
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Enhancing topic modeling through
Latent Dirichlet Allocation with

self-tuning strategies

Supervisor
prof. Tania Cerquitelli

Candidate
Stefano Proto

April 2018

Summary

With modern applications and technologies, an ever increasing quantity of data is
produced every day in our lives and society. This applies also to textual data, being
generated and collected from social networks to digital libraries. However, analysing
and gather useful information from this huge amount of collected data is challenging
and requires a lot of efforts, because both field expertise and computational cutting-
edge technologies are needed to approach the issue. Specifically, text mining and
topic modeling study algorithms to find previously unknown but potentially high-
quality information from large document collections. Given the huge amount of data
available, making the mining activity automatic is the natural subsequent step in
information retrieval. Indeed, exploiting the data mining techniques to extract the
information hidden in the collected data is not effective if a constant human super-
vision of the activity is needed. Since text mining is a multi-step process requiring
specific configurations and parameters for every algorithm involved in the analysis,
the presence of texts-field expertise and analysts should be required to guide the
retrieving process. To overcome this problem, innovative solutions are needed to
make the analysis of large data scalable and not supervised by data experts.
This thesis aims to implement a framework able to automatically cluster texts doc-
uments into cohesive and well separated groups, based on the content of the data.
The framework should be able to relieve the analysts from selecting proper values
for the analysis and the clustering processes, and scalable, to be able to address the
dimensionality of datasets that are currently collected and so being a tool usable in
the Big Data context.
The proposed solution is ToPIC (Tuning of Parameters for Inference of Concepts),
a distributed self-tuning engine able to describe corpora of text documents and di-
vide them into correlated groups of documents with a similar topic. To purse this
goal, ToPIC uses a probabilistic model of the data (i.e., Latent Dirichlet Alloca-
tion). Intuitively, in the LDA topic modeling, documents can be associated with a
particular topic or can be seen as a mixture of topics in different proportions, and
certain words can be expected to appear in a document more or less frequently.
This topic modeling algorithm is then able to describe topics (and so documents)
by means of similar word clusters. ToPIC includes different suitable data weight-
ing functions, based on local and global weights, and a newly proposed approach

iii

to automatically select optimal values for the number of topics, and so relieve the
end-user of the burden of setting the model parameters. This approach, named
ToPIC-Similarity, does not only consider the quantitative probabilistic indices
of the whole model, but it considers the topics content and description, specifi-
cally evaluating their semantic similarity. ToPIC’s current implementation runs
on Apache Spark, a state-of-the-art distributed computing framework able to sup-
port large scale analytics, in order to overcome the bottleneck of the computational
costs and so addressing the scalability requirements due to large dimensions of the
datasets under analysis. ToPIC has been validated over different real data collec-
tions, having different textual characteristics and properties: two Wikipedia article
collections and the Reuters-21578 dataset.
From the obtained experimental results, ToPIC turns out to be outperforming the
current state-of-the-art approaches aiming to automatically select optimal number of
clusters, both in the quality of the mining activity results and in the computational
costs of the algorithms. Moreover, ToPIC resulted to be efficient in describing
and clustering the given datasets, being an effective tool to streamline the analytics
process and off-load the parameter tuning from end-user.

iv

Acknowledgements

I would like to thank all the people who supported me writing this thesis in the last
months.
First of all, I want to thank my supervisor professor Tania Cerquitelli, who gave
me the chance to work on this interesting and challenging project, and mentored
me with her helpful comments and observations. I would like then to express my
gratitude to Evelina and Francesco, who guided me during this time with their
knowledge and advices, always leading and pushing me to do my best. I thank
them also for their friendship, and all the other people met in Lab5 for making the
working environment welcoming, stimulating, and friendly. Moreover, I thank my
family and my friends with which I shared this journey and who sustained me in
these months.
To finish this preface, I would like to thank my assessors for reading this text.

v

Contents

Summary iii

List of Tables viii

List of Figures ix

1 Introduction 1

2 Textual data analysis 5
2.1 PASTA framework . 5

2.1.1 PASTA data preprocessing and weighting 6
2.1.2 PASTA data reduction and clustering 8

2.2 Probabilistic topic modeling . 9
2.3 LDA number of topics selection . 10

2.3.1 RPC approach . 10
2.3.2 En-LDA approach . 11

2.4 Gap analysis . 12

3 Big Data platforms 15
3.1 Spark framework . 15

3.1.1 Spark Core . 16
3.1.2 Spark RDDs . 16
3.1.3 Spark transformations and actions 17
3.1.4 Spark libraries . 18

4 ToPIC implementation 21
4.1 Latent Dirichlet Allocation . 21

4.1.1 LDA generative model . 22
4.1.2 LDA for inferential problems 24
4.1.3 LDA inferential example . 24

4.2 System overview . 25
4.3 Preprocessing and weighting . 25

vi

4.4 Applying LDA . 27
4.4.1 Setting LDA parameters . 28

4.5 Finding optimal number of clusters 29
4.5.1 Topic characterization . 29
4.5.2 Similarity computation . 30
4.5.3 K identification . 32

4.6 Visualize and validate the LDA results 32
4.6.1 Perplexity . 33
4.6.2 Clustering metrics . 33
4.6.3 t-SNE . 34
4.6.4 Topics-terms representations 36

5 Experimental results 39
5.1 Experiment datasets . 39

5.1.1 Wikipedia . 40
5.1.2 Reuters . 41

5.2 Experimental settings . 42
5.3 ToPIC results and effectiveness . 43
5.4 A running example: results and evaluation 43

5.4.1 Dataset D1, TF-IDF results 43
5.4.2 Dataset D1, TF-Entropy . 49
5.4.3 Dataset D1, LogTF-IDF results 51
5.4.4 Dataset D1, LogTF-Entropy results 55
5.4.5 Dataset D1, Boolean-TFglob results 56
5.4.6 Dataset D1: final observations and discussion 60

5.5 Further results . 63
5.5.1 D2 results . 63
5.5.2 D3 results . 63

5.6 Weighting impacts . 68
5.7 Comparison with the state-of-the-art 72
5.8 ToPIC final considerations . 73

6 Conclusion 75

Bibliography 77

vii

List of Tables

2.1 PASTA weighting functions. 8
4.1 ToPIC weighting functions. 27
5.1 Datasets IDs. 40
5.2 Statistical indices for the Wikipedia datasets. 41
5.3 Statistical indices for the Reuters dataset. 42
5.4 ToPIC results table. 44
5.5 State-of-the-art results table. 45
5.6 D1 topic-terms representation, LogTF-IDF weighting schema, K 17. . 55
5.7 D1 topic-terms representation, Boolean-TFglob weighting schema, K 5. 60
5.8 D1 topic-terms representation, Boolean-TFglob weighting schema, K

17. 61

viii

List of Figures

2.1 PASTA architecture cO Self-tuning techniques for large scale cluster
analysis on textual data collections [7]. 6

2.2 Example of RPC chart by different K values, dataset D1, TF-IDF
weighting schema. 11

2.3 Example of En-LDA chart by different K values, dataset D1, TF-IDF
weighting schema. 13

3.1 Spark stack. 18
4.1 Graphical representation of the LDA cO Latent Dirichlet Allocation [3]. 23
4.2 ToPIC architecture. 26
4.3 Example of the t-SNE representation, dataset D1. 35
4.4 Example of the Termite topic-terms representation, dataset D1. . . . 37
5.1 En-LDA, RPC and ToPIC results diagrams for dataset D1, TF-IDF

weighting schema. 46
5.2 D1 t-SNE representation, TF-IDF weighting schema, K 3, 6, 10 and

19 respectively. 47
5.3 D1 WordCloud representation, TF-IDF weighting schema, K 3. . . . 47
5.4 D1 WordCloud representation, TF-IDF weighting schema, K 6. . . . 48
5.5 D1 WordCloud representation, TF-IDF weighting schema, K 10. . . . 48
5.6 En-LDA, RPC and ToPIC results diagrams for dataset D1, TF-

Entropy weighting schema. 50
5.7 D1 t-SNE representation, TF-Entropy weighting schema, K 5, 8 and

9 respectively. 51
5.8 D1 Termite representation, TF-Entropy weighting schema, K 5. . . . 52
5.9 En-LDA, RPC and ToPIC results diagrams for dataset D1, LogTF-

IDF weighting schema. 53
5.10 D1 t-SNE representation, LogTF-IDF weighting schema, K 8, 17, 7

and 16 respectively. 54
5.11 D1 WordCloud representation, LogTF-IDF weighting schema, K 8. . 54
5.12 En-LDA, RPC and ToPIC results diagrams for dataset D1, LogTF-

Entropy weighting schema. 56
5.13 D1 t-SNE representation, LogTF-Entropy weighting schema, K 5, 7,

11 and 3 respectively. 57

ix

5.14 En-LDA, RPC and ToPIC results diagrams for dataset D1, Boolean-
TFglob weighting schema. 58

5.15 D1 t-SNE representation, Boolean-TFglob weighting schema, K 4, 5,
17 and 20 respectively. 59

5.16 D1 WordCloud representation, Boolean-TFglob weighting schema, K 5. 59
5.17 En-LDA, RPC and ToPIC results diagrams for dataset D2, TF-IDF

weighting schema. 64
5.18 D2 t-SNE representation, TF-IDF weighting schema, K 10, 6 and 20

respectively. 64
5.19 En-LDA, RPC and ToPIC results diagrams for dataset D2, LogTF-

IDF weighting schema. 65
5.20 D2 t-SNE representation, LogTF-IDF weighting schema, K 11, 7 and

19 respectively. 65
5.21 En-LDA, RPC and ToPIC results diagrams for dataset D2, Boolean-

TFglob weighting schema. 66
5.22 D2 t-SNE representation, Boolean-TFglob weighting schema, K 18, 7

and 20 respectively. 66
5.23 En-LDA, RPC and ToPIC results diagrams for dataset D3, TF-IDF

weighting schema. 67
5.24 D3 t-SNE representation, TF-IDF weighting schema, K 9, 5 and 20

respectively. 68
5.25 En-LDA, RPC and ToPIC results diagrams for dataset D32, LogTF-

IDF weighting schema. 69
5.26 D3 t-SNE representation, LogTF-IDF weighting schema, K 13, 4 and

19 respectively. 69
5.27 En-LDA, RPC and ToPIC results diagrams for dataset D3, Boolean-

TFglob weighting schema. 70
5.28 D3 t-SNE representation, Boolean-TFglob weighting schema, K 16, 6

and 20 respectively. 70
5.29 D1 documents-topics probabilities, TF-IDF and LogTF-Entropy weight-

ing schemas, K 6 and 7 respectively. 71
5.30 D1 t-SNE representation, TF-IDF and LogTF-Entropy weighting schemas,

K 6 and 7 respectively. 72

x

Chapter 1

Introduction

An ever increasing quantity of data is produced every day in our lives and society.
However, analysing and gather useful information from this huge amount of col-
lected data is challenging and requires a lot of efforts, because both field expertise
and computational cutting-edge technologies are needed to approach the issue.
Data mining is the process of extracting high-quality information from row datasets.
Mining information means extracting implicit and hidden knowledge from the data,
analysing the structures of the datasets in order to find significative patterns or cor-
relations among the data items. Data mining has become more and more relevant
because of the great amount of data that is constantly produced.
The ever increasing production of data applies also to texts. From the social net-
works to the literary and scientific productions, from the e-learning platforms to the
digital libraries, the amount of text documents that is daily produced grows contin-
uously. Once collected, extracting information from the data is not a trivial task.
It becomes natural to apply data mining processes and techniques to textual data:
text mining is the branch of data mining that aims to gather useful and previously
unknown information from textual data.
Given the pervasiveness of textual data, its wide range of applications in our lives
and the difficulty of interpret poorly structured natural language data, text min-
ing is one of the most challenging activities in the data mining universe. Because
of these reasons, text mining and specifically topic modeling are currently areas of
great interest and research for the scientific community. Text mining activities in-
clude building classification models, text categorization, grouping documents based
on similar characteristics and contents, concepts/topics detection and extraction,
sentiment analysis and texts summarization.
Since collecting textual data means gather the text productions of people, and since
the human language and the text production is very diverse from person to per-
son, using text documents as data to analyse is complicated and requires a lot of
processing. Mining textual data is though made possible through natural language
processing techniques and analytical methods, that aim to model and structure the

1

1 – Introduction

textual sources in order to make them accessible for the data analysis and investi-
gation. These involve several steps and phases, such as the syntax and the semantic
analysis.
In the scientific research, several approaches and solutions have been attempted and
proposed in order to firstly represent and then mine and retrieve information from
the text sources. Depending on the modeling of the text data and the used tech-
niques, different models have been proposed in the scientific literature: set-theoretic
(such as the Boolean models, representing documents as sets of words or phrases),
algebraic (representing documents as vectors or matrices, such as the Vector Space
models and the Latent Semantic Analysis) and probabilistic (such as the Latent
Dirichlet Allocation, representing documents as probabilities of words).
However, besides the used approach to analyse the text documents, given the huge
amount of data available, making the mining activity automatic is the natural sub-
sequent step in information retrieval. Indeed, exploiting the data mining techniques
to extract the information hidden in the collected data is not effective if a constant
human supervision of the activity is needed. This happens also in the case of text
mining. Indeed, being text mining a multi-step process requiring specific configura-
tions and parameters for every algorithm involved in the analysis, the presence of
texts-field expertise and analysts should be required to guide the retrieving process.
To overcome this problem, innovative solutions are needed to make the analysis of
large data scalable and not supervised by human analysts and data experts.

Cutting edge technologies and approaches to make text analysis and mining auto-
matic are hot topics in scientific research. Some solutions to target the issue have
already been proposed, but many other efforts are needed to improve and make
automatic text mining more effective.
The goal of the thesis is to implement a framework able to automatically cluster
texts documents into cohesive and well separated groups, based on the content of
the data. The framework should be able to relieve the analysts from selecting proper
values for the analysis and the clustering processes. Moreover, the framework should
be scalable and distributed to be able to address the dimensionality of the datasets
that are currently collected, so being a tool usable in the Big Data context.
In detail, a probabilistic model will be used in order to retrieve information from the
data collections, and a novel approach to determine the optimal number of topics
in a corpus of documents will be newly proposed.
After designing and implementing the framework and its building components, some
experiments will be carried out to evaluate the effectiveness of the produced solution.

The thesis text is structured as follows. Chapter 2 presents a discussion about tex-
tual data analysis. It will describe the background and the related works of this
study, specifically the PASTA analytics engine and the state-of-the-art techniques

2

1 – Introduction

used to determine the optimal number topics for the considered probabilistic topic
modeling. Chapter 3 briefly introduces the readers to the Big Data platforms, and
specifically to the Apache Spark framework, base of the architecture of the imple-
mented framework ToPIC. Chapter 4 describes the Latent Dirichlet Allocation, the
topic modeling algorithm used in ToPIC, and the design of the framework, together
with its building parts. The Chapter shows the used approach, describing in detail
the analytic flow of ToPIC; it also presents and defines the ToPIC-Similarity
index, the newly proposed approach to determine how well the LDA modeled topics
represents cohesive and well separated concepts. In the same Chapter the method-
ologies used to evaluate the obtained results are explained. Chapter 5 presents the
datasets the framework has been tested with, characterizing them by means of sta-
tistical indices and textual characteristics. Continuing on in the Chapter, the results
obtained for a representative running example are shown to the readers. Then, the
impacts of the weighting schemas are illustrated, together with a comparison with
the state-of-the-art techniques. The Chapter ends with a general evaluation of the
framework and some final observations on the ToPIC performance. Chapter 6 con-
cludes the study, with a look into the key contributions of the thesis and a discussion
about possible future research works in this area.

3

4

Chapter 2

Textual data analysis

This Chapter introduces the background and related works explored during this
study in order to achieve the stated goals, being them the starting point of this thesis
and essential components of the produced work. Section 2.1 illustrates PASTA, an
engine developed to do text analysis in a self-tuning manner. This engine has been
taken as the starting point from which develop further methodologies to expand
and contribute the current text analysis cutting-edge. Section 2.2 introduces the
probabilistic topic modeling algorithms, describing the goals and the approach used
to group textual documents based on their argument and contents. Specifically, the
Latent Dirichlet Allocation is briefly introduced to the readers. The state-of-the-art
techniques used in literature to find optimal parameters for the modeling and make
the LDA processing automatic are presented in Section 2.3. A gap analysis about the
lack of stable, valid and self-tuning methods to determine the LDA parameters and
configuration concludes the Chapter in Section 2.4. In this Section, an additional
consideration about the presented engine and its possible enhancements is also given,
thus proposing this study as the natural development of PASTA.

2.1 PASTA framework
PArameter-free Solutions for Textual Analysis (PASTA) is a distributed data anal-
ysis engine, which aim is to make the analysis of huge text datasets carried out
without the intervention of data-field experts nor data analysts [7].
The engine automatically sets parameters and tunes the text clustering algorithms
extracting the knowledge in behalf of the end-user, still achieving optimal qual-
ity results. PASTA is then capable to suggest to the users the optimal weighting
schema and reduction functions for the dataset under analysis, together with the
more suitable clustering configuration in order to describe as good as possible the
given dataset [7].
Figure 2.1 shows the PASTA architecture. In the following part of Section, the

5

2 – Textual data analysis

PASTA main characteristics and activities are described in detail.

Figure 2.1: PASTA architecture cO Self-tuning techniques for large scale cluster anal-
ysis on textual data collections [7].

2.1.1 PASTA data preprocessing and weighting
Text data are by their nature very variable and dirty, differing a lot based on the
typology, the source, the target and the field of expertise. Because of this, before
analysing the documents several preprocessing steps are needed:

1. Document splitting: depending on the next tasks, documents can be anal-
ysed in their entirety or split in paragraphs or sections;

2. Tokenization: the texts are split in a set of words, named tokens;

3. Stopwords removal: the meaningless words (e.g. words that appear often
in the texts, such as articles or prepositions) are removed, since they do not
add any information to the analysis;

4. Stemming: the words are reduced to their base form (stem), removing pre-
fixes and suffixes. This reduces the dictionary size and groups words with the
same root;

5. Case normalization: letters are all transformed in lower case characters;

6. Weighting: words may have different weights within a document or within
the corpus. This affects the final clustering in topics; more details about this
procedure will be given later in this Section.

6

2.1 – PASTA framework

After the preprocessing, the documents are represented in the Bag-Of-Works form,
that describes texts disregarding the terms order and the grammar rules, but how-
ever representing the main themes [18].
Besides these steps, the framework also computes several statistical indices in order
to characterizes the documents dataset [4]. These indices are specific for the textual
analysis context; they are:

• Number of categories: if known, it represents the original number of different
topics in the dataset that is going to be analysed;

• Average frequency of the terms: the average frequency of the terms occurrences
among all the words in the corpus;

• Maximum frequency: the greatest frequency of occurrences of a term in the
corpus;

• Minimum frequency: the lowest frequency of occurrences of a term in the
corpus;

• Number of documents: the number of documents in the given corpus;

• Number of terms: the number of words in the corpus, considering the repeti-
tions;

• Dictionary: the number of words in the corpus, not considering the repetitions;

• Type-Token Ratio (TTR): the ratio between the Dictionary cardinality and the
total Number of terms in the corpus. It represents the vocabulary variation
within a text [1];

• Hapax %: the ratio between the number of terms with only one occurrence in
the corpus (called hapax) and the Dictionary (dictionary variety);

• Guiraud Index : the ratio between the Dictionary cardinality and the square
root of the Number of documents, in order to highlight the lexical richness of
the corpus.

In order to better identify the correct topic of a document and help the clustering
process to group similar documents together, weights can be assigned to all the terms
in the corpus. The weights measure the relevance the terms have in the documents,
and they are computed as the product of a local and a global weight. The weight a
word has within the document is called local weight, while the weight it has with
respect to the whole corpus is called global weight.
The weights are stored in a matrix X where the rows are associated to the documents
and the columns to the terms: xi,j = li,j × gi,j represents the weight of the term j

7

2 – Textual data analysis

in document i. PASTA explores different weighting strategies, combining weights
from both the categories: Term Frequency (TF) and Logarithmic term frequency
(LogTF) are the local weights, while Inverse Document Frequency (IDF) is the
considered global one. The weighting functions used in PASTA, along with their
definitions, are shown in table 2.1.

Weight Definition

Local TF = tfij
LogTF = log2(tfij + 1)

Global IDF = log
A
|D|
dfi

B

Table 2.1: PASTA weighting functions.

2.1.2 PASTA data reduction and clustering
In order to reduce the dimensionality of the corpus and focus the computation only
on the most relevant concepts of the documents, a data transformation is needed.
The weighted matrix X representing the documents in the corpus is reduced in size
using LSI (Latent Semantic Indexing). For a given reduction factor, LSI allows
to reduce the dimensionality of the matrix without losing significant information.
However, choosing the most proper reduction factor is not a trivial task.
To reduce the dimensionality of the matrix and uncover the hidden concepts in the
dataset, LSI applies the SVD transformation (Singular Value Decomposition) to X,
in order to decompose the matrix into the product of its component U, S and V T .
The matrix S represents the singular values of the dataset under analysis, one for
each dimension (term). Based on the magnitudes of the singular values in S it is
possible to approximate the matrix X.
Keeping only the most Kr significant terms corresponding to the most significant
singular values, and ignoring the other dimensions in S, the original matrix X can
be reduced by reducing all the components to rank Kr: XKr = UKr SKr V

T
Kr [7].

As mentioned before, finding the correct dimensionality reduction is not a trivial
task, since too few dimensions would lead to a poor data representation, while too
many dimensions would lead to a noisy dataset. This open research issue is solved
in PASTA by ST-DaRe (Self-Tuning Data Reduction). The ST-DaRe algorithm au-
tomatically chooses three reduction parameters that will be used by LSI or PCA to
decrease the dimensionality of the dataset under analysis. This algorithm, enhanced
in e-PASTA, firstly considers only the first greatest 100 singular values, then com-
putes their mean value and the standard deviation [8]. ST-DaRe selects as reduction
values the following ones:

• the singular value corresponding to the mean;

8

2.2 – Probabilistic topic modeling

• the singular value corresponding to the mean plus the standard deviation;

• the singular value corresponding to the mean of the two previously chosen
parameters.

Once the reduction has been done, PASTA clusters the documents in the corpus
via K-Means. This clustering algorithm uses a partitional strategy to divide the
corpus in Kcl different clusters. Initially, Kcl random document are chosen to be the
centroids (the points representing the whole cluster, i.e. the mean of the objects in
the cluster itself). At every iteration, all the documents are assigned to same cluster
of the centroid they are nearer. The centroids are then recomputed for each cluster,
and so relocated. This routine continues until the centroids do not change anymore.
K-Means well performs, being computationally fast and producing tight clusters.
Nevertheless, the number of clusters Kcl has to be set a priori. In PASTA this issue
is addressed by the ST-C (Self-Tuning Clustering) algorithm, that automatically
chooses a good number of cluster for the dataset under analysis, using quality metrics
(such as Purified-Silhouette and Weighted-Silhouette) and agreement measure (such
as Rand-index). For each reduction value Kr, ST-C iterates over a set [mincl - maxcl]
of possible number of clusters Kcl given by the analyst: the clustering over Kr is
performed by the K-Means algorithm and the result is stored. The qualities of the
clustering results are then evaluated by means of the mentioned indices, and the
partition with the highest Purified and Weighted Silhouette indices is chosen among
the others. Partitions with Rand-index higher than 0.9 are considered equivalent to
one picked by ST-C, and then proposed to the user.

2.2 Probabilistic topic modeling
A completely different approach from the one presented in the previous Section, is
the probabilistic topics modeling approach. This technique represents textual doc-
uments as probabilities of words and aims to discover and annotate large archives
of texts with thematic information.
Probabilistic topic modeling algorithms are based on statistical methods that anal-
yse the original texts and their words in order to discover the arguments they go
through, and to which other documents they are related. These algorithms do not
require any prior annotation or labeling of the documents, but they are able to de-
scribe corpora of documents without previous knowledge of the datasets.
The Latent Dirichelt Allocation (LDA) is one the most famous and most used prob-
abilistic topic modeling algorithm. The intuition behind LDA is that documents are
mixtures of multiple topics [2]. Topics are defined to be distributions over a fixed
vocabulary. Documents, instead, are seen as a distribution over the set of differ-
ent topics, thus showing multiple topics in different proportions. Finally, the LDA

9

2 – Textual data analysis

algorithm models the given textual dataset with document-topics and topic-terms
probabilities distributions.
LDA can be used to infer the topic hidden in a textual dataset. However, as most
of the topic modeling algorithms, LDA requires the number to topics to be pre-
viously known and fixed. However, finding the optimal values for the number of
topics that have to be discovered by the LDA is not trivial, and it is instead an
open issue in the scientific community. In the following Section, two state-of-the-art
approaches to automatically determine the optimal number of clusters needed in the
topic modeling will be presented.

2.3 LDA number of topics selection
In many clustering algorithms finding the optimal value for the number of topics K
is not trivial. This is also the case for the Latent Dirichlet Allocation algorithm.
The number of topics has great influence on the results of the clustering process,
but often the evaluation of the results is subjective, difficult to be interpreted and
time-consuming.
This model parameter has to be set carefully, since based on it the number of
clusters, and so the final clustering result, will drastically change. Indeed, too low
K values would lead LDA to be too coarse to be able to identify proper clusters,
while K values that are too big would lead to a very complex model, difficult to be
interpreted and difficult to be validated.
In this research, three different approaches to find the most suitable value K have
been studied and explored. This Section will present two approaches considered
as the state-of-the-art techniques, while a third method, that aims to improve the
results obtained with the following ones, will be newly proposed in Chapter 4.

2.3.1 RPC approach
The Rate of Perplexity Change (RPC), proposed by Zhao et al. [23], is a heuristic
approach aiming to estimate the best value for the number of topics K for the LDA
model.
Proposing this strategy, the authors wanted to overcome the problems of perplexity,
the methodology originally proposed to evaluate the LDA models and determine
which clustering statistically better describes a given dataset. According to [3], the
lower the perplexity of a model, the better it performs describing the data collection
(a detailed description of perplexity as evaluation index is given in Section 4.6).
Finding this approach not stable and too varying, even for the same dataset, the
RPC strategy aims to outperform the perplexity approach.
This method, claimed to be stable and effective, considers how the variation of the
average perplexities Pi for K candidate number of topics (P1, ..., Pi, ... PK) changes

10

2.3 – LDA number of topics selection

with respect to the topics numbers Ki (1 < i ≤ K) [23]. The equation of the RPC
index is:

RPC(i) =
-----Pi − Pi-1

Ki −Ki-1

----- (2.1)

Given the definition of the RPC function, the first change point of the RPC curve,
i.e. the first i that satisfies the equation RPC(i) < RPC(i+1), is chosen to be the
most suitable value for the number of topics K.
Figure 2.2 shows an example of the RPC curve, obtained for dataset D1, TF-IDF
weighting schema. In this case, the K value proposed by the RPC strategy turns
out to be 3.

4 6 8 10 12 14 16 18 20

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

K values

RPC

Figure 2.2: Example of RPC chart by different K values, dataset D1, TF-IDF
weighting schema.

2.3.2 En-LDA approach
The Entropy optimized Latent Dirichlet Allocation (En-LDA) [22], is an entropy-
based measure to optimally select the number of topics needed to properly describe
a corpus using the LDA topic modeling.
Entropy measures the average information contained in an event. Generally, infor-
mation can also be seen as the uncertainty characterizing the probabilistic event
itself: in our case, considering the probabilistic model generated by the LDA, en-
tropy represents the uncertainty of the model when describing the dataset under
analysis.
The idea of the En-LDA authors is to measure the entropy of different LDA models

11

2 – Textual data analysis

obtained with different configurations, to assess which of them is likely to be the
better one. To do that, they measured the entropy of each term given a document dm
using topics as the probabilistic labels of the word. Considering all the documents
in a corpus, the entropy of all the words are then aggregated to estimate the overall
entropy of the terms given the distribution of words with respect to the topics and
the distribution of the topics with respect to the documents.
The overall entropy of the clustering is then measured as:

Entropy(K) =
MØ

m=1

KØ
k=1

p(zm = k|d = dm)
A

NmØ
n=1
−pt,k,m ln(pt,k,m)

B
(2.2)

where M is the number of documents in the corpus, K is the number of topics in
the clustering, Nm is the number of terms in document dm, zm the document’s topic
and zn the topic of the word wn. pt,k,m is instead the normalized probability of the
word wn = t with respect to the topic zn = k. In other words, pt,k,m represents the
probability that the term wn is t under the kth topic. In formula, this is expressed
by: pt,k,m = p(wn = t|zn = k)qVm

n=1 p(wn = t|zn = k)
, having Vm equal to the size of the vocabulary

for the document dm.
To choose the most proper K number of topics, several LDA models have to be
computed for different values of K, and then the one with the minimum value of
entropy is selected to be the optimal number of partitions to describe the data
collection.
The approach is considered to be stable and able to handle very low and very high
number of clusters. Indeed, very low K values lead to very large entropy values, as
well as very large number of clusters.
Figure 2.3 shows an example of the En-LDA measure, obtained for dataset D1, TF-
IDF weighting schema. In this case, the K value proposed by the En-LDA approach
results to be 19.

2.4 Gap analysis
In this study two main objective are pursued. Firstly, this study improves and
enhances the PASTA engine, implementing an alternative to the K-Means clustering
technique. The proposed solution, that exploits the LDA modeling, potentially is
also usable as a reduction technique, becoming a further alternative to the LSI
reduction. LDA, being probabilistic and a state-of-the-art technique for text based
information retrieval, perfectly suits in the considered data analysis engine as a
complementary approach for the text mining activity.
Moreover, since the LDA model and the related literature do not provide a stable
and a resilient method to find a proper number of topics for the dataset under
analysis, the second goal of this study is to propose a novel method to determine

12

2.4 – Gap analysis

2 4 6 8 10 12 14 16 18 20

4,750

4,800

4,850

4,900

4,950

K values

En-LDA

Figure 2.3: Example of En-LDA chart by different K values, dataset D1, TF-IDF
weighting schema.

an optimal number of topics (clusters) for the LDA topic modeling. Particularly,
the state-of-the-art techniques only consider the probabilistic properties of the LDA
model. This study aims instead to consider the semantic representation of the topics
in order to find cohesive and well separated groups cluster that well represent the
documents content.

13

14

Chapter 3

Big Data platforms

In the current days, the data production and the knowledge digitilazion rates in-
crease continuously. To overcome the critical bottleneck of the computational costs,
innovative algorithms and methodologies able to support large scale analytics are
needed. Several studies had proposed many innovative solutions. Among them,
MapReduce [6] and Apache Spark [21] are the most used and famous frameworks
able to support large scale analytics.
As initially said, ToPIC has been thought to be distributed and scalable. In order
to achieve these goals and being an effective tool usable in the Big Data context,
ToPIC’s current implementation runs on Apache Spark, the current state-of-the-
art distributed framework to make the storage and the analysis of the data parallel
and distributed.
This Chapter describes the Apache Spark framework and its main characteristics.

3.1 Spark framework
Apache Spark is an open source cluster computing platform, created at the Univer-
sity of California and then donated to the Apache Software Foundation. The Spark
framework is designed to be fast and general-purpose [10]. These characteristics
made it a valid alternative to Hadoop MapReduce (Spark results to be 10 to 20
times faster than MapReduce1) and one of the most used framework for Machine
Learning algorithms and Big Data analysis.
The Spark architecture is based on a distributed storage system, maintained in a
fault-tolerant way. Furthermore, the Spark framework uses a cluster manager and
a computational engine that allow scheduling, distribution and monitoring of the
applications, making the computation fast and optimized. Being general purpose,

1https://spark.apache.org/

15

https://spark.apache.org/

3 – Big Data platforms

Spark allows the users to cover and combine several different types of workloads,
from batch programming to streaming and real-time data processing applications,
from interactive SQL queries to machine learning tasks, all within the same project.
Spark offers its functionalities through API for different programming languages
(Java, Scala, Python, R).

3.1.1 Spark Core
As depicted by its name, the Spark Core is the basis of the Spark projects. It
is the computational engine in charge of the distributed aspects of the framework,
also providing the I/O functionalities, memory management, the dispatching and
the scheduling of the tasks on the cluster machines. The Spark Core exposes these
functionalities above the abstraction of the Resilient Distributed Dataset (RDD),
offering APIs to build and manipulate these collections and making easy to write
parallel applications.
Applications are executed on Spark as a set of independent processes, coordinated
by the SparkContext in the main program (called driver program). Specifically, the
SparkContext connects to a Cluster Manager (supporting Spark to be deployed in a
distributed manner over the Apache Mesos or the Apache Hadoop YARN platforms,
or to be deployed in a Standalone fashion), that assigns the resources to the ap-
plications. The processes actually performing the computation and the operations
on the cluster nodes are called executor ; they receive the tasks from a driver pro-
gram, execute the required transformations and actions on the data, and eventually
return the results to the driver, that needs to be listening to inbound connections
and reachable for the whole execution of the application. The application executors
remain alive for the whole application life time, and they can execute tasks by means
of different threads.

3.1.2 Spark RDDs
The Resilient Distributed Dataset (RDD), is the main and fundamental abstraction
of Spark, by means of which it offers its functionalities and APIs. An RDD is an
immutable collection of objects, that may be distributed over different nodes by
means of several partitions. The RDD abstraction allows the data structures and
their partitioning to be transparent to the developers and lets the programming
aspects of the project remaining at a high level. Abstracting the data storage and
partitioning, the RDDs allow Spark to be deployed over different file systems, such
as HDFS (Hadoop Distributed File System), Cassandra, HBase and S3. Among the
several properties of the RDDs, the following ones are the most important:

• Resilient: RRDs are fault tolerant, they can be recomputed in case of dam-
ages or failures of the nodes of the cluster;

16

3.1 – Spark framework

• Distributed: the data collection can reside over different nodes of the cluster;

• Dataset: the RDD is a collection of partitioned data, that can be represented
by primitive values, tuple of values or any type of other objects.

RDDs have many other properties. Among the others, they are:

• Immutable and read-only: the data collection stored in the RDD can not
be modified, and transformations on the objects will produce a new RDD;

• In-memory: data inside RDD is stored in memory as much (size) and long
(time) as possible;

• Lazy Evaluated: the data inside RDD is not available or transformed until
an action is executed that triggers the execution;

• Cacheable: data can be hold in a persistent storage like memory (default and
the most preferred) or disk (less preferred due to access speed);

• Parallel: data stored in the RDDs can be processed in parallel;

• Typed: data in RDDs must have a type, such as Long in RDD[Long] or (Int,
String) in RDD[(Int, String)];

• Partitioned: records are partitioned (split into logical partitions) and dis-
tributed across nodes in a cluster;

From Spark 2.x, the RDD is not the primary API anymore, but the use of Dataset
API is encouraged, having the RDD technology still underlying the Dataset.

3.1.3 Spark transformations and actions
The RDD abstraction basically offers two kinds of operations: transformations and
actions.
Transformations build a new RDD from a previous one, applying functions to the
elements of the RDD. Examples of transformations are the rdd.filter() and the
rdd.map() functions. Spark keeps track of all the dependencies between the RDDs,
building a lineage graph (basically a directed acyclic graph of the transformations
performed over the data). The lineage graph is used to achieve the fault-tolerance,
since by means of the transformations history it is possible to recompute the RDDs
in case of errors.
The actions, instead, start from an RDD to compute a result, that may be returned
to the driver program or saved in an external storage system (such as HDFS). Ac-
tions force the evaluation of the transformations, since to perform the actions the

17

3 – Big Data platforms

RDD is actually necessary. Examples of actions are rdd.count() and rdd.take().
Transformations and actions differ in their execution, since Spark computes and
creates new RDDs only when they are used in an action for the first time (lazy
fashion), even if the user can define RDDs anytime in the program.
The lineage graph built by Spark is indeed used in the lazy evaluation of the trans-
formations when creating the new RDDs. The lazy evaluation approach makes sense
in the Big Data context: Spark computes only the final results, effectively needed
by the user, optimizing the computation to save operations, readings and writings
of intermediate unnecessary states. Another advantage introduced by the lineage
graph is that the directed acyclic graphs allow a way more flexible approach to the
data transformation with respect to more rigid map-then-reduce approach.

3.1.4 Spark libraries
Spark is designed to be highly accessible, offering simple APIs in Python, Java,
Scala, and SQL, and rich built-in libraries.
The Spark libraries are tightly integrated in the framework; being high-level com-
ponents, the Spark stack allows the libraries to benefit of all the functionalities and
improvements of the lower levels. Furthermore, the libraries are independent of the
structure and the architecture beneath them. The Spark stack, showed in picture
3.1, allows Spark to be flexible, usable in a wide range of applications and context,
deployable in many different systems and in continuous evolution.

Figure 3.1: Spark stack.

Spark SQL

Spark SQL is the Spark interface that allows the users to work with structured
data. It introduces the data abstraction called DataFrame, that allows developers
to use SQL queries together with the standard RDD manipulations, all within the
same application. DataFrames are distributed sets of data organized in columns,
conceptually similar to the tables of the relational databases.

18

3.1 – Spark framework

Spark Streaming

Spark Streaming is the component allowing Spark to process live streams of data
and perform streaming analytics. Spark Streaming introduces the DStreams (Dis-
cretized Streams), namely sequences of RDDs arriving over time, at each time step.
Programmers can easily manipulate data in memory, on disk, or arriving in real
time, having the same benefits of tolerance, throughput and scalability of all the
Spark applications. Spark Streaming allows batch and analytics functionalities to
be merged together in the same system.

Spark MLlib

Spark Mlib (Machine Leaning library) is a distributed framework offering to the
Spark users the most used and well-known machine learning functionalities and
algorithms. Data import, classification, regression, clustering, collaborative filtering
and model evaluation are some of the functionalities contained in MLlib, furthermore
designed to be scalable and run in parallel across the cluster.

Spark GraphX

Spark GraphX is the package used in Spark to manipulate graphs and perform
graph-parallel computations. It extends the Spark RDD APIs to allow the user
directly creating graphs with custom properties attached to the edges or to the
vertices. The library also proposes some basic graph manipulation algorithms.

19

20

Chapter 4

ToPIC implementation

This chapter introduces the ToPIC (Tuning of Parameters for Inference of Concepts)
framework, its implementation and its novel approach to automatically determine
the most suitable number of topics for the LDA algorithm. Section 4.1 gives a de-
tailed description of the Latent Dirichlet Allocation. Being LDA the specific topic
modeling approach in this study, a more detailed observation of the model is required
in order to understand the underlying bases of the presented work. Section 4.2 gives
an overview of the whole system implementation and its execution flow. The next
Sections provide a more detailed description of building blocks of the system, namely
the preprocessing of the corpus and the weighting of the terms (described in Section
4.3), and the application of the Latent Dirichlet Allocation modeling to cluster the
documents based on their topics distribution and content (Section 4.4). ToPIC-
Similarity, the new evaluation index used to determine the most proper number
of topics in which the documents have to divided in, is proposed and illustrated in
Section 4.5. The Chapter ends with Section 4.6 that proposes several techniques
(quantitative and qualitative) to compare and evaluate the results of the LDA mod-
els, visualize the obtained outcomes and assess the effectiveness and the efficiency
of the framework.

4.1 Latent Dirichlet Allocation
The Latent Dirichlet Allocation (LDA) is an unsupervised generative probabilistic
model for collections of discrete data such as text corpora [3]. Willing to generalize
and improve the existing and known approaches for text modeling, D. Blei, A. Ng
and M. Jordan created LDA, a model able to shortly describe large collections of
data without resorting to data dimensionality reductions.
In the following part of the Section, the LDA document generative model and its
application to inferential problems are explained.

21

4 – ToPIC implementation

Hereafter, a document is defined as a sequence of N words (called terms in the text
modeling context) and denoted by w = (w1, w2, ... wNd); a corpus, instead, is a
collection of M documents and it is denoted by D = { w1, w2, ... wM }.

4.1.1 LDA generative model
Before showing and giving the details of the LDA topic modeling, taking into account
the assumptions behind the modeling algorithm will help the comprehension. The
LDA authors, as it was done for all the other text modeling approaches known so far,
based their considerations on the Bag-of-Words representation and assumption. The
BoW representation allows documents to be described as sparse vectors containing
the number of the tokens occurrences. This document representation assumes that
the order of the terms in a document is irrelevant. At the same time, the Bag-
of-Words assumption entails that also the documents order in the corpus can be
neglected. On this basis, the LDA modeling algorithm takes in consideration the
exchangeability property of both terms and documents. This assumption does not
necessarily lead to strategies that are restricted to simple frequency counts or linear
operations, but it is still possible to capture significant intra-document statistical
structures via mixing distributions [3].
LDA is a generative model able to create corpora of documents. In order to create
them, topics and words have to be characterized as probabilistic distributions, since
the model draws the elements of the documents based on these probabilities.
The probabilities that are used in the model are the following:

• Poisson(λ), represents the distribution of the documents lengths.

• θ, describes the document-topics distributions, that are the probabilities that
a given document d belongs to a certain topic k: documents are then seen
as a distribution over the latent topics. This distribution is described by the
Dirichlet distribution Dir(α1, α2, ... αk).

• φ, represents the topic-words distribution. It describes the probabilities that
words have to be drawn for each specific topic.

Given the described distributions, the steps needed to build a document are:

1. Choose Nd, the number of words in the document, from Poisson(λ)

2. For each of the Nd words wn:

Choose a topic zn ∈ { 1, 2, ... k } from Multinomial(θ)
Choose a word wn from Multinomial(φzn), conditioned on the topic zn

22

4.1 – Latent Dirichlet Allocation

This document generating process has to be repeated for all the documents belong-
ing to the corpus.
In other words, for each document in the corpus and for each word wn in the Nd

number of words, a topic is chosen accordingly to the document-topics distribution
(Multinomial(θ)), thus generating a mixture of topics for each document. Then, a
word is extracted from the vocabulary V, taking into account the terms probabilities
for each given topic of the documents mixture [3].
The number of topics K, and so the dimensionality of the Dirichlet distribution, is
assumed to be known and fixed in the documents creation, while the parameters α
and β have to be given to the model in order to be built.
A further consideration is that all the variables that contribute to generate the cor-
pus (θ and z) are independent from the number of terms in each document Nd; this
parameter is then generally not considered in the model discussions, and it will not
appear in the following discussion.

Given α and β, the joint multivariate distribution of the topic mixture θ, the set
of N topics z and the set of N terms w is given by:

p(θ, z,w|α,β) = p(θ|α)
NdÙ

n=1
p(zn|θ)p(wn|zn,β) (4.1)

From the equation 4.1, it is possible to compute the probability of the whole corpus
by integrating over θ, summing over z and then taking the product of the marginal
probabilities of the single documents:

p(D|α,β) =
MÙ

d=1

Ú
p(θd |α)

 NdÙ
n=1

Ø
zdn

p(zn|θd)p(wdn|zdn,β)
 dθd (4.2)

Figure 4.1: Graphical representation of the LDA cO Latent Dirichlet Allocation [3].

23

4 – ToPIC implementation

The LDA model can be graphically represented with the schema reported in figure
4.1. As shown, there are three different levels in the schema, representing the corpus,
the documents and the terms. In the most inner box, representing the terms, z and
w are sampled for every n: this means that also the topic is sampled for every term in
the document, giving as result that the same document can be described by multiple
topics. The variables θd are sampled once per document, while the parameters α
and β are sampled once for the whole document generating process.

4.1.2 LDA for inferential problems
The Latent Dirichlet Allocation model is generative; nevertheless, it can used to
do inference of the posterior distribution of the latent variables for a given corpus
and then recover its structure [3]. The variables that describe the document are the
distributions of the topic mixture θ and the set of N topics z:

p(θ, z|w,α,β) = p(θ, z,w|α,β)
p(w|α,β) (4.3)

However, it is generally unfeasible to compute these distributions since the integral
in the expression in intractable, and so it is impossible to exactly solve this posterior
Bayesian inferential problem. To overtake this issue, several approximate inference
algorithms have been proposed and considered for the LDA inferential problem.
The original Latent Dirichlet Allocation paper used proposed a variational Bayes
approximation, but many other alternatives, such as the Markov chain Monte Carlo
approach, are available to approximate the probability distributions.

4.1.3 LDA inferential example
The following example clearly explains the LDA topic modeling for a simple corpus.
Let us consider a corpus made of the following documents:

• I like to eat broccoli and bananas.

• I ate a banana and spinach smoothie for breakfast.

• Chinchillas and kittens are cute.

• My sister adopted a kitten yesterday.

• Look at this cute hamster munching on a piece of broccoli.

In this example, the number of latent topics will be set to 2; the LDA algorithm
discovers the following topics:

• Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching

24

4.2 – System overview

• Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster

LDA describes the topics by terms probabilities, from which it is possible to infer the
arguments they deal about; at this point, documents can be modeled and described
by latent topic descriptions:

• Documents 1 and 2: 100% Topic A

• Documents 3 and 4: 100% Topic B

• Document 5: 60% Topic A, 40% Topic B

4.2 System overview
The ToPIC framework started with the aim to enhance the PASTA engine, applying
a new method to cluster the documents in the corpus. The considered enhancement
is to apply the LDA algorithm to the datasets under analysis.
Using this method to model the topics of the text documents, the reduction phase
of the PASTA engine is no more needed, since LDA reduces itself the documents
and, instead, could be even used as a reduction technique.
Before applying the LDA algorithm to the dataset, the steps that were done in
PASTA before the reduction are executed as well in this new the framework, since
preprocessing and weighting are essential to properly model the documents. After
these steps, several LDA models are iteratively built on the dataset, varying the
number of clusters the documents have to be assigned to.
In order to stop the computation and find a trade-off between costs and benefits,
a new quality metric is used as stopping criterion. This new metric is ToPIC-
Similarity, a newly proposed method to identify well separated topics and so
propose the most suitable numbers of clusters to describe a corpus. In so doing,
ToPIC reduces the complexity of the analysis, stores and proposes to the analyst
only the more relevant results, helping her in the analysis task.
Figure 4.2 shows the ToPIC architecture and its building blocks, described in detail
in the following Sections.

4.3 Preprocessing and weighting
In text based information retrieval, before analysing the documents in the corpus,
the texts have to be prepared, by means of parsification and preprocessing. The
parsing preprocessing phases include all the steps and techniques used in PASTA
and described in Section 2.1.1. Once the documents have been split and tokenized,
all the stopwords have to removed and all the terms have to be stemmed and normal-
ized. A further step, newly included in the preprocessing phase of the framework,

25

4 – ToPIC implementation

Figure 4.2: ToPIC architecture.

is the hapax removal. Since LDA draws words from the vocabulary taking into
account the terms probabilities for each given topic of the documents mixture, ex-
cluding the words that appear only once in the corpus not only does not affect the
resulting model, but instead will reduce the noise in the vocabulary and will improve
the overall probabilistic modeling. In probabilistic topic modeling hapax removal is
very effective, indeed being performed also in [3].
After the preprocessing of the dataset, the features described in Section 2.1.1 charac-
terizing the dataset are computed. Then, the weighting phase can start. Weighting
the terms in documents emphasizes the more relevant words, accordingly to the used
weighting schema. This leads to different LDA models, reflecting the importance
given to the words. Five combinations of different weights have been used in this
study, namely:

• TF-IDF

• TF-Entropy

• LogTF-IDF

• LogTF-Entropy

• Boolean-TFglob

Some of these weighting schemas are the ones that have also been used in the PASTA
engine. As pointed out in [4], different weighting schemas are expected to lead to
different results. Based on the document statistics and the desired granularity of
the outcomes, one of the weighting schema is expected to outperform with respect
to the others.

26

4.4 – Applying LDA

Weigth Definition

Local
TF = tfij

LogTF = log2(tfij + 1)

Boolean =
I

1, if tfij > 0
0, if tfij = 0

Global
IDF = log

A
|D|
dfi

B

Entropy = 1 +
q

j p(i, j)log p(i, j)
log(M)

TFglob = tfi

Table 4.1: ToPIC weighting functions.

Table 4.1 shows the definitions of the local and global weights used in ToPIC, where
i is the ith term, j is the jth document. Observable patterns related to the different
weighting schemas will be discussed in Chapter 5.

4.4 Applying LDA
Given the document-term matrix of weights X the LDA model is computed for a
specific number of topics K, in order to perform the inference of the posterior dis-
tribution of the latent variables for the given corpus.
The obtained probabilistic model will be evaluated by means of the ToPIC-Similarity
strategy and then, based on the results of the current and previous models’ eval-
uations, the analytic flow can be fed back into the LDA algorithm to produce a
new model given a new algorithm configuration. This process is repeated until a
good trade-off between the quality of the obtained results and the execution time is
achieved.
The used implementation of the Latent Dirichlet Allocation algorithm is the one
available in the org.apache.spark.ml.clustering library 1 [16]. The considered
LDA model implementation has been built specifically for text documents, and it
needs several parameters in order to be created. The parameters α and β are the
ones have to be set in order to maximize the log-likelihood of the data; the number
of topics (and so the number of cluster) has to be defined by the parameter K. A
detailed discussion of these parameters is given below and in the following Sections
of the Chapter.

1Online documentation available at: https://spark.apache.org/docs/2.2.0/api/scala/
index.html#org.apache.spark.ml.clustering.LDA

27

https://spark.apache.org/docs/2.2.0/api/scala/index.html# org.apache.spark.ml.clustering.LDA
https://spark.apache.org/docs/2.2.0/api/scala/index.html# org.apache.spark.ml.clustering.LDA

4 – ToPIC implementation

4.4.1 Setting LDA parameters
Parameter α

The α parameter represents the concentration for the prior placed on documents’
distributions over topics (θ). This means that low α values will create documents
that likely contain a mixture of only few topics, while high values will place more
weight on having documents composed of many dominant topics. In the Spark ML
library implementation of LDA, if this parameter is not specified the default value
is set automatically; if a single value instead of a vector of values is set, then the
single value is replicated to build an array of length K. The α value used in this
study is reported in Section 5.2.

Parameter β

The β parameter describes the concentration for the prior placed on topics’ distri-
butions over terms. This means that low β values will likely produce topics that
are well described just by few words, while high values will create topics composed
by a mixture of most of the words (and so not any word specifically). Also, in this
case, the Spark ML library implementation of LDA sets automatically the value of
β if not set from the user. The β value used in this study is reported in Section 5.2.

Parameter K

The number of topic K, besides being a parameter for the LDA, is one of the main
targets of this research. Indeed, the more accurate the number of topics given to the
model, the better are the clustering results given by the LDA. In literature, different
solutions in order to find the most suitable K have been explored and proposed, as
described in Section 2.3.
In this study we will propose a new approach to identify the most suitable K values,
taking into account the level of semantic similarity of the topics inferred by the LDA
algorithm.
As reported in [23], the research has not yielded to easy way to choose proper values
for K beyond a major iterative approach. The followed approach is still iterative,
as all the approaches known so far in literature: this means that in the framework,
several LDA models with different values for the K parameter will be created.
Though, the goal of the research is to find the optimal K values evaluating not only
probabilistic quality metrics, base the evaluation of the models on the topics content.
A trade-off between the computational costs and the goodness of the results will be
considered, to make the index efficient and effectively usable, even when applied to
large data volumes. The newly proposed approach, called ToPIC-Similarity is
described in detail in Section 4.5.

28

4.5 – Finding optimal number of clusters

4.5 Finding optimal number of clusters
In order to find the most suitable number of topics to model a given corpus, in
ToPIC we used a novel proposed approach, called ToPIC-Similarity. This
strategy assesses how topics are semantically diverse, and then chooses proper con-
figurations for the LDA modeling process.
Unlike the previously presented approaches to determine the most proper number of
topics (and clusters) K, the approach we propose in this Section is not based on the
internal LDA perplexity parameter or on probabilistic quality metrics, but evalu-
ates the topics based on their terms representation. Since φ models the topic-terms
distributions, a description of the topics based on their content is available. Having
the topics content and representation, it is possible to analyse how similar they are,
and so choose K in order to maximize the difference among them.
Given a lower and an upper bound number of topics set by the analyst (i.e, [Kmin,
Kmax]) a new LDA model is generated for each K. For each of these partitioning
processes, ToPIC-Similarity requires three steps to be gone through:

1. topic characterization, to describe each t topic (0 ≤ t < K) with the most n
representative words;

2. similarity computation, to assess how the topics in the same partitioning are
similar;

3. K identification, to find the optimal clustering configurations to be proposed
to the analyst;

Steps 1) and 2) are repeated for all the t topics in every K clustering model.
The enumerated steps will be discussed in detail in the following parts of the Section,
while a pseudocode of the implemented algorithm is reported in Algorithm 1.

4.5.1 Topic characterization
Among the results obtained by the LDA, the inferred topic-terms distribution φ
is used by ToPIC to determine topic similarities. Sorting φ by decreasing prob-
abilities, a subset of the most representative words of the topics can be retrieved.
Topics are described by the probabilities the words of the corpus dictionary have to
be drawn given the topic itself.
However, considering all the terms to compute the similarity is excessive because of
the high computational cost that would be required, especially taking in consider-
ation that many terms will have a very low and insignificant probability of being
extracted. To reduce the costs and the computation, each topic is described by a
subset of the terms in the dictionary, namely by its n most representative words.
This number of words is automatically set depending on the corpus vocabulary |V |,

29

4 – ToPIC implementation

the average frequency of the terms corpus (AvgFreq), the Type-Token Ratio (TTR,
which values belong to [0, 1]), and the currently considered number of topics K.
For each topic t, the number of terms n is obtained taking the corpus dictionary
sorted by the distribution φ, considering only richest part of it (by means of the
TTR index, that represents the lexical variation of the corpus) and then sampling
the remaining words by the average frequency of the terms. The resulting number
(named Q) represents the total number of terms considered, and it will have to be
split over the K topics.
Defining Q := |V | · TTR

AvgFreq
, the number of terms considered to describe a topic t is

mathematically described by:

n =

|V | · TTR
AvgFreq ·K , if Q ≥ K · AvgFreq

AvgFreq , if Q < K · AvgFreq
(4.4)

This is done if the total resulting number of words if greater than the average
frequency of terms times the considered number of topics, to make the sampling
reasonable (it does not make sense to sample with a period greater than the number
of items themselves) and to have every topic represented at least by a number of
words equal to the terms average frequency. If the condition is not satisfied, then
a minimum number of terms is considered. We set this lower bound quantity to be
equal to the average frequency of the terms in the corpus. At the end, the total
number of words considered for the ToPIC-Similarity index are approximately
K · n.
Repetitions among the considered terms characterizing each topic are removed and
the resulting words are considered together to make the topic representations com-
parable. Then, for each term in every topic, if the word is present in the topic
description, the correspondent value is set to the probability that the term has to
be picked up in the topic, or to 0 if it is not.

4.5.2 Similarity computation
To compute the ToPIC-Similarity index of the whole clustering model, all the
possible pairs of topics are considered. The similarity among the topics is computed
by means of the cosine similarity. The cosine similarity is often used in information
retrieval and data mining, especially in text analysis and topic modeling; it is chosen
among the other similarity or divergence indices because of its efficiency [17] and
its ability to reflect the human perception [19]. Since we use this similarity index
in the text analysis context and the probabilities of the terms are always positive,
the cosine similarity values obtained will always be in the interval from 0 to 1. It
is derived from the Euclidean dot product and, given two topics t’ and t” of the

30

4.5 – Finding optimal number of clusters

Algorithm 1: ToPIC characterization algorithm
Data: X, Kmin, Kmax

Result: kSol
// variable inizialization
topicS = [], NTerms = [] ;
for K ← Kmin to Kmax do

// build the LDA model;
LDAModel ← lda.fit(X);
Q ← (|V | · TTR)/AvgFreq;
// set the number of terms per topic;
if Q ≥ K · AvgFreq then

n ← Q/K);
else

n ← AvgFreq;
end
// collect together the terms of each topic;
for t ← 0 to (K-1) do

NTerms.append(LDAModel.describeTopics()[t].sort().take(n));
end
N ← NTerms.size() ;
topicsDescr = zeros(K, N) ;
simMatrix = zeros(K, K) ;
for t← 0 to (K-1) do

for word← 0 to N do
// take the probability that the term has to be drawn
// from the topic, given the LDAModel
topicsDescr[t][word] ← LDAModel.describeTopics()[t,
NTerms[word]];

end
end
for t ← 0 to (K-1) do

for s ← 0 to (K-1) do
simMatrix[t][s] ← cosine(topicsDescr[t], topicsDescr[s]);

end
end
topicS.append(norm(simMatrix)*100/K);
if topicS[K] ≥ topicS[K-1] && secondDerivative(topicS[K-1]) > 0 then

kSol.append(topicS[K -1]);
if kSol.size() > 3 then

return kSol.take(3);
end

end
end 31

4 – ToPIC implementation

same partitioning K, it is computed as follows: similarity(tÍ, tÍÍ) = NtÍ ·NtÍÍ

ëNtÍë2 · ëNtÍÍë2
,

whereNtÍ andNtÍÍ are the set of representative words of topic t’ and t”, respectively.
The result is a K×K symmetric matrix where each cell (i,j) is the similarity between
topic in row i and topic in column j.
The ToPIC-Similarity of the clustering is obtained averaging the similarity ma-
trix over K to keep in consideration the different number of clusters. For this issue,
the norm of the whole similarity matrix (using the Frobenius norm) is computed and
then the values is divided by K. To get the final ToPIC-Similarity this result is
then expressed in percentage by multiplying it by 100.

4.5.3 K identification
Computing the ToPIC-Similarity values for the different LDA models generated
for different K values, a topic similarity function is obtained.
To find optimal K values a trade-off approach has been chosen. It has been em-
pirically seen that the obtained ToPIC-Similarity function is, in most of the
cases, decreasing but not monotonic. This property allows us to choose as K values
the local minima of the curve, namely the K for which ToPIC-Similarity(Ki)
< ToPIC-Similarity(Ki+1). A further condition is added in order to choose the
relevant points: to consider only K values that belong to a decreasing segment of
the curve, the second derivative is computed and only the points that have a positive
second derivative are considered. In our study, we considered a trade-off between
optimal results and computational cost: the selected values are the firsts three points
that satisfy both the condition stated before. The topic modeling and the research
for optimal K values can stop when the first three values are found, or when the
algorithm reaches the K upper bound value set by the analyst (and in this case a
lower number of optimal values will be proposed to the analyst).
This method is newly proposed, since at our knowledge considering the cosine sim-
ilarity of the semantic description of the topics has been never considered in the
literature to automatically infer the most suitable number of clusters K for the
LDA topic modeling process.

4.6 Visualize and validate the LDA results
Evaluating data models using unlabelled data is hard. Many quantitative theoretic
indices can be used to assess the quality of a clustering process and so identify the
best partitioning. However, it is good practice to check if the obtained models ac-
tually make sense. To evaluate the goodness of the LDA modeling, and confirm the
ranking obtained with the quality metrics, visualization methods can be used. This
is possible because the LDA results allow to directly visualize the clustering inferred

32

4.6 – Visualize and validate the LDA results

in the learning process, both in terms of documents grouping and in terms of topics
characterization.
Evaluating high dimensional datasets and models is hard, so several strategies to vi-
sualize different aspects of the data are needed, such as indices aggregating the many
dimensions of the data items. Two quantitative validation approaches (perplexity,
described in 4.6.1, and clustering metrics, described in 4.6.2) and two visualization
techniques (t-SNE, described in 4.6.3, and topics-terms representations, described
in 4.6.4) have been used to evaluate the obtained results.

4.6.1 Perplexity
Perplexity is a measure of the quality of probabilistic models, that describes how
well a model predicts a sample (i.e. how much it is perplexed by a sample from the
observed data). It is widely used in text and language modeling, and the authors
of the LDA model used it to evaluate and compare the results of the LDA topics
inference.
Perplexity decreases monotonically in the likelihood of the data, and it is equivalent
to the inverse of the per-word likelihood. In [3], perplexity is defined as:

perplexity(D) = exp

I
−qm logp(wm)q

m |wm|

J
(4.5)

Given a computed model, the lower is its overall perplexity, the better are the
performances of the model and the estimation of the corpus probabilities.

4.6.2 Clustering metrics
Silhouette

Silhouette [14] is one of the most used and well-known metrics to measure the con-
sistency and the cohesion of a clustering. It can assume values in the interval [-1,
1], and since it describes how well the clustering performs for the given dataset, it
is often used as a validation index.
Silhouette measures how an object is similar to its own cluster (cohesion), and with
respect to the others (separation). High Silhouette values indicate that the cluster-
ing process well performed dividing the data collection, whether low values suggests
that the results are not well describing the structure of the dataset. The Silhouette
index can be computed with any distance metrics, such as the Euclidean or the
Manhattan.
Given a(i) the mean intra-cluster distance (namely the average distance of the data
point i from all the other points assigned to the same cluster) and b(i) the mean

33

4 – ToPIC implementation

nearest-cluster distance (the average distance with all the points in the nearest clus-

ter, of which i is not a member), Silhouette is defined as: s(i) = b(i)− a(i)
max {a(i), b(i)} .

The average s(i) computed over all the data points of a cluster represents how thigh
the considered cluster is, and how well its points are separated from the other ones.
In our context, the Silhouette index is computed using the most probable topic of a
document as its clustering label, and all document-topics probabilities as coordinates
of the points themselves.

Entropy

In information theory, entropy [13] is defined as the amount of information contained
in an event. Generally, the more the uncertainty in an event, the more information
it will contain. This means that information decreases in uncertainty, or entropy.
By this definition, entropy can be seen as an average ambiguity of a probabilistic
event: the larger the entropy, the more uncertainty and ambiguous the event is.
Applied to the modeling context, entropy measures how uncertain the model is: the
lower the entropy of the model, the more certain the model is describing the data
collection under analysis.
Specifically, concerning our context and given an LDA model, for each document
dm in the corpus we computed the entropy it has to belong to one of the K topics
is computed as follows:

H(dm) = −
KØ

t=1
p(dm = t)log(dm = t) (4.6)

being p(dm = t) the probability the considered document has to be assigned to topic
t. To compute the entropy of the whole clustering model, we averaged the entropy

of each document over the entire corpus: H(model) =

1qM
m=1 H(dm)

2
M

.

4.6.3 t-SNE
Visualizing the document clustering is not a trivial task for high-dimensional data
such as text documents. Indeed, just grouping the same-labeled documents is not
sufficient to describe the clustering results; for this reason, in this study we use the
t-Distributed Stochastic Neighbor Embedding (t-SNE), a technique able to visualize
high-dimensional data over a two or three-dimensional space [12].
Normally, high-dimensional datasets are represented graphically reducing the dimen-
sionality of the dataset, nevertheless trying to preserve the most significant structure
of the data. This approach is usually achieved with reduction techniques such as
PCA. However, especially when the high-dimensional dataset is made of similar
data points, it is often difficult to use a linear mapping (as the one performed by

34

4.6 – Visualize and validate the LDA results

the Principal Component Analysis) to properly visualize the differences among the
data items.
t-SNE is a non-linear algorithm for dimensionality reduction, able to capture much
of the local structure of the high-dimensional data very well, while at the same time
also revealing global structure such as the presence of clusters at several scales [12].
This feature allows similar data points to be represented nearby and, in the mean-
while, different data points to be represented far in the new low-dimensional space.
The algorithm converts the Euclidean distances among the data points into condi-
tional probabilities representing similarities.
Pi|j are the probabilities that a certain point xi would pick xj as its neighbour, if
neighbours were distributed with a Gaussian probability centered in xi: this proba-
bility is high for nearby data points, while it is almost zero for very different data
points.
The same probabilities are computed for the new low-dimensional space: Pi|j are the
probabilities that the low-dimensional datapoint yi would choose yj as its neighbour.
If the two representations have the same dimensionality, then the two conditional
probabilities have to be equal. For a different number of dimensionalities, t-SNE
minimizes their difference through the Kullback-Leibler divergence [11].

Figure 4.3: Example of the t-SNE representation, dataset D1.

The data reduced in dimensionality can then be easily printed, for example by means
of a scatter plot, still being able to visualize the original structure and relations
among the data points.
Figure 4.3 shows an example of a t-SNE dataset visualization. It is possible to see
how data points are grouped together based on their characteristics and how the
structure of the dataset is maintained by the algorithm. The coloring of the points is

35

4 – ToPIC implementation

based on the assignment to a specific topic, reflecting the results of the LDA model.

4.6.4 Topics-terms representations

Another way to evaluate the results of the LDA algorithm, is to take into account
the representation of the topics, thus the content of the topics themselves.
This allows us to compare the terms across and within the topics found by LDA.
Topics representation is obtained from the LDA model, by means of the method
LDAModel.describeTopics(), that returns the topic description φ.

Termite

This representation has been proposed in literature by Chuang et al., with the aim
to support effective evaluation of the terms distributions associated with LDA topics
[5]. This representation enables the analyst to assess the quality of the clustering
results, evaluating the goodness of each topic and of all the topics as a whole.
For each topic, a certain number of the most representative terms is taken: their be-
longingness to the topic is represented in the diagram as a point, which size depends
on the probability that the terms has to be drawn from the topic when creating the
document.
The topic-terms diagram helps the analyst to detect if a term is salient for a specific
topic, or if it is equally probable that it would be drawn in the document creation
process. This representation is also useful to spot stopwords left over by the prepro-
cessing steps, or even to spot useless topics, that are not represented by any salient
term.
In figure 4.4 an example of topic-terms representation is shown. The chart has been
built for the dataset D1, considering few terms for the image visualization sake.

Word clouds

In order to visualize the content of the topics we used the word cloud technique.
The word clouds represent the terms that, according to the obtained LDA model,
most probably describe the topics.
The clouds represent the topic-terms matrices: the comparison of the cloud sets
obtained by different models is left to the human judgment.
The word cloud visualization stresses the terms with the highest probabilities with a
bigger font size. In this way is possible to straightforwardly observe if the classifica-
tion results are good or the topic modeling has not yielded to acceptable outcomes.
Because of its clearness and simplicity, the word cloud representation has been al-
ready used in literature to visualize the results of the LDA topic modeling [23].

36

4.6 – Visualize and validate the LDA results

Figure 4.4: Example of the Termite topic-terms representation, dataset D1.

Word tables

Another way to represent the topics and their content is to use the word tables.
This representation, the simplest among the topic-terms representations, basically
lists the terms that describe the topics by decreasing order of probabilities.
As suggested in prior works [5], the quality of a topic is often determined by the
coherence of its constituent words. The goal of this kind of visualization is, again, to
assess how the clustering process performed, by considering the topics cohesiveness
and coherence through their content.

37

38

Chapter 5

Experimental results

In this chapter the experimental results generated to test the effectiveness of ToPIC
will be presented. The datasets used in this study and their descriptions are reported
in Section 5.1. For every dataset, the set of its statistical indices is presented, along
with a brief overview of the corpus. Section 5.2 briefly describes the settings and the
running environment used for the study. Section 5.3 will show the results obtained
for every dataset, together with the relative obtained quantitative evaluation indices
and the comparison with the state-of-the-art outcomes. Section 5.4 consider a repre-
sentative running example and shows in detail the ToPIC results, their evaluation
process (by means of the methods reported in Chapters 4), and a specific compari-
son with the RPC and En-LDA approaches. The Section ends with an overview of
the considerations done for the analysis of the representative dataset. Section 5.5
briefly reports the results obtaineed for the remaining datasets. The impact of the
different weighting schemas proposed in ToPIC will be discussed in Section 5.6,
in order to highlight and explain the differences obtained in the gathered results.
Section 5.7 gives an overview of the comparison with the state-of-the-art techniques
considering all the datasets used to test the framework. The Chapter ends with
Section 5.8, giving a final sum-up and final considerations about the results and the
effectiveness of the whole system.

5.1 Experiment datasets
The presented ToPIC framework has been tested over different datasets, belonging
to different kind of sources and typologies. The corpora have been chosen in order
to have different characteristics, from the number of documents to the length of the
individual texts, from the lexical richness to the average frequency of the terms.
Documents in the same corpus should be characterized by homogeneous lengths and
heterogeneous topics, beyond being produced by different authors. These charac-
teristics allows the results to be comparable and generic, avoiding the over-fitting of

39

5 – Experimental results

the datasets.

Wikipedia Reuters
1000_5cat 2500_10cat 21578

dataset ID D1 D2 D3

Table 5.1: Datasets IDs.

The datasets can be grouped based on their source and typology. Table 5.1 reports
a summary of the used dataset, with the IDs they are assigned to for this study.
In the following part of the Section, the used datasets are described in detail. For
every data collection, the indices characterizing the data distribution are reported,
as computed before the hapax removal (WH) and after the hapax removal (WoH).
Eliminating words that appear only once within the corpus (i.e., hapax) allows the
LDA to construct a more precise probabilistic model. Since each term of the corpus
is drawn from the vocabulary taking into account the terms probabilities for each
given topic of the documents mixture, excluding the hapax terms will allow the
reduction of noise in the vocabulary.
Moreover, the features computed with the hapax terms and without them and re-
ported in the tables do not show significant differences. Indeed, the proportions
among the number of words, the Guiraud index and the TTR do not change. This
happens even removing nearly half the dictionary since, in some datasets, the hapax
percentage reaches values higher than 50%.
Dataset D1 will be used as representative dataset: detailed considerations and con-
clusions, explanatory and crucial figures will be reported for this running example.
Detailed results for all the other datasets used in the study will be given in Section
5.5.

5.1.1 Wikipedia
The first group of datasets used in the study is composed of two different collections
of Wikipedia articles1. Wikipedia’s contents are released under Creative Commons
license, and so their usage is free and public. Wikipedia articles are written by
different users, so unbiased by a certain writing style, their content is usually specific,
and in average they have the same length. Categories were chosen to be sufficiently
separated and so detectable by the clustering algorithms. From these categories two
different datasets have been created, diverging for the number of documents taken
for each topic.
In order to build the first dataset, 200 articles have been taken from the following five

1https://en.wikipedia.org

40

https://en.wikipedia.org

5.1 – Experiment datasets

categories: cooking, literature, mathematics, music and sports. The following ten
categories have been chosen instead to build the second article collection: astronomy,
cooking, geography, history, literature, mathematics, music, politics, religion, sports.
The second dataset collects the first 250 articles for each of the topics shown before.
These datasets have been already used to test the PASTA engine.
Table 5.2 reports the statistical indices of the two Wikipedia datasets used in the
study.

Wikipedia
WH WoH WH WoH

Dataset ID D1 D2
documents 989 2,463
Max frequency 6,343 9,405
Min frequency 1 2 1 2
Avg frequency 16 32 21 44
terms 1,109,408 1,075,210 2,995,762 2,882,781
Dictionary |V | 67,613 33,415 138,329 65,336
TTR 0.06 0.03 0.05 0.02
Hapax % 50.58 0 52.77 0
Guiraud Index 64.19 32.23 80.46 38.48

Table 5.2: Statistical indices for the Wikipedia datasets.

5.1.2 Reuters
The Reuters dataset, publicly available and known as Reuters-21578 2, is widely used
test collection originally created in 1987 by the Carnegie Group, Inc. and Reuters,
Ltd for text categorization research purposes, and then made available for research
purposes only. This dataset is often used for information retrieval, machine learning
and corpus-based researches.
The original dataset is made of 21578 articles but for this study, as did in order to test
the PASTA engine, only a subset of documents has been taken into account. This
subset has been created from the Apte’ Split 90 categories3, a formatted version of
Reuters-21578, that divides the dataset in different categories and then again divides
them in the testing and training partitions. The subset used for this study is the
whole Apte’ Split 90 categories, created merging together the test and the training

2http://www.daviddlewis.com/resources/testcollections/reuters21578
3Dataset on-line available at http://disi.unitn.it/moschitti/corpora.htm

41

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://disi.unitn.it/moschitti/corpora.htm

5 – Experimental results

part, totaling to 15.437 documents.
Table 5.3 reports the statistical indices of the Reuters datasets used in this study.

Reuters
WH WoH

Dataset ID D4
documents 15,437
Max frequency 42,886
Min frequency 1 2
Avg frequency 55 76
terms 1,337,225 1,316,988
Dictionary |V | 24,239 17,153
TTR 0.02 0.01
Hapax % 29.2 0
Guiraud Index 20.96 14,95

Table 5.3: Statistical indices for the Reuters dataset.

5.2 Experimental settings
For this study, the following settings for the LDA models have been used: the
maximum number of iterations within the model has to converge has been set to
be equal to 100, the Optimizer (or inference algorithm used to estimate the LDA
model) has been set to be Online Variational Bayes (default).
The possible range of K values, [Kmin, Kmax], has been set to [2,20]. Indeed, 2
is the lowest possible number of clusters to divide the corpus in, and 20 has been
considered an acceptable upper bound, since having more clusters will lead to results
difficult to be interpreted and validated.
Since we used Online optimizer, the α value and the β value should be greater
than or equal to 0. For this study, the value set for this parameter is α = 50/K, as
proposed in the literature by several articles [9, 15, 20], and the value set for β is
β = 0.1, as proposed in the literature by Griffiths et al. [9].
The ToPIC framework has been developed to be distributed and so implemented
in Spark. Since then, all experiments have been performed on the BigData@PoliTO
cluster4 running Apache Spark 2.0.0. Three virtual nodes, two executors and a
driver, having a 7GB main memory and a quadcore processor have been deployed
for this research.

4https://bigdata.polito.it/content/bigdata-cluster

42

5.3 – ToPIC results and effectiveness

5.3 ToPIC results and effectiveness
Table 5.4 shows the results obtained using ToPIC; for each dataset and weight-
ing schema, it includes a row for each K obtained using our proposed clustering
methodology and the three proposed metrics used to analyse the goodness of the
statistical model generated.
To be able to present the differences of the results between our approach and the
state-of-the-art ones, Table 5.5 reports the results obtained with the RPC and the
En-LDA techniques, together with their evaluation, using the same metrics of table
5.4.
A general discussion about the ToPIC performance and the comparison with the
other techniques will be given in Section 5.8 and Section 5.7.

5.4 A running example: results and evaluation
This Section shows in detail the results and the evaluation process and techniques
for the representative dataset, i.e. D1. This dataset, namely the Wikipedia 1000-
5cat, contains about 1000 documents related to cooking, literature, mathematics,
music and sports themes.
The dataset will be evaluated for all the weighting schemas considered in ToPIC,
assessing the goodness of the found results and then comparing the models obtained
with the proposed framework and with the state-of-the-art techniques. The final part
of the Section will sum up the considerations about the effectiveness of ToPIC, the
different impacts of the weighting schemas, the differences and similarities with the
state-of-the-art results.

5.4.1 Dataset D1, TF-IDF results
The results obtained by ToPIC with the TF-IDF weighting schema are reported in
figure 5.1b. From the chart, the selected K values are 3, 6 and 10.
From table 5.4 we can state that the Silhouette and the entropy indices agree on
the evaluation of the selected models. On the contrary, the perplexity index assigns
to the higher values of K a lower uncertainty of the models.
As discussed before, quantitative metrics are not enough to evaluate the overall
quality of the clustering process. So, in order to correctly examine the results, the
t-SNE and the topic-terms representations of the considered models are reported
from figure 5.2 to figure 5.5.
From the t-SNE representation it is possible to see that the clusters are all almost
balanced in terms of document cardinalities, and the number of the main clusters
is actually reflecting the actual structure of the dataset, originally composed of five
categories.

43

5 – Experimental results

Weight K Perpl Silh Entr Execution
Time

D1

TF-IDF
3 8.8127 0.7721 0.2561

1h 50min6 8.5970 0.6935 0.3634
10 8.4822 0.6827 0.3956

TF-Entr
5 9.0724 0.7623 0.2825

1h 30min8 9.2482 0.6324 0.3388
9 9.2679 0.6319 0.3395

LogTF-IDF 8 9.1873 0.6754 0.3205 1h 40min17 9.1262 0.6370 0.3626

LogTF-Entr
5 9.9126 0.8915 0.1004

1h 30min7 9.8841 0.8460 0.1748
11 9.9794 0.9515 0.1089

Boolean-TF
4 6.4926 0.6979 0.4214

2h 5min5 6.4640 0.6618 0.4832
17 6.4208 0.3813 1.0901

D2

TF-IDF
3 9.2008 0.7715 0.2460

3h 20min8 8.9628 0.5878 0.5314
10 8.9436 0.5530 0.6118

TF-Entr
3 9.5568 0.8075 0.2161

3h 25min7 9.4555 0.7008 0.3556
8 9.4631 0.6985 0.3693

LogTF-IDF 11 9.4108 0.6016 0.4895 3h 20min14 9.4529 0.5652 0.4958

LogTF-Entr
7 10.2031 0.8751 0.1258

3h 10min9 10.2194 0.8922 0.1219
11 10.2327 0.9012 0.1253

Boolean-TF
6 6.6223 0.4398 0.7979

5h 20min13 6.5833 0.3380 1.1922
18 6.5699 0.3205 1.3262

D3

TF-IDF
3 7.7154 0.7347 0.2763

1h 55min4 7.6455 0.6913 0.3485
9 7.4389 0.5966 0.5586

TF-Entr
4 8.5396 0.0564 1.3806

1h 50min6 8.6242 -0.247 1.7805
9 8.7109 -0.0811 2.169

LogTF-IDF
5 7.7503 0.7005 0.3565

1h 50min7 7.6686 0.6676 0.4440
13 7.5614 0.5989 0.6396

LogTF-Entr
5 8.7880 0.0774 1.6090

1h 50min9 9.0011 -0.0437 2.1955
13 9.1759 -0.0690 2.5600

Boolean-TF
4 3.9669 0.6373 0.4659

2h 20min7 3.8947 0.4730 0.7352
16 3.7309 0.3016 1.3112

Table 5.4: ToPIC results table.

44

5.4 – A running example: results and evaluation

Weights Method K Perpl Silh Entropy

D1

TF-IDF RPC 3 8.8127 0.7721 0.2561
En-LDA 19 8.4273 0.6211 0.5345

TF-Entropy RPC 5 9.0724 0.7623 0.2825
En-LDA 5 9.0724 0.7623 0.2825

LogTF-IDF RPC 7 9.1837 0.6935 0.3192
En-LDA 16 9.1890 0.5530 0.4434

LogTF-Entropy RPC 3 9.7774 0.8524 0.1441
En-LDA 3 9.7774 0.8524 0.1441

Boolean-TFglob
RPC 4 6.4926 0.6979 0.4214

En-LDA 20 6.4127 0.6618 1.2558

D2

TF-IDF RPC 6 9.0370 0.6214 0.4638
En-LDA 20 8.8447 0.5274 0.6617

TF-Entropy RPC 5 9.4955 0.7198 0.3293
En-LDA 20 9.5718 0.6060 0.4374

LogTF-IDF RPC 7 9.4280 0.6213 0.4601
En-LDA 19 9.4052 0.5095 0.5345

LogTF-Entropy RPC 3 10.1156 0.7787 0.2142
En-LDA 5 10.1365 0.8172 0.1762

Boolean-TFglob
RPC 7 6.6159 0.3956 0.8756

En-LDA 20 6.5632 0.3153 1.3923

D3

TF-IDF RPC 5 7.5937 0.6728 0.3924
En-LDA 20 7.3124 0.5366 0.7986

TF-Entropy RPC 7 8.6670 -0.586 1.9340
En-LDA 17 8.7483 -0.0428 2.6406

LogTF-IDF RPC 4 7.8130 0.7350 0.3088
En-LDA 19 7.5663 0.5688 0.7740

LogTF-Entropy RPC 13 9.1759 -0.0690 2.5600
En-LDA 17 9.2942 -1847 2.8132

Boolean-TFglob
RPC 6 3.9200 0.5007 0.6562

En-LDA 20 3.6822 0.2954 1.4030

Table 5.5: State-of-the-art results table.

The topic-terms technique used in this case, for interpretability and visualization
reasons, is the word cloud. From this representation it is possible to assess the
cohesion of the clusters and assign a general label to each topic.
Looking at the case where K has been selected to be equal to 3 (Figure 5.3), it is
possible to identify the following topics: literature (or more generally art), sport and
cooking/mathematics. It is clear that some original topics are mixed, and a greater
number of clusters may be needed to better represent the dataset.
With 6 clusters, LDA well divides the documents belonging to the following top-
ics: literature/art, sport, mathematics, cooking (Figure 5.4). A further cluster is
described by sports and music terms, specifically related to boards, air, water and
wheels. Another one collects words about fighting sports and the geographical East
area. The music topic appears to be split over different clusters, such as the art and

45

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

4,800

4,900

5 · 10−2

0.1

K values

E
n-
LD

A

R
P
C

(a) Dataset D1, TF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

K values

ToPIC

(b) Dataset D1, TF-IDF, ToPIC results.

Figure 5.1: En-LDA, RPC and ToPIC results diagrams for dataset D1, TF-IDF
weighting schema.

the sport ones.
To visualize the results obtained for K equal to 10, only a subset of most repre-
sentative topic descriptions has been reported. As it is possible to see from the
relative t-SNE representation (Figure 5.2c) and the word clouds (Figure 5.5), the
five bigger clusters well represent and describe the main categories of the dataset
(i.e. literature, music, mathematics, cooking and sports). By the word descriptions
of the remaining clusters, it is possible to see they represent sub-topics. The content
is related to specific sports, rather than specific musical instruments.
The more detailed analysis of the models generated by the LDA modeling process,
leads us to consider the solution obtained with K equal to 10 as the better one.

46

5.4 – A running example: results and evaluation

(a) D1, TF-IDF, K 3. (b) D1, TF-IDF, K 6.

(c) D1, TF-IDF, K 10. (d) D1, TF-IDF, K 19.

Figure 5.2: D1 t-SNE representation, TF-IDF weighting schema, K 3, 6, 10 and 19
respectively.

Figure 5.3: D1 WordCloud representation, TF-IDF weighting schema, K 3.

This is reported in Table 5.4 highlighting the solution in bold.

Comparing the ToPIC results with the state-of-the-art techniques, which produce
as K values 3 and 19 (with RPC and En-LDA respectively), two different scenarios
are depicted.
The RPC proposes 3 as optimal number of clusters. This is the same value proposed
by the first solution of the ToPIC framework. As described above, the clustering
result is not bad, but some of the original topics are mixed together (music and

47

5 – Experimental results

Figure 5.4: D1 WordCloud representation, TF-IDF weighting schema, K 6.

Figure 5.5: D1 WordCloud representation, TF-IDF weighting schema, K 10.

literature, sports and mathematics). In this sense, ToPIC outperforms RPC giving
more options to the analyst, letting her the possibility to choose among different
solutions with different granularity levels.
With the En-LDA approach, which proposes 19 as the optimal number of clusters,
good partitions are identified (the t-SNE representation of the clustering result is re-
ported in Figure 5.2d). Indeed, all the original categories of dataset can be recovered
in topics. Furthermore, the model identifies very specific topics, that describe only

48

5.4 – A running example: results and evaluation

few documents, and often divide the main categories in subtopics, that deal about
more specific arguments with respect to main ones. Examples are the opera and the
instruments topics, that both belong to the music main category. The modeling is
overall good, but having more topics that the ones actually required not necessarily
means having a better result. Indeed, too many topics may not be useful for the
analysis since then the analysts have a more complex result set to consider in their
work.

5.4.2 Dataset D1, TF-Entropy
The results obtained by ToPIC with the TF-Entropy weighting schema are reported
in figure 5.6b. From the chart, the selected K values are 5, 8 and 9.
Computing the perplexity, Silhouette and the entropy metrics to evaluate the pro-
posed results, we obtain concordant values for Silhouette and entropy and an oppo-
site trend for the perplexity values. Evaluating graphical results and going deeper in
the topic analysis could lead to more precise evaluation of the clustering outcomes.
The t-SNE and the topic-terms representations of the LDA results obtained with
the TF-Entropy weighting schema are reported from Figure 5.7 to 5.8.
The t-SNE charts show very different results of the clustering processes. The topics
modeled with K equal to 5 seems to be balanced in the number of documents
assigned to each one. On the contrary, the results obtained with 8 and 9 clusters
look similar, having moreover strongly unbalanced cardinalities for different topics.
Looking at the topic-terms visualization will help the analysis process.
The Termite representation of the clustering obtained with K equal to 5 is reported
in Figure 5.8. The represented topics are well described, and they identify the orig-
inal categories of the dataset. Indeed, among the topics we can clearly assign the
following labels: sports (mixed with food), literature, music, mathematics. To the
last cluster, even if it does not identify a specific topic, are assigned only few docu-
ments (15), so it is not a relevant cluster for the analysis.
Being the results obtained with K equal to 8 and 9 very similar not only in terms
of t-SNE representation, but also in terms of topic-terms representation, only the
results with 8 clusters will be discussed below. Good topics descriptions can be
identified in the results, such as the ones dealing about food, music/sports, litera-
ture. However, most of the topics descriptions contains words that are difficult to be
linked to a unique semantic area. Indeed, they mix together words of mathematics,
food or sports, but especially they include words that are not relevant to any theme.
This happens because of used the weighting schema: the local weight LogTF flat-
tens the relevance of the terms in the documents. Thus, finding the keywords in the
texts becomes more complicate and the inference of the LDA models worsens.
Based on these considerations and the analysed results, the more optimal solution
results to be the one obtained with 5 clusters. Indeed, the solutions with greater

49

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

4,900

4,950

5,000

5 · 10−2

0.1

0.15

K values

E
n-
LD

A

R
P
C

(a) Dataset D1, TF-Entropy, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

K values

ToPIC

(b) Dataset D1, TF-Entropy, ToPIC results.

Figure 5.6: En-LDA, RPC and ToPIC results diagrams for dataset D1, TF-Entropy
weighting schema.

K values are more unbalanced than the one obtained with K = 5. This solution is
reported in bold in the ToPIC results table (Table 5.4).

The choice ofK equal to 5 as best results among the three proposed by the framework
is confirmed by the other two approaches considered in the study. Indeed, for the
TF-Entropy weighting schema, the state-of-the-art techniques propose as solutions
the same values proposed by ToPIC. These results have already been shown in
order to evaluate the performance of the ToPIC-Similarity technique.

50

5.4 – A running example: results and evaluation

(a) D1, TF-Entropy, K 5. (b) D1, TF-Entropy, K 8.

(c) D1, TF-Entropy, K 9.

Figure 5.7: D1 t-SNE representation, TF-Entropy weighting schema, K 5, 8 and 9
respectively.

5.4.3 Dataset D1, LogTF-IDF results

The results obtained by ToPIC with the LogTF-IDF weighting schema are reported
in figure 5.9b. From the chart, the selected K values are 8 and 17.
As in the TF-IDF weighting schema case, from table 5.4 it is possible to see that
the Silhouette and the entropy indices have the same trend in evaluating the results.
Again, perplexity on the contrary assigns to the model with more clusters a lower
uncertainty. In order to correctly evaluate and choose the better modeling of the
dataset, a deeper analysis of the proposed results is needed. To do that, the t-SNE
and the topic-terms representations of the models are reported from figure 5.10 to
figure 5.11.
The t-SNE visualization of the results shows us a slightly unbalanced clustering
outcome. The effective number of categories and topics is indeed is not very well
reflected from the structure inferred by the topic modeling and the t-SNE repre-
sentation. Topic-terms visualization is needed to better understand the obtained
results.
The results obtained with the LogTF-IDF weighting schemas (K equal to 8 and K
equal to 17) show that LDA has more difficulty in well clustering the documents.

51

5 – Experimental results

Figure 5.8: D1 Termite representation, TF-Entropy weighting schema, K 5.

However, looking at the t-SNE representation of results obtained with K equal to 8
(Figure 5.10a) it is possible to identify, among all the clusters, three main groups.
They contain most of the documents of the corpus, and they are represented with
the word clouds in Figure 5.11. The other topic descriptions are very specific and
they describe very particular arguments (such as fighting sports or themes related
to the East), so they are not relevant for the evaluation of the modeling.
Looking at results obtained with 17 different topics, the t-SNE representation shows
a quite unbalanced clustering. Again, looking at the topic-terms representation and
at the labels assigned to the documents, it is possible to better understand the
LDA outcome. Many of the found topics seems to have a good level of cohesion,
clearly dealing about sports, historical o literary characters, mathematics, literature,
arts, while some others describe more specific topics. However, when looking at the
number of documents assigned to each cluster, we can assess that the modeling did
not well perform in dividing the texts. Indeed, the four topics including most of the
documents (99%) result to be not the more generic, but the ones reported in Table
5.6.
The reported results are clearly not completely satisfying, since they do not well
describe the texts collection. Because of these reason, the value selected to be the

52

5.4 – A running example: results and evaluation

2 4 6 8 10 12 14 16 18 20

5,140

5,160

5,180

2

4

6

8

K values

E
n-
LD

A

·10−2

R
P
C

(a) Dataset D1, LogTF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

5

10

15

K values

ToPIC

(b) Dataset D1, LogTF-IDF, ToPIC results.

Figure 5.9: En-LDA, RPC and ToPIC results diagrams for dataset D1, LogTF-IDF
weighting schema.

optimal one is 8, as reported in bold in Table 5.4.
An explanation of the worsening of the results with respect to the previously pre-
sented weighting schema, resides in the local weight LogTF. The logarithm indeed
flattens the relevant part of the weight associated to the terms. The logarithm,
tends to make the weight distribution homogeneous, lowering especially the greater
values. This makes the LDA modeling more difficult, thus giving the results showed
before.

For the LogTF-IDF weighting schema, the state-of-the-art approaches propose 7 and

53

5 – Experimental results

(a) D1, LogTF-IDF, K 8. (b) D1, LogTF-IDF, K 17.

(c) D1, LogTF-IDF, K 7. (d) D1, LogTF-IDF, K 16.

Figure 5.10: D1 t-SNE representation, LogTF-IDF weighting schema, K 8, 17, 7
and 16 respectively.

Figure 5.11: D1 WordCloud representation, LogTF-IDF weighting schema, K 8.

16 (RCP and En-LDA respectively) as optimal number of clusters. These results
are similar to the one obtained with ToPIC. The t-SNE representations of these
clustering outcomes are reported in Figure 5.10, while the same considerations done
for the previously discussed results can be done as well for these clustering outcomes.

54

5.4 – A running example: results and evaluation

K Topic description

1 ann, glima, umf, brejohn, thomas, robert, the, james, michael, king,
richard, william, literature, henry, david, die, george, charles, sir, tale

4 make, two, sport, first, include, team, world, point, time, call,
game, many, allow, competition, will, hold, form, often, player, take

5 music, write, work, example, include, often, first, term, see, time,
form, new, musical, play, character, many, two, book, century, note

16
kickboxing, kickboxer, karate, muay, kickbox, bra, kyokushin,

yamada, iska, tadashi, sawamura, thai, sae, sanshou,
noguchi, khmer, sanda, kurosaki, osamu, kenji

Table 5.6: D1 topic-terms representation, LogTF-IDF weighting schema, K 17.

5.4.4 Dataset D1, LogTF-Entropy results
Figure 5.12 reports the results obtained by ToPIC with the LogTF-Entropy weight-
ing schema. From the chart, the selected K values result to be 5, 7 and 11.
For the considered clustering results, perplexity, Silhouette and entropy all disagree
in the evaluation of the models. As it is possible to see from the t-SNE represen-
tations, all the models badly perform in describing the texts documents. Indeed,
besides having not cohesive topics that do not describe a specific argument, almost
all the documents are assigned to a single cluster. Clearly, this clustering outcome
does not represent the documents and their variety of contents.
Since even the topic-terms representation is not relevant for the evaluation of the
clusters, the content of the topics is not described in the discussion of the results.
Nevertheless the model obtained with 7 clusters is considered to be the better one,
given the perplexity index, the presence of two relevant topics (see in Figure 5.13b)
that describe the mathematics/music and the sport topics (respectively red and
yellow in the t-SNE chart). In the other clustering results, indeed, documents are
almost all assigned to only one topic. This solution is reported in bold in the ToPIC
results table.

The state-of-the-art approaches, both select 3 as optimal number of clusters. The t-
SNE representation of this results is reported in Figure 5.13d: the produced clusters
seem to be more balanced than the ones generated for other K values. Looking at
the topic-terms representation, it is possible to identify the categories music, sports
and food in the bigger cluster (yellow), mathematics in the blue one and literature
in the smaller cluster.
Even if this result is better than the ones obtained with ToPIC, the LogTF-Entropy
weighting schema clearly badly performs in giving relevance to the terms of corpus
in order to help the clustering process.

55

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

5,270

5,280

5,290

5,300

5 · 10−2

0.1

K values

E
n-
LD

A

R
P
C

(a) Dataset D1, LogTF-Entropy, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

K values

ToPIC

(b) Dataset D1, LogTF-Entropy, ToPIC results.

Figure 5.12: En-LDA, RPC and ToPIC results diagrams for dataset D1, LogTF-
Entropy weighting schema.

The motivations of these affirmations and the bad performances of the modeling
results obtained with this weighting function will be given in Section 5.6.

5.4.5 Dataset D1, Boolean-TFglob results
The results obtained by ToPIC with the Boolean-TFglob weighting schema are
reported in Figure 5.14b. From the chart, the selected K values are 4, 5 and 17.
As reported in table 5.4, the perplexity variation over the results is very low. How-
ever, among the solutions, it assesses the one with K equal to 17 to be the better
one. On the contrary, Silhouette and entropy decisively classify it as the worst one.

56

5.4 – A running example: results and evaluation

(a) D1, LogTF-Entropy, K 5. (b) D1, LogTF-Entropy, K 7.

(c) D1, LogTF-Entropy, K 11. (d) D1, LogTF-Entropy, K 3.

Figure 5.13: D1 t-SNE representation, LogTF-Entropy weighting schema, K 5, 7,
11 and 3 respectively.

In order to have a clearer insight of the results, we have to look at the semantic
representations of the models. They are reported from figure 5.15 to figure 5.16.
The t-SNE representation in Figure 5.15 shows that the obtained clustering results
are balanced for all the found values. Looking at the topic-terms representation
however, the obtained clusters seem to contain almost the same descriptions.
The representation in Figure 5.15b, even if at first sight seems to be worse than the
others, it shows 5 well cohesive clusters with an outlier in right-upper corner: this
result is not necessarily bad.
In the following discussion, has been seen that the LDA models obtained with the K
values 4 and 5 are very similar. Because of this reason, to avoid similar visualizations,
only the results related to K = 5 will be shown.
Considering the clustering obtained with K equal to 5 and its topic descriptions,
when looking at the word clouds in Figure 5.16, many terms (such as include or first)
appear to be in all the sets of the topic most representative words. This happens
because the Boolean-TFglob weighting schema indeed gave more relevance to the
words appearing most in the whole corpus. However, it often happens that these
words do not belong to any specific topic, or they just do not bring any additional
information useful for the modeling.

57

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

4,100

4,200

2

4

K values

E
n-
LD

A
·10−2

R
P
C

(a) Dataset D1, Boolean-TFglob, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

25

30

35

40

K values

ToPIC

(b) Dataset D1, Boolean-TFglob, ToPIC results.

Figure 5.14: En-LDA, RPC and ToPIC results diagrams for dataset D1, Boolean-
TFglob weighting schema.

In order to not consider these terms and bring up the words characterizing the
topics identified by the LDA modeling process, we decided to apply a further post-
processing step to evaluate the results. Once the models have been created and
the K values selected, we took into consideration more words than the one used by
ToPIC-Similarity to describe the topics, and then we removed from them all the
words appearing at least in four topic representations. The results obtained by this
postprocessing operation are reported in Table 5.7. In this way, the common words
not bringing specific information has been excluded from the descriptions, and the
terms relevant for the meaning of the categories are visible to the analysts.

58

5.4 – A running example: results and evaluation

(a) D1, Boolean-TFglob, K 4. (b) D1, Boolean-TFglob, K 5.

(c) D1, Boolean-TFglob, K 17. (d) D1, Boolean-TFglob, K 20.

Figure 5.15: D1 t-SNE representation, Boolean-TFglob weighting schema, K 4, 5, 17
and 20 respectively.

Figure 5.16: D1 WordCloud representation, Boolean-TFglob weighting schema, K 5.

Assigning labels to the clusters generated by the LDA model, the following main

59

5 – Experimental results

topics cab be identified: sport, mathematics, music, cooking, literature.

K Topic description

1 game, team, sport, player, event, competition, ball, rule,
international, must, country, united, man, national, run

2 space, theory, case, graph, define, function, note, every,
write, order, result, element, must, system, general

3 music, musical, player, record, song, event, write, release,
instrument, note, sound, international, style, piece, back

4 food, water, cooking, united, sometimes, produce, result,
high, oil, modern, large, require, must, list, process

5 write, book, literature, story, character, art, university,
music, novel, modern, english, word, note, study, later

Table 5.7: D1 topic-terms representation, Boolean-TFglob weighting schema, K 5.

Analysing the clustering obtained with K equal to 17, the same issue is encountered.
To assess the goodness of the results, the postprocessing is applied as well, not
considering the terms appearing in more than nine clusters (namely, half of the
cluster identified by K plus one, as it was done for the clustering with K equal to
5). For the visualization sake, in this discussion only the table showing the content
is reported (Table 5.8), without the word cloud representation of the clusters.
From the analysis of the results, the most suitable selected number of topics turns
out to be 5. This is reported in Table 5.4 by a bold line highlighting the result.

Concerning the state-of-the-art approaches, the RPC method selects 4 as optimal
number of clusters. This value is equal to the lower one proposed by ToPIC and
the t-SNE representation of this result is reported in Figure5.15a. The clustering is
balanced and, applying the postprocessing applied also to the other results, satis-
fying partitions can be found (sports, mathematics, music, literature/cooking). On
the other hand, En-LDA selects 20 as optimal value for K. This result, which t-SNE
representation is reported in Figure 5.15d, is closer to the greater value identified
by ToPIC. After applying the postprocessing good results can be found, similar to
the ones obtained with K equal to 17.

5.4.6 Dataset D1: final observations and discussion
In the following part of the Section, a sum-up of the discussion about the results ob-
tained for the dataset D1 with the different weighting schemas is reported. Firstly,
an overall evaluation of the performance of ToPIC in detecting the topics of the
documents in D1 will be given, then the impacts of the weighting schemas on the

60

5.4 – A running example: results and evaluation

K Topic description

1 new, team, year, number, set, world, sport, united,
take, event, part, example, will, follow, states

2 pattu, manipravalam, coral, champus, raja, ramanujan,
rule, menon, player, give, set, write, work, example, charitam

3 food, cooking, new, know, reference, usually, term,
become, water, popular, type, sometimes, part, oil, name

4 world, people, follow, base, end, show, link, since, product,
know, external, reference, process, produce, however

5 play, world, work, new, write, become, example, year,
set, story, take, literature, number, part, know

6 century, book, american, link, list, publish, type, external,
reference, modern, french, later, name, english, follow

7 edge,design, however, surface, common, allow, usually,
link, system, sound, require, especially, term, external, well

8 michael, richard, paul, james, peter, david, thomas,
queen, jack, fire, award, ring, master, don, black

9 example, different, line, set, usually, will, take, end,
give, reference, open, mean, however, contain, space

10 example, will, become, well, usually, place, set, take,
number, method, know, however, part, different, allow

11 musical, water, series, human, drum, course, wind,
air, rock, sea, white, ancient, production, pitch, piece

12 number, set, example, space, give, know, theory,
term, graph, follow, case, write, note, three, new

13 game, player, play, sport, team, world, ball, line,
know, three, take, end, year, league, competition

14 world, event, competition, hold, record, international,
number, new, speed, body, three, man, start, modern, distance

15 ball, space, set, area, give, surface, reference, name,
game, large, introduce, define, study, cover, list

16 music, play, new, work, write, example, term, become,
number, part, musical, early, player, know, song

17 play, number, work, lead, change, must, base,
term, take, new, type, major, study, level, however

Table 5.8: D1 topic-terms representation, Boolean-TFglob weighting schema, K 17.

clustering processes will be analysed. Lastly, general observations about the com-
parison of the results obtained with ToPIC and the state-of-the-art techniques are
discussed.

61

5 – Experimental results

For the analysis of dataset D1, ToPIC results to be an effective tool to help the an-
alysts in the text mining activity. Indeed, the proposed framework finds for almost
all the weighting schemas good clustering results, well describing the arguments and
the topics in the corpus. The results mostly assign to the bigger clusters in the mod-
els the original main categories of the data collection. On the other hand, subtopics
usually are assigned to few documents, that can eventually be considered together
to main topics for a more general overview of the corpus arguments.
The different weighting schemas have different impacts on the clustering process.
TF-IDF seems differentiate as much as possible the terms characterizing different
topics. This really help the LDA topic modeling, that generally produces good
results. The local weight LogTF and the global weight Entropy flatten the distribu-
tion of the words, thus producing a more difficult and challenging corpus to analyse.
However, while the clustering generated with the LogTF-IDF weighting function
still well performs in the describing the dataset, the TF-Entropy and especially the
LogTF-Entropy provide the worse results. In these cases, it can be noticed that
the clustering results worsen with greater K values: the Entropy global weights
could be used in case the analysts desire few topics from the modeling. Instead, the
Boolean-TFglob weighting schema, bringing relevance to the most frequent terms in
the corpus, generates topics that are all described by similar words. However, this
does not lead to bad results, since going deeper in the analysis of the topic repre-
sentations it is possible to assess that the topics are actually different and actually
describe the main categories of the datasets. Moreover, from the results we can
state that clustering generated with the Boolean-TFglob weighting schema tends to
find more cluster than the ones generated with the other weighting functions, still
identifying the main topics of the corpus.
Comparing the results obtained for dataset D1 with ToPIC and the state-of-the-art
techniques, we can assess that generally the smaller value among the ones produced
by ToPIC is comparable to the results produced by RPC, while the greater values
selected by the framework is in line with the results identified by En-LDA. More-
over, similar trends can be seen among the approaches when looking at the results
obtained with different weighting schemas: for example the Entropy global weight
generally provides less topics than IDF or the TFglob. This confirms the ToPIC
clustering outcomes being in line with the expected results. However, while RPC
almost always finds very low number of clusters, ToPIC is able to propose results
with different granularities. On the other hand, if En-LDA seems to be more sensi-
tive to the weighting schemas, ToPIC outperforms it with respect to the efficiency
of the algorithm and the computational costs.

62

5.5 – Further results

5.5 Further results
In this Section, the results obtained for the datasets D2 and D3 are concisely reported
(Section 5.5.1 and 5.5.2 respectively). For each dataset and for each considered
weighting schema, the curves of the state-of-the-art approaches and the ToPIC
index are illustrated. The t-SNE representations of the best result obtained by
means of ToPIC and the results produced by RPC and En-LDA are shown next to
the diagrams.

5.5.1 D2 results

Below, the results obtained for dataset D2 (the Wikipedia_2500 articles collection)
with TF-IDF, LogTF-IDF and Boolean-TFglob as weighting schemas are given.

TF-IDF weighting schema

Figure 5.17 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.18 reports the t-SNE representations of the
solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

LogTF-IDF weighting schema

Figure 5.19 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.20 reports the t-SNE representations of the
solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

Boolean-TFglob weighting schema

Figure 5.21 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.22 reports the t-SNE representations of the
solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

5.5.2 D3 results

Below, the results obtained for dataset D3 (the Reuters-21578 collection) with TF-
IDF, LogTF-IDF and Boolean-TFglob as weighting schemas are given.

63

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

1.22

1.24

1.26

5 · 10−2

0.1

0.15
·104

K values

E
n-
LD

A

R
P
C

(a) Dataset D2, TF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

4

6

8

10

12

K values

ToPIC

(b) Dataset D2, TF-IDF, ToPIC results.

Figure 5.17: En-LDA, RPC and ToPIC results diagrams for dataset D2, TF-IDF
weighting schema.

(a) D2, TF-IDF, K 10. (b) D2, TF-IDF, K 6. (c) D2, TF-IDF, K 20.

Figure 5.18: D2 t-SNE representation, TF-IDF weighting schema, K 10, 6 and 20
respectively.

64

5.5 – Further results

2 4 6 8 10 12 14 16 18 20

1.3

1.3

1.31

5 · 10−2

0.1

·104

K values

E
n-
LD

A

R
P
C

(a) Dataset D2, LogTF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

5

10

15

20

K values

ToPIC

(b) Dataset D2, LogTF-IDF, ToPIC results.

Figure 5.19: En-LDA, RPC and ToPIC results diagrams for dataset D2, LogTF-
IDF weighting schema.

(a) D2, LogTF-IDF, K 11. (b) D2, LogTF-IDF, K 7. (c) D2, LogTF-IDF, K 19.

Figure 5.20: D2 t-SNE representation, LogTF-IDF weighting schema, K 11, 7 and
19 respectively.

65

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

1.3

1.3

1.31

1

2

·104

K values

E
n-
LD

A
·10−2

R
P
C

(a) Dataset D2, Boolean-TFglob, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

30

35

40

45

K values

ToPIC

(b) Dataset D2, Boolean-TFglob, ToPIC results.

Figure 5.21: En-LDA, RPC and ToPIC results diagrams for dataset D2, Boolean-
TFglob weighting schema.

(a) D2, Bool-TFglob, K 18. (b) D2, Bool-TFglob, K 7. (c) D2, Bool-TFglob, K 20.

Figure 5.22: D2 t-SNE representation, Boolean-TFglob weighting schema, K 18, 7
and 20 respectively.

66

5.5 – Further results

TF-IDF weighting schema

Figure 5.23 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.18 reports the t-SNE representations of the
solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

2 4 6 8 10 12 14 16 18 20

4.3

4.35

4.4

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1
·104

K values

E
n-
LD

A

R
P
C

(a) Dataset D3, TF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20

15

20

25

K values

ToPIC

(b) Dataset D3, TF-IDF, ToPIC results.

Figure 5.23: En-LDA, RPC and ToPIC results diagrams for dataset D3, TF-IDF
weighting schema.

LogTF-IDF weighting schema

Figure 5.25 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.20 reports the t-SNE representations of the

67

5 – Experimental results

(a) D3, TF-IDF, K 9. (b) D3, TF-IDF, K 5. (c) D3, TF-IDF, K 20.

Figure 5.24: D3 t-SNE representation, TF-IDF weighting schema, K 9, 5 and 20
respectively.

solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

Boolean-TFglob weighting schema

Figure 5.27 shows the diagrams of the different approaches curves, obtained using
the TF-IDF weighting schema. Figure 5.22 reports the t-SNE representations of the
solutions found with ToPIC (best solutions among the ones proposed), RPC and
En-LDA respectively.

5.6 Weighting impacts
Since weights highlight the importance of words within documents, analysing how
different weighting schemas affect the model is important. For the representative
dataset under analysis, we computed the histogram of the TF-IDF and LogTF-
Entropy weights. The values of LogTF-Entropy present almost a uniform distri-
bution in the range [0,1] (Kurtosis index > 0 and standard deviation = 0.5) and
the distribution has maximum value 8. With the IDF, instead, an asymmetrical
bell distribution is obtained with average values between [2, 5] (Kurtosis index > 0
and standard deviation = 12.7) and maximum value equal to 1161. From the his-
tograms, and also from the results analysed in the previous Sections, we can assess
that the IDF weight schema better differentiates the weights within the corpus, thus
producing a probabilistic model with better performances.
As for the running example, also for all the other datasets has been observed that
the Entropy global weight badly performs in bringing relevance to the words. This
can be explained by the visualization charts (t-SNE and Termite), even if the quan-
titative evaluation metrics (perplexity, Silhouette and entropy) can not spot the
bad results of the clustering produced with these weighting schemas. Indeed, the
probabilistic quantitative metrics evaluate the confidence the model has in assign-
ing the documents the topic labels. In the results obtained with the Entropy global

68

5.6 – Weighting impacts

2 4 6 8 10 12 14 16 18 20

3.8

4

4.2

4.4

0

5 · 10−2

0.1

·104

K values

E
n-
LD

A

R
P
C

(a) Dataset D3, LogTF-IDF, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20
15

20

25

K values

ToPIC

(b) Dataset D3, LogTF-IDF, ToPIC results.

Figure 5.25: En-LDA, RPC and ToPIC results diagrams for dataset D32, LogTF-
IDF weighting schema.

(a) D3, LogTF-IDF, K 13. (b) D3, LogTF-IDF, K 4. (c) D3, LogTF-IDF, K 19.

Figure 5.26: D3 t-SNE representation, LogTF-IDF weighting schema, K 13, 4 and
19 respectively.

69

5 – Experimental results

2 4 6 8 10 12 14 16 18 20

1.8

2

2.2

2.4

2

4

6

·104

K values

E
n-
LD

A
·10−2

R
P
C

(a) Dataset D3, Boolean-TFglob, En-LDA and RPC results.

2 4 6 8 10 12 14 16 18 20
10

20

30

K values

ToPIC

(b) Dataset D3, Boolean-TFglob, ToPIC results.

Figure 5.27: En-LDA, RPC and ToPIC results diagrams for dataset D3, Boolean-
TFglob weighting schema.

(a) D3, Bool-TFglob, K 16. (b) D3, Bool-TFglob, K 6. (c) D3, Bool-TFglob, K 20.

Figure 5.28: D3 t-SNE representation, Boolean-TFglob weighting schema, K 16, 6
and 20 respectively.

70

5.6 – Weighting impacts

weight, even if erroneously, LDA assigns with a high confidence the document to a
topic, thus leading the quality metrics to not spot badly performance of the model
in dividing the corpus in different cohesive clusters.

(a) D1, TF-IDF, K 6. (b) D1, LogTF-Entropy, K 7.

Figure 5.29: D1 documents-topics probabilities, TF-IDF and LogTF-Entropy
weighting schemas, K 6 and 7 respectively.

As a matter of fact, Figure 5.29a and Figure 5.29b show, for the LDA models
obtained with the two weights, the probability distribution of each document of
the corpus D1 to belong to the K topics selected by the algorithm (6 for TF-
IDF and 7 for LogTF-Entropy). Figures 5.30a and 5.30b show instead the t-SNE
representation of the clustering results. In detail, the documents present a more
homogeneous distribution using IDF weight, with topics balanced by number of
documents. Instead, with the Entropy weight, there is one cluster in which 90% of
the documents have a probability greater than 0.90 of membership. It turns out
that 90% of the documents belong to a single cluster (topic) and the result is due
to the fact that the weight Entropy fails to isolate the most relevant terms within
the collection of documents.
When unbalanced clusters are generated, the use of only goodness metrics is not
able to guarantee good performance. Indeed, high values of Silhouette or low values
of entropy do not involve a good clustering but represent a simplification of the
problem. It is like classifying 90% of the documents in a single topic, thus generating
many false negatives. Having the class label available, indices such as recall or
precision could help identify these incorrect assignments. However, if the label were
not available, the use of quantitative indicators would not be effective. Methods
that take into account the semantics must be presented.
Because of these considerations on the weighting impact and the bad results obtained
by clustering processes having Entropy as global weights, these will not be considered
in the ToPIC results discussion.

71

5 – Experimental results

(a) D1, TF-IDF, K 6. (b) D1, LogTF-Entropy, K 7.

Figure 5.30: D1 t-SNE representation, TF-IDF and LogTF-Entropy weighting
schemas, K 6 and 7 respectively.

5.7 Comparison with the state-of-the-art
In this Section, a comparison of the results obtained with ToPIC and state-of-the-
art techniques is presented. Table 5.5 shows the results obtained with the state-of-
the-art approaches and their evaluation using the same metrics used in Table 5.4.
These values should be compared with the ToPIC solutions reported in bold in
Table 5.5.
Several trends can be found in the comparison. Generally, RPC tends to almost
always finds very low number of clusters, independently from the used weighting
schema. On the contrary, ToPIC is able to propose results with different granu-
larity levels. However, it is observable that the smaller number of topics found by
ToPIC is comparable with the value found by the RPC.
En-LDA, instead, tends to find greater values for the K parameter and seems to
be more sensitive to the used weighting schema. Indeed, for example when using
the Entropy global weight En-LDA agrees with ToPIC in finding less topics in
the corpus. En-LDA, which sometimes even takes the upper bound of the possible
K values as the optimal solution, is comparable to ToPIC considering its greater
solution, and especially using as weighting function the Boolean-TFglob.
Moreover, when using different weighting schemas, the three different approaches
tend to follow a similar trend: for example, TFglob normally generates more topics
than the global weight IDF, and even more with respect to the Entropy. This con-
firms the ToPIC results being in line with the expected results.
Furthermore, with respect to the state-of-the-art techniques, ToPIC considers the
semantic descriptions of the topics to assess the level of separation of the clusters.
This is not considered in the state-of-the-art approaches, that only evaluate the
goodness of the results by means of probabilistic metrics. In ToPIC, the quanti-
tative indices of confidence, could be used instead to deeper analyse the proposed
results.

72

5.8 – ToPIC final considerations

Looking at the computational costs, ToPIC outperforms En-LDA and it is com-
parable with RPC. Calculating En-LDA indices is computationally very expensive,
and the number of iterations explodes with the growth in documents vocabulary
and the cardinality of the corpus. Furthermore En-LDA needs to be computed for
all the topics in the given set, having to find the entropy minimum among all the
possible K possibilities. Instead, RPC requires, in the wort case, a computational
time comparable to the one required by ToPIC, not having to be computed for all
the possible K values in the set [Kmin, Kmax] defined by the user.

5.8 ToPIC final considerations
From the obtained experimental results, we can assess that ToPIC well performs in
describing the corpora under analysis, clustering the documents based on their con-
tent. Indeed, the results show that the framework, by means of ToPIC-Similarity,
is generally able to group the texts in well separated topics.
Considering the semantic similarity among the produced topics turned out to outper-
form the current used approach to find proper number of clusters. Indeed, ToPIC-
Similarity is able to capture the effective cohesion level of the clusters, and then
properly identify the optimal number of topics. The results obtained from all the
datasets considered in the thesis confirm the clusters to be well separated, especially
for certain weighting schemas such as TF-IDF.
ToPIC results to be an effective tool for topic modeling. Specifically about the
selection of the number of topics, the framework outperforms the state-of-the-art
approaches, performing in the worst case as the considered techniques considered
in the study. Indeed, RPC tends to find too small values for the K parameter,
regardless of the used weighting schema. On the contrary En-LDA is more sensitive
to the weighting functions used in the analysis, but it is way too expensive in terms
of computational costs.
ToPIC turns out to be really helpful for analyst in the analytic tasks. Indeed, the
analyst can choose to assign to the words in the documents different relevance by
means of different weights, then choose the granularity level required for her analysis
(by means of the different K values proposed by ToPIC), and then evaluate the
results by means of different evaluation techniques highlighting different aspects of
the clustering. Thus, ToPIC can effectively lead the analysis process of textual
data collections.

73

74

Chapter 6

Conclusion

This thesis presents a self-tuning data analytics system that effectively mines sev-
eral textual data collections with different characteristics. The proposed framework,
named ToPIC, includes ad-hoc auto-selection strategies to streamline the analyt-
ics process and off-load the parameter tuning from end-user. ToPIC features a
distributed implementation in Apache Spark supporting parallel and scalable pro-
cessing.

This study starts exploring the already existing approaches and solutions to auto-
matically analyse and discover topics in textual datasets. Starting from PASTA,
a distributed engine that automatically clusters collections of documents grouping
them based on coherent and well separated contents, we propose a novel framework
based on a different type of document representation and modeling. The proposed
framework is ToPIC (Tuning of Parameters for Inference of Concepts), and it
offers topic modeling functionalities using a probabilistic model (i.e. Latent Dirich-
let Allocation) instead of an algebraic one. Intuitively, in the LDA topic modeling,
documents can be associated with a particular topic or can be seen as a mixture
of topics in different proportions, and certain words can be expected to appear in
a document more or less frequently. This topic modeling algorithm is then able to
describe topics (and so documents) by means of similar word clusters. Since text
mining and topic modeling requires the constant supervision of the analysts, ToPIC
is built in order to free the analysis process from the human supervision and avoid
the field expertise having to manually set the parameters of the involved algorithms.
To do that, scientific literature have been explored to reach the state-of-the-art re-
sults by using the cutting-edge technologies and algorithms.
However, a novel approach to select proper values for the parameter modeling the
number of topics to discover and divide the corpus in (main parameter in the whole
framework and currently open research issue in literature) has been studied and
proposed with the framework. This approach, named ToPIC-Similarity, does
not only consider the quantitative probabilistic indices of the whole model, but it

75

6 – Conclusion

consider the topics content and description, specifically evaluating their semantic
similarity. ToPIC also includes different weighting functions, to explore how local
and global weights of the terms in the documents collection influence the outcome
of the modeling.
The proposed framework has been validated on different real data collections, char-
acterized by different statistical indices and properties: Wikipedia articles, the
Reuters-21578 collection, Twitter, PubMed and Journal collections.
The experimental results show the effectiveness and the efficiency of the proposed
framework ToPIC. The results have been evaluated considering quantitative met-
rics such as perplexity, Silhouette and entropy, but also by means of visualizations
techniques, to not disregard the effective structure and content of the results. These
techniques include the t-SNE visualization and the topic-terms representation (Ter-
mite and word clouds).
At the end, ToPIC turned out to outperform the current state-of-the-art techniques
aiming to automatically select optimal number of clusters, both in the quality of the
mining activity results and in the computational costs of the algorithms, resulting
to be an effective tool to describe and cluster textual datasets off-loading the pa-
rameter tuning from the end-user.

Possible extensions of the current work are (i) the inclusion of further probabilistic
data transformation methods (e.g., p-LSI), (ii) the design of a self-learning strategy
able to suggest good configurations which yield higher quality knowledge without
performing the analytics task and (iii) the improvement of the characterization of the
topics’ semantic description to perform better modeling for a given data collection.

76

Bibliography

[1] D. Biber, S. Conrad, and G. N. Leech. Termite: Longman student grammar of
spoken and written English. Harlow, Essex: Longman, 2002.

[2] D. M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, Apr.
2012.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[4] T. Cerquitelli, E. Di Corso, F. Ventura, and S. Chiusano. Data miners’ lit-
tle helper: Data transformation activity cues for cluster analysis on document
collections. In Proceedings of the 7th International Conference on Web Intel-
ligence, Mining and Semantics, WIMS ’17, pages 27:1–27:6, New York, NY,
USA, 2017. ACM.

[5] J. Chuang, C. D. Manning, and J. Heer. Termite: Visualization techniques
for assessing textual topic models. In Proceedings of the international working
conference on advanced visual interfaces, pages 74–77. ACM, 2012.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[7] E. Di Corso, T. Cerquitelli, and F. Ventura. Self-tuning techniques for large
scale cluster analysis on textual data collections. In Proceedings of the Sympo-
sium on Applied Computing, pages 771–776. ACM, 2017.

[8] E. di Corso, F. Ventura, and T. Cerquitelli. All in a twitter: Self-tuning strate-
gies for a deeper understanding of a crisis tweet collection. pages 3722–3726,
12 2017.

[9] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228–5235, 2004.

[10] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. Learning Spark:
Lightning-Fast Big Data Analytics. O’Reilly Media, Inc., 1st edition, 2015.

[11] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[12] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[13] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

77

Bibliography

[14] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

[15] I. Saleh and N. El-Tazi. Automatic organization of semantically related tags
using topic modelling. In Advances in Databases and Information Systems,
pages 235–245. Springer, 2017.

[16] A. Spark. The Apache Spark scalable machine learning library. Available:
https://spark.apache.org/mllib/. Last access on October 2016. 2016.

[17] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity measures:
a large-scale study in the orkut social network. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data min-
ing, pages 678–684. ACM, 2005.

[18] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[19] W. B. Towne, C. P. Rosé, and J. D. Herbsleb. Measuring similarity similarly:
Lda and human perception. ACM TIST, 8(1):7–1, 2016.

[20] J. Wood, P. Tan, W. Wang, and C. Arnold. Source-lda: Enhancing probabilistic
topic models using prior knowledge sources. In Data Engineering (ICDE), 2017
IEEE 33rd International Conference on, pages 411–422. IEEE, 2017.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

[22] W. Zhang, Y. Cui, and T. Yoshida. En-lda: An novel approach to automatic
bug report assignment with entropy optimized latent dirichlet allocation. En-
tropy, 19(5):173, 2017.

[23] W. Zhao, J. J. Chen, R. Perkins, Z. Liu, W. Ge, Y. Ding, and W. Zou. A heuris-
tic approach to determine an appropriate number of topics in topic modeling.
BMC bioinformatics, 16(13):S8, 2015.

78

	Summary
	List of Tables
	List of Figures
	Introduction
	Textual data analysis
	PASTA framework
	PASTA data preprocessing and weighting
	PASTA data reduction and clustering

	Probabilistic topic modeling
	LDA number of topics selection
	RPC approach
	En-LDA approach

	Gap analysis

	Big Data platforms
	Spark framework
	Spark Core
	Spark RDDs
	Spark transformations and actions
	Spark libraries

	ToPIC implementation
	Latent Dirichlet Allocation
	LDA generative model
	LDA for inferential problems
	LDA inferential example

	System overview
	Preprocessing and weighting
	Applying LDA
	Setting LDA parameters

	Finding optimal number of clusters
	Topic characterization
	Similarity computation
	K identification

	Visualize and validate the LDA results
	Perplexity
	Clustering metrics
	t-SNE
	Topics-terms representations

	Experimental results
	Experiment datasets
	Wikipedia
	Reuters

	Experimental settings
	ToPIC results and effectiveness
	A running example: results and evaluation
	Dataset D1, TF-IDF results
	Dataset D1, TF-Entropy
	Dataset D1, LogTF-IDF results
	Dataset D1, LogTF-Entropy results
	Dataset D1, Boolean-TFglob results
	Dataset D1: final observations and discussion

	Further results
	D2 results
	D3 results

	Weighting impacts
	Comparison with the state-of-the-art
	ToPIC final considerations

	Conclusion
	Bibliography

		Politecnico di Torino
	2018-04-05T08:46:46+0000
	Politecnico di Torino
	Tania Cerquitelli
	S

