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Abstract  

Abstract 

 
 
The knee is the most stressful joint of the lower limb and the number of people 

affected by knee injuries is increasing. 

One of the most common knee injuries involves the Anterior Cruciate Ligament 

(ACL) and its damage generally takes place during sport activities. 

Rehabilitation procedures and programs after knee injuries have a macro- and 

micro-economic impact that is related to money provided by private healthcare 

institutions and money spent by patients to cure themselves, respectively. 

Furthermore, patients need to be monitored frequently by clinicians and experts 

over a long-time period.  

The adverse impact on the economy, the lack of accuracy of clinical evaluations 

and the long-time monitoring that characterizes rehabilitation procedures lead to 

the necessity of developing low-cost, small, user-friendly and accurate wearable 

systems for knee health status assessment.  

 

Nowadays, the gold-standard is represented by video-camera based systems. 

Despite the high accuracy, this technology is limited in long-term monitoring 

applications due to the lab constraints, the necessity of specific markers and 

trainings before using the device.  

An alternative solution is offered by Inertial Sensor Measurement Units (IMUs), 

which showed to be accurate, cheap, and easy-to-use. 

A comprehensive ACL assessment is developed using both qualitative and 

quantitative metrics. The former includes various indexes (e.g. KOOS, TUG, IKDC 

etc.) and is related to the clinical evaluation, while the latter is developed by 

extracting raw data from the IMUs and includes time-domain, frequency-domain 

and discrete-domain features.  
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Abstract  

To this purpose, this thesis analyses the application of Wireless Inertial Sensor 

Units for ACL assessment and proposes a method for evaluating the patients’ 

progresses considering the widest range of features available in literature. 

 

The first section contains an introduction about the ACL, rehabilitation programs 

that follow ACL breakage, and the evaluation of human motion. Furthermore, it is 

offered a detailed explanation of the inertial sensing system at the base of the 

proposed device, and the basic theoretical information which is currently present in 

literature useful for the knee status assessment. More in details, the last part of this 

section describes the theory and the method for extracting knee joint angles during 

typical exercises of ACLR, including the walking performances on a treadmill. In 

addition to the knee joint angles, temporal, spatial and frequency-domain 

parameters related to the gait are explained.  

 

The second section described the algorithm developed in Matlab®. The proposed 

algorithm makes it possible to obtain not only the basic parameters, but a wide range 

of variables that helps in evaluating both the single repetition of an exercise and the 

whole performance.  These variables are divided in 7 main categories: gait 

variables, statistical features, kinematic variables, info/theoretical and entropy-

related features, jerk-based features, stability-related features and ROM-based 

features. 

 

The third section offers an overview of the protocol applied during the sessions, 

descripts the performed scenarios (e.g. hamstring curl, flexion-extension, squat 

rotation, single leg wall slide and walking gait at different speeds) and proposes the 

application of a weighted K-means technique to evaluate the progresses of a single 

patient during ACLR through a single score indicator. The method for calculating 

the score is exposed and the results are compared to the expected trend.  
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Abstract  

The proposed method demonstrates to reduce the number of features initially 

computed, avoiding redundant and uninformative outcomes. Furthermore, the 

resulting trend of the score indicators helps in detecting a non-monotonic 

improvement of the patient along the rehabilitation program.  

A different analysis that concerns the single leg wall slide scenario is additionally 

reported for having an estimation of the muscle control by studying the data 

distribution. This analysis shows a lower computational load in respect to the 

Fractal Dimension method available in literature and demonstrates that the patient 

is increasing the muscle control during the evaluated sessions. 

 

In conclusion, the proposed algorithm gives a comprehensive and accurate outcome 

for analysing both the traditional scenarios (e.g. Hamstring Curl, Flexion-extension 

and walking sets) and new scenarios introduced in collaboration with two experts 

(e.g. Squat Rotation and Single Leg Wall Slide) and helps in overcoming the lack 

of an unambiguous method due to the intrinsic variability of the features.  

This work confirmed that WIMUs are low-cost, small and user-friendly devices that 

are suitable for long-term monitoring applications in the biomechanical field and 

the method developed can be considered as an effective solution that can offer 

clinicians a detailed objective assessment that complements their subjective 

evaluation.  
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Sommario 

 
 
Il numero di persone affette da patologie che coinvolgono l’articolazione del 

ginocchio è in continua crescita a causa dello stress che affligge quotidianamente 

le strutture anatomiche che la compongono.  

Le ragioni possono essere essenzialmente di natura traumatica o degenerativa. Le 

ragioni di natura degenerativa sono legate a squilibri nei muscoli o nelle 

articolazioni (ad esempio, l’artrosi è una malattia degenerativa che riduce 

progressivamente la cartilagine articolare). Maggiormente legate allo stress e al 

movimento sono invece le patologie di natura traumatica. Queste ultime, infatti, 

sono generalmente risultanti da movimenti bruschi o scorretti durante attività 

sportive. In particolare, la patologia che manifestano più frequentemente gli atleti è 

la lesione del Legamento Crociato Anteriore (ACL). 

È importante considerare che tali patologie necessitano di trattamenti costosi e a 

lungo termine (fino a 24 settimane). 

La valutazione qualitativa effettuata da medici e fisioterapisti è basata sull’utilizzo 

di indici qualitativi (ad esempio, KOOS, IKDC, TUG etc.) e sull’impiego di 

strumenti poco accurati che non permettono di valutare la completa dinamica del 

movimento. 

Il costo della riabilitazione, i periodici controlli, il lungo tempo di monitoraggio, e 

l’assenza di metodi di valutazione accurati rendono necessario lo studio di queste 

patologie al fine di sviluppare strumenti che permettano di migliorare tali aspetti.  

I dispositivi proposti al giorno d’oggi e presenti sul mercato per valutare i progressi 

durante riabilitazione sono i sistemi di elettromagnetici, occasionalmente integrati 

con sensori di forza o di pressione, e i sistemi optoelettronici.  

Nonostante l’elevata accuratezza offerta da tali dispositivi, il loro utilizzo resta 

limitato in applicazioni per monitoraggio a lungo termine. Le ragioni di tali 

limitazioni sono da ricercarsi nella necessità di utilizzare uno specifico ambiente di 
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laboratorio, determinati marker per l’identificazione del soggetto, e un’attrezzatura 

ingombrante per il cui utilizzo è necessario un training.  

Una valida alternativa secondo la letteratura è rappresentata dai sensori inerziali, 

caratterizzati da una buona accuratezza, basso costo, e dimensioni notevolmente 

ridotte.  

 

Per le motivazioni sopra riportate, questo lavoro si propone di ottimizzare un 

sistema per lo studio dell’AωL basato sull’utilizzo di sensori inerziali e sviluppa un 

metodo che calcoli, e successivamente selezioni, un certo numero di features 

rilevanti ai fini della valutazione del paziente. 

 

La prima sezione contiene un’introduzione che include le cause dell’AωL, le 

caratteristiche di un programma di riabilitazione e le tecnologie utilizzate per la 

valutazione del movimento.  

A seguire, è riportato lo State-of-the-art anticipato da una spiegazione dettagliata 

dei sensori inerziali alla base del dispositivo proposto.  

L’ultima parte della sezione si concentra sul descrivere i metodi utilizzati per il 

calcolo degli angoli di flessione-estensione, varo-valgo e interno-esterno relativi 

all’articolazione del ginocchio (knee joint angles) durante l’esecuzione di tipici 

esercizi di riabilitazione e walking sets a diverse velocità. 

 

La seconda sezione descrive l’algoritmo sviluppato in Matlab®.  

Tale algoritmo permette di estrarre non soltanto i knee joint angles, ma una vasta 

gamma di features nel dominio del tempo e della frequenza che consentono di 

ottenere informazioni sul movimento legate sia all’esecuzione dell’esercizio nel 

complesso sia alla singola ripetizione. 

Le features calcolate sono divise in 7 categorie principali: variabili del gait, variabili 

statistiche, variabili cinematiche, jerk-based features, variabili teoriche e associate 
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all’entropia, features legate alla stabilità e infine variabili legate al Range Of Motion 

(ROM). 

 

La terza sezione offre un quadro complessivo del protocollo applicato durante lo 

studio del paziente e una descrizione degli esercizi eseguiti durante l’intero periodo 

di monitoraggio (9 mesi), ovvero hamstring curl, flexion-extension, squat rotation, 

single leg wall slide and walking gait. 

Successivamente, è proposta l’applicazione di un algoritmo non supervisionato 

(weighted K-means) per definire uno score indicator che rispecchi l’andamento 

della riabilitazione.  

L’algoritmo proposto è in grado di selezionare un sottoinsieme di features rispetto 

a quelle proposte inizialmente, evitando l’utilizzo di features ridonanti e poco 

informative che determinerebbero un costo computazionale eccessivo. Oltretutto, 

le features selezionate con tale metodo permettono di definire un andamento dello 

score indicator che rivela un miglioramento non monotonico del paziente durante 

tutto il periodo della riabilitazione.  

Uno studio differente basato sull’analisi della distribuzione dei dati è applicato al 

single leg wall slide per avere una stima del controllo muscolare del paziente. 

Questa analisi si rivela di facile implementazione e vantaggiosa dal punto di vista 

del costo computazione e permette di quantificare un miglioramento del controllo 

muscolare del quadricipite nel corso delle 4 sessioni analizzate.  

 

Riassumendo, l’algoritmo proposto permette di identificare un quadro completo 

dello stato di salute del paziente e si rivela accurato sia negli esercizi tipicamente 

proposti in letteratura (quali Hamstring Curl, Flexion-extension and walking sets), 

sia in esercizi poco studiati ma proposti da esperti durante la riabilitazione (quali 

squat rotation e single leg wall slide).  
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La tecnica basata sulla definizione di uno score indicator permette, oltretutto, di 

oltrepassare le limitazioni date dall’assenza di un metodo di valutazione univoco 

principalmente determinato dalla variabilità intrinseca delle features.  

 

In conclusione, questo lavoro conferma che i sensori inerziali sono strumenti 

economici, di dimensioni ridotte e accurati adatti ad applicazioni di monitoraggio a 

lungo termine per la riabilitazione di pazienti affetti da lesione dell’AωL. In 

aggiunta, il metodo proposto può essere considerato come una valida soluzione utile 

a offrire a medici e fisioterapisti dei parametri quantitativi da affiancare ai 

tradizionali strumenti e indici qualitativi.  
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CHAPTER 1 

Human Motor Assessment 

 

 

1.1 INTRODUCTION 

Nowadays, an increasing number of people is undergoing a lower limb 

rehabilitation. 

The leading causes of lower limb injuries are related to the age, gender, life-style 

and degenerative diseases. 

The most vulnerable lower limb joints are the ankle and the knee.  

Above all, knee is continuously stressed during daily work and sport activities. This 

stress could affect meniscus, patella and, to a greater extend, the ligaments [1].  

The most common knee injury involves the Anterior Cruciate Ligament (ACL) [2].  

Researches confirmed that the ACL can be raptured or damaged during sport 

activities, such as football, basket, skiing or basketball [2,3]. It was estimated a 

number of 80,000 to 250,000 ACL injuries per year in sportspersons [3]. 

Athletes with an injured ACL need to be treated with a non-surgical or surgical 

solution. The former consists in a simple immobilization of the leg, while the latter 

is linked to partial or total knee replacement. 

Treatments and problems related to ACL are economically disadvantageous.  To a 

recent review [4], more than 125000 ACL reconstruction were performed each year, 

leading to a cost that exceeds 1 billion of dollars. ACL consequences can be 

analysed in terms of micro and macro-economic impact. The “micro-economic” 

impact concerns money spent by a single patient to cure himself. On the other hand, 
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the “macro-economic” impact considers investments of public and private 

healthcare institutions.  

The author reported in Table 1.1 a detailed description of factors and costs. 

 

Table 1.1 Economic impact of the main items involved in ACL treatments [4]. 

Item 

 

Cost Range ($) 

ACL Reconstruction Implants  

Interference Screws 200-300 

Tibial Fixation: other 200-500 

Femoral Fixation: other 100-600 

Allowgraft Cost 1400-3000 

Total without allowgraft 600 

Total with allowgraft 3100 

  

ACL surgical cost 800 

  

Post operative costs  

Physical therapy 4000-5000 

Functional brace 800-1500 

Cold Machine 

 

300 

 

 

ACL Rehabilitation (ACLR) programs aim to monitor the progress of patients in 

terms of muscle strength, bilateral and unilateral balance, coordination, range of 

motion and general mobility [2, 5, 6] (Figure 1.1). 
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The rehabilitation period is strictly dependent on individuals. Generally, patients 

after 2-3 months can perform normal daily activities (short-term rehab), while, a 

longer period from 6 to 9 months allows the return to sport (long-term rehab). 

 

 

Figure 1.1: Hierarchy of rehabilitation goals [7]. 

 

A recent review [8] underlined the importance in observing both short-term and 

long-term rehab outcomes to assess full recovery of ACL patients. It was proved 

that only about 60% of patients get a full recovery, less than 60% return to sport 

activity, [3] and about 59% suffer for osteoarthritis of the knee. These statistics 

show the high socio-economic burden, especially related to the long-term 

complications. Hence, considering costs, the number of people and the long period 

of monitoring, it is essential to define methods and simple low-cost instruments that 

analyse short and long-term outcomes during Anterior Cruciate Ligament 

Rehabilitation (ACLR).  
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To this purpose, in this thesis is developed and optimized a method for ACL 

assessment by means of small low-cost Inertial Sensor Measurement Units (IMUs). 

Typical scenarios of ACLR are tested and evaluated in based on different categories 

of parameters. Finally, a method for extracting a single score indicator that helps 

the clinical analysis is proposed. 

 

The rest of the thesis is outlined as follows. The human motor assessment and the 

gait analysis are described in Chapter 1. The explanation of Inertial Sensor 

Measurement Units and the State-Of-The-Art that concerns their application are 

illustrated in Chapter 2 and 3 respectively. The hardware platform and test protocol 

are defined in Chapter 4. The development of the algorithm for extracting the 

features and the assessment of the performance by means of a score indicator are 

described in Chapter 5 and 6. The results followed by an exhausted discussion 

about the outcomes are illustrated in Chapter 7. Finally, conclusions are reported 

in the last Chapter.  

 

1.2 THE CAUSES OF ACL 

The ACL consists in the rapture of one of the two ligament that link the femur (e.g. 

the thighbone) to the tibia (e.g. the shinbone) resulting in a less stabilization of the 

knee joint. 

During sports and fitness activities the knee is particularly stresses and an ACL 

damage is likely to occur. The main manoeuvres that can cause ACL injuries are 

related to side-cutting movement, incorrect landing during jumps, unexpected 

braking, or a collision with another player during a match.  
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During the last decades, a considerable number of studies [3, 9-14] confirmed that 

female subjects are more prone to ACL injury: female-to-male ratio of ACL injury 

varies from 2 to 10. 

The multifactorial reasons that caused this female tendency can be divided in three 

main categories: hormonal, anatomical and biomechanical. [13, 14] 

On one hand, it was observed that a high presence of hormones could affect 

negatively the production of fibroblast and collagen. On the other hand, the wider 

female pelvis could determine less control on knee movements and patellofemoral 

disorders, leading to ACL.  

From the biomechanical point of view, the main differences between male and 

female manoeuvres are linked to the neuromuscular activation. Female athletes had 

showed a stiffer knee, less knee flexion, and less hip flexion during their stand-on-

feet exercises. Experts confirmed that the less is the flexion the more is the 

probability to get into valgus movements [15]. Consequently, a prospective study 

defined knee valgus movements as primary predictors of ACL injury. [9] 

 

People who are affected from an ACL injury are more subject to knee osteoarthritis. 

The knee osteoarthritis is a pathology in which the joint cartilage deteriorates 

leading to a rougher contact between the bones.  

The risk of osteoarthrosis is related to both the severity of the injury and the type of 

treatment during the rehabilitation.   

An educational program [9] based on appropriate muscular, power and strength 

control helped in optimize exercises and reducing the risk of ACL.  

More specifically, these exercises aim to: 

• increase the leg muscles and the core strength (e.g. hip, pelvis and lower 

abdomen); 

• train the patient in jumping and landing properly; 
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• improve the technique for performing side-cutting movements. 

 

Following these guidelines, this document highlights the effectiveness of this idea 

of training. The training was developed in collaboration with two experts and 

monitored the progression of rehabilitation in a young female patient. 

 

 

Figure 1.2: Anterior Cruciate Ligament (ACL) damage [16]. 

 

1.3 REHABILITATION PROGRAMS 

To many experts, the cornerstone of ACLR programs is offered by the publication 

“Current Concepts for Anterior Cruciate Ligament Reconstruction: A Criterion–

Based Rehabilitation Progression” developed by Douglas et al. [17]. 

This document defines the ACLR program as a gradual process based on 

performing specific sets of exercises. Types of exercises, sets and number of 

repetitions change during weeks and are set by physiotherapists who observe the 

patients along the rehab period. These changes establish a ranking of goals that the 

patient should fulfil. 
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During rehab programs patients go through five main phases: preoperative, 

postoperative, progressive limb loading, unilateral load acceptance, and sport 

specific training tasks.  

A pre-to-post surgery monitoring could help in understanding impairments, 

disabilities, or wrong postures during exercises that needs to be avoided or corrected 

to improve long-term outcome [8, 18].  

Despite the peculiarity of several studies [18 -22], progresses during rehabilitation 

depend on individual, which means that the patient follows its own rehab path. To 

date, the rehab path grows gradually from the suggestions of physiotherapists, 

clinicians, or more in general, experts that observe the patient’s progression. 

The five phases (e.g. preoperative, postoperative, progressive limb loading, 

unilateral load acceptance, and sport specific training tasks) are generally referred 

to a period of the rehab program (for instance, the preoperative generally refers to 

weeks 1-2, the post-operative to weeks 3-6, and so on). On the other hand, it is 

important to highlight that these general considerations need to be fitted for patients. 

In other words, the duration of the periods depends on the ranking of goals 

previously mentioned: if the patient satisfies the requirement set per each phase, it 

is possible to move to the next phase (Tables 1.2 - 1.3).  

 

Regarding the five phases, the details extracted from [2, 17] are reported in the next 

subparagraphs. 

 

1.3.1 PREOPERATIVE  

It is common procedure to avoid the surgery unless the patient obtains many 

preoperative requirements: minimal pain, swelling and inflammation response, full 

and symmetrical ROM, increased muscle strength, normal gait walk and 

neuromuscular control (more details shown in Table 1.2 and Table 1.3). 
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Immediately after the surgery, the patient should follow clear instructions that acts 

on reducing the post-surgical pain and on improving early recovery to decrease the 

possibility of complications along the rehab program.  

 

1.3.2 POSTOPERATIVE 

From this phase to the unilateral load acceptance the patient gradually acquires 

strength, balance, and coordination acquired during the preoperative phase and lost 

with the surgery.  

After the surgery the patients could be affected by patellofemoral problems, 

alteration in gait pattern, arthrofibrosis, quad atrophy or inhibition. In order to avoid 

these problems, aggressive control of pain and swelling, multidirectional 

mobilization of the patella, cryotherapy, and recovery of passive and active ROM 

are suggested in addition to the traditional medications, exercises and post-surgical 

compression bands. Furthermore, a normal gait pattern without crutches should be 

achieved within 10 days to avoid quad weakness, patellofemoral pain, and 

instability of the knee. 

 

1.3.3 PROGRESSIVE LIMB LOADING 

This phase aims to increase the strength of quad and hamstring by suggesting 

isometric, isotonic and isokinetic exercises. In particular, isotonic exercises, in 

which the contracted muscle is shorten against a load, proved to be very suitable 

for increasing the quad strength without affecting knee pain and knee laxity. 

Furthermore, cryotherapy and multidirectional mobilization of the knee are still 

suggested for pain, swelling and inflammation relief, in the first case, and to 

gradually achieve full extension of the knee, in the second case. 

Then, it is essential to act on neuromuscular control for avoiding loss of 

proprioception and the related long-term complications. To this purpose, the 
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patients start practicing with basic exercises based on training the dynamic balance. 

The suggestions about exercises generally involves gait without crutches to train 

the patient in performing a normal gait.  

 

1.3.4 UNILATERAL LOAD ACCEPTANCE  

The purpose of this phase is to increase the unilateral strength, coordination, and 

balance while keeping previous goals such as full ROM, low pain and swelling, 

and neuromuscular control. During this phase, the patient should perform 

plyometric exercises in addition to dynamic balance training exercises. The 

former, indeed, train the patients in getting more agility, a proper concentric 

contraction power of the muscle, and unilateral balance. 

At the end of this phase the patient should be able to react quickly to stimulations 

(e.g. changes in directions, sudden breakings, mental distractions) demonstrating 

enough control and coordination.  

 

1.3.5 SPORT SPECIFIC TRAINING TASKS 

“Sport Specific training tasks” give athletes reaction and responsiveness in relation 

to a specific movement. The athlete must able to perform a correct movement in 

absence of a feed-forward mechanism brain-to-action. To this purpose, the patients 

perform agility training, sprinting tests, turning and cutting manoeuvres, or simply 

exercises in which multiple mental distraction are applied. These exercises let the 

patients achieve the optimal neuromuscular control, increase muscle strength, and 

improve arthrokinetic reflexes. 

It was proved that changes in the attentional focus during ACLR influenced knee 

flexion angle, knee extension moment and peak vertical ground reaction force [29]. 
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After increasing the attention of the brain, the patients should be able to react to 

unexpected manoeuvres with an improved muscle control.  
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Table 1.2: Rehabilitation program: phases 1-3, time-based and criteria-based constraints (criteria to be satisfies for starting the 
next phase). 
 
Phases Time-based  

constraints 

Criteria-based constraints 

Preoperative Weeks 1-2 • Minimal swelling (circumference at the patella < 1 cm); 
• Full ROM (symmetrical), full extension and full quad; 
• Flexion greater than 120 degrees; 
• Normal gait walking; 
• IKDC questionnaire outcome respecting the normal values;  
• Low pain score; 
• Quad strength in the injured leg which is > 85-90% compared to the uninjured leg.  

Post-operative Weeks 3-6 • No increasing of pain; 
• Minimal swelling; 
• Full extension, and flexion greater than 90 degrees; 
• Good patellar mobility; 
• Enough quad strength to perform mini-squats (0-30 degrees) 
• Normal gait with or without crutches.  

Progressive Limb Loading Weeks 6-12 • Minimal pain and swelling   
• Full extension, flexion greater than 130 degrees; 
• Normal gait pattern without crutches; 
• Perform exercises of previous week and stair climbing with no difficulties; 
• IKDC questionnaire (greater than 65% of the normative values). 
• Quad strength in injured leg is >60% compared to uninvolved leg  
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Table 1.3: Rehabilitation program: phases 4-5, time-based and criteria-based constraints (criteria to be satisfies for starting the 
next phase). 
 
 
Phases Time-based 

constraints 

Criteria-based constraints 

Unilateral load  

acceptance 

Weeks 12-24 • Absence of pain and swelling; 
• Max difference between legs < 10 degrees in performing flexion and extension of 

the knee; 
• IKDC questionnaire (greater than 70% in respect to the normative values); 
• Quadriceps and hamstring strength of the injured leg >75% compared to the 

uninjured side; 
• Difference between the legs in hamstring/quadriceps strength ratio is <15%;  
• Exercises of previous week are carried out properly with weights; 
• Difference in single-leg hop for distance/cross over hop/vertical hop is <5% between 

legs; 
• Perform squat with overall weight lifted is <10% down on pre-injury level. 

Sport Specific Training 

Tasks 

Weeks 3-6 • Quadriceps and hamstring strength >85-90% compared to the contralateral side.  
• Sprint braking test and Timing of the Illinois agility test respecting fixed values; 
• Difference between legs in hamstring/quadriceps strength ratio <15%; 
• Hamstring/quadriceps strength ratio in the involved leg is >55% in women and 60% 

in men; 
• Hop tests of injured side >85-90% compared to the uninjured side; 
• IKDC questionnaire (within 10-15th percentile of healthy gender-age matched 

subjects); 
• No pain or swelling, during sport-specific activities; 
• Balance and agility training with maximal duration and speed.  
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1.4 HUMAN MOTION ASSESSMENT 

The evaluation of human motion is the base of the whole rehab program.  

Methods to assess patients’ progress are still challenging due to (i) intra and (ii) 

inter variance among groups of patients, (iii) the consideration of the movement in 

multiple degrees of freedom (DoF), and (iv) the wide range of systems proposed to 

date [23]. More in details: 

 

(i) The intra-variance is related to the execution of a single patient: the same 

exercise is performed in different sessions altering factors, such as velocity, 

Range of Motion (ROM) or the way to perform a movement. Recent 

evaluations [19, 22] confirmed that a visual guidance while performing the 

exercise helped in obtaining a proper and more coherent execution.  

 

(ii) The inter-variance considers the same exercise performed by groups of 

patients with different age, gender, weight, and height. 

 

(iii) The human manoeuvres act in different planes. In order to make complete 

and reliable evaluations, it is essential to avoid systems that consider one 

degree of freedom. 

 

(iv) Previous clinical studies [19, 20, 21, 23, 25] showed the lack of reliable and 

accurate metrics to define the human motion. Generally, the methodologies 

considered for the human motion assessment are divided in 3 categories: 

clinimetrics, lab-based systems, and wearable technologies.  

 

The categories of systems that enable the human motion assessment are described 

in detail in the next subparagraphs.  
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1.4.1 CLINIMETRICS  

The clinimetrics is the science of clinical assessment. The clinical assessment 

concerns the direct observation of patients using simple instruments (i.e. 

goniometers and inclinometers), quality scores/questionnaires, and, occasionally, 

an activity diary.   

 

Goniometers (Figure 1.3) are low-cost simple systems that provide an evaluation of 

the ROM of a single body joint. This instrument is positioned by a clinician with 

respect to the joint axis, and it allows measurement in one degree of freedom and 

in static positions.  

As expressed before, every evaluation needs to be coherent with the movement, and 

therefore, must be conducted with multi DoF systems. Furthermore, ACLR 

programs always include patient’s dynamic exercises whose performances cannot 

be detected with a static measurement. 

 

 

Figure 1.3: Evaluation of human motion using a traditional goniometer [26].  

 

The use of other clinical instruments, such as electrogoniometers and inclinometers, 

lead to a more precise evaluation. Electrogoniometers avoid errors due to 

instrument alignment, while, inclinometers allow measurements in different planes 
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(Figure 1.4). Despite the fewer limits, both instruments still show difficulties in 

evaluating 3D dynamic movements.  

 

 

 

Figure 1.4: Evaluation of human motion using an inclinometer [27].  

 

Concerning scores estimations, several trials [19, 20, 21, 22, 24, 25] have provided 

a quality outcome during coaching activities.  

The most common quality scores and questionnaires are resumed down below: 

 

• Qualitative Analysis of a Single Leg Loading (QALSL) 

It defines criteria per each exercise included in the ACLR program. These criteria 

concerns knee motion, steadiness of the stance, trunk alignment, loss of horizontal 

plane etc. . 

When a single criterion is met the score assigned is 1, 0 otherwise. The total score 

is given by the sum of the scores of each criterion [2]. At the end of each session, 

the highest the total score, the worst the patient condition is.  
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• International Knee Documentation Committee (IKDC) 

It consists in ten questions divided in three categories: patients’ symptoms, sport 

and daily activities, and knee motion before and after ACL rapture.  

The IKDC is the percentage of the difference between the highest and the lowest 

score, divided by the range of possible scores. All scores are then summed to get a 

single index. High values testify on good knee function levels and minor knee 

symptoms [21]. 

 

• Time Up and Go Test (TUG) 

It measures the time spent by the patient to rise from a chair, walk for 3 meters, turn 

around and go back to the chair. Normal ranges are around 11-20 seconds. When 

the test exceeds 30 seconds low dynamic stability is assessed. 

 

• Knee Circumference Measurement 

It is based on measuring the knee circumference at the patella. Experts must be 

alerted when this value is more than 1 cm [2].  

 

Other examples of quality metrics extracted from papers are the Western Ontario 

and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and 

Osteoarthritis Outcome Score (KOOS), Development of the Patient Activation 

Measure (PAM), Health Resource Use Questionnaire, Stanford Self-Efficacy 

Questionnaire, Tegner Lysholm Scoring Scale (TLSS) and Body Mass Index 

(BMI).  

 

For giving few examples, in [20] evaluated the effectiveness of using an activity 

diary and quality indexes, such as TUG and KOOS during an activity training.  



 

17 
 

CHAPTER 1 Human Motor Assessment 

Similarly, [22] compared the BMI to patient’s satisfaction and exercise adherence. 

While, in [21] patient’s progresses during treatment are studied through the IKDω 

and TLSS.  

These studies have all highlighted that the use of quality score during rehab program 

can be used along with the standard instruments for increasing the satisfaction and 

the adherence of patients.  

 

1.4.2 LAB-BASED SYSTEMS: HUMAN MOTION ANALYSIS 

GOLD STANDARD 

 

A technical evaluation of 3D dynamic movement is obtained with the lab-based 

systems. 

 

The most common lab-based devices proposed in literature are electromagnetic 

tracking systems, treadmills which occasionally integrates force platform, pressure 

mats and optoelectronic systems.  

 

Electromagnetic Tracking systems (ETs) enable the identification of the position 

and orientation of several sensors in the 3D space [28]. 

The advantages in using such system is that they are quite inexpensive and do not 

need a well-lighted lab-environment for marker detection. 

 On the other hand, the ETs detects the location of the sensor through the emission 

of an electromagnetic field. Hence, this technology makes the analysis of dynamic 

movements possible and reliable. On the other hand, the presence of metal can 

affect adversely the measurements, and a further correction of the error is very time-

consuming.  

 

A second type of lab-based device is the instrumented treadmills (Figure 1.5). The 

whole system generally includes the treadmill, a high-speed camera, a work-station 
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for data elaboration, and occasionally markers and force platforms. These systems 

find their application in gait analysis for analysing the joint range of motion and for 

computing spatio-temporal parameters. Several brands have brought these system 

to the market, such as Medical Developments International (MDI), Bertec, AMTI, 

and Treadmetrics.   

Despite the high-accuracy, the reliability and the customizable solution offered by 

these devices, the high-cost, the utilization limited to a lab space, and the bulky 

instrumentation are considered a great drawback that limits their use for at-home 

rehab.  

 

 

Figure 1.5: Instrumented treadmill with Kistler force sensor designed by MDI to 

measure ground reaction forces during human walking and running [29]. 

The category of video camera-based systems is considered the gold-standard of 

human motion analysis. The optoelectronic systems that are currently on the market 

are Vicon, Qualysis, Codamotion, Motek, and Biometrics [30]. 

These systems generally consist of several cameras, active or reflective markers 

placed on different positions of patients’ body, and a workstation.  

These devices reconstruct the subject model in based on the markers coordinates. 

Considering that markers can be hidden during subject motions, several cameras 

(instead of a single one) placed in different position of the lab help in detecting the 



 

19 
 

CHAPTER 1 Human Motor Assessment 

marker position during the development of the test. If the position of a specific 

marker is detected by multiple cameras, the redundancy is used to improve the 

accuracy of the reconstruction. Hence, this technology, compared to the others, 

offers the highest accuracy in the evaluation of the human motion in multiple DoF. 

Unfortunately, the need of specific markers, the numerous lab-environment 

constraints (i.e. the level of the light for the markers detection), the training required 

to use the system, and the high cost and not portability limit the application of these 

systems to a restricted number of specialists (Figure 1.6). 

 

Because of the evident drawbacks, none of these technologies is therefore suitable 

for at-home rehabilitation and long-term monitoring. 

 

 

Figure 1.6: Video-camera based motion analysis using Vicon system [31].  

1.4.3 WEARABLE TECHNOLOGIES: INERTIAL SENSORS 

MEASUREMENT UNITS  

 

Nowadays, thanks to the expand of micro-electrical mechanical systems (MEMS), 

there is a growing trend towards to the application of Inertial Sensor Measurement 

Units (IMUs) in human motion analysis [23,30, 32, 33, 34].  
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Unlike the camera-based motion capture, these devices result to be environment-

independent and avoid any issue related to camera set-up, resolutions, frame rate, 

etc. [30]. 

These advantages make the application of IMUs suitable for action or gesture 

recognition, gait identification, motion imitation in robotics, sport science, medical 

diagnosis, home-monitoring and rehabilitation [23]. 

 

The IMUs are electronic systems made by the combination of three sensors: an 

accelerometer, a gyroscope, and occasionally, a magnetometer. The accelerometer, 

the gyroscope and the magnetometer measure the acceleration, angular velocity and 

magnetic field in a specific location, respectively.  

Using triaxial sensors, it is possible to assess the complete human motion of the part 

of the body on which the IMUs are placed over the 3D space.  

Generally, raw data are extracted by means of a microcontroller on board, and then, 

saved on SD card or transmitted through a Wi-fi/BLE module.  

The saved data are further processed to calculate the Euler angles (e.g. roll, pitch 

and yaw, these angles are referred to rotations around frontal, sagittal and frontal 

axis, respectively) and any other feature of interest.  

 

This thesis proposes the use of four IMUs for monitoring weekly the ACLR of a 

young female patient. 

The model of IMUs which is used to undertake this study is the Rev4 Wireless 

Inertial Measurement Unit (WIMU). The Rev4 WIMU is a 9-DoF, portable, low-

cost device that was developed and validated at Tyndall National Institute.  

The cost-effectiveness, the high accuracy, and the good performance give this body-

worn system the flexibility to be considered as home-monitoring supporting device 

during ACLR. This could help in optimizing both the micro and macro-economic 

aspects linked to ACL.  
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During the test, the patient wears two WIMUs (the first on the thigh, and the second 

on the mid-shank) per leg by means of a stretchable velcro strap and performs many 

scenarios typical of ACLR (e.g. Hamstring Curl, Flexion-extension, Squat 

Rotation, Single Leg Wall Slide and walking sets at different speeds).  

In particular, the pattern identified by the walking gait could reveals the presence 

of biomechanical irregularities that are due to an improper position on the foot 

during gait, to pathological conditions, or to sores in the back, ankle, knee and 

ligaments. For these reasons, it is considered as a key point to be evaluated during 

ACLR programs.  

Thus, before reporting an overview of the State-of-the-art in IMUs in biomechanics 

an explanation of the principles of gait analysis is reported in the following 

sections.  

 

1.5 GAIT ANALYSIS IN REHABILITATION 

Gait Analysis is referred to the study of person’s gait during walking or running and 

is considered as a key point to be evaluated during rehabilitation programs.  

Pathological subjects show an irregular walking gait in which the posture can be 

fixed with orthotics devices, in case of structural problems, or coaching activities 

for improving the ACLR and reducing risk of ligament breakage [11,35].  

 

During the walking gait the subject cyclically moves one foot after the other, hence, 

imaging to stop the scene in different frames, the subject can be seen with both foot 

on the ground or just one in contact while the other leg is moving. In a technical 

view, the former and the latter are called double and single support of the leg.  

On the other hand, these frames identify what are known as gait phases: stance 

phase and swing phase. The gait phases, in turn, are defined by three temporal 
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instants of the gait which are known as Mid-Stance, Heel-Strike and Toe-off (Figure 

1.7).  

Furthermore, the combination between stance and swing phase returns the Gait 

Cycle Time (GCT).  

 

Unlike the single support, the computation of the double support involves both legs 

and can be obtained by merging two sub-intervals called initial double-support and 

terminal double support. When the subject starts the walking gait with the left leg, 

the initial double support is extended from the left Heel-strike to the right Toe-off, 

similarly, the Terminal Double-support is extended from the right Heel-strike to the 

left Toe-off. 

 

After giving a brief overview of all the parameters related the walking gait, more 

details are presented down below to allow a more comprehensive knowledge. 

 

From this point, the notation used to define temporal instances of each leg is simply 

by inserting “right” or “left” in advance to the related word (for instance, right Toe-

off, left Heel-strike etc.).  

 

 

Figure 1.7: Representation of the walking gait phases and its definitions [36]. 
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1.5.1 GAIT VARIABLES 

As exposed before, the walking gait is identified by two phases (e.g. the stance 

phase and swing phase) and their combination between stance and swing phase 

gives an estimation of the GCT.  

These variables can be defined as follows: 

• The stance phase is the period of time when one leg bears the body weight 

in a single support by keeping one foot on the ground, and it generally 

represents the 60% of the whole gait cycle.  

• The swing phase is the period of time while the subject is moving forward 

keeping one leg swinging in the air and it completes the remaining 40% of 

the gait cycle. 

 

• The GCT is the period of time between consecutive contacts of the same 

foot. Hence, the gait cycle of a limb begins when the related foot contacts 

the ground and ends when the same foot touches the ground again. 

 

The calculation of the temporal instants in both legs allows a further evaluation that 

involves the spatial parameters. The most informative spatial parameters related to 

the walking gait are the stride length, step length, stride speed, and the clearance.  

 

1.5.2 GAIT TEMPORAL INSTANTS AND SPATIAL 

PARAMETERS 

 

This paragraph gives an explanation of most parameters involved in the walking 

gait used for the assessment of the patient during rehab programs. 

The temporal instants that determine the extension of the gait phases are called 

Heel-strike, Mid-stance and Toe-off. 
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The Heel strike (HS), also called initial contact, occurs when the feet contact the 

ground, the muscles (hip extensor, quadriceps, tibialis anterior) are contracted and 

the knee is bended around 15 degrees to stabilize the hip and absorb the shock.  

 

The Mid-stance (MS), also called single limb support, marked the transition 

between double and single support. Hip extensors and quadriceps contract 

concentrically to allow the lifting of the limb until the shank is vertical in respect to 

the ground. The knee extension allows the verticalization of the limb and prevents 

the pelvis from falling at the next heel-strike.  

 

The Toe-off (TO), also called initial swing, starts with the lifting of the limb, it 

continues with the cyclical muscles contraction to move forward the swinging limb, 

and it ends with the maximum knee flexion to allow a proper transfer of the body 

weight on the other limb.  

 

After the calculation of the temporal instances, it is possible to extract the gait 

spatial intervals that have a definition in which they are involved.  

The spatial parameters considered in this work are the Stride Length, Stride Speed 

and Clearance.  

 

The Stride Length (SL) is limited by two consecutive placements of the same foot 

on the ground and can be considered as the double step length. The step length is 

the spatial interval which starts with the placement of one foot and ends with the 

placement of the opposite foot during the advancing movement of the subject in the 

walking gait. Unlike the step length, which could show different values for right 

and left leg, the values of the stride length should be the same along the 

advancement.  

 

Then, the Stride Speed (SP) is detected as the distance over time. Generally, its 

values are around 89 m/min in males and 75 m/min in females. 
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Finally, the Clearance (CL) is considered as the maximum height reached by the 

foot during the swing phase [37]. Insufficient values of CL are often related to fall 

during walking (Figure 1.8).  

 

 

Figure 1.8: Graphical representation of the clearance detected by an IMU placed 

on the foot during walking gait [38].  
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CHAPTER 2 

Inertial Sensing Measurement Units 

 

 

2.1 IMUs BUILDING BLOCKS 

To obtain a more precise evaluation of human motions during ACLR, the use of 

IMUs is taking over the application of video-camera based systems. 

As mentioned in Chapter 1, IMUs are electromechanical devices based on the 

functioning of an accelerometer, a gyroscope, and, occasionally, a magnetometer 

[39,40,41]. The working principles of these sensors are described below. 

 

2.1.1 ACCELEROMETERS 

An accelerometer [42] is an electromechanical device that measures the 

acceleration forces (Figure 2.1). Measuring the static acceleration, it is possible to 

understand the position of the device in respect to the Earth, while, considering the 

dynamic acceleration the movement of the device is detected.  

There are two types of accelerometers: piezoelectric accelerometer and low-

impedance output accelerometer. The former is based on the squeezing of a 

piezoelectric crystal that causes an electrical charge directly dependent to the 

acceleration force. The latter converts the charge into low impedance voltage by 

means of tiny micro circuit and a FET transistor. 

Accelerometers find their most common application in sensing free-fall, car 

crashes, or damages. As an example, they are used during the installation of the 

airbag in mechanical fields or for detecting the freefall of different objects in 

computer fields. 
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Due to its low-cost, size and integrability it is considered a valid alternative to other 

instruments in biomechanical applications. 

 

 

Figure 2.1: Accelerometer sensor [43]. 

 

2.1.2 GYROSCOPES 

Gyroscopes are electromechanical devices that measure the angular velocity from 

the Coriolis force applied to a shaking element. They sense the change in orientation 

and in the rotational motion per unit of time [44]. 

More in details, the drive arm rotates in a defined direction. Then, a vertical 

vibration is produced by the Coriolis force which acts on the drive arms. In turn, 

the vertical vibration causes the bending of the stationary part producing motion in 

the sensing arms. This motion creates a potential difference from which angular 

velocity is first measured and then given in output as electrical signal. (Figure 2.2) 
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Figure 2.2: Schematic representation of the gyroscope principles [44]  

 

With the development of MEMS, gyroscopes are becoming more compact finding 

new applications, such as shake detection in video-cameras, motion sensing in 

virtual reality, and car navigation. (Figure 2.3) 

 

 

Figure 2.3: Main applications of gyroscope varying on size and performances 

[44]. 
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2.1.3 MAGNETOMETERS 

Magnetometers are devices that measures the magnetic field at a specific position 

(Figure 2.4). There are two types of magnetometers: vector magnetometers and 

scalar magnetometers.  

Vector magnetometers sense the magnetic flux density value in the 3D space in a 

specific direction, while, scalar magnetometers sense the location and the amplitude 

of the vector of the magnetic field. 

These systems can be inserted into IMUs to get more accurate results. 

Unfortunately, their calibration is challenging due to their sensibility to external 

magnetic fields. Both objects that create the magnetic field and metals of the 

environment could cause a distortion in the measurement. Considering these 

problems and following the confirmation of previous studies [45, 46], the use of 

magnetometer is not taken into account for this specific work, and the proposed 

IMU is mainly based on the functioning of accelerometer and gyroscope.  

 

 

Figure 2.4: Schematic view of a Z -axis parallel-plate magnetometer. In presence 

of magnetic field, the suspended mass is subject to a Lorentz force, which further 

determines a displacement sensed through differential capacitors [47]. 
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2.2 CLASSIFICATION AND ERRORS OF 

ACCELEROMETERS AND GYROSCOPES 

 

Accelerometers and Gyroscopes can be defined by type, dimension, or field of 

application (Figure 2.5).  

Lately, gyroscopes are applied in combination with accelerometers in inertial 

sensing platforms and are used for detecting the amount of angular velocity 

produced during sport activities [39,40,45]. 

In this study, a MEMS accelerometer and a MEMS gyroscope with a 3-axis 

dimension are inserted in an IMU for healthcare applications. 

 

 

Figure 2.5: The categorization of accelerometer and gyroscope on the market 

[48]. 

 

In the application of gyroscopes and accelerometers the user must pay attention to 

both the starting conditions and the errors coming from the sensors [49]. These 
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errors, in fact, can lead to an imperfect identification of the object’s location, or in 

biomechanical field, subject’s location. 

 

The main source of errors linked to the sensor are the bias, the scale factor and the 

noise (Figure 2.6). 

The bias is the output that is obtained from the sensor when there is no input. The 

severity of this error depends on the type of system used (Figure 2.5), on the setup 

property, and the compensation of the system. The bias is represented by a constant 

offset and a factor, called bias drift, which varies on time and temperature. It is 

generally reported in the datasheets in units of mg, in the case of accelerometers, 

and in degrees/second, in the case of gyroscopes. The latter is more affected by this 

type of error, thus, the integration of data can cause a wrong estimation of the 

orientation. 

The scale factor considers the ratio of change of the output in respect to the input 

(K =  ܵ ⁄ܫ , where S is the output, and I is the true input). Modifying the range of 

the input, it defines the slope of the least squared fitted line of the output data. This 

error is reduced during the calibration phase.  

Finally, the noise could adversely affect the measurement and, therefore, it should 

be reduced.  

 

In order to obtain parameters that reflect a realistic behaviour of the subject, the 

proposed algorithm combined the output of the accelerometer and the gyroscope 

gaining a higher accuracy in respect to the use of a single sensor.  

In particular, the accelerometer is used for identifying the behaviour of the 

movement and the gyroscope is used for estimating the change in orientation and 

in the rotational motion per unit of time. Hence, this combination limits, on one 

hand, the noise of the signal taken from the accelerometer, on the other hand, it 

limits the bias drift typical of gyroscopes (Figure 2.7). 
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Figure 2.6: Schematic representation of all the error that can affect the 

measurement of accelerometers and gyroscopes [49]. 

 

 

 

Figure 2.7: Combination between the output of the accelerometer and the 

gyroscope in order to gain a higher accuracy in respect to the use of a single 

sensor [46]. 
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This trial tested, therefore, the combination between a triaxial accelerometer and 

gyroscope for monitoring the patient’s progress during AωLR. The raw data taken 

from both sensors are used for extracting, first, the Euler Angles, and then, several 

statistical, time-domain, frequency-domain and info-theoretical features.  

The explanation of the algorithm in which these parameters are calculated is 

anticipated by an overview of the state-of-the-art that analyses both the use of IMUs 

in biomechanics for the knee joint angles calculation and the gait assessment. 
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CHAPTER 3 

Literature Review 

 

 

To date, several studies proposed the use of IMUs in biomechanical fields. Different 

type of pathologies, methods and metric have been used for patients’ health status 

assessment.   

In the next section a brief overview of the latest applications of IMUs in 

biomechanics. It is shown particular attention is given to the lower limbs, because 

of their high stress. Then, the latest approaches to extract the basic parameters for 

starting the assessment of lower limb performances are also reported.  

 

3.1 STATE-OF-THE-ART OF IMUs IN 

BIOMECHANICS 

 

A wide range of inertial measurements have been proposed in literature.  

Many of these are focused on a single movement or exercise. Johnston et al. [50] 

demonstrated that a single IMU in the lumbar area is sufficient for classifying pre 

and post-fatigue balance in Y Balance Tests. Differently from [50], Mo et al. [33] 

needed 5 IMUs placed on pelvis, on both shank and on foot to analyse the accuracy 

of two methods (e.g. S- and M-methods) to detect gait events at two running speeds.  

They concluded that the estimation of toe-off and initial contact is estimated with 

M-method and S-method, respectively, and the combination between the two 

allows a better prediction of stance duration.  
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In the meantime, the University of Waterloo [39] proposed the use of IMUs for an 

automated rehabilitation system in which patients’ performances are evaluated with 

and without an exercise guidance during flexion-extension of the knee. This work 

proved the utility of visual feedback and guidance during the performance of rehab 

exercises. 

Then, [41] and [51] evaluated whether IMUs are suitable to discriminate the correct 

execution of flexion-extension and lunges, respectively, and assessed that a single 

IMU is capable to differentiate correct and incorrect exercise performances (Figure 

3.1).  

 

Other studies are focused on improving the assessment of specific pathologies 

during different types of rehabilitation programs. Bonora et al. [32] validated a 

previous method for assessing the balance during the anticipatory gait adjustment 

prior to Parkinsonians’ walking phase by positioning three IMUs, two on shins and 

one on the lower back. Teague et al. [34] undertook a knee health assessment by 

measuring acoustical emissions during three types of exercises. The acoustic 

sensing and knee joint angles calculation are realized by means of two contact 

microphones and two IMUs, respectively.  

 

In alternative to the systems mentioned above, it is a common procedure to combine 

IMUs and other devices to improve the accuracy of results.  For example, 

Spasojević et al. [40] developed a novel approach for supporting experts during 

Parkinson’s rehabilitation combining both IMUs and Visual systems and extracting 

movement performance indicators from different exercises, walking included.  The 

suggested system showed to be suitable for at-home rehab and supports clinical 

diagnosis with reduced subjectivity and imprecision. 
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Figure 3.1: An example of lower limb assessment reported in [51] which used 5 

IMUs. One sensor is placed in the spinous process of the 5th lumbar vertebra, two 

at the mid-point of both femurs on the lateral surface and the remaining two on the 

shank of both legs. 

 

3.2 KNEE JOINT ANGLES CALCULATION 

The starting point of the majority of papers reported in the previous paragraph is 

the calculation of knee joint angles. This calculation is considered the cornerstone 

of the lower limb assessment and rehabilitation programs in which IMUs are 

involved. It basically consists in giving an estimation of the segments’ motion by 

placing one or a multiple set of IMUs in proximity of the joints.  

As reported in Chapter 2, the use of accelerometers and gyroscopes sometimes is 

supported by magnetometers to give information about azimuth and the horizontal 

plane.  
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So far, the use of the both inertial and magnetic sensors has been proposed in many 

studies and the most accurate method is based on the Kalman filter to estimate the 

orientation quaternion of the segments.  

 

In literature [52] it has been proposed the use of magnetometer to obtain 

information incline that combined with the gravity vector of the accelerometer 

realising a strapdown integration on inertial acceleration. They showed a more 

accurate identification of the knee joint angles when applying magnetometers in 

addition to accelerometers. As a drawback, the magnetometer is subject to local 

fluctuations of the Earth’s magnetic field due to the presence of surrounding 

ferromagnetic materials as exposed in Paragraph 2.1.3.  

 

More recently, in [53] has been studied a system that includes magnetometers for 

extracting joint angles in gesture recognition. The signals taken from 3D-sensors 

have been filtered to remove high frequency noise and the segments orientation was 

computed using a gradient descent algorithm. This study confirmed that the 

application of such systems is limited to the rough assumption of homogenous 

magnetic field, which is very far from the real scenarios.  

 

A research [54] has evaluated the reliability of a new systems made by the 

combination between e-textiles goniometer and tri-axial sensor for human motion 

analysis. A Kalman filter is the method used to measure the flexion-extension angle 

of the knee during different scenarios (e.g. monopodalic flexions and walking at 

different speeds). The proposed method showed an improved angular estimation 

compared to the results in applying textile goniometer and accelerometer, 

separately.  

As a drawback, it revealed to be very intricate and the implementation of Kalman 

Filter led to high-computational load.  
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An alternative to the Kalman Filter is offered by [55], which proposed the 

combination between accelerometers and gyroscope for applying a direction 

integration of the signal, known as “strapdown integration”, during sit-to stand 

exercises. It mainly consists in using the accelerometer during slow-moving 

scenarios, replacing it with gyroscope in faster scenarios when the variance of the 

accelerometers overcome a threshold. This shows to limit the noise that affected 

accelerometer and the bias drift typical of gyroscopes.  

 

In [41] a three-link method that considers the application of IMUs without magnetic 

sensors for estimating both knee and ankle joint angles. This method is based on 

attaching an IMU on the subject’s chest and it calculates the angles during the 

extension phase of stand-up motions.  

The proposed algorithm needs the set of many variables and need the manual 

measurement of several parameters, such as the length of the trunk or thigh, that 

restricts its application.  

 

To the above considerations for calculating knee joint angles it suggested to: 

• avoid assumptions about the use of magnetometers; 

• reduce the computational time; 

• limit the set up to the lowest number of parameters and search for solution 

that does not require a high computational load.  

 

To these purposes, in this work the magnetometer is not taken into account and the 

raw data of both accelerometer and gyroscope are used in combination to improve 

the accuracy of results.  

Then, to reduce the computational time that characterizes the application of the 

Kalman Filter, a Gradient Descendant technique is used for extracting the Euler 

Angles.  
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Finally, the set-up is limited to one parameter that corresponds to the distance 

between the ground and the sensor placed on the shank, useful for avoiding the 

rough assumption on the initial velocity (e.g. initial velocity equal to zero) and 

improving the accuracy of the spatial parameters during the walking gait (see 

Chapter 6).  

 

3.3 GAIT ANALYSIS IN LITERATURE 

Following the explanation of Chapter 1 that concerns the basics of gait analysis, 

this section offers an overview about the recent studies that aim to obtain a gait 

assessment by means of IMUs. The main objects of these studies are: (i) 

assessment of balance during gait, (ii) evaluating gait symmetry, (iii) prediction of 

gait temporal instants, (iv) estimation of walking speed, and (v) improve the 

accuracy of the detected parameters by means of machine learning.  

As previously mentioned, an example of balance estimation is offered by [32], in 

which three IMUs have been used for data recording during the anticipatory gait 

adjustment that anticipate the Parkinsonians’ walking phase. A similar evaluation 

has been developed in [56] in which IMUs have been used to track the upper body 

motion during walking tests. More specifically, this study compared four methods 

for aligning the IMUs in respect to the global reference for correcting the raw 

signal of the acceleration.   

Another object is proposed in [57]. This study is an example of gait symmetry 

assessment, in which a quantitative assessment of gait symmetry for defining the 

health status of patients affected by hip-replacement has been provided. More 

specifically, it has proposed a symbolic-based symmetry measure that quantify the 

similarity between right and left side, making the measurements independent from 

the speed at which the exercise is performed. 
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On the other hand, in [58] an application of IMUs, in addition to pressure-sensitive 

insoles, for detecting gait initiation and termination has been developed. The 

proposed algorithm has detected two instances called gait onset and toe-off by 

segmenting the gait into steps and applying a supervised machine learning 

technique. Better results are shown for detecting the gait initiation in respect to the 

termination (well-predicted in the 80% of the trials).  

Regarding gait parameters, in [59] has been proved that it is possible to estimate 

the walking speed by means of IMUs placed on the shank and on the feet for 

detecting the single stride cycles. More specifically, the walking speed is 

calculated by integrating the angular velocity and linear acceleration extracted 

from the sensors.  

Another example the computation of its parameters has been offered in [60]. This 

analysis has provided a wide range of parameters related to the gait (e.g. cadence, 

ambulation time, step time, gait cycle time, stance and swing phase time, simple 

and double support time) by extracting the raw data from two accelerometers 

placed on the ankles. Then, a Bayesian classifier is applied to optimize the obtained 

results by distinguishing between step and non-step. 

This thesis tries to include all the mentioned objects. The balance estimation is 

given by computing the foot clearance, that can be defined as primary prediction 

of falls during gait. Then, the recorded gait sessions are segmented in order to 

detect temporal instants and the related spatio-temporal parameters, including 

symmetry and stride speed. Finally, an unsupervised machine learning technique 

(e.g. K-means) is applied for having an estimation about right and left differences 

and defining a score indicator.  
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CHAPTER 4 

HW platform and data collection protocol 

 

 

As exposed in Chapter 1, the gold-standard technologies can offer a great quantity 

of information regarding the human motion with the highest accuracy, but 

important limits such as the high cost or the need of a lab environment.  

For these reasons these devices revealed to be unsuitable for a long-term monitoring 

of patient after the knee surgery. 

The inertial sensing platform represent a more practical solution at a small-size and 

low-cost.  

 

4.1 THE MONITORING SYSTEM 

The monitoring system used in this work is made by four Wireless Inertial 

Measurement Units (WIMUs) developed at Tyndall National Institute.  

Each leg is equipped with two WIMUs, one placed on the thigh and the other placed 

on the shank (Figure 4.1). 

 

 

 



 

42 
 

CHAPTER 4 HW platform and data collection protocol 

 

Figure 4.1: WIMU developed at Tyndall National Institute [61]. 

 

Each WIMU is made by the following components [61]: 

• the motion tracking device; 

• a high-performing micro processing unit (MCU); 

• a Bluetooth complaint module (BLE); 

• A rechargeable battery. 

  

In addition to the main components, the platform is equipped with a USB connector, 

a battery charger, three LEDs for the battery monitoring, a power switch for starting 

the data recording, 1 Mb of flash memory and 192 plus 4 Kb of SRAM, several 

enhanced I/Os and peripherals, and other communication interfaces. 

The dimension of the platform is 44 x 30 x 8 mm without battery.  

Finally, the whole system is enclosed in a 3D printed case and fixed to a stretchable 

velcro strap. 

 

4.1.1 THE MOTION TRACKING DEVICE 

The motion tracking device is composed by an accelerometer and a gyroscope 

included in a MPU-9250, Invensense. [62]. 

The Invensense MPU-9250 is a 9-axis device (Figure 4.2) that offers optimal 

motion performances at the smallest size (size reduced of 44% in respect to other 

devices on the market).   
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This device revealed to be suitable for different applications that aims to evaluate 

the motion, such as motion-based game controllers and wearable sensors for health, 

fitness and sports. 

Both accelerometer and gyroscope present a digital-output with a user-

programmable full-scale range whose highest values are 16g and 2000°/sec, 

respectively. In addition to the high range, the power consumption is very low, only 

9,3 µA. 

 

 

Figure 4.2: The Invensense MPU-9250 is a 9-axis motion-tracking device [62]. 

 

4.1.2 THE MICROPROCESSING UNIT 

This sensing platform is wired to the high-performance microprocessor ARM 

Cortex-M4 through a I2C communication [63]. 

The Cortex-M4 microprocessor reaches 32-bit performance with low power 

consumption and an operating frequency up to 180 Hz (Figure 4.3). 

The Memory Protection Unit (MPU) improves the software reliability giving to 

each module the access only to defined areas. This help in avoiding problems of 

overwriting clinical data due to unexpected accesses. Then, it additionally shows a 

Floating Point Unit (FPU) that enables the device in obtaining accelerated single-

precision floating-point operation. 

The high efficiency, the reliability, low-power consumption, low cost and easy-of-

use satisfy a large variety of market and make it a flexible solution also for targeting 

motor control.  
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Figure 4.3: The Cortex-M4 processor part of the STM32F0407 family produced 

by STMicroelectronics [64]. 

 

4.1.3 DATA COLLECTION 

The data captured from the sensor can be transmitted using a wireless transmission 

or recording them at a sampling rate of 250 Hz on a removable Micro SD card.  

The wireless transmission is obtained by means of a Bluetooth-complaint module, 

Broadcom BCM20737S. This system integrates an ARM C3 microcontroller unit, 

radio frequency and embedded Bluetooth Smart Stack achieving single mode low-

energy solutions.  

 

4.2 PATIENT DETAILS 

The injured subject tested in this study is a young female athlete, whose details are 

shown in Table 4.1, that underwent a knee surgery for reconstruction of the left 

anterior cruciate ligament. 

This information is inserted in the section “Test details” included in the Graphic 

User Interface (GUI) described in detail in Chapter 5. 
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Overcoming the limitation of recent studies which analysed only the starting part 

of rehabilitation process, this analysis starts in the pre-surgery phase and monitors 

weekly the patient during the rehab covering a period of nine months. Thus, it is 

possible to evaluate both patient’s improvement during the rehab program and the 

occasional long-term complications.  

 

Tab.4.1 Patient personal details 

Name Niamh 

Surname Creedon 

Age 26 

Weight  57 Kg 

Height  167 

 

 

Tab.4.2 Timetable of the trial. 

Start  date of the trial :  23.03.2017 

End date of the trial :  14.12.2017 

Injury date:  22.01.2017 

Surgery date:  04.04.2017 

Frequency of  capturing data:  Weekly 

 

 

 

4.3 PROTOCOL OF THE DATA CAPTURE 

Before starting the evaluation of the patient in different scenarios, the body-worn 

inertial sensors have been placed laterally on the thigh and on the anterior tibia by 

means of stretchable velcro straps (Figure 4.4). 
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Figure 4.4: The 4 WIMU (circled in red) are placed by means of stretchable 

Velcro straps on the shank and thigh of each leg. 

 

The protocol has been developed with the suggestion of two experts, and generally 

reflects the activities assigned by clinicians for at-home ACLR. 

The different types of scenarios included in this protocol are Hamstring Curl, 

Flexion-extension, Walking sets, Squat rotation, and Single leg wall slide.  During 

each scenario a defined number of repetition is performed to improve the quality of 

results. 

The exercises have been introduced gradually during rehabilitation taking into 

account the standard of rehab protocols [1]. Generally, Squat rotation and Single 

leg wall slide cannot be tested until the patient shows full range of motion of the 

knee and enough single leg strength. For these reasons, these scenarios have been 

analysed only in the last part of the rehab monitoring program. 

Furthermore, each scenario is anticipated by a squat performed by the subject to 

allow the data synchronization of the WIMU (see Chapter 5). 

 

In the following subparagraph a brief explanation of each scenario and the 

associated technique is reported.  
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4.3.1 HAMSTRING CURL  

The hamstring curl is based on standing on one limb while bending the opposite 

knee to allow the heel movement to the gluteus.  

This movement is repeated 15 times per 2 sets, with a little relaxation of muscles 

after each repetition in which the heel returns to the ground. 

 

4.3.2 FLEXION-EXTENSION 

In the flexion extension scenario the subject contracts the hamstring muscles and 

bends the knee in direction of the chest digging the heel into the ground [2]. 

This movement is repeated 15 times per 2 sets, distending the limb after each 

repetition in which the knee returns to the starting position. 

 

4.3.3 WALKING SETS 

The walking sets are performed by means of a treadmill at three different speeds: 

3, 4 and 6 km/h. Per each speed are performed two sets (or trials) that last about 1 

min.  

 

4.3.4 SQUAT ROTATION  

In this exercise the subject contracts quadriceps and gluteus, keeps the knee bended 

around 90 degrees, and performs frontal, lateral and hyper-extension of the knee, 

three times per each leg (Figure 4.5).  

 

4.3.5 SINGLE LEG WALL SLIDE 

In the squat wall slides the patient enhances the quadriceps and knee strength 

standing with the back leaning against a wall, keeping the foot about 30 cm from it, 
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and bending the knee about 90 degrees. Then, one leg is lifted while the opposite 

one stands for about 20 s. This set is repeated one time per each leg (Figure 4.6). 

 

 

Figure 4.5: The patient while performing squat rotation. Stage 1: Bend the knee 

around ninety degrees. Stage 2-4: perform frontal, lateral and hyper-extension of 

the knee. 

 

 

Figure 4.6: The patient while performing single leg wall slide. Stage 1 (lateral 

view): Bend the knee around ninety degrees. Stage 2 (frontal view): keep one leg 

lifted about 20 seconds. 
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After performing the set of exercises defined in each session, the raw data recorded 

in the four WIMU are extracted and elaborated for the computation of the knee joint 

angles, spatio-temporal parameters of gait and a varied set of features. A detailed 

explanation of the algorithm developed to achieve this purpose is reported in the 

next Chapters. 
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The algorithm is entirely developed in MATLAB® and includes four main stages:  

 

• insertion of patient’s personal information in the Graphic User Interface 

(GUI); 

• knee joint angles and gait spatio-temporal parameters calculation,  

• features extraction (e.g. kinematic, statistical, info-theoretical and entropy-

related, ROM, and stability variables); 

• the formulation of a distance metric followed by the application of a feature 

selection method for the calculation of the score indicator.  

 

In the following section a detailed explanation of each stage is provided.  

 

5.1 GRAPHIC USER INTERFACE  

Before starting the calculation of the parameters, a GUI is created to insert the 

personal data of the patient and to select the specific type of exercise among all the 

ones performed in a single session (Figure 5.1). More specifically, there are three 

boxes, the Personal Details box contains personal details, such as name, surname, 

date of birth, gender, height, and weight, while the Test Details box concerns the 

test details and includes the date when data have been captured, the type of test, the 

number of trial, the number of record and the segment (see Paragraph 4.3).  
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The data recorded along a session are saved in ‘.txt’ files whose names have a 

correspondence to each WIMU. Hence, the user needs to insert the number of IMUs 

in the specific section to load these files and convert them from ‘.txt’ into ‘.mat’. 

 

 

Figure 5.1: Graphic User Interface developed in Matlab®. The personal and test 

details of the patient are inserted on the top-left and right, respectively.  

 

The personal details inserted in the GUI are then copied in an Excel Sheet to 

personalize the processing of the patient.  

Regarding the Test Details box, (i) Date is useful for having the reference of a 

specific session when the data are saved in the personal folder, (ii) Test and Trial 

are used to differentiate the thresholds during the segmentation phase for the 

identification of repetitions/strides, (iii) Record has a correspondence to the order 

in which the exercises are recorded during the session and is used for selecting a 
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specific one, and (iv) Segment is used for avoiding the boundary condition of zero-

velocity during the computation of spatial parameters.  

 

5.2 KNEE JOINT ANGLES CALCULATION 

The Knee Joint Angles Calculation starts with the import and conversion of the raw 

data into matrixes. The conversion of the raw data (in text format) into matrixes is 

realised by using the test information inserted in the GUI to isolate a single exercise 

from the others. 

At the end of this stage of the algorithm the knee joint angles are calculated. 

 

This stage can be further divided in four main steps:  

 

• pre-processing and IMUs temporal alignment; 

• conversion to the Joint Coordinate System (JCS); 

• horizontal plane alignment; 

• computation of 3D orientation for each IMU and conversion to Euler 

Angles.  

 

5.2.1 PRE-PROCESSING AND IMUs ALIGNMENT 

Considering that IMUs do not communicate to each other and their turning on/off 

is not simultaneous, a pre-processing phase is required to align the data collected 

from the four inertial sensors. The alignment is realised by asking the patient to 

perform a squat before each performance. Data are first filtered with a median and 

a low-pass filter to obtain an ultra-smooth curve. The smoothing is essential before 

starting the identification of a truthful squat in each IMUs.  
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More in detail, the chosen low-pass filter is a 2nd order Butterworth filter whose 

normalized cut-off frequency is set as the ratio between fc and fs/2 (where fc and fs 

are equal to 1.25 Hz and 250 Hz, respectively). This is applied to limit the white 

noise that affects the signal. One of the key benefit of this filter is related to its 

capability to minimize the distortion by processing the signal in both directions (e.g. 

forward and reverse).  

 

It is likely that errors generally affecting these types of systems can lead to 

temporally-distant samples. For this reason, a second interpolation is acted to limit 

the distance between adjacent time-stamps when this distance overcomes a 

threshold value fixed at 0.025. 

Then, the IMUs are aligned and resampled. The alignment is performed first 

between thigh and shank of the same leg and then between the two legs. The 

resampling is necessary for cutting all matrix to the same number of elements. The 

size is clearly considered as the minimum among the dimension of the four matrixes 

taken from the sensors.  

 

5.2.2 CONVERSION TO THE JOINT COORDINATE SYSTEM 

(JCS) 

 

In order to overcome the limitations due to the absence of a uniformed coordinate 

system, the JCS conversion is applied [67]. The JCS is generally for analysing the 

joint angles related to the human manoeuvres with a clinical relevance.  For this 

reason, a conversion to conform the actual Joint Coordinate System to the JCS is 

applied for both right and left leg (Figure 5.2).  
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Figure 5.2: JCS reference: frontal and lateral view of lower limb inspired by [66]. 

 

5.2.3 ALIGNMENT ON THE HORIZONTAL PLANE 

This stage is performed per each leg and it aims to spatially align the IMU of the 

shank with the IMU of the respective thigh.  

Following the theory developed by Seel et. al [67] the knee can be considered as a 

hinge (Figure 5.3). More in details, the iterative algorithm proposed in [67] starts 

by modelling the lower limb as three segments connected by a spheroidal joint to 

which the IMUs are fixed. Both joint axis and position are first initialized randomly 

(by choosing values in a reasonable range), and then, updated by subtracting the 

Moore-Penrose-pseudoinverse. As a final outcome, a translation and rotation of the 

segment (respecting the kinematic constraints) is realized.  

 

In this thesis, starting from the knowledge of angular velocities of both thigh and 

shank in random instants, this optimization algorithm is capable to obtain a rotation 

around the z-axis of the IMUs of the shank to align their x-axis in respect to the x-

axis of the respective IMUs of the thigh.  Considering the knee as a hinge, the IMUs 
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of the thigh are considered already aligned, in fact, their x axis reflects the rotation 

of the knee. 

 

 

Figure 5.3: The knee considered as a hinge. The triaxial coordinate systems on 

each segment reflect the location of the IMUs on thigh and shank [68]. 

 

5.2.4 COMPUTATION OF 3D ORIENTATION AND 

CONVERSION TO EULER ANGLES 

 

This stage returns the Euler Angles of the knee around x-, y- and z-axis. More 

specifically, it is calculated the local 3D orientation of the sensor in respect to the 

global reference. 

The local orientation is extracted separately from accelerometer data and gyroscope 

data through a Gradient Descendent Algorithm, then both results are combined by 

means of a fusion filter that finds a robust solution overcoming both gyroscope and 

accelerometer-related errors.  
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This solution allows users to avoid the typical drift of the gyroscope that 

characterize low frequency signal and the high frequency noise of the 

accelerometer, revealing to be a good and simple alternative to the intricate Kalman 

filter. Put simply, the accelerometer and gyroscope data are filtered through low-

pass filter and high-pass filter, respectively.  

This fusion filter is modelled as follows: 

= ௙�௟௧,௧ࢗ  � ∗ +  �,࢘��ࢗ  ሺͳ − �ሻ ∗  (5.1)       �,���ࢗ

 

Where qfilt,t is the output of the single observation and a 4x1 vector with elements 

[q1, q2, q3, q4], qgyr,t and qacc,t the quaternions calculated and normalized for 

accelerometer and gyroscope respectively, and α is in the weight that select the 

contribute of the sensors. 

Once the output of the fusion filter is obtained, this value is converted into Euler 

Angles of the sensor using the following definitions [69]: 

 � = tan−ଵ ቀ ଶሺ௤ଵ∗௤ଶ + ௤ଷ∗௤ସଵ−ଶሺଵ−ଶሺ௤మమ+௤య మ ሻቁ       (5.2) 

 θ = sin−ଵ(ʹሺݍͳ ∗ ͵ݍ − Ͷݍ  ∗  ሻ)      (5.3)ʹݍ

 � = tan−ଵ ቀ ଶሺ௤ଵ∗௤ସ + ௤ଷ∗௤ଶଵ−ଶሺଵ−ଶሺ௤యమ+௤ర మ ሻቁ       (5.4) 

 

Where q1, q2, q3, q4 are the elements contained in qfilt,t on the respective axis, and φ, 

θ, ȥ are the Euler joint angles (roll, pitch, and yaw) extracted for both shank and 

thigh. These angles lead to the calculation of the flexion-extension (∅ிாሻ, varus-

valgus (���ሻ and internal-external angles (ψூாሻ, respectively, by combining the 

values of thigh and shank. Hence, to calculate the knee joint angles in respect to 
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both legs the values obtained on the thigh are subtracted to the ones obtained on the 

shank, as follows: 

 ∅ிா =  ∅௧ℎ�௚ℎ − ∅௦ℎ௔௡௞       (5.5) 

 ��� =  �௧ℎ�௚ℎ − �௦ℎ௔௡௞       (5.6) 

  ψூா =  ψ௧ℎ�௚ℎ − ψ௦ℎ௔௡௞       (5.7) 

 

 

5.3 GAIT SPATIO-TEMPORAL PARAMETERS  

The second stage of the algorithm is the definition and calculation of the spatio-

temporal parameters related to the walking gait. An overview of gait analysis at the 

base of human locomotion, with attention to gait instances, anticipated the 

computation of gait spatio-temporal parameters in Chapter 1 to provide a deeper 

understanding for the reader.  

 

5.3.1 GAIT TEMPORAL INSTANCES 

The implementation of the temporal instances relies on the shape of the curve that 

characterizes the gait pattern.  

In Figure 5.4 is reported the angular rate around the frontal x axis of the gyroscope 

of a single cycle. The Heel-Strike, Mid-Stance, and Toe-off represents three 

inflexion points of the signal.  
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Figure 5.4: An example of gait pattern extracted from gyroscope data for the 

identification of Toe-off (in red), Heel-strike (in black), and Mid-stance (in 

yellow) [61].  

Looking at Figure 5.4, the reader can lead to three remarks: 

 

• The mid-stance is the point where the flexion-extension of the knee is zero, 

in other words, the instant marked by absence of rotation.  

 

• The heel-strike represents the moment when the angular velocity crosses 

the zero and this testifies on the shank fluctuation whose rotation becomes 

negative when it is completely vertical.  

 

• The toe-off is the moment of change between stance and swing phase and 

can be detected as the instant when the angular velocity reaches the 

minimum before increasing its value.  

 

Exploiting these considerations, the algorithm identifies, first, these inflection 

points (Mid-stance, Heel-strike, and Toe-off), and then the related temporal 

intervals (swing phase, stance phase and GCT) with the procedure reported down 

below (Figure 5.5). 
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First, the maximum peak is reached by identifying the peaks over a fixed threshold 

and then, turning around, it searches for the first minimum corresponding to the toe-

off. This reduces the probability of false toe-off instances. 

Second, starting from the position of maximum calculated in the previous step, it 

searches for the first zero-point that corresponds to heel-strike. 

Then, the mid-stance instance is detected as the next minimum that follows the zero-

point.  

This search is iterated for the entire length of the signal obtaining three different 

vectors per each temporal instant. 
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Figure 5.5: Flowchart – temporal instances identification. 

 

Once the temporal instances are available, the GCT is calculated by means of 

subtractions between consecutive Toe-off instances (TOs) with the expression 

(5.8). 
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�ሺ ܶܥܩ  − ͳሻ =  ܱܶ�,ೝ೗ − ܱܶ�−ଵ,ೝ೗   � =  ͳ, ʹ, . … . .  ܵܶ (5.8) 

 

Where ST is the total number of strides obtained. 

 

The Cadence and Gait Variability are extracted through the inverse of the GCT and 

considering the ratio between the standard deviation and the mean of the CGT, 

respectively (see expressions 5.9 and 5.10).  

= ݁ܿ݊݁݀ܽܥ   ଵீ஼்        (5.9) 

= ݕݐ�݈�ܾܽ�ݎܸܽ ݐ�ܽܩ  ଵଵ଴଴  ∗ ቀ�ಸ�೅�ಸ�೅ቁ      (5.10) 

 
 

 

Then, the calculation of Swing and Stance phase is realized (Figure 5.6).  

The Swing phase (Sw) is calculated by means of subtractions between Toe-off 

instance (TO) and the consecutive Heel-strike instance (HS), while, the Stance 

phase (St) is calculated by means of subtractions between Heel-strike instance and 

the consecutive Toe-off instance as follows: 

 ܵ௪ ሺ�ሻ = ܪ  �ܵ − ܶ �ܱ  � =  ͳ, ʹ, . … . .  ܵܶ    (5.11) 

 ܵ௧ ሺ�ሻ =  ܱܶ�+ଵ − ܪ  �ܵ � =  ͳ, ʹ, . … . .  ܵܶ − ͳ   (5.12) 

 

Consequently, Initial Double Support e Terminal Double Support are calculated 

through the combination between right and left parameters and then added for 

obtaining the value of the Double Support (DS) as reported in (5.15). 
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More specifically, the IDS is calculated as the difference between the left toe-off 

instances and the right Heel-strike instances (5.13). 

Similarly, the TDS is calculated as the difference between the right toe-off instances 

and the left Heel-strike instances (5.14).  

= ܵܦܫ   (ܱܶ�,௟ ܪ − �ܵ,௥) , � =  ͳ, ʹ, . … . .  ܵܶ    (5.13) 

= ܵܦܶ   (ܱܶ�+ଵ,௥ − ܪ  �ܵ,௟) , � =  ͳ, ʹ, . … . .  ܵܶ    (5.14) 

= ܵܦ  + ܵܦܫ   (5.15)         ܵܦܶ 
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Figure 5.6: Flowchart – temporal intervals identification. 
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5.3.2 GAIT SPATIAL INTERVALS  

 

The spatial parameters of the gait (e.g. Clearance, Stride Length and Stride speed), 

are calculated by means of a double integration approach [70].  

The gyroscope and accelerometer data extracted from the shank are considered as 

input to compute both Stride Length and Clearance (whose definitions are exposed 

in Chapter 1). 

 

First, the component of the acceleration along y- and z-axis are converted from the 

local to the global frame by means of the following rotation matrix: 

 

[ܽ௒,௚ሺݐሻܽ௓,௚ሺݐሻ]  =  [cos(∅௦ℎ௔௡௞ሺݐሻ) − sin(∅௦ℎ௔௡௞ሺݐሻ)sin(∅௦ℎ௔௡௞ሺݐሻ) cos(∅௦ℎ௔௡௞ሺݐሻ) ]  ∗  [ܽ௬ሺݐሻܽ௭ሺݐሻ]   (5.16) 

 

 

Then, ܽ௒,௚ሺݐሻ and ܽ௓,௚ሺݐሻ are updated considering the contribution of the gravity 

acceleration as follows:  

 

[ܽ௒,௚ሺݐሻܽ௓,௚ሺݐሻ]  =  [ܽ௒,௚ሺݐሻܽ௓,௚ሺݐሻ]  ∗ ݃ −  [Ͳ݃]      (5.17) 

 

Where φs is the angle referred to the shank previously extracted, t is referred to 

every instance between two mid-stance events, and g is the gravity acceleration 

approximated to 9.81 m/s2, then subtracted for compensation.  
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The idea at the base of a double integration approach is to extract the displacement 

from the acceleration by means of two consecutive integrations as reported in the 

expressions (5.18) and (5.19).   

,ܵܯ௒ሺݒ  �ሻ =  ∫ ܽ௒ሺ�ሻ݀� + ,ܵܯ௒ሺݒ  � − ͳሻெௌ,�ெௌ,�−ଵ  � =  ͳ, ʹ, . … . .  ܵܶ  (5.18) 

 ݀௒ሺܵܯ, �ሻ =  ∫ + �௒ሺ�ሻ݀ݒ  ݀௒ሺܵܯ, � − ͳሻெௌ,�ெௌ,�−ଵ  � =  ͳ, ʹ, . … . .  ܵܶ (5.19) 

 

Where aY, vY and dY are respectively the acceleration, velocity and displacement of 

the global frame along the Y-axis, and MS is a mid-stance event obtained among 

the ST strides.  

Similar is the calculation of both velocity and acceleration on the z-axis.  

 

It may occur that spatial parameters are underestimated, and the two main reasons 

are: 

• The error of the integral drift caused by the specific integration of gyroscope 

signal; 

• The setting of the initial velocity equal to zero at a mid-stance event.  

 

In order to overcome these limits, mostly due to the gap between the ideal 

consideration and practise, the proposed algorithm acts as follows (Figure 5.7): 

 

• The initial velocity is not approximated to zero, but its value is set as: ݒைௌ,௒  =  ௚௬௥ೞ,ಾೄ∗ ௟ଵ଴଴       (5.20) 

Where ݃  ௦,ெௌ  is the angular rate on the sagittal plane at mid-stance andݎݕ

l is the distance between the sensor place on the shank and the ground. 
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This distance is measured before each data collection.   

 

• The drift is compensated by means of removing a variable quantity, 

which is decreasing along the advancement of the signal, to both the 

resulted velocity and displacement (5.21).  ݒ௒ሺ�, ܵܶሻ = ,�௒ሺݒ  ܵܶሻ ைௌ,௒ݒ − ∗  � ݈⁄   � =  ͳ, ʹ, . … . .  ݈ (5.21) 

Where l is the number of samples between two consecutive MS events 

that varies on each stride (ST).  

 

Then, the Stride Length is calculated considering the whole trajectory made by the 

inertial sensor on the sagittal plane, while the Clearance can be obtained by 

considering the maximum displacement obtained on the Z-axis using the following 

expressions: 

ሺ�ሻܮܵ  =  √݀௒ሺܵܯ, �ሻଶ +  ݀௭ሺܵܯ, �ሻଶ  � =  ͳ, ʹ, . … . .  ܵܶ  (5.22) 

ሺ�ሻ݁ܿ݊ܽݎ݈ܽ݁ܥ  = max(݀௭ ሺெௌ,�−ଵ∶ ெௌ,�ሻ) � =  ͳ, ʹ, . … . .  ܵܶ  (5.23) 

 

This stage of the algorithm is concluded with the computation of the speed by 

simply dividing the stride length by the GCT as follows: 

 SPሺiሻ =  ୗLሺiሻGC୘ሺiሻ    � =  ͳ, ʹ, . … . .  ܵܶ  (5.24) 
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Figure 5.7: Flowchart – Double integration approach to extract the displacement 

useful for computing the spatial parameter of the gait.  
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5.4 FEATURES EXTRACTION 

To the literature, the feature extraction is generally categorized in three main 

branches: Time-Domain, Frequency-Domain, and Discrete Domain (Figure 5.8). 

 

The part of the algorithm exposed in the previous paragraphs reflects the common 

biomechanical approach. In addition to the basic parameters, this stage of the 

algorithm is focused on taking extra time-domain and frequency-domain features 

for giving a complete overview of patient’s conditions that could be helpful for 

clinical evaluations [23]. 

 

 

Figure 5.8: Summary of the main features extracted for knee health assessment 

[71]. 

 

The studies that have analysed the patient outcomes in terms of time-domain and 

frequency-domain features [72-74] showed the usefulness of these variables in 

defining the signal complexity.  

Taking advantage of these results, this study applies most of metrics available in 

literature to assess changes in motion and motor control in ACLR.   
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More specifically, the features are extracted per each repetition (or in a shifting 

window in the case of the entropy-related features) for both legs providing a time-

series based model.  

The data collected from the unimpaired leg are considered as a reference during the 

assessment of progress.  

Before starting with the the features extraction, the data are segmented through a 

threshold algorithm to obtain many repetitions, shifting windows in the case of 

entropy-related features, or strides in the walking sets.  

A repetition is obtained by the iteration of the same manoeuvres during an exercise 

or walking sets, similarly for the stride.  

Then, the exercise is cropped in order to select the same number of repetitions/stride 

per each type of scenario for all data captures.  

On the other hand, the moving window is obtained by setting the starting point and 

considering the next 50% of the signal and shifting the window of the 10% of the 

signal. 

 

Unlike the common categorization between time-domain and frequency-domain 

features, this study proposes 7 categories of features:  

 

• gait variables (see Paragraph 5.3); 

• statistical features; 

• kinematic variables; 

• info/theoretical, spectral and entropy-related features; 

• jerk-based features; 

• stability-related features; 

• ROM-based features. 
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In the next subparagraphs an explanation of all the categories and the variables 

considered for the development of this study is reported.   

 

 

5.4.1 STATISTICAL VARIABLES 

The statistical variables are descriptive time-domain features that give different 

information about the data set, such as minimum, maximum, or dispersion of the 

data. These features are extracted from each repetition/stride per each leg.  

The variables included in this category are: Minimum, Maximum, Peak-to-peak, 

Mean, Standard Deviation (Std), Coefficient of Variation (CV), Root mean square 

(RMS), Skewness, Kurtosis. 

Each variable is calculated, first, per each axis, and then, on the magnitude (only in 

the case of Mean, Std, RMS, Skewness, and Kurtosis) of both accelerometer and 

gyroscope data to obtain in total a number of 64 statistical parameters.  

 

In Table 5.1 is provided a brief summary of all the variables and their definitions. 
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Table 5.1: Statistical variable computed in this trial per each session, axis, 

exercise, segment, repetition/stride. 

Variable Definition 

Min minሺݔ�ሻ 

Max maxሺݔ�ሻ 

Peak-to-peak maxሺݔ�ሻ − minሺݔ�ሻ 

Mean (�ሻ ͳܰ ∑ ே�ݔ
�=ଵ  

Standard Deviation ( �ሻ √∑ ሺݔ� − �ሻଶே�=ଵܰ − ͳ  

Coefficient  of  Variation (CV)  �� 

Root Mean Square (x r ms )  √ͳܰ ∑ ଶே�ݔ
�=ଵ  

Skewness (�ଵሻ ܧሺܺ − �ሻଷ�ଷ  

Kurtosis (ݐݎݑܭ [ܺ] ሻ ܧሺܺ − �ሻସ�ସ  
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5.4.2 KINEMATIC VARIABLES 

This category offers an estimation about the kinematics of the movement and 

involves most of metrics recently used in biomechanical applications. 

Before the extraction of the metrics, the raw data are filtered using a 2nd order 

Butterworth low-pass filter with 3Hz cut-off frequency. 

 

The kinematic variables extracted per each repetition are the following: 

 

• Range of Angular Velocity (RAV)  

 

The angular velocity quantifies the amount of rotation of an object (the knee, 

in this specific case) per unit of time. The range is intended as the distance 

between the maximum and minimum value calculated on the magnitude of 

the angular velocity. 

 

• Vertical Acceleration 

 

The vertical acceleration considers the difference between the gravitational 

force and magnitude of the acceleration and takes the maximum per each 

repetition obtaining a vector that characterize the whole exercise. 

 

• Vertical Velocity 

 

The vertical velocity is obtained as the integration of the vertical 

acceleration over each repetition of the exercise.  
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• Fluency 

 

Unlike the other metrics, the Fluency is calculated per each axis of the 

accelerometer data set. It takes the absolute difference on a specific axis 

between the unfiltered and filtered data and integrates this value over a 

repetition.  

 

• Kinetic Value (KV)  

 

The Kinetic value is defined in [75] as  

ܧ  = ଵଶ ∗ ଶݒ݉ =  ଵଶ  ∗  ݉ ∗ ቀ∫ ܽ dt௧ଶ௧ଵ ቁଶ
    (5.25) 

 

Where m is the mass of the subject, a indicates the magnitude of the 

acceleration and t1 and t2 are referred to the start and the end of the single 

repetition.  

 

5.4.3  INFO/THEORETICAL AND ENTROPY-RELATED 

FEATURES 

 

This category includes most of spectral, entropy-related and information-theoretic 

features available in literature [72-74].  

In order to derive entropy-related features a Fast Fourier Transform (FFT) is 

performed.  

The FFT is a faster method to compute the Discrete Fourier Transform (DFT). 

Using the radix-2 Cooley-Turkey method, the FFT can be defined as follows: 
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ܺ௞  =  ∑ ଶ௠ݔ ∗ ݁మ��ಿ ሺଶ௠ሻ௞  +  ∑ ଶ௠+ଵݔ ∗ ݁−మ��ಿ ሺଶ௠+ଵሻ௞ మಿ −ଵ௠=଴మಿ −ଵ௠=଴   (5.26) 

 

 

The applied method splits the signal x in two parts made by N/2 samples computing 

only (N/2) log2(N) complex multiplications and N log2(N) complex additions in 

respect to the high computational load of the DFT. 

 

The variables included in this category are presented down below and are extracted 

from the raw inertial data of the 4 WIMUs. Each variable is calculated per each axis 

of the accelerometer and the gyroscope of both legs. 

 

Lempel-Ziv Complexity  

Lempel–Ziv Complexity (LZC) is interpreted as harmonic variability parameter and 

gives information that concerns the complexity and predictability of the signal. The 

higher its value, the less the predictability is leading to the identification of complex 

signals. 

Many studies [76, 77] applied LZC on biomedical signal, including 

Electrocardiograms (ECG), electroencephalograms (EEG), and brain activities.  

In this study, the LZC is applied on inertial data. Higher values reflect clumsy 

manoeuvres and are associated with difficulties in performing a specific exercise. 

Hence, decreasing values are expected during the progression of ACLR programs.  

The LZC algorithm transforms the signal into a symbols sequence for simplifying 

the computation defining a number of thresholds by the following steps:  

 

1. Compare the signal with the defined threshold; 

2. Associate an alphabet symbol to each sample of the signal; 
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3. Divide the whole sequence of symbols in i cells (bi); 

4. Compare element per element the symbols in bi with the symbols in bi-1; 

5. Iterate step (4) is iterated adding new symbols in bi until the current 

sequence of symbol is already presented in previous cells; 

6. Compute the LZC as  
௞ log� ௡௡   where k is the length of the current cell, n is 

the length of the signal in a single repetition, and α is generally set at 10; 

7. Normalize the LZC on a defined number of levels, generally set at 90 ௅௓஼logሺ௟௘௩௘௟௦ሻ        (5.27) 

 

Frequency-Domain Entropy  

The Frequency Domain Entropy (FER) gives information about the power spectral 

entropy. 

Its calculation starts with the calculation of the PSD of the signal, then the extracted 

PSD is normalized through a division by the total sum, as follows: ܲ̂ሺ��ሻ =  ଵே  |ܺሺ��ሻ|ଶ        (5.28) ݌�  =   ௉̂ሺ��ሻ∑ ௉̂ሺ��ሻ�          (5.29) 

Where |X(Ȧi)| is the amplitude spectrum of the signal and N is the number of 

samples. 

Finally, the FER is extracted as follow: ܴܧܨ =  − ∑ ௡�=ଵ�݌ ln  (5.30)       �݌

 

5.4.4  SPECTRAL FEATURES   

Similar to the entropy-related, the computation of the spectral features starts with 

the application of the FFT. 
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These features are calculated on a defined window of the data set. Following what 

is already reported in Paragraph 5.4, this window is shifted for the 50% with 10% 

overlapping.  

In the case of spectral features, it resulted to be more reasonable to avoid the 

calculation on a single repetition. Short windows, in fact, lead to the repetition of 

the same values. On the other hand, larger windows can decrease the accuracy of 

results. 

The metrics evaluated in this trial are Peak Frequency and its width (DMW), 

Spectral Centroids, Power in 1.5-3 Hz (LFP), Power in 5-8 Hz (MFP), First-

Second-Third Quartile frequency, Spectral Edge Frequency at 95% (SEF), Ratio 

High-Low Bands (RHL) and Harmonic ratio (HR) [71-73] 

These features are described more in detail down below.  

 

Peak Frequency 

The Peak Frequency, also known as Dominant frequency (DF), is the frequency 

that shows the maximum spectral power. This metric is calculated following the 

indication of [72] as follows: 

௣݂  = arg ௙∈[଴,௙೘��]ݔܽ݉  ௑ሺ݂ሻ|ଶ      (5.31)ܨ|

where  ܨ௑ሺ݂ሻ is the Fourier transform of the X signal.  

On the other hand, the Dominant Frequency Peak Width (DMW) is the range of 

frequencies which includes the values between the peak and the half peak (Figure 

5.9). 
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Figure 5.9: An example of calculation of Dominant Frequency and its width. The 

dominant frequency (triangle) of that window of the signal and the width whose 

extension (between the arrows) is highlighted by the yellow line. 

 

Spectral Centroids 

 The spectral centroid (SP) is a metric that gives information about the location of 

the “center of mass” of the spectrum.  

It is calculated per each axis as the weighted mean of the frequencies f(n) in the 

defined shifting window of the signal with their magnitudes x(n) as follows: 

= ݀�݋ݎݐ݊݁ܥ  ∑ ௙ሺ௡ሻ௫ሺ௡ሻಿ−భ೙=బ∑ ௫ሺ௡ሻಿ−భ೙=బ        (5.32) 

 

Power 1.5-3 Hz / 5-8 Hz  

The power spectrum entropy is extracted from acceleration and gyroscope data on 

a shifting window. It is considered as an alternative metric to the conventional 

indices of smoothness, such as the jerk measures. [74] 
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The Power between 1.5 - 3 Hz / 5 -8 Hz (LFP / MFP) are calculated using the 

expressions (5.33) and (5.34). ܲܨܮ =  ∑ ௙ భ.ఱ−య ಹ�∑ ௙         (5.33) 

= ܲܨܯ  ∑ ௙ ఱ−8 ಹ�∑ ௙         (5.34) 

 

First, Second, And Third Quartile Frequency 

The quartile is used in descriptive statistics for dividing a ranked data set in four 

equal quarters.  

The first quartile (25%) and third quartile (75%) considers an interval of the data of 

the data set and takes the middle number. The interval of the former goes from the 

smallest number to the median, while the interval of the latter goes from the median 

and the highest value of the data set. Finally, the second quartile (50%) is identified 

as the median of data (Figure 5.10). 

In this trial, the quartiles are calculated both on the FFT of the signal and on its 

magnitude per each segmented window.  

 

Spectral Edge Frequency  

The Spectral Edge Frequency (SEF) is a common metric used in EEG analysis 

(Figure 5.11) and it is defined as the frequency below which a defined percentage 

of the total signal power is located [78]. In this analysis, the defined percentage is 

set at 95%.  
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Figure 5.10: A schematic representation of 25%-50%-75% quartiles detection 

[77]. 

    

 

 

Figure 5.11: An example of SEF calculation in EEG[78]. 
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Ratio High-Low Band 

Similar to the calculation of the other spectral features, the Ratio High-Low Band 

(RHL) starts with the calculation of the FFT and it is defined as: 

= ܮܪܴ   ∑ ுி>ఱಹ�∑ ௅ி≤ఱಹ�         (5.35) 

Where HF is the high frequency elements of FFT, and LF is the low frequency FFT 

elements except for the first element [74].  

 

Harmonic Ratio 

The harmonic ratio gives an estimation of the harmonic composition of the 

accelerometer and gyroscope data [72] for a specific repetition/stride. Its calculation 

considers the first 20 harmonic coefficients of a shifting window. A greater 

smoothness of the signal is obtained for higher values of this metric.  

 

5.4.5   JERK BASED FEATURES 

The Jerk-based metrics are considered as the conventional metrics used to estimate 

the smoothness of a signal.  

A jerk-based measure depends on the functional ܥ ∫ ௧ଶ௧ଵݐሻଶ݀ݐሺݔ⃛  ,  here x is theݓ

position, C is the scaling factor, t1 and t2 represents the start and the end of the 

repetition. 

 

A recent study [79] proved that all jerk-based metrics that quantify smoothness 

depend on the duration and extension (amplitude) of the movement. An alternative 

to this dependency is offered by the dimensionless jerk measure. 

Most of the jerk-based features available in literature [79] are proposed in this trial. 

More specifically, each feature is extracted on a single repetition/stride of the 

exercise for both accelerometer and gyroscope.  
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The metrics evaluated in this trial are: integrated squared jerk (ISJ), mean squared 

jerk (MSJ), cumulative square jerk (CSJ), root mean square jerk (RMSJ), mean 

square jerk normalized by peak speed (N_MSJ), integrated absolute jerk (IAJ), 

mean absolute jerk normalized by peak speed (N_MAJ), and dimensionless square 

jerk (DSJ). 

These features are defined in [79] as illustrated in Table 5.2. 

Except for the DSJ, all metrics strongly decrease when the movement is extended 

for a longer duration. 

For instance, concerning the sensitivity to arrest period and fragmentation, when 

two sub-movement have no overlapping the values of IJS and N_MSJ remain 

constant, whereas MSJ and N_MAJ decrease with total movement duration.  

The DSJ measure increases monotonically along the change of movement during 

the exercise, hence it reflects the change of shape along the repetitions of the 

movement with duration.  
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Table 5.2: Jerk-based measures computed in this trial per each session, axis, 

exercise, segment, repetition/stride. 

Variable Definition 

Integrated Square Jerk  ∫ ௧ଶݐሻଶ݀ݐሺݔ⃛
௧ଵ  

Mean Squared Jerk  ͳݐଶ − ∫ ଵݐ ௧ଶݐሻଶ݀ݐሺݔ⃛
௧ଵ  

Cumulative Squared Jerk  ∑ ௞ሻଶ௡௞=ଵݐሺݔ⃛  

Root Mean Squared Jerk  √ ͳݐଶ − ∫ ଵݐ ௧ଶݐሻଶ݀ݐሺݔ⃛
௧ଵ  

Mean Squared Jerk 

Normalized by peak speed  

ͳݒ௣௘௔௞ሺݐଶ − ∫  ଵሻݐ ௧ଶݐሻଶ݀ݐሺݔ⃛
௧ଵ  

Integrated Absolute Jerk  ∫ ௧ଶݐ݀|ሻଶݐሺݔ⃛ |
௧ଵ  

Mean Absolute Jerk 

Normalized by peak speed  

ͳݒ௣௘௔௞ሺݐଶ − ∫ ଵሻݐ ௧ଶݐ݀|ሻଶݐሺݔ⃛ |
௧ଵ  

Dimensionless Squared Jerk  − ሺݐଶ − ∫ ଶ௣௘௔௞ݒଵሻ ହݐ |݀ଶݒሺݐሻ݀ݐଶ |ଶ ௧ଶݐ݀
௧ଵ  

 

5.4.6   STABILITY  

Several metrics have been proposed in literature to quantify the stability, most of 

them are applied on walking gait performances [75]. Generally, stability indexes 

are used for prevention of falls or quantitative assessments during rehab procedures. 

These indexes present high variability when subjects show a great instability during 

the performance of an exercise or walking gait.  
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In this specific case, the stability is calculated on the axes of both accelerometer 

and gyroscope and is extracted by means of the dynamic time warping (DTW) of 

the signal at two consecutive executions/strides of the exercise as illustrated in 5.36.  

௦௧௔ܫ   =  ∑ ௡−ଵ�=ଵܹܶܦ         (5.36) 

 

5.4.7   RANGE OF MOTION  

The knee Range of Motion (ROM) offers an idea about the ability in performing a 

defined movement in a specific plane (Figure 5.12). This metric is the most 

common metric evaluated in literature that can be measured in both clinical 

assessment and laboratory environments with different levels of accuracy (see 

Chapter 2). 

 

In this trial, this parameter is extracted per each axis of the accelerometer and 

gyroscope considering the peak-to-peak amplitude of the signal within a specific 

repetition/stride.  

 

 

Figure 5.12: Range of Motion (ROM) during knee flexion on the frontal plane [80]. 
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A wide range of features makes challenging the classification of patients’ progress 

due to the intrinsic variability of the parameters. Hence, a features selection 

algorithm is applied for selecting the most informative features among the ones 

described above. Then, the selected features are used to calculate the score indicator 

as exposed in the next Chapter.  
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Performance evaluation 

 

 

A classification method is based on characterizing an object or a subject in based 

on a selected range of features which should be relevant for the considered task.   

The classification of an object involves the so-called “machine learning” technique. 

The machine learning is a subfield of artificial intelligence that is based on creating 

a system able to solve a problem by training it.  

The machine learning techniques can be distinguished between supervised, 

unsupervised and reinforcement learning (Figure 6.1).  

The supervised learning is based on training a classifier through a known data-set 

(where “known data set” means that the user knows the class of each object). On 

the other hand, the unsupervised learning techniques are inferring the class of 

unlabelled data through the definition of functions.  Finally, the reinforcement 

learning is based on updating the current solution by assigning a reward value 

obtained through the interaction with the environment.  

 

The choice among the several methods generally depends on the number of subjects 

available during the trial (Figure 6.2).  

The possible alternatives are to evaluate: 

• a single subject at one time 

This is generally applied in the case of action recognition, when a single 

subject performs different manoeuvres classified with machine learning 

technique. [27] 
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• a single subject at different times 

This strategy allows the monitoring of the patient along the rehabilitation 

program and it helps in defining its health status by looking at the 

progression during weeks. 

 

• multi subjects using the same or different groups for training and testing 

When a greater quantity of subject is available is it possible to use classify 

the impaired subjects using the healthy ones as a reference. 

 

 

 

Figure 6.1: Categorization of classification methods [81]. 

 

The approach of this trial is inspired by the second and third methods.  

It aims, in fact, to classify a single patient at different times looking at the variations 

in the extracted parameters (see Chapter 5).  

On the other hand, to monitor the injured limb without a reference could help in 

defining the improvements of the patient but makes the identification of the health 
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status challenging. Thus, it is possible to know if the patient is getting better, but it 

is not possible to identify how far is the patient from the complete recovery.  

Another factor that makes the classification challenging is the intrinsic variability 

of the parameters used to monitor the progresses.  

 

To overcome these limitations, this trial proposes to: 

• use the unimpaired leg as a reference, in order to get normative values to 

which compare the outcomes of the injured leg; 

• compute a distance metric that gives as output the difference between the 

two legs considering all the sources of variability. 

 

 

Figure 6.2: Different methods used to classify the patient during rehabilitation 

[82].  
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6.1 THE ROLE OF DISTANCE METRICS 

A previous analysis confirmed that a single parameter is insufficient for giving an 

estimation of rehabilitation trends, but their analysis overall lead to comprehensive 

overview of the patients’ health status [23]. 

Therefore, it is necessary to define a single indicator that involves in its calculation 

all the extracted features to support the assessment of the patients’ performances by 

clinicians during clinical practice. 

 To this purpose, different types of distance metrics can be considered.    

Distance metrics generally takes into account the distance between two probability 

distributions for estimating their similarity.  

This strategy has been proposed in different studies to quantify both the quality of 

the performances and the improvement of the subjects. This assessment is generally 

developed by comparing the manoeuvres performed by a single patient to the 

average performance obtained by healthy subjects. 

To date, two valuable distance metrics founded in literature are the Mahalanobis 

distance and Bhattacharyya distance [23,55,83-85]. 

In the next section an explanation of both distance metrics and their application to 

this trial are reported.  

  

6.1.1.   MAHALANOBIS DISTANCE  

The Mahalanobis distance (DM) was first introduced in 1936 and is a statistical 

measure of the distance between defined point P and distribution D [55, 86]. 

This distance is mainly based on the correlations between features which help in 

detecting different pattern that are along a sequence. This determines the similarity 

of a new data set in respect to a reference.  

The problem starts with a fixed set of elements whose class is known and concerns 

to detect the probability that a defined point P in the n-dimensional Euclidean space 



 

89 
 

CHAPTER 6 Performance evaluation 

belongs to that set. It is clear that the less is the distance between the point and the 

center of mass (CoM) of the set, more is the probability of the point to belong to 

the set. 

The simplest approach is to calculate the standard deviation of the samples from the 

CoM: when the distance between the sample and the CoM is lower than a defined 

threshold it is likely the belonging of the sample to the current set.  

This concept can be expressed with the normalized distance of the sample from the 

set as 
௑ – �� . 

This idea of considering only the distance between the sample and the CoM is 

limited to a spherical distribution of the samples, in fact, when the samples result 

to have an ellipsoidal distribution also the direction should be taken into account.  

Hence, in case of non-spherical distribution of the data set, the covariance matrix 

of the sample can reflect the probability distribution of the set.  

 

It can be modelled as the distance between the N-dimensional feature vector of the 

patient,  ݒ௉  =  ሺݒ௉ଵ, ,௉ଶݒ ,௉ଷݒ …  ௉௡ሻ , in respect to feature vector of the controlݒ

group ݒு  =  ሺݒுଵ, ,ுଶݒ ,ுଷݒ …   .ு௡ሻݒ

Considering S as the covariance matrix, the DM can be expressed as: Dெሺݔሻ =  √ሺݒ௉  − ௉ݒுሻ்ܵ−ଵሺݒ   −  ுሻ     (6.1)ݒ 

 

6.1.2 BHATTACHARYYA DISTANCE 

The Bhattacharyya distance (DB) takes the name from its inventor who proposed it 

in the review: “On a measure of divergence between two statistical populations 

defined by their probability distributions"[87]. It presents different fields of 

application such as image processing, pattern recognition, machine learning for 

speaker recognition [83-85]. 
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The DB helps in identifying the similarity between two data sets by comparing two 

samples taken from the two distributions. 

Unlike the DM, the DB is not limited to the analysis of two distributions that present 

the same standard deviations, in fact, tends to increase its value in proportion to the 

distance between them (in the same case the DM resulted to be zero). This 

consideration makes the DM a particular case of DB. 

 

The DB starts its computation from the Bhattacharyya Coefficient (BC). The BC is 

an index that quantifies the overlapping between two probability distributions by 

evaluating the distance between two samples.  

The whole distribution is divided in n partitions, then, two general elements pi and 

qi of n-th partition generate the BC with the expression (6.2). ܥܤሺ݌, ሻݍ =  ∑ ௡�=ଵ�ݍ�݌√        (6.2) 

 

Consequently, the DB can be calculated as follows: ܤܦሺ݌, ሻݍ =  − ln(ܥܤሺ݌,  ሻ)       (6.3)ݍ

 

In the case of two classes, which present normal distribution, the calculation of the 

DB is based on the calculation of the mean ( �௣, �௤ ሻ  and the variances (�௣ଶ, �௤ଶ ሻ of 

the two separated classes and can be simplified as follows: 

D஻ሺ݌, ሻݍ =  ଵସ ln ቆଵସ (�೛మ�೜మ + �೜మ�೛మ + ʹ)ቇ + ଵସ ((�೛−�೜)మ�೛మ+�೜మ )    (6.4) 

 

In the case of two statistical distributions that show the same standard deviations 

the DB coincides with the DM.  
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6.1.3 THE APPLICATION OF BHATTACHARYYA DISTANCE 

IN ACLR 

Looking at the explanation of the previous paragraph, both metrics provides 

information for supporting the assessment of clinicians during rehabilitation 

programs. The metrics can measure how far is the quality performance of the 

subject from the control group. 

On the other hand, the DM is less applicable due to the necessity to have two 

distributions that present the same standard deviation.  

This necessity results to be very restrictive in the case of ACLR due to the difficulty 

in having similar standard deviations in control and patient group. 

For these reasons, this trial proposed the use of DB as a more reliable extension to 

the DM.  

In this specific case, the DB is used to define the degree of membership of the patient 

group to the control group. More specifically, the degree of membership is 

quantified by the DB and gives information about the closeness between the 

performance of the injured side in respect to the healthy one.  

 

As exposed before, the DB takes into consideration two generic elements pi and qi 

of n-th partition. In this specific case, the n partitions are obtained by considering a 

generic feature (described in Chapter 6) in a defined number of 

repetition/stride/sliding windows per each exercise. Each feature is extracted 

separately from each body segment (e.g. shank and thigh) of both right and left 

sides.  Then, the DB is calculated after removing possible outliers.  

 

 

 

 



 

92 
 

CHAPTER 6 Performance evaluation 

More specifically, the DB calculation involves the following steps: 

 

• The creation of the feature vector 

The vector is created by using all the extracted features. Each feature is 

available per each exercise and it was previously segmented in order to 

obtain a value per each repetition/stride/sliding window. Furthermore, the 

feature vector is calculated in order to analyse separately the results of 

healthy/unhealthy side and the two body segments.  

After these considerations the feature vector can be expressed as follows: 

,݁݀�ݏ௑ሺ݁ݎݑݐ݂ܽ݁  ,ݐ݊݁݉݃݁ݏ ݕ݀݋ܾ ,݁ݏ�ܿݎ݁ݔ݁ ሻ݊݋�ݏݏ݁ݏ ,௑,ଵ݁ݎݑݐ݂ܽ݁] = ,௑,ଶ݁ݎݑݐ݂ܽ݁  ௑,ே]     (6.5)݁ݎݑݐ݂ܽ݁ …

 

Where N is the number of repetitions/stride/window that characterizes each 

exercise.  

 

• The removal of outliers 

An outlier is defined as an observation that is extremely different from the 

other samples of the distribution. In this analysis, outliers are considered as 

those values which show more than three scaled median absolute deviations 

away from the median of the distribution.   

The presence of a potential outlier can adversely affect the final outcome 

due to its influence on the distribution. To limit this influence, when an 

outlier occurs it is substituted by the average value from the two nearest 

samples of the distribution not identified as outliers and a new feature vector 

is obtained.  
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• The calculation of the DB 

The new feature vectors are finally used to implement the DB. 

More in details, the averages and standard deviation of the feature vectors 

related to both legs are calculated and considered as input for calculating 

the DB.  This process is iterated until the results in terms of DB are available 

per each feature, exercise and session.  

 

• The implementation of the distance vector 

Finally, the distance vector is created by the values of the DB taken for all 

the session. This distance vector is created per each feature and is available 

per every exercise and body segment, i.e.: 

,ݐ݊݁݉݃݁ݏ ݕ݀݋௙௘௔௧௨௥௘�ሺܾܥ  ሻ݁ݏ�ܿݎ݁ݔ݁ ,஻,௦௘௦௦�௢௡ଵܦ] = ,஻,௦௘௦௦�௢௡ଶܦ  ஻,௦௘௦௦�௢௡೘]     (6.6)ܦ …

 

Where m represents the number of sessions.  

 

In general, the distance vector of each feature should reflect the improvement of the 

patient during rehabilitation.  High values, which testify on a considerable 

difference between unimpaired and impaired leg, are expected in the first sessions 

of the rehab program and should tend to zero when the complete recovery is 

assessed. This consideration needs to be carefully pondered on the intrinsic 

meaning of each feature and the type of exercise.  

For instance, considering hamstring curl ROM over the thigh, it is possible to have 

a more constant trend of the DB along the ACLR program.  Similar consideration 

can be developed while considering the exercises that are tested in the post-surgery 

period (e.g. walking sets, squat rotation and single leg wall slide). 
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Hence, starting from the DB related to every exercise, every category, and sensor, 

this trial tested a feature selection method to discard the uninformative and 

redundant features in order to offer a more comprehensive assessment of the 

patient’s health status during AωLR.  

 

6.2 FEATURE SELECTION METHODS   

A feature selection (FS) approach is defined as every technique which is based on 

selecting a subset of feature for reducing the dimensionality of a specific data set 

[82].  

Unlike the dimensionality reduction approach, the FS does not involve 

mathematical functions, but preserves the original measurement unit of the original 

feature space. 

More specifically, the new data set will contain the same number of samples but a 

lower number of features in respect to the original one.  

The purpose of this techniques is to: 

• Reduce the computational time; 

• Identify the relevant features in relation to the clinical problem, so that the 

uninformative features would not introduce noise in the overall 

performance evaluation. 

 

In these applications, it is important to carefully ponder the quantity of selected 

feature for avoiding the oversimplification of the data set and the consequent loss 

of important information (Figure 6.3). 

 

More in details, the FS approach is an optimization problem based on two main 

steps: 



 

95 
 

CHAPTER 6 Performance evaluation 

1. Search the space of possible feature subset; 

2. Evaluate the goodness of each subset through an iterative procedure that 

continues until the optimal subset is reached. 

 

From a geometrical point of view, it is equivalent to re-projecting the feature space 

into a lower dimensional subspace perpendicular to the removed features. An 

example of data set characterizes by a two-dimensional feature space is offered in 

Figure 6.4. 

 

 

 

Figure 6.3: On the top, an example of a model with too few parameters that 

results to be inaccurate due to the large bias. On the bottom, a model with a wide 

range of parameter whose inaccuracy depends on the large variance [82]. 
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Figure 6.4: Example of data set characterizes by a two-dimensional feature space, 

then reduced to a lower dimension [82]. 

 

The typical applications that involves unsupervised methods are generally based on 

clustering (Figure 6.5). The instances are partitioned into a number of classes 

(clusters) based on the both the maximization of similarity of instances inside the 

same cluster and minimization of similarity of instances of different clusters.  

 

 

Figure 6.5: Supervised and unsupervised learning clustering method [88].  

 

In this thesis, the aim is to infer the unknown class of data-set without the guidance 

of a labelled training set, hence, it is necessary to opt for an unsupervised method 

that is additionally characterized by a low computational load and a good level of 

accuracy.  
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To this purpose, in the next subparagraph the description a simple unsupervised 

method and its specific cases is presented.  

   

6.2.1 K- MEANS CLUSTERING  

The simplest unsupervised clustering method that could be founded in literature is 

the K-means. It mainly consists in classifying each object by computing the 

Euclidian distance between that object and the centroids of the K cluster. The object 

is assigned to the cluster in which the nearest centroid is placed, and the centroids 

are initialized randomly. Then, the centroids are recalculated, and the procedure is 

iterated until no variations are seen in the element assignment. The last step is based 

on minimizing the objective function. 

It should be considered that this approach is well-performed only in the case of very 

specific assumptions regarding the distribution of the subsets (e.g. only if the 

distributions has a single mode and very similar variances).  

For overcoming these restricted assumptions, an alternative solution is offered by 

the so-called “weighted K-means”. It is also based on a two-phase iterative process 

in which each element of the data set is assigned to the class of the nearest centroid, 

but unlike the traditional K-means, fixed weights are assigned to data instances 

[89]. The two-phase iterative process continues updating the centroids in each 

iteration using the weights until the optimization of the objective function is 

reached. 

To achieve low computational times and a good level of accuracy, this work applies 

the new weighted K-means method proposed in [91] for defining the optimal subset 

of features that allows the description of the progress of patient in each exercise, 

category, and sensor (e.g. thigh and shank). 

This new method is known as Clustering Coefficient of Variation (CVV) and is 

based on clustering the features in based on their variability (e.g. CV). More in 

details, it computes the distance between the calculated variance of each feature and 

the centroid (or the mean).   
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The CVV proved to be very suitable for classifying biomedical data that present a 

wide range of features with a low computational load.  

 

6.2.2 WEIGHTED K-MEANS CLUSTERING IN ACLR 

In this trial one of the two techniques founded in literature is tested: the Clustering 

Coefficient of Variation (CCV). 

As exposed in the previous paragraph, this technique chooses the optimal clustering 

according to the CV of the features. 

Comparing a wide range of features could be challenging, hence, a method that 

quantify the dispersion of data is necessary. To this purpose, the CV helps in 

quantifying the distribution of a data set. More in details, the CV is calculated 

dividing the standard deviation by the mean of the distribution, and gives, therefore, 

an estimation about the variability of the data set.  This calculation is applied on 

every m-dimensional vector expressed in (6.6) (e.g.  ܥ௙௘௔௧௨௥௘�) . 

The higher its value, the more disperses the data. 

For selecting the features, the algorithm proposed the procedure proposed in [90] 

which is reported down below and shown in Figure 6.6: 

 

1. A threshold set on the CV help in selecting a restricted number of feature. 

Therefore, the algorithm takes into account only the variables that present a 

CV higher than one, discarding the others.  

 

2. Each distribution is aligned to a normal one in order to avoid any effect of 

the scaling on the clustering results. More specifically, the remaining 

variables are normalised using the standard score (e.g. by subtracting the 

mean and dividing by the standard deviation). 
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3. At this point the weighted K-means clustering technique is applied to the 

normalized space of features, where K is fixed at two following the 

indication of [91]. In each step an element is assigned to the cluster in which 

the nearest centroid is place. The centroids are initialised randomly. The K-

mean technique is iterated 100 times always with different initialization and 

chooses the cluster that shows the lowest residuals. Both residual and 

centroids are adjusted by normalizing each variable in respect to the sum of 

the CV of all the m variables.  

 

4. The results of the K-means are used to obtain a scoring vector. In particular, 

the K-means splits the m features in two clusters with number of elements 

t1 and t2, respectively. 

 

5. Per each cluster the average among the X variables of the m-dimensional 

vector is calculated, and the result is normalised between [0,1].  

 

6. Finally, the best subset of feature is chosen following the Hyper-Pipes 

concept. The Hyper-Pipes concept is based on taking into account the 

minimum and maximum of each selected feature in the m-dimensional 

vector, defining a set of ranges. Each range is compared to the one 

calculated on the average and the best outcome is given by the cluster that 

offers the highest number of matches. 
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Figure 6.6 Computation of the score indicator [90]. 
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CHAPTER 7 

Results and Discussion 

 

 

Starting from the features described in Chapter 5, the performances of the patient 

are evaluated using the score indicator based on the CVV that was presented in 

Chapter 6. More specifically, the score indicator is computed per each category, 

body segment, exercise, and session, resulting in a trend.  

The results of score indicator relative to each category and exercise are reported in 

the next sections, then a discussion of the outcome, conclusion and future 

developments are undertaken.  

   

7.1 RESULTS 

The results of the score indicator related to each of the 7 categories of features are 

proposed in order as follows: 

 

• gait variables; 

• kinematic variables; 

• ROM-based features; 

• stability-related features; 

• statistical features; 

• jerk-based features;  

• info/theoretical, spectral and entropy-related features. 
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7.1.1 GAIT VARIABLES 

The score of the walking sets shows a constant trend with few isolated peaks. The 

highest values are focused on the 5th session for both walking at 3 and 4 km/h, while 

on the 1st session for walking at 6 km/h.  

The number of features selected are 2, 2 and 3 for walking at 3,4 and 6 km/h, 

respectively. More specifically, the selected features vary on type of walking set 

(e.g. GCT and Swing Phase for walking at 3km/h, Stance phase and Clearance for 

walking at 4 km/h, GCT, Stride Length and Stride Speed for walking at 6 km/h). 

The discussed results are shown in Figure 7.1. 

 

 

Figure 7.1: Score Indicator relative to the Gait variables for the walking sets. The 

value obtained per each session highlighted by the green circle. 
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7.1.2 KINEMATIC VARIABLES 

In the hamstring curl scenario, the score given by the selected features (e.g. RAV, 

VV and KV) obtained for the shank sensor shows a trend that presents its maximum 

peak immediately after the surgery and decreases in the long-term view, even if the 

last two sessions are characterized by higher values in respect to the previous weeks 

probably due to the application of mental distractions.  

A similar trend is shown for the thigh sensor in which the selected features are 

(RAV, x-, y- and z-Fluency). In this case an increasing of the score is detected in 

the post-surgery for reaching the worst condition in the 2th session. Higher values 

are also shown in the last phase of the rehab program, even if in this scenario it 

should be taken into account that the thigh has less influence in performing the 

movement in respect to the thigh, for this reason its consideration should be 

carefully pondered.  

 

In performing flexion-extension, the trend of the shank sensor shows the largest 

score value given by the selected features (e.g. VA, Fluency over x- and z-axis and 

KV) in the 2nd session according to the surgery, then the rehabilitation follows a not 

monotonic response. The score values of thigh sensor determined only by RAV 

results to be higher around the 3th and 6th sessions.  

 

The squat rotation scenario is evaluated only in the post-surgery period following 

the standards of rehab programs. Evaluating the score based on one selected feature 

(e.g. RAV) obtained from the shank, no decreasing trends are detected. The largest 

value of the score is obtained in the 5th session. On the other hand, considering the 

VA and Fluency over the y-axis selected from the thigh sensor, a decreasing trend 

is obtained throughout the available sessions.  
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The walking gait at 3km/h for the shank sensor shows reduced values of the score, 

determined by the single RAV, immediately after the surgery. Similarly, the RAV 

is also selected for the thigh in addition to VV, and Fluency over x-axis and z-axis.   

Increasing speed (e.g. walking gait at 4 km/h) lead to a less marked trend, with 

isolated peaks in which the score is determined by VV, and Fluency over the y-axis 

in the case of the shank, RAV and KV in the case of the thigh. 

Finally, walking at 6km/h shows a jagged trend given by the chosen Fluency over 

x-, y- and z- axis. On the other hand, observing the score extracted for the thigh, the 

trend results to be smoother in respect to the shank sensor and is obtained with the 

selected RAV, VA, VV and KV. 

It should be taken into consideration that only the period that follows the surgery is 

analysed, hence, no important improvements could be seen in this phase.  

 

The score indicators that show a clearer decreasing trend are shown in Figure 7.2.  

 

 

Figure 7.2 Score Indicator relative to the Kinematic Features for hamstring curl, 

flexion-extension scenarios. The value obtained per each session is highlighted by 

the yellow and green circles. 
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7.1.3 ROM-RELATED FEATURES 

The selected features for the hamstring curl reveal to be ROM over x- and y-axis. 

The trend is clearly decreasing with high scores more focused in the post-surgery 

phase. 

 

Regarding the trend during the flexion-extension scenario a similar explanation can 

be given after the selection of the ROM over the y-axis. It can be advertised a clear 

improvement in both hamstring curl and flexion-extension after the 5th session 

despite the presence of larger values of the score around 19th session.  

 

Concerning the squat rotation, the score is determined by the ROM over the x-axis 

and shows a decline of the values throughout the session, even if the trend is not 

monotonic. A clear peak is showed in the 4th session, which can be explained by the 

swelling and squeaking which affected the patient around that session.   

 

The ROM over the x-axis is also selected for defining the score of the walking 

session at 6km/h. In this case no decline of the score is detected with scattered peaks 

around the 2nd, 4th, and 13th and 16th. No evident values of the score mark the first 

part of the plot, which seems to be coherent considering that the change pre-to-post 

surgery is not available for walking sets.  

Similar trends are shown for walking at 3 and 4 km/h by selecting ROM over y- 

and z- axis. Following these explanations, the patient is not following a clear 

improvement in the last phase of rehab.  

      

7.1.4 STABILITY-RELATED VARIABLES 

Concerning the hamstring curl scenario, the selected features are stability over x-

axis for the shank sensor, and stability over y- and z-axis for the thigh sensor. Both 
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trends show increasing values until the 3nd session, then, a not monotonic 

improvement characterizes the rehab period after the 5th session.  

 

Similar considerations are developed for the flexion-extension scenario for the thigh 

sensor, which shows a score based on stability over y-axis that is reduced along the 

sessions, with high values at the beginning of the rehab program (e.g. 2nd and 5th 

sessions) and in the last session (e.g. 24th session). In the last case, the largest value 

at the end is explained by the application of mental distractions that could influence 

the stability. Clearer is the trend obtained for the shank sensor which selected 

stability over the Z-axis. 

 

Regarding the squat rotation scenario, the features selected are stability over z-axis 

and x-axis for the shank and thigh sensors, respectively. The trend is decreasing 

along the sessions of the shank sensor with higher values at the beginning. On the 

other hand, the score of the thigh sensor showed no correlation with the results on 

the shank, but still shows a high score on the 5th session like the kinematic score 

which could testify on patient’s swelling. 

 

The trend of the score indicator that characterize the scenario descripted above is 

shown in Figure 7.3. 

The walking sets at 3 and 4 km/h taken from the shank sensor provides a score based 

on the stability over y-axis, while, for walking at 6km/h the selected axes are x- and 

y-. The trend shows changings between high and low values throughout the other 

session with no particular indication of improvements. Similar considerations can 

be drawn for the thigh sensor which selects the stability over y-axis and z-axis for 

walking at 3km/h and x- and z-axis for walking at 4 and 6 km/h, respectively. 
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Figure 7.3: Score Indicator relative to the Stability-related features for Hamstring 

curl, Flexion-extension and Squat rotation scenarios. The value obtained per each 

session is highlighted by the yellow and green circles. 

 

7.1.5 STATISTICAL FEATURES 

In the hamstring curl scenario, the score taken from the shank and thigh sensor is 

based on 20 selected features in both cases. In the former, it shows a score that is 

reducing its values along the sessions, while, in the latter, no trends can be detected. 

This tendency is acceptable considering the way the exercise is performed (e.g. the 

thigh should not be in movement) and thus, it is not particularly interesting in this 

case for the evaluation of the performances. 
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The flexion-extension scenario shows a number of selected features equal to 17 

and 24 in the case of shank and thigh sensor, respectively. Similar to the results 

obtained for the other categories, the results of both sensors show a score that not 

monotonically lowers with the advancement of the sessions. 

 

The score relative to the shank and thigh sensors in the case of squat rotation 

scenario is described by 14 and 17 features, respectively, and reveals high values in 

correspondence to 5th session, which supports the theory of the swelling developed 

in the categories explained previously. A decline is more marked for the thigh 

sensor, while, it is harder to assess an improvement along the sessions extracted 

from the shank sensor.  

 

Regarding the walking sets at 6 km/h, both shank and thigh sensor in the statistical 

score do not reveal any improvement of the patient after selecting 13 and 16 

features, respectively. An alternation between high and low values characterized 

the whole jagged trend. Similar considerations about the trend can be reported for 

walking at 3km/h after choosing 12 and 15 features for shank and thigh, 

respectively. 

On the other hand, a decline of the score is detected in the case of walking at 4km/h 

by selecting 15 features in both shank and thigh. 

 

7.1.6 JERK-BASED FEATURES 

In the hamstring curl scenario the reduction of the score after the surgery is evident 

in the results of both shank and thigh sensors. In both cases the decreasing trend is 

characterized by isolated regressions of the patient. The features selected for the 

shank on the x-axis are ISJ, MSJ, CSJ, RMSJ, IAJ, and dimensionless jerk, on the 

y-axis only IAJ, on the z-axis CSJ, RMSJ, IAJ, N_MSJ, N_MAJ, and dimensionless 

jerk are chosen. On the other hand, for the thigh are chosen on the z-axis are ISJ, 

MSJ and CSJ, RMSJ and IAJ, while, on the y-axis N_MSJ N_MAJ. 
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Similar results are obtained the thigh sensor while performing flexion-extension. On 

the other hand, the shank sensor shows increasing values around the 8th session. 

The features selected for the shank are the same with the only exception of selecting 

dimensionless jerk instead of IAJ over y-axis. While, for the thigh most of the 

features are extracted from the x-axis (e.g. ISJ, MSJ, CSJ, RMSJ, N_MSJ, IAJ, 

N_MAJ and dimensionless jerk), and only one on the z-axis (e.g. dimensionless 

jerk).  

 

Unlike the previous scenarios, the squat rotation showed a reduced number of 

selected features: only dimensionless jerk over x-axis for the shank sensor, and 8 

features for the thigh sensor (e.g. ISJ, MSJ, N_MSJ, N_MAJ on the x-axis, IAJ, 

N_MAJ, and dimensionless jerk on the y-axis). Concerning the trend, the score of 

both sensors reveals a not-monotonic improvement. 

 

Walking at 6 km/h shows higher values of the score in the first half of the tested 

period and reduced values at end of rehab by selecting for the shank sensor 5,1 and 

6 features on the x-, y-, and z- axis, respectively. In the case of the thigh only 7 

features on the z-axis are chosen.  

On the other hand, an improvement can be seen be seen for walking at 3 km/h in 

the results of both shank and thigh, and only in the shank for walking at 4 km/h. For 

the shank sensors 5 (for walking at 3km/h) and 12 (for walking at 4km/h) features 

are chosen. In the same order, the thigh needs 2 and 13 features.  

 

All promising results that characterize these scenarios are shown in Figure 7.4 and 

Figure 7.5. 

 

 

 



 

110 
 

CHAPTER 7 Results and Discussion 

 

 

 

 

Figure 7.4: Score Indicator relative to the Jerk-based Features for Hamstring 

Curl, Flexion-extension and Squat rotation. The value obtained per each session is 

highlighted by the yellow and green circles. 
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Figure 7.5: Score Indicator relative to the Jerk-based Features for walking at 3, 4, 

and 6 km/h. The value obtained per each session is highlighted by the yellow and 

green circles. 

 

7.1.7 INFO/THEORETICAL ,    SPECTRAL  AND ENTROPY- 

RELATED FEATURES 

 

Concerning the score extracted from the hamstring curl scenario, the trend is given 

by 27 and 29 features for shank and thigh, respectively. In the case of the shank 

sensor, it decreases until the 10th session, while regressions of the patient can be 

detected in the 14th and 20th sessions. A clearer improvement is detected for the 

thigh. The hamstring curl shows both features related to the accelerometer data (e.g. 

on the x-axis LZC RHL, 3rd Quartile, DMW, on the y-axis LZC, RHL,DF, SC PL 
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band, PH band, 2nd and 3rd Quartile DMW, on the z-axis LZC, FER, PH band, 3rd 

quartile, and SEF on the magnitude) and gyroscope data (e.g. on x-axis LZC and 

DMW, on y-axis LZC,DF and DMW, on z-axis LZC,SC, PH band, DMW and HR). 

 

The score that characterize the flexion-extension scenario reflects the same trend 

detected in the hamstring curl. This trend is determined by the selection of 22 and 

27 features for shank and thigh, respectively.  

 

Regarding the squat rotation scenario the score selected a lower number of features 

(e.g. 22 features for the shank sensor, and 23 features for the thigh sensor) related 

only to the gyroscope data (e.g. LZC over y- and z-axis, FER over z-axis, SC over 

y- and z-axis, PL and PH bands over y- and z- axis, 1st Quartile on z-axis, 3rd 

Quartile on x-axis, DMW on y- and z-axis and HR over all the three axis). Higher 

values of the score are detected around the 6th and 7th sessions, while, the other 

sessions define a quite constant trend. 

 

Performing the walking gait at 3 km/h the score for the shank sensor does not show 

a clear reduction of the score, the highest values are dispersed along the sessions 

with high score values placed on the 6th and 12th sessions. The results for the thigh, 

based on 23 features seems to be correlated with the trend of the shank which is 

determined by 22 features related to both accelerometer and gyroscope (e.g. SC, LP 

band, HP band, 2nd and 3rd Quartiles, SEF, DMW and HR from the accelerometer, 

as well as the gyroscope features with the only exception in taking the LZC on y-

axis instead of the 3rd quartile).  

Very similar explanations can be reported in the case of walking sets at 4km/h and 

6km/h. Both sets are described by 27 features in the case of the shank sensor, while 

18 and 34 features are necessary for the thigh sensors.  
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7.2 MUSCLE CONTROL IN SINGLE LEG WALL 

SLIDE 

 

A different evaluation is undertaken on the Single Leg Wall Slide (SLWS) scenario. 

This exercise is performed by standing on one leg in squat position while the other 

leg is lifted, hence, if the patient has not enough strength in the quadriceps he is 

likely to get into varus-valgus movements. Thus, the more is the shaking of the knee 

on the medio-lateral axis, the less is the muscle strength of the standing leg.  

This work proposed a method to detect irregulates and define the pattern of thigh 

movement during the performance of SLWL inspired by [92]. This method helps 

in estimating the muscle control of the patient and the eventual improvements.  

It is based on a phase plot-like representation in which the angular velocity 

measured on the medio-lateral axis is plotted versus the magnitude of the 

acceleration.  

As a result, the straighter the line identified by the distribution, the less the tremor 

of the leg, leading to a higher muscle control. Vice versa, a more dispersed 

distribution is synonymous of irregular patterns.  

This representation is plotted per each session in which the SLWS is tested and per 

each leg.  

 

The next stage is to quantify the differences of the distribution between right and 

left leg along the sessions. In [92] is proposed a quantification based on the “box-

counting method” after calculating the fractal dimension.  

This work proposed a quantification to avoid the high-computational load typical 

of the “box-counting method” that results to be accurate enough.  

This quantification is based on a circle fitting and follows the steps exposed down 

below: 

1. The y-axis is rescaled in respect to the x-axis in order to get into a circular 

distribution instead of a unilateral one.  

2. The coordinates of the center of circle are set as the mean of the values on 

both horizontal and vertical axis.  
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3. The threshold is fixed equal to the 95% of the elements of the distribution. 

4. The radius is increased until the number of elements inside the circle are over 

the threshold. A bigger radius testifies on a more dispersed distribution.  

 

The results obtained after the application of this method are illustrated in Figures 

7.6 - 7.13 with a comparison between legs shown in Figure 7.14. 

 

 

 

Figures 7.6 - 7.9: SWLS standing on the left leg (on the right) and on the right leg 

(on the left) during the 1st and 2nd session. The yellow points define the distribution 

and the cyan circle identifies the maximum extension of the radius in order to 

include the 95% of the elements.  
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Figures 7.10 - 7.13: SWLS standing on the left leg (on the right) and on the right 

leg (on the left) during the 3rd and 4th sessions. The yellow points define the 

distribution and the cyan circle identifies the maximum extension of the radius in 

order to include the 95% of the elements.  

 

 

Figures 7.14: Changing in the dimension of the radius among the 4 sessions (Right 

leg – in blue, Left leg – in red). 
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7.3 DISCUSSION 

This thesis proposes a method for supporting the clinical analysis in defining the 

knee health status of a patient affected by ACL. The knee is considered the most 

stressed joint of the lower limbs, thus, it is very likely that it could be injured during 

sport performances. Considering the increasing number of injuries, systems that 

enables both short-term and long-term monitoring are required. To date, the gold-

standard is represented by clinimetrics and lab-based systems. Unfortunately, none 

of these systems show all the standard characteristics that a long-term monitoring 

device should include: practicability, high accuracy, and low-cost. To this purpose, 

IMUs revealed to be less expensive, more practical, accurate, and easy-to-integrate 

into a wearable device, and represent, therefore, a suitable solution to be applied in 

ACLR.  

This study testes 4 WIMU developed and validated at Tyndall National Institute for 

extracting a wide range of parameters and defining the most informative ones 

through a feature selection method.  

The 4 WIMU are used for capturing the data weekly from a young patient affected 

by ACL. The patient was asked to wear the IMUs by means of stretchable velcro 

straps and to perform different scenarios (e.g. Hamstring Curl, Flexion-extension, 

Squat Rotation and walking gait at different speeds).  

The algorithm stars with the calculation of the 3D knee joint angles through a 

quaternion-based fusion algorithm taking into account both accelerometer and 

gyroscope data.  

Then, different categories of parameters are implemented: gait variables, statistical 

features, kinematic variables, info/theoretical and entropy-related features, jerk-

based features, stability-related features and ROM-based features.  

Each feature is evaluated in every session, scenario, category, 

repetition/stride/window, segment and axis (where possible), per both legs. The 

overall number of computed features per each segment is 181. The number of 

features per each category is 6, 64, 7, 74, 24, 3, and 3 for gait, statistical, kinematic, 
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info-theoretical/spectral, jerk-based, stability-related and ROM-based categories, 

respectively.  

The differences between the two legs are estimated in both shank and thigh sensor 

by using the Bhattacharyya distance (DB). The expected trend should reveal high 

values of the DB immediately after the surgery reducing them throughout the rehab 

program. It should be also taken into account that many scenarios (e.g. squat 

rotation and walking sets) are not available in the pre-surgery phase, hence, their 

trend could be flatter. In order to avoid redundant or uninformative features, the 

Clustering Coefficient of Variation (CCV) is applied for selecting a subset of 

features.   

The outcome of the CVV is a score which reveals per each exercise and category 

the optimal subset of features for detecting the patient’s improvements. 

The gait variables are the most suitable for detecting an improvement related to 

walking gait performances, even if the type of feature selected varies on the 

different sets (e.g. at different walking speeds).  

The selected kinematic features well-describe the decreasing trend in all exercises, 

with the only exception of squat rotation and walking at 4 km/h which show isolated 

high scores along the sessions. This is due to a relative improvement of the patient 

performances. The most selected features among all exercises are RAV, Fluency 

over y-axis and KV. 

Concerning the ROM-based features, reducing values of the score are detected 

throughout the sessions of hamstring curl, flexion-extension and squat rotation 

scenarios. The selected ROM is over the x- and y-axis, only walking at 3 and 4 

km/h based their trend on z-axis. Hence, the ROM that defines internal-external 

variations is not considered meaningful for an ACL assessment that includes the 

proposed scenarios.  

Similar to the consideration developed for the ROM, the stability-related score 

gives information about the patient’s progressions in all exercises, except for 

walking at 3 and 4 km/h.  Considering all the exercises, the stability is selected over 

all the axis at least one time. For instance, the hamstring curl score chooses the 
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features along x- and z- axis, while, the flexion-extension score needs only the 

values along the y- axis.  

Then, the statistical score gives poor results revealing that a decreasing trend could 

be detected only in the flexion-extension scenario for both sensors, and in the 

hamstring curl and squat rotation scenarios for the shank and thigh sensor, 

respectively. The number of selected features goes from the 13 (in the walking sets) 

to 24 (in the flexion-extension scenario) in respect to the initial 64 considered in 

this category. 

Regarding the jerk-based category, the exercises that show an improvement of the 

patient related to the shank sensor are the hamstring curl, flexion-extension, and 

walking at 3 km/h. On the other hand, a decline of the score is detected also in 

walking at 4 km/h for the thigh sensor, and in the squat rotation scenario for both 

sensors.  The exercises that present the lowest number of features to assess the 

patient’s progression along the rehab program are squat rotation and walking at 4 

km/h which select the DSJ over one and two axis, respectively.  

Finally, in the case of info/theoretical and spectral features a minimum number of 

27 features is necessary for defining a decreasing trend in both hamstring curl and 

flexion-extension scenarios. The most selected features are LZC, SC, LFP, MFP, 

3rd Quartile, and DMW. 

Having a look at the scores of every category, it could be seen that even when the 

trend is decreasing it is not monotonic. Thus, important improvement of patient’s 

knee health could be seen immediately after the surgery, while a jagged trend and 

a little progression characterise the last phase of the rehab program.  

The application of mental distractions during the last two sessions seems to have 

no influence in the outcome. Further tests and analysis on right and left leg to assess 

if the application of mental distractions could affect the performance of the 

proposed scenarios should be evaluated.  

Regarding the Single leg wall slide (SLWL), the proposed method helps in 

quantifying the muscle control of the patient. A high smoothness of the signal is 
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detected in case of regular standing executed by the thigh, getting into more 

dispersed distribution in case of low muscle control.  

The results show an improvement patient’s muscle control on both legs testified by 

reduced values of the radius along the 4th sessions, and thus, more concentrated 

distributions.  
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CHAPTER 8 

Conclusion 

 

 

This thesis proposed the use of WIMUs for developing an objective evaluation that 

could support the clinical assessment of the knee health status. The use of inertial 

sensing platforms reveals to be a low-cost, practical and accurate solution in respect 

to the gold-standard systems. The proposed algorithm is able to detect the widest 

range of features and to select the most informative ones by combining the 

application of the Bhattacharyya distance (DB) with a weighted K-means technique 

based on the Coefficient of Variation (CVV).  

The patient’s progression is more evident in the scenarios that have been tested 

from the pre- to post-surgery period. While, in the case of walking sets a flatter 

trend testifies on a relative improvement during the last sessions.  

The number and type of chosen features varies on the different scenarios, overall, 

the most selected ones are GCT, RAV, Fluency over y-axis, KV, ROM over the x- 

and y-axis, LZC, SC, LFP, MFP, 3rd Quartile, and DMW.  

The application of mental distractions  

The use of DB followed by CVV for defining a score indicator that classify the 

patient’s performance, to the author’s knowledge, have not been proposed in 

previous ACLR analysis.  

Future developments are currently under study for grouping all the categories’ 

indicators into a single score that allows the definition of patient’s performances in 

respect to different scenarios.  

Furthermore, other classification techniques which takes into account also the 

biological meaning of each feature can be compared to the proposed method for 

obtaining a more significant score indicator.  
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In the future, this score indicator could be transferred to a smartphone application 

for giving a feedback to the patients about at-home rehab.  

Finally, the method proposed for analysing the Single Leg Wall Slide (SLWS) can 

help in detecting improvement in the muscle control of the quadriceps, even if more 

tests are needed to validate these results.  

In conclusion, the use of the WIMUs and the proposed analysis proved to define a 

wide range of metrics and accurate methods that could support the clinical 

assessment during both typical scenarios of literature (e.g. hamstring curl, flexion-

extension and walking sets) and new scenarios suggested by experts (e.g. Squat 

rotation and Single Leg Wall Slide), making the findings of this work a further step 

towards to the definition of an objective assessment of impaired subjects during 

ACLR.  
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