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Abstract

Estimation of the fatigue life of mechanical components subjected to general
load conditions are of great interest in many engineering fields. Fatigue life
is estimated by vibration testing. As vibrations may be random in nature in
a wide range of applications, random fatigue investigation has the greatest
interest. An efficient way of dealing with random vibrations is to use a
statistical process to determine the probability of the occurrence of particular
amplitudes. In this type of approach, the random vibration can be
characterized using a mean, standard deviation and a probability
distribution.

The experimental part of this project was consisted in exciting steel alloy
specimens with a band-limited ergodic Gaussian white noise using a modal
shaker until rupture. Applying some modal analysis techniques, the
necessary vibrational parameters were obtained and recorded, thanks to
some accelerometers.

The theoretical part was to estimate the fatigue life of the specimen using
Miner’s rule based on the vibrational parameters collected during the
experiments and on statistical representation of the random vibrations
applying Steinberg 3-band method. The results were compared to the fatigue
life obtained experimentally.

Experiments have shown that the specimen broke in less time than what was
predicted theoretically using the same values as in the experiment. The
difference might be the result of using a non-precise Wohler’s curve.
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1 Introduction

Vibration testing is done to introduce a forcing function into a structure,
usually with the use of a vibration test shaker or vibration testing machine.
These induced vibrations, vibration tests, or shaker tests are used in the
laboratory or production floor for a variety of things, including qualifying
products during design, meeting standards, regulatory qualifications (e.g.
MIL-STD 810, etc.), fatigue testing, screening products, and evaluating
performance [1].

The most common types of vibration testing services conducted by vibration
test labs are Harmonic and Random. Harmonic (one frequency at a time) tests
are performed to survey the structural response of the device under test
(DUT). A random (all frequencies at once) test is generally considered to more
closely replicate a real-world environment.

Determining the fatigue life of parts under periodic, sinusoidal vibration is a
straightforward process in which damage content is calculated by multiplying
the stress amplitude of each cycle from harmonic analysis with the number
of cycles that the parts experience in the field. The computation is relatively
simple because the absolute value of the vibration is highly predictable at any
point in time [2].

Vibrations may be random in nature in a wide range of applications, however,
such as vehicles traveling on rough roads or industrial equipment operating
in the field where arbitrary loads may be encountered. In these cases,
instantaneous vibration amplitudes are not highly predictable as the
amplitude at any point in time is not related to that at any other point in
time. As shown in Figure 1-1, the lack of periodicity is apparent with random
vibrations [2].

Amgiitude

Tirma 3
o1

Figure 1-1: Random vibrations measured for vehicle on a rough road

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 11
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Figure 1-2: Random time-history can be represented as a series of overlapping
sinusoidal curves

The complex nature of random vibrations is demonstrated with a Fourier
analysis of the random time-history shown in Figure 1-2, revealing that the
random motion can be represented as a series of many overlapping sine
waves, with each curve cycling at its own frequency and amplitude. With
these multiple frequencies occurring at the same time, the structural
resonances of different components can be excited simultaneously, thus
increasing the potential damage of random vibrations.

Because of the mathematical complexity of working with these overlapping
sine curves to find instantaneous amplitude as an exact function of time, a
more efficient way of dealing with random vibrations is to use a statistical
process to determine the probability of the occurrence of particular
amplitudes. In this type of approach, the random vibration can be
characterized using a mean, the standard deviation and a probability
distribution. Individual vibration amplitudes are not determined. Rather, the
amplitudes are averaged over a large number of cycles and the cumulative
effect determined for this time period. This provides a more practical process
for characterizing random vibrations than analyzing an unimaginably large
set of time—history data for many different vibration profiles.

An important aspect of such a statistical representation is that most random
processes follow a Gaussian probability distribution. This aspect has a great
rule in this work since the excitation random signal, in the fatigue tests done,
was the Gaussian White Noise.

12 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters



1 Introduction

Representing the random signals in this manner is sometimes called a zero-
mean Gaussian process, since the mean value of the signals centers at zero of
the histogram, as do the random signal responses, which are usually
described in terms of standard deviation (or sigma value) of the distribution.
Figure 1-3 shows how the Gaussian distribution relates to the magnitude of
the acceleration levels expected for random vibration. It is important to note
that the Gaussian probability distribution does not indicate the random
signal’s frequency content. That is the function of the power spectral density
analysis.
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Figure 1-3: Gaussian distribution (right) of random signal (left):

The usual way to describe the severity of damage for random vibration is in
terms of its power spectral density (PSD), a measure of a vibration signal’s
power intensity in the frequency domain.

Random vibration analysis is usually performed over a large range of
frequencies — from 20 to 2,000 Hz, for example. Such a study does not look
at a specific frequency or amplitude at a specific moment in time but rather
statistically looks at a structure’s response to a given random vibration
environment. Certainly, we want to know if there are any frequencies that
cause a large random response at any natural frequencies, but mostly we
want to know the overall response of the structure. The square root of the
area under the PSD curve (grey area) in Figure 1-4 gives the root mean square
(RMS) value of the acceleration, or Grms, which is a qualitative measure of
intensity of vibration.

In vibration theory, the modal analysis method allows huge simplifications in
studying the vibratory response of systems from both deterministic and
random excitations. Since the end of the last century, experimental modal
analysis techniques received a special attention and started to be used in
many practical applications, with satisfactory results.

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 13
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Figure 1-4: Random time—history (left), power special density (PSD) of a random
time-history (right)

The objective of this thesis is to develop a new constitutive model and a new
damage model for high cycle fatigue behavior of steel alloy starting from
random fatigue tests.

In brief, the purpose of this work is to start a bibliographic research in the
field of vibration, modal analysis and fatigue, to discover and get familiar
with these areas (chapter 2). Then, to do the predefined experimental tests
and simulations on steel specimens:; first to find the modal parameters, then
to perform the random fatigue tests (chapter 3). Finally, to process the results
by the chosen fatigue model and to correlate the results obtained theoretically
with those obtained experimentally (chapter 4).

This work which last six months was to set the foundations for future studies
by moving further from the first steps already taken by previous students in
the DIMEAS Laboratory with the same equipment set.

14 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters



2 Literature Review

2.1 Introductory Concepts on Vibrations

The vibrations of linear systems fall into two categories — free and forced. Free
vibrations occur when a system vibrates in the absence of any externally
applied forces (i.e. the externally applied force is removed and the system
vibrates under the action of internal forces). A finite system undergoing free
vibrations will vibrate in one or more of a series of specific patterns. Each of
these specific vibration patterns is called a mode shape and it vibrates at a
constant frequency, which is called a natural frequency [3]. These natural
frequencies are properties of the finite system itself and are related to its
mass and stiffness (inertia and elasticity). It is interesting to note that if a
system were infinite it would be able to vibrate freely at any frequency (this
point is relevant to the propagation of sound waves) [3]. Forced vibrations, on
the other hand, take place under the excitation of external forces. These
excitation forces may be classified as being (i) harmonic, (ii) periodic, (iii) non-
periodic (pulse or transient), or (iv) stochastic (random). Forced vibrations
occur at the excitation frequencies, and it is important to note that these
frequencies are arbitrary and therefore independent of the natural
frequencies of the system [3]. The phenomenon of resonance is encountered
when a natural frequency of the system coincides with one of the exciting
frequencies.

When the energy of a vibrating system is gradually dissipated by friction and
other resistances, the vibrations are said to be damped. The vibrations
gradually reduce or change in frequency or intensity or cease and the system
rests in its equilibrium position. An example of this type of vibration is the
vehicular suspension dampened by the shock absorber.

2.2 Single Degree-of-Freedom (SDOF) System

The fundamentals of vibration analysis can be understood by studying the
simple mass-spring-damper model, Figure 2-1 [4]. Indeed, even a complex
structure such as an automobile body can be modelled as a "summation" of
simple mass-spring-damper models. The mass-spring-damper model is an
example of a simple harmonic oscillator. The mathematics used to describe
its behavior is identical to other simple harmonic oscillators such as the RLC
circuit.

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 15
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m |— f(1)
|—>x(t)

Figure 2-1: Mass—spring—damper model; K is the linear elastic stiffness coefficient,
m is the object’s mass, c is the linear viscous damping coefficient, and f(t) is the
external excitation force (in case of free vibration, f(t) = 0)
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The mass—spring—damper model, shown in Figure 1.1, is called a single
degree of freedom (SDOF) model since the mass is assumed to only move up
and down. In more complex systems, the system must be discretized into more
masses that move in more than one direction, adding degrees of freedom. This
latter system is called a multiple degree of freedom system and will be
discussed in section 2.4.

The step-by-step mathematical derivations are not included in this thesis, as
they are not the point of interest. A detailed description can be found in
numerous text books and articles. Some of these references are included in
the bibliography [3] [5] [4] [6] [7] [8].

The equation of motion for translation oscillations of the single degree-of-
freedom system in Figure 2-1 is:

mx(t) + cx(t) + kx(t) = f(t) (1)
The natural frequency f,, of the system is defined as:
wo = 2nf, = k/m (2)

The damping ratio {, defined as the ratio of the actual damping ¢ to the
critical damping ¢, = 2Vmk:

{=c/c, (3)

2.2.1 Free Vibration [4]

Considering the case of free vibration, i.e. f(£) = 0, eq. (1) can be written as:
mx(t) + cx(t) + kx(t) = 0 (4)

Based on equation (4) the SDOF system can be classified as:

e Undamped (¢ - 0): system with constant amplitude oscillations;
e Underdamped ({ <1 &c¢ < ¢.): characterized by a cosinusoidal decay
oscillation;

16 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters
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e Overdamped ({ > 1&c¢ > c.): exponential decay with no oscillation but
which takes more time to reach the equilibrium position when
compared to the critically damped system;

e Critically damped ({ = 1 & ¢ = ¢.): system returns to the equilibrium
position quick with no overshoot or oscillation.

STRONG DAMPING

UNDAMPED
___,_n"

e
w t= time

Figure 2-2: Free response of single degree-of-freedom system.

displacement

=

Underdamped

Figure 2-2 shows a graphical representation of the free response of SDOF
system with different damping ratios. For the purposes of the present thesis,
only under-damped systems will be considered, since all the studied
phenomena on the experimental tests have small damping ratio values.

2.2.2 Forced Vibration with Harmonic Excitation [4]
We consider the periodic forcing function:

f(t) = F sin(2mft) (5)

Substituting equation (5) in equation (1), the steady state solution of this
problem can be written as:

x(t) = X sin2nft + ¢) (6)

The result states that the mass will oscillate at the same frequency, f, of the
applied force, but with a phase shift @. X is the vibration amplitude. X and ¢
can be expressed as:

F 1
Amplitude: X= E\/(l —12)2 + (2qr)? (7)
Phase: ¢ = tan! (12_(:2> (8)

({32

where “r” is defined as the ratio of the harmonic force frequency over the
undamped natural frequency of the mass—spring—damper model:

r:f/fn 9)

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 17



2 Literature Review

2.2.3 Frequency Response Function

The plot of these functions (7) and (8), Figure 2-3, called "the Frequency
Response of the system (FRF)", presents one of the most important features
in forced vibration. In a lightly damped system when the forcing frequency
nears the natural frequency (r = 1), the amplitude of the vibration can get
extremely high. This phenomenon is called resonance (subsequently the
natural frequency of a system is often referred to as the resonant frequency).
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Figure 2-3: Forced Vibration Response

So far in this sub-section, solutions have been sought for the output steady-
state displacement, X. The complex ratio of the output displacement to the
input force, X/F, i.e. equation (7), is commonly referred to as a receptance.
There are a range of different force—response relationships that are of general
engineering interest. In many applications in noise and vibration, in addition
to the receptance, the mobility (velocity/force; V/F) and the inertance
(acceleration/force; A/F) are often of interest.

2.2.4 Quality factor

It can be shown that the steady-state amplitude, X, i1s a maximum when

=J1-2¢2 (10)

The maximum value of X is:
Xy

Xy = 2((1—\/_—(2) (11)

and the corresponding phase angle at X = X, is:

V1 —232
¢ = tan?! (—(> (12)
¢
where X, = F/k. For most practical situations, however, ¢ is small (<0.05):
Xo 1 (1
Xr~2—( & ¢ ~tan ((> (13)

18 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters
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For these cases of small damping, amplitude resonance and phase resonance
are assumed to be equal, ie. @ = 90°, and therefore w = w,. The
magnification factor at resonance is thus ~ 1/2¢ and it is called the Q factor
or the quality factor, i.e.:

X, 1

Xo 20
The quality factor is described physically as a measure of the sharpness of the
response at resonance and is a measure of the system’s damping. The points
where the magnification factor is reduced to 1/v/2 of its peak value (or the —3
dB points) are defined as the half-power points. The damping in a system can
thus be obtained from the half-power bandwidth. This is illustrated in Figure

2-4. By solving equation (7) for Xmax/v2 , where X,,0x = X,/Xo, the half-
power frequencies (w; and w,) can be obtained. They are

w= (1 1wy, (15)

(14)

therefore, =—=— (16)

Half-power point

/

Amplitude

| [E;J.||--L1|:1WCF [
Bundwidth

| '1 |

[

| I_'hm ving
Stiffness cuntmﬂcd cuntr«tllcd 1 Mass controlled
Tﬂgii1]1 1 FL' ﬂTL 1 FEE‘I(]TE

l'.l}l tﬂn LI

Radian frequency

Figure 2-4: Half-power bandwidth and half-power points for a linear oscillator

2.3 Forced Vibration with Random Excitation [3]

As already mentioned before, excitation forces may be classified as being
harmonic, periodic, non-periodic (pulse or transient), or stochastic (random).

The response of a one-degree-of-freedom system harmonic signals has been
summarized in section 2.2.2. The cases of periodic and non-periodic signals
are beyond the scope of this thesis, as random excitations are the point of
interest. However, these signals are still deterministic and can therefore be
expressed by an explicit mathematical relationship.

Quite often, in noise and vibration analysis, the input signal to some system
cannot be described by an explicit mathematical relationship. It is random in
nature (i.e. the time history of the signal is neither periodic nor transient but
is continuous and does not repeat itself) and should be described in terms of
probability statements and statistical averages — this class of vibrations is

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 19
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termed random vibrations. Also, if the input to a system is random, its output
vibrations will also be random. Some typical examples of random vibrations
are the turbulent flow over an aircraft body; the response of ships to ocean
waves...etc. A time history of a typical random signal containing numerous
frequency components is illustrated in Figure 2-5.

B

3

|| AN
VT

Time (s)

Y

Random variable x12)

Figure 2-5: A time history of a typical random signal.

An individual time history of a random signal is called a sample record, and
a collection of several such records constitutes an ensemble average of a
random, or a stochastic, process. A random process can be:

i. ergodic (or strictly stationary) if all the probability distributions
associated with it are time-invariant;
1. weakly stationary if only its first and second order probability
distributions are invariant with time;
111. non-stationary when its probability distributions are not stationary
with respect to a change of the time scale, i.e. they vary with time.

Most random physical phenomena that are of interest to engineers can be
approximated as being stationary — if a signal is very long compared with the
period of the lowest frequency component of interest, it is approximately
stationary. Therefore, only the random vibrations of stationary signals
(ergodic) will be presented in this thesis. A Flowchart illustrating the
different types of input and output signals can be found in Appendix A

Four types of statistical functions are used to describe random signals:

1. mean-square values and the variance — they provide information about

the amplitude of the signal;

1.  probability distributions — they provide information about the
statistical properties of the signal in the amplitude domain;

i1i.  correlation functions — they provide information about the statistical
properties of the signal in the time domain;

iv. spectral density functions — they provide information about the
statistical properties of the signal in the frequency domain.

Throughout this section a linear system with a single input and a single
output will be considered. The input will be assumed to be a random signal,
x(t), and the output will be defined as y(t). The system will be modelled as a
SDOF mass—spring—damper.
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2.3.1 Probability Density Function (PDF)

The expected or mean value of a function x(t) is given by:
T 00

1
E[x(t)] = ff x(t)dt =f xp(x) dx 1)
0 —o00
where p(x) is the probability density function. It specifies the probability,
p(x) dx, that a random variable lies in the range x to x + dx.

For a stationary random process, E[x(t)] = E[x]. This is because a stationary
random process 1s time-invariant. It is sometimes referred to as the first
statistical moment.

The second statistical moment, or the mean-square value, E[x?], is the
average value of x% and is given by:

1 (7 *

E[x*(0)] = T f x*dt = f x*p(x) dx (18)
0 —00

The positive square root of E[x?] is the Root-Mean-Square (RMS) value of the
signal. The standard deviation o of x(t), and the variance, 62, are defined by:

0% = E[x?] — {E[x]}? (19

2.3.2 Auto-Correlation Function

The auto-correlation function for a random signal, x(t), provides information
about the degree of dependence of the value of x at some time t on its value
at some other time + 7. For a stationary random signal, the auto-correlation
depends upon the time separation, and is independent of absolute time. It is
defined as:

T
R (D) =E(x(®) x(t+ 1)) = %im% f x(t) x(t + 1)dt (20)
—® 0

2 2
Rxx(t) o+ m,

e D AN =
\/\\J \ ~",

0 ~ Time delay,t

Figure 2-6: A typical auto-correlation function for a stationary random signal.
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The auto-correlation function is an even function, it does not contain any
phase information, and its maximum value always occurs at T = 0. For
periodic signals, R,,(7) is always periodic, and for random signals it always
decays to zero for large values of . It is therefore a useful tool for identifying
deterministic signals which would otherwise be masked in a random
background. A typical auto-correlation signal is illustrated in Figure 2-6.

2.3.3 Power Spectral Density Function (PSD)

The spectral density function is the Fourier transform of the correlation
coefficient. A general Fourier transform pair, X(w) and x(t) is defined as:

X(w)zi f oox(t)e_i“’tdt (21)
and
x(t) = f ooX(w)ei’”tdt (22)

X(w) 1s the Fourier transform of x(t) and it is a complex quantity. Classical
Fourier analysis also introduces the condition that:

j+oo|x(t)| dr < oo (23)

1.e. classical theory is valid for functions which are absolutely integrable and
decay to zero when |t| - o. Stationary random signals do not decay to zero
with time. This problem is overcome by Fourier analysing the correlation
function instead (the correlation function of a random signal decays to zero
with increasing 7). It is important to note that the frequency content of the
stationary random signal is not lost in the process.

The Fourier transform of R, (7) and its inverse are thus given by:

1 .
Syx(w) = F(Rxx(T)) = %J Ryx(7) - e~t®tdr (24)
S,.x(w) is the auto-spectral density of the x(t) random signal and it is a
function of frequency. The auto-spectral density is widely used in noise and
vibration analysis. The area under an auto-spectrum is the mean-square

value of a signal.

It should be pointed out at this stage that the experimental estimation of
spectra from measured data does not follow the above mentioned formal
mathematical route of obtaining the spectra from the correlation function.
With the development of the fast Fourier transform (FFT) technique, digital
estimates of spectra can be directly obtained from the time histories with
suitable computer algorithms.
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2.3.4 Frequency Response Function (FRF)

Consider an arbitrary input signal, x(t), to a linear system such that the
condition in eq. (23). Its Fourier transform, X(w), is given by eq. (21).

For a linear system, there is a relationship between the Fourier transforms
of the input signal, X(w), and the output signal, ¥(w). This relationship is:

Y(w) = Hw)X(w) (25)

where H(w) is the Frequency Response Function (FRF) of the linear system.
H(w) can be receptance, mobility, inertance etc... as described in section 2.2.3.
The output signal, y(t), from the linear system can subsequently be obtained
by inverse Fourier transforming equation.

From the receptance FRF, it is possible to calculate the other quantities using
derivatives, and the following expressions are obtained:

X(w)

Receptance: R(w) = Fl@) (26)
Mobility: V(w) = % = iw% 27)
Inertance: A(w) = )Lw) = —w? X(w) (28)

Fw) ° Flw)

2.3.5 Ergodic White Gaussian Noise

In probability theory, the normal (or Gaussian) distribution is a very common
continuous probability distribution function. A typical Gaussian distribution
curve is illustrated in Figure 2-7. Gaussian random process is a random
process in which, for any time instant on an ensemble, the random variables
follow a Gaussian distribution. It can be proved that if the excitation of a
linear system is a Gaussian random process, the response is Gaussian [7].

99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
68% within
<« 1 standard —>|
deviation

L — e

u— 30 u—20 n—a i u+o u+ 20 u+3c

Figure 2-7: Gaussian Probability Density Function
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White Noise is a random signal having equal intensity at different
frequencies, giving it a constant power spectral density [9]. White noise refers
to a statistical model for signals and signal sources, rather than to any specific
signal. White noise draws its name from white light [10].

In discrete time, white noise is a discrete signal whose samples are regarded
as a sequence of serially uncorrelated random variables with zero mean and
finite variance. If each of these samples has a normal distribution with zero
mean, the signal is said to be Gaussian white noise [11].

Typically, the PSD of a white Gaussian noise is wide and flat, Figure 2-8a. A
PSD that extends from —oo to +o is not realistic. Therefore, noise is
considered only in the interested bandwidth. An example of passband white
Gaussian noise PSD is illustrated in Figure 2-8b.

S@ $(0)
— - Sy = ——
fo ] ®
0 — 0, -0, (| o, 0,
a) b)

Figure 2-8: PSD of (a) an ideal white noise, and (b) a passband white noise

In the experimental tests, which will be described later, random excitations
were done by applying ergodic white Gaussian noise to the testing specimens.

2.4 Multiple Degree of Freedom (MDOF) System

Differently from the SDOF systems, multi degrees of freedom systems, as the
one in Figure 2-9, require more than one independent coordinate to describe
its parts position. Systems with a finite number of degrees of freedom are

called discrete.
| ..‘-'_ ‘ _r_‘ lj

A_] JEC‘ ’&_{ J"C_l

m OO0 e HOO000N 3

Figure 2-9: Multiple degree of freedom system

Many real systems, especially those involving continuous elastic members,
have an infinite number of degrees of freedom, and are called continuous or
distributed systems. Most of the time, these continuous systems are
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approximated by discrete systems with multiple degrees of freedom instead
of dealing with a continuous problem, and the solutions are obtained in a
simpler manner, although not exact. However, the advent of computers made
possible the development of numerical methods for solving in some
reasonable time systems with a great number of degrees of freedom,
improving the result’s accuracy.

Different methods exist to approximate a continuous system to a MDOF
system, such as the lumped-parameter method of the finite element method.
In this thesis, the latter was used, and it consists on “replacing the geometry
of the system by large number of small elements. By assuming a simple
solution within each element, the principles of compatibility and equilibrium
are used to find an approximate solution to the original system” [6].

In any case, it’s possible to derive a set of n equations of motion, where n is
the number of degrees of freedom of the system. These equations can be
expressed is matrix form as:

[M]{x(O)} + [CI{x(D} + [K]{x()} = {F()} (29)

where [M], [C] and [K] are the called mass, damping and stiffness matrices,
respectively, and {X(t)}, {x(t)},{x(t)} and {F(t)} are the acceleration, the
velocity, the displacement and the force vectors respectively.

In the general case, the matrices [M],[C] and [K] are fully populated and
equation (29) denotes a system of n coupled second-order ordinary differential
equations. These equations can be decoupled using a procedure called modal
analysis, which requires the natural frequencies and normal modes or
natural modes of the system [8].

2.5 Modal Analysis

Modal analysis is the study of a structure in terms of its natural
characteristics which are the frequency, damping and mode shapes i.e. its
dynamic properties [12].

Modal analysis is the field of measuring or calculating and analyzing the
dynamic response of structures during excitation. Examples would include
measuring the vibration of a car's body when it is attached to an
electromagnetic shaker, analysis of unforced vibration response of vehicle
suspension [13]. Modern day experimental modal analysis systems are
composed:

e sensors such as transducers (typically accelerometers, load cells), or
non-contact via a laser vibrometer, or stereo photogrammetric cameras

e data acquisition system and an analogue-to-digital converter front end
(to digitize analogue instrumentation signals) and

e host PC (personal computer) to view the data and analyses it.
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Typical excitation signals can be classed as impulse, broadband, swept sine,
chirp, and possibly others. Each has its own advantages and disadvantages.

Where structural resonances occur, there will be an amplification of the
response, clearly seen in the response spectra. Figure 2-10 illustrates an
example of a frequency response function, where the peaks represents the
resonances or the natural frequencies of the tested structure. Using the
response spectra and force spectra, a transfer function can be obtained. The
transfer function (or frequency response function (FRF)) is often curve fitted
to estimate the modal parameters i.e. the modal frequency (resonance), the
modal damping (damping at resonance), and the mode shape [14]; however,
there are many methods of modal parameter estimation and it is the topic of
much research.

Magnitude

Fraquency

Figure 2-10: A typical example of frequency response spectrum

2.5.1 Modal Parameters Estimation Methods

Modal parameter estimation is the process of determining the modal
parameters from experimentally measured data. These techniques, also
called curve fitting, have developed greatly during the past 30 years.

The most widespread -classification of modal parameter identification
methods is between frequency domain methods and time domain methods.
The technique used in this work is a frequency domain method so-called Peak-
Picking technique. It was used for its simplicity and compatibility to the
available equipment [15].
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Figure 2-11: The frequency response of simple structures can be split up into
individual modes, each mode behaving as a SDOF system
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For lightly damped systems without closely spaced modes it can be assumed
that near a natural frequency, the overall vibration tends to be dominated by
the mode of resonance, whereas the other modes’ influence is negligible. So,
this mode can be idealized as an independent SDOF system, as shown in
Figure 2-11, and the overall response of the structure at any frequency is the
sum of the contributions of each mode. This is called the superposition
principle [14].

The modal frequencies can be estimated from the frequency response data by
observing the frequency at which any of the following trends occur [16]:

The magnitude of the frequency response is a maximum;

The imaginary part of the frequency response is a maximum or minimum;
The real part of the frequency response is zero;

The phase of the frequency response is 90°.

A graphical representation of these trends is shown in Figure 2-12.

Resl ‘j\

Magnitude |
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Figure 2-12: Modal frequency identification on an idealized SDOF system

A commonly used technique to extract the modal damping from the FRF is
the half-power bandwidth or 3dB method, in which each of the idealized
SDOF systems that compose the measured FRF is analyzed separately. This
method is described in section 2.2.4.

From the measured modal damping, it is possible to calculate the equivalent
loss factor n from the following equation, as pointed out by [17]:

n=20+J1-32 (30)

To estimate the modal shape, one of the simplest method is called Quadrature
Picking and it’s based on the fact that the FRF of a SDOF system at resonance
is purely imaginary, and as a result, this value is proportional to the modal
displacement. Consequently, by examining the magnitude of the imaginary
part of the FRF in the resonant frequencies at several points on the structure,
the relative modal displacement at each point can be found. From these
displacements, the mode shapes can be established. The procedure can then
be repeated to determine all the required mode shapes [14]. The quadrature
method 1s one of the more popular techniques for estimating modal
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parameters because it is easy to use, very fast and requires minimum
computing resources. An example of quadrature picking method is illustrated
in Figure 2-12. It is, however, sensitive to noise on the measurement and
effects from adjacent modes [16].

Figure 2-13: Modal coefficients estimation by the Quadrature Picking method
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2.6 Fatigue

In general, fatigue can be defined as a phenomenon that takes place on
components and structures subjected to time-varying external loadings and
that manifests itself in the deterioration of the material’s ability to carry the
intended loading [18].

Fatigue occurs when a material is subjected to repeated loading and
unloading. If the loads are above a certain threshold, microscopic cracks will
begin to form at the stress concentrators such as the surface, persistent slip
bands (PSBs), interfaces of constituents in the case of composites, and grain
interfaces in the case of metals [19].

It has been estimated that fatigue contributes to approximately 90% of all
mechanical service failures. Fatigue is a problem that can affect any part or
component that moves. Automobiles on roads, aircraft wings and fuselages,
ships at sea, nuclear reactors, jet engines, and land-based turbines are all
subject to fatigue failures [20].

2.6.1 Fatigue Life

The American Society for Testing and Materials (ASTM) defines fatigue life,
Ny, as the number of stress cycles of a specified character that a specimen

sustains before failure of a specified nature occurs [21].

To determine the strength of materials under the action of fatigue loads,
specimens are subjected to repeated or varying forces of specified magnitudes
while the cycles are counted until destruction. Several tests are necessary
because of the statistical nature of fatigue, to increase the accuracy. The
results are plotted in the form of a S-N diagram (or Wohler diagram), that
has the fatigue strength as its ordinate and the number of cycles to rupture
as abscissa, this last disposed in a logarithmic scale. A typical example of S-
N curve is illustrated in Figure 2-14 (right) [22].
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Figure 2-14: Typical S-N curve (right); Ultimate Strength and Yield strength can
be determined from static stress-strain tests (left)

Random Fatigue Behaviour of Steel by Means of Vibrational Parameters 29



2 Literature Review

There are three key values that separate the plastic, elastic and infinite life
regions (Figure 2-14):

e Ultimate Strength: Stress level required to fail with one cycle;

e Yield Strength: Dividing line between elastic and plastic region;

e Endurance Limit: If all cycles are below this stress level amplitude, no
failures occur.

A S-N curve can contain several different areas: a plastic region, an elastic
region and an infinite life region (Figure 2-14):

Infinite life region: Some materials, like steel, exhibit an infinite life region.
In this region, if the stress levels are below a certain level, an infinite number
of cycles can be applied without causing a failure (of course, no test has been
performed for an infinite number of cycles in real life, but a million+ cycles is
typical) [23]. Many non-ferrous metals and alloys, such as aluminum,
magnesium, and copper alloys, do not exhibit well-defined endurance limits.
Comparison of steel and aluminum S-N curves is shown in Figure 2-15.

Elastic region: the relationship between stress and strain remains linear.
When a cycle is applied and removed, the material returns to its original
shape and/or length. This region is also referred to as the “High Cycle
Fatigue” region, because a high number of stress cycles, at a low amplitude,
can cause the part to fail.

Plastic region: the material experiences high stress levels, causing the shape
and/or geometry to change due to the repeated application of stress cycles.
This region is also referred to as the “Low Cycle Fatigue” region of the S-N
curve, where a low number of stress cycles, with a high amplitude, result in
failure.
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Figure 2-15: Typical S-N Diagrams of aluminum and steel alloys
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2.6.2 Miner’s Rule

Miner’s Rule [24] is used to calculate damage caused by cyclic/time variant
loading. It is a linear damage accumulation model that uses a load time
history and S-N curve as inputs to calculate damage.

Miner’s rule can be written as:

n;
D=Zdi= N, (31)
l l

where D the cumulative damage, d; is the fatigue damage in each cycle, n; is
the expected number of cycles at a stress level g;, and N; is the number of
cycles to failure at that same stress level calculated from the S-N fatigue life
curve.

When damage, D, is equal to “1”, failure occurs. The definition of failure for a
physical part varies. It could mean that a crack has initiated on the surface
of the part. It could also mean that a crack has gone completely thru the part,
separating it.

2.6.3 Random Vibration Fatigue

In a random vibration analysis, it is assumed that the loading and response
1s statistical in nature and it can be represented by a zero-mean normal
(Gaussian) distribution. It is sometimes convenient to view this distribution
from the perspective of the likelihood that a certain level of load or response
will fall within a certain standard deviation from the mean. Typically, we
consider the 10, 20, and 30 (standard deviation or RMS) levels. As an
example, given a random Gaussian loading, x(t), the probability that x(t) lies
between * 10 is 68.3%, the probability that it lies between + 20 is 95.4%,
and that for + 30 is 99.7%, as shown in Figure 2-16 [25].
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Figure 2-16: Gaussian distribution (right) of typical random signal (left)

Time-domain methods, using Rain-flow counting, can also be applied to
random processes. However, analysis in the frequency domain is usually
preferred due to the significant advantage from the perspective of numerical
computation. There are many frequency-based methods that have been
developed over the years which calculate damage based on a random
vibration loading. These different methods employ various techniques that
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calculate the fatigue life based on the 10 values that are typically calculated
by the Finite Element Analysis. All the common methods used today are
based on Miner’s rule.

2.6.4 Steinberg 3-Band Method

The Steinberg 3-band method for damage calculation is frequently used due
to its simplicity [26]. It uses a Miner's Rule approach to calculate cumulative
fatigue damage by assuming that the stress amplitude response at a given
location has a Gaussian distribution that's divided into the following three
intervals:

e 68.3% of the time at o
o 27.1% of the time at 20
e 4.3% of the time at 30

In each of these intervals, the number of cycles to failure (N4, N,, and N3) can
be determined from the material S-N curve, as shown in Figure 2-17. Then,
if the total number of applied cycles "n" is known, we can use the Steinberg
3-band method to determine the cumulative fatigue damage, D:

(0.683 0.271 0.043)
=n

N, + N, + N (32)

When all the life is used up, the value of D will be equal to 1.

6061-T6 Aluminum Stress-Life Data

! = = MMPDS Data, 50%, R = -1
) [
e ' MMPDS Data, 99%, R = -1
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N (cycles to failure)

Figure 2-17: Number of cycles estimation method using Steinberg 3-Band Method

Steinberg’s method is useful for illustrating the basic concept of fatigue
analysis for random processes, but it has a couple of drawbacks which hinder
its accuracy. Many other frequency domain methods are available, which
produce much better correlation with rainflow-counting results for wide-band
random response. Some of these include Wirsching-Light, the 0:75 method,
Gao-Moan, Dirlik, Zhao-Baker, Tovo-Benasciutti and Petrucci-Zuccarello.
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2.6.5 Miles Equation

Miles investigated fatigue failure of aircraft structural components caused by
jet engine vibration and gust loading. Miles simplified his research by
modelling a system using one degree of freedom. He also applied statistical
recent results. While his goal was to analyze the stress of a component, the
equation can be rearranged and used to determine, among others,
displacement, force, and, in this case, acceleration.

Miles' Equation is derived using a Single Degree of Freedom (SDOF) system
(lightly damped), consisting of a mass, spring and damper, excited by a
constant-level white Noise random vibration input from 0 Hz to infinity. It
states that the RMS of the output acceleration amplitude, Ggpys oue, 18

T
GRMS,out :\/E'fn'PSDin'Q (33)

where f, is the resonant frequency; PSD;, is the power spectral density
function of the input acceleration; Q is the quality factor (section 2.2.4).
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3 Experimental Tests

3.1 Test Bench

Experimental tests were performed using a test bench, shown in Figure 3-1,
located in the DIMEAS Laboratory of Politecnico di Torino. The main
hardware and software, and specimen characteristics used in these tests are
described in this section.

AN

Figure 3-1: Test bench

3.1.1 Hardware
The test bench is consisted of:

Modal Shaker

Amplifier

Input and Output Instruments
Accelerometers

Clamping System

Modal Shaker

The device used to excite the specimens in the vibration tests was Dongling
Modal Shaker model ESD-045. It’s a compact system suited for micro-
vibration tests since it has a permanent magnet inside, which allows it to be
driven directly by the power amplifier analog signal and reduces the heat
generation. Its technical specifications are displayed in Figure 3-2, [27].
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SPECIFICATION MODAL SHAKER
Sine force (peak) 450N
Usable Frequency Range 5 to 3000Hz
Max. Displacement 25 mm
Max. Velocity 1,6 w/s
Max Acceleration 1000 mv/s?
Effective Mass of Moving Elements 450g
Weight 25kg
Dimension (LxWxH) 239 x 152 » 220 mm
Power Amplifier Model PA - 1200
Cooling Type Air-Cooled
Power Supply Requirement AC 220V = 10%, 50Hz, 1300VA

Temperature Range 0 — 40 °C

Working Environment Requirement o )
8 q Humidity range < 80%

Figure 3-2: Modal shaker and its specifications

Amplifier

Dongling linear power amplifier PA-1200 is used to raise the power of the
output analog signal to operate the Modal Shaker. Its technical specifications
are displayed in Figure 3-3 , [28].

SPECIFICATION AMPLIFIER
Rated Power (10 Ohms) 1200 W
Frequency Response 5 -20kHz <+ 2dB
Signal-to-noise ratio >90 dB
Power supply 220 VAC 50Hz
Power consumption 2400 W
Weight 20kg

Dimensions (LxWxH) 480 = 740 %132 mm

Figure 3-3: Power Amplifier PA-1200 and its specifications

Input and Output Instruments

Data transfer between the computer and the test bench equipment were done
through the National Instruments compact modules: one NI 9234 for input
data transfer, and one NI 9263 for output data transfer.

Both the NI 9234 and NI 9263 are connected to the computer by an USB cable
through one compact DAQ NI 9171 each (shown in Figure 3-4), that
intermediates this connection.

The NI 9234 is an analog input module used to acquire data from the
transducers, i.e. accelerometers. While the NI 9263 is an analog output
module, used for sending the desired voltage signal to the Modal Shaker,
passing through the power amplifier first. Their main specifications are
shown in Figure 3-5 [29], [30].
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Figure 3-4: NI 9171

SPECIFICATION NI 9234 NI 9263
SIGNAL RANGE +5V mput =10V output
CHANNELS 4 differential 4
SAMPLE RATE 51.2 kS/s/ch 100 kS/s/ch
SIMULTANEOUS Yes Yes
RESOLUTION 24-Bit 16-Bit
EXCITATION 2 mA 1 mA per channel
ISOLATION None Yes

Figure 3-5: NI 9234 (left) and NI 9263 (right) and their specifications

Accelerometers

Accelerometers are the most important instruments in this research since
they are used to record the acceleration response of the specimen at certain
points. Two Triaxial PCB TLB356A12 accelerometers were used; one was
placed on the clamping element to record the base acceleration and the other
one was placed on the tip of the specimen to measure the tip acceleration.
Both accelerometers were connected to the channels of the input module NI
9234. Their specifications are mentioned in Figure 3-6 [31].

SPECIFICATION MODEL TLB356A12

102.4 mV/g — Tip accelerometer
98.8 mV/g — Base accelerometer

SENSITIVITY IN Z DIRECTION (£10 %)

MEASUREMENT RANGE =491 m/s? pk
FREQUENCY RANGE (45 %) 0.5 to 5000 Hz
RESONANT FREQUENCY =25kHz

BROADBAND RESOLUTION (1 TO 10000 Hz)

NON-LINEARITY
OVERLOAD LIMIT (SHOCK)
TEMPERATURE RANGE (OPERATING)

0.002 nv/s? (RMS)
<1%
=49050 m/s* pk
-541t0+77 °C

EXCITATION VOLTAGE 18 10 30 VDC
CONSTANT CURRENT EXCITATION 21020 mA
DIMENSION (LxWxH) 114 x 114 = 11.4mm
WEIGHT (WITHOUT CABLE) S.4g

Figure 3-6: Accelerometers PCB TLB356A12 and their specifications

A new calibration for both accelerometers was done by previous student’s
work, (Camille, [32]) because the last calibration was done in 2009. The new
accelerometers sensitivities are:

e Base accelerometer: 82.99 mV/g
e Tip accelerometer: 85.35 mV/g
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Clamping Elements

A clamping structure, shown in Figure 3-7, is used to fix the to the Modal
Shaker. It 1s composed of two metallic supports and a set of four screws, nuts
and washers that keep the specimen fixed between the supports. The lower
element has a groove on its inner face, where the specimen is placed, to
guarantee a proper fixation. The upper support covers them and the screws
compress these two parts with the specimen between them firmly.

The mass of the lower part is 200,4g and the mass the upper part 205, 6g.
The sketch of both parts is shown in Appendix B

Figure 3-7: Lower (left) and upper (right) clamping elements

3.1.2 Software

The software used the most throughout the whole research was LabVIEW for
its capabilities, simplicity and integration with physical platforms. It’s based
on a graphical programming syntax, with many built-in functions and
procedures that permit signal and data generation, processing, output and
acquisition, thus allowing system control in an effective and easier way.
Besides that, LabVIEW has a great integration with the National
Instruments hardware used in the test bench.

= LabVIEW 201

Another National Instruments’ software used was SignalExpress 2015, that,
like LabVIEW, allowed the tests to be done in an easier way because of its
advantages in programming syntax too, but using a step-based syntax rather
than graphical.

NI SignalExpress 2015
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3.1.3 Specimen

The specimens used for the are made of steel alloy CP780, which is a common
alloy in many industrial applications. Material specifications of the specimen
will be discussed in section 3.2.

The specimen’s geometry, as shown in Figure 3-8, was chosen based on
previous researches and papers [15], [32], [33], [34], , [35], [36], [37], [38], [39],
for two main reasons:

e 1its size 1s small enough; first to be analyzed with the available test
bench equipment due to limitations of the Modal Shaker and the
clamping structure, and then to have low stiffness as to avoid longer
test times until its rupture.

e the notches are stress concentration points placed in specific zones in
the specimen: the one closest to the clamped end (base), indicated as
Notch 1, i1s highly deformed when excited in the second modal
frequency, as it can be seen in Figure 3-9, as in that point the stresses
are the highest. Therefore, the specimens are made to break exactly
at Notch 1.

Each specimen was marked before the experimental test, as shown in Figure
3-8. A vertical line 32mm left to the base was made to guarantee the same
clamping condition on each test, while on the tip end, the accelerometer’s
position was marked to place the accelerometer in a central position at the
tip. Specimen sketch and dimensions are reported in Appendix C

The edges of Notch 1 were polished to avoid stress concentration due to
superficial roughness from the fabrication process.

Notch 1

Figure 3-8: Specimen B01

CRITICAL AREA

Logl10 of LIFE

10.00

Figure 3-9: Stress concentration in Notch 1 when excited in second mode
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3.2 Material

The material used in this study was the Complex Phase (CP) Steel CP780.
The reason behind this choice is because steel alloys are vastly used in
automotive industry for many components. It is a steel for complex shapes
with energy absorbing capability and corrosion resistance. Galvanic corrosion
protection of these zinc-based coated products makes them ideal for wet area
components [40]. CP steels can be used in suspension system parts such as
suspension arms [41].

3.2.1 Chemical Composition

The structure of these steels is a ferrite/bainite matrix containing martensite
and small amounts of retained austenite and/or perlite. This creates a high
yield strength tensile strength ratio. Chemical composition of the specimen
material is reported in Table 3-1 [40].

Chemical Element Composition %

%C max 0.18
%S1 max 1
%Mn max 2.5
%P max 0.05

%S max 0.010
%Cr + %Mo max 1.00
%Nb + %Ti max 0.15

%Al max 0.015-1.00

%Cu max 0.2
%B max 0.005

Table 3-1: CP780 Chemical composition (ladle analysis in wt.%)

3.2.2 Mechanical Properties
Tensile Test

The mechanical properties of CP780 were extracted by a tensile test made
using a specimen cut, as shown in Figure 3-10, according to the standards.

Figure 3-10: Tensile test specimen

The tensile test for CP780 was made by previous student’s work (Camille,
[32]), under the supervision of Prof. Sesana, with a servo-hydraulic testing
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system INSTRON 8801. The specimen’s deformation was measured with a
strain gauge placed on central part of the deformed region.

As a result of this test, material’s characteristic stress-strain curve 1is
obtained as shown in Figure 3-11. From this graph, young’s modulus, yield
strength and the ultimate tensile strength, are extracted and they are
reported in Table 3-2.

stress - strain curve

0 0,05 01 015 02 0,

Figure 3-11: CP780 stress-strain curve

Mechanical Property Value
Young’s Modulus (E) 189.1-191.2 GPa
Yield strength (Rpo.2) 489-496 MPa
Ultimate tensile strength ~ 809-810 MPa
Table 3-2: CP780 mechanical properties

Fatigue Strength

CP steels display high fatigue strength but they are more sensitive to severe
strain peaks, i.e. abusive loads. Figure 3-12 gives examples of Wohler curves
for a variety of CP steels produced by ArcelorMittal. They are expressed as
stress amplitude versus cycles to failure and are obtained with a stress ratio
of R = 0.1 and repeated tensile loading [17].

800 S [—HRCP 1000
—HR CP 800
| —CR CP 800 Y500

omax Stress amplitude

10000000

100000 1000000
Cycles to failure (N)

Figure 3-12: Wohler curves of different complex phase steels
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3.3 Test Procedure

This test procedure was done by previous student’s work (Costa Lima, [15]).
In this section, only the main test procedure steps will be mentioned.

3.3.1 Test Setup

To perform the fatigue test, test bench elements must be placed as shown in
Figure 3-13. Before starting, the specimen must be polished and its mass
must be measured. Then, the specimen is clamped to the modal shaker by the
clamping elements. With a special glue, two accelerometers are placed one on
the base and the other on the specimen tip and they are connected to the
computer through the dedicated National Instrument input modules (NI
9234) as described in section 3.1.1.

The Modal shaker is connected directly to the amplifier, which is connected
also to the computer through the output modules (NI 9263).

After setting up the test bench, fatigue analysis test can be initiated. The
specimen was subjected to several cycles of initial measurements, pre-test,
followed by a “load block” for a certain amount of time controlled by the
operator, and these cycles were repeated until the specimen’s rupture. Both,
the pre-test and the load block will be described in the following sections.

Tip
Accelerometer

Figure 3-13: Test setup

3.3.2 Pre-Test

The aim of this test is to obtain the Reactance Frequency Response Function
(FRF), according to the definitions described in section 2.3.4, which is used to
extract the natural frequencies and the corresponding damping ratio of the
tested specimen.

To do this, a SignalExpress program named “Shaker Test”, Figure 3-14, is
used. This program applies a wideband white Gaussian noise analog signal
to the specimen through the modal shaker. Simultaneously, it measures the
specimen’s tip acceleration response by the tip accelerometer. As a result, the
specimen’s Inertance FRF is measured taking the excitation force that acts
on the clamped region as input, and the specimen’s tip acceleration as output.
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The excitation force is calculated using Newton’s 3rd law:
F(t) = Mgpecimen Apase(t) (34)

where Mspecimen is the specimen’s mass, in kilograms, and apase(t) is the
measured base acceleration.

As previously discussed, the output analog voltage signal sent to the modal
shaker must pass first through the power amplifier. The amplification factor
must be set according to predetermined value, as every specimen 1is going to
be tested at different amplification factor.
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10 Froject > & X|| R siep Setup ' [ Data View | & Recording Options | [ ] Project Documentation | 2 Cor
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Figure 3-14: Frontal panel of the “Shaker Test” program

Other program’s settings, as mentioned in [15], are reported in Table 3-3.

Setting Value
Noise output signal amplitude 1V
Noise output signal filter 4th order lowpass filter
Noise cut-off frequency 3000 HZ
Accelerometers input signal filter 3rd order bandpass filter
Accelerometers signal cut-off frequencies 10 — 3000Hz
FRF: window Hanning
FRF: number of averages 15

Table 3-3: "shaker test" program settings

Since the Reactance FRF is the desired quantity, it can be obtained from the
Inertance (Accelerance) FRF using a LabVIEW program designed for this
purpose, Figure 3-15 . As a result, both the reactance magnitude and phase
spectra can be saved as text files.
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Amplitude

Frequency

Figure 3-15: Inertance FRF (white) converted into Reactance FRF (red).

Now, having the reactance FRF, specimen’s modal parameters, i.e. modal
frequency and modal damping, are estimated by a LabVIEW program named
“Modes Estimation”, which uses a built-in block called MP_Peak_Picking.vi.

This Sub-VI uses the half-power bandwidth method to estimate the modal
damping from the manually selected resonant frequency. The procedure is to
select a frequency range of interest around a specific mode and it simulates
the single degree of freedom system (SDOF) that best approximates that
spectrum portion, based on the peak frequency chosen by the user inside that
range.
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Figure 3-16: Front panel of the LabVIEW program “Modes estimation”.

44 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters



3 Experimental Tests

In this thesis, only the second mode is analyzed because the specimen is
designed to break in Notch 1, as previously mentioned in section 3.1.3, which
corresponds to the point that has the largest stresses when excited in the
second mode, as shown in the upper right picture of Figure 3-17, [15].

Eigenfrequency=24.286341 Surface: Total displacement (mm) Eigenfrequency=137.510322 Surface: Total displacement (mm)

=

Eigenfrequency=178.210367 Surface: Total displacement (mm) Eigenfrequency=215.911244 Surface: Total displacement (mm)

& &

Figure 3-17: First four modes of the model

3.3.3 Load Blocks

Summarizing what is done till now; first the Inertance FRF (IFRF) was
obtained using “Shaker Test” program, and the IFRF magnitude and phase
are saved as external files. These files are the inputs of another LabVIEW
program which calculate the Reactance FRF (RFRF). Then, using the
LabVIEW program “Modes Estimation”, the second mode frequency and the
corresponding modal damping are obtained and recorded as Block 0. This
procedure is called the PRE-TEST. It is important to note that in the pre-
tests, both accelerometers must be placed as described in Figure 3-13.

After the pre-tests another test was performed, the Load blocks. Its purpose
1s to subject the specimen to a specific random acceleration load through the
Modal Shaker for time desired by the operator.

It was made using LabVIEW programs called “Accelerometer Test”, Figure
3-18. It generates a random Gaussian noise signal with a certain standard
deviation (which is related to the load magnitude). This signal then passes
through a bandpass filter to excite the specimen only within a specific
frequency range, namely around the second resonant frequency. To make the
tests feasible in terms of time, the frequency range must not be too wide nor
too narrow as it would cause resonance and the specimen might break in a
few minutes. A frequency range +20 was considered in this thesis.
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Figure 3-18: Frontal panel of the "Accelerometer Test" program

In the program’s front panel, Figure 3-18, it can be set the type of the random
acceleration signal (Gaussian noise was used), the value of the standard
deviation (value of 2 is chosen by [15]), the bandpass filter’s upper and lower
cut-off frequencies, and the desired test duration.

During the load block test, the tip accelerometer was removed, keeping only
the base accelerometer. However, it was kept only for few second at the
starting of each load block test to record the specimen tip acceleration. The
acceleration values from both accelerometers were saved in an external file
as to be used later in data processing.

Load block test was repeated for fixed time duration (1 hour) until the
specimen breaks, of course at notch 1. It is important to note that after each
load block test, the pre-test was done again to obtain the new natural
frequency and damping ratio. These new values were recorded as Block X,
where X is the number of the previous load block test done. For example:
Block 2 FRF measurements means that the second mode frequency and modal
damping are obtained by the pre-test after completing the second load block
test (as a total, the specimen is tested until now for two hours).

Finally, the tests sequence is represented on the flowchart in 0

3.4 Test Plan

Following the test procedure described in section 3; 30 CP780 steel specimens
were available for testing. They were numbered B01, B02...B30.

The goal was to do the test at three different amplification factors. For each
amplification factor, three different specimens must be tested. In total, I had
to perform the test for nine different CP780 specimens. Each specimen was
tested according to procedure described, until its rupture.
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Load block tests were done according to the setting reported in Table 3-4,
where f, is the second mode natural frequency obtain from the pre-test.

Setting Value
Applied signal White gaussian noise
Standard deviation 2
Lower cut-off frequency fn — 20Hz
Upper cut-off frequency fn + 20Hz
Test duration 1 hour
Acceleration data recording duration!? 60 seconds

Table 3-4: "Accelerometer test" program settings

3.4.1 Acceleration Profile

During each load block test, samples of the excitation acceleration were
taken, by recording for 60 seconds the base acceleration measured with the
base accelerometer. Figure 3-19 shows the probability density function (PDF)
of specimen B05 base acceleration. It is well-approximated to a zero-mean
Gaussian distribution (in orange), confirming the assumption of a Gaussian
noise. A similar analysis can be done for the tip acceleration of BO5 measured
by means of the tip accelerometer, as shown in Figure 3-20.
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Figure 3-19: PDF of the base acceleration of specimen B05.

1 The acceleration data recording duration is the time desired to record the acceleration
values from the tip and base accelerometers. The recorded values are saved in an external
file for further use.
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Figure 3-20: PDF of the tip acceleration of specimen B05

3.4.2 Amplification Factor

As already said, tests must be done for different amplification factor. Rotating
the amplifier wheel, amplifier can be set for different values.

Amplifier PA-1200 described in section 3.1.1, has amplification range
between 0 and 10. In this thesis, we want to consider only three amplification
factors. In this subsection we will discuss how these three factors were
determined.

Applying an amplification factor of value equal to 2, the specimen did not
vibrate because the output signal was too week. Therefore, our starting point
was 2.5.

Four preliminary amplification factors were chosen. For each factor, one
specimen was tested according to Table 3-5.

Specimen Amplification Factor

B02 3
B03 3.5
B04 4
BO05 2.5

Table 3-5: Preliminary amplification factors chosen

The results of specimens B02, B03, and B04 tests are reported in Table 4 3.
The results of specimen B05 test are reported in Table 3-7.
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Specimen B02 B03 Bo4
Amplification 3 3.5 4
Mode | Block Time Freq. Damp. | Time Freq. Damp. | Time Freq. Damp.
(min) (Hz) (%) |(min) (Hz) (%) |(min) Hz) (%)
0 0 7389 211 0 69.56 2.68 0 7775 3.14
1 60 73.21 2.49 60 68.87 2.15 38 Rupture
2 2 60 7250 2.75 56 Rupture
3 60 80.48 2.09
4 47 Rupture
Total time (min) | 227 116 38

Table 3-6: B02, B03, and B04 specimens’ tests results

Specimen B05 Amplification 2.5 Mode 2
Block Time Freq. Damp. Block Time Freq. Damp. Block Time Freq. Damp.
(min) (Hz) (%) (min) (Hz) (%) (min) (Hz) (%)

0 0 8594 171 14 60 83.21 1.83 28 60 83.21 1.87
1 60 83.89 1.50 15 60 8253 1.69 29 60 83.21 1.87
2 60 85.26 2.15 16 60 83.21 2.22 30 60 83.21 1.69
3 60 85.26 1.75 17 60 83.21 1.88 31 60 83.21 1.69
4 60 84.58 1.79 18 60 83.21 1.77 32 60 83.89 1.65
5 60 84.58 1.98 19 60 83.21 2.15 33 60 83.89 1.65
6 60 83.89 1.58 20 60 83.21 2.10 34 60 83.21 1.65
7 60 83.89 2.39 21 60 83.21 1.98 35 60 83.21 1.65
8 60 83.89 1.89 22 60 83.21 2.00 36 60 83.21 1.65
9 60 83.89 1.68 23 60 83.21 1.87 37 60 83.21 1.65
10 60 83.89 1.50 24 60 83.21 2.05 38 60 83.21 1.65
11 60 83.89 1.22 25 60 83.21 2.22 39 60 83.21 1.65
12 60 83.21 1.86 26 60 83.21 2.18 | 40 60 83.21 2.16
13 60 83.21 1.92 27 60 83.21 1.66 Total 2400 min

Table 3-7: B05 specimen’s tests results with amplification factor 2.5

As 1t can be observed from Table 3-6, setting the amplifier for value equal to
4, the specimen broke in less than one hour, more precisely in 38 minutes.
This result may not be accepted because we need to perform the fatigue test
for longer time to analyze the results later.

For amplification factor equals to 2.5, 40 load block tests were done, 1.e. the
specimen was tested for 40 hours. Unfortunately, the specimen did not break.

Finally, the three amplification factors selected are 2.75, 3, and 3.25.
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3.5 Test Results

The experimental tests were performed for nine specimens, each three
specimens with one amplification factor, as described in Table 3-8.

Specimen Amplification Factor

B10, B11, B18 2.75
B12, B13, B14 3
B15, B16, B17 3.25

Table 3-8: Experimental test specimens

After each load block test (of one hour), the modal parameters, i.e. the second
modal frequency and modal damping are obtained by performing the pre-test,
and the results are recorded as shown in Table 3-9, Table 3-10, and Table
3-11. It is important to note that the modal parameters in Block 0 are the
initial values.

Amplification factor = 2.75

Specimen B10 B11 B18
Mass (g) 115.9 117.3 116.7
Mode | Block Time Freq. Damp. | Time Freq. Damp. | Time Freq. Damp.
(min) (Hz) (%) |(min) (Hz) (%) |(min) Hz) (%)
0 0 88.67 248 0 90.72 225 0 8594 244
1 60 85.26 2.81 60 90.72 2.25 60 83.89 2.52
2 60 85.26 1.95 60 90.72 2.25 60 83.89 2.52
3 60 85.26 1.95 60 90.72 2.25 60 83.89 2.25
2 4 60 85.26 1.95 8 Rupture 60 83.89 2.25
5 5 Rupture 60 83.89 2.89
6 60 83.89 2.89
7 40 Rupture
Total time (min) | 245 188 400

Table 3-9: B10, B11, and B18 specimen tests with AF 2.75
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Amplification factor = 3

Specimen B12 B13 Bi14
Mass (g) 114.6 116.8 116.4
Mode | Block Time Freq. Damp. | Time Freq. Damp. | Time Freq. Damp.
(min) (Hz) (%) |(min) (Hz) (%) |min) Hz) (%)
0 0 85.26  2.40 0 84.58 2.74 0 8594 1.96
1 60 83.21 2.50 60 83.21 2.33 60 85.94 2.28
2 2 60 83.21 1.96 60 82.53 221 60 8594 262
3 5 Rupture 19 Rupture 60 8594 223
4 48 Rupture
Total time (min) | 125 139 228
Table 3-10: B12, B13, and B14 specimen tests with AF 3
Amplification factor = 3.25
Specimen B15 B16 B17
Mass (g) 116.9 116.9 116.8
Mode | Block Time Freq. Damp. | Time Freq. Damp. | Time Freq. Damp.
(min) (Hz) (%) |(min) (Hz) (%) |(min) Hz) (%)
0 0 86.62 2.64 0 84.58 2.62 0 87.31 2.35
2 1 60 8526 2.31 60 84.58 2.53 60 81.85 2.06
2 21 Rupture 14 Rupture 1 Rupture
Total time (min) | 81 74 61

Table 3-11: B15, B16, and B17 specimen tests with AF 3.25

A graphical representation of test duration of all the tested specimens is
shown in Figure 3-21. In can be seen that increasing the amplification factor,
the time required for specimen rupture decreases.
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Figure 3-21: Test duration of tested specimens
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4  Fatigue Analysis and Discussion

4.1 Data Processing

Starting from the acceleration time-histories obtained from both
accelerometers, the tip accelerometer and the base accelerometer, and
applying the fatigue models, described in section 2.6, the fatigue life of each
specimen can be calculated by the procedure described below.

This procedure must be done for each load block in each specimen, and it
consists of three main stages:

1. PSD analysis;
2. Stress calculation;
3. Fatigue analysis or fatigue life calculation.

These three stages are described in detail in the following subsections.

4.1.1 PSD Analysis

Random vibration environments, normally deal in terms of the power spectral
density PSD, which is measured in gravity units [G] so that it is
dimensionless. That is, the acceleration is divided by the acceleration of
gravity [26]:

a acceleration
g  gravity

(dimensionless) (35)

Random vibration PSD curves can come in a wide variety of shapes,
depending on the type of condition the curve is trying to simulate. The square
root of the area under the input/output PSD curve represents the
input/output root mean square (RMS) acceleration level in gravity units [G].

In order to predict the probable acceleration levels, it is necessary to
understand the probability distribution functions. The distribution most often
encountered, and the one that lends itself most readily to analysis, is the
Gaussian distribution. In our case, the input and output acceleration have
zero-mean Gaussian distribution as it is shown in Figure 3-19 and Figure
3-20.

As it has been described in section 2.6.3, in Gaussian PDF, the probability
that the instantaneous acceleration lies between + 1, which 1s the RMS
value, is 68.3% of the time, the probability that it lies between + 20 is 95.4%,
and that for + 30 1s 99.73%.
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The acceleration time-histories extracted from the experiments, were
expressed in [m2/s]. Therefore, they should be converted to gravity units
applying equation (35). The acceleration RMS value (standard deviation) in

gravity units will now be expressed as Grys. What we are interested in, is
the output (response) RMS acceleration Gguys output-

G rMs,output €an be obtained experimentally from the acceleration time-history
collected by the tip accelerometer, using Excel (built-in function STDEV.S).

Another method to calculate Ggus outpur theoretically was used in previous

students’ works [35] [37] [36]. This time the response acceleration time-
histories were missing. The method is based on Mile’s Equation (section
2.6.5):

A
GRMS,output = \/E “fn-PSDi - Q (36)

From the input acceleration time-history, Gguys mpue can be obtained. Then,
the input power spectral density PSD;, can be calculated by:

G2ysi
PSD;, = _RMS,input (37)

Af

where Af is the Gaussian random vibration frequency band, in which
specimens were excited (in our case Af = f, + 20, where f, is the second
mode natural frequency).

Q, presented in equation (36), is the transmissibility (or quality factor, section
2.2.4) at the natural frequency, and it can be obtained from equation the
following equation:

Q== (38)

where { is the damping ratio. It is important to note that f, and { were
obtained from the experimental tests done.

In this thesis, both the experimental and the theoretical methods were used
and a comparison between the results is reported in Table 4-1. It in can be
seen that the ratio between the results, in each block, is approximately
constant with an average value of 2.34.

Fatigue life calculations was done using both values.

54 Random Fatigue Behaviour of Steel by Means of Vibrational Parameters



4 Fatigue Analysis and Discussion

G RMS Response
AF | Specimen | Block Exp. Theor. |Ratio Theor/Exp
1 12.16  26.18 2.15
2 11.88  24.61 2.07
B10 3 12.58  25.67 2.04
4 12.58  25.67 2.04
5 12.58  25.67 2.04
1 12.52  27.85 2.22
2 12.52  27.85 2.22
B11
3 12.52  27.85 2.22
2.75
4 12.52  27.85 2.22
1 10.47  23.27 2.22
2 10.47  23.27 2.22
3 10.60 25.28 2.39
B18 4 10.60  25.28 2.39
5 10.69  23.04 2.16
6 10.69  23.04 2.16
7 10.94  23.25 2.13
1 15.50  35.03 2.26
B12 2 14.14  33.16 2.35
3 14.15 34.09 2.41
1 14.96  34.04 2.28
3 B13 2 14.57  37.31 2.56
3 14.61 37.70 2.58
1 11.91 31.23 2.62
B14 2 11.67  34.75 2.98
3 11.64  28.30 2.43
4 11.31 31.84 2.81
1 16.43 37.87 2.30
B15
2 14.93 38.86 2.60
1 17.31 36.21 2.09
3.25 B16
2 16.95 36.23 2.14
1 16.88  37.90 2.25
B17
2 11.12 35.76 3.21
Average 2.34

Table 4-1: G RMS response obtained experimentally and theoretically

4.1.2 RMS Stress Calculation

As said before, the most stressed point on the specimen is Notch 1. Therefore,
in order to calculate the RMS bending stress, a lumped model for part A of
the specimen, shown in Figure 4-1, is assumed. Part A is modelled as a
cantilever beam of length L with a rectangular cross-section and a
concentrated mass, m,g, at its free end.
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L = 0.121 m s the length of part A (Figure 4-1), and m., = 0.445 * Mypecimen

is the mass of part A in [kgl. Then, the RMS bending stress can be calculated
as follows:

M
S1c =Y [MPa] (39)

where I is the second moment of area in [m4], Y is the vertical distance away
from the neutral axis in [m], and M is the bending moment in [N.m].

Y = h/z =0.000625 m where h = 1.25mm is the specimen’s thickness.

The second moment of area I can be evaluated by:

bh3
I= - = 1.156 * 1012 ;m* (40)

where b = 0.0071 m is the notch length as shown in Figure 4-1.

oy Fixed end

7/ ‘}cam

y F

L Free end carrying mass, m

Figure 4-1: Part A of the specimen (left), and its lumped model (right)

The bending moment M can be obtained from the following equation:

M=K « meq * L« GRMS,output (41)

K is the stress concentration coefficient. K can be used in the stress equation
or in defining the slope b of the S-N fatigue curve for alternating stresses. The
stress concentration should be used only once in either place. For this work,
a stress concentration factor K=2 was used in the stress equation.

Once S, 1s obtained, the stresses corresponding to the 26 and 3o
acceleration levels are:

S26 = 2815
S35 = 3816

(42)

4.1.3 Fatigue Analysis

For fatigue life calculation, root mean square (RMS) stress quantities,
obtained from the previous step (subsection 4.1.2), are used in conjunction
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with the standard fatigue analysis procedure. The following procedure, which
consists of three steps, explains how to calculate the fatigue life using one of
the most common approaches: The Steinberg 3-Band Technique (described in
section 2.6.4) using Miner’s Cumulative Damage Ratio (described in section
2.6.3) [26].

Step 1:

The first step is to determine the number of stress cycles needed to produce a
fatigue failure. The approximate number of stress cycles, N7, N5, and N3
required to produce a fatigue failure in the specimen for the 10, 20 and
30 stresses respectively, can be obtained from the S-N diagram of the tested

specimen. S-N diagram of specimen’s material used can be estimated using
Bastenaire Model, as shown in Figure 4-2 [37] [42]:

exp| -]

0O —0y4

N=4 (43)

where a4 is the endurance limit in [MPal; For steel can be assumed as half
the UTS, therefore from Table 3-2, 6; = 405 MPa.

A, B, and C are parameters such that: A= 2.3E+07, B=165, and C=5.

400 T

— Valeurs expérimentales
— Modéle de Basquin

—— Modeéle de Stromeyer ||
— Modéle de Bastenaire
300 —

Modéle Convenable

250 =

350 —

£ 200 -
@

150 — =

100 —

; ;
0 1 2 3 4 5 5 7 3 9 10
& x10°

Figure 4-2: Modeling of the Wohler curve (blue) by the Bastenaire model (red).

Step 2:

From the Steinberg 3-Band method, the actual number of fatigue cycles nq,
Ny, and N3 accumulated during time, &, of vibration testing can be

obtained from the percent of time exposure for the 10, 20 and 30 stresses
respectively, using the following equation:

%texposure (44)

n [CyCIeS] = fn[HZ] * ttest[sec] * 100
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fn is the specimen’s natural frequency (in our case, the second mode).
Considering 68.3% of the time at 1a, 27.1% of the time at 20, and 4.3% of the
time at 30, then we can obtain:

Nig = fn* tiest * 60 60 x 0.683
Nyy = fn * trese * 60 % 60 x 0.271 (45)
N3y = fn* tiest * 60 * 60+ 0.043

Step 3:

Last step is to calculate the Miner’s cumulative fatigue damage ratio. From
the values obtained in step 1 and step 2, we can have:

3
n, n; MN; N3
d=) EttplZild 46
k—1Nk Ny N; N3 (46

Note that, the damage ratio d, obtained above, is not the total damage ratio
of the tested specimen. In fact, for each specimen, the damage ratio d must
be calculated for every load block till rupture, and the total damage ratio is
the summation of the obtained values.

Therefore, the total Miner’s cumulative fatigue damage ratio is:

m
Diotar = z d; (47)
i=1

where m 1s the number of the load blocks. As an example, the specimen B02,
reported in Table 3-6, was tested for 4 load blocks, i.e. m is equal to 4.

4.2 Fatigue Analysis Results

Following the procedure described above, the results obtained for each
specimen using both the experimental and the theoretical response GRMS,
are reported in the following tables:

4.3 Discussion
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Appendix A Flowchart of Excitation Signals
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Appendix B Clamping Elements Sketch
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Appendix C Specimen Sketch
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Appendix D Experimental Tests Flowchart
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