blockchain the result of the validation of the CAM. Because of the
append-only property of the blockchain, upgrading the value of a key requires to
write a new key-value pair in the chain of blocks by doubling the storage consump-
tion. For this reason it was decided to update only the key-value pairs associated
to the CAMs marked as invalid by the position verification algorithm. By assuming
that the majority of transmitted CAMs provide valid information, the growth rate
of the blockchain due to the validation of CAMs is this way reduced.

Position verification algorithm implementation The implementation details
of the position verification algorithm are available in the form of pseudo-code in
Algorithm 1.

4. Query of the history of keys

This function receives as parameter a key and uses the GetHistoryForKey function
to retrieve the number and the entity of modifications occurred to the value of a key.
For example it could be useful to understand how many times a position verification
algorithm has been applied to a CAM or to identify the attempts of overwriting the
value associated to a key.

96

Chapter 6. Applications Developed to Test Hyperledger Fabric

Algorithm 1 Algorithm to verify if a vehicle is cheating.

Input: C Set of the keys of the transmitted CAMs that must be verified

Output: Verification Information

1: r ← 300.0m . Maximum radio range of vehicles

2: εr ← 6.8m . Ranging Error - constant[67]

3: εp ← 10.0m . Position Error - constant [67]

4: c← 299792548m/s . speed of light

5: for all c ∈ C do . For each identifier of the CAMs that must be verified

6: s← queryCAM(c) . Query the blockchain to retrieve the transmitted CAM

7: f ← 0 . Number of non-valid votes

8: v ← 0 . Number of valid votes

9: Ns ← queryReceiversCAM(c) . Query the blockchain to get the recep-

tion information of the vehicles that re-

ceived s
10: for all x ∈ Ns do . For all the vehicles that received s

11: dsx ← distance(s, x) . Distance between the position declared

in s and x at transmission and reception

instants
12: tprop ← xtrx − sttx . Time of propagation of the message

from transmitter to receiver
13: if dsx > r or|dsx − tprop · c| > 2εp + εr then

14: f ← f + 1

15: else

16: v ← v + 1

17: end if

18: end for

19: if v = 0 andf = 0 then . No vehicles received the CAM s. Its po-

sition is not classifiable.
20: cvalidity ← undefined

21: else if v > f then . Majority of receivers of s consider its de-

clared position as valid
22: cvalidity ← valid

23: else . Majority of receivers of s consider its de-

clared position as not valid
24: cvalidity ← invalid

25: updateBlockchain(c) . Store the CAM s in the blockchain no-

tifying that the declared position is not

valid
26: end if

27: end for

At the end of this procedure, one of the states undefined, valid, invalid is
assigned to the verification information of the CAM c that has been verified.

97

Chapter 6. Applications Developed to Test Hyperledger Fabric

6.3 The Benchmarking Tool

An important milestone of the project consists in the development of a benchmarking
tool, a bash script able to execute the performance evaluation of the blockchain
platform. The benchmark is focused on the analysis of the parameters described in
Table 6.1. All the parameters have been evaluated by using some bash commands
as source of data. Unless otherwise specified, all the experiments shown in Chapter
7 have been evaluated using the commands of table 6.1.

Parameter
evaluated
[U/M]

Bash
command

Implementation
details

Time [ms] date The time is computed as the difference between the
timestamp values read after and before the execution
of an operation.

CPU usage
[%]

top A background process has been used to continuously
read the values of CPU utilization. The CPU usage is
defined as the average of these values.

RAM [MB] free -m The RAM utilization is computed as the difference be-
tween the values of available memory evaluated before
and after the execution of an operation.

HDD [MB] df The storage utilization is computed as the difference be-
tween the values of used storage memory after and be-
fore the execution of an operation.

RAM of
containers
[MB]

docker

stats

RAM consumed only by the Docker containers. It is
computed as the difference between the amounts of used
RAM after and before the execution of a command.

HDD of
containers
[MB]

docker

system

df -v

HDD consumed only by the Docker containers. It is
computed as the difference between the values of storage
memory consumed after and before the execution of a
command.

Table 6.1: Parameters evaluated by the benchmarking tool

6.3.1 Operations executed by the tool

The tool is conceived to execute a lot of configuration and deployment operations
as described as follows:

� Removal of all the Docker containers, images and volumes from the system
before the execution of the benchmarks.

� Creation of the configuration files of different blockchain networks by using
the netcomposer tool.

� Deployment of the complete blockchain network by using a single hosting
machine and different Docker containers for each participant.

98

Chapter 6. Applications Developed to Test Hyperledger Fabric

In addition, the tool is able to execute transactions to manage the following opera-
tions:

� To store the reports in the blockchain, either by processing their content or
not (see Sec. 6.2.3). The tool reads the files generated by the vehicular sim-
ulator, copies these files in the peer containers (to simulate the base stations
collecting reports) and issues a sequence of transactions to store the reports in
the blockchain. Every transaction stores all the reports contained in a single
input file. Multiple input files reports can be stored during a benchmark.

� To query stored CAMs. The tool executes an exhaustive sequence of range
queries in order to retrieve all the CAMs stored in the blockchain. It can be
customized to define how many CAMs can be queried with a single transaction.

� To validate the stored CAMs. The tool generates transactions for the vali-
dation of all the CAMs stored inside the blockchain. It can be configured to
define how many CAMs can be validated with a single transaction.

� To query the history of CAMs. The tool allows to retrieve the history of
modifications of stored CAMs.

The tool allows to repeat every experiment several times and to compute some
statistics on the results, including the average, the variance and the confidence
interval at 95%.

6.3.2 Parameters of the benchmarks

The execution of the benchmarks can be customized by editing an appropriate con-
figuration file. The parameters that can be configured are described as follows:

� Name of the experiment.

� Number of repetitions of each experiment.

� Operations executed during the experiment:

– Storage of report with processing (see Sec. 6.2.3)

– Storage of reports without processing (see Sec. 6.2.3)

– Query of CAMs

– Validation of CAMs

– Query of the history of CAMs.

� Folder containing the files with the reports that must be stored.

� Endorsement policy.

� Limit on the percentage of CPU assigned to the peers and orderers processes.

� Number of parallel processes that can simultaneously endorse different trans-
actions.

99

Chapter 6. Applications Developed to Test Hyperledger Fabric

� Configuration of the network. It is expressed as the name of a configuration
file of netcomposer. It allows to customize the following parameters:

– Number of organizations

– Number of peers per organization

– Type of ordering service (Solo or Kafka)

– Number of orderers (only for Kafka ordering service)

– State Database (CouchDB or LevelDB)

– TLS secured communication between peers, orderers and clients, or inse-
cure communication.

6.3.3 Limits of the proposed implementation

The benchmarking tool is characterized by some limitations. First of all it does not
test the performance of a blockchain composed by different channels able to interact
with each other, as described in the architecture of Sec. 5.5.5.
All the operations performed by the benchmark are executed with the command
line interface. The real applications are typically developed by using one of the
SDKs available for the Go, Java and NodeJS programming languages. The trans-
actions invoked with the command line interface, in fact, can be endorsed only by
one peer, while the number of peers validating and committing the transactions
can be customized.
In addition, the use of the command line interface does not allow to interact with
external clients and to evaluate the latency introduced by these interactions. All
the transactions, in fact, are invoked directly by the peers of the network, by means
of the peer chaincode invoke command.

100

Chapter 7

Experimental Results

This chapter analyses the results of the experiments performed to test the scalability
and the performance of Hyperledger Fabric. Sec. 7.1 briefly describes the testing
environment while Sec. 7.2 shows the reports traces generated by the vehicular
mobility simulator and used in the experiments of this chapter. The first experiments
are relative to the time of access to the state database and to the history index
(Sec. 7.3). Sec. 7.4 inspects how the number and the size of blocks and transactions
impact on the storage memory utilization of Fabric and on the time of storage of
data.
The second part of the chapter starts with Sec. 7.5 and describes the scalability
tests performed with Hyperledger Fabric. Many experiments have been executed
to evaluate the effects of the number of peers and organizations (Sec. 7.8), the
number of orderers (Sec. 7.7) and the number of CAMs validated or queried by
every transaction (Sec. 7.8). The analysis compares the performance obtained for
the validation of CAMs obtained with read-only or read-write transactions (Sec. 7.9).
Sec. 7.10 evaluates the performance obtained if different endorsing peers concurrently
endorse the transactions. Finally, Sec. 7.11 highlights the most important results
the scalability tests shown in this chapter.

7.1 Configuration of the test environment

All the experiments conducted on this thesis have been executed on a Virtual Ma-
chine with the following characteristics:

� 4 virtual CPUs

� 6 GB of RAM

� 60 GB of storage memory

� Ubuntu 16.04 (64 bit) operating system

� Hyperledger Fabric version 1.1.0-preview

7.2 Simulation traces used during the experiments

The experiments shown in this chapter have been executed by using the reports
generated with the Python simulator described in Sec. 6.1. In particular, Table 7.1

101

Chapter 7. Experimental Results

shows a set of parameters used for all the simulations.

Nv Pc NRSU warea harea Rr

10 60% 5 1000m 1000m 300m

Table 7.1: Configuration of the simulator

Definition of the different fields of Table 7.1.
Nv indicates the number of vehicles in the simulation, Pc the probability that a
vehicle is cheating, NRSU the number of RSUs in the area of the simulation, warea

and harea indicates the width and height of the simulation area, Rr is the radio
range of transmission of the CAMs.

The traces of the reports generated with the simulator configured as described
in Table 7.1 are listed in Table 7.2.

ID
Total
Size

Total
Size
Real

N Files
Size

Single
File

Time
Simu-
lation

N Re-
ports

N
CAMs

7.1.1 200kB 192kB 1 200kB 10s 139 90
7.1.2 400kB 388kB 1 400kB 18s 256 170
7.1.3 600kB 588kB 1 600kB 26s 374 249
7.1.4 1MB 980kB 1 1MB 42s 627 417
7.1.5 1MB 980kB 10 100kB 42s 627 417
7.1.6 2MB 1.96MB 2 1MB 84s 1255 835
7.1.7 5MB 4.90MB 5 1MB 177s 2649 1764
7.1.8 10MB 9.80MB 10 1MB 401s 5999 3999
7.1.9 20MB 19.60MB 20 1MB 797s 11938 7958
7.1.10 100MB 98.03MB 100 1MB 3900s 58489 38999

Table 7.2: Traces of reports generated with the simulator

Definition of the different fields of Table 7.2.
ID indicates a unique identifier of the trace, so that it is possible to identify the
trace used during the different experiments. Total Size is the rounding of the
Total Size Real, i.e. the effective storage consumption of the generated trace. The
output of each simulation can be by composed by different files storing a portion of
the results; N Files indicates how many files has been created during the simulation
(the concept of file is important because every single file will be successively stored
in the blockchain by using a single transaction). Every generated file has an average
size of Size Single File, expressed in kB or MB. Time Simulation indicates the
total duration of the simulation, expressed in seconds. N Reports indicates total
number of reports generated by the vehicles and RSUs during the simulation. N
CAMs shows the number of CAMs transmitted by the vehicles (it does not coincide
with N Reports because the latter considers also the reports generated by the RSUs,
while the CAMs are transmitted only by the vehicles).

7.3 Evaluation of time of access to data

The objective of the first experiments executed on Hyperledger Fabric is the evalu-
ation of the time required to read from and write to the blockchain.

102

Chapter 7. Experimental Results

7.3.1 Time of access to the State Database

As mentioned in previous chapters, the blockchain is characterized by an always
growing chain of blocks. For this reason, the time required to read data is potentially
proportional to the amount of information stored in the blockchain (Θ(n), where n
is equal to the number of elements or transactions stored in the blockchain). The
state database has been introduced in Hyperledger Fabric to offer random access
to stored data, by making the read access time independent on the blockchain size
(Θ(1)).

Objective of the experiment: to verify if the time required to store and to
query data in the blockchain does not depend on the blockchain size, i.e. on the
number of key-value pairs stored.
Implementation details of the experiment: To deploy different blockchains
characterized by the same network configuration. For each blockchain it is necessary
to store a different amount of data (1MB, 10MB, 100MB). Exhaustive range queries
must be executed to retrieve all the key-value pairs stored in the blockchain (every
range query is able to retrieve 1000 key-value pairs).
Configuration of the network: see Table 7.3

Organizations 1
Peers per org. 2
Peers total 2
Orderers 1
CPU peers 100%
CPU orderers 100%
State Database LevelDB
Endorsing Policy Default
Input trace 7.1.4, 7.1.8, 7.1.10

Table 7.3: Configuration of the network

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100 110

T
im

e
(s

)

Size of data in the blockchain (MB)

Evaluation of the access time to the State Database

Time to store data in the blockchain
Time to query data stored in the blockchain

(a) Access time to the blockchain

 0

 20

 40

 60

 80

 100

Begin Middle End

T
im

e
(m

s)

Position in the blockchain of the queried key-value pairs

Time to query 4 key-value pairs stored in the blockchain

 Average time (ms) to query blockchain of 1 MB (4 results)
 Average time (ms) to query blockchain of 10 MB (4 results)
Average time (ms) to query blockchain of 100 MB (4 results)

(b) Query of 4 key-value pairs

Figure 7.1: Effect of blockchain size on the time of storage and querying

Results. As shown in Fig. 7.1a, the time required to store 1MB, 10MB, 100MB of
data in the blockchain and to execute exhaustive queries to retrieve all the stored

103

Chapter 7. Experimental Results

key-value pairs is linearly proportional to the blockchain size. In other words, the
random access time to the blockchain is independent on the blockchain size (Θ(1)).
To confirm this assertion, Fig. 7.1b shows the results of another experiment con-
ducted by executing range queries able to extract 4 key-value pairs stored exactly
in the first, in the last and in the intermediate block of the blockchain. Four ex-
periments have been executed for each test, the plotted values indicate the average
values of the experiments.
Based on the results of the experiments, it is possible to conclude that the read-write
access time of Fabric is independent from the size of the blockchain.

7.3.2 Time of access to the History Index

Objective of the experiment: To verify if the access time to the History Index
is independent on the number of modifications made to the key-value pairs.
Implementation details of the experiment: To overwrite 1MB of data stored
in the blockchain from 1 to 100 times. Every time the data is overwritten it must
be executed a query to the History Index to retrieve the history of one of the keys
stored in the blockchain.
Configuration of the network: same as 7.3 (different input trace, only 7.1.4)

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

T
im

e
(m

s)

Number of overwrites of key-value pairs

Read access time of the History Index

Average time (ms) to retrieve the history of a key

Figure 7.2: Read access time to the History Index

Results. Fig. 7.2 shows the result of the experiment. The time necessary for
accessing the history index to retrieve the set of modifications made to the key-
value pairs is proportional to the number of times that the data has been overwritten.
When the size of the blockchain is increased by a factor of 100 (i.e. when the data has
been overwritten 100 times), the time required to access the history of modifications
of a key is increased by a factor of 10. This result can be demonstrated by considering
that the time required to access the history index is not proportional to the length
(i.e. number of blocks) of the blockchain. However, to retrieve the data relative to
the history of a key it is necessary to access to many blocks containing the different
versions of the key-value pairs (multiple access to data) and to create a result given

104

Chapter 7. Experimental Results

by the concatenation of strings. The latter determine an increase of time that is
shown in Fig. 7.2.
The glitches that is possible to see in the chart are probably due to the context
switches performed by the operating system that may affect the amount of time
required for the execution of the queries.
The time (thi) required to retrieve the history of modifications of a key, can be
expressed by the following empirical formula:

thi = 106ms+ 8.25ms · novw (7.1)

where novw indicates the number of times that the key has been overwritten and ms
is the unit of measurement (milliseconds).

7.4 Effect of the blocks and transactions on the

storage memory requirements

This section describes how the creation of blocks and the execution of transactions
affect the storage memory overhead and the performance of the blockchain.
The storage overhead is defined as the difference between the size (in bytes) of the
chain of blocks and the size (in bytes) of the trace of reports generated by the
vehicular simulator, i.e. before they are stored in the blockchain.
The performance, instead, can be evaluated by analysing the time required to store
the reports in the blockchain.

7.4.1 Configuration of blocks

In Hyperledger Fabric it is possible to configure the generation of blocks (i.e. batches
in Hyperledger lingo) so that it is possible to satisfy the requirements of the different
applications. The characteristics of the blocks can be configured by editing the file
configtx.yaml1 and by configuring the 4 parameters described as follows:

1. BatchTimeout: it indicates the maximum number of seconds that can elapse
between the creation of two subsequent blocks. When the timeout elapses and
there is at least one already endorsed transaction, the orderers create a block,
independently on the number of already endorsed transactions.

2. MaxMessageCount: it indicates the maximum number of transactions that can
be contained inside a block. When the orderers receive this number of endorsed
transactions, they immediately create a block.

3. AbsoluteMaxBytes: it indicates the maximum size of each block, expressed in
bytes or its multiples.

4. PreferredMaxBytes: it indicates the preferred maximum size of each block,
expressed in bytes or its multiples.

1Example available at https://github.com/hyperledger/fabric-samples/blob/release/

first-network/configtx.yaml

105

https://github.com/hyperledger/fabric-samples/blob/release/first-network/configtx.yaml
https://github.com/hyperledger/fabric-samples/blob/release/first-network/configtx.yaml

Chapter 7. Experimental Results

7.4.2 Storage overhead of blocks

Objective of the experiment: To analyse the amount of storage overhead intro-
duced by blocks with different sizes.
Implementation details of the experiment: To deploy different blockchains
characterized by the same network configuration, and to store different amounts of
data in the blockchain. The BatchTimeout must be set to 2 seconds to enforce
the creation of blocks with one transaction only (alternatively it is possible to set
MaxMessageCount to 1). The reports must not be processed by the chaincode and
must be stored as JSON documents exactly as they have been generated by the
vehicular simulator (see Alternative reports storage solution of Sec. 6.2.3). The pro-
cessing of the content of reports, in fact, introduces an additional computational
and storage overhead that would invalidate the analysis; for each transmitted and
received CAM, in fact, the processing creates a different key-value pair.
Configuration of the network: same as Table 7.3 with different input traces
(from 7.1.1 to 7.1.10, except 7.1.5).
Configuration of blocks generation: See Table 7.4 (note: each block contains
exactly 1 transaction).

BatchTimeout 2s
MaxMessageCount 10
AbsoluteMaxBytes 99MB
PreferredMaxBytes 512kB

Table 7.4: Configuration of blocks generation
.

Results. The analysis of the results of the experiment demonstrated that the
blockchain contains exactly 3 blocks that are created before storing data. These
blocks are described as follows:

1. Genesis block

2. Configuration Transaction block

3. Block generated by the instantiate transaction

These blocks, whose generation is described by the operations of set up of the
blockchain described in Sec. 6.2.2, are fundamental to allow the execution of trans-
actions in a given channel of the blockchain.

ID
Trace

Trace
Size

N
Blocks

Avg
Block
Size

Total
Blockchain

Size

Blocks
Overhead

7.1.1 192kB 1 200.87kB 200.87kB 4.80%
7.1.2 388kB 1 397.13kB 397.13kB 3.38%
7.1.3 588kB 1 602.31kB 602.31kB 2.86%
7.1.4 980kB 1 1001.50kB 1001.50kB 2.55%
7.1.6 1.96MB 2 1.00MB 2.00MB 2.55%
7.1.7 4.90MB 5 1.00MB 4.99MB 2.23%
7.1.8 9.80MB 10 1.00MB 10.02MB 2.46%
7.1.9 19.60MB 20 0.98MB 20.00MB 2.45%
7.1.10 98.03MB 100 0.98MB 100.13MB 2.41%

106

Chapter 7. Experimental Results

Table 7.5: Numerical results of the experiment

The Table 7.5 shows the numerical results of the experiment; its fields are described
as follows:

� ID Trace identifies the traces of Table 7.2.
� Trace Size indicates the size of the traces generated by the simulator before

they are stored in the blockchain.
� N Blocks indicates how many blocks have been created in the blockchain

(excluding the first 3 blocks).
� Avg Block Size is the average size of the blocks of the chain.
� Total Blockchain Size indicates the amount of secondary memory used to

store the whole chain of blocks (the blocks have been retrieved with the peer

channel fetch command).
� Blocks Overhead indicates the storage overhead in percentage introduced

by the chain of blocks.

Note. This experiment considers only the size of the chain of blocks and not the
storage utilization of the Docker containers and the hosting machine. The latter
have been deeply analysed in Sec. 7.4.6.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

Bl
oc

k
O

ve
rh

ea
d

(%
)

Size of single block (KB)

Effect of the Block Size on the Block Overhead

Block Overhead (%)

(a) Block overhead and block size

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25

Bl
oc

k
O

ve
rh

ea
d

(%
)

Size of the blockchain (MB)

Effect of the Block Size on the Block Overhead

Block Overhead (%)

(b) Block overhead and blockchain size

Figure 7.3: Effect of the size of blocks and size of the blockchain on storage memory
overhead of blocks.

Fig. 7.3a shows that the percentage of storage overhead, introduced by the creation
of blocks, is reduced if the size of blocks is increased. This trend can be proven by
considering that each block contains in addition the following information2:

� The block header (containing the hash of the previous block, the hash summa-
rizing the transactions contained in the block, the digital signature generated
by the orderer that created the block)

� The overhead of each transaction (containing the digital signature and the
public key certificate of the peers that endorsed of the transactions)

2Additional information on the structure of blocks is available at: https:

//blockchain-fabric.blogspot.it/2017/04/hyperledger-fabric-v10-block-structure.

html

107

https://blockchain-fabric.blogspot.it/2017/04/hyperledger-fabric-v10-block-structure.html
https://blockchain-fabric.blogspot.it/2017/04/hyperledger-fabric-v10-block-structure.html
https://blockchain-fabric.blogspot.it/2017/04/hyperledger-fabric-v10-block-structure.html

Chapter 7. Experimental Results

� The keys that are necessary for the identification of the key-value pairs asso-
ciated to every stored report. In fact, the keys are computed by the chaincode
function because they are not generated by the vehicular simulator.

Each block can be inspected in binary format (by downloading it with peer channel

fetch command), and it is also possible to use the configtxlator tool to transform
it in human readable JSON format.
Fig. 7.3b shows that the blockchain overhead in percentage is almost constant if the
blockchain is created by blocks with the same size (Avg Block Size). The experiments
executed with the traces from 7.1.4 to 7.1.10, in fact, are characterized by blocks
with a size of about 1MB and by a storage overhead of about 2.5%.

The results of this experiment demonstrates that the size of blocks is relevant for
the definition of the blockchain storage overhead. The latter can be not negligible
with respect to the amount of stored data if the size of the blocks is very small.
Thus, the size of blocks must be taken in consideration especially if the amount of
stored data can be critical in the blockchain deployment scenario.

7.4.3 Configuration of the transactions contained in blocks

As introduced in the previous experiment the generation of transactions introduce
a storage overhead; for example, each transaction contains the digital signatures
necessary for the identification of the peers that executed the endorsement of the
transaction. For this reason, a deeper analysis was conducted to evaluate the stor-
age overhead introduced by each transaction. Before analysing in detail the next
experiment, it is necessary to introduce some considerations about the correct con-
figuration of the number of transactions per block.

The problem of the BatchTimeout. The BatchTimeout represents an impor-
tant parameter in the definition of the block size because it forces the creation of
blocks independently from the number of endorsed transactions that are ready to be
inserted into the new block. The timeout cannot be disabled because by removing
the line relative to the BatchTimeout configuration from the configtxgen.yaml file,
the timeout is automatically set to a predefined value of 2 seconds (this behaviour has
been tested with additional experiments). To simulate an infinite timeout, a very
large BatchTimeout value has been introduced, but this choice has caused many
drawbacks. With a large BatchTimeout value and a MaxMessageCount greater
than 1, in fact, the block containing the instantiate transaction is not immedi-
ately committed to the ledger. This implies that all the transactions executed before
the correct instantiation of the chaincode failed with an error code indicating that
it is not possible to execute a chaincode function as long the chaincode has not
installed in the peer and instantiated in the channel (this behaviour affects either
the invoke and query transactions). For this reason it is necessary to introduce,
between the execution of the instantiate transaction and the execution of any other
transactions, a delay longer than the duration of BatchTimeout.
A long BatchTimeout can cause another problem; if the transaction rate of the
blockchain is low, it is necessary to wait a long time before that the transactions are
validated and committed to the ledger. During the execution of some experiments
for this thesis, this problem has been detected and it made necessary to introduce

108

Chapter 7. Experimental Results

a waiting time between the storage and validation of CAMs, to allow the correct
execution of the position verification algorithm.

Other considerations on the creation of blocks. Three other parameters can
be used to configure the generation of blocks, i.e. MaxMessageCount, Preferred-
MaxBytes and AbsoluteMaxBytes. The MaxMessageCount can be used to create
blocks with a well-defined maximum number of transactions. This parameter can
be paired with a long BatchTimeout value to create blocks with the desired num-
ber of transactions in it. To enforce the creation of blocks with a given number
of transactions it is important to be able to respect the AbsoluteMaxBytes param-
eter that introduces an upper bound on the size of each block: if the size of the
transactions exceeds the AbsoluteMaxBytes size, in fact, they cannot be inserted
into the same block. Moreover, it is highly discouraged to set a very small value of
AbsoluteMaxBytes to limit the size of blocks, because if the size of a single trans-
action is larger than the AbsoluteMaxBytes, the transaction cannot be validated
(an experiment demonstrated this behaviour). In a scenario like the one described
in this thesis, characterized by clients requiring to store a large number of reports
with a single transaction, a small value of AbsoluteMaxBytes could compromise the
correct execution of the operations.

7.4.4 Effect of transaction size on storage overhead

Objective of the experiment: to verify if the number of transactions issued
to store the same amount of data in the blockchain is proportional to the storage
overhead of the blockchain.

Implementation details of the experiment: to deploy many blockchains with
different MaxMessageCount value (the BatchTimeout value has been chosen to sat-
isfy the requirements explained in Sec. 7.4.3).
Configuration of blocks generation: see Table 7.6.
Configuration of transactions: see Table 7.7.
Configuration of the network: same as Table 7.3 (with different input trace)

BatchTimeout 8s
MaxMessageCount 1, 2, 5, 10, 15
AbsoluteMaxBytes 99MB
PreferredMaxBytes 3MB

Table 7.6: Configuration of blocks generation

Transactions number 90
Transaction payload 10kB
Trace Size 986.2793kB

Table 7.7: Details of the experiment

109

Chapter 7. Experimental Results

N
Blocks
(nbk)

Txs per
Block
(ntxbk)

Block
Overhead
(Obck)[%]

Block
Overhead
(Obck)[kB]

Txs
Overhead
(Otx)[%]

Time to
Store

Data (s)
90 1 44.83% 442.19kB 4.98% 13.34s
45 2 36.57% 360.72kB 4.06% 13.10s
18 5 31.52% 310.83kB 3.50% 12.76s
9 10 29.87% 294.56kB 3.32% 12.75s
6 15 29.36% 286.41kB 3.26% 12.65s

Table 7.8: Results of the experiment

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90

Bl
oc

k
O

ve
rh

ea
d

(%
)

Number of Blocks

Effect of Number of Blocks on Block Overhead

Block Overhead (%)

(a) Number of blocks and block overhead

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bl
oc

k
O

ve
rh

ea
d

(%
)

Transactions per Blocks

Effect of the Number of Transactions on Block Overhead

Block Overhead (%)

(b) Transactions per block and block overhead

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90

T
im

e
(s

)

Number of Blocks

Effect of Number of Blocks Performances

Time to store data in the blockchain(s)

(c) Time to store data in the blockchain

Figure 7.4: Storage memory overhead of blocks and transactions

Result. This experiment analyses the storage overhead introduced by the creation
of blocks containing a different number of small sized transactions (10kB). Fig. 7.4a
shows that the block overhead in percentage is linearly dependent on the number
of generated blocks. At the same way, Fig. 7.4b demonstrates that by increasing
the number of transactions per block the total storage overhead is decreased. The
numerical results of table 7.11 has been used to derive the following empirical for-
mulas:

Obk = Obkfix +Otx · ntx (7.2)

Obk = 1.8226kB + 3.0906kB · ntx

110

Chapter 7. Experimental Results

where Obk is the overhead introduced by each block (by including the block and
transaction overhead expressed in kB), Obkfix is the fixed overhead introduced by
the creation of a block, Otx indicates the overhead introduced by every transaction
of the block and ntx is the number of transactions contained in the block. The total
storage overhead introduced by the blockchain can be computed as follows:

Obck =
n∑

i=0

Obki (7.3)

where Obck is the total storage overhead introduced by the chain of blocks, Obki is
the storage overhead introduced by the ith block of the chain (from this computation
are excluded the first three blocks which size is about 19kB).

Proof. To demonstrate the previous formulas it is necessary to compute the fixed
overhead introduced by each single transaction and by each single block.
The first step consists in computing the average overhead introduced by each block
by using one of the empirical results of Table 7.11 (in particular it has been chosen
the experiment characterized by 10 transactions per block).

Obk10 =
Obck

nbk

=
294.5566kB

9
= 32.7285kB

where Obk10 is the average overhead of each block generated during the experiment,
Obck is the total storage overhead of the blockchain, nbk is the number of blocks
which constitute the blockchain. It is assumed that every block of the blockchain
has the same size, thus:

Obki = Obkj ,∀(i, j)

Compute the difference (Obkdif) between the overhead relative to the blocks con-
taining 10 transactions (Obk10) and the overhead relative to blocks containing only
1 transaction (Obk1).

Obkdif = Obk10 −Obk1 = 32.7285kB − 4.9132kB = 27.8153kB

To find the overhead of each transaction contained in a block, it is necessary to
divide Obkdif by the difference between the numbers of transactions contained in one
block of the two experiments (ntx10 and ntx1 respectively):

Otx =
Obkdif

ntx10 − ntx1

=
27.8153kB

10− 1
= 3.0906kB

The result, Otx, indicates the overhead introduced by every transaction contained
in a block. At this point it is possible to conclude the proof by calculating the fixed
overhead introduced by every block:

Obkfix = Obk1 −Otx = 4.9132kB − 3.0906kB = 1.8226kB

Obkfix is the fixed overhead introduced by each block without considering the con-
tained transactions. It is computed as the difference between the total overhead of
the block containing exactly one transaction (Obk1) and the overhead introduced by
a generic transaction (Otx).

111

Chapter 7. Experimental Results

The validity of the numerical parameters can be proved by computing the total
blockchain overhead of each experiment and comparing the result with the values
Obck of table 7.11.

� Case with 1 transaction per block.
Obck = (1.8226kB + 3.0906kB · 1) · 90 = 442.188kB

� Case with 2 transactions per block.
Obck = (1.8226kB + 3.0906kB · 2) · 45 = 360.171kB

� Case with 5 transactions per block.
Obck = (1.8226kB + 3.0906kB · 5) · 18 = 310.961kB

� Case with 10 transactions per block.
Obck = (1.8226kB + 3.0906kB · 10) · 9 = 294.557kB

� Case with 15 transactions per block.
Obck = (1.8226kB + 3.0906kB · 15) · 6 = 289.089kB

Furthermore, to confirm the results has been considered also the block containing
only the instantiate transaction. Its size is about 4.63kB and its payload is prac-
tically empty, because no key-value pairs are stored during the instantiation of the
chaincode. The overhead introduced by a block containing only one transaction
is about 4.91kB according to our formula, but this overhead is relative to blocks
containing many key-value pairs; as mentioned in Sec. 7.4.2, the keys introduce an
additional overhead in the block. For this reason, the empirical formula derived in
this section can be considered acceptable to describe the overhead of blocks and
transactions.

Blocks and performances of the blockchain. Fig. 7.4c shows that the time
required to store data in the blockchain, slightly depends on the number of blocks
of chain (this consideration is valid if the number of transactions is kept constant in
all the experiments). The empirical formula that describes this phenomenon is:

tfeed = 5.9s+ 0.00825 · nbk (7.4)

where tfeed represents the time required to store data in the blockchain, nbk indicates
the number of blocks of the blockchain, s indicates the seconds.
Notes. The measured time considers only the time required for the endorsement
of the transactions (i.e. the time of execution of the peer chaincode invoke func-
tions) and not the time necessary for the ordering and committing phases.

7.4.5 Effects of Transactions size

Objective of the experiment: to evaluate how the transactions size affects the
storage overhead and the performance of the blockchain.

112

Chapter 7. Experimental Results

Implementation details of the experiment: to deploy different blockchains
with the same configuration, and execute transactions with a different payload size.
Configuration of blocks generation: see Table 7.9.
Configuration of transactions: see Table 7.10.
Configuration of the network: same as 7.3 (trace 7.1.8 split in smaller files)

BatchTimeout 100s
MaxMessageCount 10
AbsoluteMaxBytes 99MB
PreferredMaxBytes 12MB

Table 7.9: Configuration of blocks generation

Transactions per block 10
Transaction payload Variable
Trace size 10MB

Table 7.10: Details of the experiment

Txs Size
[kB]

N Blocks
(nbk)

Txs per
Block

N Txs
Blockchain
Overhead

(%)

Time to
Store

Data (s)

10.88 90 10 894 30.02 122.94
98.74 10 10 99 4.99 35.34
244.95 5 10 40 3.33 31.83
489.75 2 10 20 2.42 29.10
977.65 1 10 10 2.29 29.10

Table 7.11: Results of the experiment

Results. Fig. 7.5a shows that the overhead of the blockchain is linearly propor-
tional to the number of executed transactions to store data in the blockchain. The
empirical formula describing this phenomena is:

Obck = 193.46kB + 3.05 · ntx (7.5)

whereObck indicates the total blockchain overhead, ntx indicates the number of trans-
actions of the blockchain, kB indicates the kilobytes. At the same way, Fig. 7.5b
shows that the size of transactions is inversely proportional to the blockchain over-
head.

Transactions and performances of the blockchain. Fig. 7.5c shows that the
time required to store the same amount data in the blockchain is linearly propor-
tional to the number of executed transactions. The empirical formula describing the
phenomena is:

tfeed = 28.04s+ 0.106 · ntx (7.6)

where tfeed describes the time required to store data in the blockchain, ntx indicates
the number of transactions, s indicates the seconds.

113

Chapter 7. Experimental Results

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

Bl
oc

k
O

ve
rh

ea
d

(%
)

Number of Transactions

Effect of Transactions on Blockchain Overhead

Block Overhead (%)

(a) Number of transactions and block overhead

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

Bl
oc

k
O

ve
rh

ea
d

(%
)

Transactions Size [kB]

Effect of Transactions on Blockchain Overhead

Block Overhead (%)

(b) Transactions size and block overhead

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
im

e
(s

)

Number of Transactions

Effect of Transactions on Performances

Time to store data in the blockchain(s)

(c) Number of transactions and time to store data

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 200 400 600 800 1000

T
im

e
(s

)

Transactions Size [kB]

Effect of Transactions on Performances

Time to store data in the blockchain(s)

(d) Transactions size and time to store data

Figure 7.5: Storage memory overhead introduced by blocks and transactions

This result can be justified by considering that the increase of the number of en-
dorsed transactions requires a larger computational overhead, due to the an increase
of the number of calculations of digital signatures and of interactions between the
different members of the blockchain.
Comments on the result. The time requires to store data in the blockchain sig-
nificantly decreases by varying the payload of the transactions from 10kB to 100kB,
while it is established when it reaches a payload of about 500kB. The explanation
of this phenomena is simple: when the payload of each transaction is very large, the
computational overhead required by the endorsement of the transactions becomes
negligible with respect to the time required for the execution of the chaincode func-
tion. At the same way by increasing the number of transactions the storage overhead
of the blockchain is increased because each transaction contributes to the total over-
head.

7.4.6 Storage overhead of the hosting machine and contain-
ers

In this section the storage memory requirements of the hosting machine and of the
different Docker containers used for the deployment of a Fabric blockchain are anal-
ysed. All the experiments outlined above, in fact, refer to the storage overhead
generated by the chain of blocks (retrieved with the peer channel fetch com-

114

Chapter 7. Experimental Results

mand) and not to the total storage overhead introduced by Hyperledger Fabric (e.g.
by the state database, history index, etc.).

LevelDB or CouchDB The first important consideration is relative to the adop-
tion of LevelDB or CouchDB as state database. LevelDB allows to simplify the
analysis of the storage utilization because it is installed directly on the containers of
the peers and it is therefore sufficient to inspect the different containers to analyse
the amount of secondary memory required by the state database. With CouchDB,
instead, the analysis is more complex because it involves an ad-hoc CouchDB Docker
container and a set of Docker volumes used to persist the data. For this reason, in
this section, all the results are relative to network configuration characterized by the
adoption of LevelDB as state database.

Objective of the experiment: to understand if the storage consumption of the
Docker containers and of the hosting machine are proportional to the size of the
blockchain.
Implementation details of the experiment: to deploy different blockchains by
storing different amounts of data and using the following commands to analyse the
storage consumption:

� df -v: for the total storage consumption of the hosting machine.

� docker system df -v: for the storage consumption of the Docker containers
and volumes.

Configuration of the network and blocks creation: same as the experiment
of Sec. 7.4.2.

Results

Analysis of Docker containers. The Table 7.12 shows the results of the evalu-
ation of the storage consumption of the Docker containers before and after having
stored the data in the blockchain (the information contained in the table is relative
to the experiment conducted with the trace 7.1.1 - 192kB). This analysis does not
require to evaluate Docker volumes because LevelDB does not create any volume.

Container Name
Size Before

Storing
Data [kB]

Size After
Storing

Data [kB]

Difference
[kB]

dev.peer0.org1.example.com 0 0 0
cli 0 0 0
peer0.org1.example.com 39.1 457.0 417.9
peer1.org1.example.com 29.9 448.0 418.1
orderer 38.7 244.0 205.3
ca.example.com 38.0 38.8 0

Table 7.12: Analysis of Docker containers

The Table 7.12 shows 4 columns, Container Name indicates the name of the
containers used, Size Before and After Storing Data indicate the storage con-
sumption of each single container before and after the reports has been stored in

115

Chapter 7. Experimental Results

the blockchain, while the Difference indicates the amount of secondary memory
that has been used to execute the storage of data in the blockchain (i.e. it is the
difference between the values of the previous two columns).
The orderer consumes exactly 205.3kB of data because it stores locally the complete
chain of blocks. The peers, instead, consume about 418kB each, more than the dou-
ble that the amount of data stored by the orderer. This value is reasonable because
each peer stores the chain of blocks, the state database (containing exactly the same
key-value pairs stored in the chain of blocks) and the history index. These assertions
have been verified by inspecting the file system of the peers and of the orderer to
locate the relative files. The dev.peer0.org1.example.com is a container created only
for the execution of chaincode associated to peer0.org1.example.com container and,
for this reason, it does not store data. At the same way, the cli container and the
CA container (ca.example.com) do not require to store data during the execution of
operations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

St
or

ag
e

C
on

su
m

pt
io

n
[M

B]

Size of Trace [MB]

Storage Consumption of Hyperledger Fabric

Storage memory consumed in the hosting machine [MB]
Storage memory consumed by the Docker containers [MB]

Storage memory occupation of the trace of reports [MB]

(a) Storage consumption of hosting
machine, Docker containers and stored

trace of reports

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

R
at

io

Size of Trace [MB]

Storage Consumption of Hyperledger Fabric

Ratio between storage of hosting machine and stored trace
Ratio between storage of containers and stored trace

Ratio between storage of hosting machine and containers

(b) Ratio between the storage
consumption of hosting machine,

containers and stored trace

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

R
at

io

Size of Trace [MB]

Storage Consumption of Peers and Orderers

Ratio between storage used by a peer and size of trace
Ratio between storage used by a orderer and size of trace

(c) Ratio between the storage
consumption of a peer (and a orderer)

and the size of stored trace

Figure 7.6: Storage overhead of Docker containers and hosting machine

Storage utilization of Docker containers and hosting machine. Fig. 7.6a
shows the size of the traces containing the reports, the storage utilization of the

116

Chapter 7. Experimental Results

Docker containers, and the overall storage utilization of the hosting machine. It is
evident that the amount of storage memory consumed by the Docker containers is
notably lower than the total amount of storage memory consumed by the hosting
machine. Fig. 7.6b allows to quantify these values: in the hosting machine it is
consumed about the double of the storage memory used by the containers. The
reasons can be numerous but the ones that have been identified are the existence of
a storage overhead necessary for the execution of the containers, and the creation of
log files that are saved in the hosting machine to track the operations executed by
the different containers. These assertion has been demonstrated by executing some
tests that reduced the amount of information stored in the logs, e.g. by removing
all the instructions of the chaincode writing on standard output, and by changing
the Log Level of each container so that they store a reduced amount of log data (the
Log Level can be edited in the docker-compose.yaml file). These precautions made
possible to reduce the storage utilization of the hosting machine (numerical results
are not reported).
Fig. 7.6b shows that the ratio between the storage consumption of the all the Docker
containers and the size of the stored traces is about 4 times larger. The expected
value was 5 times larger because the orderer stores the chain of blocks, and both
peers store either the chain of blocks and the state database. The correspondence
between the theoretical values and the experimental values is verified only with
traces with a size lower than 2MB, while starting from 5MB onward, the storage
utilization of containers is reduced. The reason is the reduction of the amount
of storage memory consumed by the state database. Fig. 7.6c demonstrates that
amount of storage consumed by the orderer with respect to the size of the stored
trace is almost constant and predictable (a little bit larger than the size of stored
trace, due to the overhead introduced by the creation of blocks). On the contrary,
the storage utilization of each peer is reduced when the size of the stored trace
becomes larger than 2MB. This unusual result has been verified multiple times by
introducing a long delay between executing each transaction storing the reports in
the ledger, so that it was possible to verify that the ordering and committing phases
of the transactions have been concluded before reading the size of containers. It was
also verified that the size of the chain of blocks stored in the peers is equivalent to
the one stored in the orderer.
This behaviour, even if apparently wrong, is acceptable because LevelDB uses an
algorithm for data compression called Snappy [72], that notably reduces the amount
of secondary memory required by the state database.

7.4.7 Final considerations on storage overhead

The management of the storage utilization is very important in Hyperledger Fabric,
because every peer stores two copies of all the key-value pairs, one copy for the chain
of blocks and one copy for the state database. All the experiments conducted in
Sec. 7.4 demonstrated that the creation of blocks and transactions is fundamental
for the definition of the storage overhead introduced by the blockchain. The con-
figuration of blocks is not an easy task, and requires to know some configuration
parameters of the blockchain. The creation of very large blocks can reduce the
storage overhead of the blockchain but increases the amount of time necessary for
committing data to the ledger, in other words it increases the latency. A trade-off

117

Chapter 7. Experimental Results

between efficiency and storage overhead must be chosen by the system administra-
tors, depending on the requirements of the blockchain applications. In addition to
the blocks, also the number and the size of transactions affect the performance and
the storage requirements of the blockchain. The execution of a multitude of trans-
actions with a small-sized payload introduces a large storage and computational
overhead that can degrade the performance of the blockchain. Unfortunately, in
some applications it is not possible to execute transactions with a large payload, for
example the management of transfer of assets is characterized by transactions with
a small-sized payload. In the context of this thesis, it is possible to collect many
reports and to store them simultaneously with a single transaction. However, this
solution has a significant drawback: it is necessary to postpone the validation of
CAMs stored in blockchain so that all the base stations have the possibility to store
the reports by executing a reduced number of transactions. The same problem arises
if the blockchain is composed by large blocks, because it is necessary that all the
blocks are committed before correctly applying the position verification algorithms.

7.5 Scalability tests of Hyperledger Fabric

In this section the results of the experiments on the scalability of Hyperledger Fab-
ric are illustrated. The scalability tests have been executed on a single hosting
machine and, for this reason, their results do not constitute a reliable assessment of
the Hyperledger Fabric performance. To overcome the limitations of the limited de-
ployment environment, for some experiments, the percentage of CPU time assigned
to the peer and orderer processes has been limited. The maximum amount of main
memory installed in the hosting machine has never been exceeded in order to avoid
that the operation of swapping conducted by the operating system might compro-
mise the result of the experiments. Another major problem relates to the execution
of concurrent processes that tries to simultaneously access to the secondary mem-
ory, by making the access to disk a performance bottleneck. The following sections
describe the experiments relative to the scalability of the blockchain, by highlight-
ing the limits of the deployment environment and the countermeasures adopted to
manage them.

7.6 Effect of the number of peers of the blockchain

Objective of the experiments: to verify if the number of peers participating in
the blockchain affects the performance of the operations of storage, verification and
querying.

Implementation details of the experiments: to deploy different blockchains
characterized by a different number of peers. To test for each blockchain the per-
formance obtained by storing the reports, validating all the CAMs and executing
exhaustive queries to retrieve all the stored key-value pairs. All the experiments
conducted in this section refers to the block configuration of Table 7.13.

118

Chapter 7. Experimental Results

BatchTimeout 2s
MaxMessageCount 10
AbsoluteMaxBytes 99MB
PreferredMaxBytes 512kB

Table 7.13: Configuration of blocks generation

7.6.1 Experiments with 1 organization and many peers

Organizations 1
Peers per org. 2,4,6,8,10,12,14,16
Peers total 2,4,6,8,10,12,14,16
Orderers 1
Type of orderer Solo
State Database CouchDB
Endorsing Policy Default

Table 7.14: Configuration of the network

Storage of reports in the blockchain

This test performs the storage of 10MB of reports (trace 7.1.8) in raw format (i.e.
without processing the content of reports) and evaluates the time required to execute
the operation, the percentage of CPU used, the amount of RAM consumed and the
storage memory utilization.

CPU peers 5%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.8 (10MB)
Type of storage Raw Format

Table 7.15: Additional details on the experiment

119

Chapter 7. Experimental Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18

T
im

e
(s

)

Number of Peers

Scalability on Number of Peers (1 organization) - Time

Confidence Level 95%
Average Time to Store Data in the Blockchain(s)

(a) Time required to store data in the
blockchain.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18

C
PU

 U
til

iz
at

io
n

(%
)

Number of Peers

Scalability on Number of Peers (1 organization) - CPU

Confidence Level 95%
Average CPU utilization (%)

(b) Average CPU consumption while
storing data in the blockchain

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (1 organization) - RAM

Confidence Level 95%
Average RAM Utilization (MB)

(c) RAM consumption required to store
data in the blockchain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (1 organization) - Storage

Confidence Level 95%
Average Storage Consumption (MB)

(d) Storage consumption required to
store data in the blockchain

Figure 7.7: Storage of reports in the blockchain

Results Time. Fig. 7.7a shows that time required to store the reports in the
blockchain is linearly proportional to the number of peers, when the latter is lower
then 8. With a number of peers greater then 8 the time is established to a value of
about 250-300 seconds.

tstore = 59.62s+ 27.46 · npeers

CPU utilization. Fig. 7.7b confirms that the CPU utilization of the hosting
machine is linearly proportional to the number of peers. This trend can be justified
by considering that every peer of the network executes the commit phase of all the
transactions. The endorsement of transactions, instead, does not affect the CPU
utilization because only one peer sequentially endorses all the transactions.

CPUstore = 7.19% + 1.86 · npeers

RAM utilization. Fig. 7.7c shows that the deployment of many peer containers
requires more main memory (linear dependence).

RAMstore = 66.57MB + 275.467 · npeers

120

Chapter 7. Experimental Results

Storage utilization. Fig. 7.7d proves that every peer stores its own replica of
the chain of blocks and the state database because the storage utilization is linearly
proportional to the number of peers. The experiments characterized by 12, 14
and 16 peers have not been properly executed, i.e. some peers have not received the
complete sequence of blocks (probably the storage utilization has been read before all
the transactions have been committed) and, for this reason, the last two experiments
cannot be considered trustworthy. This problem emerges from Fig. 7.7d, in which
the slope of line is reduced when the number of peers exceeds the value of 12.

HDDstore = 76.22MB + 22.59 · npeers

Validation of CAMs stored in the blockchain

This section analyses the validation of the CAMs stored in the blockchain. The
trace used for validation is 7.1.5 (1MB of data split in 10 files of about 100kB
each). The reports are not stored in raw format but they have been processed by
the chaincode to create many key-value pairs, one for each CAM transmitted and
received. The experiment consists in the validation of all the CAMs stored in the
blockchain through the execution of a sequence of transactions which validate 20
CAMs at a time. Table 7.16 summarizes the details of the experiment.

CPU peers 10%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.5 (1MB)
Type of storage With processing
CAMs validated per transaction 20

Table 7.16: Additional details of the experiment

121

Chapter 7. Experimental Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18

T
im

e
(s

)

Number of Peers

Scalability on Number of Peers (validation) - Time

Confidence Level 95%
Average Time to Validate all CAMs (s)

(a) Time required to validate all the
CAMs

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
PU

 U
til

iz
at

io
n

(%
)

Number of Peers

Scalability on Number of Peers (validation) - CPU

Confidence Level 95%
Average CPU utilization for Validation (%)

(b) Average CPU utilization during
validation of CAMs

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0 2 4 6 8 10 12 14 16 18

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (validation) - RAM

Confidence Level 95 - Hosting Machine%
Average RAM Utilization for Validation (MB) - Hosting Machine

Average RAM Utilization for Validation (MB) - Docker Containers

(c) RAM utilization for the validation of
CAMs (host and containers)

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (validation) - Storage

Confidence Level 95%
Average Storage Consumption for Validation (MB)

(d) Storage consumption for the
validation of the CAMs

Figure 7.8: Validation of all the CAMs stored in the blockchain

Results

Fig. 7.8a, 7.8b, 7.8d show that time required for the validation of the CAMs, the
CPU utilization during the validation and the storage memory consumption are lin-
early proportional to the number of peers of the network. By increasing the number
of peers, in fact, the computational and storage requirements necessary to endorse
and commit transactions is also increased. Since the CPU time of each process is
restricted to 10% , also the time required to execute the operations is increased as
a consequence of the numerous context switches executed by the operating system
and by the sequential accesses to the disk that are necessary to read and store the
validation information. The increase of the storage memory utilization is determined
by the execution of the position verification algorithm that updates the information
of the non-valid CAMs by appending new blocks to the blockchain.
The result shown in Fig. 7.8c, instead, is unexpected. The amount of main memory
used during the validation of CAMs is slightly increased up to the number of peers
is lower than or equal to 12, and then drastically drops below the amount of memory
used to store the CAMs. The operating system, in fact, starts swapping the con-
tent of the secondary memory to the swap partition. The main memory utilization
of the Docker containers was also inspected by using the docker stats command.
This analysis confirms that the trend of the main memory of the hosting machine

122

Chapter 7. Experimental Results

is equivalent to the amount of main memory used by the containers (Fig. 7.8c).
The trend of time, CPU, RAM, and storage memory can be described with the
following empirical formulas:

tval = 21.27s + 5.68 · npeers

CPUval = 9.40% + 4.02 · npeers

RAMval = −5MB + 2.5 · npeers

HDDval = 7.47MB + 27.23 · npeers

Querying of all the CAMs stored in the blockchain

CPU peers 10%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.5 (1MB)
Type of storage With processing
CAMs queried per transaction 20

Table 7.17: Additional details of the experiment

Results

Fig. 7.9a and Fig. 7.9b show that the time and the total CPU utilization required to
execute the queries, are linearly dependent on the number of peers of the blockchain.
These results are totally unexpected because the transaction flow of query opera-
tions does not involve the ordering and committing phases, i.e. only the peer that
endorses the transaction performs useful operations. It is evident that every peer,
even if it is not involved in the endorsement or ordering of transactions, uses a small
percentage of the total computational resources of the hosting machine. Therefore,
the context switches performed by the operating system determine the increase of
the time required for the execution of query operations.
Finally, the comparison between Fig. 7.8b and Fig. 7.9b shows that the the appli-
cation of the position verification algorithm is more CPU intensive with respect to
the execution of queries.
Fig. 7.9c and Fig. 7.9d show that the main memory used by the querying process is
practically absent, while the total storage consumption is established to about 6MB.
The latter is independent on the number of peers because no blocks are created and
the peers do not replicate new data.
The trend of time, CPU, RAM and storage utilization of the querying process can
be described with the following empirical formulas:

tquery = 13.2s + 2.65 · npeers

CPUquery = 16.18% + 1.36 · npeers

RAMquery = 1.44MB + 0.15 · npeers

HDDquery = 6.33MB

123

Chapter 7. Experimental Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18

T
im

e
(s

)

Number of Peers

Scalability on Number of Peers (query) - Time

Confidence Level 95%
Average Time to Query all CAMs (s)

(a) Time required to query all the stored
CAMs

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
PU

 U
til

iz
at

io
n

(%
)

Number of Peers

Scalability on Number of Peers (query) - CPU

Confidence Level 95%
Average CPU utilization for Querying (%)

(b) Average CPU utilization to query all
the stored CAMs

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (query) - RAM

Confidence Level 95%
Average RAM Utilization for Querying (MB)

(c) RAM utilization used to query all the
stored CAMs

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (query) - Storage

Confidence Level 95%
Average Storage Consumption for Querying (MB)

(d) Storage memory utilization to query
all the stored CAMs

Figure 7.9: Querying of all the CAMs stored in the blockchain

7.6.2 Experiments with many organizations and 2 peers per
organization

This experiment analyses the performance of a blockchain composed by many peers
belonging to different organizations, each consisting of two peers. The total number
of peers of the different blockchains is equivalent to the one of the experiments
shown in Sec. 7.6.1, thus the expected outcome is the same. Table 7.18 shows the
configuration of the blockchain networks used in this experiment.

Organizations 1,2,3,4,5,6,7,8
Peers per org. 2
Peers total 2,4,6,8,10,12,14,16
Orderers 1
Type of orderer Solo
State Database CouchDB
Endorsing Policy Default

Table 7.18: Configuration of the network

124

Chapter 7. Experimental Results

Storage of reports in the blockchain

CPU peers 5%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.8 (10MB)
Type of storage Raw Format

Table 7.19: Additional details of the experiment

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18

T
im

e
(s

)

Number of Peers

Scalability on Number of Peers (many organizations) - Time

Time for storing data (1 organization)
Time for storing data (N organizations)

(a) Time required to store data in the
blockchain.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18

C
PU

 U
til

iz
at

io
n

(%
)

Number of Peers

Scalability on Number of Peers (many organizations) - CPU

Average CPU utilization (1 organization)
Average CPU utilization (N organizations)

(b) Average CPU consumption while
storing data in the blockchain

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (many organizations) - RAM

RAM utilization (1 organization)
RAM utilization (N organizations)

(c) RAM utilization required to store
data in the blockchain

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (many organizations) - Storage

Storage consumption (1 organization)
Storage consumption (N organizations)

(d) Storage memory consumption
required to store data in the blockchain

Figure 7.10: Storage of data in the blockchain - N organizations

Results

Fig. 7.10 compares the results of the experiment conducted in Sec. 7.6.1 (charac-
terized by one organization and a variable number of peers) and the experiment of
Sec. 7.6.2 (characterized by many organizations consisting of 2 peers each). This
comparison is relative to the storage of raw reports in the blockchain. Fig. 7.10a
shows that the time required for the endorsement of the transactions is almost con-
stant in the scenarios characterized by many organizations, while grows linearly if
the blockchains are composed by one organization only. This behaviour has not

125

Chapter 7. Experimental Results

been demonstrated. According to the Hyperledger Fabric documentation, in fact,
with the peer chaincode invoke command, only one peer of the network endorses
the transactions [73]. The default endorsing policy is always satisfied if at least
one peer of any organization endorses the transaction, independently on the orga-
nization it belongs to. The list of running Docker containers proves that in every
experiment only one peer of the network endorses the transactions, because only a
chaincode container is created for the execution of the transactions code. For this
reason, neither the number of peers or organizations may affect the endorsement of
transactions.

Eventually, an in depth analysis of the interactions between peers can be useful
to understand this strange behaviour.
The analysis of the CPU, RAM and storage memory utilisation, instead, demon-
strated that the two experiments are almost equivalent.
Fig. 7.10d shows that, unlike the networks composed by one organization only, the
blockchains consisting of many organizations maintains the linear dependence be-
tween the number of peers and the total storage memory utilisation, even if the
number of peers is greater than or equal to 12. This is another confirmation of the
fact that the interactions of peers belonging to the same organization is different
from the inter-organization communication.
The trend of time, CPU, RAM, and storage memory utilisation, necessary to store
data in the blockchains composed by many organizations consisting of 2 peers each,
can be described with the following empirical formulas:

tstore = 108.25s + 0.53 · npeers

CPUstore = 6.14% + 2.37 · npeers

RAMstore = 110.7MB + 265.1 · npeers

HDDstore = 76MB + 22.7 · npeers

To prove these results, additional experiments have been executed by creating many
blockchains, each one characterized by a different endorsement policy with the for-
mat AND (org1.member, org2.member,...,orgN.member), where N indicates the
number of organizations taking part to the blockchain. The transactions executed
in these experiments were not validated by the committing peers because the peer

chaincode invoke does not allow different peers endorsing the same transactions;
thus, in every experiment composed by many organizations, the endorsement pol-
icy of the chaincode has never been satisfied. However, the outcome of these tests
demonstrated that, even if the transactions are not validated, the chain of blocks
replicated by every peer contains the whole sequences of valid and invalid transac-
tions. At the same way, all the modifications applied to the state database are not
committed and do not modify the final state of the ledger.

7.6.3 Experiments with 2 organizations and many peers per
organization

The goal of this experiment consists in verifying the results of the tests executed in
Sec. 7.6.2. Many blockchains composed exactly by two organizations and a variable
number of peers per organization have been deployed.

126

Chapter 7. Experimental Results

Organizations 2
Peers per org. 1,2,3,4,5,6,7,8
Peers total 2,4,6,8,10,12,14,16
Orderers 1
Type of orderer Solo
State Database CouchDB
Endorsing Policy Default

Table 7.20: Configuration of the network

Storage of reports in the blockchain

CPU peers 5%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.8 (10MB)
Type of storage Raw Format

Table 7.21: Additional details of the experiment

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18

T
im

e
(s

)

Number of Peers

Scalability on Number of Peers (1-2 organizations) - Time

Time for storing data (1 organization)
Time for storing data (2 organizations)

(a) Time required to store data in the
blockchain.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18

C
PU

 U
til

iz
at

io
n

(%
)

Number of Peers

Scalability on Number of Peers (1-2 organizations) - CPU

Average CPU utilization (1 organization)
Average CPU utilization (2 organizations)

(b) Average CPU consumption while
storing data in the blockchain

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (1-2 organizations) - RAM

RAM utilization (1 organization)
RAM utilization (2 organizations)

(c) RAM consumption required to store
data in the blockchain

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Peers

Scalability on Number of Peers (1-2 organizations) - Storage

Storage consumption (1 organization)
Storage consumption (2 organization)

(d) Storage consumption required to
store data in the blockchain

Figure 7.11: Storage of data in the blockchain - 2 organizations

127

Chapter 7. Experimental Results

Results

Fig. 7.11a confirms the results of the experiment of Sec. 7.6.1: the number of organi-
zations affects the time required to execute the endorsement of transactions, despite
the overall number of peers of all the organizations is kept constant. The CPU,
RAM and storage memory utilisation, instead, are not affected by this parameter
and evolve linearly with the number of peers (Fig. 7.11b, Fig. 7.11c, Fig. 7.11d).
The trend of time, CPU, RAM, and storage memory necessary to store data in the
blockchains composed by 2 organizations, consisting of npeersorg peers each, can be
described with the following empirical formulas:

tstore = 70.9s + 33.6 · npeersorg

CPUstore = 13.6% + 3.1 · npeersorg

RAMstore = 140.1MB + 519.2 · npeersorg

HDDstore = 76.5MB + 45.2 · npeersorg

7.7 Effect of the number of orderers of the blockchain

The experiments of Sec. 7.7.1, Sec. 7.7.2 and Sec. 7.7.3 analyse how the performance
of the blockchain varies by increasing the number of the ordering nodes (Kafka
orderers). The experiments relative to the execution of read-only queries have been
performed even if the queries do not involve the ordering and committing phases, i.e.
the number of orderers should not affect the execution of queries. The configuration
of the network used in all the experiments is shown in Table 7.7. The results of the
three experiments are shown at the end of Sec. 7.7.3.

Organizations 1
Peers per org. 2
Peers total 2
Orderers 1,2,3,4,5,6,7,8,9,10,11,12
Type of orderer Kafka
State Database CouchDB
Endorsing Policy Default

Table 7.22: Configuration of the network

7.7.1 Storage of reports in the blockchain

CPU peers 5%
CPU orderers 5%
Timeout Peer 300s
Trace Stored 7.1.8 (10MB)
Type of storage Raw Format

Table 7.23: Additional details of the experiment

128

Chapter 7. Experimental Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
(s

)

Number of Orderers

Scalability on Number of Orderers - Time

Confidence Level 95%
Time for storing data (N orderers)

(a) Time required to store data in the
blockchain.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
PU

 U
til

iz
at

io
n

(%
)

Number of Orderers

Scalability on Number of Orderers - CPU

Confidence Level 95%
Average CPU utilization (N orderers)

(b) Average CPU consumption while
storing data in the blockchain

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers - RAM

Confidence Level 95%
RAM utilization (N orderers)

(c) RAM consumption required to store
data in the blockchain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers - Storage

Confidence Level 95%
Storage consumption (N orderers)

(d) Storage consumption required to
store data in the blockchain

Figure 7.12: Storage of reports in the blockchain

The trend of time, CPU, RAM and storage memory used to store the CAMs in the
blockchain can be described by the following empirical formulas:

tstore = 107.8s + 0.46 · norderers

CPUstore = 10.71% + 0.59 · norderers

RAMstore = 646.2MB + 365.8 · norderers

HDDstore = 154.2MB + 7.4 · norderers

7.7.2 Validation of all the CAMs stored in the blockchain

CPU peers 5%
CPU orderers 5%
Timeout Peer 300s
Trace Stored 7.1.5
Type of storage With processing
CAMs validated per transaction 20

Table 7.24: Additional details of the experiment

129

Chapter 7. Experimental Results

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
(s

)

Number of Orderers

Scalability on Number of Orderers (validation) - Time

Confidence Level 95%
Average Time to Validate all CAMs (N orderers)

(a) Time required to validate all the
CAMs

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
PU

 U
til

iz
at

io
n

(%
)

Number of Orderers

Scalability on Number of Orderers (validation) - CPU

Confidence Level 95%
Average CPU utilization for Validation (N orderers)

(b) Average CPU utilization during
validation of CAMs

-100

-50

 0

 50

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers (validation) - RAM

Confidence Level 95%
RAM utilization for Validation (N orderers)

(c) RAM utilization for the validation of
CAMs

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers (validation) - Storage

Confidence Level 95%
Storage Consumption for Validation (N orderers)

(d) Storage consumption for the
validation of the CAMs

Figure 7.13: Validation of all the CAMs stored in the blockchain

The trend of time, CPU and storage memory used to validate all the CAMs stored
in the blockchain can be described by the following empirical formulas:

tvalidation = 71.08s + 0.39 · norderers

CPUvalidation = 10.88% + 0.23 · norderers

HDDvalidation = 62.54MB + 0.69 · norderers

7.7.3 Querying of all the CAMs stored in the blockchain

CPU peers 5%
CPU orderers 5%
Timeout Peer 300s
Trace Stored 7.1.5
Type of storage With processing
CAMs validated per transaction 100

Table 7.25: Additional details of the experiment

130

Chapter 7. Experimental Results

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
(s

)

Number of Orderers

Scalability on Number of Orderers (query) - Time

Confidence Level 95%
Average Time to Query all CAMs (N orderers)

(a) Time required to query all the stored
CAMs

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
PU

 U
til

iz
at

io
n

(%
)

Number of Orderers

Scalability on Number of Orderers (query) - CPU

Confidence Level 95%
Average CPU utilization to Query all CAMs (N orderers)

(b) Average CPU utilization to query all
the stored CAMs

-100

-50

 0

 50

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
A

M
 U

til
iz

at
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers (query) - RAM

Confidence Level 95%
RAM utilization to Query all CAMs (N orderers)

(c) RAM utilization used to query all the
stored CAMs

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

St
or

ag
e

C
on

su
m

pt
io

n
(M

B)

Number of Orderers

Scalability on Number of Orderers (query) - Storage

Confidence Level 95%
Storage Consumption to Query all CAMs (N orderers)

(d) Storage memory utilization to query
all the stored CAMs

Figure 7.14: Querying of all the CAMs stored in the blockchain

The trend of time, CPU and storage memory used to query the CAMs stored in the
blockchain can be described by the following empirical formulas:

tquery = 11.87s + 0.11 · norderers

RAMquery = 0MB

CPUquery = 10.23%− 0.09 · norderers

HDDquery = 3.70MB

Results

The time required for the endorsement of the transactions used for the validation
and storage of CAMs, slightly increases with the number of orderers, as shown in
Fig. 7.12a and Fig. 7.13a. The increase of time that is necessary to execute the op-
erations, is related to the growth of the computational requirements of the orderers,
as shown in Fig. 7.12b and Fig. 7.13b. The increase in the time and computational
requirements is most pronounced in the networks composed by many peers (Fig. 7.7)
with respect to the blockchains composed by many orderers (Fig. 7.12). The opera-
tions executed by peers (endorsement, signing, verification, committing), in fact, are
more computationally expensive then the ones performed by the orderers (ordering

131

Chapter 7. Experimental Results

of transactions and signing of blocks). The time measured during the experiments
is relative to the time of endorsement of transactions, thus it is more affected by the
overhead of the peer processes, with respect to the overhead of the ordering nodes.
Concerning the amount of main memory used by the hosting machine, instead, a
network with many orderers (Fig. 7.12c) consumes a larger amount of RAM with
respect to a network composed by many peers (Fig. 7.7c). Fig. 7.12c shows that
during the storage operations, the operating system starts swapping when 11 or-
dereres are created (the slope of the line describing the main memory utilization is
reduced). As usual, the trend of the RAM utilisation during the operations of vali-
dation and querying of the blockchain is not predictable and it is typically reduced
by increasing the number of orderers (Fig. 7.13c and Fig. 7.14c).
The storage memory utilisation is linearly dependent on the number of orderers,
either while storing or validating the CAMs (Fig. 7.12d and Fig. 7.13d). An addi-
tional observation about the storage requirements of the network is made by com-
paring the experiments relative to a blockchain network composed by many orderers
(Fig. 7.12d) and a blockchain composed by many peers (Fig. 7.7d). It is evident
that the storage memory utilisation is higher in the blockchains composed by many
peers with respect to the blockchains characterized by many orderers. Every peer,
in fact, stores either the state database and the chain of blocks, while every orderer
stores only the chain of blocks.

7.8 Effect of the number of CAMs validated or

queried by every transaction

Sec. 7.8.1 and Sec. 7.8.2 aim to identify the best number of CAMs that can be vali-
dated or queried with a single transaction, in order to obtain a good validation and
querying performance, without the risk of generating very long lasting transactions.
Table 7.26 and Table 7.27 show the configuration of both experiments.

Organizations 1
Peers per org. 2
Peers total 2
Orderers 1
Type of orderer Solo
State Database CouchDB
Endorsing Policy Default

Table 7.26: Configuration of the network

CPU peers 5%
CPU orderers 5%
Timeout Peer 300s
Trace Stored 7.1.5
Type of storage With processing
CAMs validated or queried per
transaction

1, 2, 5, 10, 20, 100, 200

Table 7.27: Additional details of the experiment

132

Chapter 7. Experimental Results

7.8.1 Validation of CAMs stored in the blockchain

 0

 50

 100

 150

 200

 0 20 40 60 80 100

T
im

e
(s

)

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - Time

Confidence Level 95%
Average time to validate all CAMs

(a) Time required to validate all the
CAMs

 0

 5

 10

 15

 20

 20 40 60 80 100

C
PU

 U
til

iz
at

io
n

(%
)

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - CPU

Confidence Level 95%
Average CPU utilization for CAMs validation

(b) Average CPU utilization during
validation of CAMs

-40

-20

 0

 20

 40

 0 20 40 60 80 100

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - RAM

Confidence Level 95%
RAM utilization for CAMs validation (N orderers)

(c) RAM utilization for the validation of
CAMs

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

St
or

ag
e

co
ns

um
pt

io
n

(M
B)

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - Time

Confidence Level 95%
Storage consumption for CAMs validation

(d) Storage consumption for the
validation of the CAMs

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - Blocks

Confidence Level 95%
Number of blocks created during the validation of CAMs

(e) Number of blocks created for the
validation of the stored CAMs

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of CAMs validated by every transaction

Scalability on CAMs Validated by Every Transaction - Blocks

Confidence Level 95%
Size of blocks created during the validation of CAMs

(f) Storage utilization of blocks created
for the validation of the stored CAMs

Figure 7.15: Validation of all the CAMs stored in the blockchain

The trend of time, CPU, RAM, storage memory utilisation, number and size of the
blocks created for validating the CAMs stored in the blockchain, can be described
with the following empirical formulas (ncams indicates the number of CAMs validated

133

Chapter 7. Experimental Results

by every transaction)

tvalidation = 52.11906 +
286182500− 52.11906

1 + (ncams

7.787183·10−9)0.7809806

CPUvalidation = 9.028278 +
14.92664− 9.028278

1 + (ncams

3.012399
)0.9153901

RAMvalidation = 0MB

HDDvalidation = 59.26925 +
19230680− 59.26925

1 + (ncams

5.644042·10−8)0.7933975

NBlocksvalidation = 0.7139051 +
143972100− 0.7139051

1 + (ncams

1.810446·10−12)0.5359125

SizeBlocksvalidation = 0.2346004 +
2849813− 0.2346004

1 + (ncams

2.28744·10−7)0.9544648

134

Chapter 7. Experimental Results

7.8.2 Querying of all CAMs stored in the blockchain

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

T
im

e
(s

)

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - Time

Confidence Level 95%
Average time to query all CAMs

(a) Time required to query all the stored
CAMs

 0

 5

 10

 15

 20

 0 20 40 60 80 100

C
PU

 u
til

iz
at

io
n

(%
)

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - CPU

Confidence Level 95%
Average CPU utilization to query all CAMs

(b) Average CPU utilization to query all
the stored CAMs

-40

-20

 0

 20

 40

 0 20 40 60 80 100

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - RAM

Confidence Level 95%
Average RAM utilization to query all CAMs

(c) RAM utilization used to query all the
stored CAMs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

St
or

ag
e

co
ns

um
pt

io
n

(M
B)

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - Storage

Confidence Level 95%
Average storage consumption to query all CAMs

(d) Storage memory utilization to query
all the stored CAMs

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - Blocks

Confidence Level 95%
Number of blocks created to query all CAMs

(e) Number of blocks created to query all
the stored CAMs

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of CAMs queried by every transaction

Scalability on CAMs Queried by Every Transaction - Blocks

Confidence Level 95%
Size of blocks created to query all the CAMs

(f) Storage utilization of blocks created
to query all the stored CAMs

Figure 7.16: Querying of all the CAMs stored in the blockchain

The trend of time, CPU, RAM, storage memory utilisation, number and size of the
blocks created for querying the CAMs stored in the blockchain can be described
with the following empirical formulas (ncams indicates the number of CAMs queried
with a single transaction):

135

Chapter 7. Experimental Results

tquery = 7.97985 +
15035.94− 7.97985

1 + (ncams

0.03598113
)1.003272

CPUquery = −63339.76 +
17.2982 + 63339.76

1 + (ncams

3254528000
)0.5025865

RAMquery = 0MB

HDDquery = 3.003054 +
2832.753− 3.003054

1 + (ncams

0.02662319
)1.019187

NBlockquery = 0

SizeBlocksquery = 0MB

Results

Fig. 7.15 shows that the performance of the blockchain varies by modifying the
number of transactions validated by every transaction. By validating many CAMs
with a single transaction it is possible to reduce the time necessary to validate all
the CAMs stored in the blockchain (Fig. 7.15a). In a real deployment environment,
the validation of many CAMs at a time requires to wait some time between storing
the CAMs in the blockchain and validating them. This implies that the time saved
during the execution of the transactions is spent to wait that enough CAMs are
stored (and committed) in the blockchain. This problem does not affect the densely
populated vehicular environments, but it can be problematic in the case the base
stations receive a very limited number of reports to be stored in the blockchain. To
deal with this problem, it is necessary to impose a maximum number of CAMs that
can be stored and a maximum timeout within which the base stations must generate
a transaction to validate the previously stored CAMs. This waiting time, apparently
problematic for the performance of the platform, can be exploited to create larger
blocks (e.g. characterized by large values of BatchTimeout and MaxMessageCount)
to reduce the computational and storage overhead introduced by the creation of
blocks. With larger blocks, the base stations should wait a time interval greater
than the BatchTimeout before they can safely execute the transactions for the val-
idation of the CAMs.
The amount of CPU utilization (Fig. 7.15b) is reduced by validating many CAMs
with a single transaction, because the computational overhead, necessary to digi-
tally sign and to verify the signatures, is drastically reduced.
The amount of main memory used during the validation process (Fig. 7.15c) is in-
dependent on the number of CAMs validated by every transaction and assumes a
nil value.
The storage memory overhead (Fig. 7.15d), the number of created blocks (Fig. 7.15e)
and the storage utilization of blocks (Fig. 7.15f) show that the storage overhead in-
troduced by the validation is inversely proportional to the number of blocks, thus
it is suggested to validate many CAMs at a time to limit the total storage require-
ments of the application. Similarly to the validation of CAMs, also the operations
of querying are affected by the number of CAMs retrieved by every transaction

136

Chapter 7. Experimental Results

(Fig. 7.16).
The most interesting result of the querying process is the total storage memory
utilization: even if no blocks are created (Fig. 7.16e and Fig. 7.16f), the hosting ma-
chine storage utilization moves from circa 70MB to 4MB (7.16d); this proves that the
overhead introduced by the transactions is enormous, and that is necessary to write
few data as possible in the logs, especially in the real deployment environments.

The whole analysis demonstrated that, by validating or querying 20 CAMs per
transaction, a good trade-off between the time of execution of transactions, and the
total storage and computational overhead is obtained. It is better to avoid very
long-lasting transactions but, at the same time, it would be preferable to reduce the
computational and storage overhead of transactions. It is discouraged to manage
too many CAMs with a single transaction, because, if the time of execution of a
transaction increases too much, the transaction execution timeout may elapse and
invalidate the transaction itself.

7.9 Comparison of validation with query and in-

voke

The commands peer chaincode invoke and peer chaincode query can be used
to execute read-write and read-only transactions respectively. By using the query
command to execute chaincode functions to update the state of the ledger, the
modifications are not committed because the clients do not forward the transaction
requests to the ordering service nodes, i.e. only the endorsing phase is executed. This
section describes the effects of the validation of CAMs executed as query or invoke
transactions. The configuration of the network and the experiment are described
in Table 7.28 and Table 7.29. To better understand the results, it is important to
remember the configuration of the parameters necessary for the creation of blocks
(Table 7.30).

Organizations 1
Peers per org. 2
Peers total 2
Orderers 1
Type of orderer Solo
State Database CouchDB
Endorsing Policy Default

Table 7.28: Configuration of the network

CPU peers 10%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.5 (1MB)
Type of storage With processing
CAMs validated per transaction 20

Table 7.29: Additional details of the experiment

137

Chapter 7. Experimental Results

BatchTimeout 2s
MaxMessageCount 10
AbsoluteMaxBytes 99MB
PreferredMaxBytes 512kB

Table 7.30: Configuration of blocks generation

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12

T
im

e
(s

)

Number of peers

Comparison Query - Invoke (validation) - Time

Average Time to validate all CAMs (query)
Average Time to validate all CAMs (invoke)

(a) Time required to validate all the
stored CAMs

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12
C
PU

 U
til

iz
at

io
n

(%
)

Number of peers

Comparison Query - Invoke (validation) - CPU

Average CPU utilization for validation (query)
Average CPU utilization for validation (invoke)

(b) Average CPU utilization to validate
all the stored CAMs

-10

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of peers

Comparison Query - Invoke (validation) - RAM

Average RAM utilization for validation (query)
Average RAM utilization for validation (invoke)

(c) RAM utilization used to validate all
the stored CAMs

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12

St
or

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

Number of peers

Comparison Query - Invoke (validation) - Storage

Average storage consumption for validation (query)
Average storage consumption for validation (invoke)

(d) Storage memory utilization to
validate all the stored CAMs

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of peers

Comparison Query - Invoke (validation) - Blocks

Number of blocks created to validate all the CAMs (query)
Number of blocks created to validate all the CAMs (invoke)

(e) Number of blocks created to validate
all the stored CAMs

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of peers

Comparison Query - Invoke (validation) - Blocks

Size of blocks created to validate all the CAMs (query)
Size of blocks created to validate all the CAMs (invoke)

(f) Storage utilization of blocks created
to validate all the stored CAMs

Figure 7.17: Validation of all stored CAMs with query and invoke

138

Chapter 7. Experimental Results

The following empirical formulas describe the trend of time, CPU, RAM, storage
memory utilization, number and size of blocks created for validating the CAMs,
when the peer chaincode query command is used (ncams indicates the number of
CAMs validated with a single transaction, vq indicates the validation executed with
query command).

tvq = 7.92s + 0.14 · ncams

CPUvq = 17.23% + 2.56 · ncams

RAMvq = 0MB

HDDvq = 7.85MB

NBlocksvq = 0

SizeBlocksvq = 0MB

The mathematical formulas describing the validation of CAMs with the invoke

command are the same shown in Sec. 7.6.1.

Results

The most interesting results of this experiment are relative to the time and the
amount of computational power required by the validation of CAMs (Fig. 7.17a and
Fig. 7.17b). The CPU utilisation of the two experiments, invoke and query, is almost
equivalent, while the time required by the transactions executed with the invoke
command is notably larger. This behaviour can be explained because the CPU
time assigned to every peer has been limited to the 10% of the total computational
capabilities of the hosting machine. Furthermore, the numerous context switches
occurred when the invoke command is used, due to the execution of the ordering
and committing phases of transactions, may impact on the execution time, with
an under-utilization of the computational power of the hosting machine. Another
possible reason for the increase of time required by the invoke transactions, might
be the sequential execution of read-write operations on the secondary memory. The
query command does not require to update the ledger, while, using the invoke
command, data is read and written to the blockchain during the commit phase.
If many read-write requests of access to disk are enqueued, the time required by the
operations may increase.
Fig. 7.17d, Fig. 7.17e and Fig. 7.17f confirm the previous assertion, by proving
that the invoke transactions write a considerable amount of data to the secondary
memory, while the information stored with the query transactions is practically
nil (no blocks are created). Fig. 7.17d suggests that the large storage overhead
is generated only by the invoke transactions, thus it is probably introduced by the
ordering and committing phases of the transactions, and not by the endorsing phase.

7.10 Experiments conducted in multi-process en-

vironment

This section deals with the evaluation of performance of Hyperledger Fabric in a
multi-process environment. Many parallel processes invoke transactions on different

139

Chapter 7. Experimental Results

endorsing peers, to store, validate and query the CAMs. The peculiarity distinguish-
ing Hyperledger Fabric from the other blockchain platforms, in fact, is the possibility
to increase the throughput by limiting the execution of the code of transactions to
a subset of the peers of the blockchain (the validation and committing phases are
instead executed by all the peers). Many network configurations have been used
and, for each of them, different experiments have been conducted by modifying
the maximum number of concurrent processes (n) invoking the transactions on the
different endorsing peers. The number of concurrent processes is limited by the num-
ber of peers of the network, thus, the benchmarking tool waits for the completion
of the endorsement of all the transactions previously executed before issuing other
transactions, i.e. it waits for the completion of all the background processes (wait
bash command). The time required by the endorsement of all the transactions is
measured as the time necessary for the completion of all the background processes.
Table 7.31 and Table 7.32 describe respectively the configuration of the network and
the additional details of the experiment. This section shows only the experiments
conducted with 6 peers because the experiments executed with another number of
peers show the same trend.

Organizations 1
Peers per org. 6
Peers total 6
Orderers 1
Type of orderer Solo
State Database CouchDB

(unless otherwise specified)
Endorsing Policy Default

Table 7.31: Configuration of the network

CPU peers 10%
CPU orderers 100%
Timeout Peer 300s
Trace Stored 7.1.5 (1MB split in 100kB files)
Type of storage With processing
CAMs validated or queried per
transaction

20

Number of processes Variable from 1 to 6

Table 7.32: Additional details of the experiment

140

Chapter 7. Experimental Results

7.10.1 Storage of CAMs with concurrent processes

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7

T
im

e
(s

)

Number of processes

Scalability Multi-Process Storage - Time

Average Time to store all CAMs (no raw) - 6 peers
Confidence Level 95%

(a) Time required to validate all the
stored CAMs

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

C
PU

 U
til

iz
at

io
n

(%
)

Number of processes

Scalability Multi-Process Storage - CPU

Average CPU utilization for storage (no raw) - 6 peers
Confidence Level 95%

(b) Average CPU utilization to validate
all the stored CAMs

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of processes

Scalability Multi-Process Storage - RAM

Average RAM utilization for storage (no raw) - 6 peers
Confidence Level 95%

(c) RAM utilization used to validate all
the stored CAMs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7

St
or

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

Number of processes

Scalability Multi-Process Storage - Storage

Average storage consumption for storage (no raw)-6 peers
Confidence Level 95%

(d) Storage memory utilization to
validate all the stored CAMs

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of processes

Scalability Multi-Process Storage - Blocks

Number of blocks created to store reports (no raw) - 6 peers
Confidence Level 95%

(e) Number of blocks created to validate
all the stored CAMs

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of processes

Scalability Multi-Process Storage - Blocks

Size of blocks created to store reports (no raw) - 6 peers
Confidence Level 95%

(f) Storage utilization of blocks created
to validate all the stored CAMs

Figure 7.18: Storage of CAMs in multi-process environment (6 peers)

The trend of time, CPU, RAM, storage memory utilisation, number and size of
blocks created for storing the CAMs in the blockchain can be described with the
following formulas (nprocess indicates the number of endorsing peers that simultane-

141

Chapter 7. Experimental Results

ously endorse the transactions for storing data):

tvalidation = −3.534676 +
3326442 + 3.534676

1 + (nprocess

3.929898·10−10)0.5450249

CPUvalidation = 24.69% + 0.90 · nprocess

RAMvalidation = 1171.25MB + 65.75 · nprocess

HDDvalidation = 47.17MB + 20.11 · nprocess

NBlocksvalidation = 4.669227 +
5939120− 4.669227

1 + (nprocess

0.00006843098
)1.474069

SizeBlocksvalidation = 1.19MB

Results

Fig. 7.18 shows that the concurrent endorsement of transactions improve the per-
formance of Hyperledger Fabric. In particular, Fig. 7.18a proves that the time
necessary to endorse the transactions is inversely proportional to the number of
concurrent processes. The rate of endorsement of transactions also affects the gen-
eration of blocks (Fig. 7.18e): the faster the endorsement of transactions, the lower
the number of blocks created (the block configuration parameters that determines
the creation of new blocks in this experiment are the BatchTimeout and MaxMes-
sageCount). The size of the chain of blocks (Fig. 7.18f), instead, remains basically
constant because the difference in the number of generated blocks is negligible, i.e.
the overhead introduced by the additional blocks is very low. The CPU utiliza-
tion (Fig. 7.18f) proves that the endorsement of transactions storing data in the
blockchain is not a computationally expensive operation, thus the CPU utilisation
has a limited linear growth, proportional to the number of processes. The increase
of the number of processes, i.e. the number of Docker containers created for the
execution of the chaincode functions, determines a larger main memory utilization
(Fig. 7.18c). Finally, the secondary memory utilisation is linearly dependent on the
number of processes because, even if the number of peers is kept constant, many
Docker containers have been created for the execution of the chaincode.

7.10.2 Validation of CAMs with concurrent processes

This section shows the results of the experiments of validation of CAMs conducted
with many concurrent parallel processes. The discussion of the results is shown at
the end of Sec. 7.10.3. The charts of Fig. 7.19 show the result of the experiments
that have been conducted with CouchDB and LevelDB state database.

142

Chapter 7. Experimental Results

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7

T
im

e
(s

)

Number of processes

Scalability Multi-Process Validation - Time

Average Time to validate all CAMs (CouchDB) - 6 peers
Confidence Level 95% (CouchDB) - 6 peers

Average Time to validate all CAMs (LevelDB) - 6 peers

(a) Time required to validate all the
stored CAMs

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

C
PU

 U
til

iz
at

io
n

(%
)

Number of processes

Scalability Multi-Process Validation - CPU

Average CPU utilization for validation (CouchDB) - 6 peers
Confidence Level 95% (CouchDB) - 6 peers

Average CPU utilization for validation (LevelDB) - 6 peers

(b) Average CPU utilization to validate
all the stored CAMs

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of processes

Scalability Multi-Process Validation - RAM

Average RAM utilization for validation (CouchDB) - 6 peers
Confidence Level 95% (CouchDB) - 6 peers

Average RAM utilization for validation (LevelDB) - 6 peers

(c) RAM utilization used to validate all
the stored CAMs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7

St
or

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

Number of processes

Scalability Multi-Process Validation - Storage

Average storage consumption for validation (CouchDB)-6 peers
Confidence Level 95% (CouchDB) - 6 peers

Average storage consumption for validation (LevelDB)-6 peers

(d) Storage memory utilization to
validate all the stored CAMs

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of processes

Scalability Multi-Process Validation - Blocks

Number of blocks created during validation (CouchDB) - 6 peers
Confidence Level 95% (CouchDB) - 6 peers

Number of blocks created during validation (LevelDB) - 6 peers

(e) Number of blocks created to validate
all the stored CAMs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of processes

Scalability Multi-Process Validation - Blocks

Size of blocks created during validation (CouchDB) - 6 peers
Confidence Level 95% (CouchDB) - 6 peers

Size of blocks created during validation (LevelDB) - 6 peers

(f) Storage utilization of blocks created
to validate all the stored CAMs

Figure 7.19: Validation of all the stored CAMs in multi-process environment (6
peers)

7.10.3 Querying of CAMs with concurrent processes

This section shows the results of the experiments of querying of CAMs conducted
with many concurrent parallel processes.

143

Chapter 7. Experimental Results

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7

T
im

e
(s

)

Number of processes

Scalability Multi-Process Query - Time

Average Time to query all CAMs - 6 peers
Confidence Level 95%

(a) Time required to query all the stored
CAMs

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

C
PU

 U
til

iz
at

io
n

(%
)

Number of processes

Scalability Multi-Process Query - CPU

Average CPU utilization to query all CAMs - 6 peers
Confidence Level 95%

(b) Average CPU utilization to query all
the stored CAMs

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7

R
A

M
 u

til
iz

at
io

n
(M

B)

Number of processes

Scalability Multi-Process Query - RAM

Average RAM utilization to query all CAMs - 6 peers
Confidence Level 95%

(c) RAM utilization used to query all the
stored CAMs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7

St
or

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

Number of processes

Scalability Multi-Process Query - Storage

Average storage consumption to query all CAMs -6 peers
Confidence Level 95%

(d) Storage memory utilization to query
all the stored CAMs

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s
cr

ea
te

d

Number of processes

Scalability Multi-Process Query - Blocks

Number of blocks created while querying all CAMs - 6 peers
Confidence Level 95%

(e) Number of blocks created to query all
the stored CAMs

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7

St
or

ag
e

co
ns

um
pt

io
n

of
 b

lo
ck

s
(M

B)

Number of processes

Scalability Multi-Process Query - Blocks

Size of blocks created while querying all CAMs - 6 peers
Confidence Level 95%

(f) Storage utilization of blocks query to
validate all the stored CAMs

Figure 7.20: Querying of stored CAMs in multi-process environment (6 peers)

The trend of time, CPU, RAM, storage memory utilisation, number and size of
blocks created for the validation of the CAMs with the concurrent endorsement of
transactions can be described with the following formulas (data is relative to the
adoption of CouchDB state database):

tvalidation = 14.74s + 4.158 · nprocess

144

Chapter 7. Experimental Results

CPUvalidation = 61.38% + 5.45 · nprocess

RAMvalidation = −68.10MB + 70.35 · nprocess

HDDvalidation = 156.95MB + 11.23 · nprocess

NBlocksvalidation = 7.65− 0.40 · nprocess

SizeBlocksvalidation = 0.30MB

The trend of time, CPU, RAM, storage memory utilisation, number and size of
blocks created for querying the CAMs with the concurrent endorsement of transac-
tions can be described with the following formulas:

tquery = 11.15s + 5.01 · nprocess

CPUquery = 9.79% + 16.08 · nprocess

RAMquery = −69.60MB + 72.60 · nprocess

HDDquery = −6.06MB + 12.36 · nprocess

NBlocksquery = 0

SizeBlocksquery = 0MB

Results

The experiments concerning the validation (Fig. 7.19) and the execution of queries
(Fig.7.19) have been analysed together because their graphs show a similar trend.
First of all, the time required to concurrently endorse the transactions is linearly
proportional to the number of concurrent processes endorsing the transactions. This
behaviour is totally unexpected and different from the result obtained for the storage
of CAMs. The deployment of the blockchain on a single hosting machine is probably
the reason of this linear dependence between number of threads and execution time.
The validation of CAMs and the execution of queries have proved to be computa-
tionally heavier (Fig. 7.19b and Fig. 7.20b) with respect to the operations necessary
to store the CAMs in the blockchain (Fig. 7.18b). Thus, the limited number of cores
of the hosting machine makes necessary for the operating system to execute numer-
ous context switches to assign CPU cycles to every peer process. This determines an
increase in the amount of time required by the operations. However, this behaviour
should negatively influence also the experiments relative to the storage of CAMs.
Another possible reason of this performance degradation has been identified in the
sequential accesses to disk. The execution of queries and the validation of CAMs,

145

Chapter 7. Experimental Results

require to access the state database to read the CAM, and, in the case of validation,
to update the CAMs marked as invalid. For this reason, the storage unit becomes a
bottleneck in the case many concurrent processes tries to read data from the state
database. The access to disk slightly affects the storage of CAMs because, in this
case, it is not necessary to access the state database during the endorsement of
transactions. Moreover, for storing CAMs, also the committing phase does not re-
quire to read data from the state database because but it is sufficient to store the
new key-value pairs in the ledger (no read-write conflicts are possible). Definitely,
the time of endorsement of the transactions of validation and querying, are heavily
influence by the performance degradation consisting in the access to disk.
The experiment of validation has been conducted with both CouchDB and LevelDB
state databases, to verify if the adoption of different implementations of the state
database could improve the performance. Unfortunately, the trend of linear depen-
dence between processes and the time of execution still remains.
Fig. 7.19c, Fig. 7.19d, Fig. 7.20c and Fig. 7.20d show that the RAM and storage
memory utilisation are linearly dependent on the number of processes concurrently
endorsing the transactions.

7.11 Final considerations on the scalability

The scalability test conducted in this chapter showed the limitations of the deploy-
ment environment adopted in this thesis. These performance evaluations, cannot be
considered representative of the real scalability properties of Fabric. All the tests,
in fact, have been conducted on a single hosting machine and the results of the
experiments might have been compromised by the limited computational and stor-
age capabilities of the deployment environment. For example, all the experiments
demonstrated the linear dependence between the number of peers of the network
and the performance of the blockchain, in terms of CPU utilisation and time of
execution of the operations. The performance of Fabric should degrade only with a
large number of peers, and not by varying the number of peers from 2 to 4 peers.
Moreover, the communication between peers, hosted in the same hosting machine,
is not affected by the latency and time of propagation of information that affects
the blockchains composed by geographically separated nodes. Thus, the linear de-
pendence between the number of peers and the time of execution of transactions
was totally unexpected.
On the contrary, the number of orderers of the network, slightly affects the perfor-
mance and the computational requirements of the blockchains; the CPU intensive
operations, in fact, are executed by peers and not by orderers. However, the number
of orderers that has been used in the experiments was restricted by their high main
memory utilisation.
Another important limitation of the deployment environment has been identified as
the difficulty of concurrently endorse the transactions. The simultaneous endorse-
ment of transactions across different peers is one of the characteristics that allows to
Fabric to reach good throughput levels. In the experiments that have been executed
in this chapter, the decrease of the time necessary for the execution of transactions,
obtained by concurrently endorsing transactions, was achieved only for the write-
only transactions. On the contrary, the transactions that performed read operations
and modified the content of previously stored data, showed a linear dependence be-

146

Chapter 7. Experimental Results

tween the number of processes and the time of execution of transactions. The
bottleneck introduced by the limited computational capabilities and the concurrent
access to disk, demonstrated the difficulty in testing the performance of Fabric in a
scenario characterized by many peers concurrently endorsing the transactions.

147

Chapter 8

Conclusions

This chapter summarizes the results of the thesis, highlighting the strengths and
the weakness of the blockchain platforms when they are used for general-purpose
applications (Sec. 8.1). Sec. 8.2 summarizes the most important characteristics of
Hyperledger Fabric, shows the limitations of the system architecture designed for
the vehicular application and, finally, suggests other possible architectures. Sec. 8.3
concludes the thesis and identifies the future research directions concerning Hyper-
ledger Fabric and the permissionless blockchain platforms.

8.1 Permissionless and permissioned blockchains

The analysis of different permissionless blockchains, such as Bitcoin and Ethereum,
highlighted the limitations of these platforms: low throughput, high latency, full
data replication and high energy consumption. In addition, the security of these
platforms can be compromised if the number of blockchain users is limited; the
proof-of-work and proof-of-stake consensus algorithms, in fact, allow to obtain good
security levels only if the computational power, or the stake of participants, are well-
distributed among the different users of the network. Indeed, in the event that the
majority of the computational power is concentrated in the hands of an attacker, he
can strike a 51% attack and monopolize the creation of the blocks. The probability
of successfully mount an attack increases if many small-sized blockchains are created
to store the data of a well-defined geographical area, since the number of users of
every blockchain network is limited. Based on these considerations, a permissioned
blockchain has been chosen for the development of the project of the thesis because it
allows to overcome the limitations of the permissionless platforms, obtaining higher
throughput levels, lower latency, lower energy consumption and permits to create
many small-sized blockchains. Unlike the permissionless blockchains, in the permis-
sioned environment only a set of trusted users can join the blockchain, maintain a
replica of data and participate to the distributed consensus protocol. In this case,
the role of a central authority is fundamental to control the accesses to the network
and to release the certificates necessary for the identification and authorization of
the peers. The control on the accesses and the absence of the tamper-proof prop-
erty make the permissioned blockchains more similar to the traditional distributed
databases rather than a real blockchain [74]. On the other hand, the limitations
imposed by the permissionless blockchains, mainly attributable to their intrinsic
consensus algorithm, demonstrate that a huge research effort is still necessary be-

148

Chapter 8. Conclusions

fore the blockchain can replace the already existing distributed databases, especially
when used for memory-intensive applications.

8.2 Hyperledger Fabric and the thesis project

Hyperledger Fabric has been identified as the best permissioned blockchain platform
for the development of the thesis project because it has interesting functionalities,
such as the channels and the execute-order-validate transactions flow. The latter
allows to obtain a throughput level considerably higher than the other blockchain
platforms, but still lower than the other distributed databases. Another disadvan-
tage of Fabric, if compared to the other distributed databases, is the full replication
of data, that does not permit to improve the storage capability by increasing the
number of peers.
Additionally, in Fabric, there are no restrictions on the number of blocks that can be
created in the unit of time, in contrast to the Bitcoin protocol that is characterized
by the creation of 1 block of at most 1MB every 10 minutes. In Hyperledger Fab-
ric, in fact, the blocks are created as soon as new transactions are endorsed. This
feature increases the flexibility of the platform but worsens the problems related to
the storage memory requirements.

8.2.1 Comments on the results of the experiments

The experiments of scalability, conducted in Chapter 7, estimated the performance
of Fabric, in terms of time required to store the reports and to validate the CAMs.
The most significant results demonstrated that the performance decreased by in-
creasing the number of peers of the network or the number of peers concurrently
endorsing different transactions. These results are not representative of the real ca-
pabilities of Fabric, because the tests have been executed by using a single hosting
machine characterized by limited computational and storage memory capabilities.
The execution of the experiments demonstrated that the proposed chaincode appli-
cation is affected by some limitations which impact also on the system architecture.
The chaincode function used to store the reports in the blockchain, in fact, reads a
file saved in the peer container to store many reports with a single transaction. This
strategy does not permit to multiple peers to endorse the transactions, because only
one base station (i.e. peer) knows the content of every file and can correctly execute
the code of the chaincode function responsible for storing the reports. All the other
peers must need to trust a single endorser for every transaction, with subsequent loss
of confidence in the reliability of the blockchain application. To increase the mini-
mum number of peers that must endorse the transactions it is necessary to modify
the architecture of the blockchain application and the chaincode endorsement policy.
The latter, in fact, works at the granularity of the chaincode and specifies which is
the minimum number of peers that must endorse the transactions.

8.2.2 Alternative architectures

In this section, two alternative systems architectures are proposed to solve the prob-
lem above-mentioned and allow many peers to endorse the same transactions.

149

Chapter 8. Conclusions

Different chaincodes for different operations

A possible alternative is based on the Hyperledger Fabric functionality that allows
to create different chaincodes able to interact with each other and to read stored
data. For this purpose, two chaincodes, characterized by different endorsement
policies, must be deployed. The first must be used to store the reports and is
characterized by an endorsement policy that is satisfied if only one peer executes the
chaincode function. The second is used to apply the position verification algorithms
and requires that every transaction is endorsed by multiple peers. The interactions
between the two chaincodes increase the complexity of the overall system but, at
the same time, allow to specify different endorsement policies for the operations
of storage and validation of the CAMs, increasing the reliability of the blockchain
application.

Alternative storage strategies

Another possible architecture is characterized by a single chaincode and by an en-
dorsement policy requiring that every transaction is endorsed by many peers. This
alternative requires to pass the reports as parameters of the transaction proposals
used to store the reports in the blockchain, increasing the amount of data broad-
casted in the network and the transactions execution time. This means that the
architecture is more influenced by the network bandwidth and makes it necessary
to find a trade-off between the efficiency and security of the network.

Use of an SDK

The above-mentioned alternative architectures require to use one of the available
SDKs (Java, Go or Node SDKs) to overcome the limitations of the Command Line
Interface, allowing every transaction to be endorsed by many peers.

8.3 Future research directions

This thesis is concluded outlining some relevant topics that should be deeply anal-
ysed by the future research activities, in the context of Hyperledger Fabric and
permissionless blockchains.

8.3.1 Hyperledger Fabric research topics

Hyperledger Caliper

As a starting point, the performance evaluation of the Hyperledger Fabric applica-
tions could be executed with Hyperledger Caliper, an open-source tool aiming
to standardize the benchmarks of the blockchain applications [75]. In March 2018,
this tool has been accepted as official Hyperledger project.

Pruning

Another interesting research topic is the blockchain pruning, i.e. the possibility
to remove data stored in the blockchain to limit the storage memory utilisation.
The thesis of Palm is a good starting point for understanding the pruning and its

150

Chapter 8. Conclusions

benefits applied to the Hyperledger Fabric platform [76]. Among other things, the
author suggests to remove a channel when the amount of data stored in it grows too
much. This data can be persisted on external storage units for auditing purposes,
and new channels can be created to store the new data [76]. The problem of full
data replication is this way partially solved.

Side DB

Side DB is a new feature of Hyperledger Fabric version 1.1 that tries to improve
the privacy of the data stored in the channels [77]. In the original Hyperledger
Fabric consensus protocol, all the transactions are broadcasted to the same orderers
irrespective of the channels they belong to. The orderers create the blocks and
send them only to the peers taking part to the channel [77] but, if one the orderers
is malicious, it could disclose the sensitive information to an unauthorized third
party. Side DB solves this problem with an innovative strategy, by transmitting
only the hash of transactions to the ordering service nodes, and introducing a peer-
to-peer data exchange between the authorized peers [77]. In this way, the orderers
are notified of the existence of new transactions, but only the authorized peers
can access the transactions payload and store a copy of data on their private state
database [77]. This feature is very important for all the applications focused on data
confidentiality requirements.

Multi-host deployment environment

To improve the reliability of the experiments conducted to evaluate the scalability
and performance of Hyperledger Fabric, different blockchains must be deployed in
a multi-host environment, by using one hosting machine for every peer and orderer.
In this way, it is possible to check if the performance of the blockchain degrades
by increasing the number of peers and concurrent processes concurrently endorsing
the transactions. It is necessary to deploy a network composed of many hosting
machines to overcome the bottlenecks identified in this thesis and introduced by
the concurrent access to disk and low computational capabilities of the deployment
environment. Furthermore, by distributing the blockchain nodes across a wide geo-
graphical area is possible to analyse the effect of the network latency and bandwidth
on the performance of the blockchain platform.

8.3.2 Permissionless blockchains scalability

The Lightning Network project aims to solve the scalability issues of the permis-
sionless blockchains and, in particular, of the Bitcoin protocol. It is based on the
off-chain transactions and on the creation of payment channels shared among the
Bitcoin users. Every channel permits to execute money transfers between users,
without recording all the transactions in the blockchain.

The funds of the users are protected by a fraud-prevention mechanism and by the
use of multi-signature Bitcoin addresses, a particular type of address that requires
every transaction is authorized by all the involved parties before being accepted by
the Bitcoin network [78]. Every off-chain transaction updates the balance of every
user belonging to the channel so that, if the channel is closed, all the participants
can claim the money owing to them by broadcasting the last off chain transaction

151

Chapter 8. Conclusions

to the Bitcoin network nodes [78]. Furthermore, Lightning Network introduced a
penalty system to discourage users from stealing money from the other participants
of the channel [78]. Despite these features, Lightning Network is characterized by
some limitations that, for the time being, do not allow it to definitely overcome the
scalability problems of the Bitcoin protocol.

A huge research effort is still necessary to solve the scalability problems of the
permissionless blockchain and enable the adoption of the permissionless blockchains
for general-purpose and data-intensive applications.

152

Bibliography

[1] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. IEEE Communications Surveys &
Tutorials, 18(3):2084–2123, 2016.

[2] Karl Wüst and Arthur Gervais. Do you need a blockchain? IACR Cryptology
ePrint Archive, 2017:375, 2017.

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,2009. https:
//bitcoin.org/bitcoin.pdf, 2012. [Online; accessed October 2017].

[4] Vitalik Buterin et al. Ethereum white paper. https://github.com/ethereum/
wiki/wiki/White-Paper, 2013. [Online; accessed October 2017].

[5] Hyperledger fabric. https://www.hyperledger.org/, . [Online: Accessed
October 2017].

[6] Greenspan Gideon. Multichain private blockchain — white paper. https://

www.multichain.com/download/MultiChain-White-Paper.pdf, 2015. [On-
line; accessed October 2017].

[7] Apiletti Daniele. Beyond relational databases. http://

dbdmg.polito.it/wordpress/wp-content/uploads/2010/12/

Beyond-relational-databases-v16-12-02-SGBD-2x.pdf, 2016. [Online;
accessed 5-January-2018].

[8] What are zk-SNARKs? https://z.cash/technology/zksnarks.html. [On-
line. Accessed February 2018].

[9] How zerocash works. http://zerocash-project.org/how_zerocash_works.
[Online. Accessed February 2018].

[10] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick
McCorry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age
of blockchains. arXiv preprint arXiv:1711.03936, 2017.

[11] Christian Cachin and Marko Vukolić. Blockchains consensus protocols in the
wild. arXiv preprint arXiv:1707.01873, 2017.

[12] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft
replication. In International Workshop on Open Problems in Network Security,
pages 112–125. Springer, 2015.

153

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.hyperledger.org/
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
http://dbdmg.polito.it/wordpress/wp-content/uploads/2010/12/Beyond-relational-databases-v16-12-02-SGBD-2x.pdf
http://dbdmg.polito.it/wordpress/wp-content/uploads/2010/12/Beyond-relational-databases-v16-12-02-SGBD-2x.pdf
http://dbdmg.polito.it/wordpress/wp-content/uploads/2010/12/Beyond-relational-databases-v16-12-02-SGBD-2x.pdf
https://z.cash/technology/zksnarks.html
http://zerocash-project.org/how_zerocash_works

Bibliography

[13] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe,
Troy McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and
Alberto Granzotto. Bigchaindb: a scalable blockchain database. white paper,
BigChainDB, 2016.

[14] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[15] Bitcoin Wiki contributors. Wallet. https://en.bitcoin.it/wiki/Wallet, .
[Online: accessed January 2018].

[16] Andreas M Antonopoulos. Mastering Bitcoin: Programming the Open
Blockchain. ” O’Reilly Media, Inc.”, 2017.

[17] Bitcoin Wiki contributors. Transaction. https://en.bitcoin.it/wiki/

Transaction, . [Online: accessed January 2018].

[18] Wikipedia contributors. Hash function — wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Hash_function&

oldid=819072562, 2018. [Online; accessed 8-January-2018].

[19] Wikipedia contributors. Sha-2 — wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=SHA-2&oldid=819282899, 2018.
[Online; accessed 8-January-2018].

[20] Bitcoin Wiki contributors. Block. https://en.bitcoin.it/wiki/Block, .
[Online: accessed January 2018].

[21] Bitcoin Wiki contributors. Block hash algorithm. https://en.bitcoin.it/

wiki/Block_hashing_algorithm, . [Online: accessed January 2018].

[22] Merkle tree. https://chrispacia.files.wordpress.com/2013/09/

merkle-tree.jpg. [image][Online: accessed January 2018].

[23] Cryptocurrency statistics. https://bitinfocharts.com/. [Online: accessed
10 January 2018].

[24] Ethereum wiki contributors. Decentralized apps (dapps). https://github.

com/ethereum/wiki/wiki/Decentralized-apps-(dapps).md, . [Online; ac-
cessed January 2018].

[25] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

[26] Ethereum wiki contributors. Mining. https://github.com/ethereum/wiki/

wiki/Mining, . [Online; accessed January 2018].

[27] Ethereum wiki contributors. Ethereum introduction. https://github.com/

ethereum/wiki/wiki/Ethereum-introduction.md, . [Online; accessed Jan-
uary 2018].

[28] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19, 2012.

154

https://en.bitcoin.it/wiki/Wallet
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction
https://en.wikipedia.org/w/index.php?title=Hash_function&oldid=819072562
https://en.wikipedia.org/w/index.php?title=Hash_function&oldid=819072562
https://en.wikipedia.org/w/index.php?title=SHA-2&oldid=819282899
https://en.wikipedia.org/w/index.php?title=SHA-2&oldid=819282899
https://en.bitcoin.it/wiki/Block
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://chrispacia.files.wordpress.com/2013/09/merkle-tree.jpg
https://chrispacia.files.wordpress.com/2013/09/merkle-tree.jpg
https://bitinfocharts.com/
https://github.com/ethereum/wiki/wiki/Decentralized-apps-(dapps).md
https://github.com/ethereum/wiki/wiki/Decentralized-apps-(dapps).md
https://github.com/ethereum/wiki/wiki/Mining
https://github.com/ethereum/wiki/wiki/Mining
https://github.com/ethereum/wiki/wiki/Ethereum-introduction.md
https://github.com/ethereum/wiki/wiki/Ethereum-introduction.md

Bibliography

[29] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437, 2017.

[30] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. On the security and performance of proof of
work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 3–16. ACM, 2016.

[31] Marco Conoscenti, Antonio Vetrò, and Juan Carlos De Martin. Blockchain for
the internet of things: A systematic literature review. 2016.

[32] Coin Sciences Ltd. Multichain - private blockchain
platform. https://www.slideshare.net/coinspark/

multichain-private-multicurrency-blockchain-platform, 2015. [Presen-
tation of Coin Sciences Ltd][Online; Accessed October 2017].

[33] Greenspan Gideon. Introducing multichain streams. https://www.

multichain.com/blog/2016/09/introducing-multichain-streams/, 2016.
[Blog post] [Online; accessed October 2017].

[34] Intel corporation. Hyperledger sawtooth documentation - introduc-
tion. https://sawtooth.hyperledger.org/docs/core/releases/latest/

introduction.html, 2015-2017. [online: accessed October 2017].

[35] The Linux Foundation. Hyperleder sawtooth. https://hyperledger.org/

projects/sawtooth, 2017. [online: accessed October 2017].

[36] Intel Corporation. Product change notification. http://qdms.intel.com/

dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf,
2015. [online: accessed January 2018].

[37] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. Hyperledger fabric: A distributed oper-
ating system for permissioned blockchains. arXiv preprint arXiv:1801.10228,
2018.

[38] Setting up the development environment. http://hyperledger-fabric.

readthedocs.io/en/latest/dev-setup/devenv.html, . [online: accessed
February 2018].

[39] Hyperledger fabric functionalities. http://hyperledger-fabric.

readthedocs.io/en/latest/functionalities.html, . [online: accessed
February 2018].

[40] Joao Sousa, Alysson Bessani, and Marko Vukolić. A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform. arXiv preprint
arXiv:1709.06921, 2017.

[41] Membership service providers msp. http://hyperledger-fabric.

readthedocs.io/en/latest/msp.html, . [online: accessed February 2018].

155

https://www.slideshare.net/coinspark/multichain-private-multicurrency-blockchain-platform
https://www.slideshare.net/coinspark/multichain-private-multicurrency-blockchain-platform
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://hyperledger.org/projects/sawtooth
https://hyperledger.org/projects/sawtooth
http://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
http://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
http://hyperledger-fabric.readthedocs.io/en/latest/dev-setup/devenv.html
http://hyperledger-fabric.readthedocs.io/en/latest/dev-setup/devenv.html
http://hyperledger-fabric.readthedocs.io/en/latest/functionalities.html
http://hyperledger-fabric.readthedocs.io/en/latest/functionalities.html
http://hyperledger-fabric.readthedocs.io/en/latest/msp.html
http://hyperledger-fabric.readthedocs.io/en/latest/msp.html

Bibliography

[42] Hyperledger fabric functionalities. http://hyperledger-fabric.

readthedocs.io/en/latest/channels.html, . [online: accessed Febru-
ary 2018].

[43] Ledger. http://hyperledger-fabric.readthedocs.io/en/latest/ledger.

html, . [online: accessed February 2018].

[44] Building your first network. http://hyperledger-fabric.readthedocs.io/

en/latest/build_network.html, . [online: accessed February 2018].

[45] Lance Feagan. Hyperledger fabric peer design. [online: accessed February 2018].

[46] Hyperledger fabric model. http://hyperledger-fabric.readthedocs.io/

en/latest/fabric_model.html, . [online: accessed February 2018].

[47] Transaction flow. http://hyperledger-fabric.readthedocs.io/en/

latest/txflow.html, . [online: accessed February 2018].

[48] Chaincode tutorials. http://hyperledger-fabric.readthedocs.io/en/

latest/chaincode.html, . [online: accessed February 2018].

[49] Endorsement policies. http://hyperledger-fabric.readthedocs.io/en/

latest/endorsement-policies.html, . [online: accessed February 2018].

[50] Endorsement policies. http://hyperledger-fabric.readthedocs.io/en/

latest/arch-deep-dive.html, . [online: accessed February 2018].

[51] Chaincode for operators. http://hyperledger-fabric.readthedocs.io/en/
latest/chaincode4noah.html, . [online: accessed February 2018].

[52] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang.
An overview of blockchain technology: Architecture, consensus, and future
trends. In Big Data (BigData Congress), 2017 IEEE International Congress
on, pages 557–564. IEEE, 2017.

[53] Serguei Popov. The tangle. IOTA, 2016. [Online; accessed September 2017].

[54] Iotasupport community. Creating a new seed / wallet. https://iotasupport.
com/gui-newseed.shtml. [Online; accessed October 2017].

[55] Dominik Schiener. A primer on iota (with presentation). https://blog.iota.
org/a-primer-on-iota-with-presentation-e0a6eb2cc621, 2017. [Online;
accessed October 2017].

[56] Steemit community. What is ”snapshotting” in iota? https://steemit.com/

technology/@steemhoops99/iota-snapshot-what-is-it, 2017. [Online; ac-
cessed January 2018].

[57] Narula Neha. Cryptographic vulnerabilities in iota. https://medium.com/

@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367, 2017.
[Online; accessed January 2018].

156

http://hyperledger-fabric.readthedocs.io/en/latest/channels.html
http://hyperledger-fabric.readthedocs.io/en/latest/channels.html
http://hyperledger-fabric.readthedocs.io/en/latest/ledger.html
http://hyperledger-fabric.readthedocs.io/en/latest/ledger.html
http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html
http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html
http://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
http://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
http://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
http://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html
http://hyperledger-fabric.readthedocs.io/en/latest/endorsement-policies.html
http://hyperledger-fabric.readthedocs.io/en/latest/endorsement-policies.html
http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html
http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode4noah.html
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode4noah.html
https://iotasupport.com/gui-newseed.shtml
https://iotasupport.com/gui-newseed.shtml
https://blog.iota.org/a-primer-on-iota-with-presentation-e0a6eb2cc621
https://blog.iota.org/a-primer-on-iota-with-presentation-e0a6eb2cc621
https://steemit.com/technology/@steemhoops99/iota-snapshot-what-is-it
https://steemit.com/technology/@steemhoops99/iota-snapshot-what-is-it
https://medium.com/@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367
https://medium.com/@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367

Bibliography

[58] David Sønstebø. Curl disclosure, beyond the headline. https://blog.iota.

org/curl-disclosure-beyond-the-headline-1814048d08ef, 2017. [Online;
accessed January 2018].

[59] LEEMON BAIRD. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. 2016. [Online; accessed December 2017].

[60] Leemon Baird. Overview of swirlds hashgraph. Technical report, Swirlds, 2016.
[Online; accessed December 2017].

[61] LEEMON BAIRD. Hashgraph consensus: Detailed examples. Technical report,
Swirlds, 2016. [Online; accessed December 2017].

[62] EN ETSI. 302 637-2 v1. 3.1-intelligent transport systems (its); vehicular com-
munications; basic set of applications; part 2: Specification of cooperative
awareness basic service. ETSI, Sept, 2014.

[63] ETSI TS. 102 894-2 (v1.2.1):intelligent transport systems (its); users and
applications requirements; part 2: Applications and facilities layer common
data dictionary. http://www.etsi.org/deliver/etsi_ts/102800_102899/

10289402/01.02.01_60/ts_10289402v010201p.pdf, 2014. [Online; accessed
November 2017].

[64] ETSI TS. 103 097 v.1.1.1 : Intelligent transport systems (its); security; secu-
rity header and certificate formats. http://www.etsi.org/deliver/etsi_ts/
103000_103099/103097/01.01.01_60/ts_103097v010101p.pdf, 2013. [On-
line; accessed November 2017].

[65] Wikipedia contributors. Enodeb — wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=EnodeB&oldid=799692926, 2017.
[Online; accessed 5-January-2018].

[66] Sartori Davide. Lte: Caratteristiche della rete di accesso. Master’s thesis,
Università degli Studi di Padova, 2012. [Online; accessed 5-January-2018].

[67] M. Fiore, C. Ettore Casetti, C. F. Chiasserini, and P. Papadimitratos. Dis-
covery and verification of neighbor positions in mobile ad hoc networks. IEEE
Transactions on Mobile Computing, 12(2):289–303, Feb 2013. ISSN 1536-1233.
doi: 10.1109/TMC.2011.258.

[68] F. Malandrino, C. Borgiattino, C. Casetti, C. F. Chiasserini, M. Fiore, and
R. Sadao. Verification and inference of positions in vehicular networks through
anonymous beaconing. IEEE Transactions on Mobile Computing, 13(10):2415–
2428, Oct 2014. ISSN 1536-1233. doi: 10.1109/TMC.2013.2297925.

[69] Benjamin Leiding, Parisa Memarmoshrefi, and Dieter Hogrefe. Self-managed
and blockchain-based vehicular ad-hoc networks. In Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct, pages 137–140. ACM, 2016.

[70] Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park. Block-vn: A dis-
tributed blockchain based vehicular network architecture in smart city. Journal
of Information Processing Systems, 13(1):84, 2017.

157

https://blog.iota.org/curl-disclosure-beyond-the-headline-1814048d08ef
https://blog.iota.org/curl-disclosure-beyond-the-headline-1814048d08ef
http://www.etsi.org/deliver/etsi_ts/102800_102899/10289402/01.02.01_60/ts_10289402v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/102800_102899/10289402/01.02.01_60/ts_10289402v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.01.01_60/ts_103097v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.01.01_60/ts_103097v010101p.pdf
https://en.wikipedia.org/w/index.php?title=EnodeB&oldid=799692926
https://en.wikipedia.org/w/index.php?title=EnodeB&oldid=799692926

Bibliography

[71] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models
for ad hoc network research. Wireless communications and mobile computing,
2(5):483–502, 2002.

[72] Ghemawat Sanjay and Dean Jeff. LevelDB. https://github.com/google/

leveldb. [Online: Accessed February 2018].

[73] Hyperledger fabric peer chaincode. http://hyperledger-fabric.

readthedocs.io/en/latest/commands/peerchaincode.html, . [online:
accessed March 2018].

[74] Arvind Narayanan. “Private blockchain” is just a confusing name for a shared
database. [Online. Accessed February 2018].

[75] Hyperledger Caliper. https://www.hyperledger.org/projects/caliper, .
[Online: accessed March 2018].

[76] Emanuel Palm. Implications and impact of blockchain transaction pruning,
2017.

[77] Enyeart David, Sethi Manish, Natarajan Senthilnathan, and Ronda Troy. Pri-
vacy enabled ledger. https://jira.hyperledger.org/secure/attachment/

12720/PrivacyEnabledLedger20171022.pptx, 2017. [Online: accessed Febru-
ary 2018].

[78] De Luigi Alberto. Lightning Network. http://www.albertodeluigi.com/

index/bitcoin/lightning-network-parte-1/. [Online: accessed February
2018].

158

https://github.com/google/leveldb
https://github.com/google/leveldb
http://hyperledger-fabric.readthedocs.io/en/latest/commands/peerchaincode.html
http://hyperledger-fabric.readthedocs.io/en/latest/commands/peerchaincode.html
https://www.hyperledger.org/projects/caliper
https://jira.hyperledger.org/secure/attachment/12720/PrivacyEnabledLedger20171022.pptx
https://jira.hyperledger.org/secure/attachment/12720/PrivacyEnabledLedger20171022.pptx
http://www.albertodeluigi.com/index/bitcoin/lightning-network-parte-1/
http://www.albertodeluigi.com/index/bitcoin/lightning-network-parte-1/

	Introduction
	Scenario analysed in the thesis
	Goals of this thesis
	Content of the thesis

	Blockchain and Permissionless Blockchains
	Introduction to blockchain
	Alternative storage solutions
	When to use a blockchain
	Blocks and hash pointers
	Transactions
	Consensus algorithms
	Scripting and Smart Contracts

	Bitcoin
	Users of Bitcoin network
	Transactions
	Hash and SHA-256
	Blocks and blockchain
	The Merkle tree
	Bitcoin consensus algorithm
	Possible attacks
	Bitcoin scripting

	Ethereum
	Transactions, Blocks, State
	Ethereum smart contracts
	Ethereum consensus mechanism
	Scalability
	Proof of Stake
	Advantages and Disadvantages

	Limits of proof-of-work based blockchains

	Permissioned Blockchains
	MultiChain
	MultiChain consensus protocol
	Scalability
	Multiple Chains
	Messaging
	Advantages and disadvantages

	BigchainDB
	Data structure
	BigchainDB consensus mechanism
	Scalability
	Advantages and disadvantages

	Hyperledger Sawtooth
	Consensus mechanism
	Advantages and disadvantages

	Hyperledger Fabric
	Data structures
	Architecture of Hyperledger Fabric
	Hyperledger Fabric consensus mechanism
	Chaincodes - Smart Contracts
	Channels
	Advantages and disadvantages

	Byzantine-Fault Tolerant consensus algorithms
	Comparison between Proof of Work and BFT

	Comparison between the analysed blockchain platforms

	Blockchainless Distributed Ledger Technologies
	IOTA
	Introduction to Iota
	Iota ledger data structure
	Iota consensus mechanism
	Throughput
	Tangle snapshots
	Possible attacks
	Advantages and disadvantages

	Hashgraph
	Data structure
	Hashgraph consensus mechanism
	Signed state
	Advantages and disadvantages

	Distributed Ledger Technologies for Vehicular Applications
	Description of the use-case
	CAM messages
	CAMs transmission
	The format of CAM messages
	CAM security envelope
	CAMs and position verification algorithms

	Reports of CAM messages
	Structure of a Report
	Tamper-proof characteristic of reports

	The blockchain platform
	Why Hyperledger Fabric?

	Architecture overview
	Vehicles
	Base station - eNodeB
	Architectural design choices
	The role of network operators
	Ledgers for the management of geographical areas
	Validation of CAM messages
	Limits of proposed architecture
	Comparison with other existing architectures

	Applications Developed to Test Hyperledger Fabric
	Vehicular Mobility Simulation
	General description of the simulator
	Description of the algorithm
	Management of events

	Hyperledger Fabric project
	Set up of the working environment
	Set up of a complete network
	Chaincode for the management of vehicles reports

	The Benchmarking Tool
	Operations executed by the tool
	Parameters of the benchmarks
	Limits of the proposed implementation

	Experimental Results
	Configuration of the test environment
	Simulation traces used during the experiments
	Evaluation of time of access to data
	Time of access to the State Database
	Time of access to the History Index

	Effect of the blocks and transactions on the storage memory requirements
	Configuration of blocks
	Storage overhead of blocks
	Configuration of the transactions contained in blocks
	Effect of transaction size on storage overhead
	Effects of Transactions size
	Storage overhead of the hosting machine and containers
	Final considerations on storage overhead

	Scalability tests of Hyperledger Fabric
	Effect of the number of peers of the blockchain
	Experiments with 1 organization and many peers
	Experiments with many organizations and 2 peers per organization
	Experiments with 2 organizations and many peers per organization

	Effect of the number of orderers of the blockchain
	Storage of reports in the blockchain
	Validation of all the CAMs stored in the blockchain
	Querying of all the CAMs stored in the blockchain

	Effect of the number of CAMs validated or queried by every transaction
	Validation of CAMs stored in the blockchain
	Querying of all CAMs stored in the blockchain

	Comparison of validation with query and invoke
	Experiments conducted in multi-process environment
	Storage of CAMs with concurrent processes
	Validation of CAMs with concurrent processes
	Querying of CAMs with concurrent processes

	Final considerations on the scalability

	Conclusions
	Permissionless and permissioned blockchains
	Hyperledger Fabric and the thesis project
	Comments on the results of the experiments
	Alternative architectures

	Future research directions
	Hyperledger Fabric research topics
	Permissionless blockchains scalability

		Politecnico di Torino
	2018-04-05T06:29:00+0000
	Politecnico di Torino
	Carla Fabiana Chiasserini
	S

