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Abstract

Due to the competitive nature of the embedded-system market, and the ever-increasing
complexity of integrated circuits, most manufacturers prefer to outsource fabrication
to third-party companies, to reduce costs and time-to-market. This however raises
concerns on the trustiness of all parties involved in the production-chain, since opens
the circuit to the threat of hardware piracy. Recently, Hardware Trojans have become
a serious concern for embedded-system producers: an unknown attacker could mod-
ify the circuit during fabrication for malicious purposes, such as reducing its life-span,
compromise high-level software security or allow remote access to sensitive data. A
Trojan lays silently in the compromised circuit waiting for a rare sequence of events to
carry out the attack, avoiding detection in post-production testing. This type of threat
is extremely menacing since the presence of the malicious circuit is concealed until the
attack is performed. Furthermore, an Hardware Trojan could be used to aid a software
attack, thus moving its complexity from hardware to software, making its presence
harder to spot in side-channel analysis. This thesis proposes an on-chip instruction
obfuscator aimed at reducing the controllability of malicious elements hidden in the
circuit trough software. Using a transparent design the instruction sequence is modi-
fied to eliminate Trojan activation sequences, while ensuring the correct execution of
the original program. This technique requires minimum alterations to a pre-existing
processor design and introduces a reasonable area delay overhead. The proposed ap-
proach was implemented in OR1200 processor, and tested with the Mibench bench-
mark, to verify its feasibility.
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Chapter 1

Introduction

Figure 1.1: Original Illustration of Moore’s Law, Electronics magazine (1965)

1.1 The threat of Hardware piracy

In 1965 Gordon Moore, Research director at Fairchild Semiconductor and later Intel
co-founder, made an empirical observation on the state on Integrated Circuits (IC) at
the time: it appeared that the number of transistors that could be integrated in a unit
of area, doubled approximately every two years [1]. This statement, that would later
become known as "Moore’s law", predicted the same trend for the future, prophesying
such wonders as "home computers".
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1 – Introduction

The industry desire for smaller transistor have turned Moore’s observation into a
self-fulfilling prophecy: transistors have the unusual quality of getting better as they
get smaller; a small transistor can be turned on and off with less power and at greater
speeds than a larger one. This trend is in great part responsible for the enormous
growth in the capability and the subsequent ubiquity of digital integrated circuits in
the last 50 years. While many have predicted its downfall, Moore’s law is still extremely
relevant even today.

Unfortunately, as transistors get smaller, manufacturing becomes increasingly more
challenging and expensive: it’s estimated that by 2020 the upfront setup-cost for the
smallest transistor size will be 20 billion US dollars [2]. For this reason, today, most IC
manufacturers prefer to focus on designing Intellectual Properties (IPs) and outsource
manufacturing to third-party companies, in order to meet the demand of the ever-
growing electronic market. This strategy, known as fabless manufacturing, allows not
only to drastically reduce the cost of production, but also to achieve a shorter time-to-
market.

While consolidated by the financial success of many companies, this approach
raises concerns on the trustiness of all the parties involved in the manufacturing chain,
since opens-up the design to the threat of hardware piracy. An unknown actor, called
adversary, could alter the system design before production for malicious purposes, un-
beknown to the designer. This type of attack is most commonly known as hardware
Trojan Horse (HT): the alteration to the IC could allow the attacker access to sensitive
data, gain remote control of the system or simply create a critical failure; any type of
high-level software security could be worthless if the underlying chip is compromised.
These vulnerabilities have raised concerns regarding possible threats to military sys-
tems, financial infrastructures and even household appliances. HTs are designed to
lay silently in the target system, to avoid detection, waiting for a trigger, usually a rare
event known only to the attacker, to activate their malicious payload and carry out the
intended attack.

To avoid alterations to the design during manufacturing, whether intentional or
not, companies rely on post-production logic testing and verification. However, since
HT are designed to be activated only by a rare event, and purposely engineered to con-
ceal their presence, its unlikely that conventional test patterns could highlight the pres-
ence of this type of threats. New strategies should be devised to develop ICs capable
of actively preventing HT insertion, by making such attack extremely difficult, if not
impossible to perform.

1.2 Objectives

In this thesis work, a novel solution to the threat of Hardware Trojan Horses, targeting
processors in embedded-systems, is proposed and evaluated. This approach relies on
an on-chip instruction obfuscator to modify executed instruction at run-time, using

4



1.3 – Contributions and Achievements

a difficult to predict pattern, in order to mitigate activation of triggers that rely on in-
struction sequences to be enabled, such as the one proposed by Yang et al. [3]. The
main idea behind the proposed technique is to reduce the controllability over the exe-
cuted instructions without modifying the actual program functionality; consequently,
an attacker cannot reliably activate a malicious trigger via software.

Evaluating the effectiveness of this approach requires to design a functional in-
struction obfuscator that can be added to an existing processor design. Such device
should allow a strong obfuscation scheme, without requiring excessive overhead or al-
terations to the target processor, in order to be a viable solution.

Firstly, the design requirements and challenges posed by a similar device and ob-
fuscation pattern should be evaluated, in order to choose the most suitable approach
that meets the requirements. Secondly, a proof-of-concept obfuscator should be de-
signed for a processor, to serve as testbench to evaluate the effectiveness of the tech-
nique.

1.3 Contributions and Achievements

Performing software obfuscation directly on-chip requires employing strategies simple
enough to be implemented directly within a processor core, with minimum overhead
on its design, yet effective enough to eliminate the instructions used to activate the
Trojan. The first contribution of this thesis is the development of a simple rule based
obfuscation technique, that substitutes instructions with equivalent sequences of op-
erations, as well as the creation of a set of such substitutions for the ORBIS32 instruc-
tion set. This required the development of design rules and requirements, as well as
verification techniques, to ensure such equivalence.

The main result obtained is the HDL implementation and subsequent verification,
of a proof-of-concept obfuscator design in an OR1200 open source processor. The ob-
fuscator can be added to the original design with minimum effort, while introducing a
reasonable overhead on area and delay. Experimental analysis proved that an on-chip
obfuscator could be a viable technique to mitigate hardware Trojan activation.

1.4 Chapters overview

This thesis work is organized as follows. In the next chapter is presented an exhaus-
tive background on hardware trojans, their taxonomy, state-of-the-art detection tech-
niques and some attack examples. Chapter 3 defines the threat model chosen for the
research, its limitations in the context of hardware security, as well as the development
environment chosen for the research. Chapter 4 presents a detailed analysis of the
obfuscation pattern and a theoretical model of its performance. Chapter 5 deals with

5



1 – Introduction

the design of the on-chip obfuscator, while chapter 6 presents the actual working im-
plementation developed during this research. Chapter 7 describes the experimental
results obtained, as well as, the techniques employed to obtain them. Chapter 8 states
the conclusions drawn from the thesis work and proposes future activity on the topic.

6



Chapter 2

Literature survey

2.1 Hardware Trojan Horses

Trigger logic Payload
logic

Trigger input Payload output

Hardware Trojan

Figure 2.1: Simplified model of a Hardware Trojan Horse.

A Hardware Trojan Horse is a malicious alteration of an IC, inserted by an adversary
in the design before or during the manufacturing process. Similarly, to their software
counterparts, HTs conceal their behavior in order to lay unnoticed, and they only acti-
vate when a set of conditions are met. An HT is composed by a payload, the circuit that
implements the malicious behavior, and a trigger, the circuit that detects the condition
to deploy the payload.

2.1.1 Design challenges

Evading detection is a critical characteristic in designing an effective Trojan: the HT
must not only avoid being activated by test patterns, but also evade detection from vi-
sual and side-channel inspection. An HT must be small enough to be inserted in the
empty space of the placed and routed chip layout handed to the manufacturer, must
have a small power consumption to avoid producing unexpected power fluctuations,
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2 – Literature survey

and must produce a negligible timing perturbation in order not to affect timing con-
straints. Trojan trigger must be both controllable, in order for the attacker to activate it
at will, and complex, to avoid being activated accidentally. These characteristics make
designing an HT trigger a trade-off between complexity and area.

2.1.2 Insertion points

Third
party IPs

RTL Design

Synthesys
and

Verification

Placement
and routing

Layout
verification

Manufacturing

Chip
verification

Packaging

B

B

B

B

Figure 2.2: HT threats during IC design cycle.

The design cycle of an IC offers multiple opportunities for an attacker to insert an
HT in the design. The insertion points can be divided into Design time and Fabrica-
tion time attacks. During design, a first threat is posed by Intellectual Properties (IP)
from untrusted third-parties. These are basically treated as black-boxes by the system
designer, that relies solely on the specifications provided by the IP designer. This rep-
resent already a possible threat to the IC security, since the IP could hide malicious
functions. Other than IP, a rogue member of the design team could insert a hardware
Trojan for unknown reasons during design. During fabrication, the place and routed
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2.2 – Taxonomy

design could be manipulated immediately ahead of manufacture by the attacker, to
add new logic or modify the existing one. Other than that, even if the IC mask layout is
unaltered and conforms to the designer expectations, the attacker could insert a Trojan
by altering the doping of selected regions.

2.1.3 Trojan in microprocessors

The presence of a processor in a design allows moving complexity from hardware to
software, with the advantage of increased flexibility for the designer. However, this
flexibility can also be exploited by the attacker to implement malicious functionalities.
A malware could, aided by an HT, perform an attack normally impossible due to high
level software security, allowing to simplify the payload and reduce the Trojan over-
head on the design.

2.2 Taxonomy

Hardware Trojan

Physical characteristics

Distribution

Structure

Size

Type

Trigger characteristics

External

Internal

Payload characteristics

Transfer information

Modify specification

Modify function

Figure 2.3: Detailed Hardware Trojan Horses taxonomy.

Wang, Tehrabipoor and Plusquellic developed the first detailed taxonomy for hard-
ware Trojans[4]. This classification divides HT by their physical characteristics, trigger
behavior and payload action.
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2 – Literature survey

HTs are classified in the physical category by their hardware manifestation, accord-
ing to their distribution, structure, size and type. Distribution describes HT by their
location on the chip layout. Structure divides the insertion type whether the adver-
sary was forced to regenerate the physical layout or not. Layout regeneration could
result in different placement of some components, potentially alerting the designer of
a possible hardware attack. Size categorizes not only the actual area of the HT, but the
extent of the alterations performed on the original layout. Finally, type characterizes
Trojans by their implementation, that can be either functional or parametric. The for-
mer means that a simple logic circuit is realized within the design through the addition
or deletion of logic gates or transistors, the latter refers to Trojan that are created by
altering existing logic or wires.

The trigger category classifies the activation signal that causes the payload to be-
come active, and can be either internal or external. Internal triggers are activated by
internal signals and can be further divided in always on and conditional. "Always on"
are triggers that don’t require activation and can carry out the attack at any time, "con-
ditional" are triggers that require a specific activation condition to start. External trig-
gers are activated by interaction with the outside world, by means of a sensor or an
antenna.

In payload category HT are classified by the type of attack carried-out when the
trigger is activated. The action can be of three types: transmit information, modify
specification and modify function. The transmit informations class refers to HT that
leak confidential information to the adversary. Modify specification refers to Trojans
that change the chip parametric properties. Finally, the Modify function class, groups
the HTs that change circuit function by adding logic or by removing or bypassing the
existing one.

2.3 Attack examples

To better understand the threat posed by HTs in this section presents a collection of
attacks that could be carried out by means of hardware piracy. This collection isn’t
intended to be an exhaustive one, but to present the reader some real-life attack sce-
narios.

2.3.1 Denial of Service

In Denial of Service (Dos) attacks the attacker prevents the user from accessing the
services provided by the system by blocking access to it or creating a critical failure.
Destructive DoS attacks are especially dangerous since they don’t require complex op-
erations to be performed, but they simply break the system from the inside. Becker et
al. presented an extremely stealthy approach to this type of attacks [5]: by selectively
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modifying doping in selected regions of the circuit the attacker could artificially pro-
duce the effect of aging, thus increasing the unreliability of the target. Dopant level
attacks are impossible to detect optically since they don’t alter the layout of the IC.

2.3.2 Privilege escalation

In a computing system, there’s no worst attack scenario than an untrusted program
gaining elevated privileges without the user consent. While high level software security
is designed to prevent such scenarios from occurring, this could be easily circumvent
with the introduction of a hardware Trojan. Yang et al.[3], presented a fabrication-type
attack that targets the privilege bit of an OR1201 processor. This bit is set to 1 when
a program operates in supervisor mode, allowing the program unrestricted access to
the processor configuration registers, memory management and peripherals. Rare sig-
nals are used to activate an analog trigger that uses capacitive coupling to accumulate
charge in a capacitor that acts as a makeshift counter. When the charge reaches a pre-
determined threshold level, the privilege bit is set from 0 to 1, allowing the program
that has issued the signal complete access to the processor. The use of an analog Trojan
has the advantage of being extremely small but the disadvantage of being susceptible
to process variations.

2.3.3 Side-channel attack

Side channel information, such as timing or power consumption, is frequently used
to break cryptography: the attacker can use statistical analysis on this data to deter-
mine intermediate results of cryptographic computations, even on an untampered but
poorly designed system. An HT could be used to compromise encryption by amplify-
ing side channel-information or by directly leaking secret keys or unencrypted data
through it, where can be captured by the attacker for malicious purposes [6]. To avoid
detection, these type of Trojans use either information from the data cache or specific
instruction sequences to be triggered.

2.4 Detection techniques

After manufacturing, in order to ensure that a produced unit has not been tampered
by the adversary, the authenticity of the chip must be checked. This means performing
a set of tests in order to ensure that the unit performs only the functions originally
intended by the designer. The set of post-manufacturing steps required to validate a
chip conformance to the original design is called silicon design authentication[7] and
the device tested is the IC under authentication (IUA). Authentication must not only be
reliable, but also simple enough to be applied to the entire production. Standard VLSI
fault detection tools, such as automatic test pattern generation (ATPG), are ineffective
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against HT since they rely on the original untampered design to generate test patterns:
without knowledge on the Trojan logic and its relation to the original logic of the chip,
test vectors that activate the trigger cannot be produced. Moreover, even if a HT is
activated by chance, it’s only possible to detect attacks that modify the internal states or
outputs, and not attacks that leak informations through side channels (e.g., the power
supply). Trojan detection is thus challenging for two main reasons: one it’s activating
the Trojan, the other is detecting the attack.

Over the last few years several Trojan detection methodologies have been devel-
oped, and they can be categorized into three families: side channel analysis, Trojan
activation and architecture level. Furthermore, it exists an entirely separate class of
destructive techniques. In these the IC is physically opened and each layer is reverse
engineered to extract all components, that are later analyzed to detect tampering. This
approach, while extremely effective in detecting Trojans, is time-consuming, expensive
and cannot be applied to the entire production, since it destroys the IC. Nevertheless,
it can be used to highlight presence of hardware piracy in the manufacturing process.

2.4.1 Side channel analysis

Side-channel signals can be used to detect the presence of an HT within an IC. The in-
sertion of a Trojan in facts alters the parametric characteristics of the IUA with respect
to the expected behavior. HT presence can thus manifest as degraded performance,
increased unreliability and different power characteristics. This type of authentication
approach requires first analyzing a Trojan-free device called golden chip. The golden
chip can be either manufactured by a trusted company, or sampled from the produc-
tion, assuming that the adversary has inserted Trojans only in a limited batch of the
produced ICs. This last approach requires identifying Trojan free units, by means of
extensive testing of randomly selected dies. Side channel method are divided into two
categories: power-based and timing-based. Power-based techniques use side chan-
nel information to detect the HT contribution to the IC power consumption. Timing-
based method uses delays on selected paths as fingerprints, trying to find differences
in delay between a IUV and golden attributable to a Trojan insertion.

Both of these methods have the disadvantage that they search the HT when the
payload is not active: in this state HT contribution to parametric characteristics could
be comparable to standard process variation, thus rendering Trojan presence testing
unreliable or even impossible.

2.4.2 Trojan activation

Trojan activation methods try to accelerate Trojan detection by trying to activate the
payload, in order to make the HT more visible in side channel analysis or even detect
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the attack itself. HTs can be triggered by stimulating networks that, in normal IC op-
erations, are usually rarely activated. These signals are most likely to be used by the
adversary in the HT trigger design. These techniques are divided in region-free and re-
gion aware. Region free techniques do not target specific areas of the circuit, but the
entire circuit as a whole. Region-aware instead focus on separate partitions of the IC,
by trying to simultaneously increase the activity in a partition and minimize it in all the
others, in order to reduce noise on side channel measurements. However, if a trigger
relies on signals belonging to separate regions of the circuit the last techniques could
be less effective than the first.

2.4.3 Architecture level

Architecture level techniques are capable of detecting Trojan activation by monitoring
the behavior of the IC on the field: if a misbehavior is detected, some corrective actions
could be implemented to prevent the attack completion. This type of techniques has
the disadvantage that cannot prevent Denial of Service type attack and requires addi-
tional hardware to be implemented. Moreover, since it’s embedded in the IC, it vulner-
able to hardware piracy. This eventuality can be mitigated by designing the hardware
with the paradigms proposed in the next section.

2.5 Design for hardware trust

Similarly to what has been done with paradigms such as design to manufacturability
(DFM) and design for testability (DFT), the idea is to modify the design flow of an IC
to include authentication features to the design. These features are included with the
goal of aiding Trojan detection with side channel techniques, or mitigate attacks by
means of hardware isolation.

Moving components in the design to insert a Trojan has the effect of altering the
parasitic parameters: this can be detected and magnified by means of physically un-
clonable functions (PUF) [8]. PUF are integrated structures that perform a function
highly dependent on the process variation and are thus highly affected by design al-
terations. After production PUF are analyzed to highlight modified ICs: these methods
must be able to differentiate faults or standard process variation from intentional at-
tacks.

Other techniques rely on the insertion of dummy flip-flops in nets with low transi-
tion probability, in such way that they don’t alter nominal delay or behavior[9]. These
flip-flops are used to force an increased switching activity on such nets in an effort to
trigger HTs, or simply highlight their presence in side channel inspection.

Finally, another interesting approach is to allow reverse supply voltage for some
gates in some safety critical regions of the IC[10]: if a four input AND gate is reverse
powered it behaves like a NAND gate. This allows to switch the probability of having
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the gate output as 1 from 1/16 to 15/16, thus forcing a rare condition to be extremely
frequent.
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Chapter 3

Case study

3.1 Threat model

The proposed threat model closely resembles the one described in [3]: a processor is
compromised by the attacker during fabrication, by injecting an HT. The trigger mon-
itors wires and state within the CPU and activates the attack payload under very rare
conditions, such that the HT lays silently during normal operation and test procedures.
The signals monitored are stimulated by using a precise sequence of instructions ex-
ecuted by a malware program: the attack can be either carried by the HT alone, or
by the program itself aided by the Trojan. To perform the attack, the malware, that
wouldn’t be harmful in an untampered system, executes a precise sequence of instruc-
tions enabling the trigger; the sequence is chosen by the attacker to be rare, to prevent
accidental activation, and short, to simplify the trigger logic.

This threat model is interesting for multiple reasons:

• Instructions have a high controllability;

• The attacker can estimate the rarity of a given trigger sequence by studying other
programs and compilation patterns;

• The attack can be carried by the program, aided by the HT, thus simplifying the
payload. This allows to either reduce the Trojan footprint altogether, or increase
the complexity of the trigger while remaining stealthy.

3.2 Proposed solution

The proposed solution consists in an on-chip software obfuscator that modifies the
sequence of instructions executed by an embedded processor, effectively altering the
predefined sequence of instructions used to trigger the injected HT. The obfuscation
pattern employed depends on parameters imposed after manufacturing by the CPU
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user: while the attacker is aware of the presence of the obfuscator, he/she cannot con-
trol the instructions executed, since these depend on the algorithm configuration. The
obfuscation is thus non-deterministic from the point of view of the attacker, but deter-
ministic for the end-user.

3.2.1 Why an on-chip obfuscator?

An on-board obfuscator offers multiple advantages, as well as disadvantages, with re-
spect to a purely software approach. In theory, if obfuscation represent an effective
solution to mitigate HT activation, the same results could be obtained by obfuscat-
ing untrusted software before executing it on the target machine. In most embedded
systems, software is usually designed by the system designer or by a third-party de-
veloper, and the embedded firmware is rarely modified during the product life-cycle.
The designer can use software obfuscation techniques to ensure that the software has
not been modified for malicious purposes, in this case activating a Trojan. However,
in more complex systems the user can run custom applications from third-party de-
velopers, e.g. mobile applications, programs, client-side scripts, thus the designer has
limited control over all the code executed on the machine, and must rely on high-level
software security. An embedded obfuscator ensures that the attacker has limited con-
trol over the machine instructions executed in the processor, regardless of the context
in which the embedded processor operates.

3.3 Limitations

3.3.1 Overhead

An on-board solution implies an area, as well as delay overhead on the design: to be a
viable solution, an embedded obfuscator must minimize both. This can be done by se-
lecting an obfuscation technique simple enough to implemented directly in hardware
with minimum impact, yet effective enough to provide improved security with respect
to a system without obfuscation. Moreover, the obfuscator design must be also flex-
ible to be easily inserted in an existing processor design, and avoid redesigning from
scratch the entire system.

3.3.2 Piracy threats

As with most architecture-based solutions, an on-chip obfuscator could be potentially
compromised by an HT: if the Trojan is inserted during manufacturing the attacker
could be aware of the presence of the obfuscator and modify it. This can be prevented
by designing the obfuscator to be authenticated and tested after production: if it is
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assumed that obfuscation prevents the proposed attack from being performed, the at-
tacker must always modify the obfuscator to insert an HT. Verifying the authenticity of
the obfuscator alone is cheaper and faster than performing the same task for the entire
system.

Moreover, the attacker could still carry out a successful Trojan activation by design-
ing an instruction sequence that is obfuscated in a predictable way, or exploiting faults
in the obfuscator logic.

3.3.3 Obfuscation efficiency

As in the case of a purely software approach, obfuscation must be capable of ensuring
the destruction of sequences used to trigger the HT. This, while a critical requirement
in both a software and hardware obfuscation, is especially problematic in the latter.
Software obfuscation can operate on a program before execution, exploiting its logic
to generate code that is very different from the original one, and can be finely tuned
to maximize obfuscation. A hardware approach however has limited knowledge on
the program executed by the processor, and must operate with limited resources while
being equally effective.

3.4 OR1200 processor

CPU/DSP

Power

Debug

Timer

PIC

IMMU

ICache

DCache

DMMU

Figure 3.1: OR1200 architecture

The proposed on-chip obfuscator was developed for the Open RISC 1200 (OR1200)
soft processor [11], a synthesizable open-source CPU core developed by OpenCores,
an online community dedicated to open-source IPs. This section will introduce some
features of this processor as well as the reasons for its choice as development platform
for this project.
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3.4.1 Overview

The OR1200 is an open-source CPU core with Open RISC 1000 (OR1K) Harvard archi-
tecture, implemented in Verilog HDL. It uses the 32-bit Open RISC Basic Instruction
Set (ORBIS32) and optionally the Open RISC Floating Point eXtension (ORFP32X), to
add IEEE-754 compliant single precision floating-point support. The instruction set
has 5 types of instructions and supports direct, and register displacement addressing.
The pipeline is composed by 5 stages capable of executing most instructions in a sin-
gle clock cycle. Other features include a MAC/DSP unit, a debug unit for real-time
debugging, programmable interrupts and power management. It uses a Wishbone B3
compliant bus interface and is thus compatible with a broad number of open-source
peripherals. An overview of the processor is shown in figure 3.1.

3.4.2 CPU/DSP

GPRs

Instruction
Unit

System
Unit

Exception
Unit

Integer
Pipeline

MAC
Unit

Load/Store
Unit

Data MMU
& Cache

Instr. MMU
& Cache

CPU/DSP

Figure 3.2: OR1200 CPU/DSP block diagram
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The central processing unit of the OR1200 is composed by the following elements:

• Instruction unit

• GPR

• Load/Store unit

• Integer pipeline

• MAC unit

• System unit

• Exception unit

Instruction unit The instruction unit implements the basic instruction pipeline. It is
responsible of retrieving the correct instruction from the memory subsystem and dis-
patch it to an available execution unit. Both conditional branches and unconditional
jumps are managed by this component.

GPR The OR1200 has 32 32-bit general purpose registers. The file system is imple-
mented has a dual-port synchronous memory.

Load/Store unit The LSU manages all the data transfers between GPRs and the data
bus. It is implemented as an independent execution unit, thus stalls in the memory
subsystem affect the pipeline only if a data dependency exists.

Integer pipeline The integer execution pipeline manages the execution of arithmetic,
compare, logical and shift-rotate instruction. Most of these instructions can be exe-
cuted in a single clock cycle.

MAC unit To add basic DSP functions, the OR1200 implements a multiply and accu-
mulate unit (MAC) with a 48-bit accumulator. The MAC unit is fully pipelined and can
execute a new operation each clock cycle.

System unit The system-unit manages all the signals unrelated to instruction/data
interfaces, and contains all the special-purpose registers.

Exception unit The OR1200 has multiple exception sources: external interrupts, some
memory access conditions, internal errors, system calls and internal exception. When
an exception occurs the exception unit passes control to a handler at a predefined
memory location, depending on the type of exception. Exceptions are handled pre-
cisely, thus all the instructions executed before the event are valid.

19



3 – Case study

3.4.3 Caches and MMUs

The OR1200 is a Harvard architecture processor, and thus has independent caches and
Memory Management Units (MMUs) for instructions and data. Both these units are
implemented identically regardless the type.

Cache In the default configuration of the OR1200 cache is 8KB (alternatively 1KB,
2KB or 4KB), 1-way direct mapped. It implements the last-recently used replacement
policy.

MMU MMU allows the OR1200 to implement a virtual memory scheme, providing
access protection and effective to physical address translation.

3.4.4 Other subsystems

Power management To reduce power consumption the OR1200 provides three low-
power modes, that can be used to dynamically turn on/off internal modules. Slow
mode uses optimized clock dividers to reduce consumption at the cost of a reduced
clock frequency, and can be controlled via software. In Doze mode software processing
is suspended and clocks to internal modules is gated; only tick-timer is active. In Sleep
mode all the modules are disabled and clock gated. The CPU leaves Doze/Sleep mode
when an interrupt occurs.

Debug interface This unit aid developer in debugging code. It supports only a subset
of the debug features specified by the OR1K architecture such as breakpoints, watch-
points and real-time trace.

Tick-timer A tick timer facility is present to precisely measure time and schedule sys-
tem tasks. The timer operates on an independent clock source, can count up to 232

ticks, has makable interrupts and can operate in single-run, restartable and continue
mode.

PIC The Programmable interrupt controller (PIC) is responsible for processing exter-
nal interrupts and forwarding them to the CPU has high/low priority. It has 32 inde-
pendent input, 30 of them maskable and with configurable priority.

3.4.5 Tools and Software

The Open RISC project has spawned a wide variety of tools that make this processor
an extremely interesting choice. In the following are reported the tools used in this
project.
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FUSESoC

The Open RISC Reference Platform System-on-Chip (ORPSoC) project is a complete SoC
based on the OR1200 processor, used as reference implementation for the Open RISC
processor family. It provides a set of predefined configurations for memory, interrupt
and peripherals, as well as build and simulation tools, to provide a starting point for
developing an Open RISC based SoC. Within this project, Olof Kindgren, created FUS-
ESoc[12], a HDL package manager, created with the goal of increasing reuse of open
IP cores in different projects. FUSESoC allows to build an HDL system by composing
modules from a wide library of processors and peripherals, streamlining simulation
and FPGA build in a reusable environment. Designed initially solely to aid the creation
of Open RISC systems, is now a completely independent project.

GNU toolchain

The GNU toolchain is a collection of programming tools developed for the GNU project.
These programs are essential tools for software development, and are widely employed
in both open-source and proprietary software. A version of the GNU toolchain com-
patible with the OR1K architecture have been developed by OpenCores, allowing to
compile almost any software for the OR1K processor. Moreover, it allows to use the
debug interface of the OR1200 to debug applications on an ORPSoc system via JTAG.
The existence of an OR1200 compatible GNU toolchain has greatly contributed to the
selection of the OR1200 for this project.

Newlib library

A port of the Newlib library was also developed by OpenCores. Newlib[13] is C standard
library designed to operate in bare-metal applications (without an operating system),
designed for embedded systems. This allows building fully functional software for an
ORPSoC system, without "reinventing the wheel".
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Chapter 4

Obfuscation

4.1 Introduction

Obfuscation, in Computer Science, is the deliberate process of making code obscure
or unclear, in an effort to prevent reverse engineering of a program for malicious pur-
poses. These techniques are common in the software world, to modify either source
code, instructions or metadata, without changing the program final outputs [14]. In
the proposed approach, instruction obfuscation is used to mitigate HT activation by
eliminating trigger sequences with an on-chip obfuscator. While this is very similar to
traditional software obfuscation, the end goal is simpler: the objective is not conceal-
ing the purpose of the program, but only eliminating trigger sequences used to activate
the trojan.

In order to perform obfuscation directly within the processor, the obfuscation mech-
anism must be, while effective, also simple enough to reduce the overhead introduced
by the additional hardware. According to the described threat model, trigger sequences
are precise pattern of instructions recognized by the HT. The goal of the obfuscator
should be removing these patterns by altering them to the point that they are no longer
recognized by the HT as trigger sequences. The obfuscation must also be difficult to
predict, otherwise the attacker can exploit repetitive obfuscation patterns to carry out
the attack.

To summarize the key characteristics of the required obfuscation pattern are the
following:

1. Simplicity

2. Strength

3. Low predictability
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4.2 Proposed technique

I1

I2

I3

S1,1
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S3,3
Original
program

Obfuscated
program

Figure 4.1: Proposed obfuscation mechanism

The proposed obfuscation technique replaces an instruction from the original pro-
gram, here called Reference Instruction, with a Substitution, a sequence of operations
that performs the same task, but differently enough to avoid being detected by the HT
trigger. A sub-set of the instructions of the program is substituted at run-time: if an in-
struction of the concealed trigger sequence is substituted, the trigger is modified and
potentially eliminated. A simple representation of the obfuscation technique is pre-
sented in figure 4.1: if the reference program is composed by three instruction, I1, I2,
and I3, if I1 and I3 are obfuscated, the same program will be S1,1, S1,2, I2, S3,1, etc.,
where Si , j is the j − th instruction of a substitution for the reference instruction i . In-
struction obfuscation is performed by an on-chip obfuscator unit, using a rule based
approach: for each instruction in the instruction set, an array of possible substitutions
is defined creating a substitution library. This library contains the set of rules required
to convert the reference instruction into the actual executable code: at run-time, the
obfuscator replaces an instruction with one of its substitutions chosen according to a
predefined algorithm configured by the user after manufacturing. Since this technique
only obfuscates one instruction at the time, it can be inserted into an existing processor
pipeline with minimum effort.

This approach allows to satisfy all the requirements presented in the previous sec-
tion. In terms of Simplicity, the obfuscations doesn’t require any knowledge about the
code executed, since all substitutions are exactly equivalent to the instruction that they
substitute: this increases the substitution design effort, but simplifies the resulting
hardware. Strength is ensured by designing substitutions that are "different" enough
from the original instruction, and by substituting enough instructions to increase the
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probability of trigger elimination. Finally, Low predictability is granted by implement-
ing the obfuscation pattern with a suitable algorithm, and a sufficiently large substitu-
tion library.

4.2.1 Design challenges

Reference/Substitution equivalence

Designing substitutions, is a challenging endeavor, since they must guarantee abso-
lute equivalence with the reference instruction: if a substitution behavior differs only
slightly from the reference instruction, execution could be heavily or only slightly af-
fected. Regardless, the obfuscator would compromise the processor rendering it unre-
liable, and thus useless. In that case, the misbehaving instruction could be extremely
difficult to identify. A suitable set of tests has to be designed to verify the equivalence
between reference and substitution in a controlled environment.

Execution overhead

Since substitutions are, in most cases, composed by multiple instructions, a substitu-
tion will always take more clock cycle to complete with respect to the instruction that
they obfuscate, thus the obfuscator will always increase the number of executed in-
structions. To limit the impact of substitution on run-time substitution length should
be minimized when possible.

Area overhead

The substitution library is stored directly within the obfuscator, thus the hardware foot-
print is directly proportional to the number of substitutions implemented by the ob-
fuscator designer. A suitable substitution encoding has to be designed to store substi-
tution, in order to minimize the area overhead on the design.

4.3 Substitutions

Substitutions are sequences of operations that behave exactly like an instruction that
they obfuscate, the reference instruction, regardless of its operands, its position within
the code and the processor state. In order to do that, a substitution must adhere to the
following rules:

1. It must produce the same result of the reference

2. It must set the same flags in the status register

3. It must not alter any register except the result destination (if any)
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4. It must not alter any memory location except the result destination (if any)

5. It must not generate exceptions that are not produced by the reference

4.3.1 Types

Broadly speaking, while multiple techniques can be employed to design substitutions,
during this thesis work two general strategies were identified, each one producing a
conceptually different type of substitution. These types where called namely True Sub-
stitutions and Dummy Substitutions; this section will provide a detailed analysis of
both.

True substitutions

True Substitutions are equivalent to the reference instruction by implementing the
same logic with different assembly code. Here’s an example of this type of substitu-
tion:

Listing 4.1: Example of True substitution

1 # Re f e r en c e : l .movh i rD , I
2 l . x o r i rD , r0 , I
3 l . s l l i rD , rD ,16

The reference instruction l.movhi stores the immediate value 1 into the most sig-
nificant half-word of the register rD, while the least-significant is cleared to zero. This
operation can be similarly implemented in a two-step process by the proposed substi-
tution: first the immediate value is stored into register rD as is, by xoring it’s value with
register r0 (which is set to zero by default), then the register is left-shifted the by 16-
bit to move its content into the most significant half-word. This operation is perfectly
equivalent to the reference.

Dummy substitutions

Dummy Substitutions contain the reference instruction "padded" with useless instruc-
tions, called Dummy instructions, that either produce no result, or do not alter the pro-
cessor state. An example of true substitution is the following:

Listing 4.2: Example of Dummy substitution

1 # Re f e r en c e : l .movh i rD , I
2 l . x o r r0 , r0 , r0
3 l .movh i rD , I
4 l . s l l r2 , r2 , r0
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In this case, the reference instruction is implemented as is, but is preceded by a
xor between null values, and succeeded by a left shift by 0: none of these two opera-
tions has any affect, and are only used to add some form of alteration to the reference
instruction.

True vs. Dummy substitution

A true substitution produces a stronger obfuscation of the machine code, since the re-
sulting code is completely different from the original instruction, but must be created
by hand by the obfuscator designer, carefully analyzing the reference instruction be-
havior. Moreover, except some fortuitous cases, a true substitution is much longer than
a dummy one. On the other hand, dummy substitutions can be created in a straight
forward manner since uses always the reference instruction plus the useless ones, but
they produce a repetitive obfuscation pattern that could be easily exploited by the at-
tacker. Since not all the instructions can be obfuscated with true substitutions, a com-
bination of both must be used to create a complete substitution library.

4.3.2 Design

Dummy substitutions

Table 4.1: Dummy instructions examples

l.and r0,rX,r0 l.nop
l.andi r0,rX,0 l.or rX,rX,r0
l.extbs r0,r0 l.ori rX,rX,0
l.extbz r0,r0 l.ror rX,rX,r0
l.exths r0,r0 l.rori rX,rX,0
l.exthz r0,r0 l.sll rX,rX,r0
l.extws r0,r0 l.slli rX,rX,0
l.extwz r0,r0 l.sra rX,rX,r0
l.ff1 r0,r0 l.srai rX,rX,r0
l.fl1 r0,r0 l.srl rX,rX,r0
l.movhi r0,0 l.srli rX,rX,0
l.mul r0,r0,r0 l.xor r0,rX,rX
l.muli r0,r0,r0 l.xori rX,rX,0
l.mulu r0,r0,r0

Dummy substitutions are extremely easy to design, since they only "pad" the ref-
erence instruction with useless ones. A set of sample dummy instructions is proposed
in table 4.1. The number of instructions used as padding and their position in the
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substitution is completely up to the designer. However, since true substitutions are
usually very long, using short dummy substitutions could allow to drastically reduce
the average substitution length, and thus the overall impact of obfuscation. A possi-
ble approach could be using only a dummy instruction before or after the reference,
alternating the position across the library.

Listing 4.3: Dummy substitution with padding after the reference.

1 # Re f e r en c e : l . a d d i rD , rA , I
2 l . a d d i rD , rA , I
3 l . a n d i r0 , r0 , 0 # Pad i n s t r .

Listing 4.4: Dummy substitution with padding before the reference.

1 # Re f e r en c e : l . a d d i rD , rA , I
2 l . a n d i r0 , r0 , 0 # Pad i n s t r .
3 l . a d d i rD , rA , I

Unfortunately, this type of substitution could lead to a weaker obfuscation: in fact,
it was previously assumed that if an instruction of a trigger sequence is substituted, the
trigger is eliminated, but using this type of substitution the assumption is no longer
valid. If a 2 instruction dummy with padding before the reference is substituted to the
first instruction of the trigger sequence, the trigger sequence is unmodified.

True substitution

Designing a true substitution is an extremely delicate process: excluding instruction
that can’t be implemented with true substitution by design (e.g. special purpose reg-
ister access, branching instructions, etc.), each instruction has a unique behavior that
must be re-implemented as a set of different operations. This means that there is no
systematic technique that can be employed to write true substitutions, but there are
some general strategies that can be reused in multiple instances:

• An immediate instruction can be substituted with the register version of the same
operation by storing the immediate in a temporary register.

• Some instructions behave like others in some specific case that can be enforced
(e.g. l.add/l.addc).

• Boolean properties can be used to implement an instruction with another (e.g.
DeMorgan’s law, masking, etc.)

To implement some substitutions, it may be required to store temporary results in
the register file: unfortunately, since substitutions must work in any program, regard-
less of status, data or position, writing any register could mean damaging the program
data. The only two registers that can be used for storage, even if only under some strict
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conditions, are rD (the reference instruction destination register) and r0. In the OR1K
architecture, as in most RISC architectures, register r0 is used to store the value 0, but
it’s not hardwired to this value: r0 is a regular register that must be manually cleared
at reset. For this reason the OR1K manual forbids write operation on this register, to
avoid changing its value. Since substitutions are atomic, this register can be used as
temporary storage, provided that is cleared before the substitution has finished. Using
these two register can be safely done only when they are not used as operands in the
reference instruction. This can be easily ensured in the case of immediate operation:
this type of instructions only uses one input register, and thus after copying its content
in a known location (either r0 or rD), the other can safely be used as temporary storage.

4.3.3 Verification

Verifying the equivalence between reference and substitution in a critical task in de-
signing a complete substitution library. Checking each substitution manually by in-
specting the code doesn’t guarantee absolute reliability. Let’s take as an example a
dummy substitution for instruction l.and:

Listing 4.5: Bad Dummy substitution

1 # Re f e r en c e : l . a n d rD , rA , rB
2 l . a d d i r1 , r1 , 0
3 l . a n d rD , rA , rB

At first glance this substitution looks a viable candidate: l.addi produces no result
since it increments by 0 the content of register r1, and the reference is executed im-
mediately after. By doing so, however, the carry-flag (CF) in the supervisor register is
cleared, since the dummy instruction produces no carry: this doesn’t happen in the
original instruction, and thus this substitution could potentially break a program ex-
ecution. Furthermore, using rD and r0 as temporary register can lead to unexpected
errors:

Listing 4.6: Bad True substitution

1 # Re f e r en c e : l . a n d i rD , rA , rB
2 l . x o r i r0 , rA ,−1 # Bi tw i s e n ega t i on o f rA
3 l . x o r i rD , rB ,−1 # Bi tw i s e n ega t i on o f rB
4 l . o r rD , rD , rA # rD = rA ’ + rB ’
5 l . x o r i rD , rD ,−1 # rD = rD ’
6 l . x o r r0 , r0 , r0 # C l e a r s r0

In this case, DeMorgan’s law is used to implement l.and using l.or. This should
work perfectly in theory, since after the substitution is performed the status register
is unmodified and the result produced is the same. However, the substitution designer
doesn’t know the actual register for rA, rB and rD, but the substitution must work re-
gardless of their value: in the proposed example, if rB is set to r0, the substitution
produces a wrong result.
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In order to ensure that all the reference/substitution equivalence criteria are met,
a test environment has been written in Python to automatically test the entire library.
For each substitution two test programs are executed: one to check the result, and
one to check the supervisor register. In both these tests exceptions are logged to spot
unexpected events. The test environments automatically creates and builds the test
programs and compares the results to highlight errors. Each test is repeated multiple
times with random operand values: this ensure a reasonable level of confidence about
the substitution equivalence.

Listing 4.7: Pseudo-code of the substitution library test

1 t e s t_ s u b s t i t u t i o n ( r e f , sub ) {
2
3 // Test r e s u l t e q u i v a l e n c e
4 bu i l d_ r e s u l t_ t e s t ( r e f , sub ) ;
5 run_tes t ( ) ;
6 i f ( ! c h e c k_r e s u l t s ( ) ) r e t u r n f a l s e ;
7 i f ( ! check_excep t i on s ( ) ) r e t u r n f a l s e ;
8
9 // Test s t a t u s r e g i s t e r

10 bu i l d_s t a t u s_t e s t ( r e f , sub ) ;
11 run_tes t ( ) ;
12 i f ( ! check_sta tus ( ) ) r e t u r n f a l s e ;
13 i f ( ! check_excep t i on s ( ) ) r e t u r n f a l s e ;
14
15 // A l l t e s t s pas sed !
16 r e t u r n t r u e ;
17 }

4.3.4 Strength

As already detailed in the threat model, instruction sequences are only a mean to ac-
tivate the HT trigger, and are not actually "seen" by the trigger itself. What triggers
the Trojan is a sequence of values on some internal signals stimulated using the in-
struction sequence. So, even if a substitution removes a reference instruction from the
sequence, the obfuscated code could still produce similar internal signal values and be
recognized as the trigger sequence. Some sort of score is required to evaluate, during
design, the degree of difference between a substitution and its reference instruction.

To evaluate the strength of a substitution, the operand independent output signals
of the decode stage produced by the reference instruction, are compared to the ones
produced by the substitution code in terms of average Jaccard and Simple Matching
Distance (SMD). These signals have been selected since they only depend on the type
of instruction decoded and thus have high controllability.

Given two strings of bits x and y , Jaccard distance, D j acc , and Simple Matching
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distance, Dsmd , are defined as:

D j acc (x, y) = M01 +M10

M01 +M10 +M11

Dsmd (x, y) = M01 +M10

M00 +M01 +M10 +M11

where Mi j it’s the number of bits whose value changed value from i to j from string
x to y . Both values are the ratios between bits changed between sequences, and total
bits, the only difference between them is that SMD considers M00 in the total, while
Jaccard distance doesn’t, and thus gives a more optimistic distance index.

Using this two distances two scores can be defined:

S j acc (r, s) =
Pn

i=0 D j acc (r, si )

N

Ssmd (r, s) =
Pn

i=0 Dsmd (r, si )

N

where r is the decode word of the reference instruction, and s = {s0, s1, ..., sn} it’s the
set of decode words produced by each instruction in the substitution.
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Figure 4.2: Relationship between f and P (τ= 0)
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Figure 4.3: Relationship between f and P (τ= 1)

Obfuscation efficiency can be evaluated by studying the probability of breaking
a trigger sequence, and by the program execution overhead produced. Since no as-
sumptions can be made on the position of the trigger sequence within the code, the
obfuscator chooses the instructions to obfuscate randomly. The designer can decide
with which frequency a substitution in performed: this parameter is called Substitu-
tion Frequency ( f ), and is the ratio between obfuscated instructions per operations
performed.

4.4.1 Efficiency

A simplified efficiency model can be created assuming that, if an instruction in the
trigger sequence is obfuscated, the trigger is no longer recognized by the HT. This as-
sumption is clearly optimistic since, as previously stated, short dummy instruction can
sometimes fail in doing so. Regardless this simplified model can still be used to esti-
mate optimal obfuscation efficiency. With this assumption the probability of breaking
a trigger sequence can be computed as:

P (τ= 1) = 1− (1− f )l

where τ is a boolean random variable equal to 1 if the trigger is broken, f is the sub-
stitution frequency and l is the length of the trigger. Substitution frequency can be
controlled by the obfuscator designer and it’s a value between 0 (no instruction sub-
stituted) and 1 (all the instructions obfuscated). Trigger length depends on the HT
designed by the adversary and, even if its unknown to the designer, a few assumptions
can be made on its value.
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Trigger length its lower bounded by its rarity: the attacker has to design a trigger
that is rare enough not to be triggered by test patterns or accidentally by another pro-
gram. While activating the trigger doesn’t guarantee that the Trojan is detected (since
its malicious payload its unknown to the designer), is in the best interest of the attacker
making this eventuality as unlikely as possible. Since there are around 100 instruc-
tions in the OR1200 instruction set a trigger sequence with length 3 offers 106 possible
combinations, enough to ensure a sufficient rarity. The upper bound trigger length is
complexity: in the proposed threat model HT trigger behaves like a finite state ma-
chine, where each instruction in the trigger sequence is a state. More instructions in
the trigger means more states in the FSM, thus an increased area footprint of the HT.
The adversary must keep the HT design as simple as possible in order for the Trojan to
lay undetected in the processor. In picture 4.3 can be clearly seen that the probability
of breaking a trigger with the proposed obfuscations increases with trigger length and
substitution frequency. P (τ = 0) is in essence the Survival Rate of trigger sequences
before and after obfuscation.

A global trend for obfuscation that takes into account multiple trigger lengths con-
currently is difficult to estimate, since it requires taking into account the probability of
a given trigger length to be used.

4.4.2 Execution overhead

Since substitutions are longer than the instruction that they obfuscate, an obfuscated
program requires more instructions to complete than the original one. For clarity, two
metrics will be used to model the execution overhead: executed instructions and run-
time. Executed instructions are the number of machine instructions executed during a
program, while run-time is the effective time taken to complete the execution in clock
cycles. In both cases a simple model can be used to estimate the effects of obfuscation:

E = (1− f )+ f Ke

T = (1− f )+ f Kt

Both executed instructions (E) and run-time (T ) are expected to increase linearly
with f by a factor Ke and Kt respectively. Estimating this factors is, unfortunately, a
challenging task. In the case of instruction executed, one could assume that the factor
is equal to the average substitution length. This would be true if each instruction in
the instruction set has identical probability of appearing in the code. Both run-time
and instruction count are highly dependent on the program instruction profile: if a
program is composed by instructions with a high substitution length the increase in
both values would higher. Moreover, as it will be extensively explained in chapter 6, the
proposed obfuscator design is capable of dispatching substitutions instructions during
instruction cache misses, thus time overhead is expected to be strongly dependent on

33



4 – Obfuscation

the executed program: programs with poor caching performance are less affected than
ones with good cache performance.

4.5 Substitution Table example

A substitution table for the ORBIS32 instruction set is presented in appendix B. This
table represents only a fraction of all the possible substitutions available for each in-
struction, and it’s used to showcase an example of what a good substitution set should
look like. The table has been designed following these constraints:

• The reference instruction should never appear in a true substitution

• Prioritize true substitution, restricting the use of dummy only when necessary

• Prioritize shorter true substitutions when available

• Use only two instruction dummy with padding after the reference

The last constraint is arbitrary, and is only imposed to limit the range of true sub-
stitution possible. The following table contains 62 substitution of the 99 ORBIS32 in-
structions, with 67% of true substitutions. The average substitution length is of 2.31
instructions.
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Chapter 5

Obfuscator design

5.1 Introduction

Instruction C

Instruction B

Instruction A
...

Instruction memory

Instruction
Generator

Sub. instr. 1

Sub. instr. 2

Sub. instr. 3
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Substitution

Control
Logic

Substitution
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OBFUSCATOR

Figure 5.1: Simplified obfuscator model

In this thesis work, it’s defined Obfuscator the unit in charge of performing on-chip
code obfuscation, as well as the set of modification that allows its insertion in an ex-
isting processor design. Regardless of the actual implementation, the obfuscator must
perform the following tasks:

• Retrieve instructions from memory;
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• Decode the rules stored in the library to create a substitution;

• Dispatch the substitution to the decode unit.

A simplified model of the obfuscator is presented in figure 5.1: this doesn’t closely
resemble the actual implementation, but serves the purpose of better defining the key
components of a generic obfuscator design as described in the proposed solution. The
unit can be roughly modeled as the combination of three separate elements: the Sub-
stitution Library, the Instruction Generator and the Dispatch Logic.

5.1.1 Substitution library

The substitution library is basically a simple memory containing all the substitution
for each instruction. The memory is addressed using the reference instruction itself (to
select the correct set of substitutions), while the control logic is in charge of choosing
a specific substitution according to some difficult to predict algorithm.

5.1.2 Instruction generator

In order for the obfuscator to works, the rules stored in the substitution library must
be converted into actual executable machine instruction by the instruction generator.
This unit produces the substitutions required to obfuscate the code by combining the
reference instruction with the information provided by the library.

5.1.3 Control logic

The control logic it’s the core of the obfuscator. It is in charge of controlling the fetching
of new reference instructions, the dispatch of substitutions and manage events such as
branches and exceptions. This element is also in charge of choosing which instruction
to obfuscate, and which instruction to dispatch as is.

5.2 Requirements

Compatibility The obfuscator must not alter the behavior of the processor in any
way. This can be summarized by stating that a program produces the exact same re-
sults on both the modified and unmodified processors.

Reduced overhead Inserting the obfuscator in an already existing processor design,
implies that additional elements have to be added to the system architecture. This im-
mediately raises concerns about the area and delay overhead on the design introduced
by the obfuscator. In order to be a suitable solution the overhead must be minimized
to a reasonable amount.
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Re-usability Since this is a proof-of-concept implementation, the design shouldn’t
be exclusive to the OR1200 CPU chosen for this project, but should provide a generic
concept that is reusable for multiple processors and architectures.

Limited redesign While less critical, it’s still favorable to minimize the amount of re-
design required to accommodate the obfuscator, mainly to simplify the implementa-
tion and produce a cleaner design.

5.3 Insertion points

IF ID EX ME WB

Figure 5.2: Possible insertion points for the obfuscator

In a RISC processor, such as the OR1200 chosen for this project, processor pipeline
is formed by 5 separate stages:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Execute (EX)

4. Memory (ME)

5. Write-back (WB)

This configuration is known as the classic RISC pipeline. To obfuscate an instruction
before execution, obfuscation must take place between the IF and ID stage. In figure
5.2 are presented three possible insertion points for the obfuscator. In the following an
analysis of each is presented, describing the advantages and disadvantages offered by
each choice.

Within IF Inserting the obfuscator within an existing stage has the advantage of re-
quiring limited alterations to the pipeline: with the only exception of some alteration
to the control logic, the presence of the obfuscator could most likely be entirely con-
tained in this stage. Moreover, inserting the obfuscator at this point of the pipeline
means that all the stages only receive obfuscated instruction, potentially reducing the
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attack area. However, inserting the obfuscator in the IF stage means that it has to be
completely redesigned to accommodate the new functions. Also, the delay of the stage
is incremented by the delay of the obfuscator: this will most likely produce worst per-
formance than having an independent obfuscate stage.

Within ID Similarly to the previous approach, this method shares all the same advan-
tages and disadvantages, but with a further improvement: if the obfuscator is inserted
in the ID stage, the instruction generator doesn’t have to generate actual instructions,
but only the related control signal to the EX stage. This could greatly simplify the "in-
struction generation" logic and thus reduce the area overhead.

Between IF and ID Inserting the obfuscator between the IF and ID as a separate stage
is the best choice for multiple reasons. First of all a pipelined approach allows to reduce
the impact of the delay introduced by the obfuscator on the processor throughput.
Moreover, using a separate stage, allows the ID and IF to operate independently from
the obfuscator: this is especially useful since it allows to dispatch a substitution while
the IF stage is stalling, saving clock cycles during instruction cache misses. The only
penalty of this approach is that the original pipeline of the OR1200 has to be extensively
modified to accommodate the new stage. Regardless, this approach has been chosen
for the obfuscator implementation.

5.4 Chosen solution

IMEM IF

IF/ID RF

ID
/EX

ALU

LSU

EX
1/EX

2

DMEM

EX
/W

B

CTRL FREEZE EXCEPT.

Figure 5.3: OR1200 unmodified pipeline

To implement the on-chip obfuscator a new stage called Instruction Obfuscate (IOB)
is added to the canonical RISC pipeline, inserted between the IF and ID stages. The IOB
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Figure 5.4: OR1200 modified pipeline.

stage mimics ID on its input and IF on its output, to avoid modifying the two adjacent
stages in an existing CPU design, allowing these stages to be "unaware" of the presence
of the obfuscator. Clearly, the control unit must be modified to handle the new stage
and its relationship with the other pipeline stages. Figure 5.3 shows a graphic repre-
sentation of the OR1200 processor pipeline, and figure 5.4 the modified one including
the IOB stage. In the figure, the grayed modules represent the ones that is necessary
modify even in a very simple way to be able to insert the IOB stage.

Generally speaking, the obfuscation process goes as it follows: when an instruction
is retrieved by the IF stage, it goes through IOB where is replaced with a substitution
that may be composed of one or more instructions. The new instruction sequence is
then issued to the ID stage, while the fetch cycle is forced to stall. Instruction dispatch
is performed sequentially by the obfuscator using an internal counter. To summarize,
the obfuscation cycle is:

1. A new instruction is fetched by the IF and passed to the IOB for obfuscation.

2. The obfuscator logic evaluates if a substitution must be performed, if so, it re-
quests an IF stall.

3. A substitution is selected from the substitution library, and the reference instruc-
tion is processed to create the code.

4. The substitution code is dispatched to the decode stage and IF stall is dismissed.

Figure 5.5 shows a simple diagram depicting the behavior of the IOB stage.
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Figure 5.5: Obfuscation logic flow

5.5 Substitution library

Before implementing the proposed IOB stage in the OR1200 pipeline, a suitable way
to store and generate substitution instructions must be defined. According to the pro-
posed solution, the obfuscator must be able to:

1. Associate any instruction to a substitution in library

2. Generate the substitution code from the reference instruction

3. Dispatch the code sequentially
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The chosen approach is to store substitutions in a set of Look-Up Tables (LUTs),
each one containing a substitution for each operation in the instruction set: one LUT
allows one substitution for each instruction in the instruction set, and thus multiple
tables are needed to provide multiple obfuscation alternatives. Each line of the LUT
contains a Substitution Word, i.e. the informations required to generate a substitution
instruction (not an entire substitution).

This approach is interesting for its simplicity and scalability, but raises concerns on
the area impact of the obfuscator. The OR1200 has around 100 instructions, and the
average substitution length is of 3 instructions. This implies that in order to create a
complete substitution set, a LUT must have at least 300 lines. However, the obfuscator
must provide more than one substitution for each instruction, in order to perform an
efficient obfuscation, so if five alternatives for each instruction are required, five 300
lines LUT have to be implemented in the design! Moreover, each line of the LUT must
contain all the informations required to generate new instruction from the reference,
so it must contain the substitution opcodes, custom immediate and source/destina-
tion register addresses. This implies an amount of information similar to a regular
instruction, thus width can be estimated to be 32bit: the substitution library design
must somehow try to reduce LUT size.

To design such system two questions must be answered: how to encode substitu-
tion words and how to address them.

5.5.1 Addressing

Since substitutions have variable length in terms of number of instructions, LUT ad-
dressing must be performed using a pointer table that associates a given reference in-
struction with the line of the LUT containing the first instruction of its substitution.
The entire substitution can be obtained by incrementing this pointer, to retrieve each
subsequent substitution word, up to the last one of the sequence, that is marked by
the encoding as such. The pointer table is instead addressed by associating to each in-
struction a unique index. This approach allows to share a substitution, or even a subset
of its code, between different instructions, thus reducing the LUT length. The unique
index of each ORBIS32 instruction is reported in table A.1.

5.5.2 Encoding

As previously stated, in order to encode substitutions, the LUT must contain the rules
required to convert the reference instruction into the substitution code: each line of
the LUT corresponds to a single instruction of a substitution. To better understand the
requirements of the encoding, here’s an example:

Listing 5.1: Example of complex substitution

1 # Re f e r en c e : l . r o r i rD , rA , L
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2 l . x o r rD , rA , r0
3 l . x o r i r0 , r0 , L
4 l . x o r i r0 , r0 , 31
5 l . a d d i r0 , r0 , 33
6 l . s l l r0 , rD , r0
7 l . s r l i rD , rD , L
8 l . o r rD , rD , r0
9 l . x o r r0 , r0 , r0

This substitution, while being a particularly complex one, highlights all the features
necessary for the LUT encoding, in order to implement the proposed obfuscation tech-
nique. First of all, each instruction of the substitution is different from the reference,
and thus the encoding must specify the type of instruction that has to be produced,
providing operation code and additional function fields (if the operation has any). This
varies greatly depending on the type of instruction that has to be produced. Moreover,
the encoding must also describe how to set the operands of the instruction. A peculiar-
ity of substitutions, with respect to regular instructions, is that operands are not pre-
defined: rD, rA, and rB are placeholders for the actual values used by the reference in-
struction; their values vary according to the actual instruction that is substituted. The
same thing happens with immediate operands. The substitution instruction operands
are set to either the values of the ones of the reference instruction or custom values
encoded in the LUT, depending on the substitution implementation. In the case of
register operands, their value could be either r0, rD, rA, rB. In the case of immediate
operands, their value is either the one in the reference (if any) or a custom one spec-
ified in the substitution word. Finally, due to the addressing technique proposed, the
substitution word must also mark the last instruction of a substitution, to signal the
obfuscator when the substitution has ended.

Unfortunately, not all the instructions of the OR1200 have the same operands, nor
the same encoding: this means that the substitution word format must change for each
type of instruction, since different operations require different informations to be pro-
duced. By studying the instruction set it’s possible to classify the OR1K instructions
format into 7 separate types:

Type A

31 - 26 25 - 21 20 - 16 15 - 11 10 - 0
0x38 D A B ALU op.

Type I

31 - 26 25 - 21 20 - 16 15 - 0
Op.code D A I
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Type M

31 - 26 25 - 21 20 - 16 15 - 11 10 - 0
Op.code I A B I

Type F

31 - 26 25 - 21 20 - 16 15 - 11 10 - 0
Op.code Flag op. A B Res.

Type FI

31 - 26 25 - 21 20 - 16 15 - 0
Op.code Flag op. A I

Type B

31 - 26 25 - 0
Op.code N

Type S

31 - ? ? - 0
Op.code N

The type of each ORBIS32 instruction is reported in table A.1.

To summarize the substitution encoding must:

• Define the type of operation

• Handle different operands fields and instruction encodings

• Set the operand to either custom values or the ones in the reference

• Mark the last instruction of the substitution

The proposed encoding is able to achieve all the required features by implementing
different formats for each type of instruction (i.e., Type-A, Type-I, etc.). In the substitu-
tion word are specified the format of the instruction that it encodes, a command field,
whose format is unique for that given type and a stop bit, to signal if the instruction is
the last of the substitution. Within the command are specified how to set all the fields
of that instruction type, to produce the correct substitution. When the immediate field
is set to a custom value in type-M, type-I, and type-FI the value is stored in an addi-
tional LUT line after the current one. When this happens, the obfuscator addressing
logic has to skip the next line to move to the next substitution word. This allows to
limit the width of the LUT to only 16-bit.

The proposed substitution word encoding is the following:
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15 - 12 11 - 1 0
Substitution type Command Stop

Substitution Type type of instruction that must be generated by the substitution

N-type null substitution, replicates exactly the reference instruction.

A-type arithmetic instruction (opcode 0x38)

I-type immediate-like instruction (operand B not used)

M-type memory-like instruction (operand D not used)

F-type comparison (flag) instruction

FI-type immediate comparison (flag) instruction

Command contains information on how to modify the original instruction to create
the substitution; its format varies according to the substitution type.

Stop field is 1 if the encoded substitution is the last one of the sequence, and itâĂŹs
used to trigger the fetch of a new instruction.

In the following section is presented an overview of the encoding of the command
field for each instruction type.

Type-A command

11 - 8 7 - 4 3 2 -1 0
Op.code 1 Op.code 2 D A B

Opcode 1 First auxiliary op. code of the arithmetic instruction

Opcode 2 First auxiliary op. code of the arithmetic instruction

D Destination register

0 Reference instruction D register

1 Force D register to r0

A Operand A register

00 Reference instruction A register

01 Reference instruction B register

10 Reference instruction D register

11 Force A register to r0

B Operand B register

0 Reference instruction B register

1 Force B register to r0
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Type-I command

11 - 6 5 - 4 3 2 -1 0
Op.code 0 I D A R

Opcode 0 Op.code of the instruction

I Operand I register

00 Original immediate

01 Zero immediate

10 Custom immediate

11 Reserved

D Destination register

0 Reference instruction D register

1 Force D register to r0

A Operand A register

00 Reference instruction A register

01 Reference instruction B register

10 Reference instruction D register

11 Force A register to r0

Type-M command

11 - 6 5 - 4 3 2 -1 0
Op.code 0 I R A B

Opcode 0 Op.code of the instruction

I Operand I register

00 Original immediate

01 Zero immediate

10 Custom immediate

11 Reserved

A Operand A register

00 Reference instruction A register
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01 Reference instruction B register

10 Reference instruction D register

11 Force A register to r0

B Operand B register

0 Reference instruction B register

1 Force B register to r0

Type-F command

11 - 7 6 - 5 4 - 3 2 -1 0
Flag op. R B A R

Flag op. Flag operation code

A Operand A register

00 Reference instruction A register

01 Reference instruction B register

10 Reserved

11 Force A register to r0

B Operand B register

00 Reference instruction B register

01 Reference instruction A register

10 Reserved

11 Force B register to r0

Type-FI command

11 - 7 6 5 - 4 3 2 -1 0
Flag op. R I R A R

Flag op. Flag operation code

A Operand A register

00 Reference instruction A register

01 Reference instruction B register
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10 Reserved

11 Force A register to r0

I Operand I register

00 Original immediate

01 Zero immediate

10 Custom immediate

11 Reserved

5.5.3 Library example

To conclude the substitution library topic, in this section is presented a simple example
to better understand how addressing and instruction encoding works.

Let’s imagine a substitution library containing only two substitutions, one for l.addi,
the other for l.exthz:

Listing 5.2: Substitution for l.addi
1 # Re f e r en c e : l . a d d i rD , rA , I
2 l . a d d r0 , r0 , r0
3 l . a d d i c rD , rA , I

Listing 5.3: Substitution for l.exthz
1 # Re f e r en c e : l . e x t h z rD , rA
2 l . a n d i rD , rA ,65535

This library, clearly, provides only one substitution for each one the instructions,
thus is composed by one LUT, and addressed by a single pointer table. Since the sub-
stitution for l.addi is composed by 2 instructions, and l.exthz by one with a custom
immediate, the LUT will be composed by 4 lines; a fifth line, containing a Null-Type
substitution word has to be added to address all the instruction that don’t have a sub-
stitution. Note that since a pointer table is used to address the content, substitutions
can be stored in any order. The content of the LUT is thus the following:

LUT Address Reference Content

0 l.addi l.add r0,r0,r0
1 l.addic rD,rA,I
2 l.exthz l.andi rD,rA, Custom
3 65556
4 ? Null-Type word

47



5 – Obfuscator design

The pointer table is basically a boolean function whose input the unique index as-
sociated to the reference operation, and the output is the address of the LUT storing
the first instruction of the substitution. The unique index is 7-bit wide while the ad-
dress can vary according to the size of the LUT addressed: 3-bits are required in this
particular case. The resulting pointer table is the following:

Input Output

... 100
0011011 000

... 100
0111110 011

... 100

All the indexes without substitution point to address 4, the Null-Type substitution,
index 27 (l.addi) to address 0 and index 62 (l.exthz) to address 2.

The only thing left is to actually generate the encoded content of the LUT: the first
line contains l.add r0,r0,r0, a type-A instruction. As such, the type field is set to
’001’ and the stop bit is set to 0, since this is not the final instruction for the substitu-
tion. The command for a type-A instruction is composed by 5 fields: AOP1,AOP2,D,A
and B. AOP1 and 2 are the function fields of the operation (as specified by the OR1K
manual), and for l.add are respectively ’0000’ and ’0000’. The destination register is
r0 thus D must be set to 1; for the same reason A and B are set to ’11’ and ’1’. Similarly,
the next line contains a Type-I instruction, l.addic, so the type field is ’010’. Since this
is the last instruction of the substitution for l.addi the stop bit is set to ’1’.

This procedure can be repeated for all the remaining substitution instructions; the
resulting LUT content is:

LUT Address Reference Sub. word

0 l.addi 0010000000011110
1 0101010000000001
2 l.exthz 0101010011000001
3 1111111111111111
4 ? 0000000000000001
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Chapter 6

Obfuscator implementation

6.1 Introduction

After all the characteristics of the obfuscator were laid down, a proof-of-concept imple-
mentation of the modified CPU was developed using Verilog HDL. Using as a starting
point the default OR1200 configuration, the IOB stage was designed and added be-
tween IF and ID. This however took more time than expected due to the lack of detailed
documentation on the OR1200 design. The development required a preliminary stage
of reverse engineering of some key components, by carefully studying the signals pro-
duced during the execution of some ad-hoc programs, to generate specific events (e.g.,
jumps, stall, exceptions, etc.) in a controlled environment. Regardless, inserting the
new stage in the design still required an extensive amount of tuning by trial-and-error
to achieve a functional implementation. For this reason, the modified CPU has been
extensively tested over the course of multiple weeks using many benchmark programs,
to identify errors and misbehaviors, by comparing the execution of the modified pro-
cessor with the original reference design.

Unfortunately, this time-consuming approach meant that some planned features
had to be dropped due to time constraints: without detailed documentation, modify-
ing a previously unknown element of the system can take an indefinite amount of time
to deeply understand its function, let alone modify it. The final system is fully func-
tional, in the terms presented in the previous chapters, and thus can fetch, generate
and dispatch substitutions, but lacks exception management. While this feature was
technically implemented, it never worked with absolute reliability.

This chapter presents a detailed analysis of the implementation of the modified
OR1200 CPU, focusing primarily on the elements most affected by the obfuscator, namely
the instruction fetch and decode stages, as well as the control logic around them. The
last sections will instead deal with missing exception management, the issues that
brought to the design as well as possible solutions to it.
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6 – Obfuscator implementation

6.2 Original pipeline

or1200_except or1200_freeze

or1200_if or1200_ctrl
if_insn

if_
st
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l
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_
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if_pc

if_freeze id_freeze

no_more_dslot

Figure 6.1: Detail of the unmodified IF and ID stage

To better understand the modified CPU, a little of background on the unmodified
version is necessary. In figure 6.1 presents a detail of the wiring between the first two
stages of the pipeline (i.e., IF and ID). In the OR1200, there’s no single control unit, and
its role is taken by multiple independent elements each implementing a specific as-
pect of the control logic. These elements are: or1200_except, that manages exceptions,
or1200_freeze, responsible from handling stalls, and or1200_ctrl, that handles some as-
pects of flushing and branching, and also acts as the ID stage.

The role of the IF stage is performed by the module or1200_if : this module sends
the fetched instruction to or1200_ctrl trough the if_insn bus to be decoded or, if no
instruction is available, raises the signal if_stall to notify the freeze logic of the event.
In the case of a fetch stall a special nop instruction, called void, is passed to the ID
stage: void acts like the default state of instruction registers after either flush or reset.
Similarly, an ID stall is signaled using the id_stall. The signal no_more_dslot is used
to notify the IF stage that a branch has been taken and that the instruction currently
decoded is the branch delay slot: this triggers an immediate flush of the instruction in
the IF stage.

The program counter corresponding to the fetch instruction is passed to the ex-
ception management logic via the if_pc bus: the unit keeps track of the PC value cor-
responding to the instruction in each stage of the pipeline, to correctly determine the
last executed instruction to return from an exception. Each stage of the pipeline has
an independent flush signal wired to this unit (not reported in figure 6.1): when an ex-
ception occurs, the stages before the one where it was generated are flushed, allowing
precise exception handling.
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6.3 Modified pipeline
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Figure 6.2: Detail of the modified IF and ID stage

As explained in the previous chapter, the obfuscator, the obf_top module in figure
6.2, behaves like a new stage inserted between IF and ID. For these reasons, it basically
acts like ID on its inputs and IF on its outputs, and thus neither of these stages have to
be modified to insert the new unit; only or1200_except and or1200_freeze require some
sort of alteration to insert the new stage. Control signals, connected directly between
IF and ID, are now rewired trough the obfuscator, that controls their value: the IOB
logic has thus an active role in integrating the obfuscator with the pipeline. This allows
to keep the original design of most modules unmodified, at the expense of a slightly
more complex obfuscator logic.

In the modified CPU, the output signals coming from the IF stage are passed trough
the obfuscator, that controls their value to manage instruction execution. Thus, a num-
ber of signals produced by the or1200_if, in the modified processor, are produced by
the new stage. These signals are if_insn, if_stall and if_pc, or in simpler words the
fetched instruction, the fetch stall signal and the program-counter value; these are
mirrored at the output of the IOB stage, and wired to their original destination. The
obfuscator takes the instruction on the if_insn bus and uses it to create the substi-
tutions that are then passed to ID in iob_insn bus. iob_stall works similarly to its IF
counterpart: if the obfuscator has no instruction to dispatch the signal is asserted and
the event is handled by the freeze unit. This signal can either be controlled by the sub-
stitution dispatch logic, while a substitution is performed, or mirror the if_stall signal,
when the IOB stage is idling. Similarly, also the program counter value, if_pc, is con-
trolled by the obfuscator with the iob_pc signal: while a substitution is dispatched the
PC value of the reference operation is used for every instruction.

A similar approach, but in the opposite direction, is done with the no_more_dslot
signal: in the original pipeline this ID signal, used to notify that the delay slot is in
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6 – Obfuscator implementation

the ID stage when a branch is taken, is wired directly to the IF stage. In the modified
processor, the original signal from ID is no longer connected to anything and it’s logic
is reimplemented within the obfuscator from scratch, to take into account the new
module.

The obfuscator can trigger an independent IF freeze trough the if_freeze_req signal
(not reported in figure 6.2): this is used to stop the fetch cycle while a substitution is
being dispatched. During obfuscation, the IF stage is allowed to fetch a new instruc-
tion and, as soon as it’s retrieved, a freeze request is issued. This allows optimizing
execution time by dispatching instructions while new ones are fetched from memory.
Other than that, the freeze logic can be used as is; the IOB stage has no independent
freeze control, and reuses the id_freeze signal.

6.4 Obfuscator architecture

obf_top

if_insn
if_pc

if_stall
id_freeze

id_flushpipe
id_void

ex_branch_taken

iob_insn
iob_pc
if_freeze_req
iob_stall
no_more_dslot

clk
rst

Figure 6.3: Top level view of the obfuscator

A top-level view of the obf_top module is shown in figure 6.3. The input/output
signals of the obfuscator are the following:
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from pipeline to pipeline

obf_insngen obf_keydec

obf_ctrl

obf_top

Figure 6.4: Obfuscator architecture

Signal Type Width Description

if_insn Input 32 Fetched instruction bus
if_pc Input 32 Fetched instruction program counter
if_stall Input 1 IF stall signal
id_freeze Input 1 ID freeze signal
id_flushpipe Input 1 ID flush signals
id_void Input 1 Asserted when a void instruction is in ID
ex_branch_taken Input 1 Asserted when a branch is taken
iob_insn Output 32 Obfuscated instruction bus
iob_pc Output 32 Obfuscated instruction program counter
iob_stall Output 1 IOB stall signal
if_freeze_req Output 1 Triggers IF freeze when asserted
no_more_dslot Output 1 Signals IF the delay slot decode

The first three signals, namely if_insn, if_pc and if_stall, are IF outputs that in the
unmodified processor were directly connected to the ID stage, that are now wired
through the obfuscator and mirrored on its output as iob_insn, iob_pc and iob_stall.
The remaining inputs are sense signals used by the obfuscator logic to control the dis-
patch of substitution. Note that no_more_dslot is a completely different signal with
respect to the one present in the original processor, where it was generated by the ID
stage: the original signal, in this implementation is no longer used.

Internally the obfuscator is composed by three separate elements, as depicted in
picture 6.13: obf_ctrl, the control unit of the obfuscator, obf_insngen, the unit tasked
with generating substitution, and obf_keydec, that implements the algorithm used to
select substitutions from a unique configuration called "Key". In the following sections
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a detailed description of each one of these elements is presented.

6.4.1 Control unit

clk

if_insn[31:0] I N SN1 I N SN2 I N SN3

if_pc[31:0] PC1 PC2 PC3

if_stall

if_freeze_req

ppc_i[3:0] 0000 0001 0010 0010 0011 0100 0000

io_insn[31::0] OBF1 OBF2 OBF3 OBF3 OBF4 OBF5 OBF1

io_pc[31:0] PC1 PC2

Figure 6.5: Instruction fetch and substitution dispatch timing

The control unit is responsible for handling the instruction fetch/substitution dis-
patch cycle, as well as ensuring the correct behavior of the obfuscator during stalls,
branches and exceptions. This unit is implemented as multiple behavioral logic ele-
ments, namely:

• Pseudo-program counter

• Input latch logic

• Fetch freeze request logic

• Substitution dispatch logic

• Branch management

The core of the control logic is the Pseudo-program counter (PPC), a counter used to
address the substitution library and incrementally dispatch the instruction, by using its
value as offset for the pointer table. The entire logic of the control unit is built around
this counter.

Instruction fetch/substitution dispatch cycle is presented in picture 6.5. When a
new instruction is fetched by the IF stage, the if_stall signal is set to 0 and the new in-
struction is available on the if_insn bus with its corresponding PC value on if_pc. These
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6.4 – Obfuscator architecture

two register values are latched into two registers to store them for later instruction sub-
stitutions. If the ID stage is available (id_freeze set to 0) the first instruction of the sub-
stitution will increment the PPC value in this clock cycle, otherwise the PPC is not in-
cremented. During the obfuscation, the IF stage is allowed to fetch another instruction
to save clock cycles: if a new instruction is available before the substitution dispatch
has finished, the obfuscator will trigger an IF freeze trough the if_freeze_req signal, that
will be left active until the last instruction of the substitution has been reached. If the
ID stage is not frozen the PPC will be incremented each clock cycle until a substitution
with the stop field equal to 1 is reached: this triggers the reset of the PPC and a new
instruction is parsed by the obfuscator.

Pseudo-program counter

ppc_skip

id_freeze

iob_stall

obf_stop

if_stall

obf_init

obf_init

ppc_i

+’1’

+’2’

D Q

R

S

PPC

=0

Figure 6.6: RTL implementaion of the pseudo program counter

The Pseudo-program counter has a similar purpose with respect to a regular pro-
gram counter, in the sense that is used to address instructions: the PPC value is in
fact used as offset to the substitution library pointer table, to address all the instruc-
tions of a substitution. For this reason the PPC width is very small, only 4-bit in the
proposed implementation. Since in the library LUTs, a substitution word can have an
optional "custom immediate" in the following line, the PPC can either increment by 1
or 2 units, depending on the value of the ppc_skip signal, produced by the instruction
generator. The counter value is incremented each clock cycle up to the last instruction
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of the substitution, that triggers the PPC reset. Regardless, the PPC count can be frozen
for various reasons: if the ID stage is frozen, while waiting for a new instruction from
IF or if the branch management requires it.

Input latch logic

if_insn

if_pc

obf_init

saved_insn

saved_pc

D Q

R

S

D Q

R

S

Figure 6.7: RTL implementaion of input registers

During the obfuscation cycle, the IF stage is allowed to fetch a new instruction
while a substitution is being dispatched, thus the reference instruction and its PC value
(if_insn and if_pc respectively) are no longer present at the output of the instruction
fetch stage in later cycles. These values are thus latched into two internal registers af-
ter the first clock cycle to allow the IF stage to operate independently (figure 6.7).

The mechanism is quite simple: if the PPC value is zero (obf_init signal is 1), the
reference instruction, and its relative PC value are latched at the output of the IF stage.
The obfuscator input is muxed to either the IF outputs, if obf_init is 1, or its internal
registers, if obf_init is 0. Internal registers are enabled by the obf_init signal, and thus
store the values only during the first obfuscation cycle.

Fetch freeze request logic

In the modified processor the Freeze unit is no longer in direct control of the instruc-
tion fetch stage, and triggers the if_freeze signal only if if_freeze_req is asserted by the
obfuscator. The obfuscator thus is in charge of freezing the IF stage: this stage must
be frozen if the ID stage is stalling and while dispatching a substitution. The freeze
request logic is described by the following Verilog code:
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Listing 6.1: IF freeze request logic

1 a lways @(∗ )
2 beg in
3 i f ( i f _ s t a l l ) b eg in
4 // I f f e t c h s t ag e i s s t a l l i n g no a c t i o n i s r e q u i r e d
5 i f_ f r e e z e_r eq <= 1 ’ b0 ;
6 end
7 e l s e beg in
8 i f ( ob f_r s t )
9 // Obfu sca to r r e s e t

10 i f_ f r e e z e_r eq <= re a l_ i d_ f r e e z e ;
11 e l s e
12 // Obfu sca to r runn ing
13 i f_ f r e e z e_r eq <= ( ! o b f_ i n i t & ! io_no_more_dslot ) |

r e a l_ i d_ f r e e z e ;
14 end
15 end
16 end

If IF is stalling, the freeze request is disabled, since it would have no effect on the
stage. In all other cases the freeze request is directly wired to the real_id_freeze signal:
this signal is asserted when id_freeze is high and iob_stall is low, or in simpler words,
when ID is frozen but not because the obfuscator is stalling.

If the IF stage is not frozen, the if_freeze_request value depends only on the values
of obf_init and no_more_dslot. If the latter is asserted the freeze has to be immedi-
ately lifted to allow flushing the fetched instruction. The former is instead used by the
obfuscation dispatch cycle: if obf_init is set to 1, thus the PPC is equal to 0, the obfus-
cator has just received an instruction from IF, thus if_freeze_request is set to 0 to fetch a
new one in the next cycle. After that, the program counter is incremented and obf_int
becomes 0: if the fetch stage is stalling, the freeze request is removed until the new in-
struction is fetched, if the instruction is immediately available if_freeze_req is set until
the next obfuscation cycle.

Substitution dispatch logic

The substitution dispatch logic controls the iob_insn, iob_pc and iob_stall signals to
send the obfuscated instruction produced by the instruction generator to the decode
stage. The Verilog implementation is the following:

Listing 6.2: Substitution dispatch logic

1 a lways @( posedge c l k or ‘OR1200_RST_EVENT r s t )
2 beg in
3 i f ( r s t == ‘OR1200_RST_VALUE | ob f_rs t ) beg in
4 // Reset
5 i o_ in sn <= {‘OR1200_OR32_NOP , 26 ’ h041_0000 } ;
6 io_pc <= 32 ’ h00000000 ;
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7 i o _ s t a l l <= 1 ’ b0 ;
8 end
9 e l s e beg in

10 i f ( r e a l_ i d_ f r e e z e ) beg in
11 // Stop
12 i o_ in sn <= io_insn ;
13 io_pc <= io_pc ;
14 i o _ s t a l l <= 1 ’ b0 ;
15 end
16 e l s e i f ( o b f_ i n i t & i f _ s t a l l ) b eg in
17 // Bypass
18 i o_ in sn <= i f_ i n s n ;
19 io_pc <= i f_pc ;
20 i o _ s t a l l <= 1 ’ b1 ;
21 end
22 e l s e beg in
23 // Obfuscate
24 i o_ in sn <= obf_insn ;
25 io_pc <= saved_pc ;
26 i o _ s t a l l <= 1 ’ b0 ;
27 end
28 end
29 end

As it can be seen from the code, the dispatch logic can either operate in four states with
decreasing priority:

• Reset

• Stop

• Bypass

• Obfuscate

Reset state can be either external, at system reset, or internal, after branches or ex-
ceptions: it resets the content of the output registers to their default state. Stop mode
is instead activated if the ID stage is stalling, and the output values are kept unmodi-
fied. Bypass mode is used while waiting for a new instruction to be fetched by the IF
stage (obf_init and if_stall to 1): in this case the signal from if are mirrored directly to
the output, with the exception of iob_stall that is always 1. Finally, the last possible
state is obfuscate: in this case, iob_insn is the instruction produced by the instruction
generator, iob_pc the latched value of the reference program counter and iob_stall is
set to 0.

Branch management

In the OR1200 default configuration branching is performed with a branch delay slot:
the branch logic ensures that the delay instruction is executed before flushing the pipeline.
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This is done trough the use of a special instruction called void, a l.nop with bit 16 set
to 1. This instruction is set on the output of the IF stage during stall and is processed
by the pipeline like a regular instruction. If a branch is taken, the branch logic checks
if a void currently in either the IF or ID stage, and behaves according to the following
table:

IF void ID void Behavior
3 3 Branch delay slot has not yet been fetched, no action is taken.
7 3 Branch delay slot has just been fetched, no action is taken.
3 7 Branch delay slot is in ID stage, IF is flushed.
7 7 Branch delay slot is in ID, IF stage is flushed.

In the unmodified OR1200 the IF stage flush is triggered by the no_more_dslot sig-
nal. The modified pipeline mimics this mechanism, with the major difference that
obfuscator introduces an instruction of delay. When a branch is taken there are three
possible situations: the branch delay slot is being obfuscated, the branch delay slot has
already been passed to the ID stage, or the branch delay slot has not yet been fetched.
The IO stage can be flushed similarly to the IF stage, but only if the first instruction of
a substitution is latched on its output. If the last instruction dispatched to the ID stage
had PPC equal to 0 the IO stage can be flushed with the IF stage.

6.4.2 Instruction generator

obf_insngen

ref_insn

ppc

sel

obf_en

obf_insn

obf_last

obf_skip

Figure 6.8: Top level view of the instruction generator

The instruction generator is the unit responsible for producing the substitution in-
structions to be dispatched to the ID stage: this is done by parsing the reference in-
struction to retrieve its operands, and then use them to build the new instruction ac-
cording to the rules stored in the substitution library. This block is completely combi-
national and is entirely controlled by the obfuscator control unit and the key decoder.

Among its inputs are ref_insn and ppc, respectively the reference instruction and
the current PPC value. sel and obf_en, are controlled by the key decoder and are used to
create the unique obfuscation pattern by choosing which instruction to substitute and
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reference substitution

obf_indexgen obf_sublib obf_insnbuild

obf_insngen

Figure 6.9: Instruction generator architecture

with which substitution. If obf_en is set to zero, the instruction returns the reference
instruction as is.

The instruction generator has only three outputs: obf_insn is the obfuscated in-
struction for the current reference, obf_last is set to 1 if is the last instruction of a sub-
stitution and obf_skip is asserted to increment the PPC by 2 units.

Internally this unit if formed by three modules:

• Index generator

• Substitution library

• Build logic

Index generator

The index generator is a combinational block that converts the fetched 32-bit instruc-
tion that has to be substituted, into the unique 7-bit index used to address the substitu-
tion library. From an implementation point of view, this module was designed using a
purely behavioral description, and it amounts to essentially a large set of nested switch
statements. This is done because different instructions may have the same operation
code, but different functional codes.

Substitution library

The substitution library is implemented exactly as it was described in the previous
chapter: it consists in a set of N separate LUTs, each one paired with a pointer table,
addressed using the index from the index generator. The value from the pointer table
refers to the address of the first instruction of a substitution in its relative LUT; PPC
value is used as offset to retrieve the following ones. Such library allows for N possible
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Figure 6.10: Top level view of the substitution library
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Figure 6.11: RTL implementation of the substitution library

substitutions for each operation of the instruction set: tables are addressed concur-
rently and their output is multiplexed to select only one substitution (figure 6.11).

A top-level view of the substitution LUT is available in picture 6.10. Buses index
and ppc, are used for addressing. The substitution word is available on the subw bus.
If the selected substitution word has an immediate field, its value is available on the
imm bus, in all the other cases imm contains the following line of the LUT.
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Build logic

The information from the substitution library has to be converted into actual exe-
cutable 32-bit instruction: this task is handled by the build logic. First of all the ref-
erence instruction type is detected, to correctly retrieve operands. This is particularly
critical in the case of type-I and Type-M instructions, where the 16-bit immediate in
two completely different positions in the 32-bit.

Listing 6.3: Reference operands parsing logic

1 wi r e [ 5 : 0 ] f_in_opc = r e f_ i n s n [ 3 1 : 2 6 ] ;
2 wi r e [ 4 : 0 ] f_in_D = re f_ i n s n [ 2 5 : 2 1 ] ;
3 wi r e [ 4 : 0 ] f_in_A = re f_ i n s n [ 2 0 : 1 6 ] ;
4 wi r e [ 4 : 0 ] f_in_B = re f_ i n s n [ 1 5 : 1 1 ] ;
5 wi r e [ 1 5 : 0 ] f_in_I = ( f_in_type == ‘OBF_INSN_TYPE_I) ?

r e f_ i n s n [ 1 5 : 0 ] : { r e f_ i n s n [ 2 5 : 2 1 ] , r e f_ i n s n [ 1 0 : 0 ] } ;

Substitution library output is used to build the operands for the substitution in-
struction: operands are produced independently from the instruction and then com-
bined together to create it. The bus sw_cmd contains the substitution word command
field, while sw_type the instruction type.

Listing 6.4: Operands generation logic

1 wi r e [ 5 : 0 ] f_out_OPC = sw_cmd [ 1 1 : 6 ] ;
2 wi r e [ 3 : 0 ] f_out_AOPC1 = sw_cmd [ 1 1 : 8 ] ;
3 wi r e [ 3 : 0 ] f_out_AOPC2 = sw_cmd [ 7 : 4 ] ;
4 wi r e [ 4 : 0 ] f_out_FOPC = sw_cmd [ 1 1 : 7 ] ;
5 wi r e [ 4 : 0 ] f_out_D = sw_cmd [ 3 ] ? 5 ’ b00000 : f_in_D ;
6
7 wi r e [ 4 : 0 ] f_out_A = sw_cmd [ 2 : 1 ] == 2 ’ b00 ? f_in_A :
8 sw_cmd [ 2 : 1 ] == 2 ’ b01 ? f_in_B :
9 sw_cmd [ 2 : 1 ] == 2 ’ b10 ? f_in_D :

10 5 ’ b00000 ;
11
12 wi r e [ 4 : 0 ] f_out_B = ( sw_type == ‘OBF_INSN_TYPE_F | |
13 sw_type == ‘OBF_INSN_TYPE_FI) ?
14 sw_cmd [ 4 : 3 ] == 2 ’ b00 ? f_in_B :
15 sw_cmd [ 4 : 3 ] == 2 ’ b01 ? f_in_A :
16 5 ’ b00000 :
17 sw_cmd [ 0 ] ? 5 ’ b00000 : f_in_B ;
18
19 wi r e [ 1 5 : 0 ] f_out_I = sw_cmd [ 5 ] ? lut_out_imm : sw_cmd [ 4 ] ? 16 ’ d0

: f_in_I ;

Depending on the type of substitution instruction required operands are combined
to create the correct instruction:

Listing 6.5: Operands concatenation logic

1 a lways @(∗ )
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2 beg in
3 i f ( obf_en & ! r e f_vo i d ) beg in
4 // Obfu sca to r enab l ed
5 ca se ( sw_type )
6 // Type−N
7 ‘OBF_INSN_TYPE_N: obf_insn = r e f_ i n s n ;
8 // Type−A
9 ‘OBF_INSN_TYPE_A: obf_insn = {‘OR1200_OR32_ALU ,

10 f_out_D , f_out_A , f_out_B , 1 ’ b0 , f_out_AOPC1 , 2 ’ b00 ,
f_out_AOPC2} ;

11 // Type− I
12 ‘OBF_INSN_TYPE_I : obf_insn = {f_out_OPC , f_out_D , f_out_A ,

f_out_I } ;
13 // Type−M
14 ‘OBF_INSN_TYPE_M: obf_insn = {f_out_OPC , f_out_I [ 1 5 : 1 1 ] ,

f_out_A , f_out_B , f_out_I [ 1 0 : 0 ] } ;
15 // Type−F
16 ‘OBF_INSN_TYPE_F : obf_insn = {‘OR1200_OR32_SFXX , f_out_FOPC ,

f_out_A , f_out_B , 11 ’ d0 } ;
17 // Type−FI
18 ‘OBF_INSN_TYPE_FI : obf_insn = {‘OR1200_OR32_SFXXI ,

f_out_FOPC , f_out_A , f_out_I } ;
19 // Other
20 d e f a u l t : ob f_insn = r e f_ i n s n ;
21 endcase
22 end
23 e l s e beg in
24 // Obfu sca to r d i s a b l e d
25 obf_insn = r e f_ i n s n ;
26 end
27 end

6.4.3 Key decoder

obf_keydec

clk

rst

en

sel

obf_en

Figure 6.12: Top level view of the key decoder
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en LFSR < obf_en

sel

obf_keydec

Figure 6.13: Key decoder architecture

The obfuscation pattern is made difficult to predict by using an algorithm config-
ured after manufacturing: this external configuration is referred as "key". The key de-
coder is responsible of generating all the key-dependent control signals within the ob-
fuscator. Since no specification have been made on the requirements of such entity,
for the purpose of this preliminary implementation, the key decoder has been imple-
mented as a mock-up. This module has two main purposes: chose the instructions to
obfuscate and choose the substitution to use. Since that, according to the threat model,
no assumption can be made on the most effective obfuscation pattern, a random ap-
proach has been chosen. Regardless of the lack of specifications about the "key", the
CPU user should have at least some sort of control over two parameters of the obfus-
cation pattern, namely:

• The seed of the random algorithm, to ensure that the pattern uniqueness

• The frequency of substitutions, since it’s estimated that obfuscation will produce
a run-time overhead

To achieve this, random, or more accurately pseudo-random, number generation
is produced by a 32-bit Linear-feedback shift register (LFSR). A LFSR is a shift-register
whose input is a function of its current content: with a well-chosen feedback func-
tion, the sequence produced by the LFSR is a periodical mathematically predictable
sequence, that can be considered random in most applications[15]. Externally, the key
decoder has only one input (excluding as usual clock and reset signals) call en. This
signal enables the shift registers and it’s wired to the obf_init signal: each obfuscation
cycle a new random number is generated. The CPU user can control the obfuscation
pattern by changing the seed of the LFSR.

A subset of the LFSR output, is wired to the output signal sel, that controls the out-
put mux of the substitution library, allowing a random choice of substitution: the exact
width of this control signal depends on the number of LUTs in the library and is thus
variable. To achieve fine control over the number of substitution performed per exe-
cuted instructions, the lower 8-bit of the LFSR was wired to one input of a comparator,
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while the other was wired to a constant value. The output of the comparator is directly
connected to the obf_en output: if the value within the lower byte of the shift register is
smaller than the constant, the obfuscation is enabled. This allows to control the substi-
tution frequency through the value of the constant. While this method is rudimentary,
it serves the purpose of creating a simple pseudo-random configurable obfuscation
pattern.

The slice of 8-bit was chosen to achieve a more than percentual degree of control
over the substitution frequency: the value distribution over 1000 iterations of the LFSR
is reported in table 6.14, while the substitution frequency obtained at different com-
parator settings is in table 6.15.
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Figure 6.14: LFSR comparator input value distribution

6.5 Failed attempt at exception handling

While not functional, a great design effort was given to the development of the obfusca-
tor exception management. In the unmodified processor, the exception management
is performed by the or1200_except module. Within this component is present a sort
of "scale model" of the OR1200 pipeline: the exception module keeps track of the pro-
gram counter in each stage of the pipeline by moving the if_pc value in a register chain,
in the same way that instructions are moved trough the pipeline. When an exception
occurs, the exception unit stores the PC of the instruction after the one that has caused
the exception and flushes all the stages before it. This however can no longer be per-
formed in the modified processor: if an exception happens during a substitution, data
is most likely corrupted, and the program is irreparably compromised. The solution to
this problem could be two:
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Figure 6.15: Substitution frequency for different comparator values

• If a substitution is suspended by an exception, after execution is resumed, allow
the obfuscator to continue from where it left

• Allow the obfuscator to complete the substitution before handling the exception

While both solution are potentially viable, the latter ensures the processor is in
the exact same state after the exception as an unmodified one, and its much easier
to implement. The design idea was to propagate in the exception module the value of
obf_init, similarly to what the module does with the PC value, to keep track of substitu-
tions in pipeline stages. If the instruction in a given stage had obf_init equal to 0, when
it was dispatched from the obfuscator, it means that the instruction was either the first
instruction of a substitution or a single unobfuscated operation: such instruction, as
well as all the others backward in the pipeline, can thus be flushed without breaking
any substitution. On the contrary, if an instruction had obf_init equal to 1, it means
that forward in the pipeline at least one operation from the same substitution is being
executed. This idea however didn’t cope well with the selection of the return program
counter, resulting in the processor executing the same instruction twice in some rare
cases. Unfortunately, the exact cause of this has yet to be found, and focus was shifted
to verifying the performance of the obfuscator.

66



Chapter 7

Experimental results

7.1 Overview

After the design was completed, the system has been subject to a broad set of tests
to verify its correct behavior, and estimate its performance. In both cases these were
performed by studying the execution of benchmark programs, in an effort to acquire
meaningful data in experiments resembling a real-life application/attack scenarios.

The system under test consists in the modified OR1200 in its default configuration,
implementing the substitution library described in section 4.5. This library consists in
a single substitution table (one substitution for each instruction), a configuration quite
different from the proposed obfuscator implementation, that in a real-life application
would implement multiple LUTs. This has been chosen for multiple reasons: a single
substitution table allows for a more straightforward and predictable substitution pat-
tern, that simplifies the verification process, without compromising the performance
evaluation. In fact, multiple substitutions are implemented to prevent attacks target-
ing the obfuscation pattern, not to improve the obfuscation by itself. Moreover, less
LUTs means that fewer substitutions have to be verified and tested.

The benchmark used for these experiments is the Automotive suite of Mibench
v1.0, modified to run on the OR1200. All the presented tests were executed using Veri-
lator, a fast verilog simulator, or on a DE10-Lite FPGA by Terasic.

7.1.1 Mibench

Mibench v1.0 is an open-source benchmark suite developed at the University of Michi-
gan [16]. The benchmarks contain six sets of programs, designed to target specific ar-
eas of the embedded market. These sets are: Automotive and Industrial Control, Con-
sumer Devices, Office Automation, Networking, Security, and Telecommunications.
The Automotive set has been selected as benchmark for the experiments. It is com-
posed by four programs: basicmath, bitcount, qsort, and susan. susan performs a set of
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simple mathematical calculations like cubic function solving, integer square root and
angle conversions.bitcount is a collection of different bit counting algorithms. qsort
sorts a large string array using the well-known quick sort algorithm. susan is an image
recognition package used for Magnetic Resonance Images of the brain. It can smooth
an image or find corners and edges. All of these programs are executed either with a
"small" or a "large" input dataset.

In the proposed tests, these programs have been modified to run in a bare-metal
environment without a file system, and output data directly to the testbench. Further-
more, the program bitcount, which uses the internal timer to compute its execution
time, has been modified to remove this feature since it generated exceptions and the
obfuscator is not able to handle them correctly. Finally, a new configuration of the
program basicmath, called "tiny", was created since both the "small" and "large" con-
figuration took too much time to execute.

7.1.2 Verilator

Verilator is a Verilog simulator that converts syntesizable HDL code to an optimized
cycle accurate C++/SystemC model[17]. This makes the simulation of large systems
faster than commercial event-driven HDL simulators. This was a crucial choice for
the experiments, since on other EDA tools such as Modelsim, the execution of a single
Mibench program can take many days to complete.

Verilator produces a C++ class that models the system, either with C++ code or by
wrapping a SystemC model, depending on the configuration. The class can be instan-
tiated in a program that acts as testbench for the converted system. Inputs and outputs
are exposed as 2-states variables (that can be either 0 or 1): after setting the input vari-
ables values, the testbench must call a special method, to evaluate the new outputs.
Note that, since Verilator generates a cycle-accurate model, all intra-cycle delays are
ignored.

While Verilator is supported natively by the FuseSoC project, it’s a relatively new ad-
dition: the OR1200 Verilator testbench thus lacks many of the features provided by the
default Verilog one bundled with the processor core. This testbench provides instruc-
tion tracing and disassembly, support for all the special l.nop codes and advanced
logging, all functions that are indispensable for testing the modified OR1200: these
feature have been added to a new Verilator testbench from scratch.

7.1.3 Terasic DE10-Lite

Albeit briefly, an FPGA was used to perform the final verification of the system. The
Terasic DE10-Lite is an Altera (now Intel) MAX 10 based FPGA board. The board utilizes
the maximum capacity MAX 10 FPGA, which has around 50K logic elements (LEs) and
has a 64MB SDRAM.
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Unfortunately, while FuseSoC provides ready to use configurations for many FPGA
boards, the DE10-Lite isn’t one of them. A similar board, the DE0-Nano (also by Tera-
sic), is however supported and has been used as a base to develop a DE10-Lite port.
Due to the emphasis on re-usability of the FuseSoc project, creating such port is only
a matter of selecting the right configuration of external peripherals, to the match the
ones provided by the new board, and parameters, such as clock frequency and external
memory size.

7.2 Design verification

Reference processor

Modified processor

Figure 7.1: Mibench "susan small" output comparison

The processor was extensively tested to ensure the equivalence between the mod-
ified and unmodified version in the execution of sample programs. The design verifi-
cation was performed in two steps, by respectively comparing:
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1. Benchmark outputs

2. Instruction traces

The first approach consists in executing the same program on the reference processor,
and then on the modified one, to check that the output of the benchmark is the same.
This method is extremely simple and very effective as a coarse verification method,
since it doesn’t allow to check the executed instructions and returns no debug infor-
mation in case of error. The main appeal of this approach is that can be entirely per-
formed on the synthesized processor on an FPGA, outputting the benchmark output
through an UART interface, and thus can be executed at very high speed.

The second approach requires tracing the executed instructions on the reference/-
modified processor, and verify that the substitutions are performed correctly. This al-
lows for a more precise verification and returns useful informations in case of error,
but must be performed using a logic simulator, and thus can be very slow. Moreover,
depending on the amount of traced information, simulation output can be very diffi-
cult to handle due to the sizable amount of data generated. A simple Python script was
developed to check the trace automatically: the programs parses the two output traces
verifying that the GPRs and SPRs contain the same data in both, after each substitution.

The high performance provided by running the benchmark on FPGA allows to ver-
ify the execution of all select Mibench programs with both the small and large dataset,
while using logic simulation only allows to test the small version. The trace method,
due to its better insight in error, was used as a debug tool and the output method was
instead used as a final further verification. The final obfuscator design has been veri-
fied with both techniques, proving its correct behavior.

While countless errors have been detected and promptly fixed, during this testing
phase, no errors caused by faulty substitutions were detected, proving that the verifi-
cation techniques used during the substitution table design were effective.

7.3 Logic synthesis

Both the original and modified processor have been synthesized using Synopsis De-
sign Compiler to estimate the area/delay impact of the obfuscator. The NanGate 45nm
Open Cell Library[18], an open-source standard-cell library, has been used for this pro-
cess. Synthesis results for the reference processor, and the modified one are presented
respectively in table 7.1 and 7.2. It is possible to notice that the on-chip obfuscator has
a longer critical path compared to the reference design: unsurprisingly the additional
delay is introduced by the substitutions generation logic, i.e. the chain index generator,
LUT, and instruction generator. When synthesized for 100 MHz the modified proces-
sor has an increased area equivalent of 2314 Nand2 logic gates (6.30% area increase).
Of this area overhead approximately 500 gates are occupied by the substitution LUT
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(1.36% of the total area): it’s thus possible to estimate that each additional LUT added
to the library will contribute to a similar area increase on the design.

Clock (MHz) Slack (ns) Area (µm2) Area (Cells)

50 13.04 29297 36713
100 3.04 29278 36689
300 0.00 29850 37406
inf. -1.85 32590 40840

Table 7.1: Reference OR1200 synthesis results

Clock (MHz) Slack (ns) Area (µm2) Area (Cells) Overhead

50 10.45 31112 38988 6.19%
100 0.64 31124 39003 6.30%
300 0.00 32442 40654 8.68%
inf. -3.13 35582 44589 9.17%

Table 7.2: Modified OR1200 synthesis results

7.4 Performance evaluation

To evaluate the performance of the on-chip obfuscator, a suitable test must be de-
signed, in order to, not only estimate the metrics of the proposed method, but also
be fair to both the attacker and the system designer. A naive approach could be mim-
icking Trojan insertion: design a simple Trojan and check if a malware program is able
to activate it with the obfuscator active. This technique, while close to a real life attack
scenario, is highly dependent on knowledge on the on-chip obfuscator capabilities,
since it requires designing a trigger beforehand, and could lead to biased results either
in favor of the obfuscator designer or the attacker.

To avoid designing a trigger a different method is proposed: a benchmark program
is traced in order to obtain all the instructions executed on an unmodified OR1200, the
reference processor. Within these instructions all the sequences that could be used as
trigger, called candidates, are selected for analysis. These sequences are then searched
within the instruction trace of the obfuscated program: if a trigger sequence is no
longer present the obfuscation is successful. This method allows to simultaneously
check many triggers at the same time, without designing an actual Trojan and taking
into account real rare sequences of instructions.

The test procedure is thus divided into four separate steps:
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1. Executing the benchmark program on the reference system

2. Finding trigger candidates in the reference instruction trace

3. Execute the benchmark program on the test system

4. Evaluate performance

Trigger candidates are sequences of operation within the reference instruction trace
that meet the characteristics of a potential trigger sequence, as described in section
4.4.1: they are expected to be short, to reduce the complexity of the trigger circuit,
and rare to avoid accidental activation. Are thus considered HT sequence candidates,
the instruction sequences between 3 and 10 instructions long, that have less than 10
instances within the original program trace. Only the lower bound is critical in the ex-
perimental result, since it has been demonstrated that, with a probabilistic approach,
a longer substitution are easier to eliminate. Maximum instance count is irrelevant
for similar reasons, but serves the purpose of selecting realistic candidates to better
simulate a real-life attack scenario.

Obfuscation performance is experimentally evaluated in terms of in terms of:

• Trojan survival rate

• Instruction count ratio

• Run-time ratio

The Survival rate is the ratio between the number of candidates that "survived"
the obfuscation process and the total number of candidates in the reference program.
Instruction count ratio (ICR) measures the increase in the number of executed instruc-
tions produced by the obfuscator, and is measured as the ratio between the instruction
count in an obfuscated program and the reference program. Finally, Run-time ratio
(RTR) is identical to ICR, but instead of considering instruction count, evaluates clock
cycle to estimate the execution time increase.

All these three parameters are studied in function of the Substitution Frequency ( f ),
i.e., the number of substitutions performed per executed instructions.

In the following sections are reported the experimental result for the obfuscator
performance evaluation. All the test have been executed on Verilator using the "small"
version of the selected Mibench program, except basicmath in which the custom "tiny"
configuration was used.

7.4.1 Reference values

Table 7.3 reports the reference results for the selected Mibench programs, in terms of
number of candidates found, executed instructions and run-time. Note that candidate
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Test program Candidates Instr. count Run-time

basicmath 26,191 5,701,116 13,448,938
bitcount 15,651 5,852,886 8,295,385
qsort 15,471 23,134,860 62,864,341
susan-corners 27,070 3,510,480 7,730,449
susan-edges 28,426 6,206,010 13,233,602
susan-smooth 25,070 32,954,485 64,001,718

Table 7.3: Mibench reference values

Test program Branch ALU System Flag Memory

basicmath 14.86% 59.04% 2.56% 11.91% 11.61%
bitcount 16.97% 57.56% 3.64% 15.02% 6.78%
qsort 16.78% 33.49% 1.96% 12.89% 34.86%
susan-corners 13.14% 50.25% 3.34% 10.07% 23.17%
susan-edges 12.67% 53.13% 1.95% 10.56% 21.66%
susan-smooth 9.98% 62.63% 0.85% 9.28% 17.24%

Table 7.4: Mibench instruction profile

and instruction count appear to be uncorrelated: very long programs, such as qsort
appear to have fewer candidates that shorter program like bitcount. While the overall
number of instruction sequences in a program trace clearly increases with the trace
length, in order to be a candidate, a sequence, must also be rare. This means that
the number of candidates is highly dependent on the program structure, not on the
program trace length.

Candidate distribution per sequence length in each program is shown in figure 7.2:
as expected the number of candidates found increases with the sequence length. A
longer sequence is in fact more rare, and thus more likely to be a candidate.

Finally, table 7.4 reports the percentage of instruction executed per type of each
benchmark program.

7.4.2 Survival rate

As shown in figure 7.3, survival rate declines as substitution frequency f increases,
with a consistent behavior among the different test programs. It is possible to notice
that the trend is not strictly decreasing: this is because we consider a trigger elimi-
nated only when all its instances are removed from the program trace. However, a
trigger sequence can be reintroduced accidentally by the obfuscation pattern, only to
be removed at higher values of f .

73



7 – Experimental results

3 4 5 6 7 8 9 10
0

0.5

1

1.5
·104

Sequence length

C
an

d
id

at
es

basicmath

3 4 5 6 7 8 9
0

0.5

1

1.5
·104

Sequence length

bitcount

3 4 5 6 7 8 9 10
0

0.5

1

1.5
·104

Sequence length

C
an

d
id

at
es

qsort

3 4 5 6 7 8 9
0

0.5

1

1.5
·104

Sequence length

susan-corners

3 4 5 6 7 8 9 10
0

0.5

1

1.5
·104

Sequence length

C
an

d
id

at
es

susan-edges

3 4 5 6 7 8 9
0

0.5

1

1.5
·104

Sequence length

susan-smooth

Figure 7.2: Candidates distribution with respect to sequence length

The average survival rate among all programs is presented in figure 7.4: notice that
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Figure 7.3: Survival rate in function of substitution frequency
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Figure 7.4: Average survival rate in function of substitution frequency

this pattern, while not strictly exponential, is somehow reminiscent of the one pro-
posed in the efficiency model: the main difference between the twos is that, while the
predicted trend was computed by evaluating triggers of a given substitution length in-
dependently, the experimental one takes into account multiple length concurrently.

Figure 7.5 reports the distribution of surviving candidates, classified by their length,
at different values of substitution frequency in the program susan-small. As expected
from the theoretical model, it can be clearly seen that longer candidates are eliminated
at lower substitution frequencies, while shorter ones are more resilient.
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Figure 7.5: Survivor distribution at different substitution frequency values
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Survivors

In all six benchmarks, substitution frequency of 100% instruction didn’t achieve the
complete elimination of all candidates: at the maximum value of f between 9 to 15
trigger sequences, with length between 3 and 4 instructions, were still present in the
obfuscated code. In most cases, while these sequences appeared less than 10 times
in the reference program trace, due to their selection as candidates, after obfusca-
tion their number is increased up to hundreds, or in some cases even thousands of
instances. This is phenomenon is caused by the obfuscation pattern itself: while some
sequence may be very unusual in the reference program, they can be extremely fre-
quent in the resulting substitution pattern. However, this instance explosion doesn’t
represent an issue, since if the instruction sequence becomes extremely frequent with
the obfuscator active, it can’t be used as trigger sequence.

Test program IBO IAO Sequence

basicmath 10 10 l.bf l.mul l.movhi
3 4 l.sfgts l.bf l.xor
6 2 l.movhi l.sfles l.bf

bitcount 7 7 l.bf l.mul l.mul
7 7 l.bf l.mul l.mul l.mul

qsort 7 7 l.bf l.mul l.mul
7 7 l.bf l.mul l.mul l.mul

susan-corners 1 1 l.jal l.mul l.sw
susan-edges 1 1 l.jal l.mul l.sw
susan-smooth 2 2 l.jal l.mul l.sw

Table 7.5: List of critical survivors

To raise concerns are instead the sequences that are still present after obfuscation,
whose number of instances didn’t change or only changed slightly: these are the for-
saken blind spots of the obfuscator. To highlight these particular class of sequences,
here called Critical survivors, the survivors from each program were compared remov-
ing the one whose value exceeded the maximum instances to be considered a candi-
date in at least one of the programs after obfuscation. The results are reported in table
7.5, showing the number of Instances before obfuscation and Instances after obfusca-
tion. It is clear, inspecting these sequences, that the instruction l.mul has no substitu-
tion in the current iteration of the substitution library: by adding a dummy substitution
for this instruction all the related sequences are destroyed. Remaining sequences can
be similarly removed by tuning the substitution table.
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Figure 7.6: Instruction count in function of the substitution frequency

7.4.3 Instruction count ratio

Figure 7.6 shows that ICR grows linearly with respect to f , with a similar behavior in
all Mibench programs. The angular coefficient of this linear trend varies from peaks of
2.78, for bitcount, and lows of 2.02, for susan-smooth. The average value for all trends
is 2.33, a result surprisingly close to the average substitution length (2.31).

7.4.4 Run-time ratio
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Figure 7.7: Run-time in function of the substitution frequency
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Test program Clock per Instr.

basicmath 2.35
bitcount 1.41
qsort 2.71
susan-corners 2.20
susan-edges 2.13
susan-smooth 1.94

Table 7.6: Mibench average clock cycles per instruction

Similarly to ICR, RTR increases linearly with f (figure 7.7). This time, while the
trend is consistent and comparable for most benchmark program, bitcount has a very
anomalous behavior.

Run-time is, in fact, expected to be highly dependent on the program instruction
profile: if a program is composed by instructions with a high substitution length the
run-time is heavily affected. Moreover, since instruction are dispatched during IF stalls,
caching affects greatly run-time. While no information on instruction caching has
been gathered in the proposed experiments, it can still be estimated with the ratio be-
tween clock cycles and instruction count. This parameter, reported in table 7.6, is only
qualitative since it depends on multiple factors, such as data caching and the type of
instructions executed.

Regardless of the qualitative nature of this estimation, run-time appears to be highly
correlated to this value: programs with poor cache performance, such as basicmath,
have a smaller run-time overhead than programs with better caching such as bitcount.
Moreover, while the instruction profile of bitcount doesn’t seem pretty anomalous, this
particular program performs a large amount of bitwise operations, that, by change,
have unusual long substitution length with respect to the average.

7.4.5 Optimal substitution frequency

Test program Survival rate ICR RTR

basicmath 0.135 1.725 1.236
bitcount 0.161 1.881 1.578
qsort 0.118 1.557 1.179
susan-corners 0.134 1.638 1.245
susan-edges 0.124 1.649 1.254
susan-smooth 0,128 1,503 1.239

Table 7.7: Performance result for 50% obfuscation
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Test program Survival rate ICR RTR

basicmath 0.573 ·10−3 2.474 1.443
bitcount 0.575 ·10−3 2.788 2.098
qsort 0.582 ·10−3 2.130 1.317
susan-corners 0.406 ·10−3 2.294 1.461
susan-edges 0.422 ·10−3 2.318 1.487
susan-smooth 0.480 ·10−3 2.021 1.446

Table 7.8: Performance result for 100% obfuscation

Defining an optimal substitution frequency that is valid for all possible application
of the modified processor is very difficult: substitution frequency affects both perfor-
mance and run-time overhead, and thus its value is a trade-off between security and
performance.

From the experimental data gathered, the substitution frequency of 50%, could rep-
resent a good trade-off: from what can be seen from picture 7.4, the average survival
rate decreases steeply for the first half of the trend, then slowly converges to 0. This,
combined with the consistent linear increase in run-time, means that increasing the
substitution frequency after this value won’t give the same improvement in efficiency
than before, but would give the same increase in run-time.

Detailed results for substitution frequency of 50% and 100% are reported respec-
tively in table 7.7 and 7.8: at a substitution frequency of 50%, the average survival rate
is of 12.8% with a run-time increase of 23% while obfuscating all the instructions exe-
cuted, the survival rate drops to almost zero and the run-time increases to 44%.

80



Chapter 8

Conclusion

8.1 Summary

This thesis investigated the use of an on-chip obfuscation technique to prevent the ac-
tivation trough software of hardware Trojans injected in embedded processors. The
proposed technique uses a simple, yet effective, rule based obfuscation pattern that
substitutes single instructions with an equivalent sequence of operations before exe-
cution. Such pattern has been carefully studied, developing techniques to create and
test substitutions as well as estimating their efficiency in obfuscating the code. A broad
set of substitutions for the ORBIS32 instruction set was developed and verified using
such techniques.

A prototype on-chip obfuscator was developed for the OR1200 open-source pro-
cessor, to test the proposed solution. This modified processor employs a six-stage
pipeline to obfuscate instructions after they are fetched from memory, before being
decoded and consequently executed. The resulting design, while still lacking some
features, has proven to be very reliable and requires minimum alteration to the origi-
nal processor to be inserted.

Experimental results on a set of benchmark programs present a promising indica-
tion that the proposed obfuscation method could represent a viable way to mitigate
the activation of injected HTs.

8.2 Limitations

The proposed obfuscation technique relies on a probabilistic approach to eliminate
trigger sequences, and is thus far from being absolutely reliable: the attacker could
fortuitously design a sequence that is unmodified by the obfuscator, or the trigger se-
quence could be generated by chance in the obfuscated code. However, while the at-
tacker could be lucky in one instance, the configurable nature of the obfuscator means
that the attacker cannot reliably target all manufactured processors.
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In real-life scenarios, the attacker could exploit blind spots in the obfuscation pat-
tern, or even use predictable obfuscation results, to activate a Trojan at will: the sub-
stitution library could however be tweaked to eliminate similar threats. Another lim-
itation is imposed by the substitution library: designing a substitution for a reference
instruction is a challenging endeavor, since absolute equivalence must be guaranteed.
Moreover, due to their highly specialized nature, True Substitutions are hardly reusable
in architectures other than the one for which they were created. The substitution de-
sign process, is time-consuming and it is tightly bounded to the target CPU architec-
ture. New strategies should be developed to aid substitution design, and their execu-
tion on the processor.

Moreover, the overhead introduced by the obfuscator could be excessive in high-
performance applications, especially at high substitution frequency, or if many LUTs
are implemented. While the latter choice depends on the processor designer, the sub-
stitution frequency can be configured by the final user. Alterations to the current ob-
fuscator architecture, such as a two stage obfuscation cycle, could potentially reduce
the obfuscation latency, by pipelining the process: instruction indexing and pointer ta-
ble read could be performed in the first clock cycle, while library read and instruction
generation in the second.

It is worth to notice that the obfuscator is not immune to hardware piracy, and as
such could still be compromised during manufacturing. However, if the attacker wants
to activate a trigger via software in any stage other than the ID, he/she must always
compromise the obfuscator. Post manufacturing testing should thus concentrate on
verifying the trustworthiness of the ID and IOB stages alone. This is more convenient
than verifying the trustiness of the entire processor, partially due to the simplicity of
the two stages. Safety critical elements of the architecture, such as the obfuscator logic,
could be designed with Design for Hardware Trust paradigm to aid their verification.
Finally, in the proposed framework we considered a trigger eliminated if its code was
no longer present in the obfuscated program trace. However, this analysis purpose-
fully omitted to take into account that the obfuscated code could still produce internal
signals similar, if not identical to the ones used to activate the Trojan. A possible future
work should concentrate on assessing a substitution strength in these terms, as well as
tweaking substitutions to be more effective in generating different signals values, data
transaction and processors states.

8.3 More than Trojans

While writing this thesis two major papers were published that disclosed a whole class
of architectural vulnerabilities affecting most modern processors: these papers are
known as Meltdown[19] and Spectre[20]. In both cases out-of-order execution is used
to leak the sensitive data and it is later retrieved using side-channel attacks. These vul-
nerabilities quickly reached mainstream audiences outside the academic world due to
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the incredible number of processor potentially vulnerable: as of 2018, almost every
computer system is affected, including desktops, laptops, and mobile devices. Specifi-
cally, Spectre has been shown to work on Intel, AMD, ARM-based, and IBM processors.

While the existence of similar vulnerabilities has never been questioned, the dis-
covery of Meltdown and Spectre has stirred the research community and the public
interest towards them. These exploits allow to carry out an attack very similar to the
one described in the threat model used for this research, without compromising the
underlying hardware, and as such this thesis wouldn’t be complete without addressing
these issues. Architectural attack patterns are attacks that exploit flaws in the architec-
tural design of the system, such as weaknesses in protocols, authentication strategies,
and system modularization. Exploiting intrinsic architectural vulnerabilities has many
advantages with respect to HT injection. The attack doesn’t require compromising the
hardware, and as such can be carried at any point in the life time of the device, allowing
for an extended time window for the attack to be devised and performed. While im-
plementing similar attacks requires an extensive knowledge of the target architecture
and hardware, in most cases minimal if no reverse engineering is required to imple-
ment them, especially if compared with Trojans, where the entire IC netlist has to be
analyzed by the attacker. Despite Meltdown and Spectre target high-end processors,
similar architectural exploits can used to attack embedded systems. This final section
of the thesis will quickly dwell into these type of attacks.

8.3.1 Fault injection

Fault injection attacks are hardware attacks that induce errors in the target to leak con-
fidential information either directly or trough side-channel. These type of attacks can
be divided into passive, where the attack is performed without tampering by exploiting
natural occurring errors, semi-active, where temperature, voltage or clock are manipu-
lated to produce errors, and active, where the victim package is removed and light and
lasers are used to produce errors. While many types of attacks can be implemented
using fault injection, an interesting example is the RSA attack with CRT (Chinese Re-
mainder Theorem), also known as the Bellcore attack[21]. In this type of attacks the
attacker injects faults in the signature computation obtaining one or many faulty sig-
natures, from which the private key can be retrieved.

Fault attacks typically require physical access to the device under attack to be per-
formed and thus, at first glance, seem entirely relegated to the hardware world. How-
ever, they have been carried out via software using the Rowhammer attack[22]. Rowham-
mer is an unintended side effect in dynamic random-access memory (DRAM), where re-
peated accesses to a given memory line produces electrical interaction with the neigh-
boring ones. This type of attack allows to indirectly read and manipulate memory oth-
erwise inaccessible, with potentially catastrophic effects. By repeatedly accessing one
or more memory rows (aggressor rows) via software, the attacker can produce a bit flip
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in a neighboring row at will. This attack mechanism is counteracted by the memory
refresh cycle, and as such, performing a Rowhammer attack requires fast access to the
DRAM, bypassing the memory hierarchy, and knowledge on the physical topology of
the memory used.

8.3.2 Side-channel attacks

Side-channel attacks are attacks that use information gained by observing the imple-
mentation, rather then rather than weaknesses in the implemented algorithm itself.
The most commons side-channels are timing and power. As in the case of fault injec-
tion these type of attacks are most commonly implemented at the physical level, but
they can be also implemented and performed successfully via software.

Cache attack

A computer architecture design aims at optimizing processing speed and, as such, the
execution time and memory access patterns of a program are strongly correlated to
the data being processed. When performing attacks against well known algorithms,
such as cryptographic algorithms, measuring these parameter can be used to indirectly
determine the data being processes.

Since cache is strongly related to both execution and processing time, and lacks
any access restrictions, it is the perfect candidate for this type of attack. In fact, a mal-
ware program can monitor it is own cache access times to determine which data was
modified by the victim program (access attack), or by studying the victim hit/miss pat-
tern (timing attack). These attacks have been proven successful against RSA, AES and
OpenSSL, allowing the attacker to obtain sensitive data knowing only the algorithm im-
plementation and the state of the cache before its execution. Bernstein in [23], demon-
strates a complete AES key recovery using this technique.

Branch prediction attack

Similarly to cache, a Branch Prediction Unit content is strongly related to execution,
thus a skilled attacker can obtain precious informations about the data being pro-
cessed by a victim program, if its execution flow of highly dependent on the secret data.
In [24] an branch prediction attack capable of breaking RSA encryption was presented:
while the proposed approach required a CPU capable of simultaneous multi-threading
for the attack to be performed, the authors are positive that it is only a matter of time
before similar vulnerabilities can be exploited on other architectures.
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8.4 Final notes

After the design and testing of the obfuscator, its limitations remain mostly unchanged
with respect to the ones highlighted in the preliminary analysis: on-board obfusca-
tion is a viable technique to prevent hardware Trojan activation, at least for the pro-
posed threat model, however the drawback introduced by the additional hardware
could be unsuitable for most applications. This combined with other concerns such
as the scope of the chosen threat model and the existence of other effective attacks
other then HT injection make the perspective of using such device in a commercial
processor very unrealistic: even if the application of a processor could allow the per-
formance drop caused by the obfuscator, such device can only protect from a small
class of Trojans, and thus may not be considered worth the effort. While activating a
trigger using instruction sequences is an interesting approach, there are many other
ways to activate a Trojan.

Side-channel based Trojan detection techniques have their fair share of disadvan-
tages, but they can potentially highlight any type of alterations to an IC: any Trojan
design, no matter how unusual or ingenious can be detected by these techniques. On
the other hand, architecture based solution can only defend the processor from known
threats, drastically limiting their scope and effectiveness. In conclusion, side-channel
analysis is, and will be for a long time, the best resource against hardware piracy.

Lately the existence itself of Hardware Trojans have been put into question: while
multiple news sources claim that some unexpected hardware failures or data-leakages
are caused by hardware-piracy attacks, no definitive evidence exists to back these claims[25].
Injecting a hardware Trojan is difficult, time-consuming and expensive: while hard-
ware Trojans represent a real threat to the current IC market, they have never been
spotted in the wild.
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Appendix A

ORBIS32 Instruction set

Instruction Type Index Description

l.add A 64 Addition
l.addc A 65 Addition with carry
l.addi I 27 Immediate Addition
l.addic I 28 Immediate Addition with carry
l.and A 67 Bitwise and
l.andi I 29 Immediate bitwise and
l.bf B 2 Branch if flag is set
l.bnf B 3 Branch if flag is not set
l.div A 79 Division signed
l.divu A 80 Division unsigned
l.extbs A 60 Signed byte extend
l.extbz A 63 Zero byte extend
l.exths A 58 Signed half-word extend
l.exthz A 62 Zero half-word extend
l.extws A 59 Signed half-word extend
l.extwz A 61 Zero half-word extend
l.ff1 A 71 Find first 1
l.fl1 A 76 Find last 1
l.j B 0 Jump
l.jal B 1 Jump and link
l.jalr M 13 Register jump and link
l.jr M 14 Register jump
l.lbs I 24 Load byte signed
l.lbz I 23 Load byte unsigned
l.lhs I 26 Load half-word signed
l.lhz I 25 Load half-word unsigned
l.lws I 22 Load word signed
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Instruction Type Index Description

l.lwz I 21 Load word unsigned
l.mac N 49 Multiply and accumulate
l.maci N 15 Immediate multiply and accumulate
l.macrc N 6 MAC read and clear
l.mfspr I 33 Move from SPR
l.movhi I 5 Move to m.s. half-word
l.msb N 51 Multiply and subtract
l.mtspr M 48 Move to SPR
l.mul A 77 Multiply signed
l.muli I 32 Immediate multiply signed
l.mulu A 81 Multiply unsigned
l.nop S 4 No operation
l.or A 68 Bitwise or
l.ori I 30 Immediate bitwise or
l.rfe I 12 Return from exception
l.ror A 75 Rotate
l.rori I 37 Immediate rotate
l.sb M 56 Store byte
l.sfeq F 83 Set flag if equal
l.sfeqi FI 38 Set flag if equal immediate
l.sfges F 90 Set flag if greater/equal signed
l.sfgesi FI 45 Set flag if greater/equal signed immediate
l.sfgeu F 86 Set flag if greater/equal unsigned
l.sfgeui FI 41 Set flag if greater/equal unsigned immediate
l.sfgts F 89 Set flag if greater signed
l.sfgtsi FI 44 Set flag if greater signed immediate
l.sfgtu F 85 Set flag if greater unsigned
l.sfgtui FI 40 Set flag if greater unsigned immediate
l.sfles F 92 Set flag if lower/equal signed
l.sflesi FI 47 Set flag if lower/equal signed immediate
l.sfleu F 88 Set flag if lower/equal unsigned
l.sfleui FI 43 Set flag if lower/equal unsigned immediate
l.sflts F 91 Set flag if lower signed
l.sfltsi FI 46 Set flag if lower signed immediate
l.sfltu F 87 Set flag if lower unsigned
l.sfltui FI 42 Set flag if lower unsigned immediate
l.sfne F 84 Set flag if not equal
l.sfnei FI 39 Set flag if not equal immediate
l.sh M 57 Store half-word
l.sll A 72 Shift left logically
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Instruction Type Index Description

l.slli I 34 Immediate shift left logically
l.sra A 74 Shift right arithmetically
l.srai I 36 Immediate shift right arithmetically
l.srl A 73 Shift right logically
l.srli I 35 Immediate shift right logically
l.sub A 66 Subtract

l.sw M 55 Store word
l.sys S 7 System call
l.trap S 8 Trap
l.xor A 69 Bitwise xor
l.xori I 31 Immediate bitwise xor

89



90



Appendix B

Substitution library

Reference Jacc. SMD Substitution
l.add rD,rA,rB 0.50 0.04 l.addi r0,r0,0

l.addc rD,rA,rB
l.addc rD,rA,rB 0.17 0.002 l.addc rD,rA,rB

l.and r0,r0,r0
l.addi rD,rA,I 0.42 0.04 l.add r0,r0,r0

l.addic rD,rA,I
l.addic rD,rA,I 0.33 0.05 l.xor rD,rA,r0

l.xori r0,r0,I
l.addc rD,rD,r0
l.andi r0,r0,0

l.and rD,rA,rB 0.40 0.07 l.and rD,rA,rB
l.extbs r0,r0

l.andi rD,rA,K 0.53 0.10 l.xori rD,rA,-1
l.ori r0,r0,K
l.xori r0,r0,-1
l.or rD,rD,r0
l.xori rD,rD,-1
l.xor r0,r0,r0

l.extbs rD,rA 0.50 0.07 l.slli rD,rA,24
l.srai rD,rD,24

l.extbz rD,rA 0.50 0.07 l.slli rD,rA,24
l.srli rD,rD,24

l.exths rD,rA 0.50 0.07 l.slli rD,rA,16
l.srai rD,rD,16

l.exthz rD,rA 0.83 0.19 l.andi rD,rA,65535
l.extws rD,rA 0.40 0.07 l.xori rD,rA,0
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Reference Jacc. SMD Substitution
l.extwz rD,rA 0.40 0.07 l.xori rD,rA,0
l.ff1 rD,rA 0.36 0.09 l.ff1 rD,rA

l.movhi r0,0
l.fl1 rD,rA 0.36 0.09 l.fl1 rD,rA

l.movhi r0,0
l.lbs rD,I(rA) 0.51 0.17 l.lbz rD,I(rA)

l.extbs rD,rD
l.lbz rD,I(rA) 0.48 0.13 l.lbs rD,I(rA)

l.extbz rD,rD
l.lhs rD,I(rA) 0.51 0.17 l.lhz rD,I(rA)

l.exths rD,rD
l.lhz rD,I(rA) 0.36 0.09 l.lhz rD,I(rA)

l.exths rD,rD
l.lws rD,I(rA) 0.20 0.07 l.lwz rD,I(rA)
l.lwz rD,I(rA) 0.20 0.07 l.lws rD,I(rA)
l.mfspr rD,rA,K 0.43 0.11 l.mfspr rD,rA,K

l.andi r0,r0,0
l.movhi rD,K 0.30 0.06 l.movhi rD,K

l.xor r0,r0,r0
l.mtspr rA,rB,K 0.50 0.11 l.mtspr rA,rB,K

l.andi r0,r0,0
l.nop K 0.67 0.12 l.movhi r0,0

l.nop K
l.andi r0,r0,0

l.or rD,rA,rB 0.40 0.07 l.or rD,rA,rB
l.andi r0,r0,0

l.ori rD,rA,K 0.40 0.06 l.xori rD,rA,-1
l.xori r0,r0,K
l.exthz r0,r0
l.xori r0,r0,-1
l.and rD,rD,r0
l.xori rD,rD,-1
l.xor r0, r0, r0

l.ror rD,rA,rB 0.40 0.07 l.ror rD,rA,rB
l.andi r0,r0,0
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Reference Jacc. SMD Substitution
l.rori rD,rA,L 0.53 0.09 l.xor rD,rA,r0

l.xori r0,r0,L
l.xori r0,r0,31
l.addi r0,r0,33
l.sll r0,rD,r0
l.srli rD,rD,L
l.or rD,rD,r0
l.xor r0,r0,r0

l.sb I(rA),rB 0.50 0.17 l.sb I(rA),rB
l.movhi r0,0

l.sfeq rA,rB 0.50 0.11 l.sfeq rA,rB
l.ff1 r0,r0

l.sfeqi rA,I 0.77 0.12 l.xori r0,r0,I
l.sfeq rA,r0
l.xor r0,r0,r0

l.sfges rA,rB 0.40 0.07 l.sfles rB,rA
l.sfgesi rA,I 0.69 0.20 l.xori r0,r0,I

l.sfges rA,r0
l.xor r0,r0,r0

l.sfgeu rA,rB 0.50 0.07 l.sfleu rB,rA
l.sfgeui rA,I 0.69 0.16 l.ori r0,r0,I

l.sfgeu rA,r0
l.xor r0,r0,r0

l.sfgts rA,rB 0.50 0.07 l.sflts rB,rA
l.sfgtsi rA,I 0.70 0.17 l.xori r0,r0,I

l.sfgts rA,r0
l.xor r0,r0,r0

l.sfgtu rA,rB 0.67 0.07 l.sfltu rB,rA
l.sfgtui rA,I 0.71 0.14 l.ori r0,r0,I

l.sfgtu rA,r0
l.xor r0,r0,r0

l.sfles rA,rB 0.40 0.07 l.sfges rB,rA
l.sflesi rA,I 0.69 0.20 l.xori r0,r0,I

l.sfles rA,r0
l.xor r0,r0,r0

l.sfleu rA,rB 0.50 0.07 l.sfgeu rB,rA
l.sfleui rA,I 0.69 0.16 l.ori r0,r0,I

l.sfleu rA,r0
l.xor r0,r0,r0

l.sflts rA,rB 0.50 0.07 l.sfgts rB,rA
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Reference Jacc. SMD Substitution
l.sfltsi rA,I 0.70 0.17 l.xori r0,r0,I

l.sflts rA,r0
l.xor r0,r0,r0

l.sfltu rA,rB 0.67 0.17 l.sfgtu rB,rA
l.sfltui rA,I 0.71 0.14 l.ori r0,r0,I

l.sfltu rA,r0
l.xor r0,r0,r0

l.sfne rA,rB 0.50 0.13 l.sfne rA,rB
l.ff1 r0,r0

l.sfnei rA,I 0.72 0.15 l.xori r0,r0,I
l.sfne rA,r0
l.xor r0,r0,r0

l.sh I(rA),rB 0.50 0.17 l.sh I(rA),rB
l.andi r0,r0,0

l.sll rD,rA,rB 0.40 0.07 l.sll rD,rA,rB
l.andi r0,r0,0

l.slli rD,rA,L 0.63 0.11 l.xor rD,rA,r0
l.xori r0,r0,I
l.sll rD,rD,r0
l.xor r0,r0,r0

l.sra rD,rA,rB 0.40 0.07 l.sra rD,rA,rB
l.andi r0,r0,0

l.srai rD,rA,L 0.63 0.11 l.xor rD,rA,r0
l.xori r0,r0,I
l.sra rD,rD,r0
l.xor r0,r0,r0

l.srl rD,rA,rB 0.40 0.07 l.srl rD,rA,rB
l.andi r0,r0,0

l.srli rD,rA,L 0.63 0.11 l.xor rD,rA,r0
l.xori r0,r0,I
l.srl rD,rD,r0
l.xor r0,r0,r0

l.sub rD,rA,rB 0.40 0.07 l.sub rD,rA,rB
l.extws r0,r0

l.sb I(rA),rB 0.50 0.17 l.sb I(rA),rB
l.movhi r0,0

l.sh I(rA),rB 0.50 0.20 l.sh I(rA),rB
l.movhi r0,0

l.sw I(rA),rB 0.50 0.07 l.sw I(rA),rB
l.movhi r0,0
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Reference Jacc. SMD Substitution
l.xor rD,rA,rB 0.40 0.07 l.xor rD,rA,rB

l.rori r0,r0,0
l.xori rD,rA,I 0.35 0.06 l.xor rD,rA,r0

l.ori r0,r0,I
l.exths r0,r0
l.xor rD,rD,r0
l.andi r0,r0,0
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