
POLITECNICO DI TORINO

TESI DI LAUREA MAGISTRALE

Memristor Oscillators for Bio-Inspired
Analogue Computing

Autore:
Francesco MARRONE

Relatore:
Prof. Fernando CORINTO

Tesi in adempimento a quanto richiesto per il conseguimento
della Laurea Magistrale in Ingegneria Elettronica

svolta presso

Linear and Nonlinear Circuits & Systems
Dipartimento di Elettronica e Telecomunicazioni

April 3, 2018

https://www.polito.it
https://www.linkedin.com/in/francesco-marrone-10665442/
http://www.det.polito.it/it/personale/scheda/(nominativo)/fernando.corinto
http://lincs.delen.polito.it
http://www.det.polito.it/it/




iii

POLITECNICO DI TORINO

Abstract
Dipartimento di Elettronica e Telecomunicazioni

Laurea Magistrale in Ingegneria Elettronica

Memristor Oscillators for Bio-Inspired Analogue Computing

by Francesco MARRONE

The proposed thesis investigates a novel area of research that makes use of a disrup-
tive technology as the fundamental computation element, the memristor introduced
by Prof. Leon Chua more than forty years ago. The memristor is a non-linear two-
terminal circuit element capable of tuning and retaining its state of resistance (mem-
ristance). Its characteristic equation is defined in terms of charge q (integral of the
current) and flux ϕ (integral of the voltage) as q = f (ϕ) (or ϕ = f (q)). It turns out
that the analogy between memristor and biological synapses is related to the ions’
dynamics in the membrane, and the ionic-electronic flow due to the drift-diffusion
in organic/inorganic semiconductors. The first characterization of memristor device
at the HP Lab in 2008, has spurred research in this area forward and has led to the
creation of other memristor devices. More importantly it seems that the adaptive
properties of memristors are ideal for use in neural network and neuromorphic en-
gineering applications. The ultimate goal of the thesis is to investigate ultra-dense
arrays of memristor oscillators for low-power, highly integrated and portable neu-
romorphic real-time systems. In particular, nonlinear dynamic behavior of memris-
tors is exploited in oscillatory and chaotic circuits. A thorough study is necessary
to understand the rich complex nonlinear phenomena emerging in memristor cir-
cuits. The systematic description (mainly based on the network theory technique
referred to as the tableau method) leads to large systems of nonlinear DAEs, whose
solution requires efficient numerical simulation tools. In the thesis a novel system-
atic methodology for the analysis of nonlinear circuits containing memristors is ex-
ploited. The main advantage of the proposed method is that it enables to describe
memristor–based circuits by means of Initial Values Problems for a reduced number
of ODEs compared to current approaches available. This permits to simplify the in-
vestigation of nonlinear dynamic behavior and bifurcations without parameters in
memristor circuits and to make clear the influence of initial conditions. The presence
of suitable pulses in the circuits permits to tune the periodic and chaotic nonlinear
dynamic behavior. This may permit to apply memristor technological innovation
towards analogue computing, establishing unconventional associative memristive
memories, but also novel computational formalisms. An architecture embedding a
Hopfield neural network is proposed to function as content addressable memory.
The obtained chaotic nonlinear dynamic behavior is exploited in order to let the NN
escape local minima and converge towards global minimum of its associated energy
function. The results suggest that chaos can enable an enhancement in successful
reconstruction rate if conveniently introduced in the network. This confirms the lat-
est research works available in literature extending them to a classical problem as
corrupted data reconstruction.
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Chapter 1

Introduction

1.1 Introduction to dynamical systems

Dynamical systems analysis is about the study of the evolution in time of a set of
measurable quantities that describe a system. The first step is to find that set for
the system under study and find a mathematical description of their temporal be-
haviour. At the end of the first step a set of differential equations (ODEs) describing
the system is obtained. In the following only systems described by ordinary differ-
ential equations (derivatives only in the time variable) are treated. The main goal is
not to find exact analytical solutions of the ODEs (which in most cases do not exist),
but to have insights on the possible long term behaviours.

1.1.1 Dynamical systems definitions

In the following the fundamental definitions regarding dynamical systems used in
the whole manuscript are reported. A vector X = (x1, x2, ..., xn)T ∈ Rn, called the
state vector is considered to be the measurable set of quantities that characterize the
system.

State equation

The set of first order ODEs that describe the evolution in time of the systems is called
state equation. If higher order ODEs appear during the modeling of the system, the
model can always be reformulated as first order introducing addition dimentions
(state variables in X).

The state equation can be written in explicit form as 1.1.
dx1
dt = f1(x1, x2, ..., xn, t)

dx2
dt = f2(x1, x2, ..., xn, t)

...
dxn
dt = fn(x1, x2, ..., xn, t)

(1.1)

The SE can also be written in vectorial form as 1.2.

dX
dt

= F(X, t) (1.2)

Where F : Rn+1 → Rn is a vector field defined as.

F(X, t) = ( f1(X, t), f2(X, t), ..., fn(X, t))T (1.3)
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Considering the initial value problem 1.4 under the assumption that each fi in F
is differentiable in an open set Ω ⊂ Rn and x0 ∈ Ω.{

dX
dt = F(X, t)

X(0) = x0
(1.4)

The Cauchy-Lipschitz theorem asserts that the problem has an unique solution x(t)
defined on a time interval which may be either finite or infinite. This theorem is
the mathematical formalization of the practical concept of determinism which states
that given an initial condition only one future is possible.

The system in 1.2 is called non-autonomous, if dX
dt = F(X) the system called

autonomous. The dependency on time of the field F can be removed by increasing
by one the dimension of the state vector X obtaining a system described by the state

equation dX
′

dt = F
′
(X

′
).

Phase space

The space Rn, which X belongs to, is said the phase space. n is obviously the sys-
tem’s number of degrees of freedom. The solution of IVP 1.4 x(t) can be numerically
found by integration, and the continuous of values it assumes in the phase space for
each instant t of definition is called the system’s trajectory.

FIGURE 1.1: A trajectory in the phase space for a system with n = 3
degrees of freedom [1].

As shown in figure 1.1 the vector field F is always tangent to the trajectory. The
visualizaion of the phase space is possible, obviously, for 1 ≤ n ≤ 3; when n ≥ 4
only projection of trajectories on lower dimension space is possible. Trajectories
starting from different x0 do never intersect. This constraint is a logical consequence
of determinism (Cauchy-Lipschitz theorem), if it was not true then assuming the in-
tersection point as a new initial condition two possible trajectories would be possible
hence two possible futures from the same starting condition. The points in the phase
space where many trajectories seem to intersect actually are convergence point and
only at t = +∞ the intersection takes place. When a trajectory is projected on a
lower dimension space apparent intersections may appear.
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1.1.2 Conservative dynamical systems

A conservative dynamical system is a an ideal system that preserves indefinitely its
energy, from a physical point of view it does neither radiate energy nor increase its
internal entropy. From a dynamical analysis prospective this means that F conserves
volumes, formally written as 1.5.

∇F = 0 (1.5)

1.1.3 Dissipative dynamical systems

The dissipative class of dynamical systems represent real physical phenomena. The
dynamical condition for a system to be dissipative is that on avarage F contracts
volumes. It can be formally written as 1.6.

∇F < 0 (1.6)

1.1.4 Attractors

Attractors are subsets of the phase space where nearby trajectories tend to converge
to during the transient. Asymptotically all the trajectories close enough to the attrac-
tor settle on the attractor. Formally an attractor is a subset of the phase space invari-
ant for F. Attractors are possible only for dissipative systems, under this condition
it follows that the volume of an attractor is 0 (volume contraction for dissipative F).
Conservative systems hold the initial energy associated with their initial conditions
thus they cannot tend to other energy states. The basin of attraction is the set of all
the initial conditions which generate trajectories asymptotically converging to the
attractor.

The following attractors exist:

• Stable fixed point: it is a stationary state x∗ where F(x∗) = 0. It can exist for any
system of dimension n ≥ 1.

• Limit cycle: it is a time dependent solution represented by a closed trajectory in
the phase space. It can exist for any system of dimension n ≥ 2.

• Chaotic attractor: it is a time dependent solution of great interest which will be
discussed later in this chapter. For its existence the system must either be of
dimension n ≥ 3 and F must be a non linear field vector or be a discrete map
(n ≥ 1).

1.1.5 Linear stability analysis

In order to get an idea of what is the behaviour of trajectories nearby a fixed point
x∗ the linearization of the SE near x∗ is the approach to use. Considering a point in
proximity of x∗ : x = x∗ + δx being δx(0) "small", the qualitative behaviour near
x∗ is given by the time evolution of δx(t). All the intermediate steps of Taylor first
order expansion of the vector field F are omitted and only the final formulation is
reported.

Considering JF the jacobian matrix of F then for δx(0) sufficiently small (higher
order contributions negligible) the linear SE 1.7 describes the evolution of δx(t).

dδx
dt

= JF(x∗)δx (1.7)
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The n eigenvalues λ1, λ2, ..., λn ∈ Cn of the jacobian matrix evaluated in x∗ dictate
the behaviour of the trajectories in a neighbourhood of x∗.

The general rule for the stability of a fixed point is:

• If at least one eigeinvalue has real part strictly positive, then the fixed point is
unstable.

• If all the eigeinvalues have real part strictly negative, then the fixed point is
stable.

• If all the eigeinvalues have real part strictly negative but at least one has null
real part, then the fixed point stability cannot be derived from linear analysis.
The nonlinearity determines the stability of the system.

A detailed taxonomy of fixed points based on the stability properties exists which is
omitted here for conciseness’ sake. The specific names of fixed point are introduced
when needed.

1.1.6 Limit cycles

A closed isolated trajectory in the phase space is called limit cycle. A limit cycle can be
either stable or unstable. In the former case trajectories nearby the cycle will spiral
towards it in the latter case those trajectories will spiral away from it. The form,
the amplitude and the frequency of the limit cycle is independent from the initial
conditions.

Closed orbits also exist in conservative systems (correspond to center varieties,
all the eigenvalues lay on the imaginary axis) but they are in infinite number nested
into each other and their amplitudes are determined by initial conditions only. Cen-
ter varieties, by definition, are not limit cycles.

Poincaré map

In order to study the dynamic of systems with dimesnion n > 2 the Poincaré map is
the tool to use. By intersecting the higher dimensional trajectory with a surface (gen-
erally a plane of dimension (n− 1)) a set of intersection points called the Poincaré sec-
tion is obtained. For different orientations of the plane in the phase space different
patterns (sections) are obtained.

The Poincaré map T 1.8 is a continuous map that links a point of the section to
the next one.

Pk+1 = T(Pk) = T(T(Pk−1)) = T2(Pk−1) = Tk+1(P0) (1.8)

The higher dimensional continuous F can be transformed in a discrete function
T that has the same topological properties of the original vector field.

For a limit cycle an appropriate choice of the (n− 1) dimensional plane Λ leads to
a Poincaré section showing an isolate point P∗ = T(P∗). The study of the stability of
the limit cycle reduces to the study of stability of a fixed point for a discrete function.
By considering a point P0 = P∗ + δP0 with δP0 small enough the function T : Λ→ Λ
can be linearized. Considering the jacobian matrix JT ∈ R(n−1)×(n−1) associated
with T, omitting all the steps of the linearization of T, the series of distances δPk
(analogous of δx(t)) can be written as 1.9.

δPk ' JT(P∗)δP0 (1.9)
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The key result for the study of stability of a limit cycle are:

• If all the eigenvalues of JT(P∗) have their module strictly less than 1 the limit
cycle is stable

• If at least one of the eigen values of JT(P∗) is in module greater than 1 the limit
cycle is unstable

• If all the eigenvalues of JT(P∗) are in module less or equal to 1 and at least 1 of
them has module equal to 1 then the linearization of the T map cannot be used
for determining the stability of P∗

1.2 Bifurcation phenomena

The vector field F may depend on parameters (multiplicative factors). The time
evolution of the system may vary by changing those parameters. For a dissipative
system the nature and number of attractor may vary as well by a variation of the
parameters. This phenomenon of changing behaviour is called bifurcation. Only the
simple case of a vector field F depending on 1 parameter only is reported in the
following. The bifurcations reported are local and of codimension 1 meaning that only
a limited parte of the phase space is involved in the change.

Near a bifurcation the system SEs can be reduced to a normal form which is the a
simple generic mathematical expression resulting from a change of variables and a
reduction of dimensionality.

The value of the parameter that causes the bifurcation is called critical value.

1.2.1 Saddle-node bifurcation

A saddle point is a subclass of fixed points always unstable. For example it is obtained
in a n = 2 dimensional system when JF has 2 real non-null distinct roots of opposite
sign.

A node is a subclass of fixed points that may be stable or unstable. For example it
is obtained in a n = 2 dimensional system when JF has 2 real non-null distinct roots
of same sign, if the sign is positive the node is unstable otherwise it is stable.

The saddle-node bifurcation is practically the apparition or anihilation of a pair of
fixed points. Its direct normal form can be written as 1.10.

dx
dt

= µ− x2 (1.10)

In the direct saddle-node bifurcation when the parameter µ < 0 no fixed points
exist while when µ > 0 a stable fixed point and an unstable fixed point do exist. µ =
0 is the critical value. The bifurcation diagram for a direct saddle-node bifurcation is
repoted in figure 1.2.

Its inverse normal form can be written as 1.11.

dx
dt

= µ + x2 (1.11)

In the inverse saddle-node bifurcation when the parameter µ > 0 no fixed points
exist while when µ < 0 a stable fixed point and an unstable fixed point do exist. µ =
0 is the critical value. The bifurcation diagram for an inverse saddle-node bifurcation
is repoted in figure 1.3.
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FIGURE 1.2: Bifurcation diagram for a direct saddle-node bifurcation.

FIGURE 1.3: Bifurcation diagram for an inverse saddle-node bifurca-
tion

1.2.2 Transcritical bifurcation

The transcritical bifurcation is practically the exchange of stability between two fixed
points. Its normal form can be written as 1.12.

dx
dt

= µx− x2 (1.12)

The critical value of the parameter is µ = 0. The bifurcation diagram for a trans-
critical bifurcation is reported in figure 1.4.
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FIGURE 1.4: Bifurcation diagram for a transcritical bifurcation.

1.2.3 Pitchfork bifurcation

The pitchfork bifurcation can be either supercritical or subcritical.

Supercritical bifurcation

The supercritical bifurcation is practically the loss of stability of one fixed point and
the birth of two new stable fixed points for the critical value of the parameter µ. Its
normal form can be written as 1.13.

dx
dt

= µx− x3 (1.13)

The critical value of the parameter is µ = 0. The bifurcation diagram for a super-
critical bifurcation is reported in figure 1.5.

FIGURE 1.5: Bifurcation diagram for a supercritical bifurcation.

Subcritical bifurcation

The subcritical bifurcation is trickier than the supercritical one. Its normal form in-
volves an higher order term term as in 1.14.

dx
dt

= µx + x3 − x5 (1.14)
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For µ < − 1
4 only one stable fixed point x∗0 = 0 exists. For µ ∈ [− 1

4 , 0] x∗0 mantains
its stability and four additional fixed points come into existance two of which are
are stable while the other two are unstable. For µ ≥ 0 only 3 fixed points remain,
x∗0 loses its stability while the two other stable fixed points for µ ∈ [− 1

4 , 0] mantain
their stability. The bifurcation diagram for a supercritical bifurcation is reported in
figure 1.6.

FIGURE 1.6: Bifurcation diagram for a subcritical bifurcation.

As shown in figure 1.6 in the interval µ ∈ [− 1
4 , 0] 3 stable solution coexist (bista-

bility). By tuning µ one way and the other around the values − 1
4 and 0 an hysteresis

cycle will be observed.

1.2.4 Hopf bifurcation

The Hopf bifurcation is practically the emergence of a limit cycle from a stationary
one. The limit cycle is a bidimensional object, thus a bidimensional normal form is
needed in order to describe the bifurcation. This can be done by writing the normal
form using a complex variable z ∈ C as in 1.15.

dz
dt

= (µ + iγ)z− z|z|2 (1.15)

By writing in cartesian coordinates z = x + iy 1.15 can be rewritten as 1.16.{
dx
dt = µx− γy− x(x2 + y2)
dy
dt = µx + γx− y(x2 + y2)

(1.16)

By studying the sign of the eigenvalues of 1.16 it can be found that the point (0, 0)
is stable for µ < 0 and unstable for µ > 0. The behaviour in the neighbourhood of
(0, 0) changes from a stable spiral attractor (both complex eigenvalues with non-null
negative real part) to an unstable spiral (both complex eigenvalues with non-null
positive real part).
In order to understand what happens for µ > 0 it is more convenient to write 1.15
using polar coordinates z = reiθ obtaining 1.17.{

dr
dt = µr− r3

dθ
dt = γ

(1.17)

The modulus equation in 1.17 is a normal form for the pitchfork supercritical bi-
furcation. The solution for µ > 0 is a stable periodic solution with constant modulus
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√
µ and linear phase θ = γt + θ0.

The bifurcation diagram for Hopf bifurcation is reported in 1.7.

FIGURE 1.7: Bifurcation diagram for a Hopf bifurcation [1].

Also a subcritical Hopf bifurcation exists. The results are the same, just for oppo-
site values of µ.

1.3 Introduction to chaos theory

Before expanding the topic of chaotic attractors introduced in 1.1.4 a first distinction
has to be made. Both noisy signals and chaotic signals are irregular by nature but
while a noisy signal is stochastic, a chaotic signal is deterministic. In reality all dy-
namical systems experience influence from the stochastic environment they are in.

1.3.1 Landau’s theory of turbulence

The accepted theory for the description of the emergence of chaos between the 40’s
and the 70’s was a vision based on quasi-periodicity. This phenomenon is caused by
a series of successive Hopf bifurcations which take place by varing a parameter of
the system. Each bifurcation adds more and more new frequencies to the spectrum.
After several subsequent Hopf bifurcations, with a finite resolution spectrum ana-
lyzer, the observed spectrum seems to be continuous. The trajectories of this kind of
systems are on a high-dimensional torus in a high-dimensional phase space.

This theory is based on the idea that chaos can arise only in high dimensional
systems.

1.3.2 Chaos theory

At the end of the 70’s the chaos theory was formulated. In contrast with Landau’s
theory, the chaos theory states that chaos is not due to the high dimensionality of
a system but it is an intrinsic characteristic that can appear even in 3-dimensional
nonlinear deterministic continuous dynamical systems.

A common definition [6] of chaos states that, to classify a dynamical system as
chaotic, it must have the following properties:

• It must be sensitive to initial conditions: an arbitrarily small pertubation of
the current trajectory may lead to very different future behaviour.

• It must be topologically mixing: the system evolves over time so that any
given region of its phase space eventually overlaps with any other given re-
gion.
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• It must have trajectories which are periodic and dense: every point in the
phase space is approached arbitrarily closely by periodic orbits.

Strange attractors

The chaotic trajectories often are confined only in a subset of phase space. Unlike
stable fixed point attractors and limit cycles, the attractors emerging from chaotic
systems, called stange attractors have great complexity. Strange attractor can exist
both in some discrete systems and in continuous dynamical systems.
The former ones have no dimensional constaint for showing chaotic dynamic, the
latter ones on the other hand must be either infinite dimensional or at least three
dimensional nonlinear systems.
The key feature of those attractors is the sensitivity to initial conditions: two initially
close trajectories will diverge one from the other after some time. The distance will
grow exponentially with time.

FIGURE 1.8: An example of strange attractor: the Rössler attractor.[1]

In figure 1.8 an example of Rössler attractor is reported. Strange attractors need
in their topology something that allows divergence of the trajectories, a feature
called stretching. Because of their attractive nature, all the trajectories need to stay in
a bounded part of the phase space, the trajectories must be re-injected in the same
subspace. This feature is called folding.
Due to successive folding and stretching a strange attractor has a foliated structure
whose dimension cannot be an integer. The attractor is a fractal object.

1.3.3 Lyapounov exponents

The divergence between trajectories is quantified using the Lyapounov exponents. The
only way to obtain those is by numeric integration. A possible algorithm for com-
puting the exponents can be summarized as following:

1. Integrate the system with a random initial condition for a time long enough to
extinguish the transient.

2. The end point of the previous integration X(0) becomes the new starting con-
dition for a new trajectory X(t). Considering a point X

′
(0) very close to X(0)

and the trajectory X
′
(t) stemming from it, define δ(t) = ‖X ′

(t) − X(t)‖ the
distance at time t between the two trajectories.

3. Consider the evolution in time δ(t). If it evolves exponentially δ(t) ∼ δ(0)etλ

then λ is the Lyapounov exponent.

Actually there are as many Lyapounov exponents as many dimensions of the sys-
tem. If at least one Lyapounov exponent is positive then the system is unambigously
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chaotic. The behaviour of δ(t) is determined by the largest exponent, called the Lya-
pounov exponent. In order to obtain a good extimation of the exponents the process
must be repeated on several trajectories X

′
(t).

1.3.4 Transition towards chaos

A lot of different ways to transit towards chaos exist. Only two of them are reported
in the following as examples. From a mathematical point of view, the study of a
one-dimensional map can lead to a very good understanding of the mechanism that
underly chaos. Successive bifurcations can lead to chaos when a parameter is tuned.

Period-doubling cascade

Starting from a periodic behaviour of period T, the increase of a parameter leads
to a first bifurcation to a 2T periodic regime. Each successive bifurcation doubles
the period. 2nT periodic regimes are observed with increasing n until a value of the
parameter is reached for which the system becomes chaotic.

The logistic map is the function in 1.18, it can be a Poincaré map obtained from a
dynamics of higher dimension.

xn+1 = f (xn) = rxn(1− xn) (1.18)

Omitting the details, considering r ∈ [0, 4] and xi ∈ [0, 1], the period doubling
transition goes in the following way:

• r ∈ [0, 1]: a unique stable fixed point x0 = 0 exists.

• r ∈ [1, 3]: the fixed point x0 loses its stability but there is a new stable fixed
point x1 = r−1

r .

• r ∈ [3, 3.449]: x1 loses its stability through a pitchfork bifurcation and the sys-
tem oscillates between two values.

• r ∈ [3.449, 3.569946...]: the cascade of period doubling pitchfork bifurcations
takes place by increasing r in this range.

• r ∈ [3.569946..., 4]: either chaotic or periodic behaviour can be observed de-
pending on the value r. Subranges of r exist for which the regime is periodic,
the largest of those is the 3T window.

In figure 1.9 the whole bifurcation diagram is reported. In figure 1.10 the period-
doubling cascade leading to chaos is more evident than figure 1.9. In figure 1.11 the
periodic windows are more evident than in figure 1.10.
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FIGURE 1.9: Entire bifurcation diagram in for r ∈ [0, 4][1]

FIGURE 1.10: Entire bifurcation diagram in for r ∈ [3, 4][1]

FIGURE 1.11: Entire bifurcation diagram in for r ∈ [3.569946..., 4][1]

Intermittency

By tuning the bifurcation parameter bursts of irregular behaviour appear interrupt-
ing the regular oscillation. As the parameter is tuned towards chaos more and more
burst appear until a chaotic regime is reached.
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A type I intermittency can be described by the following function:

xn+1 = f (xn) = x + ε + x2 (1.19)

When the parameter ε changes from a small negative value to a small positive
one a saddle-node bifurcation takes place and one stable fixed point annihilates with
an unstable fixed point. For ε ≥ 0 as the parameter ε tends to 0 more and more bursts
are present.
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Chapter 2

Memristive systems

2.1 Introduction to memristive systems

A memristor is a two terminal non-linear circuit element whose existence was theo-
rized back in 1971 by professor Leon O. Chua. It took its name from the contraction
of words "memory" and "resistor". This is explicative of its main characteristic: the
electrical resistance in a memristor is not constant but depends on the amount of
charge that has flowed through it. The non-volatility property of memristive de-
vices implies that after the power supply is turned off the memory state is preserved
making it an interesting device for storing data.

Only in recent years, after the identification in 2008 of memristive behaviour in
a nanoscale 2-terminal resistance switching system made at HP Labs by Strukov et
al.[15], the research interest of the scientific community has renewed. Even if its ex-
perimental discovery resulted from research in the field of ReRAMs for overcoming
the imminent end of Moore’s Law nonetheless the memristor finds numerous other
applications (e.g. memristor synapses for neuromorphic systems, memristor-based
chaotic circuits).

2.1.1 The original theorization

FIGURE 2.1: The four fundamental electrical variables and their con-
necting 2-terminal devices till 1971.

Given a two-terminal device and given the four fundamental circuit variables (flux-
linkage ϕ, voltage v, charge q and current i) six 2-combinations of those are possible.
Until 1971 only five out of six possible relationships had been explored (figure 2.1).
Two of these were the trivial links between voltage v and flux-linkage ϕ on the one
hand and charge q and current i on the other hand.

dq = idt
dϕ = vdt
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The other three were the CRs for the inductor, the capacitor and the resistor.

Fcapacitor(q, v) = 0

Fresistor(i, v) = 0

Finductor(ϕ, i) = 0

FIGURE 2.2: The four fundamental electrical variables and their con-
necting 2-terminal devices after 1971.

Leon O. Chua in [4] "from the logical as well as axiomatic points of view for the sake of
completeness" postulated the fourth basic two-terminal missing circuit element: the
memristor, completing figure 2.1 as shown in figure 2.2.

Fmemristor(ϕ, q) = 0

If the relation Fmemristor(ϕ, q) = 0 can be expressed as a function q→ ϕ (ϕ→ q) then
the memristor is said charge (flux) controlled. Assuming the differentiability of either
function, by deriving with respect to time we can express the voltage (current) in
terms of current (voltage).
For a charge controlled memristor:

∂ϕ
∂t = ∂ϕ

∂q
∂q
∂t ⇒ v = R(q)i

For a flux controlled memristor:
∂q
∂t = ∂q

∂ϕ
∂ϕ
∂t ⇒ i = G(ϕ)v

R(q(t)) is called memristence because its unit of measurement is Ω, G(ϕ(t)) is called
memductance because is its unit of measurement is S = 1

Ω . Being q(t) =
∫ t
−∞ i(τ)dτ

(ϕ(t) =
∫ t
−∞ v(τ)dτ) then at each instant t = t0 the memristor behaves like an ordi-

nary resistor, while its resistance (conductance) depends on the whole past history
of i(t) (v(t)).
If the function q→ ϕ (or ϕ→ q) is monotonically increasing then the memristor is a
passive 2-terminal device (P(t) = v(t)i(t) ≥ 0∀t).
An important remark: the memristor is intrinsically a non-linear device, if the func-
tion q→ ϕ (or ϕ→ q) was linear then the memristor would become a linear resistor.
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2.1.2 The hallmark of all memristors

As pointed out by its theorizer in recent years [3] pinched hysteresis loops are the hall-
marks of all memristors. This operational definition proves useful when experimentally
checking via bipolar zero-mean input signal (either voltage or current) the memris-
tive behaviour of a device that has no known associated mathematical model.

Being a memristor is not linked to any specific physical implementation. As mat-
ter of fact experimentally pinched-loop i-v curves are found in a large variety of both
biological, electrical and electrochemical systems such as arc lamps, discharge tubes,
sweat ducts and K-Na ion channels. The identification of the memristive behaviour
in a nanoscale 2-terminal device originated the great amount of research work in the
recent years.

In the following, starting from hypothetical ideal CRs for two different memris-
tors, the typical pinched-loop i-v curves are shown.

+

−
v(t)

i(t)

Fmemristor(ϕ, q) = 0

FIGURE 2.3: Pinched-loop i-v curves testing setup.

Considering a charge-controlled memristor with a CR expressible as ϕ = eq, by
deriving both sides of the CR with respect to time we can find the that in i-v domain
the memristor is described by the following DAE.

{
v = eqi
dq
dt = i

(2.1)

Considering a flux-controlled memristor with a CR expressible as q = atan(ϕ),
by deriving both sides of the CR with respect to time we can find the that in i-v do-
main the memristor is described by the following DAE.

{
i = 1

1+ϕ2 v
dϕ
dt = v

(2.2)

Solving the IVPs associated with 2.1 and 2.2 for q(0) = 0 and ϕ(0) = 0 respec-
tively using, for simplicity’s sake, sinusoidal waves inputs (although any bipolar
zero-mean periodic wave would be a valid alternative) the pinched-loop i-v curves
reported in figure 2.4 are obtained.

As numerically shown the fingerprint that distinguishes a memristor from other
non-linear dynamical systems is the pinched i-v loop. Nonetheless the latter gives
no relevant information about the memristor under test because each pinched-loop
i-v curve is just the response to a specific input: different pinched-loops are obtained
changing either the input signal frequency or the amplitude.
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FIGURE 2.4: Pinched-loop v-i curves for a charge-controlled memris-
tor (a1) and a flux-controlled memristor (b1), for different frequency
and amplitude sinusoidal input signals. Flux-charge characteristics

reported respectively in (a2) and (b2).

2.2 Taxonomy of memristive systems

The concept of memristor was already extended to that of memristor system back
in 1976[5]. This extension was made in order to include in the definition devices
whose state is not only defined by the history of charge and flux but also other (even
non-electrical) quantities.

Recently in [7] Corinto et al. presented the subject of memristive systems clas-
sification in a systematic form which will be reported in the following. The novel
terminology should not be thought as new types of memristor but as finer memris-
tor subclasses.

In order to consider the state variables different from port variables ϕ/q/v/i a
vector x = (x1, x2, ..., xn)T ∈ Rn where each xi (in general a non-electrical quantity)
is either a state variable or a nonstate variable depending on port variables and in-
cluded for convenience. The dynamic of x is captured for a charge controlled mem-
ristor by the following (generally non-linear) ODE:

dx
dt = f(q, i, x)

For a flux controlled memristor obviously:

dx
dt = f(ϕ, v, x)

Where f : Rn+2 ⇒ Rn.
In the following subsections the possible subclasses of current controlled memristors
are reported. For voltage controlled memristors duality applies.
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2.2.1 Current controlled extended memristor

A current controlled memristor has i as input variable and v as output variable. In
general it is defined in ϕ− q domain by 2.3.

G(ϕ, q, i, x) = 0
dx
dt = f (q, i, x)
dq
dt = i

(2.3)

If a function g : (q, i, x)→ ϕ (called static characteristic equation) exists then 2.3 can be
rewritten as 2.4. 

ϕ = g(q, i, x)
dx
dt = f (q, i, x)
dq
dt = i

(2.4)

In the i − v domain the pinched-loop constaint holds, hence the current controlled
extended memristor can be describe by 2.5 if and only if 2.6 holds.

v = R(q, i, x)i
dx
dt = f (q, i, x)
dq
dt = i

(2.5)

Where R(q, i, x) = dg
dq is the memristance.

∂g
∂i

di
dt

= −
n

∑
k=1

∂g
∂xk

dxk

dt
(2.6)

n
∑

k=1

∂g
∂xk

dxk
dt is a parastitic voltage source in series with the current controlled ex-

tended memristor while ∂g
∂i

di
dt is the voltage response of a parastitic series inductance.

They can either compensate each other or be present in experimental data [7]. In the
latter case they should be modelled by adding them in series as in 2.7.

v = R(q, i, x)i +
∂g
∂i

di
dt

+
n

∑
k=1

∂g
∂xk

dxk

dt
(2.7)

2.2.2 Current controlled generic memristor

The current controlled extended memristor is said generic memristor if its static
characteristic does not depend on the port current i, in that case (under the assump-
tion that g : (q, x)→ ϕ exists) 2.4 can be written as 2.8.

ϕ = g(q, x)
dx
dt = f (q, i, x)
dq
dt = i

(2.8)
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In the i− v domain 2.8 can be translated as 2.9.
v = R(q, x)i
dx
dt = f (q, i, x)
dq
dt = i

(2.9)

Having ϕ no dependency on i it is obvious that a current controlled generic mem-
ristor has no inductive parastitic effect. It could still have a parastitic series voltage
source.

2.2.3 Current controlled ideal memristor

The current controlled extended memristor is said ideal memristor if its static char-
acteristic does not depend on the port current i and its state vector x is of zero car-
dinality, in that case (under the assumption that g : (q, x) → ϕ exists) 2.4 can be
written just as 2.8.

ϕ = g(q) (2.10)

In the i− v domain 2.10 can be written as 2.11.{
v = R(q)i
dq
dt = i

(2.11)

The ideal memristor has no state vector and no parastitic effects at all. If for each
xi in x exists a function hi : q → xi then the generic memristor reduces to an ideal
memristor as proven in [7]. The existance of all hi(q) is not a necessary condition
for a generic memristor to be ideal, it can also happen if g has no dependence on x
hence the state variable is unobservable.

2.3 Memristor as nonvolatile memory element

The application of memristors as analog nonvolatile memory devices is of extreme
interest because they could mimick inside hardware implemented ANNs the role
that synapses have in biological neural networks. The strength of the connections
they implement can be tuned by appling electrical impulses via CMOS logic. Chang-
ing the width, the frequency or the amplitude of the pulses the memristance can be
finely tuned. High amplitude pulses are usually used while programming the de-
vice and low voltage levels are applied during the memristor operation as analog
circuit component.

Even if those weights correspond to the memristance while the device input is
off, the memristance has no role in characterizing the device’s non volatility prop-
erty. The latter is described (for a generic memristor) only by mean of the state
equation in 2.8. The nonvolatile memory states are linked to the stable equilibrium
points x∗ of the state equation describing the evolution of x.

dx
dt

= f (q, i, x) = h(q, x)i (2.12)

In order to be classified as an analogue non volatile memory a generic memristor
state equation should be factorizable as in 2.12. If this condition is satisfied then
the generic memristor has a continuum of equilibrium states. The ideal memristor
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satisfies by definition this condition. If only a finite set of equilibrium states are
possible then the memristor is just a conventional digital memory.

2.4 Flux-charge analysis method

Comparing 2.11 and 2.10 one can notice that the i − v representation of a memris-
tive device introduces an additional ODE with respect to ϕ − q. This was recently
the starting point for the development, made by Corinto and Forti [9], of a novel
methodology for the analysis of nonlinear circuits containing memristors. The class
of circuits that can be investigated at the moment using this technique is denoted
by LM and is composeb by ideal resistors, ideal inductors, ideal capacitors, ideal
independent voltage sources, ideal independent current sources and ideal flux (or
charge) controlled memristors.

All the circuits in LM start operating at a finite time instant −∞ < t0 < +∞,
for any t ≥ t0 the topology of the circuit remains fixed. Given the voltage and
the current on one device in LM one can define the incremental charge 2.13 and
incremental flux 2.14. These defined incremental quantities reduce to the flux and
charge if and only if t0 → −∞ (e.g. a circuit with a fixed topology). The dynamics
over (−∞, t0) has to be considered to set independent initial conditions of a circuit
switching topology at the finite instant t0.

qk(t; t0) = qk(t)− qk(t0) =
∫ t

t0

ik(τ)dτ (2.13)

ϕk(t; t0) = ϕk(t)− ϕk(t0) =
∫ t

t0

vk(τ)dτ (2.14)

By integrating the Kirchoff Current Law (KCL) over the interval (t0, t) the Kir-
choff Charge Law (KqL) is obtained which states:

the algebraic sum of the incremental charge in a closed surface is zero

By integrating the Kirchoff Voltage Law (KVL) over the interval (t0, t) the Kir-
choff Flux Law (KϕL) is obtained which states:

the algebraic sum of the incremental flux through a closed surface is zero

The use of KqL and KϕL conjugated with the CRs of circuits elements in LM
expressed in terms of incremental charge and incremental flux are the pillars of the
new analysis method.

2.4.1 Constitutive relations for two-terminal elements in ϕ− q domain

In the following the CRs in ϕ− q domain, taken from [9], are reported together with
their equivalent circuit representation.

Ideal indipendent voltage source

By considering the ideal voltage source 2.15 by integrating between t0 and t ≥ t0 its
CR in ϕ− q domain can be written as 2.16. Its equivalent circuit is reported in figure
2.5.

v(t) = e(t) ∀i(t) (2.15)
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ϕ(t; t0) = ϕe(t; t0) =
∫ t

t0

e(τ)dτ ∀qe(t; t0) (2.16)

FIGURE 2.5: Ideal indipendent voltage source in terms of the incre-
mental flux ϕe(t; t0) and charge qe(t; t0)

Ideal indipendent current source

By considering the ideal current source 2.17 by integrating between t0 and t ≥ t0 its
CR in ϕ− q domain can be written as 2.18. Its equivalent circuit is reported in figure
2.6.

i(t) = a(t) ∀v(t) (2.17)

q(t; t0) = qe(t; t0) =
∫ t

t0

i(τ)dτ ∀ϕe(t; t0) (2.18)

FIGURE 2.6: Ideal indipendent current source in terms of the incre-
mental flux ϕa(t; t0) and charge qa(t; t0)

Ideal resistor

By considering the ideal resistor 2.19 by integrating between t0 and t ≥ t0 its CR in
ϕ− q domain can be written as 2.20. Its equivalent circuit is reported in figure 2.7.

vR(t) = RiR(t) (2.19)

ϕR(t; t0) = RqR(t; t0) (2.20)
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FIGURE 2.7: Ideal resistor in terms of the incremental flux ϕR(t; t0)
and charge qR(t; t0)

Ideal capacitor

By considering the ideal capacitor 2.21 by integrating between t0 and t ≥ t0 its CR in
ϕ− q domain can be written as 2.22. Its equivalent circuit is reported in figure 2.8.

iC(t) = C
dvC(t)

dt
(2.21)

qC(t; t0) = C
dϕC(t; t0)

dt
− qC0 (2.22)

FIGURE 2.8: Ideal capacitor in terms of the incremental flux ϕC(t; t0)
and charge qC(t; t0)

Ideal inductor

By considering the ideal inductor 2.23 by integrating between t0 and t ≥ t0 its CR in
ϕ− q domain can be written as 2.24. Its equivalent circuit is reported in figure 2.9.

vL(t) = L
diL(t)

dt
(2.23)

ϕL(t; t0) = L
dqL(t; t0)

dt
− ϕL0 (2.24)
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FIGURE 2.9: Ideal inductor in terms of the incremental flux ϕL(t; t0)
and charge qL(t; t0)

Ideal flux controlled memristor

By considering the ideal flux controlled memristor 2.25 its CR is already in ϕ − q
domain and can be written in terms of incremental quantities and initial conditions
as 2.26. Its equivalent circuit is reported in figure 2.10.

qM(t) = g(ϕM(t)) (2.25)

qM(t; t0) = g(ϕM(t; t0) + ϕM0)− qM0 (2.26)

FIGURE 2.10: Ideal flux controlled memristor in terms of the incre-
mental flux ϕM(t; t0) and charge qM(t; t0)

Ideal charge controlled memristor

By considering the ideal charge controlled memristor 2.27 its CR is already in ϕ− q
domain and can be written in terms of incremental quantities and initial conditions
as 2.28. Its equivalent circuit is reported in figure 2.11.

ϕM(t) = g(qM(t)) (2.27)
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ϕM(t; t0) = g(qM(t; t0) + qM0)− ϕM0 (2.28)

FIGURE 2.11: Ideal charge controlled memristor in terms of the incre-
mental flux ϕM(t; t0) and charge qM(t; t0)

2.4.2 Incremental Kirchoff Laws

In the following the math formalizations of KqL and KϕL as expressed in [9] are
reported. Assuming to deal with l two-terminal elements in LM described in terms
of incremental charge and incremental flux, and being n the number of nodes in the
network, n− 1 cutset equations and l−n+ 1 loop equations can be written involving
the voltages 2.30 and the currents 2.29 at each element’s port as the vectors v, i ∈ Rl

multiplied by the reduced incidence matrix A ∈ R(n−1)×l and reduced loop matrix
B ∈ R(l−n+1)×l respectively.

Ai(t) = 0 (2.29)

Bv(t) = 0 (2.30)

By integrating 2.29 and 2.30 in the interval (t0, t) and using the definition of in-
cremental charge and incremental flux defined in 2.13 and 2.14 the Kirchoff Charge Law
2.31 and Kirchoff Flux Law 2.32 are obtained.

Aq(t; t0) = 0 (2.31)

Bϕ(t; t0) = 0 (2.32)

This definition of charge and flux conservation laws comes useful because they are
indipendent from initial conditions which sometimes (e.g. qL(t0) for an inductor and
ϕC(t0) for a capacitor) may be unavailable or difficult to obtain.

2.4.3 DAEs in the flux-charge domain

For an l elements network of devices in LM class by putting the l equations of KϕL
and KqL that set the topological constraints on q(t; t0) and ϕ(t; t0) together with the
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l CRs of the elements in the network, 2l DAEs are obtained. The solution of those
DAEs for q(t0; t0) = 0 and ϕ(t0; t0) = 0 gives the evolution of q(t; t0) and ϕ(t; t0) for
any t ≥ t0. The solution still depends on the initial contitions for the capacitors qCk0

,
the inductors ϕMk0

and the charge (flux) controlled memristors qMk0
(ϕMk0

). Those
appear as constant inputs.
The method of analysis based on DAEs is fundamental in numerical simulation of
circuit either linear and nonlinear.

2.4.4 State equations in flux-charge domain

Qualitative nonlinear phenomena are more easily analyzed using the state equa-
tion (SE) formulation. In this section the ϕ − q domain SEs derivation is reported
as obtained in [9] taking the incremental fluxes on the capacitors ϕC0

(t; t0) and the
incremental charges in the inductors qL0

(t; t0) as state variables.

FIGURE 2.12: Representation of a circuit made of components in LM
class in order to derive the state equations in terms of the incremental

flux ϕC(t; t0) and incremental charge qL(t; t0)

Considering a circuit in LM represented as in figure 2.12 where all capacitors
and inductors are connected to an algebraic non linear (nC + nL)-port containing
ideal memristors (both flux and charge controlled), ideal resistors, ideal current and
voltage sources. All the elements are described by CRs in ϕ− q domain. The SEs for
the circuit can be written as in 2.33.
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C d

dt (ϕ(t; t0)) = qC0
− ha(ϕC(t; t0), qL(t; t0),ϕE(t), qA(t),ϕM0

, qM0
)

L d
dt (q(t; t0)) = ϕC0

− hb(ϕC(t; t0), qL(t; t0),ϕE(t), qA(t),ϕM0
, qM0

)

ϕC(t0; t0) = 0
qL(t0; t0) = 0

(2.33)

Where ϕC(t; t0) is the vector of state associated with the fluxes on capacitors,
C = diag[C1, ..., CnC ], qL(t; t0) is the vector of state associated with the charges inside
inductors, L = diag[L1, ..., LnL ], qC0

is the vector of initial charges in the capacitors,
ϕL0

is the vector of initial fluxes on the inductors, ϕE is the vector of indipendent flux
sources, qA is the vector of indipendent charge sources, ϕM0

is the vector of initial
fluxes on flux controlled ideal memristors and qM0

is the vector of initial charges in
charge controlled ideal memristors.
Criteria to prove the existence of SEs 2.33 and the hybrid representation 2.12 can be derived
according to the rigorous approach presented in[2].

2.5 Traditional voltage-current analysis method

The traditional formulation of circuit equations for a circuit in class LM can be de-
rived either by differentiation of the DAEs (or SEs) in the ϕ− q domain or by using
the KVLs, the KCLs and the CRs of each component in the i− v domain.

By observing the translation of the ideal memristor CR from ϕ− q 2.10 domain to
v− i 2.11 domain, it is clear that each additional memristor introduces an associate
ODE increasing the computational effort for solving the IVP. This is because while
the memristor is a dynamical element in v− i domain it plays in ϕ− q domain the
same role of a nonlinear resistor in v − i domain. Still it has a constant flux and a
constant charge generators that hold the past history of its voltage and current.

Voltages and currents in the circuit can be easily found by deriving the incremen-
tal fluxes and incremental charges after solving the IVP ϕ− q domain. The flux (or
charge) on the ideal flux (charge) controlled memristor is obtained easily by defini-
tion 2.34.

ϕM(t) = ϕM(t; t0) + ϕM0 (2.34)

2.6 Bifurcation phenomena in memristive circuits

The use of memristors, devices that are by nature programmable, allows to design
circuits in which bifurcation phenomena can take place without changing the circuit
parameters but just the initial conditions. Practically speaking the memristor be-
haves like an electronically tunable potentiometer, this opens the door to electronic
programming of the analog circuit parameters.

2.6.1 Invariant manifolds

An invariant manifold is a region of the phase-space of the SE in the (i − v) domain
on which the evolution of the state variables takes place. Their geometric structure
is essential to unfold the bifurcation phenomena due to initial conditions. There are
∞1 non-intersecting manifolds spanning the whole phase space of the SE in (i− v)
domain, on each of these manifolds there is a foliation of the SEs.
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2.6.2 Fixed-invariant manifold

If the manifold is fixed (e.g. the set of initial conditions satisfies a specific relation)
then bifurcations of the ODEs might occur only if the circuit parameters are changed
(e.g. varying a potentiometer).

2.6.3 Bifurcations without parameters

How period-doubling and Hopf bifurcations are induced by varying the initial con-
ditions for the dynamic elements in the (i− v) domain can be made clear by using
the Flux Charge Analysis Method (FCAM) as shown in [8]. If the circuit parameters are
fixed and bifurcation phenomena can be induced by varying the initial condition for
the state variables in (v− i) domain then the bifurcation is called without parameters.
The advantage that FCAM offers is to analitically study those phenomena more eas-
ily using a lower order set of ODEs with smoother nonlinearities.
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Memristive Chua circuit

3.1 Memristive Chua circuit

In figure 3.1 is reported the circuit whose study is the main focus of this chapter. It is
a simple circuit containing two capacitors, one non-ideal inductor, one resistor and
one memristor.

L

+

−

vL

iL

r0

+

−
vr0

C2

+

−

v2

i2

R
iR

C1

+

−

v1

i1 iM

FIGURE 3.1: Memristive Chua circuit topology.

Considering an ideal locally active flux-controlled memristor whose CR in (ϕ−
q) domain is 3.1.

qM = f (ϕM) = −aϕM + bϕ3
M (3.1)

3.1.1 Analysis in (v-i) domain

The CR 3.1 can also be written in (v− i) domain as 3.2.{
iM = (−a + 3bϕ2

M)vM
dϕM

dt = vM
(3.2)

The SEs describing the system in (i− v) domain are the ones in 3.3.
dv1
dt = 1

C1
[ v2−v1

R − (−a + 3bϕ2
M)v1]

dv2
dt = 1

C2
( v1−v2

R − iL)
diL
dt = 1

L (v2 − iLr0)
dϕM

dt = v1

(3.3)

The circuit in figure 3.1 has a line equilibrium point which is dependent on the
memristor’s initial condition. Since one of the eigenvalues of 3.3 is always equal to
zero, the stability of the line equilibrium point cannot be explicitly distinguished just
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with respect to the nonzero eigenvalues. In (i− v) domain only numerical simula-
tions are possible to investigate the phenomenon of multistability.

3.1.2 Analysis in Flux-Charge domain

Using the ϕ− q CR of elements in class LM the circuit in figure 3.1 can be represented
as in figure 3.2.

FIGURE 3.2: Memristive Chua circuit (ϕ− q) domain equivalent.

The SEs for the circuit 3.2 can be written in terms of the state variables ϕC1(t; t0),
ϕC2(t; t0) and qL(t; t0) as 3.4.



C1
dϕC1 (t;t0)

dt = 1
R (ϕC2(t; t0)− ϕC1(t; t0))− f (ϕC1(t; t0) + ϕM0) + f (ϕM0) + qC10

C2
dϕC2 (t;t0)

dt = − 1
R (ϕC2(t; t0)− ϕC1(t; t0)) + qL(t; t0) + qC20

L dqL(t;t0)
dt = −rqL(t; t0)− ϕC2(t; t0)− ϕL0

ϕC1(t0; t0) = 0
ϕC2(t0; t0) = 0
qL(t0; t0) = 0

(3.4)
Assuming the normalization values in table 3.1.

R0 C0 L0 T0 V0 I0 Q0 ϕ0

1kω 1nF 1mH 1µs 1V 1mA 1nAs 1µVs

TABLE 3.1: The normalization values for resistance (R0), for capaci-
tance (C0), for inductance (L0), for voltages (V0), for currents (I0), for

charges (Q0), for time (T0) and for fluxes (ϕ0)

Using the parameters in 3.5. 
τ = t

RC2

α = C2
C1

β = R2C2
L

γ = Rr0C2
L

(3.5)
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The equations 3.4 can be rewritten as 3.6.
dϕC1 (τ;τ0)

dτ = α[ϕC2(τ; τ0)− ϕC1(τ; τ0)− R f (ϕC1(τ; τ0) + ϕM0) + R f (ϕM0) + RqC10
]

dϕC2 (τ;τ0)

dτ = −(ϕC2(τ; τ0)− ϕC1(τ; τ0)) + RqL(τ; τ0) + RqC20
d(RqL(τ;τ0))

dτ = −γ(RqL(τ; τ0))− βϕC2(τ; τ0)− βϕL0

(3.6)
By denoting the variable τ as t and applying to 3.6 the change of variables 3.7 the

third-order system 3.8 is obtained.
x(t) = ϕC1(t; t0) + ϕM0

y(t) = ϕC2(t; t0) +
γ

β+γ (ϕM0 − RqC20
) + β

β+γ ϕL0

z(t) = RqL(t; t0) +
β

β+γ (ϕL0 − ϕM0 + RqC20
)

(3.7)



dx(t)
dt = α[−x(t) + y(t)− n(x(t)) + X0]

dy(t)
dt = x(t)− y(t) + z(t)

dz(t)
dt = −βy(t)− γz(t)

x(t0) = ϕM0

y(t0) =
γ

β+γ (ϕM0 − RqC20
) + β

β+γ ϕL0

z(t0) =
β

β+γ (ϕL0 − ϕM0 + RqC20
)

(3.8)

Where n(x(t)) is 3.9.

n(x(t)) = R f (x(t)) = −Rax(t) + Rbx3(t) = −m0x(t) + m1x3(t) (3.9)

And X0 is 3.10.

X0 =
β

γ + β
(ϕM0 − LiL0) +

γ

γ + β
RC2vC20

+ n(ϕM0) + RC1vC10
(3.10)

Once the IVP for 3.8 is solved, the state variables in (i − v) domain are easily
derived by 

vC1(t) = α[−x(t) + y(t)− n(x(t)) + X0]

vC2(t) = x(t)− y(t) + z(t)
iL(t) = − 1

R (βy(t) + γz(t))
ϕM(t) = x(t)

(3.11)

All the trajectories of 3.8 is contained in one among the ∞1 positively-invariant
manifolds identified, as shown below, each one by a different value of X0 ∈ R.

M(X0) = {(vC1(t), vC2(t), iL(t), qM(t)) ∈ R4 :
β

γ + β
(ϕM(t)− LiL(t)) +

γ

β + γ
RC2vC2(t) + n(ϕM(t)) + RC1vC1(t) = X0}



32 Chapter 3. Memristive Chua circuit

Assuming γ = 0 and R = 1 for simplicity’s sake the SEs 3.6 have the simplified
expression in 3.12. 

dx(t)
dt = α[y(t)− x(t)− n(x(t)) + X0]

dy(t)
dt = x(t)− y(t) + z(t)

dz(t)
dt = −βy(t)

x(t0) = ϕM0

y(t0) = ϕL0

z(t0) = −ϕM0 + ϕL0 + qC20

(3.12)

The simplified expression of X0 takes the form reported in 3.13.

X0 = ϕM0 − LiL0 + n(ϕM0) + C1vC10
(3.13)

The ∞1 invariant manifolds take the form.

M(X0) = {(vC1(t), vC2(t), iL(t), qM(t)) ∈ R4 :
ϕM(t)− LiL(t) + n(ϕM(t)) + C1vC1(t) = X0}

The equilibrium points of 3.12 take the form P = (x∗, 0,−x∗) where x∗ can be found
by solving the algebraic equation 3.14.

x∗ + n(x∗) = m1(x∗)3 − (m0 − 1)x∗ = X0 (3.14)

Given M∗ = 2
3 (m0 − 1)

√
m0−1
3m1

the following cases for equilibrium points can be
derived:

• If |X0| < M∗ three equilibrium points exist

• If |X0| = M∗ two equilibrium points exist

• If |X0| > M∗ only one equilibrium point exists

Two alternatives exist for bifurcations to occur:

1. Having β, m0 and m1 fixed. By fixing the initial conditions (vC10
, vC20

, iL0 , ϕM0)

the constant X0 identifying the manifold M(X0) is fixed and bifurcation take
place on that manifold by changing the parameter α.

2. Having β, α, m0 and m1 fixed. By varying the intitial condition, in such a way
that X0 changes, the bifurcation phenomena of the ODEs take place without
parameters change.

Assuming β = 15, m0 = 8
7 , m1 = 4

63 the two possibilities are explored in the
following.

In figure 3.3 and figure 3.4 are reported the phase portraits (both in (ϕ− q) and
i− v domains) of the circuit on a fixed manifold M(X0 = 0.0347). To be noted how
changing the bifurcation parameter α in range [8.6, 8.9] a series of Hopf bifurcations
occurrs followed by a period doubling cascade which leads soon (α ≈ 9.2) to chaotic
dynamic typical of a Rössler attractor. For α ≈ 9.4 a window of periodicity is visible,
increasing further the single scroll attractor turns into a double scroll attractor.
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By setting α = 9.5 and varying X0 (by changing ϕM0) bifurcation phenomena can
be obtained without tuning the parameters value. This is shown in figure 3.5 and
figure 3.6.

FIGURE 3.3: Phase portraits projection on x− y plane in ϕ− q domain
showing bifurcations on a fixed manifold M(X0 = 0.0347)

FIGURE 3.4: Phase portraits projection on vC1 − vC2 plane in v − i
domain showing bifurcations on a fixed manifold M(X0 = 0.0347)
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FIGURE 3.5: Phase portraits projection on x− y plane in ϕ− q domain
showing bifurcations without parameters

FIGURE 3.6: Phase portraits projection on vC1 − vC2 plane in v − i
domain showing bifurcations without parameters
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3.2 Circuit implementation

Taking inspiration from [18] a possible implementation of the previously described
circuit is proposed in the following section.

3.2.1 Inductance emulation

In order to have really small series resistance (γ ≈ 0) and a precise inductance value
the use of an inductance emulator is mandatory. The choice is the Antoniou’s circuit
as described in [17]. Its topology is reported in figure 3.7.

FIGURE 3.7: Antoniou’s inductance emulator. [17]

The emulated inductance value 3.15 can be tuned by changing different resistors
value.

L =
C9R7R9R10

R8
(3.15)

3.2.2 Ideal memristor emulation

The ideal memristor emulator topology was taken from [18] and it is reported in
figure 3.8. It makes use of an infinite gain integrator, a voltage follower, two analog
multipliers and a negative resistance.

FIGURE 3.8: Ideal memristor emulator topology.[18]

It is easy to derive the iM− vM relation 3.16 and the associated ODE for the circuit
in figure 3.8. Where g = ga ∗ gb is the total attenuation introduced by the analog
multipliers. The negative resistance can be implemented as shown in the following
subsection.
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{
iM(t) = (− 1

RB
+ g

RB
V2

0 (t))vM(t)
dV0(t)

dt = − 1
RaC0

vM(t)
(3.16)

3.2.3 Negative resistance

The negative resistance can be implemented by a negative impedence converter
(NIC) as shown in figure 3.9.

FIGURE 3.9: NIC implementing a negative resistance Re = − R1R3
R2

The curcuit shows a negative input resistance between its two input terminals for
the single ended voltages on each terminal under the power supply level VDD and a
differential input level |v| < R3

R2+R3
VDD = Bp. Out of the operating range the circuit

behaves like a resistor R1 in series to a voltage generator±VDD. Thus R3 � R2 must
hold in order to have a large operating range BP.

3.2.4 Current-Voltage state equations

Using the memristor emulator in subsection 3.2.2, the inductance emulator in sub-
section 3.2.1 and the negative resistor in subsection 3.2.3 the SEs for the memristive
Chua circuit implemented can be written in (v− i) domain as 3.17.

dvC1
dt = 1

C1
[

VC2−VC1
R − (− 1

RB
+ g

RB
V2

0 )vC1)]
dvC2

dt = 1
C2
(

vC1−vC2
R − iL)

diL
dt = 1

L vC2
dV0
dt = − 1

RaC0
vC1

(3.17)

The SEs 3.17 has a line equilibrium point which is dependent on the ideal mem-
ristor emulator’s initial condition. Since one of the eigenvalues of 3.3 is always equal
to zero, the stability of the line equilibrium point cannot be explicitly distinguished
just with respect to the nonzero eigenvalues. In (i− v) domain only numerical sim-
ulations are possible to investigate the phenomenon of multistability.

3.2.5 Flux-Charge state equations

In order to write the SEs in (ϕ − q) domain the ideal memristor emulator CR the
iM − vM characteristic 3.16 should be integrated over time to find the incremental
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charge qM(t; t0) 3.18 as function of the incremental flux ϕM(t; t0) and internal initial
condition V0(t0).

qM(t; t0) =
∫ t

t0

iM(τ)dτ =
∫ t

t0

1
RB

(−1 + gV2
0 (τ))vM(τ)dτ (3.18)

By the substitution of the ODE 3.16 in 3.18 the 3.19 is obtained.

qM(t; t0) =
1

RB

∫ V0(t0)

V0(t)
(1− gV2

0 )RaC0dV0 (3.19)

Omitting the intermediate steps the CR in (ϕ− q) domain is 3.20.

qM(t; t0) =
1

RB
(−1+ gV2

0 (t0))ϕM(t; t0)−
g

RBRaC0
V0(t0)ϕ2

M(t; t0)+
g

3RB(RaC0)2 ϕ3
M(t; t0)

(3.20)
In the memristive Chua circuit of subsection 3.1 ϕM(t; t0) = ϕC1(t; t0). The SEs are
written in ϕ− q domain as 3.21.

dϕC1 (t;t0)

dt = 1
C1
(

ϕC2 (t;t0)−ϕC1 (t;t0)

R − qM(t; t0)) + vC1(t0)
dϕC2 (t;t0)

dt = 1
C2
(

ϕC1 (t;t0)−ϕC2 (t;t0)

R − qL(t; t0)) + vC2(t0)
dqL(t;t0)

dt = 1
L ϕ2(t; t0) + iL(0)

(3.21)

Using the normalizations in 3.22.

τ = t
RC2

x(t) =
ϕC1 (t;t0)

BPRC2

y(t) =
ϕC2 (t;t0)

BPRC2

z(t) = qL(t;t0)
BPC2

η0 = V0(t0)
BP

η1 =
vC1 (t0)

BP

η2 =
vC2 (t0)

BP

η3 = iL(t0)R
BP

(3.22)

And defining the parameters in 3.23.

α = C2
C1

β = R2C2
L

a4 = R
RB

a3 = a4gB2
P

a2 = a3
RC2
RaC0

a1 = 1
3

RC2
RaC0

a2

(3.23)
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The SEs in 3.21 can be writtend in adimensional form as 3.24 with h(x) = −a1x3 +
a2η0x2 + (a4 − a3η2

0)x. 
dx(t)

dt = η1 + α[y− x + h(x)]
dy(t)

dt = η2 + x− y− z
dz(t)

dt = η3 + βy

(3.24)

The equilibrium points are readily derived from 3.24 and are in the form 3.25.

P = (x∗,−η3

β
, x∗ +

η3

β
+ η2) (3.25)

Where the x∗ can be found as roots of the cubic equation 3.26.

− a1x3 + a2η0x2 + (a4 − a3η2
0 − 1)x + (

η1

α
− η3

β
) = 0 (3.26)

Defining a = −a1, b = a2η0, c = (a4 − a3η2
0 − 1) and d = η1

α −
η3
β and the quanti-

ties in 3.27 the general formula for the roots is reported in 3.28.

∆0 = b2 − 3ac
∆1 = 2b3 − 9abc + 27a2d

C =
3

√
∆1±
√

∆2
1−4∆3

0
2

ζ = − 1
2 +

1
2

√
3i

(3.27)

x∗k = − 1
3a

(b + ζkC +
∆0

ζkC
) k ∈ {0, 1, 2} (3.28)

The Jacobian matrix is 3.29.

J(x∗) =

α[−1 + h
′
(x∗)] α 0

1 −1 −1
0 β 0

 (3.29)

Where h
′
(x) = −3a1x2 + 2a2η0x + (a4 − a3η2

0). By evaluating the sign of the eigen-
values the stability of the equilibrium points can readily be determined. In i − v
domain the presence of the zero eigenvalue does not allow the study of equilibrium
points. In the ϕ− q domain the line equilibrium point is converted into some deter-
mined equilibrium points. The locations and stabilities of those can be determined
as function of the initial conditions η0, η1, η2, η3 that identify the manifold.

Numerical simulations

By setting a1 = 18
10 , a2 = 36

10 , a3 = 24
10 , a4 = 11

10 , α = 9.6, β = 15 and assuming γ = 0
the numerical simulations are carried out.
In the upper subplots of figures 3.10 and 3.13 are reported the equilibrium points
x∗ (in 3.25 the whole 3D position) of 3.24 as function of η0 for η1 = −0.0173 and
η1 = 0.0345 respectively. For the same values of η1 in the lower subplots of the
same figures the maximum Lyapunov exponent (computed using [11]) is reported
as function of η0.
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FIGURE 3.10: Equilibrium points and maximum Lyapunov exponent
of 3.24 for η1 = −0.0173 and varying η0. Stable equilibrium points
in green, unstable equilibrium point in red (2 positive eigenvalues)
or blue (only 1 positive eigenvalue). Maximum Lyapunov exponent
in red if negative, in green if positive and in blue if ≈ 0 (periodic

regime).

FIGURE 3.11: Phase portraits’ projections on x − y plane of 3.24 in
(ϕ− q) domain for η1 = −0.0173 and varying η0.
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FIGURE 3.12: Phase portraits’ projections on vC1 − vC2 plane of 3.24
in (i− v) domain for η1 = −0.0173 and varying η0.

FIGURE 3.13: Equilibrium points and maximum Lyapunov exponent
of 3.24 for η1 = 0.0345 and varying η0. Stable equilibrium points
in green, unstable equilibrium point in red (2 positive eigenvalues)
or blue (only 1 positive eigenvalue). Maximum Lyapunov exponent
in red if negative, in green if positive and in blue if ≈ 0 (periodic

regime).
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FIGURE 3.14: Phase portraits’ projections on x − y plane of 3.24 in
(ϕ− q) domain for η1 = 0.0345 and varying η0.

FIGURE 3.15: Phase portraits’ projections on vC1 − vC2 plane of 3.24
in (i− v) domain for η1 = 0.0345 and varying η0.
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Circuit simulation

A circuit implementing the SEs 3.17 for the parameters’ values assumed in "numeri-
cal simulations" is reported in figure 3.16. The chosen SPICE simulator is LTSpice by
Linear Technology.

FIGURE 3.16: Schematic for the circuit implementing the set of equa-
tions 3.17.

The multiplier block is behaviourally implemented in SPICE syntax as follows.

.subckt multiplier x1p x1m x2p x2m zp zm params: K=0.1

Eres zp zm value={K*(V(x1p)-V(x1m))*(V(x2p)-V(x2m))}

.ends multiplier

The ideal opamp is implemented as reported in figure 3.17.

FIGURE 3.17: Implementation of an ideal operational amplifier.

The coexistence of multiple chaotic attractors and stable periodic regimes is con-
firmed by the circuital simulations as reported in figures 3.18, 3.19, 3.20, 3.21, 3.22,
3.23. Fixed point attractors are not reported even if encountered because not visible
on the vC1 − vC2 plot.
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The simulations were performed keeping η1 = 0.0345 fixed and varying only η0.
The required maximum time step to have accurate results is Tstep,max = 1ns.

FIGURE 3.18: LTspice simulation for η0 = −0.2071 and η1 = 0.0345.

FIGURE 3.19: LTspice simulation for η0 = −0.1036 and η1 = 0.0345.

FIGURE 3.20: LTspice simulation for η0 = 0 and η1 = 0.0345.
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FIGURE 3.21: LTspice simulation for η0 = 0.0690 and η1 = 0.0345.

FIGURE 3.22: LTspice simulation for η0 = 0.1380 and η1 = 0.0345.

FIGURE 3.23: LTspice simulation for η0 = −0.2071 and η1 = 0.0345.
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Pulse programming

As proposed in [10] the chaotic memristive Chua circuit can be programmed via
pulses. In order to do that the system has to become non-autonomous by introducing
indipendent voltage (or current) generators in the circuit. This addition allows to
change dynamically the manifold on which the evolution of state variables takes
place. Here just as example an induced bifurcation is reported. This was obtained
by adding a voltage source with an high Ro f f series electically controlled switch as
reported in figure 3.24.
The projection of the phase portait on vC1 − vC2 plane is reported in figure 3.25.

FIGURE 3.24: Same circuit as in figure 3.16 just with the addition of
an electrically controlled switch, an indipendent controlling voltage

source and a constant voltage source.

FIGURE 3.25: LTspice simulation for η0 = 0.0690 and η1 = 0.0345 in
blue. Bifurcation without parameters induced by a voltage pulse of

duration τpulse = 1.33e− 4 and amplitude A = 0.021 in orange.
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FIGURE 3.26: LTspice simulation waveforms for η0 = 0.0690 and
η1 = 0.0345 in blue. Bifurcation without parameters induced by a
voltage pulse of duration τpulse = 1.33e− 4 and amplitude A = 0.021

in orange.

3.2.6 Physical implementation

The implementation of the circuit as it is in figure 3.16 was attempted using commer-
cial operational amplifiers (AD711K) and commercial analog multipliers (AD633J)
as in [18]. The choice of using the same components was dictated by the fact that
only those analog multipliers were found with readily usable SPICE models. Even
though LTspice models are available for those components they show convergence
problems. The only solution to carry simulations of the whole circuit was to use the
Analog Devices proprietary simulation tool SIMetrix.

Dealing with nonidealities

What is clear by looking at 3.16 is the fact that an infinite gain amplifier is used in
the ideal memristor emulator circuit. This is a problem because any parastic constant
offset injected into the integrator by the preceding voltage follower is integrated over
time and causes the saturation of the internal memristor state V0.
If on the one hand the use of a negative feedback resistor is mandatory on the other
one this resistor heavily changes the memristor characteristic. The modelling of how
the SEs are modified by the introduction of the feedback resistor is left to future
work.
Given the two integrator topologies as in figure 3.27 the crossover frequency fc
3.30(unity gain frequency) is the same for both of them.

fc =
1

2πRinC
(3.30)

The −3dB cut frequency f3dB of the finite gain integrator is given by 3.31.

f3dB =
1

2πR f C
(3.31)
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The effect of increasing R f is graphically showed in 3.28. When increasing the feed-
back resistance the pole is moved towards the origin and the in-band gain is in-
creased.

FIGURE 3.27: Infinite gain integrator (upper one) and finite gain inte-
grator (lower one).

FIGURE 3.28: Transfer function of a finite gain amplifier in green for
various values of R f . Transfer function of an infinite gain amplifier in

blue.

Circuit simulation

The analogue of 3.16 simulated on SIMetrix is reported in 3.29. The Antoniou induc-
tance emulation circuit could not be included in the SIMetrix simulation because of
licence limitations thus the corresponding ideal inductance was used instead.

Many different values of feedback resistance R f were tried in the search of the
same extreme multistable behaviour shown in ideal circuit simulation. All the simu-
lation were run for initial conditions iL(0) = 0A, VC2(0) = 0V, VC1 = 1V and varying
V0(0).

For R f ≤ 2kΩ the system shows only stable point attractors (not reported here).
Simulations in figures 3.30, 3.31, 3.32, 3.33 are for 3kΩ ≤ R f ≤ 6kΩ, those values
of R f do not show any sensitivity with respect to V0(0). In fact for each value of R f
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only one kind of attractor was found varying V0(0).
For R f = 7kΩ different initial evolutions are detected, as reported in figures 3.34,
3.35 and 3.36, but those are overwhelmed by the saturation of internal state of mem-
ristor emulator V0 due to input parastitic voltage to the integrator. The result of
setting R f = 7kΩ is a square wave generator.

The final conclusion is that the implementation of the ideal circuit in figure 3.16 is
not feasible using real components because of the presence of parastitic voltage and
current generators in the circuit which cause the ideal integrator’s divergence. The
first thought solution of using a feedback resistance, in order to make the integrator
gain finite, is not successful. This is because on the one hand if the feedback is strong
then the memristor emulator behaves just like a non-linear resistor loosing its v− i
memory characteristic and making possible bifurcations only on a fixed manifold, on
the other hand if the feedbback is weaker then the ideal memristor emulator suffers
from the saturation of internal variable V0.

FIGURE 3.29: Schematic for the circuit in figure 3.16 implemented
with real components.

FIGURE 3.30: SIMetrix simulations for R f = 3kΩ, VC1(0) = 1V and
varying V0(0).
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FIGURE 3.31: SIMetrix simulations for R f = 4kΩ, VC1(0) = 1V and
varying V0(0).

FIGURE 3.32: SIMetrix simulations for R f = 5kΩ, VC1(0) = 1V and
varying V0(0).

FIGURE 3.33: SIMetrix simulations for R f = 6kΩ, VC1(0) = 1V and
varying V0(0).



50 Chapter 3. Memristive Chua circuit

FIGURE 3.34: SIMetrix simulations for R f = 7kΩ, VC1(0) = 1V and
V0(0) = −2V.

FIGURE 3.35: SIMetrix simulations for R f = 7kΩ, VC1(0) = 1V and
V0(0) = −1V.

FIGURE 3.36: SIMetrix simulations for R f = 7kΩ, VC1(0) = 1V and
V0(0) = 1V.
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Laboratory acquired measurements

The circuit in figure 3.29 was actually mounted on a breadboard and tested in labo-
ratory as in figure 3.37. Differently from circuit in figure 3.29 the implemented circuit
used Antoniou’s circuit as described in [17] (bottom right part of the picture).

FIGURE 3.37: Picture of the mounted circuit.

The circuit components parameters are measured as: L = 7.87mH, C2 = 37.4nF,
C1 = 4.3nF, C0 = 4.9nF, Ra = 9.811kΩ, R = 1.709kΩ, RB = 1.747kΩ and R f =
6.734kΩ.
Using the oscilloscope Agilent 2024A available in laboratory the waveforms in figure
3.38 and the phase space projection in figure 3.39 were obtained.

FIGURE 3.38: In green vC1 and in yellow vC2 .
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FIGURE 3.39: Projection on the vC1 − vC2 plane of the chaotic attractor
in the phase space.

The measured behaviour recalls what was obtained in simulation for low levels
of feedback resistance as in figure 3.31. Changing the R f resistance value using a
potentiometer the same saturation effects were recognizable: saturated purely de-
terministic waveforms for high values of R f and limit cycles for low values of R f .
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Chapter 4

Application of chaos

4.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems inspired by the biological
neural networks. They learn new tasks by considering examples, generally without
any a priori knowledge about the task itself. From the processed learning material
ANNs evolve their specific set of relevant characteristics.

ANNs are based on a set of connected units or nodes called artificial neurons.
All the connections between artificial neurons can transmit a signal from one to an-
other. The artificial neuron receiving the signal processes it and then trasmits it to
the connected artificial neurons.

Usually the signal transmitted along a connection is a real number, and each ar-
tificial neuron returns in output a non-linear function of the weighted sum of its
inputs. Connections usually have an associated weight that is adjusted during the
learning phase. The weight is an attenuation/amplification factor of the signal trans-
mitted on the connection. Artificial neurons could have a threshold, this means that
only if the weighted sum of the inputs is above that threshold the signal is transmit-
ted.

The original naive goal of ANNs was to emulate the function of human brain as a
generic problem solver. Still today the research field of general artificial intelligence
is in its embryonic phase mainly because of the lack of understanding of how com-
plex animal brains work. Nonetheless the interest on ANNs has enormously grown
in the last decade because of their capability of exceeding the human abilities in spe-
cific tasks such as computer vision, speech recognition, interlanguage translation,
playing complex games and medical diagnosis.

4.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of ANN whose artificial synapses form
an oriented graph along a sequence. This feature makes it a proper dynamical sys-
tem. RNNs use their internal state to process sequences of data. This characteristic
makes them suitable for connected handwriting recognition or speech recognition.

A FIR RNN is an oriented acyclic graph which can be unrolled and substituted
by a feedforward ANN, an IIR RNN is an oriented cyclic graph which cannot be
unrolled.

4.3 Hopfield Neural Networks

A Hopfield neural network is a class of RNNs that can work as content-addressable
memory (CAM). Under certain assumptions they are guaranteed to converge to a
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local minimum, sometimes they may converge to a wrong local minimum instead.
The artificial neurons in Hopfield networks are binary threshold units. Each neuron
can only take two different values (usually ±1) for their status.

4.3.1 Hopfield NN topology

Every pair of distinct artificial neurons in a Hopfield network has a connecting
synapse. The connections in a Hopfield net typically have the following restrictions:

• wii = 0 ∀i: no unit has a connection with itself.

• wij = wji ∀i, j: connections are symmetric.

The symmetry of weights guarantees the monotonical decrease of the energy func-
tion while updating the network state. If weights are asymmetric periodic or chaotic
behaviour can occur.
An example of a simple Hopfield neural network is reported in figure 4.1.

FIGURE 4.1: Hopfield network made of 4 neurons.

4.3.2 State update

Hopfield Networks are initialized by setting the values of the neurons to a desired
start pattern which can be for example a corrupted pattern to reconstruct. Updates
are repeated until the NN converges to an attractor state. The rule used in order to
update the network state is 4.1.

Si ←
{
+1 i f ∑j wi,jSj ≥ θi

−1 otherwise
(4.1)

• wi,j: the weight of the connection from unit j to unit i.

• Sj: the state of neuron j.

• θi: threshold of unit i.
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The rule 4.1 can also be written as a discrete dynamical system IVP 4.2.{
Si+1 = sign(WSi − θ)

S0 = X
(4.2)

• W : the matrix of weights.

• Si: the state vector at iteration i.

• θ: the threshold vector.

• X: the input pattern.

Two different ways of updating the network are possible:

• Asynchronous: neurons are updated one by one sequentially in random or
pre-defined order.

• Synchronous: neurons are updated all at once. This way is considered as less
realistic because it does not reflect analogous physical or biological systems.

If wi,j > 0 4.1 implies:

• if Sj = 1 then Si is pulled by Sj towards Si = 1

• if Sj = −1 then Si is pulled by Sj towards Si = −1

If the weight of a synapse connecting two neurons is positive then they will con-
verge. They will diverge otherwise. This concept is often summarized as "Neurons
that fire together, wire together. Neurons that fire out of sync, fail to link" [12].

4.3.3 Energy function

Hopfield NN have an associated function called "energy" 4.3 which associates to
each state of the network a scalar value.

E = −1
2 ∑

i,j
wi,jSiSj −∑

i
θiSi (4.3)

If neurons’ update order is randomly chosen, the energy function E will either lower
or stay constant. By iterated updates the NN will converge to a state that is a local
minimum of the energy function.

4.3.4 Training

Hopfield networks are trained by lowering the energy of states that should become
attractors. In this way the NN can work as a CAM system: the Hopfield net will
converge to a "learnt" state just by providing it with an incomplete part of the data.
The network associates the most similar trained state to a distorted input. It can
recover memories on the basis of similarity. In order to correctly train the network
the energy of states which the network should remember must be local minima.
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Hebbian learning rule

For Hopfield Networks the Hebbian learning rule is implemented as 4.4.

wij =
1
n

n

∑
µ=1

ε
µ
i ε

µ
j (4.4)

Where:

• n is the number of patterns to store.

• ε
µ
i is bit i from pattern µ.

• wij is the weight of the synapse connecting neuron i and neuron j.

If the bits i and j are equal in pattern µ, then ε
µ
i ε

µ
j ≥ 0. This has a positive effect on

the weight wij and the values of units i and j will tend to converge. If the bits i and j
are different the opposite happens.

Storkey learning rule

Storkey [14] proved that a Hopfield network trained using his proposed rule has a
greater capacity than one trained with the Hebbian rule. The weights are set accord-
ing to 4.5. The Storkey rule uses more information from the training set and weights
than the Hebbian rule, because of the effect of the local field 4.6.

wν
i,j = wν−1

i,j +
1
n

εν
i εν

j −
1
n

εν
i hν

j,i −
1
n

εν
j hν

i,j (4.5)

hν
i,j =

n

∑
k=1,k 6=i,j

wν−1
i,k εν

k (4.6)

Spurious patterns

It sometimes happens that the network converges to patterns not contained in the
training set, those are called spurious patterns. The spurious patterns are also local
minimum of the energy function E. For example if x is a stored pattern, then −x is a
spurious pattern. Linear combinations of an odd number of retrieval states can also
be spurious patterns.

Network capacity

The number of neurons and synapses within an Hopfield network determines the
amount of patterns that can be stored, this amount is called the network capacity.
It was shown [13] that approximately 138 patterns can be correctly retrieved from
storage for every 1000 neurons. Many mistakes can occur if a large number of vectors
is stored.
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4.4 Introduction of chaos in Hopfield NN

The utility of chaotic signals in hardware accelerators has been shown by Kumar,
Strachan and Williams [16]. Inclusion of tunable chaos generated by a memristive
circuit can enhance computational efficiency in problems requiring global minimiza-
tion. This enhancement comes with little energy overhead and no additional latency.
The goal of displacing a system from a local minimum can also be achieved with
a computer-generated pseudo-random sequence of numbers (CGPRS) instead of a
chaotic signal. The ease of integration of memristors into ASIC accelerators is the
fundamental improvement over CGPRS.

In the following to confirm the results obtained by Kumar et Al. [16] an Hopfield
neural network for corrupted data reconstruction was implemented in Python Pro-
gramming Language. A chaotic signal obtained via circuital simulation was intro-
duced in the threshold level of each neuron in order to show that chaos can enable,
by displacing from a local minimum, convergence towards the global minimum.

4.4.1 The dataset, the network and the training

The dataset used in the simulations is a set of 12 characters encoded as 10x10 binary
bitmaps reported in figure 4.2. Those are coded using bipolar binary code: white
pixels are coded with −1 and black pixels with 1.

FIGURE 4.2: The used dataset of 12 images encoded as 10x10 binary
bitmaps.

Because of the images dimension (10x10) the network is made of 100 neurons
and 10,000 synapses.
The correct working of the network was checked by inputting the uncorrupted stored
patterns and verifying their correct self association. Training the network with Heb-
bian learning rule only 6 patterns could be stored. By upgrading to the Storkey
learning rule up to 11 patterns could be stored and correctly recalled excluding the
ν which is too similar to v.

4.4.2 Simulation methodology

At the beginning of any simulation a random updating order was computed. Then
the states were updated in that random sequential order. In every update, the chaotic
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signal (vC1) obtained from the memristive Chua circuit was sampled at periodic in-
tervals. Assuming a single chaotic source whose output signal is dispatched to all
the thresholding units only one chaotic waveform, reported in figure 4.5, was suffi-
cient. Given an updating order the propagation delay of the chaotic signal between
one neuron and the next one was assumed to be the sampling time Ts = 5µs.
Upon simulating the NN, the energy of the system decreased until a minimum was
reached. If chaos is not included, the energy converged to a minimum and stayed
constant through all the following updates as shown in figure 4.3.

FIGURE 4.3: The energy levels evolution in 3 different simulations
without chaotic thresholds and 30% corruption level.

Using the same initial input patterns and order of updating, upon inclusion of
chaotic signal on thresholding units, the energy monotonically reduces and at the
same time undergoes fluctuations. Those correspond to instantaneous variation of
states due to chaotic threshold levels. The energy on avarage evolves to values below
the case with no chaotic thresholds hence escaping local minima as shown in figure
4.4.

FIGURE 4.4: The energy levels evolution in 3 different simulations
with chaotic thresholds scaled to 8% of the waveform in figure 4.5

and 30% corruption level.

Because of fluctuations there is no strict convergence, this is a problem for the
verification of the correct pattern recovery. This problem was addressed by intro-
ducing a 5th order FIR filter on each state output, the verification is made when
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the programmed updates are over (250 steps) on the avarage of the last 5 values as-
sumed by each unit.
A block scheme of the simulation setup is reported in figure 4.6.

FIGURE 4.5: The chaotic waveform injected into the thresholding
units.

FIGURE 4.6: The simulation setup.

The amplitude of fluctuations

An important parameter to consider is the magnitude of chaotic signal that is scaled
by the coefficient KC. By properly setting the scaling factor a reduction in the energy
of the solutions is enabled.

For high magnitude of fluctuations (e.g. KC = 0.3), the range of energies is sig-
nificantly higher compared to the case with no chaos (KC = 0). The high magnitude
of chaotic thresholds drives the NN across a wide range of outputs, thus producing
a wide range of energies.

The case with an intermediate magnitude of chaos (KC ∈ [0.05, 0.15]), enables a
reduction in the energy of most of the solutions with respect to KC = 0 case. This
is because of the magnitude of chaotic signal being high enough to displace the NN
out of a local minimum delimited by low energy barriers, while the same magnitude
is not enough to displace the NN out of a global minimum.
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Those results are visualized in figure 4.7.

FIGURE 4.7: Success rates for different values of corruption (20%,
30%, 40% and 50%) and different amplitudes of chaotic thresholds

(KC). In red the line representing the level of KC = 0

The results reported in figure 4.7 were obtained simulating the Hopfield neural
network, as previously described, for 5 batches of 200 corrupted patterns. Before
start feeding a new batch to the network, the update order of neurons was permu-
tated. Simulations were run for different levels of KC and corruption level. The
latter one is intended as #uncorrectpixels

#correctpixels .

Example of pattern reconstruction enhanced by chaotic thresholds

An example of the actual enhanced reconstruction capability enabled by the injec-
tion of a chaotic signal on the thresholding units is provided in figure 4.8. In that
figure are reported all the patterns that could not be recovered using non-chaotic
threshold levels and the corresponding fully recovered patterns obtained by injec-
tion of chaos. Those are organized in rows couples where the first of each couple is
the case with KC = 0 and the other one is the case with KC = 8%.
The distorted image (30% corruption) is reported as well as initial pattern and re-
constructed pattern in order to show the kind of noise the NN recovers a pattern
from.
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FIGURE 4.8: Example of pattern recovery enhanced by chaotic signal
applied on neuron threshold. KC = 8% and corruption level 30% on
second, forth and all even rows. KC = 0 and corruption level 30% on

first, third and all odd rows.
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Chapter 5

Conclusions and future work

5.1 The obtained results

The goals of this thesis work were: (1) to show how the use of a memristive com-
ponent inside a chaotic oscillator could allow dynamicl programming of the latter
on different chaotic attractors, and (2) to show how chaos could enhance the perfor-
mance of a bio-inspired analogue computational system.

The first goal was partially achieved. The study of the ideal memristive Chua
circuit ODEs and the circuital simulation of its ideal implementation confirmed the
extreme multistability property. By applying pulses it was shown the possibility of
switching between different chaotic attractors. Those results eventually faced the
non-ideality of real components and proved that the ideal memristor emulator pro-
posed in [18] is not valid as approach for implementing extreme multistability in
physical chaotic oscillating circuits.

The second goal was fully achieved: for highly distorted patterns the injection of
a chaotic signal on the threshold level of the artificial neurons leads to an increase
of successful reconstruction rate up to 4% and avarage reduction in energy level for
most of the applied input patterns.

5.2 Future work

The formal study of the non-ideal memristor emulator and how to obtain, using it,
the desired extreme multistability could be an interesting topic of future research
work.
The study of how the use of different chaotic attractors affects the enhancement
of successful reconstruction rate and the comparison with stochastic noisy signals
could also be another interesting topic to explore.
The study of the global architecture implemented as an actual memristive neural
network and its electrical simulation can also be subject worth of attention.
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