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Introduction	
	
Fatigue	is	one	of	the	main	distresses	of	asphalt	concrete	mixtures.	This	phenomenon	is	mostly	
influenced	by	the	behaviour	of	the	asphalt	binder	due	to	the	fact	that	damage	takes	place	
mainly	on	this	component.		
One	of	the	most	important	consequences	of	damage	is	the	appearance	of	microcracks	that	
turn	into	macrocracks	as	the	loading	process	persists.			
From	another	perspective,	damage	also	appears	as	a	nonlinearity.	In	other	words,	it’s	partly	
responsible	for	the	decrease	of	the	complex	modulus	under	certain	loading	conditions.	
Another	nonlinearity	that	must	be	taken	into	account	on	the	study	of	the	material	is	the	NLVE	
(nonlinear	viscoelastic)	behavior.		
The	differentiation	or	 isolation	of	 the	different	nonlinearities	 is	 a	 key	part	of	 the	bitumen	
characterization.		
An	effective	way	of	describing	the	fatigue	response	of	a	material	 is	 the	C	–	S	curve,	which	
traces	 how	 the	 pseudo	 secant	 modulus	 (C)	 decreases	 as	 damage	 increases.	 Damage	 is	
quantified	 by	 an	 internal	 state	 variable	 called	 S.	 This	 procedure	 is	 a	 part	 of	 the	 VECD	
(viscoelastic	 continuum	 damage)	 model	 which	 will	 be	 thoroughly	 described	 on	 the	 next	
chapter.		
The	VECD	model	 takes	advantage	of	 the	viscoelastic	correspondence	principle.	 It	allows	to	
replace	 certain	 variables	with	pseudo	variables	 in	order	 to	 remove	 the	 viscoelastic	 effects	
from	the	analysis,	in	other	words,	to	perform	an	elastic	analysis	of	a	viscoelastic	problem.		
On	the	following	chapters	an	analysis	of	four	different	binders	is	presented.	Feyzin,	Mantova,	
PG-64-22	and	PG-76-16.	The	tests	were	performed	over	the	original	binders	and	in	some	cases	
over	the	PAV	binders.	
The	 first	 part	 of	 the	 study	 is	 about	 the	 linear	 characterization	 of	 the	materials.	 The	 tests	
performed	on	this	section	aimed	to	determine	the	linear	range	(on	which	the	behavior	isn’t	
strain	dependent),	also	to	obtain	the	master	curves	and	the	Prony	series	representation	of	the	
relaxation	modulus	E(t)	and	creep	compliance	D(t).	
After	the	linear	analysis,	several	tests	were	performed	in	order	to	comprehend	the	behavior	
of	 the	 binders	 outside	 the	 linear	 range.	 Outward	 this	 range,	 a	 decrease	 on	 the	 complex	
modulus	can	be	observed	as	the	strain	applied	to	the	material	is	increased.	
This	tests	have	allowed	to	develop	a	model	that	characterize	the	strain	dependent	nature	of	
the	material.		
The	final	set	of	tests	consisted	on	submitting	the	binders	to	different	levels	of	strains	with	a	
sinusoidal	load.	The	final	goal	of	the	test	is	to	realize	how	the	reduction	of	the	modulus	takes	
place.	This	reduction	is	caused	by	fatigue.	
Due	to	the	viscoelastic	nature	of	asphalt	binders,	all	tests	are	performed	taking	into	account	
the	dependency	of	the	behavior	regarding	temperature,	frequency	of	loading	and	time.		
In	all	cases,	the	tests	were	performed	with	a	rheometer.	This	device	measures	the	strains	and	
shear	stresses	that	a	binder	sample	undergoes	when	it’s	submitted	to	torque.		
The	first	chapter	of	this	work	is	about	the	theoretical	background	on	which	the	tests	are	based.	
The	second	chapter	is	about	the	experimental	program,	that	is	to	say,	materials,	instruments,	
test	procedures,	etc.		
Finally,	the	third	chapter	is	dedicated	to	the	results	analysis.	
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Chapter	1:	Theoretical	Background	
	
1.1 Linear	viscoelastic	behavior	
	
1.1.1	General	concept	
	
Unlike	elastic	materials,	the	behavior	of	viscoelastic	materials	is	dependent	on	temperature	
and	 time.	That	means	 that	 the	 loading	history	of	 the	material	must	be	known	 in	order	 to	
predict	its	current	state.		
Having	a	linear	behavior	means	that	strains	are	completely	recoverable.	
The	constitutive	relationships	of	these	kind	of	materials	can	be	represented	by	convolution	
integrals,	as	shown	in	equation	1	and	2	(Underwood,	2006).	 
	

𝜎 = 𝐸(𝑡 − τ) ∙
𝑑ε
𝑑τ

,

-
∙ 𝑑τ																																																																																																																						(1) 

	

𝜀 = 𝐷 𝑡 − 𝜏 ∙
𝑑𝜎
𝑑𝜏 ∙ 𝑑𝜏																																																																																																																						(2)

,

-
	

	
Where,	E(t)	 is	 the	 relaxation	modulus,	𝐷 𝑡 	 the	creep	compliance	 (section	1.1.2)	and	𝜏	 an	
integration	variable.		
	
1.1.2	Creep	and	Relaxation	
	
The	phenomenon	of	 creep	occurs	when	a	material	 suffers	 a	 slow	continuous	deformation	
under	constant	stress.	For	linear	materials,	strain	can	be	obtained	with	eq.	3.	
	
𝜀 𝑡 = 𝜎- ∙ 𝐷 𝑡 																																																																																																																																						(3)	
	
Where,	𝜎-	is	the	applied	constant	stress	and	𝐷 𝑡 	the	creep	compliance.	
On	the	other	hand,	relaxation	occurs	when	a	material	is	subjected	to	permanent	deformation.	
In	this	case,	stress	gradually	decreases.	For	linear	materials,	the	stress	can	be	represented	by	
eq.	4.	
	
𝜎 𝑡 = 𝜀- ∙ 𝐸 𝑡 																																																																																																																																							(4)	
	
Where,	𝜀-	is	the	applied	permanent	strain	and	𝐸 𝑡 	the	relaxation	modulus.	
The	creep	compliance	function	and	the	relaxation	modulus	function	depend	on	the	material	
properties	(Findley,	et	al.,	1976).	
	
1.1.3	Complex	modulus	
	
The	 complex	modulus	𝐸∗ 𝑡 	 is	 a	 constitutive	 relationship	between	 the	deformation	and	a	
steady	sinusoidal	loading.	It’s	divided	into	two	components,	the	storage	modulus	𝐸7 𝑡 	(eq.	
5)	and	the	loss	modulus	𝐸77 𝑡 	(eq.	6).	
	
𝐸7 𝑡 = 𝐸∗(𝑡) ∙ cos 𝛿(𝑤= )																																																																																																																(5)	
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𝐸77 𝑡 = 𝐸∗(𝑡) ∙ 𝑠𝑒𝑛 𝛿(𝑤= )																																																																																																															(6)	
	
𝐸∗ 𝑡 = 𝐸7 𝑡 + 𝑖 ∙ 	𝐸77 𝑡 																																																																																																																				 7 	
	
Where,	𝛿	is	the	phase	angle	and	𝑤= 	the	reduced	frequency.		
In	purely	elastic	materials,	the	phase	angle	equals	0o.	This	means	that	deformation	response	
occurs	simultaneously	with	load	(stress	and	strain	in	phase).	On	the	other	hand,	purely	viscous	
materials	have	a	90o	phase	angle.	
	
1.1.4	Time-temperature	correspondence	principle	
	
Linear	 viscoelastic	 behavior	 has	 a	 time	 –	 frequency	 correlation.	 In	 fact,	 a	 certain	material	
subjected	to	low	frequencies	and	high	temperatures	can	have	the	same	response	that	it	would	
have	at	high	frequencies	and	low	temperatures.	This	principle	is	very	useful	due	to	the	fact	
that	it	allows	to	perform	tests	in	a	limited	range	of	frequencies	and	temperatures	and	it’s	still	
possible	to	know	the	material’s	behavior	outside	this	range.	
The	parameter	that	takes	into	account	both	variables	is	the	reduced	frequency	𝑤= 	(eq.	8).	
	
𝑤= = 𝑤 ∙ 𝑎 𝑇 																																																																																																																																									(8)	
	
Where,	𝑤	is	the	frequency	and	𝑎 𝑇 	the	shift	factor.	
The	shift	 factor	 is	a	 temperature	dependent	 function	that	moves	horizontally	 the	Complex	
Modulus	Vs	Frequency	curves	obtained	at	different	temperatures	in	order	to	create	a	single	
curve	called	master	curve	which	describes	the	constitutive	behavior	of	binders.	This	process	
can	be	observed	on	fig.1.	
	

	
Fig.	1.	Master	curve		

	

1.000

10.000

100.000

1.000.000

10.000.000

100.000.000

1.000.000.000

1 10 100 1000 10000 100000 1000000

Co
m
pl
ex
	M

od
ul
us
	(P

a)

Freq.	(rad/s)

Master	Curve

4°

10°

16°

22°

28°

34° reference	temp.



	 5	

1.2	Viscoelastic	Models	
	
In	the	following	section,	viscoelastic	models	are	presented.	These	are	used	for	the	study	of	
the	stress	–	strain	–	time	relationships.		
Mechanical	models	are	used	for	the	representation	of	the	behavior	when	the	applied	load	is	
steady.	They	are	made	up	of	dashpots	and	springs.	The	best	describing	model	depends	on	the	
type	of	bitumen	and	temperature.	
On	the	other	hand,	for	oscillating	loading	regimes,	analytical	models	are	used.	
	
1.2.1	Maxwell	model	
	
This	model	consists	in	one	spring	and	one	dashpot	connected	in	series	(fig	2).	Therefore,	the	
total	strain	is	the	summation	of	the	spring	strain	and	the	dashpot	strain	(eq.	9).	

	
𝜀 = 𝜀IJKLMN + 𝜀OPIQJR,																																																																																																			(9)	
					

𝑑𝜀
𝑑𝑡 =

1
𝐸 ∙

𝑑𝜎
𝑑𝑡 +

𝜎
𝜂 																																																																																																							(10)	

	

		𝜀 𝑡 = V
W
+ ,

X
∙ 𝜎																																																																																																							(11)	

	

Where,	𝜂	is	the	coefficient	of	viscosity.	
This	model	describes	a	liquid	–	like	behavior.		
	
1.2.2	Kelvin	Voigt	Model	
	
This	model	consists	in	one	spring	and	one	dashpot	connected	in	parallel	(fig.	3).	Therefore,	the	
total	stress	is	the	summation	of	the	spring	stress	and	the	dashpot	stress	(eq.	12).	

	
𝜎 = 𝜎IJKLMN + 𝜎OPIQJR,																																																																														(12)	
	

𝜎 = 𝐸 ∙ 𝜀 + 𝜂 ∙
𝑑𝜀
𝑑𝑡 																																																																																							(13)	

	

𝜀 𝑡 = 𝜀- ∙ 1 − 𝑒
Y,Z 																																																																													(14)	

	
	
Where,	𝜆 = 𝜂 𝐸	is	the	relaxation	time.		
This	model	describes	a	solid	–	like	behavior.		
	
1.2.3	Burger	Model	
	
This	model	consists	in	a	Maxwell	model	connected	in	series	with	a	Kelvin	Voight	model	(fig.	
4).		

Fig.	2	

Fig.	3	



	 6	

	

	
Fig.	4	

𝜀 𝑡 =
𝜎
𝐸-
+
𝜎
𝜂-
∙ 𝑡 − 𝑡- +

𝜎
𝐸V
∙ 𝑒 Y,Y,\Z] 																																																																																			(15)	

	
The	Burger	model	describes	a	behavior	between	a	solid	and	a	liquid	like	behavior	
	
1.2.4	Prony	series	representation	
	
The	Prony	series	describes	the	behavior	of	a	Maxwell	model	subjected	to	oscillating	loading.	
The	storage	modulus,	the	loss	modulus	and	the	relaxation	modulus	can	be	expressed	as	a	
time	dependent	property	by	means	of	the	Prony	series	(Yun,	et	al.,	2010),	as	shown	in	eq.	
16,	17	and	18.	
	

𝐺7 𝑤= =
𝑤=_ ∙ 𝜌a_ ∙ 𝐺a
𝑤=_ ∙ 𝜌a_ + 1

M

abV

																																																																																																												(16)	

	

𝐺77 𝑤= =
𝑤= ∙ 𝜌a ∙ 𝐺a
𝑤=_ ∙ 𝜌a_ + 1

																																																																																																													(17)
M

abV

	

	

𝐺 𝑡 = 𝐺a ∙ 𝑒
Y,
cd

M

abV

																																																																																																																										(18)	

	
Where,	𝐺7 𝑤= 	=	storage	modulus;	𝐺77 𝑤= =	loss	modulus;	𝑤= 	=	reduced	angular	freq.;	𝐺a	
=	modulus	of	one	of	Maxwell	elements;	𝜌L 	=	relaxation	time.	
If	the	loading	frequency	equals	infinity,	the	dynamic	modulus	equals	the	spring	constant	of	
the	Maxwell	model	(Findley,	et	al.,	1976).	
	
1.2.5	Christensen	-	Anderson	–	Marasteanu	model	(CAM	model)	
	
One	way	of	approximately	describing	the	master	curve	is	by	means	of	the	CAM	Model.	It’s	an	
analytic	model	that	provides	formulation	for	the	modelling	of	not	only	the	master	curve	(eq.	
19)	but	also	the	phase	angle	curve	(eq.	20)	(Marasteanu	&	Anderson,	1999).	
	

𝐺∗ 𝑤= = 𝐺N ∙ 1 +
𝑤e
𝑤=

fgh _
=

Y =∙a
fgh _

																																																																																										(19)	
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𝛿 𝑤= =
90 ∙ 𝑚

1 + 𝑤=
𝑤e

fgh _
=

																																																																																																																(20)	

	
Where,	𝐺∗ 𝑤= 	=	complex	modulus;	𝛿 𝑤= 	=	phase	angle;	𝐺N=	the	glassy	modulus;	𝑅	=	
rheological	index;	𝑤e 	=	cross	over	frequency;	and	𝑚	=	model	parameter.		
	
1.2.6	Nonlinear	viscoelastic	shift	factors	
	
Outside	the	linear	range,	nonlinearities	appear.	The	behavior	becomes	strain	dependent.	The	
nonlinear	viscoelastic	behavior	can	be	modelled	by	means	of	two	shift	factors,	𝑎k	and	ℎV.	Both	
are	 functions	 of	 the	 strain	 and	 their	 influence	 can	 be	 observed	 in	 eq.	 21	 and	 eq.	 22	
(Underwood,	2015)	
	
𝑤K7 = 𝑤K ∙ 𝑎k = 𝑎m ∙ 𝑤 ∙ 𝑎k																																																																																																													(21)	
	
Where,	𝑤K7	is	the	strain	dependent	reduced	frequency	and	𝑤K 	the	reduced	frequency.	
	
𝜏 𝑤K = ℎV ∙ 𝐺∗ 𝑤K7 𝛾o 𝑤K 																																																																																																												(22)	
	
Where,	𝛾o	is	the	effective	strain.		
	

𝑡K7 =
𝑡

𝑎m ∙ 𝑎k
																																																																																																																																											(23)	

	
Where,	𝑡K7 	is	the	strain	dependent	reduced	time.	
In	the	case	of	the	Prony	series	representation	the	influence	of	𝑎k	and	ℎV	can	be	seen	in	eq.	
24.	
	

𝐺pqrW7 = ℎV ∙
𝐺a ∙ 𝑤= ∙ 𝑎k

_ ∙ 𝜌a_

𝜌a_ ∙ 𝑤= ∙ 𝑎k
_ + 1

																																																																																										(24)	

	
Where,	𝐺pqrW7 	=	nonlinear	storage	modulus;	𝑤= 	=	reduced	angular	frequency;	𝐺L 	=	modulus	
of	one	of	Maxwell	elements;	𝜌L 	=	relaxation	time.		
	
1.3	Viscoelastic	Continuum	Damage	Model		
	
The	 VCDM	 is	 based	 on	 three	 main	 concepts:	 the	 elastic	 –	 viscoelastic	 correspondence	
principle,	 Schapery’s	 work	 potential	 theory	 and	 the	 time	 –	 temperature	 correspondence	
principle	(Hou,	et	al.,	2010).	
	
1.3.1	Elastic	–	viscoelastic	correspondence	principle	
	
This	principle	was	 introduced	by	Schapery	 (Schapery,	1984).	He	proposed	 that	 viscoelastic	
problems	 can	 be	 treated	 as	 elastic	 problems	 using	 elastic	 constitutive	 equations	 and	 by	
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considering	stresses	and	strains	as	pseudo	variables.	On	eq.	25,	the	convolution	integral	of	the	
pseudo	strain.		
	

𝛾= =
1
𝐺=

∙ 𝐺 𝑡 − 𝜏 ∙
𝑑𝛾
𝑑𝜏 ∙ 𝑑𝜏

,

-
																																																																																																								(25)	

	
Where,	𝐺 𝑡 	is	the	relaxation	modulus,	𝐺= 	the	reference	modulus	and	𝛾	the	real	strain.	
	

	
Fig.	5.	(Kim,	et	al.,	2008)	

On	fig.	5.	(Kim,	et	al.,	2008)	picture	(a)	there’s	a	stress	strain	space.	On	picture	(b)	there’s	a	
stress	pseudo	strain	space.	On	picture	(a)	the	nonlinear	behavior	starts	from	the	beginning	of	
the	curve	due	to	mainly	time	effects.	On	the	other	hand,	on	picture	(b)	the	nonlinear	behavior	
starts	after.	On	this	case	the	nonlinearity	is	only	due	to	damage.		
Therefore,	 working	 with	 pseudo	 strain	 allows	 to	 remove	 from	 the	 analysis	 the	 nonlinear	
effects	caused	by	time.	
A	 simplification	 is	 introduced	 in	 order	 to	 facilitate	 calculations	 (Underwood,	 2015).	 This	
simplification	assumes	a	steady	–	state	condition	so	instead	of	eq.	25,	eq.	26	is	used	for	the	
calculation	of	the	pseudo	strain.	
	

(𝛾JJ= ) =
ℎV
𝐺=

∙ 𝛾-,JJ ∙ 𝐺∗ 𝑤K7 																																																																																																						(26)	

	
Where,	𝛾-,JJ	is	the	peak	to	peak	strain.	
In	the	stress	–	pseudo	strain	space	the	way	of	quantifying	the	effective	stiffness	is	by	means	
of	the	instantaneous	secant	modulus	(eq.	27).	
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𝐶 = 	
𝜏

𝛾= ∙ 𝐷𝑀𝑅																																																																																																																																					(27)	

	
Where,	𝐷𝑀𝑅	 is	 the	 dynamic	 modulus	 ratio	 (eq.	 28).	 It’s	 used	 to	 normalize	 the	 tests	 for	
specimen	to	specimen	variability	(Underwood,	2012).	
	

𝐷𝑀𝑅 =
𝐺∗ vLMNoKJKLM,

𝐺 qrW
																																																																																																																						(28)	

	
Where,	 𝐺∗ vLMNoKJKLM,	is	the	complex	modulus	at	small	strains,	therefore	without	damage.	
	
1.3.2	Schapery’s	work	potential	theory	
	
This	 theory	 is	 based	 on	 thermodynamic	 principles.	 It	 was	 developed	 by	 Schapery	 to	
characterize	how	damage	grows	in	elastic	materials	(Schapery,	1990).	
The	WPT	is	based	on	three	main	functions,	the	pseudo	strain	energy	density	function	(eq.	29),	
the	stress	–	pseudo	strain	relationship	(eq.	30)	and	the	damage	evolution	law	(eq.	31)	(Zeiada,	
et	al.,	2014).	
	

𝑊= = 𝑓 𝜀=, 𝑆 = 	
1
2 ∙ 𝐶(𝑆) ∙ 𝛾

= _																																																																																																		(29)	
	

𝜎 =
𝜕𝑊=

𝜕𝜀= 																																																																																																																																															(30)	
	
𝑑𝑆
𝑑𝑡 = −

𝜕𝑊=

𝜕𝑆

{

																																																																																																																																	(31)	

	
Where,	 S	 is	 an	 internal	 state	 variable	 that	 quantifies	 damage	 by	 taking	 into	 account	
microstructural	changes	that	lead	to	a	reduction	of	stiffness	and	𝛼	is	the	damage	evolution	
rate.	𝛼	is	introduced	to	take	into	account	a	time	dependency	that’s	not	included	on	the	pseudo	
strain	analysis	due	to	the	fact	that	it’s	related	to	damage	growth.	It	can	be	calculated	with	the	
steady	state	log	–	log	slope	of	the	mastercurve	(m)	(eq.	32)	(Underwood,	2015).	
	

𝛼 =
1
𝑚 + 1																																																																																																																																														(32)	

	
If	eq.	29	 is	substituted	 into	eq.	31,	eq.	33	 is	obtained.	 It’s	 important	 to	note	that	only	 the	
pseudo	stiffness	(C)	is	function	of	damage	(S).	
	
𝑑𝑆
𝑑𝑡K7

= −
1
2 ∙ 𝛾

= _ ∙
𝑑𝐶
𝑑𝑆

{

																																																																																																																	(33)	

	
Underwood	introduces	a	simplification	to	solve	eq.	33	(Underwood,	2015):	
Eq.	34	allows	to	calculate	damage	occurring	on	a	load	cycle.	
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∆𝑆 = −
1
2 ∙ (𝛾

=)_ ∙
𝑑𝐶
𝑑𝑆

{

𝑑𝑡K7 																																																																																												(34)
,~,�����
�

,~,�������
�

	

	
Where,	𝑡K,vLMP�7 − 𝑡K,LML,LP�7 	equals	the	reduced	period	of	loading	(𝑡KJ7 )	and	𝛾= 	(pseudo	strain)	is	
a	function	presented	in	eq.	35.	
	

𝛾= 𝑡K7 = 𝛾JJ= ∙
sin 𝑤K ∙ 𝑡K7

2 = 𝛾JJ= ∙ 𝑓 𝑡K7 																																																																																								(35)	
	
In	eq.	36	a	cycle	wise	damage	function	is	introduced.	This	function	considers	that	steady	state	
deformations	exist.	This	assumption	simplifies	the	calculations.	However,	this	assumption	is	
not	actually	true,	that’s	why	a	correction	factor	is	introduced	(𝐵V).	
	

∆𝑆 = −
1
2 ∙ (𝛾JJ

= )_ ∙
𝑑𝐶∗

𝑑𝑆

{

∙ 𝑡K,vLMP�7 − 𝑡K,LML,LP�7 ∙ 𝐵V																																																																(36)	
	
Where,	𝐶∗is	defined	in	eq.	37.	
	

𝐶∗ =
𝜏JJ

𝛾JJ= ∙ 𝐷𝑀𝑅																																																																																																																																			(37)	

	
Considering	 that	 the	 damage	 generated	 in	 one	 cycle	 is	 very	 small,	𝐶∗	 is	 very	 similar	 to	𝐶	
(Underwood,	et	al.,	2010).	Besides,	according	to	Underwood	(Underwood,	2015),	we	can	also	
assume	that	dC/dS	during	one	cycle	is	constant,	therefore	eq.	34	can	be	rewritten	into	eq.	38.	
	

∆𝑆 =
𝑑𝐶
𝑑𝑆

{

∙ −
1
2 ∙ 𝛾

= _
{

𝑑𝑡K7
,~,�����
�

,~,�������
�

																																																																																	(38)	

	
Setting	 eq.	 36	 equal	 to	 eq.38	 and	 considering	 the	 assumptions	 explained	 on	 the	 previous	
paragraph,	the	𝐵V	correction	factor	is	obtained	(eq.	39).	
	

𝐵V =
1

(𝑡K,vLMP�7 − 	𝑡K,LML,LP�7 )	 ∙ 𝑓 𝑡K7
_{𝑑𝑡K7

,~,�����
�

,~,�������
�

																																																																						(39)	

	
The	steady	state	deformation	and	constant	damage	rate	assumptions	aren’t	valid	on	the	first	
loading	 cycles	due	 to	 the	 fact	 that	during	 these,	 rapid	 changes	on	 the	binder	 state	occur.	
Therefore,	in	this	case	the	piecewise	formulation	must	be	used.	
To	sum	up,	for	the	calculation	of	𝐶,	𝛾= 	and	∆𝑆	eq.	40	–	42	are	used	(Underwood,	2015)	
	

𝐶 =
𝐶 = 	

𝜏
𝛾= ∙ 𝐷𝑀𝑅						𝑡K

7 ≤ 𝑡KJ7

𝐶∗ =
𝜏JJ

𝛾JJ= ∙ 𝐷𝑀𝑅				𝑡K
7 > 𝑡KJ7 	

																																																																																																			(40)	
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𝛾= =
			𝛾= =

ℎV
𝐺=

𝐺(𝑡K7 − 𝜉)
𝑑(ℎ_𝛾)
𝑑𝜉

,~�

-
𝑑𝜉				𝑡K7 ≤ 𝑡KJ7

(𝛾JJ= ) =
ℎV
𝐺=

∙ 𝛾-,JJ ∙ 𝐺∗ 𝑤K7 										𝑡K7 > 𝑡KJ7 	
																																																													(41)	

	

∆𝑆 =
	∆𝑆 = −

1
2 ∙ 𝛾

=
��V

_
∙ 𝐶��V − 𝐶�

{
V�{

(𝑡K
7	 ��V − 𝑡K

7	 � )
V

V�{					𝑡K7 ≤ 𝑡KJ7

∆𝑆 = −
1
2 ∙ 𝛾

=
JJ

_
∙ 𝐶L�p − 𝐶L

{
V�{

(𝑡KJ
7	 ��V ∙ 𝑁)

V
V�{ 	 ∙ 𝐵V				𝑡K7 > 𝑡KJ7

														(42)	

	
The	 formulae	presented	above	(eq.	42)	allow	to	know	the	quantity	of	damage	(S)	on	each	
cycle.	Confronting	S	with	C	(eq.40)	enables	the	creation	of	the	damage	characteristic	curve.	
This	curve	 is	 inherent	to	the	material	and	 it	doesn’t	depend	on	temperature,	 frequency	of	
loading,	strain,	e.g.	(Zeiada,	et	al.,	2014)	
The	damage	characteristic	curve	can	be	approximated	with	eq.	43		
	
𝐶∗ = 𝑎 ∙ 𝑆� + 𝑏 ∙ 𝑆_ + 𝑐 ∙ 𝑆 + 𝑑																																																																																																								(43)	
	
Where,	a,	b,	c	and	d	are	regression	coefficients.	
	
1.3.3	Time-temperature	correspondence	principle	
	
It	has	been	demonstrated	that	the	time	temperature	correspondence	principle	is	also	valid	in	
the	nonlinear	range	of	the	material.	(Yun,	et	al.,	2010).		
That	means	 that	 the	 shift	 factors	 obtained	 in	 the	 linear	 analysis	 are	 still	 usable	when	 the	
material	has	suffered	damage	and	permanent	strain.	
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Chapter	2:	Experimental	Program	
	
2.1	Dynamic	shear	rheometer	(DSR)	
	
The	DSR	is	a	very	useful	device	for	the	characterization	of	the	elastic	and	viscous	behavior	of	
bitumen.	It’s	able	to	perform	tests	on	different	temperatures	and	frequencies.	
Throughout	torque,	the	DSR	subjects	a	binder	sample	to	shear	 loading.	The	load	is	applied	
sinusoidally.	 It’s	 possible	 to	 calculate	 the	 strain	 and	 stress	by	means	of	 eq.	 44	 and	eq.	 45	
respectively.	
The	 binder	 sample	 is	 positioned	 between	 a	 superior	 and	 an	 inferior	 plate	 (fig.	 6	 b).	 The	
superior	plate	rotates	while	the	inferior	plate	remains	still.		
	

𝜏 =
2 ∙ 𝑇
𝜋 ∙ 𝑅� 																																																																																																																																														 44 	

	

𝛾 =
𝜑 ∙ 𝑅
ℎ 																																																																																																																																																(45)	

		
Where,	𝑇	is	torque,	𝑅	the	plate	radious,	𝜑	the	rotation	angle	and	ℎ	the	distance	between	the	
superior	and	inferior	plate.		
For	the	purpose	of	this	work,	an	8	mm	diameter	plate	was	used	and	a	separation	of	2	mm	
between	the	plates	in	all	cases.	
	

	
Fig.	6.	A)	Rheometer;	B)	Superior	and	inferior	plate	

	
2.2	Materials	
	
In	this	work,	four	different	binders	were	studied:	Feyzin,	Mantova,	PG	–	64	-	22	and	PG	–	76	–	
16	in	their	original	state.	The	last	two	were	also	studied	in	their	PAV	state.		
A	SARA	analysis	was	performed	 in	all	binders.	This	test	provides	 information	regarding	the	
percentage	of	saturates,	aromatics,	resins	and	asphaltenes	present	in	the	binders.		
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In	fig.	7,	𝐼� = (𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐𝑠 + 𝑟𝑒𝑠𝑖𝑠𝑛𝑠) (𝑎𝑠𝑝ℎ𝑎𝑙𝑡𝑒𝑛𝑒𝑠 + 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠)	is	the	index	of	colloidal	
stability.	
A	high	𝐼� 	indicates	that	that	the	binder	is	a	GEL	system.	This	means	that	there	are	not	enough	
resins	to	maintain	asphaltenes	highly	dispersed	in	the	oily	phase.	Therefore,	GEL	systems	have	
a	Newtonian	behavior.		
On	the	other	hand,	a	low	𝐼� 	indicates	that	the	binder	is	a	SOL	system.	In	this	case	resins	aren’t	
effective	 on	 the	 peptization	 of	 asphaltenes.	 Consequently,	 SOL	 systems	 don’t	 have	 a	
Newtonian	behavior.	In	our	case,	only	Feyzin	is	a	SOL	system.	

Fig.	7.	SARA	analysis	
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2.3	Testing	protocol	
	
The	first	step	of	all	tests	is	the	dumping	of	bitumen	into	the	container	presented	in	fig	8.		
	

	
Fig.	8.	A)	bitumen	dumped	in	the	container.	B)	bitumen	in	the	container	after	it	has	been	in	the	oven	

Afterwards	the	loaded	container	is	introduced	into	an	oven	were	it	remains	at	150°C	for	10	
minutes.	 Then,	 the	 sample	 is	 taken	 out	 of	 the	 oven	 and	 left	 at	 room	 temperature	
(approximately	21°C)	for	5	minutes.	After	this,	it’s	put	into	a	freezer	at	-6°C	for	3	minutes.		
Once	 the	sample	 is	positioned	on	 the	 inferior	plate,	 the	upper	plate	goes	 to	 the	 trimming	
position	where	the	distance	between	both	plates	is	2,1	mm	(fig.	9).		
	

	
Fig.	9.	A)	Sample	before	trimming.	B)	Sample	being	trimmed.	C)	Sample	after	trimming	

The	sample	is	then	trimmed	by	means	of	a	scraper	(fig.	10).	During	this	phase,	the	plates	are	
at	45°C.	
	

	
Fig.	10.	Scrapers	
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After	the	trimming	is	finished,	the	plate	goes	to	the	test	position	where	the	distance	between	
both	 plates	 is	 2,0	mm.	 Then,	 the	 sample	 cover	 of	 the	 rheometer	 goes	 down	 in	 order	 to	
maintain	a	constant	temperature	during	the	tests	(fig.	11).	Afterwards,	the	test	begins.	
	

	
Fig.	11.	Sample	cover	

In	all	cases,	the	sample	undergoes	a	conditioning	process	of	35	minutes	at	the	beginning	of	
the	test.		
	
2.4	Amplitude	sweep	test	
	
Bitumen	behaves	 like	 a	 linear	 viscoelastic	material	 only	within	 a	 certain	 strain	 range.	 This	
range	varies	according	to	temperature	and	loading	frequency.	
	

	
Fig.	12.	Amplitude	sweep	test	

Fig.	12	shows	the	results	from	an	amplitude	sweep	test.	We	can	see	a	reduction	of	the	complex	
modulus	outside	the	linear	range	as	the	strain	increases.	The	upper	limit	of	the	linear	range	is	
determined	when	a	reduction	of	5%	of	the	modulus	is	reached.	On	the	other	hand,	the	inferior	
limit	is	placed	where	the	modulus	stabilizes	at	constant	value,	after	the	initial	variability	that	
can	be	seen	when	the	strain	is	small.		
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The	amplitude	sweep	test	is	performed	at	different	temperatures	and	loading	frequencies	for	
the	 purpose	 of	 describing	 how	 the	 limits	 of	 the	 range	 vary	 depending	 on	 the	 reduced	
frequency	(fig.	13).		
	

	
Fig.	13.	Example	of	the	upper	limit	of	the	linear	range	

	
2.5	Frequency	sweep	test	
	
This	test	provides	the	necessary	information	for	the	construction	of	the	master	curves	(fig.	
14).		
	

	
Fig.	14.	Master	curve	

The	frequency	sweep	test	(FST)	is	performed	in	steps.	On	each	step	the	frequency	varies	while	
the	temperature	remains	constant.	An	example	of	the	raw	data	obtained	from	this	test	can	
be	seen	on	the	fig.	15.	
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Fig.	15.	Raw	data	FST	

By	means	of	the	shift	factors	and	the	CAM	model	the	curves	on	fig.	15	can	be	horizontally	
moved	in	order	to	obtain	the	master	curve	(fig.	1,	section	1.1.4).		
The	FST	is	performed	entirely	within	the	linear	range	of	the	material.		
	
2.6	Multiple	strain	sweep	
	
Outside	the	linear	range,	a	reduction	of	the	complex	modulus	can	be	observed	as	the	strain	
applied	to	the	material	is	increased.	This	reduction	is	due	to	nonlinear	behaviour	and	damage.	
In	 order	 to	 distinguish	 damage	 from	 nonlinearity	 Underwood	 (Underwood	 &	 Kim,	 2014)	
proposes	a	method	that	consists	in	a	series	of	loading	groups	with	an	increasing	stress	–	strain	
level.	Each	group	has	three	equal	loading	blocks	(fig.	16).	
	

	
Fig.	16.	(Underwood	&	Kime,	2014)	

	
The	first	group	is	within	the	linear	range.	From	the	second	group	damage	and	nonlinearity	can	
be	observed.	
One	of	the	most	important	hypothesis	of	the	method	consist	in	considering	that,	when	there’s	
damage,	it’s	only	generated	on	the	first	block	of	each	group	(G2B1	on	fig.	17),	in	other	words,	
there	is	damage	only	when	a	certain	level	of	strain	is	reached	for	the	first	time.		
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The	previous	hypothesis	is	the	key	for	distinguishing	damage	from	nonlinearity.		
In	fact,	what	was	done,	is	a	vertical	shift	of	the	curve	of	the	second	block	of	the	second	group	
(G2B2	on	fig.	17)	to	the	value	of	the	linear	modulus	(G1B1	on	fig.	17).		
	

	
Fig.	17.	Isolation	of	damage	from	nonlinearities	

This	is	how	the	non-linear	viscoelastic	curve	is	obtained	(G2B2	with	shift,	on	fig.	17).	This	curve	
is	free	of	damage.	
This	test	was	performed	at	different	temperatures:	34,	28,	22,	16	and	10	°C;	with	a	loading	
frequency	of	10	Hz.	
At	each	strain	level,	it’s	possible	to	approximate	a	strain	dependent	master	curve	thanks	to	
the	5	points	obtained	from	the	multiple	strain	tests	performed	at	5	different	temperatures	
(fig.	18).	It’s	important	to	point	out	that	the	temperature	shift	factors	𝑎(𝑇)	are	also	valid	in	
the	non	linear	range	(section	1.3.3).	
	

	
Fig.	18.	Master	curve	obtained	for	a	4%	strain	

	
Once	we	have	the	strain	dependent	master	curves,	it’s	possible	to	obtain	the	𝑎k	and	ℎV	shift	
factors	 (section	1.2.6)	 at	 each	 strain	 level.	Afterwards,	 by	means	of	 a	 regression	model,	 a	
model	for	both	shift	factors	is	obtained	(fig.	19).	This	model	describes	how	the	shift	factors	
vary	as	a	function	of	strain.	
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Fig.	19.	𝑎k	and	ℎV	models	for	the		Feyzin	binder	

	
2.7	Time	sweep	test	
	
This	test	submits	a	binder	sample	to	a	sinusoidal	load	maintaining	a	constant	strain	amplitude.	
On	each	material,	it	was	performed	at	three	different	strain	levels.	After	a	certain	number	of	
loading	cycles,	the	complex	modulus	decreases	due	to	fatigue	(fig.	20).	The	test	finishes	when	
the	complex	modulus	reaches	a	10%	of	its	original	value.		
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Fig.	20.	Complex	modulus	vs.	time	

Due	to	the	fact	that	this	is	a	strain	controlled	test,	a	reduction	of	the	loading	stress	can	be	
observed	as	the	test	evolves	(fig.	21).	
	

	
Fig.	21.	Stress	vs.	time	

	
The	reduction	in	the	stress	allows	the	calculation	of	the	pseudo	stiffness	and	damage	(section	
1.3).	Afterwards,	the	C	vs	S	curve	is	obtained	(fig.	22).	As	explained	in	the	previous	chapter,	
this	curve	is	independent	of	the	stain	amplitude.		
This	curves	are	approximated	with	a	regression	model	(eq.	43),	(fig.	22).	
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Fig.	22.	PG-76-16_PAV	damage	characteristic	curve	

	
	
	
		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
	 	
	

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 1000 2000 3000 4000 5000 6000

C*

S

PG-76-16_PAV

ɣ	=	1,5% ɣ	=	1% ɣ	=	0,75% Regression	model



	 22	

Chapter	3:	Results	
	
3.1	Linear	viscoelastic	range	limits	
	
3.1.1	Upper	linear	viscoelastic	limit	
	
As	explained	in	section	2.4,	the	limits	of	the	linear	range	variate	as	a	function	of	the	reduced	
frequency	(fig.	13).	This	variation	was	modeled	with	an	exponential	function	(eq.	46).	
	
𝛾 % = 𝑎 ∙ 𝑒�																																																																																																																																								(46)	
	
The	 parameter	 values	 are	 presented	 in	 table	 1.	 These	 parameters	 are	 valid	 only	within	 a	
certain	reduced	frequency	range,	as	specified	in	the	table.	
	

Reduced	freq.	
range	[rad/s]			

Function	
parameters		
(eq.	46)	

FEYZIN	 MANTOVA	 PG-64-22	
Original	

PG-64-22	
PAV	

PG-76-16	
Original	

PG-76-16	
PAV	

1,0	–	163,9	
a	 39,800	 1,260	 31,600	 6,310	 10,000	 2,510	

b	 -0,452	 0,135	 -0,361	 -0,226	 -0,226	 -0,091	

163,9	–	16390,7	 a	 14,223	 6,954	 29,838	 4,264	 11,298	 2,622	

b	 -0,250	 -0,200	 -0,350	 -0,149	 -0,250	 -0,099	

16390,7	-	
651899,6	

a	 2,316	 1,000	 1,830	 1,830	 1,830	 3,350	

b	 -0,063	 0,000	 -0,062	 -0,062	 -0,062	 -0,125	
	

Table	1	

3.1.2	Inferior	linear	viscoelastic	limit	
	
The	inferior	linear	viscoelastic	limit	was	also	modeled	with	an	exponential	function	(eq.	46).	
The	parameters	values	are	presented	in	table	2.	
	

Reduced	freq.	
range	[rad/s]			

Function	
parameters	
(eq.	46)	

FEYZIN	 MANTOVA	 PG-64-22	Original	
PG-64-22	

PAV	
PG-76-16	
Original	

PG-76-16	
PAV	

1,0	–	163,9	
a	 0,040	 0,005	 0,020	 0,025	 0,025	 0,013	

b	 -0,136	 0,045	 -0,090	 -0,226	 -0,226	 -0,091	

163,9	–	16390,7	 a	 0,0257	 0,014	 0,035	 0,017	 0,022	 0,017	

b	 -0,050	 -0,150	 -0,200	 -0,150	 -0,200	 -0,150	

16390,7	-	
651899,6	

a	 3,711	 0,006	 0,105	 0,276	 0,120	 0,024	

b	 -0,563	 -0,063	 -0,313	 -0,437	 -0,375	 -0,187	
	

Table	2	
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3.2	Viscoelastic	models	
	
3.2.1	CAM	model	
	
By	means	of	the	frequency	sweep	test	(section	2.5)	and	the	formulae	presented	in	section	
1.2.5	a	CAM	model	was	obtained	for	each	binder.	The	parameters	of	the	models	are	presented	
in	table	3.	
	

CAM	
parameters		
(eq.	46)	

FEYZIN	 MANTOVA	 PG-64-22	Original	
PG-64-22	

PAV	
PG-76-16	
Original	

PG-76-16	
PAV	

C1	 11,201	 16,281	 15,142	 30,777	 17,134	 26,690	

C2	 122,216	 164,363	 155,440	 271,239	 167,173	 233,032	

log(Gg)	[Pa]	 8,703	 8,809	 8,861	 9,157	 8,990	 9,254	
log(wc)	[rad/s]	 3,972	 3,390	 3,675	 0,000	 3,643	 1,724	

R	 1,320	 2,022	 1,661	 2,791	 1,778	 2,809	
m	 1,073	 1,067	 1,052	 1,314	 0,958	 0,827	

	
Table	3	

3.2.2	Prony	series	
	
By	means	of	collocation	the	modules	of	the	Maxwell	elements	(𝐺a)	were	obtained	(section	
1.2.4).	The	results	are	presented	in	table	4.		
	

ρm ω	
Gm	

[Pa]	

[s]	 [rad/s]	 FEYZIN	 MANTOVA	 PG-64-22	
Original	

PG-64-22	
PAV	

PG-76-16	
Original	

PG-76-16	
PAV	

0,00000002	 0,00000002	 5,10E+07	 4,99E+07	 6,48E+07	 6,58E+07	 8,14E+07	 8,14E+07	
0,00000006	 0,00000006	 4,91E+07	 3,47E+07	 5,30E+07	 4,84E+07	 6,13E+07	 6,13E+07	
0,0000002	 0,0000002	 4,30E+07	 2,71E+07	 4,39E+07	 3,88E+07	 4,94E+07	 4,94E+07	
0,0000006	 0,0000006	 4,68E+07	 2,40E+07	 4,32E+07	 3,80E+07	 5,00E+07	 5,00E+07	
0,000002	 0,000002	 3,52E+07	 1,61E+07	 3,08E+07	 2,73E+07	 3,64E+07	 3,64E+07	
0,000006	 0,000006	 3,03E+07	 1,25E+07	 2,55E+07	 2,47E+07	 3,45E+07	 3,45E+07	
0,00002	 0,00002	 1,90E+07	 7,51E+06	 1,60E+07	 1,67E+07	 2,41E+07	 2,41E+07	
0,00006	 0,00006	 1,22E+07	 4,99E+06	 1,08E+07	 1,37E+07	 2,11E+07	 2,11E+07	
0,0002	 0,0002	 6,07E+06	 2,67E+06	 5,74E+06	 8,66E+06	 1,40E+07	 1,40E+07	
0,0006	 0,0006	 2,86E+06	 1,51E+06	 3,12E+06	 6,33E+06	 1,13E+07	 1,13E+07	
0,002	 0,002	 1,11E+06	 7,15E+05	 1,40E+06	 3,68E+06	 7,08E+06	 7,08E+06	
0,006	 0,006	 3,88E+05	 3,45E+05	 6,14E+05	 2,37E+06	 5,23E+06	 5,23E+06	
0,02	 0,02	 1,21E+05	 1,45E+05	 2,35E+05	 1,25E+06	 3,09E+06	 3,09E+06	
0,06	 0,06	 3,21E+04	 6,04E+04	 8,46E+04	 7,04E+05	 2,09E+06	 2,09E+06	
0,2	 0,2	 8,26E+03	 2,28E+04	 2,81E+04	 3,34E+05	 1,16E+06	 1,16E+06	
0,6	 0,6	 1,56E+03	 8,32E+03	 8,54E+03	 1,62E+05	 7,25E+05	 7,25E+05	
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ρm ω	
Gm	

[Pa]	

[s]	 [rad/s]	 FEYZIN	 MANTOVA	 PG-64-22	
Original	

PG-64-22	
PAV	

PG-76-16	
Original	

PG-76-16	
PAV	

2	 2	 3,22E+02	 2,87E+03	 2,53E+03	 6,83E+04	 3,80E+05	 3,80E+05	
6	 6	 -2,11E+01	 9,34E+02	 6,52E+02	 2,83E+04	 2,18E+05	 2,18E+05	
20	 20	 -1,38E+01	 2,98E+02	 1,73E+02	 1,05E+04	 1,08E+05	 1,08E+05	
60	 60	 2,61E+00	 8,80E+01	 3,66E+01	 3,67E+03	 5,79E+04	 5,79E+04	
200	 200	 -3,50E-01	 2,64E+01	 7,97E+00	 1,19E+03	 2,72E+04	 2,72E+04	
600	 600	 5,53E-02	 7,10E+00	 1,27E+00	 3,34E+02	 1,37E+04	 1,37E+04	
2000	 2000	 -7,26E-03	 2,01E+00	 -2,55E-01	 8,98E+01	 6,16E+03	 6,16E+03	
6000	 6000	 1,15E-03	 4,89E-01	 -1,33E-02	 1,66E+01	 2,94E+03	 2,94E+03	
20000	 20000	 -1,51E-04	 1,29E-01	 3,26E-03	 3,62E+00	 1,27E+03	 1,27E+03	
60000	 60000	 2,38E-05	 2,73E-02	 -5,38E-04	 -2,03E+00	 5,81E+02	 5,81E+02	
200000	 200000	 -3,12E-06	 6,26E-03	 7,10E-05	 3,05E-01	 2,43E+02	 2,43E+02	
600000	 600000	 4,93E-07	 9,76E-04	 -1,12E-05	 -4,88E-02	 1,09E+02	 1,09E+02	
2000000	 2000000	 -6,47E-08	 9,41E-06	 1,47E-06	 6,41E-03	 4,24E+01	 4,24E+01	
6000000	 6000000	 1,02E-08	 -6,95E-05	 -2,32E-07	 -1,01E-03	 2,14E+01	 2,14E+01	
20000000	 20000000	 -1,31E-09	 1,07E-05	 2,97E-08	 1,29E-04	 4,09E+00	 4,09E+00	
60000000	 60000000	 1,66E-10	 -1,38E-06	 -3,78E-09	 -1,65E-05	 7,43E+00	 7,43E+00	

	
Table	4	

3.2.3	Non-linear	viscoelastic	shift	factors	
	
By	means	of	the	multiple	strain	sweep	tests	(MSS),	the	distinction	of	the	non-linear	behavior	
from	damage	was	achieved	(section	2.6).	The	first	step	of	this	process	was	the	procurement	
of	 the	 mastercurves	 associated	 to	 different	 strain	 levels.	 These	 were	 obtained	 by	
approximating	CAM	models	to	the	experimental	points	obtained	in	the	MSS	tests	(Appendix),	
as	seen	in	figure	23.	
The	CAM	model	parameters	are	presented	in	table	6.	
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Fig.	23.	Feyzin	matercurve	obtained	for	a	2,5%	strain	

	
Binder	 CAM	parameters	 γ	=	0,5	%	 γ	=	1	%	 γ	=	2	%	 γ	=	2,5	%	 γ	=	3	%	 γ	=	4	%	 γ	=	5	%	

FEYZIN	

log(Gg)	[Pa]	 8,70	 8,70	 8,70	 8,70	 8,70	 8,70	 8,70	

log(wc)	[rad/s]	 3,98	 3,89	 3,43	 3,01	 2,93	 1,93	 1,19	

R	 1,33	 1,36	 1,48	 1,58	 1,60	 1,79	 1,93	

m	 1,07	 1,09	 1,18	 1,28	 1,30	 1,57	 1,78	

MANTOVA	

log(Gg)	[Pa]	 8,81	 8,81	 8,81	 8,81	 8,81	 8,81	 8,81	

log(wc)	[rad/s]	 3,42	 3,28	 2,96	 2,67	 2,50	 2,02	 0,98	

R	 2,02	 2,06	 2,18	 2,26	 2,30	 2,49	 2,72	

m	 1,06	 1,08	 1,12	 1,15	 1,18	 1,22	 1,37	

PG	-	64	-	22	
Original	

log(Gg)	[Pa]	 8,86	 8,86	 8,86	 8,86	 8,86	 8,86	 8,86	

log(wc)	[rad/s]	 3,67	 3,54	 2,95	 2,43	 1,78	 0,01	 0,00	

R	 1,66	 1,70	 1,84	 1,95	 2,07	 2,35	 2,47	

m	 1,05	 1,08	 1,18	 1,28	 1,42	 1,86	 1,74	

PG	-	64	-	22	
PAV	

log(Gg)	[Pa]	 9,16	 9,16	 9,16	 9,16	 9,16	 9,16	 9,16	

log(wc)	[rad/s]	 0,00	 0,00	 0,00	 0,00	 0,00	 0,00	 0,00	

R	 3,01	 3,04	 3,15	 3,22	 3,22	 3,39	 3,61	

m	 1,19	 1,17	 1,13	 1,10	 1,10	 1,04	 0,97	

PG	-	76	-	16	
Original	

log(Gg)	[Pa]	 8,99	 8,99	 8,99	 8,99	 8,99	 8,99	 8,99	

log(wc)	[rad/s]	 3,53	 3,32	 2,69	 2,03	 1,97	 0,68	 0,00	

R	 1,80	 1,85	 2,01	 2,14	 2,21	 2,45	 2,66	

m	 0,98	 1,01	 1,11	 1,22	 1,21	 1,44	 1,50	

PG	-	76	-	16	
PAV	

log(Gg)	[Pa]	 9,25	 9,25	 9,25	 9,25	 9,25	 9,25	 9,25	

log(wc)	[rad/s]	 1,59	 1,03	 1,25	 0,52	 0,28	 0,00	 0,00	

R	 2,84	 2,96	 3,02	 3,20	 3,35	 3,50	 3,71	

m	 0,84	 0,89	 0,84	 0,90	 0,89	 0,90	 0,85	
Table	5	

From	the	mastercurves	obtained	for	the	different	strain	levels,	the	non-linear	shift	factors	𝑎k	
and	ℎV	were	obtained	(section	1.2.6).	Data	presented	in	table	6.	
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Binder	 Shift	factor	 γ	=	0,5	%	 γ	=	1	%	 γ	=	2	%	 γ	=	2,5	%	 γ	=	3	%	 γ	=	4	%	 γ	=	5	%	

FEYZIN	
	𝑎k	 1,107	 1,150	 1,308	 1,419	 1,420	 1,710	 2,085	

ℎV 0,934	 0,903	 0,800	 0,739	 0,739	 0,615	 0,518	

MANTOVA	
	𝑎k	 1,064	 1,143	 1,552	 1,860	 1,978	 3,246	 4,715	

	ℎV	 0,992	 0,938	 0,746	 0,650	 0,621	 0,423	 0,321	

PG	-	64	-	22	
Original	

	𝑎k	 1,019	 1,064	 1,276	 1,452	 1,659	 2,420	 4,150	

ℎV		 0,991	 0,957	 0,827	 0,747	 0,672	 0,511	 0,358	

PG	-	64	-	22	
PAV	

	𝑎k	 1,015	 1,130	 1,592	 1,996	 2,388	 3,769	 7,087	

ℎV		 0,993	 0,935	 0,763	 0,667	 0,595	 0,453	 0,320	

PG	-	76	-	16	
Original	

	𝑎k	 1,013	 1,070	 1,368	 1,598	 2,019	 2,850	 4,975	

	ℎV	 0,993	 0,952	 0,795	 0,707	 0,604	 0,475	 0,334	

PG	-	76	-	16	
PAV	

	𝑎k	 1,096	 1,303	 1,664	 2,234	 3,348	 4,316	 7,671	

	ℎV	 0,966	 0,889	 0,755	 0,647	 0,532	 0,442	 0,326	
Table	6	

From	the	data	presented	in	table	6,	regression	models	were	created	in	order	to	predict	the	
shift	factors	value	as	a	function	of	the	strain,	as	shown	in	fig.	24.	
	

	
Fig.	24.	FEYZIN	Shift	factors	regression	model	

In	some	cases,	the	best	approaching	function	was	an	exponential	function	(eq.	47),	in	some	
others,	a	 second	degree	polynomial	or	a	 third	degree	polynomial	 (eq.	48).	The	Regression	
parameters	are	presented	in	table	7.	
	
𝑦 = 𝑎 ∙ 𝑒�∙k(%)																																																																																																																																							(47)	
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𝑦 = 𝑐 ∙ 𝛾 % � + 𝑑 ∙ 𝛾 % _ + 𝑒 ∙ 𝛾 % + 𝑓																																																																																			(48)	
	

Binder	 Shift	factor	
Regression	model	parameters	

a	 b	 c	 d	 e	 f	

FEYZIN	
	𝑎k	 1,000	 0,138	 		 		 		 		

ℎV 1,000	 -0,127	 		 		 		 		

MANTOVA	
	𝑎k	 		 		 0,020	 0,025	 0,128	 1,000	

ℎV	 		 		 0,007	 -0,054	 -0,042	 1,000	

PG	-	64	-	22	
Original	

	𝑎k	 		 		 0,017	 0,008	 0,052	 1,000	

ℎV	 		 		 0,007	 -0,062	 0,009	 1,000	

PG	-	64	-	22	
PAV	

	𝑎k	 		 		 -0,012	 0,219	 -0,085	 1,000	

ℎV	 		 		 0,021	 -0,119	 0,035	 1,000	

PG	-	76	-	16	
Original	

	𝑎k	 		 		 0,003	 0,122	 -0,067	 1,000	

ℎV	 		 		 0,008	 -0,064	 -0,004	 1,000	

PG	-	76	-	16	
PAV	

	𝑎k	 		 		 		 0,207	 0,029	 1,000	

ℎV	 		 		 0,012	 -0,078	 -0,025	 1,000	
Table	7	

In	fig.	25,	a	representation	of	the	non-linear	shift	factors	models	of	the	studied	binders	in	
their	original	state	is	presented.		
	

	
Fig.	25.	Non-linear	shift	factors	of	binders	in	their	original	state	

Mantova	is	the	binder	with	the	strongest	non-linear	behavior	due	to	the	fact	that	for	a	certain	
strain	level	it	has	the	highest	𝑎k	and	the	lowest	ℎV.	On	the	other	hand,	the	binder	with	the	
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weakest	non-linear	behavior	is	the	PG-64-22	for	strains	under	approximately	2,5%	and	FEYZIN	
for	strains	over	2,5%.	
It’s	 important	 to	 point	 out	 that	 there	 are	 small	 differences	 between	 the	 models	 of	 the	
different		binders	that	approximate	the	ℎV	shift	factor.	
	
3.2.4	Effect	of	aging	on	the	non-linear	behavior	
	

	
Fig.	26.	Effect	of	aging	on	the	non-linear	shift	factors,	PG-64-22	

	
Fig.	27.	Effect	of	aging	on	the	non-linear	shift	factors,	PG-76-16	
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As	seen	in	fig.	26	and	27,	the	aging	process	modify	the	bitumen	non-linear	shift	factors.	This	
effect	is	more	considerable	in	the	𝑎k	shift	factor	than	in	the	ℎV	shift	factor.	
For	the	same	strain	level,	𝑎k	is	higher	and	ℎV	lower	in	the	aged	bitumen	in	comparison	to	the	
same	bitumen	in	its	original	state.	This	indicates	that	the	non-linear	behavior	appears	at	lower	
strains	in	the	aged	bitumen	and	that	explains	why	its	linear	range	is	smaller,	in	other	words,	
the	 nonlinear	 behavior	 is	 evident	 at	 lower	 levels	 of	 strains	 in	 comparison	 to	 the	 original	
binders.	
	
3.2	Damage	characteristic	curves	
	
The	damage	characteristic	 curve	was	obtained	 for	 three	different	 strain	 levels	 (fig.	28-33).	
Afterwards,	 the	 experimental	 curves	 were	 approximated	 with	 a	 regression	 model.	 The	
function	used	 for	 the	approximation	 is	 a	 third	degree	polynomial	 (eq.	 49).	 The	parameter	
values	are	shown	in	table	8.	
	
𝐶∗ = 𝑎 ∙ 𝑆� + 𝑏 ∙ 𝑆_ + 𝑐 ∙ 𝑆 + 𝑑																																																																																																								(49)	
	

Binder	
Damage	characteristic	curves,	regression	parameters	

a	 b	 c	 d	

FEYZIN	 1,95E-11	 -7,23E-08	 -2,65E-04	 1,00E+00	

MANTOVA*	 -4,79E-11	 7,46E-08	 -3,93E-04	 9,32E-01	

PG	-	64	-	22	
Original	 1,46E-11	 -7,71E-08	 -1,66E-04	 1,00E+00	

PG	-	64	-	22	
PAV	 3,75E-11	 -1,47E-07	 -1,92E-04	 1,00E+00	

PG	-	76	-	16	
Original	 2,08E-11	 -1,12E-07	 -9,90E-05	 1,00E+00	

PG	-	76	-	16	
PAV	 2,08E-11	 -1,12E-07	 -9,90E-05	 1,00E+00	

Table	8.	*The	Mantova	polynomial	is	only	valid	for	S	>	250.	

For	the	purpose	of	a	better	approximation,	the	Mantova	regression	model	was	divided	into	
two	parts.	The	polynomial	presented	in	table	8	is	only	valid	for	S	>	250.	For	S	<	250,	eq.	50	is	
used.	
	
𝐶∗ = 1,0000 − 0,0115 ∙ 𝑆-,� ¡¢																																																																																																							(50)	
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Fig.	28	

	

	
Fig.	29	

In	the	case	of	Mantova	(fig.	29),	the	tests	performed	at	2%	and	1,5%	didn’t	reach	the	90%	
reduction	(section	2.7)	due	to	the	fact	that	they	take	too	long	to	be	performed	in	one	day.	It’s	
important	to	point	out	that	it	wasn’t	possible	to	leave	the	rheometer	working	during	nighttime	
and	therefore	the	tests	were	interrupted	before	they	finished.		
The	regression	model	finishes	at	a	C*	value	equal	to	the	mean	of	the	last	points	of	the	three	
tests	performed	at	different	strain	levels.	
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Fig.	30	

	

	
Fig.	31	
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Fig.	32	

	

	
Fig.	33	

In	the	following	figure	(fig.	34),	it’s	possible	to	compare	the	regression	models	of	the	different	
binders	studied	in	this	work.				
It’s	important	to	point	out	that	for	an	equivalent	reduction	of	pseudo	stiffness,	curves	on	the	
right	side	of	the	graph	are	able	to	support	more	damage	than	curves	located	on	the	left	side.	
In	other	words,	 for	 an	equal	 level	of	 integrity	a	binder	which	 curve	 is	on	 the	 right	 side	of	
another	one	stands	more	damage.		
In	this	case,	the	binder	with	the	best	behavior	regarding	damage	is	the	PG-76-16_PAV	and	the	
worst	one	is	Mantova.	
As	explained	before,	the	Mantova	curve	in	fig	34	is	shorter	that	the	other	ones	because	of	
time	limitations	regarding	the	time	sweep	tests.			
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Fig.	34	
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Conclusion	
	
This	study	was	carried	out	on	different	asphalt	binders	in	order	to	characterize	their	damage	
behavior	taking	into	account	non-linear	effects.	Damage	characteristic	curves	were	obtained	
by	means	of	the	proposed	model	employed	in	this	experimental	investigations.	
	
Several	 conclusions	were	derived	by	comparing	 the	original	 tested	materials	and	 the	aged	
binders	as	well.	The	last	part	of	the	conclusion	is	dedicated	to	test	suggestions	and	ideas	for	
future	works.	
	
The	four	materials	used	in	this	work	were	selected	in	order	to	identify	a	variety	of	binders	with	
very	 different	 compositions.	 In	 the	 following	 paragraph,	 the	 differences	 obtained	 are	
presented:	
	

• The	MANTOVA	binder	showed	the	strongest	non-linear	behavior	in	comparison	to	the	
rest	of	the	binders,	especially	compared	to	FEYZIN.	Besides,	FEYZIN	non-linear	model	
was	approximated	with	exponential	functions	while	in	all	the	other	cases	polynomial	
functions	were	used.			

• The	time	sweep	tests	performed	on	MANTOVA	binder	were	the	longest	ones.	It	should	
be	 pointed	 out	 the	 it	 wasn’t	 possible	 to	 complete	 some	 of	 them	 due	 to	 time	
consumption	 (more	 than	one	working	day).	On	 the	other	hand,	 the	PG-76-16	 tests	
were	the	shortest	ones.	 It	 is	 interesting	 to	remark	that	 in	almost	all	cases	 the	time	
sweep	tests	took	longer	in	the	less	rigid	binders.		

• MANTOVA	 is	 clearly	 the	 worst	 material	 regarding	 damage	 behavior.	 In	 fact,	 by	
considering	 the	 overall	 comparison	 of	 the	 damage	 characteristic	 curves,	 the	
MANTOVA	binder	endures	less	damage.	On	the	contrary,	the	PG-76-16	binder	shows	
the	best	behavior.	In	fact,	its	damage	characteristic	curve	is	the	longest	one.	The	PG-
64-22	has	the	second	best	behavior	in	that	regard.	

• The	shape	of	the	MANTOVA	damage	characteristic	curve	is	quite	strange	and	different	
from	 the	 others.	 In	 fact,	 two	 different	 regression	 functions	 were	 needed	 to	
approximate	the	curve.	

• By	considering	the	complex	moduli,	MANTOVA	is	the	least	rigid	binder	while	the	PG-
76-16	is	the	most	rigid	one.	

• By	comparing	the	PG-64-22	and	the	PG-76-16	binders	in	their	original	state	and	in	their	
PAV	state	interesting	conclusions	were	derived.	Regarding	the	non-linear	model,	it	was	
found	that	it	is	stronger	in	the	long-term	aged	binders.	In	other	words,	for	a	certain	
strain,	 the	PAV	binders	 show	a	higher	𝑎k	 shift	 factor	and	a	 lower	ℎV	 shift	 factor	 in	
comparison	to	the	original	binders.	

	
On	the	basis	of	the	experience	developed	during	this	study,	some	suggestions	can	be	proposed	
for	future	works:	
	

• It	was	found	that	one	of	the	main	hypothesis	regarding	the	independence	from	strain	
of	the	damage	characteristic	curves	was	not	completely	respected.	 Indeed,	 in	some	
cases,	especially	for	FEYZIN	and	MANTOVA	there	were	some	differences	between	the	
curves	obtained	for	different	strain	levels.	Although	the	non-linear	models	provided	
reasonable	results	in	most	cases,	the	reason	for	this	differences	might	be	related	to	
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the	incapacity	of	the	model	to	fully	represent	the	non-linear	behavior.	Therefore,	this	
might	be	an	argument	to	look	into	in	future	works.	

• Another	 interesting	 topic	 for	 future	 investigations	 should	 be	 represented	 by	 the	
relationship	that	might	be	between	the	colloidal	index	and	the	damage	characteristic	
curves.		
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Appendix	
	
On	table	9	the	experimental	points	obtained	in	the	MSS	tests	are	presented.	
	

Binder	
Reduced		
freq.	

G*	[Pa]	Experimental	points	

[Hz]	 γ	=	0,5	%	 γ	=	1	%	 γ	=	2	%	 γ	=	2,5	%	 γ	=	3	%	 γ	=	4	%	 γ	=	5	%	

FE
YZ
IN
	

10,00	
639.031	 639.332	 637.424	 635.447	 632.911	 627.181	 619.677	

639.163	 638.434	 635.155	 632.698	 628.804	 623.312	 615.122	

37,42	 1.794.309	 1.790.068	 1.770.426	 1.755.760	 1.739.566	 1.703.176	 1.659.472	

1.794.153	 1.789.602	 1.770.848	 1.756.961	 1.741.638	 1.707.046	 1.659.472	

163,81	
5.117.986	 5.089.864	 4.964.189	 4.874.954	 4.779.107	 4.574.026	 4.345.818	

5.119.549	 5.090.722	 4.965.688	 4.877.186	 4.782.122	 4.578.445	 4.351.890	
930,04	 14.258.639	 14.061.303	 13.356.195	 12.909.689	 12.429.612	 11.427.553	 10.437.852	
6143,72	 38.962.034	 38.248.603	 35.513.606	 33.688.763	 31.901.367	 27.770.068	 23.808.967	

M
AN

TO
VA

	

10,00	
487.848	 485.027	 473.271	 465.043	 462.381	 440.356	 422.958	

487.812	 484.292	 473.439	 465.812	 463.430	 443.519	 427.679	

41,38	 1.227.562	 1.209.867	 1.147.936	 1.108.123	 1.095.601	 997.532	 926.754	

1.226.438	 1.215.560	 1.158.453	 1.125.821	 1.114.441	 1.025.204	 959.939	

191,54	
3.036.835	 2.988.860	 2.806.554	 2.701.008	 2.666.761	 2.398.764	 2.206.863	

3.033.148	 2.988.933	 2.816.494	 2.705.957	 2.672.218	 2.405.295	 2.219.592	

1005,17	 7.301.162	 7.149.646	 6.586.197	 6.259.492	 6.152.168	 5.364.602	 4.839.032	

7.298.627	 7.172.614	 6.668.566	 6.366.136	 6.267.465	 5.529.415	 5.030.407	

6078,16	
16.740.952	 16.287.268	 14.699.373	 13.792.004	 13.495.047	 11.432.846	 9.935.687	

16.732.169	 16.317.322	 14.842.310	 13.966.521	 13.621.721	 11.615.721	 10.186.803	

PG
	-	
64

	-	
22

	O
rig

in
al
	

10,00	 867.178	 866.002	 860.002	 855.512	 850.253	 838.556	 824.445	

867.205	 865.922	 859.924	 855.435	 850.307	 838.832	 824.770	

40,55	
2.286.941	 2.277.940	 2.236.745	 2.206.740	 2.174.299	 2.103.472	 2.022.384	

2.286.363	 2.278.397	 2.241.419	 2.214.607	 2.190.854	 2.183.098	 2.045.280	

184,82	 5.924.225	 5.879.127	 5.670.561	 5.526.546	 5.375.986	 5.060.964	 4.726.346	

5.924.483	 5.883.395	 5.688.180	 5.551.472	 5.408.214	 5.106.829	 4.784.974	

961,81	
14.762.409	 14.573.538	 13.778.264	 13.243.217	 12.705.455	 11.593.290	 10.474.936	

14.766.995	 14.565.398	 13.859.808	 13.355.815	 12.831.968	 11.743.037	 10.684.652	

5818,60	 34.508.932	 33.899.551	 31.411.843	 29.752.353	 28.140.173	 24.463.618	 20.944.524	

34.515.043	 33.872.213	 31.399.789	 29.767.989	 28.149.675	 24.575.898	 21.015.607	

PG
	-	
64

	-	
22

	P
AV

	 10,00	

3.454.505	 3.426.294	 3.303.282	 3.218.026	 3.129.571	 2.942.729	 2.750.372	

3.452.615	 3.427.157	 3.298.938	 3.212.795	 3.121.944	 2.929.055	 2.735.455	

49,68	

7.432.320	 7.333.747	 6.919.730	 6.662.625	 6.391.072	 5.854.419	 5.348.483	

7.434.834	 7.343.732	 6.969.503	 6.719.627	 6.463.408	 5.956.606	 5.463.714	

265,85	

14.695.521	 14.379.630	 13.263.106	 12.602.657	 11.957.477	 10.649.938	 9.337.226	

14.681.555	 14.418.688	 13.400.629	 12.755.334	 12.065.075	 10.795.010	 9.460.744	

1540,27	 26.970.937	 26.392.868	 24.327.636	 22.997.063	 21.679.281	 19.145.572	 16.403.778	

9718,06	 46.224.908	 45.011.293	 40.868.528	 38.293.123	 		 		 		
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Binder	
Reduced		
freq.	

G*	[Pa]	Experimental	points	

[Hz]	 γ	=	0,5	%	 γ	=	1	%	 γ	=	2	%	 γ	=	2,5	%	 γ	=	3	%	 γ	=	4	%	 γ	=	5	%	
PG

	-	
76

	-	
16

	O
rig

in
al
	

10,00	 1.768.440	 1.760.189	 1.727.186	 1.705.183	 1.672.800	 1.628.175	 1.567.669	

1.767.836	 1.759.991	 1.731.224	 1.710.303	 1.680.611	 1.639.694	 1.582.161	

43,44	
4.377.063	 4.347.883	 4.211.708	 4.114.439	 3.987.642	 3.812.908	 3.595.676	

4.377.813	 4.344.551	 4.191.033	 4.086.130	 3.947.334	 3.756.067	 3.525.790	

211,38	 10.606.126	 10.460.836	 9.928.109	 9.623.001	 9.188.943	 8.596.289	 7.898.900	

10.604.856	 10.478.608	 10.015.698	 9.679.036	 9.234.258	 8.626.966	 7.911.560	

1168,24	
24.595.748	 24.247.226	 22.604.190	 21.558.622	 20.190.584	 18.272.550	 15.882.680	

24.649.781	 24.223.315	 22.474.801	 21.408.634	 20.059.299	 18.167.486	 15.651.332	

7451,35	 53.493.241	 52.193.810	 47.602.488	 44.657.111	 		 		 		

53.468.647	 52.185.766	 47.741.500	 44.809.201	 		 		 		

PG
	-	
76

	-	
16

	P
AV

	

10,00	
9.177.549	 9.034.692	 8.485.942	 8.150.946	 7.814.423	 7.152.915	 6.528.934	

9.162.779	 9.012.163	 8.440.733	 8.100.926	 7.750.066	 7.142.682	 6.454.032	

50,74	 17.310.545	 16.985.076	 15.716.153	 15.007.276	 14.290.625	 12.787.219	 11.399.905	

17.310.545	 16.926.872	 15.710.891	 14.930.884	 14.166.397	 12.615.383	 11.123.311	

281,19	
31.708.638	 30.907.256	 28.168.306	 26.491.761	 24.646.438	 		 		

31.736.044	 30.997.691	 28.219.854	 26.411.252	 24.432.881	 		 		

1714,51	 56.012.249	 54.241.407	 		 		 		 		 		

56.009.596	 54.364.660	 		 		 		 		 		

11597,35	
95.199.271	 90.465.744	 		 		 		 		 		

95.218.043	 91.914.925	 		 		 		 		 		
	

Table	9	
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