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Abstract:

Global Positioning System (Navigation System) receiver is an essential and indispensable part
in every real-time localization and position technology, especially in the Autonomous vehicle.
Within the GPS systems, the high-performance Differential Global Positioning System (DGPS)
receiver with real-time kinematics can provide more accurate absolute localization for a driverless
car.However, not only is it suspected to user equivalent range errors (UERE) such as Multi-path
effect, but it is incapable of error correction to fulfill the precise requirement of autonomous ve-
hicle positioning in a wide range of driving area. In order to provide and guarantee high-level of
safety and confidence for the vehicles occupants which is of prime importance in the Autonomous
Land Vehicle (ALV), accurate positioning information is a must.Therefore, in this dissertation,
the basic concepts of the probability and statistics theories in addition to the random signals
(Noise) which are a common type of error sources in the sensors data fusion are also described.
Then, the working principles of Global Positing Systems with all suspected errors contained
in its provided data will be elaborated.Furthermore, different types of data collection sensor
and their principles, along with the theories of Kalman Filter and Extended Kalman Filter will
be explained in more details. Having addressed the common problems in real-time position
estimation of Autonomous Land Vehicle, the dynamics equation of the 2D vehicle model with
assumption of traveling in constant velocity and turn rate will be derived. In fact, due to lack
of reliability of low performance GPS signal (UERE) in some cases and measurement errors due
to the presence of measurement noises, considering high nonlinearity of the system equations
deriven from the vehicle dynamics, the simple combination of Gps/Imu may not lead to a satis-
factory result.Therefore, the problem of GPS systems with introduction to the GPS and Inertial
Measurement Unit (GPS+IMU) using data fusion technique is described through the theory
of Extended Kalman Filter in which the GPS and IMU data coming from real tests on a land
vehicle in real-time.Subsequently, the performance of this approach is evaluated by comparison
of the results (estimated variables) with the unprocessed real-time measured data. In the last
case study, a further step is taken by presenting an overview on Robot Operating System (ROS)
and different possible fusion techniques available in this realm.Finally, a more comprehensive
case of the fusion technique with a fusion of data from three sensors (IMU+GPS+Odometry)
in association with ROS extended Kalman Filter package (Robot localization Ekf) with a dis-
cussion on the results will be demonstrated.

Keywords :GPS,navigation,DGPS,Localization,Autonomous,Fusion,differential,Multipath,Extended
Kalman Filter,sensor,IMU,Odometry,UERE,ALV,ROS ,turn rate.

2



Chapter 1

Introduction and Literature
review

1.1 Navigation

Navigation for thousands of years has been presenting in some forms. Almost every being in
nature must be able to navigate from one point in space to another such as birds, the bees,
and ants [1].For people, navigation had originally included using the sun and stars which means
the sun and star were the only references to their navigation. The methods and technologies
for determining the time-varying position and attitude of a moving object by the measurement
called Navigation. The time variable function of the Position, velocity, and attitude, are called
navigation states because they include all navigation information that is essential for georeference
the moving object at that moment of time.

Navigation system

A navigation system is a system or device (usually electronic) whose aim is to assists in navi-
gation. Navigation system in a vehicle or vessel may be fully on-boarded and in the ship they
installed on ships or it may be located elsewhere to be able to receive strongest signals ,it usually
communicates via radio or other types of electro-magnetic signals with a vehicle or vessel, or it
might use a combination of these methods[2]. Navigation systems may be adequate of:

• With information from different sources via sensors, maps, or external sources determine
a vehicle or vessel’s location

• Containing maps, this could be displayed in text or in a graphical format which is readable
for the human.

• Providing suggested directions by means of text or voice to a human in charge of a vehicle.

• Directly able to provide the information to an autonomous vehicle such as a robotic probe
or guided missile.

• Providing emergency information to the user, such as the presence of on nearby vehicles
or vessels, or other hazards or obstacles.

• Providing information for traffic management and depends on traffic conditions could
suggest an alternative direction or directions
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Types of the Navigation system

Due to the abundant and significant application of navigation system, currently different types
of this system are available which could be listed as the following:

• Automotive navigation system:This type of navigation system designed for Automotive
application

• Marine navigation system: This type of navigation system as its name implies is designed
for utilizing in the boat, ship, and different maritime application :

• Global Positioning System: A group of satellites placed on the earth orbit which are able
to provide information to any receiver that is compatible to this technology such as the
person, vessel, or vehicle via a GPS receiver

• GPS navigation device: a device which is able to receive GPS signals and its purpose is
the device’s location determining and is possible suggests or gives directions.

• Surgical navigation system: A system that in relation to patient images such as CT or
MRI scans determines the position of surgical instruments.

• Inertial guidance system: a system without the need for external reference is able to
continuously determine the position, orientation, and velocity (direction and speed of
movement) of a mobile object.

• Robotic mapping: The problem of learning maps is an important problem in mobile
robotics. Models of the environment are needed for a series of applications such as trans-
portation, cleaning, rescue, and various other service robotic tasks.the methods and equip-
ment by which an autonomous robot is able to construct (or use) a map or floor plan in
order to localize itself within it.

1.1.1 Automotive Positioning:

The Automotive positioning is determining the position of the vehicle on the road or on moving
area by means of some techniques or technologies.So that here in this section we are going to
briey express its importance and some previous research which have been carried out :

Introduction:

To introductory Automotive positioning being expressed, we are going to state an overview of
fusion techniques which has been applied to land vehicle’s navigation systems for determining
its position on the road. A topic which especially in these last few years has become a very
important research area is the Automotive Positioning and localization.Generally speaking, the
prime importance of safety concern is accurate positioning information in road transportation.
Actually, to fulfill this important it is necessary and required to know where we are (vehicle posi-
tion) and also it is very important and required to locate obstacles and other objects/vehicles in
the vicinity and adjacent environment of our own vehicle.So for increasing safety, it is required
to an approach to precisely localize our vehicle and evaluate its environment on the road[3].
Apart from safety concerns, the next generation of vehicles will allow the driver and passen-
gers to have access to a diverse range of services, which are based on information technologies,
telecommunications, and telematics such as path planning, navigation, guidance, and tracking.
Next-generation vehicles probably are like mobile offices, information centers which are con-
structed on the wheel, or e-nodes which are connected to the web and other networks [4]. To
supply those function and services and to provide the suitable and valuable information con-
tents to the driver and passengers, it is mandatory and necessary to be determined the vehicles
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position as accurately and efficiently as possible in real-time. This function is an essential part
of an integrated navigation information system (INIS). An INIS embedded in a vehicle is basi-
cally composed of a geographic information system (GIS), a database combined of roadmaps,
cartographic and geo-referenced data, a positioning module, a human-machine interface (HMI)
as well as computing and telecommunication capabilities. It delivers helpful functionalities to
the driver such as path planning, guidance, digital map and points of interest directory [5]. The
guidance module uses a trip which planned by the driver to indicate the driver which route to
take. To avoid giving wrong suggestion and damaging the driving safety, the navigation sys-
tem relies on a positioning module to understand and recognize precisely and continuously the
localization of the vehicle. In this chapter, we will focus on the positioning module of INISs.

Autonomous positioning:

Autonomous navigation is one of the most key and essential technologies for autonomous driving
and driverless cars. Accurate and precise estimate positioning and orientation of vehicles is
commonly considered as the basis for the number of sophisticated and complex planes such as
environmental perception, path planning, and autonomous decision-making of driverless cars
under sophisticated and complicate urban scenarios. In this system, a navigation sensor such
as Global Positioning System (GPS) measures quantity related to one or more elements of the
navigation state. A navigation system can be built up with the combination of all required
sensors which are able to determine all navigation states such as Inertial Navigation System
(INS).A sensor that only is able to supplies a partial information on the navigation states or
that is used as a constraint on some of the states will be card Navaid (such as odometers).
[6].Inertial navigation is a system which is able to determine the position of a vehicle within
the implementation of inertial sensors. It works based on the principle that an object will
remain in smooth motion except it is disturbed by an external force. This is the force which
in turn generates acceleration on the object. If this acceleration can be measured and then
be integrated mathematically, consequently the velocity and position change of the object with
respect to an initial condition can be determined. A sensor such as an accelerometer is an
inertial sensor which is able to measure the acceleration. In addition to the acceleration sensor
for measurement of the attitude of the vehicle, an inertial sensor which is called a gyroscope
is required.This sensor (gyroscope) measures angular velocity and if this data is integrated
mathematically can provide the change in angle with respect to an initial known angle. The
combination of the accelerometers and gyros sensor allows the determination of the pose of the
vehicle. If it is required to be measured the full vehicle’s behavior an inertial navigation system
usually composed of three accelerometers are required which they are commonly mounted with
their sensitive axes perpendicular to one another. The accelerometer working theory is based
on Newtons laws. So navigation is important with respect to inertial reference frame so it is
necessary to keep track the direction of which the accelerometers are pointing out.so far we
expressed the liner directional motion for navigation so for measuring rotational motion of the
body with respect to the inertial reference frame being used gyroscopic sensors and used to
determine all the time the orientation of the accelerometers or in another word the vehicle
bodys orientation. Then with this information as an input from inertial navigation sensors, it
makes possible the accelerations be transformed into the desired frame before the integration
process takes place. At each time step of the system’s clock, this quantity timely integrated by
the computer navigation to get the body’s velocity vector. In order to evaluate or determine the
position, the velocity vector is then time integrated. Hence, inertial navigation is the operation
by which the information delivered by gyroscopes and accelerometers are used to determine the
position of the vehicle where they are installed. Consequently, these two sets of measurements
make feasible determining the translational motion of the vehicle and consequently to calculate
its position within the inertial reference frame.
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1.2 Literatures review

In this part, we have tried to present the most significant researches have been done by some
researchers since start until the recent years .
Unlike from stand-alone GPS that is extensively a popular navigation system; an enhanced
differential GPS (DGPS) receiver with phase carrier signal measurements may run in operating
modes of real-time kinematics (RTKDGPS), which has the highest absolute position accuracy
of up to a few centimeters. In DGPS, GPS device which is mobile, continuously receives cor-
rection data from ground-based reference station over transmitter of shorter range, in order to
compensate location inaccuracies [7].
DGPS systems are able to operate under complex urban scenarios, however, occasionally loss of
broadcasted signals and probably receiving of inaccurate localization data due to many unpre-
dictable factors such as buildings obstruction, signal attenuation, and a diversity of electronic
interference. In general, it works quite well in a limited range in terms of pseudo range correc-
tion principle. In addition, atmospheric visibility of satellite, potential environmental effects,
and multipath effect may have the negative effect on precision and reliability of GPS itself
[8]. For improving the accuracy of the GPS estimation two widely used multipath mitigation
methods, ,high-resolution correlator (HRC) and multipath mitigation technique (MMT), and a
new coupled amplitude delay lock loops (CADLL) method, which is based on multipath signal
amplitude, code phase, and carrier phase, are evaluated by Chen,Dovis and colleagues[9].these
methods and techniques under dynamic multipath scenario or when multipath is stronger than
line-of-sight (LOS) may be failed.Except for GPS which is independent of vehicle dynamics, the
DR (Dead Recognition) that employs vehicle kinematic model and incremental measurements of
wheel encoder often seen to play a very important and crucial role in the precise short-term nav-
igation of driverless cars [10]. The DR technique as one of the autonomous relative navigations
is capable of continually providing position information.However, a significant disadvantage of
using DR for navigation is that it typically endure from accumulated error which caused by the
wheel slippage and wheel imperfection [11]. It means that actually, the data which provided
by DR, the localization accuracy can maintain only within a very short range. In order to be
improved long-term precision and robustness through slip estimation, substantial efforts have
been made [12]. A number of supplementary navigation systems, including GPS, IMU, and
DR, are commonly combined through a variety of information fusion methods, typically such as
Kalman lter (KF) [13].
In fact, GPS or GPS+IMU is able to provide absolute position and orientation, even if it contains
discontinuous data and/or random drifts. Contrarily, as a local navigation system, DR is able to
conduct accurate localization within a certain distance or duration. However, position errors will
be accumulated with the increase of distance. Undoubtedly, an appropriate sensors integration
can be presented by integration of GPS+IMU and DR which are able to accurately navigate
the driverless car. In the recent decades, many multimodal data fusion methods for meeting
reliable, robust, and decimeter-level requirements for driverless cars, the extended Kalman lter
(EKF) and the unscented Kalman lter (UKF), has emerged. The EKF simplies nonlinear lter-
ing and is used for state estimation in nonlinear systems [14-23]. Kalman filters are employed
extensively for sensor fusion and can be a suitable option for linear systems. These Kalman
filters by combining the data from a variety of different sensors can produce estimates of the
states of a system. The result of state estimation, in this case, maybe more accurate than those
that would be produced without sensor fusion. To develop the Kalman filter for integration of
data from Global Positioning System (GPS) and Inertial Measurement Unit (IMU) sensors a
theory suitably established by [30-31]. Meanwhile, one of the significant challenges to produce
a reliable Kalman filter is tuning of its parameters adequately [32].For tuning of the parameters
the trial and error is used and found out that which can result in satisfactory Kalman filter
performance in some applications when educated guesses are used; however, this approach is
not very suitable and is a time-consuming and unreliable approach[33].
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A technique which is more common and by which dependable parameters will be produced is
an adaptive Kalman filtering and offline stochastic metaheuristic searches. Parameters will be
tuned online by Adaptive Kalman filters and by Using this technique, parameters are rectified
according to how accurately the internal equations of the filter can predict the measurements
of the system [34]. Fuzzy adaptive Kalman filters have been found in order to perform appro-
priately in experiments [35-36]. In order to be compensated the EKF based navigation system
several types of additional sources of information, including onboard motion sensors, cameras
or LiDAR vision systems, and road map databases, are adopted. References [14, 17] present the
improvement of accuracy of localization by integration of different navigation systems such as
IMU, GPS, and DR. Ma et al. [18] combination of stereo-camera sensor, IMU, and leg odometry
by virtue of EKF has been investigated in this research. Also in the [19,20] improve location
accuracy by integration of both accurate digital map and camera has been performed. More-
over, four EKF-based state estimation architectures are evaluated in [21], including nonlinear
model (NLM) [22] and error model (ERM) [23], each with/without a supplementary lter [24,25].
The experimental results show that NLM with a supplementary lter has higher localization per-
formance. Unlike the EKF, the UKF employs unscented transform to address approximation
issues of the EKF, which is also extensively exploited in multimodal data fusions [26,28].
Actually, there still exist some problems even if the above two kinds of methods have been widely
applied. The deciencies of the KFs including EKF and UKF were specically pointed out in[29].
For example, considering that there are uncertainties or unknown statistical characteristics for
process and/or measurement noises, it is very hard to perform reliable multimodal data fusion.
Hence, the above-mentioned fusion methods are not sufcient to establish robust and accurate
state estimation. As we briefly have reported the previous tasks and researches which have
carried out by serval researchers, we are going to state our investigation in this dissertation by
means of multi-data fusion with EKF and Robot-localization-EKF in Robot Operating System.
If briefly the overview of this thesis going to be stated is as follows:
In the First chapter, the probabilities and basic concepts along to random signals would be
demonstrated, In the second chapter, we will explain step by step, the Kalman Filter, the Ex-
tended Kalman Filter method and the theories behind of them for dealing with unknown noisy
data.In addition to them in the Third Chapter will be familiarized with Navigation Sytems,
especially the Global Positioning System which is the main data source for our case of study,
Autonomous vehicle positioning.
In the chapter-fourth, we will demonstrate the other types of data collection sensors, which are
odometry and IMU sensor.In addition, different principles, technologies behind of these sensors,
and their pros and cons will be discussed.
In chapter-fifth which is the main chapter of our investigation, the derivation of the 2D vehi-
cle dynamics equations in constant velocity and turn rate, and simulation by Kalman filter in
detail will be demonstrated.Moreover the accuracy of result with GPS data, IMU data will be
compared and discussed.
In chapter-sixth, we will have a general overview of ROS and its operation principle and finally,
data fusion along with results of simulation in this excellent environment will be demonstrated.
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Chapter 2

Probability and Basics Concepts

2.1 Introduction

In this section is going to be stated, one the most important theory which is called probability.We
will later use this theory and its concepts to accomplish the Kalman filter and the Extended
Kalman filter. Actually, without knowledge of probabilities, it is impossible accomplishment
and simulation of vehicle position estimation with Kalman theory.

2.2 Probability

Probability is something directly related to the random occurrence of an event in sample space
so we use this keyword to assign the how likely will a random event accrues and so we assign
the measure of probability P (A) to an event which could be between 0 and 1.The P (A) closer
to 0 means less probable this event will occur and in other hands, P (A) closer to 1 means that
the more likely this event will occur. The main aim of probability theory is to develop tools
and techniques to calculate probabilities of different events. So the probability could be stated
as follows:

P (A) =
possiblie outcome of anevent (A)

Total possible events
(2.2.1)

For example, consider a flipped coin, the probability that outcome is head or tail is equal
P(Head=Tail)=1

2 if the probability of the events are independent or disjoint, which means that
the outcomes are independent of other, then outcome probability of either A or B can be stated
as follows:

P (A ∪B) = P (AorB) = P (A) + P (B) (2.2.2)

If the probability of two outcomes are independent(disjoint) which means the occurrence one not
affects the other ones, then the probability of both occurrence is the product of their individual
probabilities:

P (A ∩B) = P (AandB) = P (A,B) = P (A).P (B|A) (2.2.3)

Again we consider the coin example but in this case, we flipped two coins at the same time,
in this case, the probability that outcome is Head is 1/2 ∗ 1/2 = 1/4 and the probability that
head or Tail is (1/2 + 1/2) = 1 And finally going to define the conditionalprobability which is
very important in our survey and can define the probability of an event outcome A when the
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occurrence and outcome B is given and can be expressed as follows;

P (A|B) =
P (A ∩B)

P (B)
(2.2.4)

let’s give an example for clarification of conditional probability; if we roll a die.Let A be the
event that the outcome is an odd number,A = {1, 3, 5} and also let B = {1, 2, 3} what is the
probability of A,P (A)? And what is the probability of A given B , P (A|B)? Solution: we know
that have 6 numbers on the die so the probability of A can be

P (A) =
| A |
| S |

=
| {1, 3, 5} |

6
=

1

2

Now let’s find the conditional probability of A respecting that the B accrued.If we know that
the B accrued which must be within {1, 2, 3}.For A to also happen the outcome must be in
A ∩B = {1, 3}.since all die roll are equally likely then the P (A|B) must be equal to :

P (A|B) =
P (A ∩B)

P (B)
=

2
6
3
6

=
2

3

Figure 2.1: Conditional probability in S space

2.3 Random Variables

In the probability and statistic, a random variable can be stated as a variable whose possible
values are a numerical consequence of a random phenomenon.There are two types of random
variables, discrete and continuous.

2.3.1 Discret Random Variable:

Definition :A random variable X can be a discrete random variable if:
there is the possibility of the finite number of outcomes of X or there are a countably infinite
number of the possible outcomes of X.For example, a rolling of the fair die which has 6 numbers
and possible outcomes can be {1, 2, 3, 4, 5, 6}
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2.3.2 Continuouse Random Variable:

Definition: Continuous random variables X is the random variable, whose support S contains
an infinite interval of possible outcomes. For example, if we assume that X indicates the height
(in meters) of a randomly selected maple tree, then, in this case, the X will be a continuous
random variable.

2.4 Expected Value

In the theory of probabilities, the expected value of a random variable, directly, is the long-time
running, the average value of repetitions of the experiment which it represents. For instance, the
expected value for the rolling of a six-sided dice is 3.5, because the average of all the outcome
numbers in an extremely large number of outcome is close to 3.5.the law of large numbers
expresses that the mean values almost certainly converge to the expected value as the number
of repetitions approaches to infinity. The expected value is known also as the expectation,
mathematical expectation, average, mean value or first moment. More practically, for a discrete
random variable, the expected value is the averagely weighted probability of all values which
are possible. In other words, each possible value which can be assumed for a random variable
is multiplied by its probability of occurrence, and the produced result is summed together to
produce the expected value.The same principle can be applied to a continuous random variable,
except that the integral of the variable with respect to its probability density function, rather
than the sum is used.Also, these principles work for distributions which are not discrete or
continuous; the value of expectation a random variable is given by the integration of the random
variable respect to its probability measure.

2.5 Univariate discrete random variable, finite case

Assume that the random variable X can take value x1 and value x2 with probability p1 and
probability p2 respectively , and so on, up to the value xk with probability pk. Then for this
random variable X the expectation is defined as:

E[X] = x1p1 + x2p2 + x3p3 + ...+ xkpk. (2.5.1)

Since summation of all probabilities become equal to one (p1 +p2 + ... +pk= 1), the expected
value can be considered as the weighted average, with pis being the weights:

E[X] =
x1p1 + x2p2 + x3p3 + ...+ xkpk

1
=
x1p1 + x2p2 + x3p3 + ...+ xkpk

p1 + p2 + ...+ pk
. (2.5.2)

2.6 Univariate continuous random variable

If the probability distribution of X has a probability density function f(x), then the expected
value can be computed as:

E(X) =

∫ +∞

−∞
xf(x) dx (2.6.1)

2.7 Probability Density Function

As already we’ve stated the discrete random variable, the value of which this variable could
take are finite but for the continuous random variable the situation is different and we deal
with infinite value.so that is needed a function to present all its possible values. In theory
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of probabilities and stochastic, a probability density function (PDF),or a continuous random
variable density,is a function, whose value at each given point (or sample) in the sample space
(the group of values which are the random variable can take) can be stated as presenting a
relative likelihood that the random variable value would be equal in that sample or in other
words,(whereas numerous set of possible values exist to start with) for a continuous random
variable the absolute likelihood to obtain any particular value is 0.The PDF value at two different
samples can be used for guessing that, in any particular draw of the random variable, how much
more probable it is that the random variable would equal one sample compared to the other
sample. In a more accurate significant, the PDF is used to determine the probability of the
random variable falling within a particular interval or range of values, as opposed to taking on
any one value. then the integral of this variables PDF over that range gives the probability
of that sample and it is given by the area under the density function in the interval between
the lowest and greatest values. The probability density function is positive everywhere, and its
integral over the entire space is equal to one.

Figure 2.2: probability density function of a normal distribution N(0, σ2).

2.8 Signal:

In signal processing, the signal can be divided into two categories:

2.8.1 Deterministic Signal

Deterministic signals are a type of signal, whose values are completely known or specified at
any given time. Thus, a deterministic signal can be modeled by a specified function of time.For
instance, a signal which is harmonic and can be modeled with harmonic or harmonics function.

2.8.2 Random Signal

A random signal is a type of signal which also called non-deterministic signal is a kind of signal
that gets random values at any given time and must be specified and characterized statistically.It
means that this kind of signal could not be presented with a specified function.
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Figure 2.3: Random signal

Figure 2.4: Deterministic signal

2.9 Guassin Noise:

Gaussian noise, which is also known as the Gaussian distribution is a type of statistical noise
which has a probability density function (PDF) similar to the normal distribution.[1][2] In other
words, the values that this type of noise can get are distributed Gaussian. The probability
density function p of a Gaussian random variable z is given by:

p(z) =
1

σ
√

2π
exp−

z−µ
2σ2 (2.9.1)

where z represents the grey level, µ is the mean value and σ is the standard deviation.[3] A
special case of Gaussian noise is white Gaussian noise, in which the values at any pair of times
are identically distributed and statistically independent (and hence uncorrelated).
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Figure 2.5: Guasian noise distribution.

2.10 White noise :

In signal processing, white noise is a kind of random signal which has uniform power at differ-
ent frequencies, then consequently it has a constant power spectral density[1].This or similar
meaning is being used in different scientific and technical application, including physics, acoustic
engineering, telecommunications, statistical forecasting, and so on. White noise is a statistical
model of signals and signal sources, rather than to any specific signal.

2.11 Variance:

In theory of probabilities and statistics, the expectation of the squared deviation of a random
variable from its mean called variance and it determines roughly how far a group or set of
numbers (random numbers) are distributed out from their mean. The variance has an important
role in statistics. As the statistic can be applied to the different science of area and in the different
numerical methods, so this importance makes it a central value or quantity in numerous fields
such as physics, biology, chemistry, cryptography, economics, and finance.The variance has the
different definition and can be stated as a square of the standard deviation, central moment
of a distribution, and the random variable covariance with itself, and often it is stated by σ2,
Var(X).The covariance of the random variable X is the squared deviation the expected value
from the mean of X,µ=E[X]:

V ar(X) = E[(X − µ)2] (2.11.1)

This definition belongs to random variables that are generated by processes which are discrete,
continuous, neither, or combination of these two. The variance can also be considered of as the
covariance of a random variable with itself as is expressed below;

V ar(X) = Cov(X,X) (2.11.2)
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The expression for the variance can be expanded:

V ar(X) = E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X]2 − 2E[X]E[X] + E[X]2

= E[X2]− E[X]2 (2.11.3)

2.12 Continuous random variable

If we consider random variable X that states samples which generated by a continuous dis-
tribution that has probability density function f( x ) , then the population variance is given
by:

V ar(X) = σ2 =

∫
(x− µ)2f(x) dx =

∫
x2f(x) dx − 2µ

∫
xf(x) dx +

∫
µ2f(x) dx =

∫
x2f(x) dx − µ2

(2.12.1)

2.13 Discrete random variable

If the generator of random variableX is discrete with probability mass function x1 7→p1x2 7→p2,...,xn 7→pn
then:

V ar(X) =

n∑
i=1

pi.(xi − µ)2 (2.13.1)

or equivalently

V ar(X) =

n∑
i=1

pix
2
i − µ2 (2.13.2)

where µ is the average value

µ =

n∑
i=1

pi.xi (2.13.3)

2.14 Covariance:

In the theory of probabilities and statistics, the value of the dependency variability of two
random variables is called covariance which means that can be found a relation between the
variation of the variables.[1] If in the one variable the greater values of that variable correspond
with the greater values of in the other variable, and the same retain for the lesser values, these
two variables will show similar behavior, and the covariance is positive.[2] While in the reverse
case, when the bigger values of one variable intensively correspond to the smaller values of the
other then the variables will show opposite behavior and in this case the covariance is nega-
tive.The covariance’s sign, therefore, displays the propensity or trend in the linear relationship
between the variables. The size or measure of the covariance is not simple to interpret and
be perceived.However, the correlation coecient and normalized or dimensionless version of the
covariance shows the strength of the linear relation by its magnitude and measure.The covari-
ance between two jointly distributed( probability distributions of two or more random variables)
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real-valued random variablesX andY with finite second moments is defined as the following re-
lationship expressed as the expectation of the product of their deviations from their individual
expected values:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (2.14.1)

Where E[X] is the expected value of variable X, also known as the mean value of variable
X.The covariance is also sometimes expressed ”σ”, as an indication of variance. By using the
expectations’ linearity property of covariance, this can be simplified to the expectation value of
their product minus the product of their expected values:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY −XE[X]− E[X]Y + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]. (2.14.2)

For random vectors X∈Rn and Y ∈Rn,the m×n cross covariance matrix (also known as dis-
persion matrix or variancecovariance matrix,[5] or simply called covariance matrix) is equal to
:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY T ]− E[X]E[Y ]T (2.14.3)

The covariance which can be stated Cov(Xi, Yj) is represented by the(i,j)th member in this
matrix (covaraince matrix)which is the covarivance between the (i)th scalar component of X
and the (j)th scalar component of Y .Actually the Cov(Y,X) is The transpose of Cov(X,Y ).
For a vector X=[X1, X2, ..., Xm]T which has m jointly distributed random variables with nite
second moment,its covaraince matrix is dened as :∑

(X) = Cov(X,X) (2.14.4)

If the Random variables whose covariance become zero are called uncorrelated and also for
random vector can have similar definition the vector whose covariance matrix is zero in every
entry outside the main diagonal are called uncorrelated.

2.15 Discrete variables

If every variable has a finite set of equal-probability values,xi and yi respectively for i=1, ..., n
and j=1, ..., k,then equivalently can be written the covariance of these variables in terms of
means E(X)andE(Y ) as:

Cov(X,Y ) =
1

nk

n∑
i=1

k∑
j=1

(xi − E(X))(yj − E(Y )) (2.15.1)

2.16 Covariance Matrix

In theory of probabilities and statistics, a matrix of covariance of random vector (also called as
a variance-covariance matrix) is a matrix that the covariance between the ith and jth elements
of a random vector is the i,j positioned element in this matrix. A random variable with multiple
dimensions is also called a random vector and every element of the random vector is a scalar
random variable in which each of this element has either a nite or innite number of potential
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values or nite number of observed experimental values.The potential values are determined by
a theoretical joint probability distribution. practically, the covariance matrix generalizes the
concept of variance for multiple dimensions. As an example, the variation in a collection of
random points in two-dimensional space cannot be characterized fully by a single number, and
also would not have the single number contains all of the necessary information of variances in
the x and y directions,then a 2*2 matrix would be necessary to the two-dimensional variation
be fully characterized. each element on the principal diagonal of the covariance matrix is the
variance of one of the random variables Because the covariance of the ith random variable with
itself is simply that random variables variance.Take into account that every covariance matrix is
symmetric because the covariance of the ith random variable with the jth one is the same thing
as the covariance of the jth random variable with the ith one and In addition, every covariance
matrix is positive semi-denite.

2.17 Definition

Consider that X and Y are the random vectors which are used, and Xi and Yi being used to
refer to random scalars if entries, it means elements in the column vector such as the following
presentation:

X =


X1

X2

...
Xn

 (2.17.1)

are random variables, each of them with nite variance, then the covariance matrix
∑

is the
matrix that whose (i,j) components are the covariance and is expressed as the following :∑

ij
= cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] = E[(XiXj ]− µiµj (2.17.2)

where µi = E(Xi) is the expected value of the i th entry in the vectorX.In another words:

∑
ij

=


E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)] · · · E[(X1 − µ1)(Xn − µn)]
E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)] · · · E[(X2 − µ2)(Xn − µn)]

...
...

. . .
...

E[(Xn − µn)(X1 − µ1)] E[(Xn − µn)(X2 − µ2)] · · · E[(Xn − µn)(Xn − µn)]


(2.17.3)

the
∑−1

represents The inverse of the above-expressed matrix and if it exists, it will represent
the inverse covariance matrix, also known as the concentration matrix of the precision matrix
which precision is inversely proportional to variance.the less variance the higher the precision
and vice-versa. The definition above is equivalent and correspond to the matrix equality.

Σ = E
[
(X − E[X])(X − E[X])T

]
(2.17.4)

2.18 Properties

The special case of the covariance is variance in which the two variables are identical (the case
that in which one variable always takes the same value like the other variable):

Cov(X,X) = V ar(X) = σ2(X) = σ2
X (2.18.1)
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2.19 A more general identity of covariance matrices

Here we are going to state some property of covariance matrix. Let’s assume that have a random
vector X which its covariance matrix is

∑
(X), and also assume we have a A which is a matrix

that can act on this variable X.Consequently, the covariance matrix of the matrix AX is:∑
(AX) = E[AXXTAT ]− E[AX]E[XTAT ] = A

∑
(X)AT (2.19.1)

2.20 Block Matrices

The joint mean µX,Y and joint covariance matrix ΣX,Y of X and Y can be written in block
form:

µX,Y =

[
µX
µY

]
,ΣX,Y =

[
ΣXX ΣXY
ΣY X ΣY Y

]
(2.20.1)

Where ΣXX=V ar(X) , ΣY Y =V ar(Y ) ,and ΣXY = ΣTXY =cov(X,Y ) . ΣXX and ΣY Y can be
identified as the variance matrices of the marginal distributions for X and Y respectively.If X
and Y are jointly normal distributed:

x, y ∼ N(µX,Y ,ΣX,Y ). (2.20.2)

2.21 Mean Square Error:

The mean square error is the value which tells you how much your estimated value is close to
true value which must be estimated and it is an essential tool in probability and statistics.
In the probabilities this value the mean squared error (MSE) or also called mean squared devi-
ation (MSD) of an estimator which is used in estimating or predicting of unobserved quantities
such as we encounter in identification system for observer design, determines the average of the
squared of the errors(error, in this case, means the difference between estimated and the ex-
pected) or deviations which addresses or defines the difference between the estimator and what
is estimated. Also, the mean squared error (MSE) is a risk function because it expresses the
squared error loss of estimator which not considered some information or due to the randomness
of information. The MSE value also expresses the measure of the quality of an estimator if this
value closer to zero are better.Later this concept will be more cleared.

2.22 Definition and basic properties

The MSE evaluates the quality and accuracy of an estimator (it is expressed as a mathematical
function which maps sample of data to a parameter of the population from which the data is
sampled) or a predictor (it is expressed as a function which maps arbitrary inputs to a sample
of values of some random variable).The MSE definition according to whether one is describing
an estimator or a predictor could differ.

2.23 Predictor

If Ŷ is a vector which obtained by the n predictions of predictor and Y is the vector of observed
values corresponding to the inputs as must be exactly applied as an input to predictor function,
then the MSE of the predictor can be estimated by

MSE =
1

n

∑
i=1

(Ŷi − Yi)2) (2.23.1)
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as the above expression stated the MSE value, in this case, is the quality of predictor because
it determines the error of predicted values. The MSE is the mean( 1

n

∑
i=1

) of the square of

error (Ŷi − Yi)2).This is an easily computable quantity for a particular sample (and hence is
sample-dependent).

2.24 Estimator

let’s have the n random variables X1, X2, X3, ...Xn and θ̂ be the estimator of the unknown
parameter from these sample variables then it’s deviation from true value of θ mesures the
quality of the estimator and express (θ̂ − θ) and consequently the mean squred error(MSE) of
an estimator θ̂ with respect to an unknown parameter θ is defined as

MSE(θ̂) = E
[
(θ̂ − θ)2

]
(2.24.1)

The MSE is a property of an estimator,which in this case as already expressed, the MSE
measures the average squared dierence between the estimatorθ̂ and the true parameter θ. The
MSE can be expressed as the sum of the variance of the estimator and the squared bias of
the estimator and with this way of expression providing a useful way to calculate the MSE and
implying that in the case of unbiased estimators, the MSE and variance are equivalent.[2]

MSE(θ̂) = V arθ(θ̂) +Biasθ(θ̂,θ)2 (2.24.2)

In the MSE which has expressed before we can see the V ariance and bias, the concept of
variance already explained but here we just going to define what is the bias.

2.24.1 Bias:

The bias of an estimator θ̂ of a parameter θ is the difference between the expected value of θ̂
and true value o of the parameter θ which stated the accuracy of the estimator.if the bias of an
estimator is equal 0 it means the estimator is unbiased.

2.25 Proof of variance and bias relationship

MSE(θ̂) = Eθ
[
(θ̂ − θ)2

]
= Eθ

[
(θ̂ − Eθ[θ̂] + Eθ[θ̂]− θ)2

]
= Eθ

[
(θ̂ − Eθ[θ̂])2 + 2(θ̂ − Eθ[θ̂])(Eθ[θ̂]− θ) + (Eθ[θ̂]− θ)2

]
= Eθ

[
(θ̂ − Eθ[θ̂])2

]
+ Eθ

[
2(θ̂ − Eθ[θ̂])(Eθ[θ̂]− θ)

]
+ Eθ

[
(Eθ[θ̂]− θ)2

]
= Eθ

[
(θ̂ − Eθ[θ̂])2

]
+ 2(Eθ[θ̂]− θ)Eθ

[
(θ̂ − Eθ[θ̂]

]
+ (Eθ[θ̂]− θ)2

= Eθ
[
(θ̂ − Eθ[θ̂])2

]
+ 2(Eθ[θ̂]− θ)(Eθ[θ̂]− Eθ[θ̂]) + (Eθ[θ̂]− θ)2

= Eθ
[
(θ̂ − Eθ[θ̂])2

]
+ (Eθ[θ̂]− θ)2

= V arθ(θ̂) +Biasθ(θ̂,θ)2 (2.25.1)

2.26 Bibliography

[1]://en.wikipedia.org/wiki/
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Chapter 3

Kalman Filter And Extended
Kalman Filter’s Theories

3.1 Kalman filter :

Before introducing the Kalman Filter’s principles, let’s clarify some keywords which are funda-
mental for our consideration:

3.1.1 Stochastic Estimation

Since different application-specific approaches have been used in computing (estimating) an
unknown state from a set of process measurements, many of these methods do not inherently
take into account the typical noisy nature of the measurement(s).While the requirements for the
tracking information varies with application, the fundamental source of information is almost
the same, for instance, pose estimates information are obtained from noisy measurements of
mechanical, inertial, acoustic or magnetic sensors and etc... This noise is typically statistical in
nature (or can be effectively modeled as stated in the previous chapter), which guides and leads
us to stochastic methods for addressing and dealing with these types of problems. Here, we are
going to demonstrate a very basic introduction to the subject aiming to be prepared for next
chapters.

3.1.2 State-Space Models:

This is a commonly used term in the subject of systems control. By definition, a model that
describes a system by a set of first-order differential equations or difference equations using state
variables is known as the state-space model.The state space model uses the first order equations
rather thannth-order differential equation which means that an nth-order differential equation
can be broken up into n first-order differential equation.It is a very effective model for control
and estimation problems. Here, we are going to demonstrate it with the help of an example
to make the reader understand the concept. Consider a dynamic system or process which is
described by a n-th order differential equation (like a differential equation) of the following form:

yi+1 = a0,iyi + ...+ an−1,iyi−n+1 + ui, for i ≥ 0, (3.1.1)

Where in Equation(3.1.1), ui, presents a type of process noise, white (spectrally) random which
has zero-mean (statistically) with autocorrelation as the following:

E(ui, uj) = Ru = Qiδij (3.1.2)
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And initial values are
{
y0, y−1, ..., y−n+1

}
zero-mean random variables with a known n× n

P0 = E(yj , yk) j, k ∈ {0, n− 1} (3.1.3)

Also assume that:

E(ui, yi) = 0 for n+ 1 ≤ j ≤ 0 and i ≥ 0, (3.1.4)

Refer to [1] for more certainty,and correlation between variables and noise could be present as
the following:

E(ui, yi) = 0 i ≥ j ≥ 0 (3.1.5)

In other words, the Equ(3.1.4 and 3.1.5) are expressing that, the noises are independent statis-
tically from the process to be estimated, under some other basic conditions which can be found
in [1], the difference equation(3.1.1) can be re-written as Equation(3.1.6)

xi+1 =


yi+1

yi
yi−1

...
yi−n+2

 =


a0 a1 . . . an−2 an−1

1 0 . . . 0 1
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0




yi
yi−1

yi−2

...
yi−n+1

+


1
0
0
...
0

ui (3.1.6)

Where the Equ(3.1.6) is the state-space model of the dynamic system equation(3.1.1) and can
be expressed in the compact form Eq(3.1.7)

xi+1 = Axi +Gui (3.1.7)

yi =
[
1 0 . . . 0 xi

]
(3.1.8)

or the more general form

xi+1 = Axi +Gui (3.1.9)

yi = Hixi (3.1.10)

Equation (3.1.9) express the way a new state xi+1 which is modeled as a linear combination of
both the previous statexi and some process noise which in this case is ui. Equation (3.1.10)
demonstrates the method in which the process measurements or observations yi are derived
from the internal statexi. These two equations, as from control theory, are referred to as the
process model and themeasurement model respectively, and they are fundamental in virtual
modeling of all linear estimation methods, such as the Kalman filter which will be explained in
the following sections.

3.1.3 The Observer Design Problem:

In the area of linear systems theory, there is a relevant general problem usually called the
observer design problem. The basic problem in this system is to determine (estimate) the
internal states of a linear system with access only to the systems outputs which called measured
variables although access to the systems control inputs is also considered, but we are not going
to consider it and we neglect that aspect here. This problem is exactly something like what
people usually think of as the black box problem where you can see some signals coming from
the box (the outputs) but you can not directly observe what is inside. To deal with this basic
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problem, many approaches, typically based on the state-space model have been demonstrated,
such as the one we have expressed in the previous section. There is typically a process model
that models the transformation of the process state, which means transformation from current
stance to the next stance. This can usually be demonstrated as a linear stochastic difference
equation similar to equation (3.1.9):

xk = Axk−1 +Buk + wk−1 (3.1.11)

Moreover, there is some form of a measurement model that describes the relationship between
the process state and the measurement variables.This can usually be represented with a linear
expression similar to equation (3.1.10)

zk = Hxk + vk (3.1.12)

The terms wk and vk are random variables describing the process and measurement noise re-
spectively. Note that in equation (3.1.12) we have changed the measured variable to zk instead
of yk as in equation (10).The rationale is to reinforce the concept that the measurements do not
have to be of elements of the state specifically but can be any linear combination of the state
elements.

3.1.4 Measurement and Process Noise:

Noises are the main error source in control systems and based on that, here we will be investi-
gating the noisy sensor measurement which commonly exists. In reality, many sources of noise
in the measurements of variables (parameters) could be found.This issue can be related to the
type and capabilities of the sensors.For instance, each type of sensor has fundamental limitations
related to the associated physical medium, and if somehow it overpasses from the limitation of
sensor capability, the signals and the measured parameters are typically degraded.Moreover,
some amount of random electrical noise is combined with the signal via the sensor and the elec-
trical circuits.In fact, the quality and quantity of the information are always and continuously
affected by the time-varying ratio of “pure” signal- to-electrical noise.The result is that the
information obtained from any sensor must be qualified as it is explicated as part of an over-
all sequence of estimates and analytical measurement models which typically synthesize some
notion of random measurement noise or uncertainty as shown above in Equ(3.1.12).

3.1.5 Kalman Filter:

In the recent years, a number of methods and techniques have been used for noisy data anal-
ysis.Within the fundamental and effective tools for stochastic estimation from noisy sensor
measurement can be used is called Kalman lter, which is one of the most well-known and re-
puted tools for state estimation. Its name is derived from its inventor Rudolf E. Kalman when
he published his popular paper demonstrating a recursive solution to the discrete-data linear
altering problem[4]. The most basic data fusion method for localization is based on the Kalman
lter.
The Kalman Filter is a set of mathematical equation that provides the optimal computational
tool for estimating the state of a process very effectively and impressively in a way that min-
imizes the mean square error. This means that the concept behind the working of a Kalman
filter is minimum square theory and this concept will be discussed later.This filter from the
different point of views is very powerful and has versatile functionalities:
it supports estimation of past which means use information of past step, present, and even able
to support future states and it can even identify the system in which the exact and precise nature
of the modeled system is unknown. Thus, this tool is very much suitable for the identification
system. In case of Autonomous vehicles along with other applications, the Kalman filter is con-
sidered as an optimal linear estimator which uses the past information on the sensor noise source
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which called prior information,the vehicle dynamics and the kinematic equations to recursively
compute an optimal position while minimizing the error based on MSE theory[5]. The filter is
optimal when the process noise and the measurement noise can be modeled and assumed by
white Gaussian process noise.The recursive implementation of Kalman filters is well suited to the
fusion of data from different sources at different times in a statistically optimum manner. Many
other filter designs can be demonstrated to be equivalent to the performance of Kalman filter
under several constraints.The recursive sequence involves prediction and update steps, which
means at the same time,it can update its estimation.The prediction step uses a dynamics model
that represents the relationship between variables over time due to the time-dependance of the
dynamic system. A statistical model of this dynamic process is also necessary.A prediction is
usually done to estimate the variable at each of the measurements, as well as in between mea-
surements when an estimate is required.The updated measurement combines the historical data
that is passed through the dynamics model with the new information in an optimal procedure
base on MSE which will be discussed later. The Kalman filter aims at directing the general
issue of estimating the state x∈<n of the discrete-time controlled process that is governed by
the linear stochastic equation.Since the time of its introduction, the Kalman filter has been
used in comprehensive research and broad applications, particularly in the area of autonomous
or assisted navigation.In fact, anywhere the estimate is spoken of, the footprint of Kalman Filter
can be seen. The huge progressing of computer sciences and digital computing and the relative
simplicity and robust nature of the filter itself have made the use of the filter practically without
any limitation.

3.1.6 The Discrete Kalman Filter

In this section, we are going to illustrate the original formulation of the Kalman Filter as
presented by Kalman [4] where the occurrence of measurements and state estimation at discrete
points in time are considered.

The Process to be Estimated

The Kalman filter endeavors to direct the problem of estimation state x∈<n of controlled process
which is very general and common problem in the discrete-time systems governed by linear
stochastic difference equation. It could be expressed as the following[4]:

xk = Axk−1 +Buk + wk−1 (3.1.13)

with a measurement z∈<m that is

zk = Hxk + vk (3.1.14)

Where in the equation of (3.1.13) and (3.1.14) the random variables of wk and vk are repre-
sentative of the process and measurement noise respectively. They are assumed to be white
noise,independent of each other and with normal probability distributions.To fulfilled these con-
ditions the noises could have following properties.

P (w) ∼ N(0, Q) (3.1.15)

P (v) ∼ N(0, R) (3.1.16)

Notice that, the covariances matrices of process noise Q and measurement noise R might not
be practically constant, and might change with each time step or measurement although here,
for simplifying of investigation, we suppose that they are constant.In the Equ(3.1.13) the states
at the previous time step k − 1 to the state at the current step k are linked by n × n matrix
A(System matrix).Note that here also A might change with each time step in practice, and is
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not necessarily fixed constant matrix but here, in this case, it is considered to be constant.The
n×1-Dimensional matrix, B joints the control input u∈<l to the state x.The m×n-Dimensional
matrix H in the measurement equation (3.1.14) linkes the state variables to the measurement
variables zk which gives the relation of the internal states with measurement states.As A and
u, in practice, the H might be constant or might change with each time step or measurement
step, but here we assume it is constant.

3.2 Computational Origins of the Filter:

We define x̂−k ∈<n (the superminus indictaes the prior) is our a prior state estimate at step k if
the information of the process prior (before) to step k was given, and x̂k∈<n is our a posterior
state estimate at step k if the measurement zk was given.Consequently, We are able to define a
prior and posterior estimate errors as following equations(3.2.1 and 3.2.2)

ek = xk − x̂k (3.2.1)

and

ēk = xk − x̂−k (3.2.2)

The a prior estimate error covariance is the

P− = E[e−k e
−T
k ] (3.2.3)

and the a posterior estimate error covariance is,

P = E[eke
T
k ] (3.2.4)

To derive the equations for the Kalman filter, we will start with the goal to find an equation
that calculates a posterior state estimate x̂k as a linear combination of an a prior estimate x̂−k
and a weighted difference between an actual measurement zk and a measurement prediction
Hx̂−.Consequently the equation (3.2.5) is derived, which fulfills all the mentioned requirement.
Some rationalization for equation (3.2.5) is given in The Probabilistic principles of the Filter
which can be observed below.

x̂k = x̂− +K(zk −Hx̂−) (3.2.5)

The difference zk −Hx̂− in equation (3.2.5) is called the residual or the measurement innova-
tion.As it is obvious, the residual reflects the discrepancy or difference between the predicted
measurement Hx̂− and the actual measurementzk values .If the residual becomes zero, it means
that the two (predicted and measured values ) are in complete compromise.So that the target
with this discovery can be clarified, and will be the minimization of residual.To reach to this
aim, the key is in the hand of Kalman Gain. The n×m matrix K in equation (3.2.5) is the gain
or combining factor to be chosen to minimize the posterior error covariance equation (3.2.4).
This minimization can be demonstrated by first substituting equation (3.2.5) into the above-
explained for ek Equ(3.2.1), substituting that into equation (3.2.4), performing the indicated
expectations and then with performing the derivative of the trace of the obtained result of pre-
vious operation(substitutions) with respect to K, setting equal to zero of the final operation
result, and then solving it for K.With this operations the optimum points will be found and
make the values which make minimize the residual are the desired values of Kalman gains. For
more details please refer to these articles [2][7].One common form of computing the K which
minimizes the residual (equal to MSEmin) equation (3.2.4) is given by:

Kk = P−k H
T (HP−k H

T +R)−1 (3.2.6)

=
P−k H

T

HP−k H
T +R)
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Looking at the equation (3.2.5) we could say that, as the measurement covariance error R comes
closer to zero,which means that the posterior estimat error comes close to zero, pertaining to
Equ.(1 and 4), the gain K weights or relies on the residual (the difference between actual and
predicted) more heavily. Specifically the Equ(3.2.6) converted to Equ(3.2.7) only depends to
the inverse of H:

lim
Rk→ 0

Kk = H−1 (3.2.7)

On the other hand, as the prior estimate error covariance P−k comes closer to zero, which means
the prior estimat error comes close to zero, regarding to Equ.(3.2.2 and 3.2.3) the gain K weights
or relies on the residual(the difference between actual and predicted measurements) less heavily.
Specifically:

lim
P−
k → 0

Kk = 0 (3.2.8)

Another way of thought or perception about the weighting by K is that as the error covariance
of measurements R comes close to zero, the actual measurements which are the measured by
sensors zk are more trusted while the predicted measurement which is estimated by filter Hx̂−

is less and less trusted.On the other side, when the reverse case of earlier mentioned happens,
as the a prior estimate error covariance P−k comes close to zero, the actual measurement zk is
less and less trusted, while the predicted measurement Hx̂− is more and more trusted.

The Discrete Kalman Filter Algorithm

Already stated briefly, the discrete Kalman filter provides the best estimate and subsequently,
a demonstration of the algorithm of this powerful tools is done.To clarify the algorithm, we will
start this part with a comprehensive overview, covering the “high-level” operation of one form of
the discrete Kalman filter (refer to the previous section). After we have described this high-level
view, the investigation will be confined focusing on the specific equations and their use in this
version of the filter. A careful examination of the Kalman Filter would show that it is using a
type of feedback control to estimates a process In fact, the filter estimates the state variables at
the same time and then measures feedback in the form of noisy measurements.The time update
equations are responsible for projecting forward the current states and calculating of the error
covariance estimate, obtaining the prior sates estimate for next step.While the responsibility
for the feedback is the measurement update equations, to consolidate a new measurement into
the prior estimate to obtain an improved a posterior estimate(Improving the estimated states
of the first group equations). The time update equations are responsible for projecting for-
ward the current states and calculation of the error covariance estimate and obtaining the prior
sates estimate for next step.While the responsibility for the feedback is the measurement update
equations, it is required to consolidate a new measurement into the prior estimate to obtain an
improved posterior estimate(Improving the estimated states of the first group equations). The
time updated equations which already have been illustrated can also be considered as predictor
equations, while the measurement update equations can be considered as corrector equations.In
fact, the final estimation algorithm is similar to that of a predictor-corrector algorithm for solv-
ing numerical problems as shown below in Figure 3.1.

Again refer to the time updated equations in the table (3.1) and how the state and covari-
ance estimates from time step k − 1 to step k forwardly are being projected. A and B are from
equation (3.1.13), while Q is from equation (3.1.15).In practice the initial condition is considered
arbitrary and we consider arbitrary too, but there are some methods that deal with initial condi-
tions definition of state and covariance.(Initial conditions for Kalman filtering: prior knowledge
specification) The first task during the measurement update is to compute the Kalman gainKk,
taking into account the equations have given here as equation (3.2.11) is similar to equation
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Figure 3.1: The ongoing discrete Kalman filter cycle. The time-updated projects the current
state estimate ahead of time. The measurement update adjusts the projected estimate by an
actual measurement at that time.

Table 3.1: Discrete Kalman filter time update equations.

x−k = Ax−k−1 +Buk (3.2.9)

P−k = APk−1A
T +Q (3.2.10)

Table 3.2: Discrete Kalman filter measurement update equations

Kk = P−k H
T (HP−k H

T +R)−1 (3.2.11)

x̂k = x̂− +K(zk −Hx̂−) (3.2.12)

Pk = (I −KkH)P−k (3.2.13)

(3.2.6). The next step is to actually measure the process to obtain zk, and then to generate
a posterior state estimate by consolidating the measurement as in equation (3.2.12). Again
equation (3.2.12) is simply equation (3.2.5) repeated here for completeness. The final step is
to obtain a posterior error covariance estimate via equation (3.2.13). After each time step and
measurement update, the process is repeated recursively with the previous posterior estimates to
project forward or predict a new prior-estimates as presented in equation(3.2.9). This recursive
nature is one of the very attractive features of the Kalman filter. It makes practical imple-
mentations of the Kalman filter much more feasible than the implementation of other kinds of
filters[3] which is designed to operate on all of the data directly for each estimate. The Kalman
filter recursively conditions the current estimate on all of the past measurements instead. Fol-
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Figure 3.2: A complete picture of the operation of the Kalman filter,incorporating the high-level
diagram of Fig.1, with the equations from table(1) and table(2).

lowing Fig.2 represents a complete picture of the operation of Kalman the filter incorporating
the high-level diagram of Figure 1 with the equations from table (1) and table(2).

3.3 The Extended Kalman Filter (EKF)

3.3.1 The Process to be Estimated:

As explained and described above in section of [Theprocesstobeestimated], the Kalman filter
directs the popular and common problem for finding or estimation of the state x ∈ <n of a
controlled process which is discrete-time and that is governed by a linear stochastic difference
equation (similar to the differential equation) or in another word, the linear systems. But what
will happen if the process to be estimated (state variables) and (or) the relationships between
measurement with the process is non-linear(nonlinear system), which means that, the differen-
tial equation which describes system dynamics is not any more linear?.This is the point where
the capability of the Kalman filter comes evident. One of the most attractive and significant
applications of Kalman filter is dealing with nonlinearity of systems. A type of Kalman filter
is a filter, which is known or called extended Kalman filter (EKF), is able to overcome the
nonlinearity of the systems with linearizing of the system equations about the current mean and
covariance.

In the case of encountering with non-linear relationships, we can linearize the estimation around
the current estimate by means of Tylor series which partially derives the process and mea-
surement functions around the current estimate to be able to compute estimation.To per-
form this, some of the expression, which has already demonstrated in the previous section
[the discrete Kalman filter], must be modified so we start modifying from this point. Let us
assume that our states or process again has a state vector x ∈ <n, but noticing that the process
is now governed by the non-linear stochastic difference equation as expressed in following:

xk = f(xk−1, uk, wk−1) (3.3.1)
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with a measurement z ∈ <m that is

zk = h(xk, vk) (3.3.2)

where the random variables wk and vk demonstrate the process and measurement noise respec-
tively as in equation (3.1.15) and equation (3.1.16). In this case, we do not have the constant
matrix any more but we have the non-linear function in the difference equation, the equation
(3.3.1) which links or connects the state at the previous time step k1 to the state at the current
time step k. It includes the parameters, driving function (control input) uk which could be any
function, and the zero-mean process noise wk. The non-linear function h in the measurement
equation,the equation (3.3.1) links the state xk to the measurement zk.

Considering these equations, it is obvious that one equation does not know the values of the
noise wk and vk at each time step individually which can reduce the efficiency of Kalman Fil-
ter. However, another one can approximate the state and measurement vector without them as
follows.

x̃k = f(x̂k−1, uk, 0) (3.3.3)

and

z̃k = h(x̃k, 0) (3.3.4)

where x̂k is a posterior estimate of the state (from a previous time step k).

It is important to take into account that a substantial deficiency of the EKF is that the vari-
ous random variable distributions (or densities in the continuous case) do not remain normal
any more after undergoing their respective nonlinear transformations.Some interesting work has
been done by Julier [8] using methods that keep the normal distributions all over the non-linear
transformations in developing a variation to the EKF[8].

3.3.2 The Computational Origins of the Filter

In the section(3.2) is described the computational origion of the Kalman filter and as already
mentioned, here we are going to describe the origion of Extended Kalman filter which relies on
the linearization of a non-linear system. Thus, we must be able to estimate the process (state
variables) governed by non-linear equations, starting with new sets of governing equation which
linearize an estimate about equation (3.3.3) and equation (3.3.4).Consequently the linearized
model of the nonlinear model, Equ. (3.3.21) and Equ.(3.3.2) can be rewritten as the following:

xk ≈ x̃k +A(xk−1 − x̂k−1) +Wwk−1 (3.3.5)

zk ≈ z̃k +H(xk − x̃k) + V vk (3.3.6)

where

• xk and zk are the actual state and measurement vectors.

• x̃k and z̃k are the approximate state and measurement vector from equation (3.3.3) and
equation(3.3.4).

• x̂k is a posterior estimate of state at step k.

• the random variable wk and vk are representative of the process and measurement noise
as like in the equation(3.1.15) and equation(3.1.16).
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• A is the jacobian matrix of partial derivative of f with respect to x(states), that is

A[i,j] =
∂f[i]

∂x[j]
(x̂k−1, uk, 0), (3.3.7)

• W is the Jacobian matrix of partial derivatives of f with respect to w,

W[i,j] =
∂f[i]

∂w[j]
(x̂k−1, uk, 0), (3.3.8)

• H is the Jacobian matrix of partial derivatives of h with respect to x,

H[i,j] =
∂h[i]

∂x[j]
(x̃k−1, 0), (3.3.9)

• V is the Jacobian matrix of partial derivative of h with respect to v,

V[i,j] =
∂h[i]

∂v[j]
(x̃k−1, 0), (3.3.10)

considering that for simpleness in the symbolization, we do not use the time step subscript with
the Jacobians A,W ,H,V and, even though they are actually different at each time step.

Now we assign a new notation for the prediction error,

ẽxk
∼= xk − x̃k (3.3.11)

and the measurement residual,

ẽzk
∼= zk − z̃k (3.3.12)

It must be kept in mind that, in practice, we do not have access to x in equation (3.3.11). It is
the actual(real) state vector,because it is the internal state of systemand and we try to estimate
the quantity one. On the other side, we have access to zk in equation (3.3.12) which are the
actual measurements from sensors or other measurement device that, we are using to estimate
the desired state. Using equation (3.3.11) and equation (3.3.12) and substuted to equations
(3.3.5) , (3.3.6), we are able to write governing equations for a error process like :

ẽxk ≈ A(xk−1 − x̂k−1) + εk (3.3.13)

ẽzk ≈ H ˜exk + ηk (3.3.14)

where εk and ηk represent new independent random variables which have zero mean and covari-
ance matrix WQWT and V RV T .With Q and R as in (3.1.15),and(3.1.16) respectively.

Notice that the equations of (3.3.13) and ((3.3.14) are linear and they closely simulate the equa-
tions of difference (3.1.13) and measurement (3.1.14) from discrete Kalman filter respectively.
This helps us to use the actual measurement residual ẽzk in equation (3.3.12) and a second (hypo-
thetical) Kalman filter to estimate the prediction error ẽxk given by (3.3.13).This estimate, let’s
call it x̂k, could then be used along with equation (3.3.11) to obtain the posteriorstateestimates
for the original non-linear process like :

x̂k = x̃k + êk (3.3.15)
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The random variables of equation (3.3.13) and equation (3.3.14) have approximately the follow-
ing probability distributions (as presented previously):

P (ẽxk) ∼N(0, E[(ẽxk ẽ
T
xk

]) (3.3.16)

P (εk) ∼N(0,WQkW
T ) (3.3.17)

P (ηk) ∼N(0, V RkV
T ) (3.3.18)

Given these approximations and letting the predicted value of êk be zero, the Kalman filter
equation used to estimate êk is:

êk = Kkẽzk (3.3.19)

By substituting equation (3.3.19) back into equation (3.3.15) and making use of equation (3.3.12)
we see that we do not actually need the second (hypothetical) Kalman filter:

x̂k = x̃k +Kkẽzk (3.3.20)

= x̃k +Kk(zk − z̃k)

Equation (3.3.20) in the extended Kalman filter can now be used for the measurement update,
with x̃k and z̃k coming from equation (3.3.3) and equation (3.3.4), and the Kalman gain Kk

coming from equation (3.2.11) with the appropriate substitution for the measurement error co-
variance.

The complete set of EKF equations presented as shown in table(3) and table(4). Notice that,
we have substituted x̂−k for x̃k to remain consistent with the earlier super minus for a prior
notation, and that we now attach the subscript k to the JacobiansA,W ,H,and V ,to reinforce
the notion that they are different at (and therefore must be recomputed) each time step.

Table 3.3: EKF time update equations.

x̂−k = f(x̂k−1, uk, 0) (3.3.21)

P−k = AkPk−1A
T
k +WkQk−1W

T
k (3.3.22)

As stated in the section of the basic discrete Kalman filter, the state and covariances of
estimation are projected forward from the previous time step k − 1 to the current time stepk
by the time update equations in table 3. .Here The f in equation (3.3.21) comes from equation
(3.3.3),Ak and Wk are the process Jacobians at step k, and Qk is the process noise covariance
equation (3.1.15) at step k
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Table 3.4: EKF measurement update equations..

Kk = P−k H
T
k (HkP

−
k H

T
k + V RkV

T )−1 (3.3.23)

x̂k = x̂−k +Kk(zk − h(x̂−k , 0)) (3.3.24)

Pk = (I −KkHk)P−k (3.3.25)

Figure 3.3: A picture of complete operation of the extended Kalman filter, incorporating the
high-level diagram of Figure 1 with the equations from table 3 and table 4.

As demonstrated by means of the basic discrete Kalman filter and as can be seen in table(4),
the measurement update equations by means of the measurement zk can correct or in other
word can modify the state and covariance of the estimates.Again we mention that h in equa-
tion(3.3.23) comes from equation (3.3.4), and the Jacobians of measurements are presented by
Hk and V at step k,and covariance equation of measurement noise(3.1.16) is presented by Rk
at step k. (Notice that now we subscript R allowing it to change with each measurement.)

The fundamental and the preliminary operation of the EKF is akin to the linear discrete Kalman
filter as shown in Figure (1).The Figure(3) as presented in following, offers a complete and com-
prehensive picture of the EKF’s operations, which present the combination of the diagram of
Figure 1 with the equations from table 3 and table 4.

A very significant property of the EKF is hidden behind the Kalman gain equation Kk,in
which the Jacobian Hk serves to properly and correctly magnify or propagate only the mea-
surement information’s components which are appropriate. For instance, if not a one-to-one
mapping doesn’t exists between the measurement zk and the state via h, which means that
might not all state variable are involved in measurement, in this case the Jacobian Hk modify
the Kalman gain and consequently it only propagates the portion of the residual zk − h(x̂k, 0)
that does affect the state.It is obvious that if one-to-one mapping does not exist between the
measurement zk and the state via h,then as you can anticipate that, the filter will rapidly di-
verge. In this case, the processor, in other words, the state is unobservable.
As a conclusion for this chapter, so far, we have demonstrated the proper tools with the concept
of different terms and notations to model and simulate our objective which is the estimation of
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the vehicle position in noisy environments more accurate.
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Chapter 4

Global Position system(GPS) and
Priciples

4.1 Introduction

Two types of sensors are able to provide position of mobile vehicles :Absolute Position sensors
(GPS , Radar) which take their information from outside of mobile vehicle in the environment
and get the position of the mobile vehicle in an absolute reference frame and dead Recognition
that called, DR sensor or Odometry sensor,which take their information from mobile vehicle itself
by using the latest information (point) and with integration in time difference interval of current
and previous time evaluates the current position of mobile vehicle so therefore positioning error
is time dependent and drifting with time. At the present, the basic component of a navigation
or land positioning system is global positioning system or GPS.

4.1.1 What is Global Position System

The GPS (global positioning system) is a constellation of approximately of 30 (or 24) well-spaced
satellites (in general a satellite is anything that orbits around something else, for instance, the
moon that orbits around the earth.In communications technology a satellite is a specialized wire-
less receiver and the transmitter that is sent to space by a rocket and is placed in orbit around
the earth) that orbits around the earth that are precisely tracked from the ground station.
In order to satellite be updated, the updated information sent to the satellite by each ground
station which has a precisely known location. consequently, each satellite transmits and sends
its location to the receiver and makes it possible for people with ground receivers to determine
their geographical location.Actually, the GPS satellite composed of computer and receiver along
with the satellites which are able to determine the latitude, altitude, and longitude of a user or
receiver in space or earth by calculation the time difference from transmitted to and received
a signal from the receiver. The accuracy of location determining of GPS is variable from 100
to 10 meters for most equipment.Although it is possible to reach the accuracy of centimeter In
a differential mode. However, the lack of credibility or reliability of GPS in some cases, due
to multipath or mask effect or when the satellites signal not available such as in underpass or
tunnel leads to overcoming the problem or at least being decreased this erroneous of GPS data
with combination to other sensors.[1]

GPSs equipment is widely used in science, traffic management with real-time data and in-
dustrial application such as freight management, agricultural and in advanced and innovation
cases in the autonomous vehicles which is our motivation and interest.in the following picture
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Figure 4.1: Spaced Satellites around the Earth

is shown the location of the satellite around the earth.

4.1.2 How GPS determines the position of user:

GPS, as it is clear, must use the time to determine and measure the distance from each satellite
to the receiver.The time required for the signal to travel from the satellite (a known position) to
the receiver (an unknown position) is computed by the receiver. The distance (pseudo range)
of each satellite to the receiver is calculated by following formula: distance = rate ∗ time.Since
we know the speed of light almost is fixed and approximately (186,000 miles per second), and
what is here determinative is the time.Actually, variation in time causes a variation in distance.
A GPS receiver is able to determine the range to the satellite by measuring the time elapsed for
a signal to broadcast from a satellite to a receiver and multiplying it by the speed of light. [2].
The receiver’s location is determined by solving three(x,y, time) or preferably four (x,y,z,time)
6 unknowns. These unknowns are solved using three equations with three unknowns or four
equations with four unknowns. Three satellites are enough to determine a location.To have
more accurate location information is better to have four satellites rather than three satellite
because another unknown variable is calculated by additional satellite which is elevation (z).
As already stated the information is received from GPS system are not accurate due to signal
loss, multipath eect and mask eect and, etc. Here these eects going to be briey explained which
they called UserEquivalentRangeErrors.

User Equivalent Range Errors:

User Equivalent Range Errors (UERE) are the errors which are related to the timing and
path readings of the satellites due to anomalies in the hardware in GPS device or interference
from the atmosphere.An almost comprehensive list of the sources of User Equivalent Range
Errors(UERE), regarding their contribution to total error, is as the following :
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• Signal loss: GPS is a line-of-sight sensor and therefore the GPS measurements are sub-
jecting to signal outages. To estimate the expected position of a receiver or in our case
mobile vehicle, at least four satellites are needed to be in view to a receiver for a 3D
position (altitude, latitude, and longitude) or at least 3 satellites for 2D positioning. If it
cannot see the four satellites in view the measured position is not accurate and it is called
signal loss.

• Multipath effect: Multipath is the phenomenon where a GPS signal arrives at the
receivers antenna of the user via more than one paths. In the GPS the multipath effect
is a common error source that has to be taken into account whether in static or dynamic
precise positioning. As you can see in the following picture the receiver is getting an
indirect signal which is reflected from building or ground so obviously the position being
estimated by GPS receiver included to an error.As the satellites move and their position
are not fixed, so the indirect path is obviously dependent on the reflecting surface and
the satellite position it means that can be delt just by considering of the receiver side.The
reflecting surface is usually a static one related to the receiver, although the satellite moves
with time. Therefore, the multipath effect is also a variable of time as stated that satellites
are mobile. Antennas are designed to minimize interference from signals reflected from
below, but the elimination of receiving signals reflected from above is a more complicated
task.One technique for minimizing multipath errors is to track only those satellites that
are at least 15 above the horizon, this is a threshold angle which is called the ”Mask angle”
in the following pictures is shown the effect of multipath.

(a) multipath signal recivieving to user af-
ter being reflected.

(b) excess path length of signal after be-
ing reflected.

• Satellite clock: GPS is able to calculate the position, as expressed before depending
on measuring transmission time of a signal from the satellite to the receiver; in fact, this
depends on knowledge of the time on both ends. NAVSTAR satellites commonly use
atomic clocks, which are very accurate but they can drift-up to a millisecond (which is
enough to make an accuracy dierence). by monitoring of the stations and calculation of
clock correction These errors are minimized and with transmitting the clock corrections
together with the GPS signal in order to the two side of GPS receivers and transmitter
appropriately be outfitted.[3]

• Upper atmosphere (ionosphere): The GPS satellites are located in space at the iono-
sphere so that the GPS signals must pass through the upper atmosphere (the ionosphere
50-1000km above the surface).consequently of changing the environment and The iono-
sphere density variation, the signals are delayed and deflected.; thus, signals are delayed
more in some places than others.note that the delay also depends on the location dis-
tance of satellites from this surface and how close the satellites are to this surface(where
distance that the signal travels through the ionosphere is least).this issue can be dealt
and error can be minimized by modeling ionosphere characteristics. and GPS monitoring
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stations can calculate and transmit corrections to the satellites, which in turn transmit
these corrections along to receivers.It has been proven that by scientists, removing of this
error completely is impossible but only about three-quarters of the bias can be removed,
however, this error considered as the second largest contributor to the GPS error which
could be categorized in the User Equivalent Range Error.[3]

Figure 4.3: Effect of ionosphere refraction on transmited and recieved signal

• Receiver clock: GPS receivers clocks are different from satellite clocks which are atomic
clocks. GPS receivers are equipped with quartz crystal clocks that are less accurate and
stable than the atomic clock which is used in NAVSTAR satellites.The error which is
caused by receiver clocks can be removed by comparing the arrival time of a signal from
two satellites that whose transmission time are known exactly.

• Satellite orbit: As we know satellites are orbiting around the earth but the shape of
orbit that they are orbiting around is not constant.in order to the GPS receivers calculate
the position they must calculate coordinates relative to the known locations of satellites in
space.but as stated the shape is not constant and a complicated task is knowing the shape
of a satellite orbit as well as their velocities.This task is conducted by GPS Control Segment
with monitoring all times the satellite locations in order to calculate orbit eccentricities
and compiles these deviations in documents called ephemerides.GPS receivers that are
able to process ephemerides receives this compiled document which is transmitted with
GPS signal from satellite and it can compensate for some orbital errors

• Lower Atmosphere: This error is related to the effect of a lower layer of atmosphere on
GPS signal, these lower layers of the atmosphere are the layers which extend t an altitude
of about 50 km from Earth’s surface.these layers are three layers of the atmosphere which
are called troposphere, tropopause, and stratosphere.The effect of the lower atmosphere
on GPS signals is a delay of the transmitted signal to the receiver and consequently
led to adding slightly to the distance which is calculated between satellite and receivers.
Actually, the Signals from satellites close to the horizon due to passing through the most
atmospheres experience the most delay.[3]
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4.1.3 How Gps works:

Up to know we have expressed the short functionality of GPS and its errors and here on will
be mathematically stated how the GPS computes and estimate the position of a user or mobile
device. GPS systems composed of three segments:

1. Space satellite: which composed of 24 satellites constellation.

2. Control segment: -tracking station: continuously monitors the orbital data -Master
station: data processing, updating data and time scale -Up-loading station: transmits the
updated data to satellites

3. User or receiver segments: receivers determining their own position and velocity and
time.

The user segment is made of a wide range of different receivers with different performance
level as already was mentioning of user equivalent range error. The receiver estimates the
position of the user on the basis of the signal transmitted by the satellites the functional-
ities are common to any kind of receivers and can be summarized as :

• Identification of the satellite in view

• Estimation of the distance user-satellite

• Triangulation

4.1.4 Triangulation

The receiver position is the intersection point of the spheres centered on three visible satellites
which are called triangulation.Additional visible satellites improve the triangulation accuracy.
The minimum for 3D estimation is four satellites and for 2D are 3 satellites.the following pictures
show the in-sight satellites for triangulation. As already explained the distance estimation od

(a) triangulation of three satellites in
sapce view.

(b) triangulation of three satellite in 2 di-
mensional view

receiver and satellite is provided by transmitting a signal from the satellite and receiving of it
with delayτ from the receiver. The distance D between transmitter (TX) and receiver (RX)
can be estimated as:

D = c.τ (4.1.1)

Where c is the speed of light (186, 000 miles per second) as already explained and the accuracy
of the measurement depends on the accuracy in the estimation of delay τ as we have stated
the clock synchronous of satellites and receivers.As already expressed it is impossible to have
user clock aligned with the satellite time scale at low cost and complexity, thus the distance
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is affected by error due to the misalignment of the user clock respect to satellite clock.The
measured distance R (with timing error δtu) is referred to measurement with the pseudo-range
error.So that the following formula shows the pseudo-range error :

R = c.τ + c.δt = D + c.δtu (4.1.2)

Regarding stated above equation, just the distance of the satellite from the user is measured
and for being determined the position of receiver the following equation must be established
and solved.

ρk =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 − br (4.1.3)

Then the four unknown variables which are the East, North, and height or(longitude, latitude,
altitude) in addition to time delay (error) must be determined. In order to fully be determined
the all four unknown variables, it is needed to four satellites be the light-of-sight of the receiver
so consequently, the following set of equations will be established:

ρ1 =
√

(xs1 − xu)2 + (ys1 − yu)2 + (zs1 − zu)2 − c.δtu
ρ2 =

√
(xs2 − xu)2 + (ys2 − yu)2 + (zs2 − zu)2 − c.δtu

ρ3 =
√

(xs3 − xu)2 + (ys3 − yu)2 + (zs3 − zu)2 − c.δtu
ρ4 =

√
(xs4 − xu)2 + (ys4 − yu)2 + (zs4 − zu)2 − c.δtu (4.1.4)

In the set equation(4) the ρ1,ρ2,ρ3,ρ4 are the distance of the receiver from the first, second,
third and fourth satellite respectively and xs ,ys,zs,tu represent the position of each satellite on
constellation in fixed reference frame and the signal time error the position with lower case index
of u represent the unknown parameters of receivers.in the equation the distance and position
of each satellite are known but the position of receiver is unknown in addition the time error
is unknown. Note that the above equation estimates the position of receiver inaccurately, as
already explained due to user equivalent range error which the clock’s asynchronous of receiver
and satellite was one of that. So that here will be represented the complete pseudo range with
all parameters considered and established as following:

ρ1 =
√

(xsj − xu)2 + (ysj − yu)2 + (zsj − zu)2 − c.δtu + c.δta + Ej + η (4.1.5)

Where:

• δta is due to the propagation in the ionosphere and troposphere

• Ej is the ephemeris error for the jth satellite

• represents the other errors such as multipath, receiver noise

4.2 Geometrical interpretation of Dilution of Precision (DOP)

In order to be able to present the relative three-dimensional positioning accuracy of GPS re-
ceivers and GPS satellites an indicator is used which is called DOP. In order to dene a geo-
metrical interpretation to this, we use a term called geometrical dilution of precision or GDOP.
The following Figure explains in a simple way the interpretation for this. A close distribution
or poorly spaced satellites gives very poor GDOP value whereas well-distributed satellites yield
good GDOP.The ideal situation which gives the best or in other words lowest GDOP is that the
satellites overhead of each other spaced at the equal horizontal angle.In this case, the satellites
will give the most accurate position estimation, the best GDOP. As you can see the well-spaced

37



(a) Poor spaced satellites
with high GDOP

(b) Well spaced satellites
with low GDOP

satellite respect to receiver reduces the error due to low GDOP figure(a) and vice versa the
poorly spaced satellite causes a high error due to large or high GDOP figure(b).

Up to know we explained the GPS system Principles and the errors which are the effect the
position estimation of GPS system. The errors which are involved in GPS estimation must be
modeled so here we will establish modeling of the user equivalent error which is necessary for
future consideration.

4.3 Mathematical Modeling Of User Equivalent Range Er-
ror:

The pseudo-range error can be modeled as a random variable with the following properties:

• Gaussian with zero mean and variance

• Identically distributed

• Independent

Then this variable with above properties can be modeled as random Gaussian noise with zero-
mean which the variance of this variable is expressed as a following:

σUERE =
√

Σjσj2 (4.3.1)
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4.4 conclusion

As a conclusion of GPS system, we would like to express that the accuracy of estimation depends
on the different factors and the low-cost GPS cannot be very reliable in the crucial scenario for
position estimation which in our case of interest is in the autonomous vehicle that whose real-
time and accurate position is so crucial.So that we will discuss in next chapters about the
accuracy improving with combination of GPS sensor with fusion of different sensor such as
GPS/IMU,Wheel Odometry,etc.. .
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Chapter 5

Sensors and their principles

5.1 Sensors:

The complexity of road traffic is being increased day by day and makes great demands on drivers.
Driver assistance systems reduce the driver’s driving stress and provide and optimize safety
on the road. Therefore nowadays modern driver assistance systems are part of the standard
equipment in almost all new cars in Europe and US. To make feasible implementation of this
equipment in the vehicle, vehicle electronics play a principal role and it is a key factor in all
comfort and safety features. The vehicle electronic which is bases of the control unit in the
vehicle provide the optimal interaction of complex electronic systems that guarantees flawless
function of the vehicle and thus improves traffic safety. The sensors provide and support the
complex and intelligent data communication of the electronic vehicle system between all sensors
In relation to driving safety, which are implement in the vehicle today, wheel speed sensors
and IMU sensors are of particular importance and are used in numerous applications in various
vehicle systems. In driver assistance systems such as ABS, TCS, ESP or ACC, motor control
units use these sensors to determine the wheel speed and acceleration and orientation of the
vehicle. Via bus the wheel speed and IMU information from different driving assistant system
such the Anti-Lock Brake System (ABS) and ESP are also provided to other systems such
(engine management, gearbox and chassis control systems and navigation systems) to provide
the more reliable data provided to driver and for controlling of vehicle more appropriately which
in case of fault functioning cause to crucial problem on the roads. Due to the variety of sensors
applications, wheel speed sensors and IMU sensors provide a direct contribution to driving
dynamics, driving safety, driving comfort and reduced fuel consumption and emissions. Beside
of all necessity of sensor application which is implemented for increasing the driving and road
safety, we would like to point that of their application in an autonomous vehicle and in our case
determination of vehicle position on the roads. This chapter is going to be stated the different
type of sensors which are used in data collection for position estimating which are fused into
Kalman filter for position estimating of the vehicle.[1]

5.1.1 GPS Sensor:

The GPS functionality and the way of this system uses has been stated in the previous chapter
and here just briefly going to be stated. The GPS sensor is a device which determines the position
of a mobile device which could be a robot or which an airplane in world reference frame (the frame
of the origin of the earth with longitude and latitude of zero).this device communicates with the
satellites in sight to evaluate its position.This position as already expressed is evaluated with
triangulation in fixed or in other world word frame. The outputs of a GPS sensor is position in
3D space which are latitude, longitude, and attitude and they can be presented by conversation
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formulas in a Cartesian coordinate system. The indirect measurements of GPS sensor could be
the velocity and orientation(head) of the vehicle which is provided in the local reference frame
or in another word in GPS device frame itself. All GPS satellite use a reference frame in order
to describe it’s and GPS device’s location and within them, the Cartesian Coordinate frame of
reference which is used in GPS/GLONASS called Earth-Centered, Earth-Fixed (ECEF).In order
to be described the location of a GPS user or satellite, three-dimensional XYZ coordinates (in
meters) is used by ECEF.Since in fact the origin of the axis (0,0,0) is located at the mass center
of gravity and with consideration of this fact this frame is called Earth-Centered (determined
through years of tracking satellite trajectories)[2].Also, the word Earth-Fixed point that the
axes are xed with respect to the earth which means they rotate with the earth and there is
no any relative displacement. The Z-axis points the North Pole, and the XY-axis defines the
equatorial plane (Figure 1).

Figure 5.1: Gps Coordinate Fram.

As you see the center of the earth is considered as origin with geographic location of (0,0,0)
and the position of device or user calculated respect to this point .

5.1.2 Inertial Measurement Unit (IMU) Sensor:

Inertial Measurement Unit (IMU) is an electronic device which is able to measure angular veloc-
ities about 3 axes and linear acceleration along 3 axes and then these data are sent to the main
processor.Actually, the IMU sensor is composed of two set of sensors, the acceleration sensor, and
gyroscopic sensor. The accelerometer sensor measures the acceleration, in three directions (along
with local axis of the device) and the gyroscopic sensor measures the angular velocity of these
axes.In the following picture the schematic of the IMU sensor is shown.as you see it has 6 degrees
of freedom which are 3 angular and 3 translation.Thanks to Micro-electro-mechanical system
(MEMS) these six degrees of freedom are achievable which provides translational movement sens-
ing in three directions which are three perpendicular axes, surge(About y axis),heave(About z
axis ),sway(About x axis) and rotational movement about this three perpendicular axes (roll,
pitch, yaw). Since this three-movement and three rotation along the three axes are independent
of each other, such motion is said to have ”six degrees of freedom. Depending on the application
types,a very wide variety of IMUs exists with performance ranging:

• from 0.1◦/s to 0.001◦/s for gyroscope

• from 100 mg to 10 µg for accelerometers
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Figure 5.2: IMU sensor with presentation of Six degrees of freedom .

Both sub sensors of IMU sensors is going to be described for better understanding of its func-
tionalities.

5.1.3 Acceleration sensor:

Accelerator sensor is one of the most popular inertial sensors.That is a dynamic sensor which
had the capability of a wide range of sensing.Accelerometers, as their name implies, are able to
provide the measure of acceleration in single or multi-dimensional, one, two, or three orthogonal
axes that means along the frame axes. They are typically used in one of three modes:

• As an inertial measurement of velocity and position which is used in IMU sensor.

• they can be exploited as a sensor of inclination, tilt, or orientation in two or three dimen-
sions, as referenced from the acceleration of gravity (1g=9.8m/s2);

• As a vibration or impact (shock) sensor such as used in Human Injury Criteria or seat
comforts.

Principles of Operation
Most accelerometers which are used today are Micro-Electro-Mechanical Sensors (MEMS) due
to high accuracy can be expected from these sensors. The basic but fundamental operating
principle of MEMS accelerometer is relied on to the displacement of a small proof mass which is
etched into a silicon surface of an integrated circuit and suspended by a small beam. According
to Newtons second law of motion (F = ma), when an acceleration is applied to the device as a
consequence vehicles maneuvering, a force develops as a result of acceleration which displaces the
mass. The support beams here in this device due to elastic property act as a spring, and the fluid
(usually air) trapped inside the IC due to energy dissipation effect acts as a damper.so that this
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eystem can be analyzed and resulting in a second-order lumped physical system.Consequently
that with measuring the displacement of suspended mass which is obtained with second order
equation, being able to evaluate the acceleration.
Types of Accelerometer:
The principles that can be used are very different, which based on an analog accelerometer can
be built. Two types of accelerometer sensor which are very popular, utilizing capacitive sensing
and the piezoelectric effect for determining or sensing the displacement of the proof mass (the
mass implemented to exploit the newton force) proportional to the applied acceleration.

5.1.4 Capacitive Accelerometer:

A capacitive accelerometer as its name implies exploits capacitive principle in which the output
voltage is dependent on the distance between two planar surfaces.One or two of these surfaces
are charged by electrical current.As we know the capacity of the capacitor is dependent on
the distance of plates .when the gap between two plates is changing the electrical capacity of
the system is changed which can be measured as a voltage output.This method of sensing is
populated for its high accuracy and stability.Capacitive accelerometers typically dissipate less
power and also less prone to noise and variation with temperature.Due to internal feedback
circuity, they can have a larger bandwidth. The following picture shows the principle of the
capacitive acceleration sensor.[Elwenspoek-1993]

(a) Capacitive Acceleromtere one (b) Capacitive Acceleromtere one

Figure 5.3: Capacitive sensor schematic and priciple.

5.1.5 Piezoelectric Accelerometer:

Piezoelectricity is the characteristic of some kind of material and it also can be described as
the electric charge that accumulates in certain solid materials in response to applied mechanical
stress.So that with exploiting this phenomenon we can state the piezo acceleration. As we
know acceleration is directly proportional to force regarding newtons second low so it is natural
to measure the accelerating. Piezoelectricity is the property of certain types of crystal such
as Quartz and when these certain types of crystal are subject to compression or extension,
charges of opposite polarity accumulate on opposite sides of the crystal which is known as the
piezoelectric eect. In a piezoelectric accelerometer, charge which accumulates on the crystal
due to an external force (Acceleration) is translated and amplied into either an output current
or voltage and consequently, this voltage level is proportional to acceleration. Piezoelectric
accelerometers only respond to AC phenomenon such as vibration or shock which means the
subjecting loads must be variable with time.They have a large dynamic range and depending
on their quality can be expensive.[Elwenspoek-1993]
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(a) Piezoelectric crystal (b) Piezoelectric accelerometer principle

Figure 5.4: Piezoelectric accelerometer

5.1.6 Gyroscope Sensor:

A gyroscope is a device that could be mechanical or electronic which has been used for navigation
and measurement of angular velocity.Nowadays Gyroscopes are available that able to measure
angular velocity in one, two or three directions.As already has been stated, the 3-axis gyroscopes
are usually implemented with a 3-axis accelerometer to provide a full 6 degree-of-freedom (DOF)
motion tracking system. In the following picture can be seen the mechanical and electronic type
gyro sensor.

Figure 5.5: Mechanical and MEMS gyroscop

Either the mechanical and electronic gyroscope uses the conservation principle of angular
momentum to measure the angular rate which means in the case of the mechanical type the
spinning wheel will spin with constant angular speed if the torque applied to a direction of
rotation is zero. With exploiting of this principle in the gyroscope the measurement of angular
velocity is possible.

5.1.7 Classical or Mechanical Gyroscope

The classical or mechanical gyroscope is a device that uses the angular momentum conservation
law, which says that if the resultant external torque which is applied to the system, is zero,
the total angular momentum of the system both in direction and magnitude is constant. This
gyroscope consists of a rotor in order to spin about one axis.The journal of the rotor is installed
in inner gimbal and inner gimbal is installed in outer gimbal and the outer gimbal is pivoted
about an axis in its own plane. All mounting axis of rotor and gimbals are perpendicular to
each other.As you can see in classical gyroscope, an additional degree of freedom provided by
each gimbal and consequently they allow the rotor to spin independently, without applying any
external net torque to the gyroscope.So that as a consequence of gyroscopic effect as long as the
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gyroscope is spinning it will maintain a constant orientation. Actually, what makes possible the
measurement of angular velocity in gyroscope device is the result of phenomena of precession
which is occurred when external torques or rotations about a given axis are present in these
devices, orientation can be maintained and measurement of angular velocity can be measured
due to this phenomenon. Let us state the precession phenomenon; usually, precession occurs
when an external torque applied in the direction perpendicular to the spinning axis of an object
which is spinning.As we know in a rotational system the angular momentum vector is along the
spin axis and when net external torque is present this vector will move in the direction of the
applied torque vector.As a result of the applied torque, the spin axis rotates about an axis that
is perpendicular to both the input axis(applied torque axis) and spin axis (called the output
axis). In gyroscope device then this rotation about the output axis can be sensed and be fed
back to apply in the opposite direction torque equal to sensed torque about the input axis for
cancelling out of the precession of gyroscope to maintain its orientation This cancellation can
also be accomplished with two gyroscopes oriented at right angles to one another.[3]

Figure 5.6: Precession phenomenon in Gyroscope.

As already mentioned the main application of the gyroscopic device is measuring the angular
rate or angular velocity.So that for measuring the rotation rate, in regular time interval a torque
is pulsed which is called counteracting torque for precession.Each of this pulse represents a fixed
angular rotation δθ and if be able to count the number pulse in a fixed period of time interval
t which is proportional to the net angel range θ in that period of time, the angular velocity
can be measured which is proportional to the applied counteracting torque . Today classical
or rotary gyroscopes are mainly used in stabilization applications and there cannot be used in
the automotive application. As already stated the classical gyroscope is mechanical and it is
composed of moving parts such as gimbal and rotor and mechanical parts.The presence of these
moving parts means the wearing due to friction and dealing with this problem for minimizing
the wear and chance for jamming in these gyroscopes a number of bearing types have been
developed.Another negative effect of moving parts is a restriction in size of this device which
makes limits how small these gyroscopes can be. So that due to these effects and problems
the rotary gyroscopes are commonly used today in military and naval environments application
which are subject to shock and severe vibration, and where the size of this device is not a critical
issue and for commercially application These units are therefore not available.
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(a) (b)

Figure 5.7: Classical Gyroscope with spin, input and output axis with precession

For understanding the Coriolis acceleration,consider a particle P which is moving in 2D
space with velocity of vr in the radial direction and if in this case a rotation movement applied
to this particle the acceleration applies to it will be equal to 2∗v∗w which is called Coriolis
acceleration. The direction of this acceleration is perpendicular to both velocity direction and
angular velocity axis.

(a) (b)

Figure 5.8: Schematic of the vibratory gyroscope a illustration of Coriolis effect

The principle for the understanding of MEMS Gyroscope is the understanding of physic Cori-
olis force. As we know In a rotating system, every point in this system rotates with the same
rotational velocity. the rotation velocity or in other words the angular velocity as approaching to
the system’s rotational axis, remains the same because is not dependent to distance from rotation
axis,but in turn the speed in the direction perpendicular to the axis of rotation decreases regard-
ing to relation of V elocity=ω∗distance from rotation axis.if particle would travel in straight
line toward or away from of rotation axis while the system is rotating,need and external force
to compensate this deviation from straight line in order to the same relative angular position
(longitude) on the body be maintained,this force can be provide by increasing and decreasing the
lateral speed of particle which is perpendicular to radial velocity.Actually, the act of reduction
or increasing of the velocity means the acceleration and the Coriolis force is this acceleration
with multiplying to the mass of particle whose longitude is going to be maintained. The Coriolis
force is a force which is proportional to both the angular velocity and the radial velocity of the
particle and the relation of this force is FCoriolis=2∗Ω∗Vr After being stated the Coriolis force
concept, let’s explain the structure of vibrating gyroscope, Fig(9).
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Figure 5.9: Schematic of MEMS Gyroscope sensor

This type of gyroscope contain a micro mass which is connected to another housing which
is located outer side of this mass.The connection of this mass to this housing is provided by
a set of spring.This outer housing is connected in turn to another housing which called fixed
circuit by another set of orthogonal springs. As we already stated for exploding the Coriolis
phenomena, the mass is continuously driven sinusoidally along in direction of first set springs.so
that any rotation of the system will produce Coriolis acceleration which is applied to micro
mass. Consequently this force pushes the mass in direction of second orthogonal springs. The
direction this force is dependent to direction of driving mass, if the mass driven away from
rotation axis the force applied to second of spring is in opposite direction when the mass is
driven toward to rotation axis.as it can be seen in following picture for detecting or measuring
the Coriolis force ,some capacitor fingers is used and their capacity is proportional to Coriolis
force. The orientation of these finger are along with housing mass and the rigid structure. When
the Coriolis force pushes the mass, the capacity will be changed as a consequence of this force
and due to the differential capacitance which is detected by these finger the measurement is
provided. For concerning the direction of the force different set of sense finger came closer and
hereby the direction sensing will be possible.

(a) Direction of coriolis Force
(b) Differential Capacitance in two opposit di-
rection

Figure 5.10: Schematic of the vibratory gyroscope a illustration of Coriolis effect

As it is obvious in the figure(10), depends on the mass driven direction the Coriolis force’s
direction is changed and consequently the sensing finger movement has been changed. As has
been observed and explained the gyroscopic and acceleration sensor are independently able to
measure some parameters accelerating and angular velocity independently so that if we put
together these two sensors features we will have the 6 degrees of freedoms inertial measurement
unit sensor which is called IMU sensor figure(2).

47



5.1.8 Odometery Sensor:

Odometry sensor is the essential sensor of mobile robots, which indicates and determines the
travel of robot based on the amount of wheel, has traveled.In another world can be stated that
the odometry is the use of data from the motion sensor to estimate the change in position over
time.Such measurement is often not very accurate due to wheel slippage, surface imperfection,
and modeling errors and also this method is sensitive to errors due to the integration of velocity
measurements over time to give position estimates. Nowadays motion sensor which is known
a speed sensor can be found In driver assistance systems such as ABS, TCS, and ESP, motor
control units use these sensors to determine the wheel speed.For clarifying the subject consider
that robot has a rotary encoder (speed sensor) on its wheel.It drives forward for a time interval
and going to know how far it has traveled. The speed sensor can measure the rotation of the
wheel and with knowing the circumference of the wheel can calculate the traveled distance.If we
want to state mathematically this scenario can be presented in the following relation:

D = 2πRn⇒distance traveled (5.1.1)

In this relation, the n is the number of wheel rotation and R is the wheel radius and D is the
distance traveled by the wheel. If the vehicle is moving in forwarding direction the differential
distance can be presented as the difference between the last distance and the previous distance.

D′ = π2Rn′ ⇒new distance traveled (5.1.2)

∆D = D′ −D ⇒ difference distance traveled of two measuremnet (5.1.3)

I suppose that the robot is turning the left in this condition the right wheel travels more than
the left wheel so that the turning radius for left wheel is smaller than the right one. If DL is
the left wheel travel and the Dr is the Right wheel travel the distance traveled to the center of
the robot is the average of left and right. and the previous distance

Dc =
DL +Dr

2
(5.1.4)

In the following picture it is clearly demonstrated the turing of robot to the left and difference
distance traveled of two wheels.

Figure 5.11: Schematic of turing of robot and wheel distance traveled

If we want to compute the new position state and heading we can demonstrate the following
equation .

x′ = x+Dc ∗ cos(φ) (5.1.5)

y′ = x+Dc ∗ sin(φ) (5.1.6)

φ′ = φ+
Dr −DL

L
(5.1.7)
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In above equation, the new position of the vehicle is calculated with knowledge of vehicle pa-
rameters which is the wheelbase (L), wheel radius and knowing of the previous position of the
vehicle.The parameter shown by prim is a new position and new angle which corresponds to
yaw angle.That is the principle of encoder base of dead recognition and the accuracy is not very
high and with increasing the time the error accumulates.
what is explained and demonstrated above is related to the robot and if we want to demonstrate
for a real vehicle these relationships are so simple and the kinematic and dynamics of the vehicle
must be considered.

5.2 Speed Sensor:

Wheel speed sensor is an electric or electronic device which measures the wheel speed. Design
and function of wheel speed sensors: Wheel speed sensors could be categorized differently based
on the mode of function or principles which are used to measure parameters.[1] Based on the
functioning modes, wheel speed sensors into active and passive sensors are classified: If a sensor
becomes ”active” only when a power supply is connected to it and if it then generates an output
signal, it is called ”active”.
If a sensor works without an additional power supply, then it is called ”passive”. in the following
would be more clarified of the Active and Passive definition.

Inductive Passive Sensor:

Passive inductive sensors do not need a separate power supply from the control unit. A type of
this sensors is the Variable reluctant speed sensor.

Signal Processing:

Actually, in this type of sensor by analyzing the output signal from the sensor the speed can
be measured.In the following picture can be seen the Inductive passive sensor with the signal
output from this sensor.

Figure 5.12: Inductive speed sensor with it’s output signal

Variable Reluctance Sensors:

As already categorized, this sensor is a type of passive sensor since it does not need external
energy supply source for operation. Variable Reluctance (VR) sensors as its name say, works
based on magnetic flux variable.this sensor actually converts mechanical motion to an electric
signal without direct contacts with a regularly moving device which must be measured its
speed.This device is positioned near a gear, shaft, rotor, or other regularly moving the device.The
output signal which is the consequence of flux variation can be fed by an electronic circuit.The
sensor is quite accurate and can provide a reliable, simple and inexpensive transducer for highly
complex control systems. Variable Reluctance sensor is composed of a coil of wire which is
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wound around a magnetic material usually is cylindrical and ferrous material and is referred
to as a pole piece.To create a magnetic field through the coil and core material a permanent
magnet is usually used which is attached to behind of the pole piece.This magnetic field which
is created by permanent magnet can be extended till to tip of the pole piece which also known
as the sensor tip.

Figure 5.13: complate assembly of Reluctance variable sensor and it’s output

when the toothed wheel such as gear teeth or other rotating parts pass by sensor tip, the
magnetic field will be interrupted.consequently, the magnetic flux which generated by the per-
manent magnet will varies which is passing through to the coil and finally due to time variation
of this flux a voltage will be induced in the coil. actually, the flux variation is dependent to the
variation of the gap between the rotation part and sensor tip.when the gap between sensor tip
and movable part is increased the magnetic flux will be increased and vice versa when the gap
has decreased the flux consequently will be decreased.so that the motion of the target feature
results in a time-varying flux that induces a proportional voltage in the coil. for measuring
the speed of the wheel or another rotating target The amplitude and frequency of the induced
voltage must be processed which they are proportional to speed. This voltage is fed as a signal
to an electronic circuit for being processed and this circuit sends this signal in the desired format
as output. these type of sensors have a wide industrial application such as measurement of gear
tooth’s speed and turbine speed measurement in a jet engine.
Advantages

• The Variable reluctance sensors due to not requirement of external power sources are
passive sensors.

• these sensors composed of very inexpensive elements and parts which make these types of
senor very low-cost.

• They are light weight, robust and can work in harsh (high temperature and high vibration)
environments

Disadvantages

• Target material must be ferrous only.

• It is difficult to design a circuit suitable for low speed as these sensor measures the speed
with the magnitude of the induced voltage.So that there is a lower limit for these sensor
for measuring the speed.

• Although sensors themselves are cheap but the requirement for additional electronic cir-
cuits for processing low ampltude signal causes of cost offset.

The second type of sensor in this category is the Active sensor.As already in the definition of
this category stated the active sensor is a type of sensor that needs the external power supply
for operating.The Method which active sensor is operating is like proximity sensor with an
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electronic circuit that integrated to the sensor and which is supplied by a voltage from ABS
control unit.Here in this sensor a multi-polar ring rather than a simple pulse wheel is used
which is positioned in a sealing ring of the wheel bearing. Magnets with alternating poles are
installed in the sealing ring.The magneto-resistors integrated into the sensor electronics detect a
rotating magnetic field can be detected by the magneto-resistors in the sensor electronics when
the multipolar ring rotates. The electronics system in this sensor converts the sinusoidal signal
of the sensor into a digital signal (Fig.14).The sensor is connected to control unit with a two-wire
electronic cable which transmits the signal output of the sensor to control unit in the form of a
signal which is used pulse with modulation.These two wires are one as a signal transmitter and
the other ones are used as an earth for the sensor.In addition to magneto-resistor sensor elements,
Hall effect sensors are also used today permit wider air gaps and react to the smallest changes
in the magnetic field.the operation of this sensor wheel is explained in following.If instead of the
multipolar ring a steel pulse wheel is installed in the vehicle then a magnet must be installed on
the sensor element.the consequence of pulse wheel rotating is changed in the magnetic field in
the sensor.Signal processing and the IC are the same as in the case of magneto-resistive sensors.

Figure 5.14: Proximity Active sensor with the output signal from this sensor.

5.2.1 Hall Effect Sensors:

Hall Effect sensor is a type of active speed sensor which uses the hall effect principle

Figure 5.15: Hall Effect Phenomena and Hall Effect Voltage.
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Hall Effect sensor as briefly stated in the previous section uses the magnet element on the
sensor side and simple ferrous pulse wheel in the sealed part of the wheel.Hall Effect speed
sensor actually is a transducer that its output varies with changing the magnetic field. As in
variable reluctance sensors, the induced flux as a consequence of target movement is detected.
But, a Hall effect transducer is sensitive only to the magnitude of flux; it does not sense its rate
of change.The big disadvantage of Variable reluctance sensor was the disability of measuring of
low speed but Hall Effect sensor smartly overcomes this problem of VR sensor.Hall Effect speed
sensors are able to detect targets moving at very slow speeds, or even can detect the presence
or absence of non-moving targets. It is also able to sense zero speed and the other feature of
this sensor is that the target material can be either ferrous or magnetic.
Advantages

• These sensors are able to operate in wide range of temperature from −40◦ to 150◦

• The most Hall Effect sensor provides the output which is comparable with digital logic
and this characteristic of this sensor makes them be highly immune from-electromagnetic
interference induced malfunction and failures.

• Signal processing electronic system is integrated to sensor transducer.

5.2.2 Eddy Current Speed Sensor:

Eddy current sensor is a non-contact device which is able to measure the position and change
of any conductive target with high precision.This sensor also called inductive sensor and due
to high precision make this sensor indispensable in todays modern industrial operation in dirty
environments. Eddy current sensors operate with a magnetic field. Eddy Currents are the
induced currents which are closed loops and circulating in the plane which is perpendicular to
magnetic flux. An alternating current applied and fed to the coil winding which consequently
induces a primary alternating magnetic field. This Primary magnetic field causes inducing eddy
currents in the electrically conducting material (in the vicinity of the coil). Eddy currents which
are induced by the primary magnetic field, in turn, induces secondary magnetic field which
resists the field being generated by the coil winding in opposite direction of the primary induced
magnetic field. The interaction of the magnetic field is dependent on the distance between
conductive material and winding coil. Presence or absence or in another word the variation of
the gap between conductive material and winding coil alters the secondary field and in turn,
the coil impedance. As the distance changes the electronic system can detect this variation and
produce the output voltage which is proportional to the gap between the winding coil and the
conductive material.

Figure 5.16: A schematic of eddy current senso.
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Eddy Current principle like the variable reluctance or Hall Effect principles is exploited in
speed sensors. However, they need a preamplifier or a signal conditioner to operate. When
a target is present or the distance changed between the probe coil and conductive material
eddy currents are formed causing a decrease in signal amplitude.The preamplifier demodulates
the signal, detects the changes in voltage and produces an output whose frequency is directly
proportional to the target speed, the number of blades, teeth, etc. Eddy current sensors are the
position measuring devices which their output is dependent on distance and their output define
the gap between the winding coil and conductive target.
Advantages:

• near zero speed response,

• no magnetic drag

• Relatively large air gaps

• Ability to sense non-ferrous metals as well as ferrous metals.
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Chapter 6

Modeling and derivation of the
vehicle dynamics equations

6.1 System equations or vehicle dynamics model

As already presented in the previous chapter, the Kalman filter is used to improve GPS mea-
sured(estimated) position of the vehicle more precisely and accurately.Therefore, we need the
dynamic model of vehicle as much as possible comprehensive to incorporate more vehicle pa-
rameters for improving the estimation of vehicle’s position on the road that is more reliable,
especially when satellite GPS signal is not available such as underground, tunnel or is subjected
to different phenomena which have been demonstrated in GPS chapter. Here we will consider
the vehicle is moving in the plane or in other words in 2D space so we just consider all dynamic
parameters related to 2D dynamics of the vehicle, such as yaw rate, yaw angle, movement in
x, y direction, velocity, and acceleration.The vehicle dynamics (Kinematics) model considered,
is moving in constant turn rate and constant velocity magnitude model(CTRV). So the first
step is to derive and express the dynamic or systems equation related to state variables. here
we again rewrite the state transition (system matrix) and observation models.

xk = g(xk−1, uk−1) + wk−1 (6.1.1)

zk = h(xk) + vk (6.1.2)

By carefully looking at these equations, it can be seen that these equations are exactly the eqau-
tions (3.3.1) and (3.3.2) which are presented in the chapter 3, Where wk and vk are the process
and measurement noises respectively as already described in the previous chapter (Kalman Fil-
ter chapter) in which both are supposed to be zero mean Multivariate Gaussian noises with
covariance matrix Q and R respectively. Function g which presents the dynamics of the system
can be used to compute the predicted state from the previous estimate(at previous filter step)
and similarly the function h which links the state variables to measurement variables, can be
used to compute the predicted measurement from the predicted state or in other word from
prior estimate. However, g and h due to nonlinearity cannot be applied to the covariance oper-
ation directly. Instead, a matrics of partial derivatives (the Jacobian matrix) is computed. As
already has been presented at each time step, the Jacobian is computed with current predicted
states.These matrices can be used in the Kalman filter equations.Infact, This process essentially
linearizes the non-linear function around the current estimate. The system equation or dynamic
matrix and state variable are drived as follows: As we know the system’s equations are function
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of the control input, the state variables and time:

dx

dt
= f(x, t, u) (6.1.3)

xk+1 = g(xk, t, uk) (6.1.4)

with assumption of control input u=0 and integration of this equation we will have: with
considering of CTRV-car model as following: the state variables can be considered as x state

(a) constant turn rate and constant veloc-
ity car model with presenting of current
and previuse position of vehicle

(b) constant turn rate and constant ve-
locity car model

vectoer:

xk+1 = xk +

∫ tk+1

tk


Ẋ(t)

Ẏ (t)

ψ̇(t)
v̇(t)

ψ̈(t)

 dt (6.1.5)
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if it is assumed that, yaw rate and velocity are constant ψ̈(t)=v̇(t)=0 then we will have:

xk+1 = xk +


∫ tk+1

tk
v(t).cos(ψ(t))dt∫ tk+1

tk
v(t).sin(ψ(t))dt

0

ψ̇k∆(t)
0

 (6.1.6)

(6.1.7)

(6.1.8)

xk+1 = xk +


v
ψ̇

(sin(ψk + ψ̇k∆t)− sin(ψk)
v
ψ̇

(−cos(ψk + ψ̇k∆t)− sin(ψk)

0

ψ̇k∆(t)
0

 (6.1.9)

and finally the states at the time step xk+1 = g will be as following matrix:

g =


X + v

ψ. (−sin(ψ) + sin(Tψ. + ψ))

Y + v
ψ. (−cos(ψ) + cos(Tψ. + ψ))

Tψ. + ψ
v
ψ.

 (6.1.10)

Since matrix g is the matrix which directly relates to the vehicle dynamics and links the estimated
state variable of previous time step(filter step) to the current time step. It obviousely consists
of a set of nonlinear equations and consequently the state varibale is expressed as the following
vector:

x =


X
Y
ψ
v
ψ.

 =


PositionX
PositionY
Heading
V elocity
Y awRate

 (6.1.11)

where the vehicle speed (v) in heading direction (ψ) and a yaw rate sensor (ψ̇) which are
provided by velocity sensor which all have to be fused with the position (x , y) from a GPS
sensor after being converted from the latitutde and longitude, together provide the information
of mesurements. Here again we notice that the system is nonlinear and it’s covariance not
directly computable,so that it is needed to be linearised about state at previous time step. So,
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the jacobian of dynamic matrix with respect to state variables will be::

Jg =
∂g

∂x
=



∂g11
∂X

∂g12
∂Y

∂g13
∂ψ

∂g14
∂v

∂g15
∂ψ̇

∂g21
∂X

∂g22
∂Y

∂g23
∂ψ

∂g24
∂v

∂g25
∂ψ̇

∂g31
∂X

∂g32
∂Y

∂g33
∂ψ

∂g34
∂v

∂g35
∂ψ̇

∂g41
∂X

∂g42
∂Y

∂g43
∂ψ

∂g44
∂v

∂g45
∂ψ̇

∂g51
∂X

∂g52
∂Y

∂g53
∂ψ

∂g54
∂v

∂g55
∂ψ̇


(6.1.12)

=



1 0 v
ψ̇

(−cos(ψ) + cos(T ψ̇ + ψ)) 1
ψ̇

(−sin(ψ) + sin(T ψ̇ + ψ)) Tv
ψ̇
cos(T ψ̇ + ψ)− v

ψ̇2
(−sin(ψ) + sin(T ψ̇ + ψ))

0 1 v
ψ̇

(−sin(ψ) + sin(T ψ̇ + ψ)) 1
ψ̇

(cos(ψ)− cos(T ψ̇ + ψ)) Tv
ψ̇
cos(T ψ̇ + ψ)− v

ψ̇2
(cos(ψ)− sin(T ψ̇ + ψ))

0 0 1 0 T

0 0 0 1 0

0 0 0 0 1


(6.1.13)

The jacobian matrix must be computed at every time step. Now the initial state, initial state
covariance(uncertainty P0) and the noise covariance matrix(Q) must be defined :

6.1.1 Initial States Uncertainty P0

As already in detail has been illustraited the variables are uncorrelated to each other which
means that the covariance matrix is diagonal so it will be presented as following:

P0 =



1000 0 0 0 0

0 1000 0 0 0

0 0 1000 0 0

0 0 0 1000 0

0 0 0 0 1000


(6.1.14)

The states uncertainty model, simulates or models the disturbances which excite the linear
system .Conceptually, it estimates how bad things can get when the system is run open loop
for a given period of time[1].Consequently, we will use this information to be applied to our
linearised model. Thus, if we suppose that the following parameters: Maximum acceleration
a = 8.8ms2 and maximum turn rate acceleration ψ̈ = 1.0 rads2 and assume that they are forcing the
vehicle, and then after first integrating of acceleration with respect to time to obtain velocity,
and the same procedure to obtain the yaw rate and subsequently with double integration of the
acceleration and turn rate acceleration respectively with respect the to time displacement and
yaw angle, velocity and turn rate uncertainty will be presented with the following:

Gpsuncertainty =
1

2
(8.8).∆t2

Headinguncertainty = 0.1.∆t

V elocityuncertainty = 8.8.∆t

Y awuncertainty = 1.0.∆t
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so the the process noise covariance matrix as already explained will be diagonal with the values
equal to squared standard deviation and consequently the the covariance process noise matrix
will be as following:

Q =



(Gpsuncertainty)2 0 0 0 0

0 (Gpsuncertainty)2 0 0 0

0 0 (Headinguncertainty)2 0 0

0 0 0 (V elocityuncertainty)2 0

0 0 0 0 (Y awuncertainty)2


(6.1.15)

Measurement Function definition : The H matrix links the measured parameters to state vari-
ables and depends on the desired output the H matrix is defined based upon.If assuming that
the outputs are vehicle position(x,y) ,vehicle speed(v) and yaw rate (ψ̇) we will have:

Measuredparameters =


x

y

v

ψ̇

 (6.1.16)

and Measurment matrix H will be :

H =



x 0 0 0 0

0 y 0 0 0

0 0 0 0 0

0 0 0 v 0

0 0 0 0 ψ̇


(6.1.17)

If the same procedure as the one applied to state-transition function is applied to the H matrix,
we will have that jacopian of maesurement function with respect to sate variables, JH will be
as following :

JH =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


(6.1.18)

This matrix represents that when all measurements are available except GPS measurements
due to low measurements frequency with respect to IMU sensor,the corresponding values in JH
matrix must be set to zero.

6.1.2 Measurement Noise Covariance R

The R matrix is the covariance of measurement noise that is a consequence of or depends on
the sensor’s characteristic.It is not important that, uncertainty is absolutely correct but note
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that it must be relatively consistent across the all model. Usually more accurate sensors have
less measurement error and inversely, less accurate sensors have high value of measurement
error.Thus, the measurement covariance matrix R can be presented as following:

Gpsvariance = 6.0standard deviation of GPS measurement

V elocityvariance = 1standard deviation of the speed measurement

Y awratevariance = 0.1standarddeviation of the yaw rate measurement

(6.1.19)

and measurement nois covariance is :

R =


Gpsvariance

2 0 0 0 0

0 Gpsvariance
2 0 0 0

0 0 0 V elocityvariance
2 0

0 0 0 0 Y awratevariance
2

 (6.1.20)

And finally the identity matrix must be efined as an initial value input, which is:

I =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(6.1.21)

Now after defining all the input data, we are able to start our Kalman filter and finally evaluate
the test result of Kalman filter compared to the data obtained by Gps alone. notice that at
the first all data must be converted and compatible with each other from the unit point of
view. They are vehicle’s position coordinate, velocity, yaw and yaw rate which the units are
meter, metersecond ,radiant, radiantsecond respectively.

6.1.3 Gps Data Preparing:

As already explained in previous chapter the Global Positioning System (GPS) provides the
data in 3D dimensional as longitude ,latitude, altitude and in 2D plane as longitude and latitude
which are not neither desired for us nor can be fused to Kalman Filter too.So these data must be
converted (prepared) to be suitable for fusing to Kalman filter. Here we are going to illustrate
the GPS data conversion and plotting of these data in 2D plan which could be compared with
output data from Kalman filter in next.

• Longitude: Longitude (λ) is a geographic coordinate that ascertains the east-west posi-
tion of a point on the surface of Earth. It is an angular measurement. Meridians (lines
that move from the North Pole to the South Pole) link points with the same longitude. By
agreement, one of these, the Prime Meridian, which goes through the Royal Observatory,
Greenwich, England, was assigned the position of zero degrees longitude.

• latitude: latitude (Φ) is a geographic coordinate that determines the north-south position
of a point on the on the surface of Earth. Latitude is an angle (in the following picture is
shown) which ranges from 0◦ at the Equator to 90◦ (North or South) at the poles. Lines
of constant latitude, or parallels, go Eastwest as circles parallel to the equator. Latitude
together with longitude is used to determine the precise location of features on the surface
of the Earth.
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Figure 6.2: The definition of latitude (Φ) and longitude (λ) on an Earth.

After defining the latitude and longitude, the coordinate or position of our vehicle will be defined
by simply conversion; thanks to algebra. Subsequently, we will have the following conversation
formula which is available in pyhton and other programming language package so we will have:

EASTING−NORTHING = utm.from− latlon(Gps− lat[i], Gps− lon[i]) (6.1.22)

wherein the presented relation which is provided by the UTM package in Python the East
means the position of the vehicle in X axis and North means the position of the vehicle on Y
axis in meter and i represents the current time measurement. Hence, the position of the vehicle
in real time is converted to cartesian coordinate in the 2D plane where the real-time data are
provided by GPS sensor. Notice that Positive latitude is above the equator (N), and negative
latitude is below the equator (S). Positive longitude is east of the prime meridian, while negative
longitude is west of the prime meridian.We plot the data provided by GPS sensor we will have
the following figure which shows the vehicle path from starting point to stop piont where vehicle
stop:

Figure 6.3: The vehcle position in cartesian coordinate(East-North) with highlited of start and
stop vehicle point
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6.1.4 Quaternion angle conversion:

As we know from rigid body dynamics, every rigid body can be transformed to any orientation
with 3 consecutive angles which these three angles called Euler(Yaw, Pitch, Roll) angles. These
angles also are required to present instantly the orientation of vehicle where the gyroscopic sensor
in the IMU unit exploits this principle for vehicle orientation but due to the problem of gimbal
lock in gyroscope which is responsible for rigid body rotation measurement, the Quaternion
angles are used. The measured angles in the (IMU sensor) are the quaternion angle in order
to overcome the problem of gimbals lock and these angles must be presented again in the form
of Euler angle to be fused in Kalman filter. Following figure(4) represents the gimbal lock’s
phenomena in a gyroscopic sensor.

Figure 6.4: Gimbal lock incident in Gyroscop

Again thanks to algebra tools in Python Package, we are able to transform easily these two
sets of angles to each other. Thus we will have the following relation for converting:
q = [xsense orientationX [i], xsense orientationY [i], xsense orientationZ [i], xsense orientation−W [i]]
Euler angle = tf.transformations.euler from quaternion(q)
In above illustrated relations the q represents the quaternion rotation vector in (4D space ) at
current time where elements in this vector presents the roation about axes which are x, y, z, w
respectively, the second relation represents the Euler angle after being converted to the quater-
nion angles at curent time which is fused in real time to Kalman filter. In order to initiate the
Kalman filter after being provided all data compatible with each other in term of dimensional
and definition initial uncertainty of process and measurement noise, the initial state of variables
must be provided. So at this step, we are going to determine these states as follows.

6.1.5 Initial states definition:

The initial state must be determined with consideration of all sensor information in starting
time or in other word the data from starting point of the vehicle, including all data from
position(x,y), velocity(v), heading(ψ)and yaw rate(ψ̇). So the initial state will be stated as the
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following vector:

initial state(state at (t0)) =



PositionX[t0]

PositionY [t0]

Heading[t0]

V elocity[t0]

Y awRate[t0]


(6.1.23)

6.2 Starting the Kalman filter and result

As Kalman Filter was already illustrated mathematically and theoretical with all consideration,
here we are going to initiate practically the Kalman filter over the vehicle dynamics equations
with following of all principles behind this filter with respect to prior and posterior steps.The
stage after being defined all the initial conditions and prerequisite parameters which are neces-
sary for Kalman filter simulation, is prediction of the prior state have illustrated the relationship
with other parameters in the previous chapter(refer to chater 3).
Therefore, it will be again represented as following:

x−k = Ax−k−1 +Buk (6.2.1)

P−k = JAPk−1JA
T +Q (6.2.2)

The equstions (6.2.1) and (6.2.2) are exactly similar to the equations(3.3.21) and (3.3.22) re-
spectively in which, A = g, B = 0 and x−k is prior state predicted at current filter step and in the
second relation, P−k is prior predicted states Covariance matrix and JA is the jacobean of system
matrix and Q is the covariance matrix of process noise. As mentioned earlier, this stage is the
first step of Kalman filter running, the state covariance matrix, states, and process covariance
matrix must be as initial values in above equations. Notice that all data available to Kalman
filter are provided by sensors in the real time. the second stage of Kalman filter processing is
the Kalman gain computation according to the set equation of (3.3.24),(3.3.25) and (3.3.26) are
rewritten here as the following:

Kk = P−k H
T (HP−k H

T +R)−1 (6.2.3)

x̂k = x̂−k +K(zk −Hx̂−) (6.2.4)

Pk = (I −KkH)P−k (6.2.5)

Note that these equations (6.2.3).(6.2.4) and (6.2.5) are exactly equal to the equations(3.3.24),(3.3.25)
and (3.3.26) respectively,wherein set of equations Kk is the Kalman gain matrix in current fil-
ter step, H is the measurement matrix,R is the measurement noise covariance matrix, x̂k is
the posterior state (updated states) variables, zk is the measurement vector variables including
the noise . As is obvious in these set equations, after prior states at current filter step pre-
dicted, the Kalman gain must be computed by Equation(6.2.3) but take in to account the H
matrix which is representative of measurement matrix,will not remain same in each filter step
dut to difference measurement frequency of GPS sensor and IMU sensor which are, in this case,
GpsFrequency = 1HZ,IMUFrequency = 400HZ. The different measurement frequency means
that the number of measurement of two sensors are not same at unit of time.In this case the
IMU sensor measures 400 time more than GPS sensor per time unit. At the end of each filter
step, the error covariance matrices will be updated (Pk) and together with the updated state
x̂k applied to prior prediction equation for next filter step until the filter stops.
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Figure 6.5: The Extended Kalman Filter flow diagram

Here again the following diagram (Ekf flow-chart), fig(6.5) clearly presents the Extended
Kalman stages, as you see the flow of best estimation is started with initial conditions and goes
ahead for computing the prior estimation, Kalman gain computation and finally with receiving
of data from sensors, it will be updated. Consequently, This updated data will be exploited or
fused as an input data to prdeiction equation for next filter step.

6.2.1 Results

After simulating and compiling the Kalman filter as presented in the previous flow-chart for
entire steps for all data, the results are presented as follows.
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Uncertainty(states covariances)

Figure 6.6: The values of uncertainty for each state at each filter step.

Figure(6.6) illustrates the state variables covariance values at each filter step and variation of
these values for the entire filter running steps. As it is observed and what is desirable for us,
the values of all the state variables after certain filter step converge to constant values, and as
a consequence of convergence, the results or estimated values will be more reliable. Also this
plot states that, the covariances which are representing the uncertainty of estimations, converge
to a minimum value as the filter step goes forward, which in turn implies more accuracy of the
estimation by EKF in higher filter steps.
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Kalman Gains

Figure 6.7: The values of Kalman Gain for each state at each filter step

This figure(6.7) demonstrates that the Kalman gain values of the state variables at each filter
steps and variation of them for the entire filter steps. The trend of gain values variation are
consistent with what already demonstrated in Fig (6.6) is the low value of uncertainty in the
prediction means the low values of Kalman gain. Also, it shows that when the Kalman gain
values are higher, means that the predicted states are less reliable and vice versa. As you observe
the higher filter steps, the lower Kalman gain and the estimated values are more reliable which
is consistent with previous figure (6.6) demonstration. Finally, The lower covariance values of
estimated and predicted states lead to the lower values of Kalman gain which is applied to
measured value or in other word to residual.
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States estimation

Figure 6.8: The values of state estimation at each filter step

This set of figures Fig.(6.8) represents the updated estimation or the best estimation of states
in each filter step and comparison of them with the measured sensor values itself. The aim is to
compare the results of EKF with sensor measured values for all state variables and to evaluate
the Extended Kalman Filter accuracy in the state estimation.
For the position state values, just comparison has been carried out by previous values and since
these two states are our desired states, they will be demonstrated later on, separately. For the
rest of state variables, comparison has carried out with sensors measured values itself (GPS
measured values for the yaw angle and velocity, while for yaw rate the comparison has been
carried out with IMU sensor measured values). As clearly illustrated for the case of yaw angle
(course)the difference between sensor’s meaurement and estimated values are notable which are
emerging the weakness of course evaluation by GPS sensor. Consequentely, as mentioned in
the section of dynamics equation derivation, the position of vehicle is directly related to vehicle
attitude (heading) and poor evaluation of vehicle heading, leads to inaccurate vehicle positioning
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determination on the road. For the two other state variable, if the sensor measurement values
assumed as reference values, the accuracy of estimation is quite considerable and will be observed
that both velocity and yaw rate estimation are consistent with sensors measured values.

GPS Measured values vs Estimated values

Figure 6.9: The values of estimated states for each state at each filter step vs Gps measured
values

After being explained all parameters, such as Kalman gain, uncertainty,etc .., which individually
affect the state estimation of EKF, and the accuracy and convergence of Extended Kalman
Filter estimation while the filter goes forward, we will arrive to the point where the filter’s
outputs, which are postion state variables must be compared to GPS sensor self-estimated
position values. In the “Global Positioning System” Chapter, we explained the weakness of GPS
estimated vehicle position, the factors that influence the accuracy of GPS measurements, which
motivated us to implement EKF. So that, the EKF filter’s outputs,which in our case of interest
are the vehicle positions being compared, to evaluate the inaccuracy of GPS measurements and
effectiveness of Extended Kalman Filter. Consequently, the figure(6.9) with entire filter step
running established, which shows the vehicle traveled path from starting to stoping point.In this
figure,it is evident, how much the GPS values are different from the Kalman filter estimated
values.

Conclusion

As a conclusion, it would be claimed that the EKF is a adequate and powerful tool for improv-
ing the vehicle positioning estimation, especially for the Autonomous vehicle and it is able to
provide more accurate position estimation than the GPS sensors itself, on the road and under-
ground situation (EUER). It has been clarified, the strength of EKF dealing with nonlinearity
of vehicle dynamic equations referring to results and recursive operation of this amzing tool for
the identifying and prediction of the states even if the reliable or noisy data from GPS sensor
are not available.
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Chapter 7

Data Fusion and Simulation

7.1 Introduction

It was mentioned in previous chapters that, each sensor has its own strengths and weakness
from different point of views, such as cost or accuracy, etc, and they couldn’t provide a suitable
performance without any negative effect on the cost. In case of Autonomous vehicle positioning,
we need as much accurate positioning data without too much influence on the cost of devices.
For instance, a high-performance differential global positioning system receiver with real-time
kinematics is able to provide absolute localization for an autonomous vehicle but it increases the
cost too much which is not suitable for the autonomous car. However, this sensor is subjected to
different effects as mentioned in the previous chapter, such as multipath effect and also not being
able to fulfill the precision error correction in the wide range of driving areas or the Odometry
sensor typically suffers from accumulate error which leads to highly error position estimation on
the long vehicle traveled path. hence, has been decided to implement data fusion technique, by
considering both cost and performance.
Let’s explain what is literally the definition of data fusion. Data fusion is the process of integrat-
ing multiple data sources to produce more consistent, accurate, and useful information than that
provided by any individual data source.
In this work, the fusion method in which the information data are fused is Extended Kalman
Filter(EKF). Already, its principle and the mathematics operation behind of this technique
in detailed accomplished. In this chapter, different contribution of sensor data with different
techniques of EKF in the ROS, are considered and finally, the experimental results will be dis-
cussed. In the first contribution, we consider such a case, which was already described in the
chapter of vehicle modeling, where the procedures of EKF method was established step by step
with the Python script. Actually, in that case, two sets of data sources from IMU and GPS
sensors fused into Extended Kalman filter. However, there was not fusion possibility of more
data sources with the same variable to EKF and that was the biggest weakness of EKF followed
by just Python script.
The second case is no more being implemented in Python script’s EKF, but the Robot position Ekf

provided package of ROS will be implemented and finllay in the third case the Robot localization Ekf

package is implemented which is commpletely different from the Robot position Ekf.
lets before defining the simulation and data fusion in ROS, give an introduction of this interesting
enviornment (ROS).
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7.2 Robot Operating System (ROS)

What is ROS? Actually, there is not a specific definition of a ROS and all the definition
could be found are almost correct. In one definition: The Robot Operating System (ROS) is
a flexible framework for writing robot software. It has the collection of many useful packages
and libraries to provide a tool which simplifies the task the task of creating complex and robust
robot behavior across a wide variety of robotic platforms.(www.ros.org) Why? As it is obvious,
creating a robot software which is truly robust and general-purpose so sophisticated.From the
robots perspective, problems that seem trivial to humans often vary widely between instances
of tasks and environments. Dealing with these variations is so hard that no single individual,
laboratory, or institution can hope to do it on their own[1]

In another definition could be defined as the following:
What is ROS? ROS (Robot Operating System) is a BSD (Berkeley System Distribution)-
licensed system for controlling robotic components from a PC. A ROS system consists of many
independent nodes that are able to communicate with each other using a publish/subscribe
messaging model. Keep in mind that just nodes are able to communicate.For instance, consider
a particular sensor driver might be implemented as a node, which publishes sensor data in
the form of messages which is streaming from. In order to use this message from that sensor
node, these messages must be subscribed by other nodes, so that it could be (consumed) by any
number of other nodes, including filters, loggers, and also higher-level systems such as guidance,
pathfinding, etc.
Why ROS? What makes the ROS flexible is that nodes in ROS do not have to be on the
same system (multiple computers) or even of the same architecture. It means that different
system with different architecture is able to communicate to each other in ROS environment.
For example, you could have an Arduino publishing message, a laptop subscribing to them, and
an Android phone driving motor, and what makes the ROS adoptable is that it is maintained
by many people thanks to being open source.
Here we are going to describe some general concepts of ROS which help to capture the technical
concepts easily.

7.2.1 General Concepts

Nodes: Node is not something more than an executable file .it uses the ROS to be able to
communicate to other Nodes. It is a necessary element for system parts communication.
Topics: Topics actually are names which can be dedicated to messaging names.In fact, Nodes
can publish messages to a topic as well as subscribe to a topic to receive messages.Nodes are not
aware of who they are communicating with instead, they are interstate into data with relevant
topics.it means they are concerning of topic names, not Node names.
Message: we already stated the Node and topic definitions and said that the node has the task
of publishing and subscribing message to the topic or topics.In order to the Nodes communicate
with each other they need information which they publish or subscribe to topics in form of
message.Actually, a message is a simple data structure, comprising typed fields. Standard
primitive types (integer, floating point, Boolean, etc.) are supported, as are arrays of primitive
types. Messages can include arbitrarily nested structures and arrays.
After the definition of some general concepts Lets look at the ROS system from a very high-level
view. Actually, ROS starts with ROS Master, which means without a master, the ROS will not
be compiled.
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What is Master in ROS?
The ROS Master as the name implies is the master of all other nodes in the ROS system.Actually,
naming and registration services provided by ROS master to the rest of the nodes in the ROS
system. In ROS system different nodes must publish and subscribe different topic and tracking of
these publishers and subscribers to the topics as well as the services are provide by ROS master.In
fact, the Master has the role to enable individual ROS nodes to locate one another.Actually,
they are able to communicate with each other peer-to-peer, once they have located each other
by ROS master. ROS starts with the ROS Master.
The Master in ROS has the task of registration services and naming of all the nodes in the ROS
system. Actually, the Master allows all other ROS pieces of software (Nodes) to nd and talk to
each other by locating of each other.To clarify its task considers the following scenario:
Lets consider that for instance, we have two Nodes; a Camera node and a Image viewer Node.As
it is obvious, a typical sequence of events would start with Camera notifying the master that it
wants to publish images on the topic images: like the following scenario:

Figure 7.1: Messages publication of a Node(Camera) to ROS Master in ROS.

Now, Camera publishes images to the images topic, but nobody is subscribing to that topic
yet so no data is actually sent. Now,Image viewer node wants to subscribe to the topicimages
to see if there’s maybe some images there:

Figure 7.2: Messages subcribtion of a Node(Image viewer) from ROS Master in ROS.

Now that the images topic has both a publisher and a subscriber, the master node notifies
Camera and Image viewer about each others existence so that they can start transferring images
to one another:
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Figure 7.3: Publisher and Subcriber Nods Communication.

Lets now consider a more comprehensive situation with three nodes as a the following sce-
nario: In this case, we have three nodes and these three nodes would communicate to each
other. So here again as you see the Master plays a significant role allowing the nodes to be able
to communicate by naming and registration. In fact, nodes do this task with publishing and
subscribing as already in the first example accomplished.

Figure 7.4: Nodes Registration by ROS master and Nodes communication in ROS

Now consider that like the first example we have a camera on our robot which can send data
to camera node which subscribes the data from the camera. Our motivation is to be able to see
the image both in robot and on another laptop, So that we will have an image processing Node
on the robot that processes the image data, and an Image Display Node that displays image on
the screen. In order to do that all nodes must be registered by MASTER. Actually, the Master
tracks the location of nodes for communication. Here the laptop is considered as a node.[2]
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Figure 7.5: External system Registration by ROS master as a Node in ROS

In registering with the ROS Master, the Camera Node states what type of topic is going
to be published and informs the ROS Master that it will publish a Topic called /image data.
The other Nodes which are the clients of this topics register that they are subscribed to the/
image data.Thus, once the Camera Node receives some data from the Camera, it sends the
/image data message directly to the other two nodes. (Through what is essentially TCP/IP)
What is TCP/IP?: The NODES in ROS communicate by means of TCP/IP protocols which
are two type of protocols in network and communication. the TCP (Transmission Control
Protocol) is a protocol by which a transmitting messages or files being divided to packets that
are transmitted over the internet and in the other side at destination these messages will be
resembled. The internet protocol(IP) has the task of addressing the transmitted packets which
must be sent to correct destination.TCP/IP functionality is divided into four layers, each with
its own set of agreed-upon protocols:

Figure 7.6: External Node (image display)communication with Camera Node

Lets consider a situation that image processing node requesting data from the camera node
at the specific time.This task can be conducted by implement services. A Node can register
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a specific service with the ROS Master, just as it registers its messages.The following picture
demonstrates this functionality of ROS system. The Image Processing Node first sends requests
/image data, the Camera Node collects the data from the Camera, and then sends the reply
following to the Image Processing Node request.

Figure 7.7: Request of and Reply to image display Node with Camera Node

So far has been stated an introduction and the general concepts of Robot Operating Systems
and the ways by which nodes communicate in this open source system. These concepts have
been accomplished to be captured easier what we are going to state later. We have stressed that
for improving the vehicle position estimation, the different fusion techniques and methods can
be used, such as data fusion methods by KF, UK, EKF, ARMA, and neural networks etc and
in our investigation, we consider data fusion (multi-sensor fusion) with Extended Kalman filter
which is quite accurate for the nonlinear systems. To evaluate the vehicle positioning, different
combination of sensor or data provide by them are considered:

• The combination of IMU-GPS and comparison of result by GPS itself

• The combination of IMU-GPS-Odometry and comparison of result with GPS itself and
IMU-GPS

In the first case(Fig.8) we investigate the vehicle positioning just by implementation of extended
Kalman filter which has been accomplished by Python script (refer to cahpter3 and 6) where
the data fused are provided just by two sensors, GPS and IMU. This employment is the simplest
possible investigation with the minimum number of data sources which can be fused. Two type
of investigation could be considered, in the first case data provided by sensors (IMU and GPS)
fused to Kalman filter script which is written in python. In the second investigation, the data
are fused in the ROS environment. As mentioned earlier already in “introduction” section,to
be able to work with the sensors data in the ROS environment,it is necessary to IMU and GPS
sensor be considered as a ROS Node and these nodes must be able to publish the measured data
to the suitable topic in form of desired message. Beside these nodes, the presence of another
Node is necessary to subscribe these messages which is called EKF Node. This node which is
created by python script is able to subscribe both messages, provided by sensors and republishes
the outputs which are desired for our consideration. The configuration of EKF with the sensors
data fusion from GPS and IMU is exhibited the following architecture:
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Figure 7.8: Fusion of IMU and GPS sensors data to EKF(Python script) in ROS

In the second investigation refererring to Fig (7.10) and Fig.(7.12) we employ the ROS
capabilities and the available EKF packages for the purpose of data Fusion, while in turn it
could be considered, in two subcases Fig(10) and Fig(7.12). In the first subcase, (Fig 7.10 ) the
data fused to or in other world subscribed by robot pose ekf package. This package is able
to subscribe three types of message /odometry type messages, /IMU type message and /visual

odometry type messages which could be provided by three sensors IMU,GPS,and Odometry
Sensors. These packages which act as a node makes possible activation and de-activation of
fusing data coming from different sensors and provides real-time vehicle positioning which is
desired in Autonomous vehicles. Keep in mind that the weakness of this package is that, it is
just able to fuse once each type of three above mentioned message types. Another disadvantage s
of this package which should be considered is that there is no parameters option for assigning the
covariance values to each measured states by sensors which could be led to insufficient results.
The second subcase investigation is the fusing of data to robot localoization ekf node by
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Figure 7.9: Robot pose ekf launch file example.

means of robot localoization ekf package.This package like the robot pose ekf is able
to subscribe three types of messages Fig(7.11), which are odometry type messages, IMU type
message, and visual odometry type message. This package which includes a node that makes
it possible to enable and disable the of fusing data coming from different sensors, same as
the robot pose ekf package but the difference is that this ROS’s EKF package is able to
fuse any number of sensors which publishe three types of above-mentioned messages, just by
consecutive numbering naming of nodes which subscribe same type message Fig(7.11). This
ability is provided; thanks to parameters which are able to be set to true or false in the launch
file.As a result, data fusion by means of this package provides very high freedom in numbers
of sensors and fusion data sources which could deliver the higher accuracy of estimated vehicle
localization to obtain the desired results. Besides the all useful features of this package, the
two capabilities which are not deniable,are the transformation of different sensor’s coordinate
frame to Earth coordinate frame and considering the reliability of input data by comparing of
assigned covariance value of that variable from the individual sensors. All these features make
this package distinct and Powerful comapred to other available packages in the ROS.
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Figure 7.10: Data Fusion with Robot pose ekf Package.
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Figure 7.11: Robot localization ekf launch file example.
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Figure 7.12: Data Fusion with Robot localization ekf Package.
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7.3 Simulation and Experimental results

So far,it has been described and illustrated, all possible combination of the sensors data and the
fusion methods of these data in ROS environment. Whitin these methods and packages which
are available in ROS for data fusion,a package which has been already described Fig(7.12),
is robot localoization ekf Package. This package makes possible, the fusion of different
sensors’s data, such as IMU,GPS and Odometry sensors.In case of vehicle localization or in
another word the estimation of Autonomous vehicle positioning on the road, the all three inputs
data which are provided by IMU+GPS+Odometry has been fused simultaneousely to EKF(
robot pose ekf) and the result will be presented as follows: Figure 7.13 demonstrates that

Figure 7.13: Real time Vehicle position estimation by Robot localization ekf in ROS.

the Fusion results we achieved are almost between ground truth and raw GPS data and almost
in some cases coincide with ground truth and even in a curved segment where the vehicle
changes the path and in the cornering maneuver, provides smooth and steady vehicle position
estimation. Compared to ground truth, the fusion provided data in most cases are much closer
to actual localization going with the driverless car.Although some diffrence can be observed
between fusion results compared to raw GPS and actual data(ground-truth),but this is due to
parameters set-up in the launch file specific to this package and certainly can be resolved.

7.4 Bibliography

[1]://www.ros.org [2]://www.clearpathrobotics.com
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Chapter 8

Conclusion:

In this thesis, we have surveyed and demonstrated the classical and conventional methods of
vehicle positioning Global Positioning System on the Autonomous Land Vehicles(ALV) and the
main suspected errors of this system which have an inuence on its estimated position.To address
this problem, we have proposed a multi-sensor data fusion technique for accurate navigation
of autonomous vehicles based on Extended Kalman Filter.This technique has state-of-the-art
features such as:(1) The fusion of multi-sensor data and the best estimation of vehicle posi-
tion based on Minimization of Squared Error with consideration of all the noisy and erroneous
data.(2) Dealing with non-linearity of dynamics model and providing the result which is almost
close to the actual system being another powerful feature of the EKF technique.(3) In addition to
these, this technique helps in determining the accurate Realtime vehicle positioning with less eect
on the cost.To evaluate the estimation performance of proposed fusion technique, we employed
dierent combinations of sensor data which were collected on the road in real-time by the sensors
mounted on the vehicle.The results have demonstrated that our data fusion technique not only
provides very accurate results comparable to ground-truth but also provides smooth and steady
performance during cornering maneuvers where the low-cost GPS data shows jumping in a sim-
iliar situation.Despite all the achievements, the robot localoization ekf in the ROS provides
unlimited number of sensor combinations such as IMU+GPS+Odometry which are almost im-
possible to implement in other techniques. The unique feature of this package is that it delivers
sucient results even in the case of GPS signal loss and underground conditions(UERE).However,
the accumulated position error caused by Odometry sensor is considerable which is reduced by
employing it in this technique; it assigns the covariance values to the state variables measured
by this sensor.Finally, with all the considerations and valid results obtained and with the current
evolution of automotive technologies, EKF(Embedded) positioning systems will become more
and more feasible and easily incorporable at lower cost with robust and reliable performance.
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