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Summary

The aims of this work, written jointly between Politecnico di Torino and Institut de Mé-
canique et d’Ingénierie - Université de Bordeaux, are the study of adhesive composite
bonded joints and the assessment of theMUL2 CODE, a software developed by theMUL2

Research Group - Department of Mechanical and Aerospace Engineering of Politecnico di
Torino (DIMEAS), for the accurate stress analysis of composite structures. The MUL2

CODE is implemented through the Carrera Unified Formulation (CUF) for 1D structures
based on Hierarchical Legendre Expansion (HLE) polynomials.
In the first part of the thesis, the adhesive bonding techniques are investigated and a com-
parison with mechanical joints is shown: the adhesive bonding method does not provoke
preliminary damages as the mechanical bonding (riveting or drilling) which cause locally
concentrations of stresses. For this reason, adhesive joints are more and more used in
aerospace and mechanical engineering, which require high performances and versatility.
On the other hand, adhesive technology on composite structures represents a challenge for
several reasons: first of all, the progressive switch from metallic structures in favour of com-
posites, then the impossibility to carry out a direct inspection of each element and, at last,
the complex numerical study of the adhesive joints. In order to reduce the computational
cost of analysis, CUF 1D is used, according to which the three-dimensional displacements
field can be expressed as an arbitrary expansion of the generalized displacements. This
theory is able to reduce a 3D problem into a 1D problem whose one-dimensional elements
are computationally simpler, but very efficient for the lap analysis, than 3D models.
In the second part, the numerical results for different types of joints (butt joint, single lap
joint and hybrid-adhesive double lap joint) are presented. TheMUL2 CODE can perform
studies with two approaches: the first models the structure through its own thickness,
managing to evaluate stress and strain field modelling the lap joint as a thick plate with
many composite layers, the latter approach models the structure through its longitudi-
nal axis, enabling to make the most of the beam one-dimensional representation of the
joint. Results obtained with the code have been validated through literature benchmarks,
a parametric Python code and the commercial finite element package ABAQUS, demon-
strating the solidity of the software. Finally, an examination of crack propagation in a
cohesive element is proposed.
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Sommario

Gli obiettivi di questa tesi, scritta in unione tra il Politecnico di Torino e l’Institut de
Mécanique et d’Ingénierie - Université de Bordeaux, sono lo studio dei giunti incollati in
materiale composito e la validazione del MUL2 CODE, un software sviluppato dal MUL2

Research Group - Dipartimento di Ingegneria Meccanica e Aerospaziale del Politecnico di
Torino (DIMEAS). Tale codice è implementato attraverso la Carrera Unified Formulation
(CUF) per le strutture 1D e basato sull’espansione polinomiale di Legendre (Hierarchical
Legendre Expansion, HLE).
Nella prima parte della tesi, sono studiate le tecniche di incollaggio ed è proposto un con-
fronto con le giunzioni meccaniche: il metodo di giunzione adesiva non provoca danneggia-
menti preliminari come il metodo di giunzione meccanica (utilizzo di rivetti o perforazioni
con trapano) che causano concentrazioni locali di stress e, perciò, è sempre più utilizzato
nell’ingegneria aerospaziale e meccanica, le quali richiedono elevate performances e versa-
tilità. Dall’altro lato, la tecnica dell’incollaggio sui materiali compositi rappresenta una
sfida per diverse ragioni: innanzitutto a causa del progressivo abbandono delle strutture
metalliche in favore dei compositi, poi per l’impossibilità di effettuare una ispezione diret-
ta di ogni elemento e, infine, per il complesso studio numerico di questi elementi. Al fine
di ridurre il costo computazionale delle analisi, la CUF 1D può essere impiegata con suc-
cesso, secondo la quale il campo di spostamenti tridimensionale può essere espresso come
una espansione arbitraria dei generici spostamenti: questa teoria è in grado di ridurre un
problema 3D ad un problema 1D i cui elementi unidimensionali sono computazionalmente
più semplici, ma molto più efficienti per le analisi dei giunti, rispetto ai modelli 3D.
Nella seconda parte della tesi, sono presentati i risultati numerici per i diversi tipi di giunti
studiati (butt joint, single lap joint e hybrid-adhesive double lap joint). Il MUL2 CODE
può realizzare analisi in due modi differenti: il primo modella la struttura attraverso il
suo spessore, riuscendo a valutare il campo di spostamenti e tensioni modellando il lap
joint come una piastra spessa costituita da molti layers in composito, il secondo approccio
modella la struttura lungo il suo asse longitudinale, riuscendo così a sfruttare a pieno la
rappresentazione del lap joint come una trave unidimensionale proposta in questo lavoro.
I risultati ottenuti con il codice sono stati validati con dei casi di studio da letteratura,
un codice Python parametrico e il software commerciale agli elementi finiti ABAQUS, di-
mostrando così la solidità di tale software di calcolo. Infine, è proposta una analisi della
propagazione del danno in un elemento coesivo.
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Chapter 1

Elasticity and classical 1D and 2D
theories

1.1 The Hooke’s law for orthotropic materials
The early studies about the correlation between mechanical strain and deformation on solid
bodies were made by Robert Hooke who stated that each solid body warps by shortening
or by extending when stressed and such deformation vanishes if stress is removed.
Hooke resumed this fundamental physical principle in the Latin statement “Ut tensio, sic
vis”, i.e. it’s actually that stress (tensio) which allows the body to develop an opposite
reaction (vis) to the external loads applied; a direct proportionality between stress and
strain can be defined by virtue of the Hooke’s Law:

σ = c ε (1.1)

where σ is the stress tensor, c is the elastic stiffness tensor of the material and, at
last, ε is the strain tensor. If the tensors above are described in terms of components with
respect to an orthonormal coordinate system, it is possible to write:

σij = cijkl εkl (1.2)

but, since the stress and strain tensors are symmetric, for an anisotropic material the
tensor c has the following tensorial symmetries:

cijkl = cjikl cijkl = cijlk cijkl = cklij , with i, j, k, l = 1,2,3 (1.3)

Hence, using the Voigt’s notation [52][12]:

σi = Cijεi, i, j = 1, . . . , 6 (1.4)
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1 – Elasticity and classical 1D and 2D theories

with:

{σ} =



σ1
σ2
σ3

σ4 = τ23
σ5 = τ13
σ6 = τ12


{ε} =



ε1
ε2
ε3

ε4 = 2ε23 = γ23
ε5 = 2ε13 = γ13
ε6 = 2ε12 = γ12


(1.5)

and [C] ∈ R6x6 as the stiffness matrix, the generalized Hooke’s law can be rewritten
as follows:

{σ} = [C] {ε} (1.6)

A completely anisotropic material is characterised by 21 independent elastic compo-
nents[12], but anisotropic materials (as composites) present often some material symme-
tries, providing an identical mechanical behaviour with respect to a set of the equivalent
directions. The orthogonal symmetry with respect to a plane reduces the 21 elements of
the stiffness matrix to 13 because of these relations:

C41 = C42 = C43 = C46 = C51 = C52 = C53 = C56 = 0 (1.7)

and this type of material is called monoclinic.
The symmetry with respect to three orthogonal planes reduces the 13 elements of the
stiffness matrix to only 9 introducing these relations:

C61 = C62 = C63 = C45 = 0 (1.8)

and such a kind of material is called orthotropic. Thus, the complete expression of the
stiffness matrix for an orthotropic material is the following:

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(1.9)

Introducing the Young’s modulus E, the mathematical formulation of eq. 1.1 becomes:

σ = E ε (1.10)

The Young’s modulus (usually measured in [GPa]) quantifies the stiffness of the ma-
terial and it is, thus, the direct expression of the toughness, that it’s shown elastically, to
the shape change of the material subjected to stress.
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1 – Elasticity and classical 1D and 2D theories

The Shear modulus G is described by a function of E :

G = E

2(1 + ν) (1.11)

and considering ν as the Poisson’s ratio, eq. 1.6 and 1.9 can be joined in order to state:



σ1
σ2
σ3
τ23
τ13
τ12


=



1−ν23ν32
E2E3∆

ν21+ν23ν31
E2E3∆

ν31+ν21ν32
E2E3∆ 0 0 0

ν21+ν23ν31
E2E3∆

1−ν13ν31
E1E3∆

ν32+ν12ν31
E1E3∆ 0 0 0

ν31+ν21ν32
E2E3∆

ν32+ν12ν31
E1E3∆

1−ν12ν21
E1E2∆ 0 0 0

0 0 0 G23 0 0
0 0 0 0 G31 0
0 0 0 0 0 G12





ε1
ε2
ε3
γ23
γ13
γ12


(1.12)

where

∆ = (1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13
E1E2E3

(1.13)

is the determinant of the stiffness matrix in eq. 1.12.
Reversing the equation, the Compliance Matrix [S] can be written as:

{ε} = [S] {σ} (1.14)

which can be reformulated as:

S =



S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66


(1.15)

whose complete expression is:


ε1
ε2
ε3
γ23
γ13
γ12


=



1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12
E1

1
E2

−ν32
E3

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12





σ1
σ2
σ3
τ23
τ13
τ12


(1.16)
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1 – Elasticity and classical 1D and 2D theories

1.2 Theories of structure
In reality, each structural problem is a three-dimensional solid; in structural mechanics,
talking about solids means referring to structural problems in which the three dimensions
through x, y and z have the same dimension and none of them is negligible and, so for
that reason, the displacements field depends on the three coordinates (as seen before:
u = u(x, y, z)). The displacements u of any point of the body can be written as:

u(x, y, z) =
î
ux, uy, uz

ïT
(1.17)

and, in fact, the functions ux(x, y, z), uy(x, y, z), uz(x, y, z) give the deformed state of
the body[16][10].
In order to simplify the problems, we can make a variable, for example z, dependent
on a function F (z) and reduce, in this way, the problem from the 3D to the 2D field of
study: the new displacements vector is u = F (z)u(x, y). Another simplification is possible
moving from a two-dimensional field to the 1D one, making displacements dependent no
more on the only z by introducing a new function F (x, y) which involves more than one
unknown: the displacements vector becomes now u = F (x, y)u(z).
The one-dimensional theories are interesting principally because of their simplicity and
the low computational cost if compared to 2D (plates and shells) or 3D models (solids).
Typical one-dimensional structures of structural models are beams (fig. 1.1) in which
two dimensions (the section ones) are negligible if compared to that one through the
longitudinal axis.

Figure 1.1: Clutch beam analysed with ABAQUS software.
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1 – Elasticity and classical 1D and 2D theories

In this case, since the dimension of the length l is predominant, the displacements field
is:

u = F (x, y)u(z) (1.18)

Different beam theories are used both to describe the behaviour of structures before
making more complex analysis (as in FEMmethod) and to validate exact solution obtained
through computational models. Those theories offer high accuracy levels and, among the
simplest, the most used and common there are:

• the Eulero-Bernoulli’s Theory (Euler-Bernoulli Beam Theory, EBBT): the complete
three-dimensional displacements field is expressed by a function of the section dis-
placements Ux(x), Uy(x), Uz(x) and by their derivatives through the face from which
the longitudinal x-axis comes out: the unknown displacements depend only from the
x-coordinate

• Timoshenko’s Theory: EBBT’s development and further refinement, it is based on
the shear deformations and on rotational inertia effects and it is usually applied to
short beams, beams made by composites (sandwich) or beams subjected to excitation
at high frequencies; Timoshenko’s model converges to EBBT’s classical one when the
shear coefficient G → ∞ (i.e. when the beam becomes infinitely stiff) or when inertia
effect are negligible

EBBT’s model is defined the engineer’s classical beam theory or the classical beam the-
ory because it calculates very simply the mechanical load and the subsequent deflections of
the beam. An high order theory developed from EBBT is the Sandwich Theory: it’s fun-
damental in the analysis of vehicle or aerospace structures that, for functional necessities,
are made by composites layers.

1.3 1D models: Classical Beam Theories
The theory of structural mechanics which describes beam characteristics, called Beam
Theory, is fundamental in structural analysis because is able to model every component
(both parts of machines and aerospace structures such as wings or the fuselage) in a very
simple way, using the thin-walled beam.
Stress characteristics represent the resulting force F and the resulting momentM deriving
from the internal forces which act on the beam section. The resulting force F is locally
decomposed in two components: the first is N called Normal Force and it is the component
which is perpendicular to the beam section, the latter is T called Shear Force and it is
the component which is parallel to the beam section; the normal component Mt of the
resulting moment M , which represents the torque acting in the section plane, is called
Twist Torque while Mf is called Bending Moment and it’s the component acting in a
plane which is orthogonal to the beam section.
External forces are applied to the axis[54] and, so, different forces and moments can be
described: f(s) and m(s) are respectively the distributed forces and moments per unit
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1 – Elasticity and classical 1D and 2D theories

length, F0 and Fl are the concentrated forces acting in the extremities (respectively in
abscissa s = 0 and s = l), M0 and Ml are the concentrated moments acting in the
extremities (respectively in abscissa s = 0 and s = l), Fi and Mi are respectively the
concentrated forces and moments acting in the internal points of the axis line, fv and pv
are respectively the volume forces and surface forces (fig. 1.2).

Figure 1.2: Forces and moments acting on axis.

The Indefinite equations of equilibrium can be drawn by the study of forces and mo-
ments and they represent the equilibrium of a section not subjected to concentrated forces.
Those equations, for huge displacements, depend on the bending of the deformed axis be-
cause the deformed beam axis is curved, while the informed one is straight; for little
displacements, the deformed beam axis can be assumed the same as the informed axis
and, in this way, the indefinite equations of equilibrium represent the equilibrium of a
rigid beam. The first order equilibrium equations will be formed by the 3 equilibrium
in-plane equations (two about translation and one about rotation) of an infinitive beam
length dz, neglecting the infinitesimal of higher order than the first one (fig. 1.3).

dN
dz + p = 0

dT
dz + q = 0

dM
dz +m− T = 0

Generally, the indefinite equations of equilibrium are called Navier’s equations and
they are a function of displacements; Navier’s theory[48, page 1275] [8, page 16] has not
the aim to determine the load that causes the break of the element, but the load which can
be applied on the element within leaving any permanent deformations and, for this reason,
those equations fall in the theory of elasticity which is subdivised in two principal analysis
method: the first is based on displacements formulation (Navier-Cauchy’s equations) and
the latter is based on stress formulations (Beltrami-Mitchell’s equations).
The Navier-Cauchy’s equations allows to solve static-elastic problems having only the
displacements as the problem’s unknowns, neglecting both deformations and stresses; from
the kinematic and constitutive second order equations, three scalar equations with only
displacements unknown can be written, making explicit the shear tensor T and the external
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1 – Elasticity and classical 1D and 2D theories

Figure 1.3: Equilibrium equations of a beam long dz.

forces vector. The Beltrami-Mitchell’s equations, instead, allows a stress variables problem
formulation and it can be written in the static case: deformations and displacements are
neglected from the formulation and only stresses are considered as problem’s unknowns;
deformations are calculated simply with the constitutive equation σ = E ε.

1.3.1 Euler-Bernoulli’s Model

Let consider a infinite length isotropic beam and be ux(x, y, z), uy(x, y, z), uz(x, y, z) the
displacements of any point of the beam in the three directions x, y, z; Euler-Bernoulli’s
Model is based on three kinematic hypothesis:

• beam cross-section is infinitely stiff in its plane, i.e. in-plane deformations don’t
exist. This hypothesis means that the displacements field in the plane of the beam
cross-section consists only in the two rigid body translations Uy(x) e Uz(x):

uy(x, y, z) = Uy(x) (1.19)

uz(x, y, z) = Uz(x) (1.20)

• during deformation, the cross-section remains plane, i.e. the displacements axial
field consists in a rigid body translation Ux(x) and two rigid body rotations Φy(x)
and Φz(x) and it will be, thus, an axial beam deformation (considering the sign
convention: rigid body positive translations if concordant with x, y, z; rigid body
positive rotations if around y and z):

ux(x, y, z) = Ux(x) + zΦy(x) − yΦz(x) (1.21)

• during deformation, the cross-section remains perpendicular to the deformed beam
axis: the rotation of the beam section and the inclination angle of the beam have
the same value (fig. 1.4)

Finally, the axial beam deformation on the cross-section can be written in the following
way:

7
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Figure 1.4: Deformed and informed configuration of a generic Euler-Bernoulli’s beam.

εx(x, y, z) = Σx(x) − zKy(x) − yKz(x) (1.22)
where Σ is the axial deformation of the section equal to the first derivative U’x(x),

Ky(x) is the section bending around y equal to the second derivative U”z(x) and Kz(x) is
the section bending around z equal to the second derivative U”y(x).
From the first hypothesis of Euler-Bernoulli’s theory, the deformation field in the section
plane disappears; from the second equation, the shear deformation field disappears; from
the third one, the axial deformation distribution becomes linear. The limit of this theory
is the purely kinematic hypothesis on which it states and in particular on the second
hypothesis which assumes that section remains plane after deformation and that plane
remains perpendicular to the deformed beam axis; this hypothesis involves that angular
deformations disappear on the whole section and if the constitutive law τ = Gγ is used
(where τ is the shear stress measured in [MPa], G is the shear modulus and γ is the
shear deformation equal to the fraction between longitudinal displacements due to the
shear force applied on the side of the specimen and the informed length of the side itself),
a contradiction will appear: called Fy(x) and Fz(x) the shear forces respectively in y-
direction and z-direction, the formulation will be:

Fy(x) =
Ú
A
τxy(x, y, z)dA = 0 (1.23)

Fz(x) =
Ú
A
τxz(x, y, z)dA = 0 (1.24)

(A is the infinitesimal area on which the shear force acts), thus the shear forces and
relating γ will be equal to zero and the shear stress, in this way, will be neglected: there-
fore, the shear distribution along the section can’t be uniform as it was supposed at the
beginning. To overcome that contradiction, Timoshenko introduced a new theory which,
in contrast to Euler-Bernoulli’s model, doesn’t neglect the shear influence on the beam.

8
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1.3.2 Timoshenko’s Model

The kinematic hypothesis of Timoshenko’s model [47] states that, even if the sections
remain plane, the squareness between the elastic line and the beam section disappears;
in the quasi-static case1, inertial effects are supposed to be negligible. Therefore, the
displacements of a generic point of the beam can be expressed as:

u(x, z) = u0(x) + ϕ(x)z (1.25)

w(x, z) = w0(x) (1.26)

here u0(x) and w0(x) are the displacements of the centre of gravity of the section and
ϕ(x) is the rotation of the section around the vertical axis (fig. 1.5).

Figure 1.5: Timoshenko’s beam deformation. The angle of rotation is θx = ϕ(x), which is not equal to
the displacement variation ∂w

∂x
.

The Timoshenko’s model for a quasi-static case is the same described by Euler-Bernoulli’s
model if the displacement ∂w

∂x is negligible, i.e. if this approximated relation is true:

EI

κL2AG
¹ 1 (1.27)

where L is the length of the beam, A is the cross-section, E is the Young’s modulus, G
is the shear modulus, I is the Moment of inertia of plane area2 and κ is the Timoshenko’s

1A quasi-static transformation is a transformation which takes place in an extremely slow way, so
that the system, changing from an initial state of equilibrium to a final equilibrium state, passes through
infinite equilibrium states, separated each other both by infinitesimal transformations and by infinitesimal
properties variations of the system. The word quasi-static is preferable to the static one because real
systems are considered in which forces don’t stop instantly their actions, but they still act on the system
for an infinitesimal time.

2The Moment of inertia of plane area is the geometric property of an area which refers to the distribution
of its points in respect of a reference axis.
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coefficient depending on beam geometry (κ is almost 5/6 for a rectangular cross section
beam).
The boundary conditions which allows to apply Timoshenko’s model to a quasi-static case
are two and they are true for two different situations:

• Beam sustained by two ties: the displacement w is zero in the point when the two
ties act, the bending moment Mxx can be calculated, while the rotation ϕ and the
shear force Fx are not defined, but they have to be supposed or obtained by FEM
analysis on the whole beam length

• Clamped beam: the displacement w and rotation ϕ in the point on which the bond
acts are zero; if the other extremity isn’t bonded at all, the bending moment Mxx

and the shear force Fx can be calculated

1.4 2D Plane Stress Theory

In the finite element method, a plate loaded in its midplane (which lies halfway between
the two faces of the plate) is said to be in a state of plane stress, or a membrane state, if
the following assumptions hold[33]:

• All loads applied to the plate act in the midplane direction and are symmetric to
the midplane

• All support conditions are symmetric to the midplane

• In-plane displacements, strains and stresses can be taken to be uniform through the
thickness

• The normal and shear stress components in the z direction are zero or negligible
(σzz, σxz, σyz)

• The plate is transversely homogeneous

The thickness h of the plate should be small, typically 10% or less than the shortest
in-plane dimension of the plate itself; if the fourth hypothesis is not true, i.e if z-stresses
are accepted, the behaviour of the plate will be the so-called generalized plane stress state
in which εz = cost, thus the strain through the thickness is constant: the plane strain
state is obtained if strains in the z-direction are precluded.
The mathematical model of a plate in plane stress is set up as a two-dimensional boundary
value problem (BVP), in which the plate is projected onto its midplane and this allows to
formulate the BVP over a plane domain Ω with a boundary Γ (fig. 1.6)[33]. In this way,
the third dimension is represented as functions of x and y that are integrated through the
plate thickness z: most plates used as structural components have constant thickness, but
if the thickness changes (in these cases the formulation for thickness will be h = h(x, y), so
depending on x- and y-coordinates), to maintain the plane stress state, the variation of h
should be gradually because sudden changes in thickness may lead to stress concentrations.
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Forces can be assumed acting in the interior Ω of the plate; two types of forces can act:
the body forces (or volume forces) are forces per unit of plate volume, such as the weight
of the plate; face forces, instead, act tangentially to the plate faces and they are referred
to the midplane, such as friction and it’s fundamental knowing if these forces are specified
per unit of surface area or per unit length. Let assume that the plate material is linearly
elastic: the unknown fields are displacements, strains and stresses.
The in-plane displacement field is defined by two components:

u(x, y) =
C
ux(x, y)
uy(x, y)

D
(1.28)

Figure 1.6: A plate structure in plane stress: 2D mathematical idealization as boundary value problem.

The transverse displacement component uz(x, y, z) (which depends on z) is generally
not negligible because of Poisson’s ratio effects.
The in-plane strain field forms a tensor defined by three independent components:

ε(x, y) =

εxx(x, y)
εyy(x, y)
γxy(x, y)

 (1.29)

In this formulation, εxz and εyz are negligible, instead the normal strain εzz is generally
not negligible because of Poisson’s ratio effects although it will not appear in the governing
equations because the associated stress σzz is zero.
The in-plane stress field forms a tensor defined by three independent components: σxx ,
σyy and σxy. As in the previous case of strains, these three components are cast to form
a stress vector:

σ(x, y) =

σxx(x, y)
σyy(x, y)
τxy(x, y)

 (1.30)
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and the remaining stresses σzz, σxz and σyz can be negligible.
Ignoring the initial strain effects ε0 and using the Hooke’s law and Young’s Modulus,
stresses have this mathematical formulation:

σ =


σxx
σyy
τxy

 = C


εxx
εyy
γxy

 (1.31)

where C is the Elasticity Matrix and, so, it is possible to extract the strain formulation
as follows:

ε = C−1σ (1.32)

and impose the condition of plane stress.
The plate internal forces can be obtained integrating stresses components through the
thickness and, if an uniform stress distribution is considered, the forces can be written as
follows:

pxx = σxx hpyy = σyy hpxy = σxy h (1.33)

1.4.1 Governing equations

The three internal fields shown before (displacements u, strains ε and stresses σ) are
connected by three field equations: kinematic, constitutive and internal-equilibrium equa-
tions[33][14].

1.4.1.1 Strain

If initial strain effects ε0 are ignored, the total strain at any point within the element can
be defined by its three components which contribute to internal work; thus:εxxεyy

γxy

 =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 C
ux
uy

D
= Du (1.34)

where D is the matrix with partial derivative operators and considering both the
displacement of a node having two component:

ai =
I
ui
vi

J
(1.35)

and the six components of element displacements:

ae =


ai
aj
am

 (1.36)

we obtain, by substituting:
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ε = Bae = [Bi, Bj , Bm]


ai
aj
am

 (1.37)

where the matrix B is given by:

B = DNi =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x

 (1.38)

in which Ni are the displacement functions which automatically guarantees continuity
of displacements with adjacent elements because the displacements vary linearly along
any side of the geometry and, if the same displacement is imposed at the nodes, the same
displacement will exist all along the interface of the plate.

1.4.1.2 Elasticity matrix - isotropic material

By definition[33][14], for plane stress in an isotropic material we have:

εxx = σxx
E

− νσyy
E

(1.39)

εyy = −νσxx
E

+ σyy
E

(1.40)

γxy = 2(1 + ν)τxy
E

(1.41)

and we can obtain the Reduced Stiffness Matrix Q as follows:

Q = E

1 − ν2

1 ν 0
ν 1 0
0 0 (1 − ν)/2

 (1.42)

in which E is the elastic modulus and ν is Poisson’s ratio and considering

G = E

2(1 + ν) (1.43)

1.4.1.3 Elasticity matrix - anisotropic material

As seen in section 1.1, in order to completely describe the three-dimensional mathematical
relationships between stress and strains in an anisotropic material, 21 independent elastic
constants are necessary[33]. Let not consider a three-, but a two-dimensional analysis: a
symmetry of properties is now possible and only six independent constants can be written
in the Q matrix:
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1 – Elasticity and classical 1D and 2D theories

Q =

d11 d12 d13
d22 d23

d33

 (1.44)

A transversely stratified isotropic material, whose rotational symmetry of properties
exists within the plane of the layers, possesses only five independent elastic constants and
the general mathematical relationships between stress and strains are:

εxx = σxx
E1

− ν2σyy
E2

− ν1σzz
E1

(1.45)

εyy = −ν2σxx
E2

+ σyy
E2

− ν2σzz
E2

(1.46)

εzz = −ν1σxx
E1

− ν2σyy
E2

+ σzz
E1

(1.47)

γxz = 2(1 + ν1)
E1

τxz (1.48)

γxy = 1
G2

τxy (1.49)

γyz = 1
G2

τyz (1.50)

in which the constants E1 and ν1 (from which G1 depends on) are linked to the
behaviour of each layer and E2, ν2 and G2 are linked to the behaviour of a direction
normal to the plane. The Q matrix in two dimensions, considering generally E1/E2 = n
and G2/E2 = m, becomes:

Q = E2
1 − nν2

2

 n nν2 0
nν2 1 0
0 0 m(1 − ν2

2)

 (1.51)

To compute rotation of the layers in the matrix, the Transformation Matrix T should
be introduced: this matrix relates stresses and strains (C’) in the inclined coordinate
system, obtaining the C matrix in the universal system of coordinates (fig. 1.7):

Q = TQÍT T (1.52)

where

T =

 cos2θ sin2θ −2sinθcosθ
sin2θ cos2θ 2sinθcosθ

sinθcosθ −sinθcosθ cos2θ − sin2θ

 (1.53)

Now, stresses and strains can be written as:

14
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Figure 1.7: Rotation of axes.

σÍT εÍ = σT ε (1.54)

εÍTQÍε
Í = εTQε (1.55)

1.4.2 Boundary conditions

Typical loading and boundary conditions for plane stress problems are forces or distributed
forces[17] applied over the thickness of the plate and the supports can be fixed points or
fixed edges or roller supports.
The displacement boundary conditions are:

u = û (1.56)

where û are prescribed displacement and it is often negligible in fixed portions of the
boundary. Instead, force boundary conditions (also called BCs and traction BCs in the
literature) can be expressed in the form:

σ = t̂ (1.57)

where t̂ are the surface tractions specified per unit area.
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Chapter 2

An overview on adhesive bonded
joints

Adhesive bonded joints represent an increasingly accepted alternative to mechanical joints
in engineering applications and provide many advantages over conventional mechanical
fasteners. With the development of industries, aluminium became the principal structural
material and riveting the most used technique, but from 70s, during which the aerospace
engineering (fig. 2.1) had to face the request of better performances, less consumes and
better cost-effectiveness, the bonding solution went back on favour in military and civil
field.

Continuous junction techniques (welding and bonding) are better than discontinuous
ones (riveting and bolting) to match ductile or fragile, isotropic or anisotropic materials,
especially for composite materials which are made by several layers bonding one upon the
other one. Even more, mechanical joints require a preliminary drilling and, so, a little
destruction of the elements to be joined (for example, in composite materials, interrup-
tion of the fibres), that for sure cause localized material damage and stress concentration,
especially for anisotropic laminates characterized by high stress concentration factors and
easy drilling damaging, with significant decrease of the load-carrying capacity of the joined
elements. These situations are even more demanding for advanced composites structures
because they are brittle and lack of ductility to redistribute loads.
To overcome this limit, hybrid joints, obtained by the superposition of a mechanical joint
to a simple adhesively bonded joint, are more and more used in engineering features: ad-
hesively bonded joints are characterized by high stiffness and good fatigue life, even if
delamination phenomena localized mostly near the free edges may limit their use, espe-
cially for applications where corrosive environments and moisture can lead to premature
failure of the bonding, as in aerospace engineering[31].
The use of bonded joints permits to obtain components characterized by good stiffness,
lightweight, good static and fatigue strength, thanks especially to the absence of signifi-
cant notch effects on the components to be joined together[29]. It is possible to compare
mechanical bonded and adhesively bonded joint’s characteristics with simple experimental
tests[21] (fig. 2.2 and fig. 2.3): the tensile strength and the damage mechanisms under
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2 – An overview on adhesive bonded joints

Figure 2.1: Modern aircraft: in black the bonded parts.

static stress are determined by tensile tests performed by using a MTS 810 servo-hydraulic
testing machine on two specimens and, according to ASTM standard[6], all the experimen-
tal tests have been carried out under a constant crosshead speed of 1 mm/min: the adhe-
sively bonded joint shows a linear behavior until failure and, analyzing the corresponding
fracture surface, it’s evident that the failure of the joint is caused by the adhesive failure
(which propagates from the attach edge of the more compliant adherent) at the interface
with the aluminum alloy adherend. The mechanical riveted specimen, with aluminum and
steel rivets, initially exhibits a linear behaviour, followed by a successive elasto-plastic
phase, then a final phase characterized by a load decrease, up to the complete failure of
the joint which continues until the end of the test.
Both the specimens (that one made by aluminium adhesive and that one with steel rivets)
exhibit the same stiffness in the elastic and elasto-plastic phases, but the loads of the
linearity deviation are different (about 3 kN and 6 kN for the first and the latter, respec-
tively) and also the tensile strengths are different (about 5 kN for the first specimen with
aluminum and 8.5 kN for mechanical bonded one). The linearity deviation corresponds
to the transition from the initial condition of friction due to the preload of the rivet to
the secondary condition in which part of the load is transmitted through shear stresses on
the rivets: it’s evident that the specimens with steel rivets exhibit a failure load of about
70% higher than that of the specimens adhesives; instead, no significant damage of the
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adhesively aluminum joint, is observed.

Figure 2.2: Tensile stress results for different simply adhesive bonded joints (SB)[21].

In reality, discontinuous mechanical junctions are still used in engineering because
of the influence that environment features have on adhesives, their difficulties to be in-
spected and checked, although continuous joints guarantee better structural efficiency,
lower weight, thermal and electrical insulation and better aerodynamics. In summary, the
main advantages of a bonding junction are the more uniform distribution of stresses, if
compared to mechanical joints, because:

• no drillings are used and this leads to a reduction of stresses concentrations

• jointing forces are distributed uniformly on the surface

• the surface in which there is the juncture is quite huge and this implies a great
capacity of spreading loads

• bonding techniques does not modify neither chemical composition nor structure of
adherends and they can joint both very thin and very thick adherends or totally
different materials

• bonding techniques gives thermal and electrical insulation and they damp the vibra-
tions

• fatigue behaviour and damage tolerance are increased
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Figure 2.3: Tensile stress results for different simply riveted joints (SR)[21] with aluminium or steel
adherends.

• low cost

On the contrary, bonding joints have some disadvantages:

• great deformation mostly from peeling stress than traction or shear stress

• complex structural analysis for critical applications or with geometrical difficulties

• accurate preparation of parts before bonding

• no direct inspection; non-destructive controls have to be carried out

• repairing a joint is impossible

• the maximum operative temperature can be very low and it affects joint stiffness

2.1 Bonding Techniques
An adhesive is a chemical substance able to bond two other materials through superficial
adherence[6] and the aim of structural bonding techniques is realizing joints with such
a level of stiffness that they can be subjected to stress levels next to their failure values
and, in this way, it is possible to take full use of mechanical performances of adherends,
obtaining high efficiency joints.
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In order to obtain the best performances from a bonded joint, some aspects have to be
underlined, most of all the geometry of the joint: the crack stress of a bonded joint
depends on mechanical characteristics of the materials which compose the joint itself, on
the size of the adhesive zone, on load disposition and on internal stresses. The joint does
not experience uniform distribution of stresses and the crack origins in correspondence of
stresses peaks, although the crack stress is computed by dividing the crack force by the
bonding surface. The stress peaks may be due to the differences in deformations between
adherends and adhesive, different thermal expansion coefficient and the bending effects
due to the thickness of the adherends, whose surfaces, jointly with adhesive’s one, have to
be prepared before the bonding phase: it’s fundamental removing impurity and layers of
oxides before which may interfere with the mechanical properties of the joint. Adhesives
are an important part of the joint and the phases of production of a lap joint are:

• removing layers of oxides: the failures concentrate locally where oxide layers lean

• maximizing the contact between the adhesive and the two adherends, increasing the
superficial roughness of the two parts

• guaranteeing the initial stiffness of the joint through an high level of adhesion forces,
using pretreatment which increases the free energy of the adherends: in this way,
adhesive and adherends have more energetic and stable interface chemical bonds

• protecting the surfaces of the adherends before the bonding operations, above all for
metal adherends

Adhesives used in structural applications are summarized in fig. 2.4.

2.2 Analytical Methods for Single Lap Joints
The main approach which state at the basis of the design of adhesive joints is the stress
analysis approach which is generally formulated on a maximum stress or maximum strain
as a failure criterion and in fact the failures are assumed to occur when the maximum
stress or strain at the end of the bonded overlap reaches a critical value. Stress analysis
in the very thin adhesive layer are very complex because peel and shear stresses overlap
on the structure and they are closely linked; in addition, the deformations of adherends,
with respect to the adhesive and stress concentrations in the joint, can also produce large
local stresses: it’s now evident that it’s complicated to determine the local stresses in the
adhesive joints.
The classical geometry of a Single Lap Joint is shown in fig. 2.5, clamped on one side
and loaded on the other: if the load is not applied on the centre of gravity (not eccentric
load), a bending moment will be created and it will be sum to that moment caused by the
deformation of the structure; this varying moment across x-axis creates that normal stress
across y-axis called Peel Stress and the structure deforms qualitatively with the shape
reported in fig. 2.6.

The value of the bending moment at the free edges overlaps between adherends and
adhesive and can be used as boundary conditions for differential equations exposed in

20



2 – An overview on adhesive bonded joints

Figure 2.4: Types of adhesives.

Figure 2.5: Literature representation of a classic Single Lap Joint used for analysis.

the previous sections to obtain the expression for peel stress and, then, the distribution of
shear stress can be evaluated; therefore, following these steps, deformations in the adhesive
layer can be analysed and, from them, considering the Young’s Modulus Ea and Shear
Modulus Ga of the adhesive, the values of peel and shear stress can be calculated.
One of the first analyses on bonded joints was done by Bikerman[7], who assumed linear
elasticity of the adhesive and that both the flexible and rigid substrates behave as perfectly
elastic materials; also the shear stresses were eliminated because the adhesive could be
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Figure 2.6: Maximum deformation areas on a Single Lap Joint (red spots).

modeled as individual fibres extending between substrates with no interdependence and
his experiments leaded to the assumption that an adhesive with a low Young’s modulus
E should perform very well concerning the peel stress, but that low modulus may be the
responsable of the performances decrease if the shear stress is calculated.
Volkersen[53] presented in 1938 a single lap joint whose main hypothesis was that the
adherends are subjected only to a tension stress and the adhesive to a shear stress and
both stresses (tension and shear stresses) are constant through the thickness. He studied
the adhesive shear stress distribution along the bond line in the single lap joint loaded in
tension by assuming that both the adherend and adhesive materials are elastic and, in this
way, he was able to calculate the shear stress in terms of the differential stretching of the
adherends: the shear stress is not uniformly distributed because of the stress concentration
on the ends of the overlap area. Goland and Reissner[32] explored this type of joint
considering, besides the shear stress, the effects of the adherend bending leading to peel
stress in the adhesive layer; they were the first to take into account the bending of the
adherends in the stress analysis of the single lap joint and they assumed a joint in a plane
strain state and that the adherends and adhesives behave as elastic materials, presenting
a full elastic analysis of the adhesive joint which calculates the adhesive shear and tensile
stresses in the overlap region (fig. 2.7).

As expected, the most stressed zones are the overlapped free edges and the central
zone is unloaded because the load is applied on the two adherends, with a little compres-
sion zone after the edge peak of peel stress: the value of this peak and the position of
the compression depends on the elasticity and thickness of the materials. In this case the
plot is symmetrical, but, if the thickness or stiffness of the two adherends change, stresses
will be huger in the zone of the free edges: however, in every configuration, the stress
concentration on the free edges is directly related to the geometrical discontinuity of the
edge itself.
The Single Lap Joints with classical boundary conditions and loads described in this thesis
takes direct inspiration from the study of M. Vable & J. Maddi[34] published on “Interna-
tional Journal of Adhesion & Adhesive” [1] and it has the following bonding, geometrical
and physical characteristic (fig. 2.8, tab. 2.1) taken from [34, page 137]:

In [34] the Boundary element method (BEM) is used in which only the boundaries of
each material are discretized, while in FEM the entire domain of the joint is discretized:
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Figure 2.7: Goland and Reissner’s adhesive shear and peel stress distributions for aluminium alloy
adherends and an epoxy adhesive[32].

Figure 2.8: Single Lap Joint, Vable & Maddi.

the domain discretization poses more difficulties in finite element method, while in BEM
the changes of boundary shape has little impact on modeling, even if the application of
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Geometrical characteristics Value
L1 12.7 mm
L2 12.7 mm
L 76.2 mm
h1 0.15 mm
h2 1.6 mm

EAdhesive 3 GPa
EAdherend 69 GPa
νAdhesive 0.36
νAdherend 0.32

σ 150 N

Table 2.1: Single Lap Joint, Vable & Maddi.

BEM to bonded joints is not simple because the formulation of BEM generates integral
expressions for stresses and displacements, in which the integration is performed on the
boundary of each material and, for that reason, BEM has many sources of error.
As it will be shown more precisely in the next chapters, the creation of graded mesh is
better than no mesh gradation (fig. 2.9 and 2.10): determining the number of elements
to use, the mesh gradation and the polynomial order of the interpolating functions, a
mesh refinement scheme can minimize the errors. These results shown in [34] highlight
the criticality of mesh gradation in regions of large stress gradients: small changes in
the location of nodes of the structure have significant impact on the maximum value of
stresses detected in regions of large stress gradients and, in fact, graded meshes have faster
convergence (more accurate results with fewer degrees of freedom) than uniform meshes
in the most stressed regions.
To keep the mesh nearly the same as those of Pickett & Hollaway (who provided stud-
ies that used non-linear analysis methods to evaluate composite bonded joint configura-
tions[42]), Vable & Maddi employed an uniform and a graded 240 four noded quadrilateral
elements; the graded mesh for the four noded elements in the bonded region for the adhe-
sive and the adherends was produced by starting from the free edges of the bonded region
and increasing the length of successive elements by a factor of 1.25. Vable & Maddi’s
results were obtained using the commercial finite element package ABAQUS [34].
Instead, Pickett & Hollaway, who studied a tubular lap joint (fig. 2.11) deriving from
Robert Cook’s[13] and Adams & Peppiatt’s[44] works, employed two meshes:

• the square-edged solutions were obtained from a mesh of 92 8-node elements with a
total of 343 nodes (fig. 2.12)

• the remainder of the solutions (lap and scarf joints with an adhesive fillet) were
obtained using a mesh generation routine giving a mesh of 555 nodes and 164-8
node elements (fig. 2.13)
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For comparison, graphical results for Adams & Peppiatt1 (fig. 2.14, fig. 2.15) and
Pickett & Hollaway (fig. 2.16, fig. 2.17) are shown

Figure 2.9: Single Lap Joint results for Peel Stress, Vable & Maddi.

Figure 2.10: Single Lap Joint results for Shear Stress, Vable & Maddi.

1Lubkin and Reissner have analysed the stresses in tubular lap joints under a tensile axial load: their
analytical method assumes that the adhesive can be approximated to an infinite number of tensile and
shear springs and that the transversal stress in the adherends can be neglected in comparison with this
stress in the adhesive[44].
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Figure 2.11: Single lap joint, Pickett & Hollaway.

Figure 2.12: First finite element Mesh with 92 8-node elements, Pickett & Hollaway.

Figure 2.13: Second finite element mesh used for the overlap region with 164-8 node elements, Pickett
& Hollaway.
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Figure 2.14: Peel stress distributions in tubular lap and scarf joints subjected to tensile load, Adams &
Peppiatt.

Figure 2.15: Shear stress distributions in tubular lap and scarf joints subjected to tensile load, Adams
& Peppiatt.
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Figure 2.16: Peel stress distribution, Pickett & Hollaway.

Figure 2.17: Shear stress distribution, Pickett & Hollaway.
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Three-dimensional tests[4] validate previous analysis: in Kaya & Tekelioglu’s works,
an adhesively bonded single lap joint under axial tension force is studied; the adherends
are assumed as isotropic and homogeneous aluminum, adhesive is modelled as an isotropic
material and the variations of the stresses along the width are investigated (fig. 2.18, fig.
2.19). They used the finite element method with hexahedral elements with eight nodes
having three degrees of freedom each, six elements were used through the thickness of
the adherend and two elements through the thickness of the adhesive layer, so, the model
consists of 4048 elements and 5148 nodes; results are shown below (peel and shear stress
are normalized by the respective mean stress values and x- and y-coordinates by the length
of the respective sides):

Figure 2.18: Peel Stress for three-dimensional analysis[4].

Figure 2.19: Shear Stress for three-dimensional analysis[4].
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2.3 Joint Failures

As told previously, adhesive’s bonding is a material jointing process in which an adhe-
sive, placed between the adherend surfaces, solidifies to produce an adhesive bond and
the modes of joint’s failures are determined by the quality of the bond at each interface,
specimen geometry and loading. According to ASTM D5573[6], in composite adhesive
joints there are seven typical characterized modes of failure (fig. 2.20, fig. 2.21): adhesive
failure, cohesive failure, thin-layer cohesive failure, fibre-tear failure, light-fibre-tear fail-
ure, stock-break failure and mixed failure, which (all together) belong to macro-areas of
structural stress concentration (traction, compression, cleavage, shear and peeling). Al-
though several researches made during the years[29][36][37][43][26], the failure prediction
of the composite bonded joints is still difficult because the failure strength and mode are
different according to various bonding methods and parameters; however, the primary
failure modes for composite sandwich structures are buckling, local delamination and fa-
tigue/fracture.
Three approaches have been used for studies: in the continuum mechanics approach[27],
the adhesive and adherends are modelled by using continuum elements, assuming that the
adhesive is perfectly bonded to the adherends and, thus, the assumption of a perfect bond
means that the finite-element analysis takes no account of the adhesion properties of the
interface; in the fracture mechanics approach[28], an energy parameter (toughness) is used
as the failure criterion. In principle, it is possible to determine values of toughness as a
function of the relative amounts of normal and shear deformation acting at the crack tip
(in the adhesive, along the interface or through the adherend), and to use the concepts
of mixed-mode fracture mechanics (failure occurs if local mixed mode energy release rate
exceeds a critical value) to predict the appropriate crack path to calculate the strength
of the joint under different loading conditions: this is the case of linear elastic fracture
mechanics that relies on the existence of a crack and linear elasticity; the last approach is
the singularity approach[15] (the fracture mechanics approach with no initial crack), which
uses a generalized stress-intensity factor, analogous to the stress-intensity factor in classi-
cal fracture mechanics, to predict the beginning of the fracture for bonded joints: it was
assumed that the beginning of fracture occurs when the generalized stress-intensity factor
reaches its critical value and it was noticed that the intensity increased with increasing
adhesive thickness and observed that this would account for decreasing joint strength with
increasing adhesive thickness, which is verified experimentally.
Buckling is one of the most important failure modes for composite structures, which have
low modulus of elasticity; instead, for all kinds of loading on skins and joints between
composite materials, local delamination is one of the most severe failure modes since it
can result in catastrophic failure for the global system structure; at last, interlaminar
shear strength and through-thickness normal strength must then be carefully designed to
prevent composite structures from local delamination.
The beginning of the various failure modes depends on the material properties of the con-
stituents (facings, adhesive, and core), geometric dimensions and type of loading. Tofte-
gaard & Lystrup[23] investigated theoretically and experimentally the failure modes in
joined sandwich panels and observed two different types of failures: the first is the shear
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failure of the base panel and the other one is the failure through the T-joint itself. The
shear failure is a classical shear failure of sandwich panels consisting of shear fracture of
the core and delamination between the core and skin laminates. The two types of failure
resemble the failure types found for pullout loading of a T-joint with filler fillet and rela-
tively thick overlaminates.
Safety considerations often require that adhesively bonded structures, particularly those
employed in primary load-bearing applications, include mechanical fasteners (e.g. bolts)
as an additional safety precaution, but these practices result in heavier and more costly
components: the development of reliable design and predictive methodologies can be ex-
pected to result in more efficient use of composites and adhesives. To design structural
joints in engineering structures, it is necessary to be able to analyse them and this means
to determine stresses and strains under a given loading and to predict the probable points
of failure.

Figure 2.20: Modes of failure for a single lap joint.

Delaminations is one of the most critical and studied failure mode in laminated com-
posites when there is no reinforcement in the thickness direction and they are generally
assumed to take place at the interface between adjacent plies and treated as a fracture
process between anisotropic layers, such as between adhesive and adherends[20]; these
breakages may be induced by interlaminar peel and shear stresses associated to some ge-
ometrical configurations such as free edges or curved sections and they can buckling and
growth under service conditions thus leading to the premature collapse of the structure as
well as to the premature buckling of the laminate and stiffness degradation.
In this chapter the cohesive behaviour of the adhesives will be studied: in order to design
structures that are damage-tolerant, analyses must be conducted to study the propa-
gation of delaminations and this calculation can be performed using cohesive elements
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Figure 2.21: Typical stress failures in bonded joints: (a) compression, (b) traction, (c) shear, (d)
peeling, (e) cleavage.

(implemented both in MUL2 CODE and in ABAQUS), which can combine aspects of
strength-based analysis to predict the onset of damage at the interface adherend-adhesive
and of fracture mechanics to predict the propagation of a delamination in the material
using the Cohesive Zone Model.

2.3.1 Linear elastic fracture mechanics, LEFM

The first of the three basic fracture mechanics modes of pure crack is theMode I in which
the loading is applied normally to the crack plane and provokes the opening of the crack
and whose effects are the same as which ones caused by the peel stress; the second one is
the Mode II in which a shear in-plane loading is applied and it produces the sliding of
crack faces over each other and the last one is the Mode III which consists in an out-
of-plane shear stress which moves the crack edges across each other in opposite directions
(fig. 2.22). Mixed modes can occur as a combination of the three basic modes.

The energy associated to the crack propagation is called G which states for energy
release rate, defined as the rate of change in potential energy with crack area for a linear
elastic material: crack extension occurs when the energy release rate reaches a critical
value, G = Gc, which is a measure of fracture toughness[25] and, as a consequence, a
crack can only grow if the fracture process is in constant or decreased total energy. Thus,
the critical condition for crack extension Gc can be defined as the point where crack growth
occurs under equilibrium conditions: the balance equation under equilibrium conditions
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Figure 2.22: The three basic crack mode[5].

for an incremental increase in crack area, dA, can be so expressed as:

dE

dA
= dP

dA
+ dWs

dA
= 0 ⇒ −dP

dA
= dWs

dA
(2.1)

where E is the total energy, dP is the potential energy in the form of strain energy and
work done by external forces and Ws is the work needed to create two new surfaces; for an
edge crack, two new surfaces are created when a crack is formed and, so, the expression
for Ws becomes:

dWs

dA
= 2γs (2.2)

where γs is the material specific surface energy. In brittle materials, a crack can form
simply by breaking the atomic bonds and the surface energy γs represents the total en-
ergy of the broken bonds in an unit area; instead, in ductile metals, the crack propagation
includes a plastic zone next to the crack tip which contributes to additional energy dissipa-
tion. The main hypothesis of this theory states that the global behaviour of the structure
must be linear elastic, while plasticity must be confined to small regions around the crack
tip and, thus, the modified expression takes the form:

Wf = γs + γp (2.3)
where Wf is the fracture work made by the crack and γp is the plastic work per unit

area of surface created. The concept is based on the energy release rate, G, defined as a
measure of energy available for an increment of crack extension:

G = −dP

dA
(2.4)

Crack extension occurs when the energy release rate reaches a critical value, i.e when

G = Gc = dWs

dA
= 2Wf (2.5)
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However, the LEFM approach is incapable of dealing with those joints with large-scale
plastic deformation occurring in the adherends because in these situations the energy
absorbed by the fracture process is coupled with the energy dissipated by the macroscopic
plasticity in adherends[25][30] and it is very difficult to separate one from the other: as
a result, the measured joint toughness will depend on the joint geometry and cannot be
treated as a material property.

2.3.2 Cohesive zone method, CZM

In order to analyse the phenomena of failure and fracture mechanics efficiently, especially
in very thin geometries and in homogeneous solids, a general numerical method being
able to simulate the initial loading, the damage initiation with initial debonding and the
damage evolution until complete separation and failure is the cohesive zone method[38]
which can be modelled as an interface between two continuum surfaces. The main aspect
of CZM is that the stress of the cohesive zones works as a restraining stress that keeps the
separating surfaces together and it corresponds to atomic or molecular attractions; this
stress σ = σ(δ) is due to the external load T applied on the body and can be seen as a
function of the separation distance δτ included in Γ which is a generic surface around the
crack tip (fig. 2.23):

Figure 2.23: The cohesive zone: the crack characteristics[46].

The J-integral is the evaluation of the work in the crack zone made through a balance
of forces; with reference to (fig. 2.23) the J-integral for the entire cohesive zone is[39]:

J =
Ú

Γ

3
W dy − T

∂u

∂x
ds

4
(2.6)
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Reducing Γ only to the lower and upper surface of the cohesive zone (CZ ), dy = 0 and
so eq. 2.6 can be rewritten as:

J = −
Ú
CZ

σ(δ)dδ
dx
dx = −

Ú
CZ

d

dx

IÚ δ

0
σ(δ)dδ

J
dx =

Ú δτ

0
σ(δ)dδ (2.7)

When a cracked structure is exposed to some external loads, the crack surfaces are
subjected to forces which prevent the surfaces from separating: these are the cohesive
forces and the cohesive stress is a function of the relative displacement between the crack
surfaces. The external loads will increase the infinitesimal separation δ until it reaches the
value called δ∗ in which the bond between the crack faces breaks and new free surfaces
are created (fig. 2.24).

Figure 2.24: A typical stress-displacement diagram for a cohesive element.

When two new free surfaces are created, the cohesive stresses perform some amount
of work:

W =
Ú δ∗τ

0
σ(δ)dδ =

Ú δτ

0
σ(δ)dδ ⇒ W = J (2.8)

To propagate a crack through the distance ∆a, a surface energy is needed which
corresponds to:

∆Ws =
Ú ∆a

0

Ú δ∗

0
σ(δ) dδ dx (2.9)

and, using eq. 3.3, now it is possible to write the equation of crack development in the
cohesive zone as: Ú δ∗

0
= 2γs + γp (2.10)

Cohesive elements are described by a constitutive law representing the crack propaga-
tion; in fact, the main statement of the CZM (modeled with continuum mechanics) is the
traction-separation relation that simulates the effect of the fracture process and the in-
terface tractions and separations between two bonded elements provides the link between
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2 – An overview on adhesive bonded joints

that fracture process and the macroscopic deformation in the surrounding materials.
This constitutive relation for a cohesive interface shows that the traction across the inter-
face will vary depending on the separation of the crack and, with increasing separation,
the traction will reach a maximum, start to decrease and eventually be reduced to zero:
when the traction is zero, a complete decohesion of material occurs. The cohesive elements
model the initial loading, the damage initiation and the damage evolution and these three
parts can be identified in a curve as it is shown in fig. 2.25 in which a basic bilinear
traction-separation law is described. This type of linear law is frequently used in calcula-
tions, but also an exponential function (fig. 2.26) can be used to study the softening after
damage initiation because crack propagation can be simulated using different parameters
that control the advance of the crack front for cohesive zone models with different math-
ematical formulations: these analyses can be even based on the local energy release or on
the separation of the crack surfaces which corresponds to the displacement of the cohesive
elements.

Figure 2.25: Bilinear traction-separation law.

Referring to fig. 2.25, the bilinear model is uniquely defined by this set of parameters:
σ is the peak stress supported by the bonding tractions, δ1 is a shape parameter, δc is the
critical displacement, Γ0 is the area of the triangle which represents the work of separation
per unit area of crack advance (equal to the area under the traction-separation curve) and
K0 is the slope of the first part of the curve (which ensures realistic pre-crack conditions).
The damage evolution, in both linear or exponential description, can be expressed as δf
which is a function of the critical energy release rate Γ0 calculated as follows:

Γ0 =
Ú δ0

0
T (δ)dδ (2.11)

It is important to underline that the cohesive model is a phenomenological model
which can only model the real physical fracture process which in ductile materials in-
volves also the processes of elasticity, plasticity and damage and, so, the shape of the
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2 – An overview on adhesive bonded joints

Figure 2.26: Exponential traction-separation law.

traction-separation law cannot easily be determined experimentally, and would have to
be assumed; for example, Tvergaard and Hutchinson developed a model for an idealized
traction-separation law specified on the crack plane[51] in which the relation is built on
an increase of traction in the cohesive element until it reaches the peak traction δ1 (fig.
2.27). Then, the traction will be constant until δ2 is reached and, after that, the damage
evolution is modeled until reaching δc where fracture occurs. In this case, Γ0 is expressed
as:

Γ0 =
Ú δ1

0
σdδ = 1

2 [δc + δ2 − δ1] (2.12)

Figure 2.27: Tvergaard and Hutchinson traction-separation model[51].
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Chapter 3

CUF 1D Model

The Carrera Unified Formulation (CUF) was developed by Carrera and his collaborators in
the 1990s[10] as a hierarchical formulation to generate refined theories of structures based
on the idea that non-classical effects (such as shear effects, warping, planar deformations
and bending and torsional behaviour) can be studied increasing the order of the model used
for analysis. The CUF 1D model is build on the beam cross-section (fig. 3.1) displacement
field and is described by an expansion of generic functions Fτ

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, . . . , M (3.1)

Figure 3.1: Coordinate system of the beam model.

where Fτ are the base functions approximating the generic displacements variable u
along the volume V of the body, uτ is the displacement vector and M is the number of the
terms for the expansion; the choice of Fτ and M is arbitrary, thus different base functions
of any order can be taken into account to model the displacement field of a beam above
its cross-section. The order N of the expansion is arbitrary and is set as an input of the
analysis and is usually made through a convergence study.
At first, the mathematical expansion theory used for the different CUF model orders
was the Taylor Expansion (TE), but in order to overcome limits imposed by Taylor’s
polynomials and to achieve better results, the displacements field can be expressed with
Lagrangian Expansion (LE) which allows to have only displacements variables and to
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3 – CUF 1D Model

enrich the most important zones of the elements to study with many sub-domains, in
order to better describe local phenomena and deformations. A further development of
CUF theory was made by using the Hierarchical Legendre Expansion (HLE) which can
be thought as a combination of TE and LE in order to enrich the locally the polynomial
order. The unknowns of the HLE models are the generalized displacements and their
derivatives and the expansion order is also increased in a hierarchical manner, as for TE
and the kinematics of the model of Legendre expansions can be enriched locally over the
physical surface of the cross-section, as for LE models.

3.1 Hierarchical High-Order Models

3.1.1 Taylor Expansion, TE

The Taylor Expansion (TE) is based on Taylor-like polynomial expansions of the displace-
ments field over the cross-section of the structure (i and j are positive integers). The order
N of the expansion is arbitrary and is set as an input of the analysis.
A convergence study is usually needed to choose N for a given structural problem and a
generic displacements field can be expressed in this way[40]:

ux =
NØ

Ni=0

 NiØ
M=0

xN−MzM

uxN(N+1)+M+1
2

(3.2)

uy =
NØ

Ni=0

 NiØ
M=0

xN−MzM

uyN(N+1)+M+1
2

(3.3)

uz =
NØ

Ni=0

 NiØ
M=0

xN−MzM

uzN(N+1)+M+1
2

(3.4)

For example, the second-order model N = 2 has the following kinematic model[55][19]:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6 (3.5)

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 (3.6)

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6 (3.7)

The 1D model described by eq. 3.5, 3.6, 3.7 has 18 generalized displacement variables
(three constant, six linear, and nine parabolic terms): classical beam theories are obtain-
able as particular cases of Taylor expansions, even if classical theories require reduced
material stiffness coefficients to contrast Poisson locking.
Nevertheless, the use of Taylor-type expansions has some intrinsic limitations that led to
the introduction of different polynomial classes: first of all, the introduced variables have
a mathematical meaning (derivatives at the beam axes) and, so, higher order terms do not
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3 – CUF 1D Model

always have a physical local meaning, but they can have cross-section properties only; for
this reason, the extension to large rotation formulation could lead to some mathematical
difficulties.

3.1.2 Lagrange Expansion, LE

The Lagrange Expansion class (LE) exploits Lagrange polynomials to build 1D refined
models that have displacement variables only: interpolation functions of the most used
lagrangian L9 element (nine-point polynomials) are:

Fτ = 1
4(r2 + rrτ )(s2 + ssτ ) (3.8)

Fτ = 1
2s

2
τ (s2 + ssτ )(1 − r2) + 1

2r
2
τ (r2 + rrτ )(1 − s2) (3.9)

Fτ = (1 − r2)(1 − s2) (3.10)

in which r and s can vary between -1 and 1 and rτ and sτ are the coordinate frame
of the nine points whose locations are shown in fig. 3.2, so, the displacement field of a L9
element is:

Figure 3.2: Lagrangian element with 9 nodes, L9 [40][55].

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9 (3.11)

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9 (3.12)

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9 (3.13)

where ux1, . . . , uz9 are the displacements variables.
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3 – CUF 1D Model

In LE, each variable has a precise physical meaning (the problem unknowns are only
translational displacements) and, in fact, unknown variables can be put in fixed zones
(sub-domains) of the cross-section refining and enriching the model in certain areas only;
more, geometrical boundary conditions can be applied both in sub-domains of the cross-
section (and not only to the whole cross-section) and along the beam-axis, as well. The
cross-section itself can be divided into further beam sections and easily assembled since the
displacements at each boundary are used as problem unknowns and, at last, the extension
to geometrically non-linear problems appears more suitable than in the case of Taylor-type
higher-order theories.

3.1.3 Hierarchical Legendre Expansion, HLE

The one-dimensional Hierarchical Legendre Expansion models (HLE) are formulated by
expressing the 3D displacements field as a Legendre-based expansion of the generalized
displacements along the beam axis[18]: the rates of convergence are exponential. Two-
dimensional polynomial expansions can be then defined by extending the above procedure
to quadrilateral domains on the beam cross-section: in this case, nodal, edge and internal
polynomials are used as interpolation functions over the section.
For Taylor Expansion models (TE) the generalized displacement unknowns (displacements
and their derivatives) are expanded on the cross-section surface from the reference axis
and the polynomial order of the model is increased in a hierarchical manner by adding
new terms to the kinematic field[41]; Lagrange Expansion models (LE) are based on local
expansions of pure displacement unknowns within each of the sub-domains in which the
surface is divided[11]. HLE can be thought as a combination of these two models: the
unknowns of the HLE models are the generalized displacements and their derivatives
and the expansion order is also increased in a hierarchical manner, as for TE; Legendre-
like expansions can be enriched locally over the physical surface of the cross-section, as
for LE models. The expansion order is set as a free input of the model in the solver
code and this determines the number of unknowns to be solved: HLE, so, combines the
main advantages of TE (e.g., the hierarchy of the higher-order terms) and LE (e.g., exact
geometrical description of the beam physical surfaces)[18].
In order to demonstrate the numerical convergence of the solution, especially when problem
is modelled using a finite element program, more than one solution to the same problem
is required; three methods are used in this report:

• h - method[2] : improves results by using a finer mesh of the same type of element.
This method refers to decreasing the characteristic length (h) of elements, dividing
each existing element into two or more elements without changing the type of ele-
ments used and, so, more accurate information is obtained by increasing the number
of elements1. A coarse mesh leads to a very inaccurate stress distribution across the
region analysed; therefore, in order to increase the accuracy of the solution, more

1In mathematics the variable h is used to specify the step size in numeric integration: this explains the
name given to this method.
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elements must be added: this means creating a finer mesh.
The h - method analytical steps are: as an initial run, a coarse mesh is used to
model the problem and a solution is obtained. To check this solution, a finer mesh
is created (the mesh must always be changed if a more accurate solution is desired).
Now, the problem is run again to obtain a second solution. If there is a large differ-
ence between the two solutions, the mesh must be made even finer and then problem
must be solved again: this process is repeated until the solution error acquires low
values

• p - method[2] : improves results by using the same mesh, but increasing the displace-
ment field accuracy in each element. This method refers to increasing the degree of
the highest complete polynomial (p) within an element without changing the number
of elements used2. In order to increase the accuracy of the solution, the complexity
of the shape functions must be increased: in this way, increasing the polynomial
order increases the complexity of the shape function.
The p - method analytical steps are: as an initial run, the solution might be solved
using a first order polynomial shape function and a solution is obtained. To check
this solution, the problem will be solved again using a more complicated (for exam-
ple third order) shape function and a second solution is obtained: the output from
the two runs is compared. If there is a large difference between the two solutions,
then the solution should be run using a third (or higher) order polynomial shape
function: this process is repeated until the solution error acquires low values

• hp - method : the analysis shown in the next chapters for both Peel and Shear Stress
will use the hp - method based on Hierarchical Legendre Expansions (HLE), a com-
plex combination of both finer and finer meshes and higher and higher polynomial
degree expansions.

3.2 CUF Finite Element Formulation

The proper and general form of governing equations are derived from discretizing the beam
axis with classical 1D elements, as follows:

u(x, y, z) = Fτ (x, z)Ni(y)qτi (3.14)

Ni stands for the shape functions and qτi for the nodal displacement vector,

qτi =
î
quxτi , quyτi , quzτi

ï
(3.15)

Now, according to the notation of fig. 3.1 in which Ω stands for the cross section of
the structure, stresses σ and strains ε can be rewritten as follows:

2The “p” in p - method stands for “polynomial”: the mesh does not need to be changed when using the
p - method.
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σp = {σzz, σxx, σxz}T εp = {εzz, εxx, εxz}T (3.16)

σn = {σzz, σxx, σxz}T εn = {εzz, εxx, εxz}T (3.17)

where p refers to terms on the cross section and n are the terms acting on the plans
perpendicular to Ω.
For little displacements if referring to the cross section of the beam, the relation between
σ and ε is linear so, from eq. 3.16 and 3.17, it’s possible to write:

εn = {uz,y + uy,z ux,y + uy,z uy,y}T (3.18)

εp = {uz,z ux,x uz,x + ux,z}T (3.19)

which can be expressed as:

εn = Dnu = (Dnp +Dnyu) (3.20)

εp = Dpu (3.21)

where Dnp, Dny and Dp are the differential matrices written as

Dp =

 0 0 ∂
∂z

∂
∂x 0 0
∂
∂z 0 ∂

∂x

 Dnp =

0 ∂
∂z 0

0 ∂
∂x 0

0 0 0

 Dny =

 0 0 ∂
∂y

∂
∂y 0 0
0 ∂

∂y 0

 (3.22)

and also stresses σ, using eq. 3.8, can be rewritten as:

σ = C̃ε (3.23)

which, from eq. 3.20 and 3.21, becomes

σp = C̃ppεp + C̃pnεn (3.24)

σn = C̃npεp + C̃nnεn (3.25)

in which C̃pp, C̃pn, C̃np, C̃nn are the coefficient matrices of the material. Using shape
functions Ni and Fτ , strains expressed in 3.20 and 3.21 can be written as

εn = (DnpFτI)Niqτi + Fτ (DnyNiI)Niqτi (3.26)

εp = (DpFτI)Niqτi (3.27)

where I is the 3 x 3 identity matrix.
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3.2.1 The Principle of Virtual Displacements (PVD)

The Principle of Virtual Displacements (PVD) can study non-elastic problems and it is
based on two totally independent systems which act within a structural model:

• system “a” : it involves the stress due to the constraints (internal loads) or mechanical
loads (external loads)

• system “b” : the body warps in respect of links between internal constraints and
deformations due to external loads; the deformed body maintains continuity and
each material properties

In a system, the work made by all the external loads F a when the respective points of
applications are subjected to the displacements ηb due to the deformations of the system
“b” is called external work Labe and it can be expressed in this way:

Labe = Σ
1
F aηb

2
(3.28)

where the sum is extended to every concentrated forces of system “a” ; if the forces
were distributed on lines (beams), surfaces (plates) or volumes (shells), the sum has to be
substituted by, respectively, simple, double or triple integrals.
The internal work Labi is defined by the integral of the work made by the stress forces of
the system “a” (calculated on each volume part which constitute the whole structure) to
provoke the deformations on system “b”. The Principle of Virtual Displacements, thus,
states the following equality:

Labext = Labint (3.29)

the work made by the external forces must have the same value as the internal dis-
placements in the structure.
Some correlations between different situations state:

• the system of forces and tensions is in equilibrium

• the system of displacements and deformations is congruent

• the work made by the external forces is the same as the work made by the internal
tensions

and a criterion of necessity states between these statements: if the first two statements
are true, also the last one will be true and, generally, if two of the statements are true,
also the other one will be true. This relationship between them is fundamental to solve
a statically indeterminate beam (the main application field of this principle): considering
a system of forces and stresses in equilibrium, if the PVD is true upon a system of dis-
placements and deformations, this last is necessarily congruent; vice versa, considering a
system of congruent displacements and deformations, the equality between internal and
external forces leads necessarily to state the system of forces and stresses in equilibrium
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and, thus, the PVD, considering a system of forces and stresses (or displacements and
deformations) which is surely in equilibrium (or congruent), provides informations about
the only solution of the problem, which must be both in equilibrium and congruent.

3.2.2 Stiffness Matrix

According to the principle of virtual displacements seen before, for CUF the eq. 3.29 can
be written as:

δLint =
Ú
V

(δεTσ)dV = δLext + δLine (3.30)

where V is the volume domain of the body, δLint is the internal work (strain energy),
δLext is the external work, δLine is the inertial work (which can be included directly in the
external work) and δ stands for the virtual variation; as usual, σ and ε stand, respectively,
for the stress and strain vectors.
Stiffness matrix is obtained from eq. 3.30 rewritten (using equations 4.24 and 4.25) as:

δLint =
Ú
V

(δεTp σp + δεTnσn)dV = δLext + δLine (3.31)

Substituting the constitutive equations for materials (eqs. 3.24, 3.25, 3.26, 3.27), the
internal work δLint becomes

δLint = δqTτi

Ú
l

Ú
Ω

([Ni(DT
npFτI) + (DT

nyNiI)Fτ ][C̃np(DpFsI)Nj+

+ C̃nn(DnpFsI)Nj + C̃nnFs(DnyNjI)]+
+Ni(DT

p FτI)[C̃pp(DpFsI)Nj + C̃pn(DnpFsI)Nj+
+ C̃pnFs(DnyNjI)] dΩ dy) qsj = δLext + δLine

(3.32)

which can be written in as simpler way, expressing the Stiffness matrix Kijτs:

δLint = δqTτiK
ijτsqsj (3.33)

By introducing eqs. 3.24 and 3.25 in eq. 3.33 it is possible to rewrite the virtual
variation of Kijτs as

Kijτs = Iijl

Ú
Ω

(DT
npFτI)[C̃np(DpFsI) + C̃nn(DnpFsI)] +

+ (DT
p FτI)[C̃pp(DpFsI) + C̃pn(DnpFsI)] dΩ +

+ I
ij,y
l

Ú
Ω

[(DT
npFτI)C̃nn + (DT

p FτI)C̃pn]Fs dΩ IΩy+

+ I
i,yj
l IΩy

Ú
Ω
Fτ [C̃np(DpFsI) + C̃nn(DT

npFsI)] dΩ +

+ I
i,yj,y
l IΩy

Ú
Ω
Fτ C̃nnFs dΩ IΩy

(3.34)
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where:

IΩy =

0 1 0
1 0 0
0 0 1

 (3.35)

and

(Iijl , I
ij,y
l , I

i,yj
l , I

i,yj,y
l ) =

Ú
l
(NiNj , NiNj,y , Ni,yNj , Ni,yNj,y) (3.36)

The matrix Kijτs is called the fundamental nucleus of the Stiffness Matrix: it does not
depend on the expansion order of the theory or on the polynomial expansion Fτ chosen
and, thus, both LE and TE and HLE can be obtained from the same fundamental nucleus;
its components are reported below[35][40]:

Kijτs
xx = C̃22

Ú
Ω
Fτ,xFs,x dΩ

Ú
l
NiNj dy + C̃66

Ú
Ω
FτFs dΩ

Ú
l
Ni,yNj,y dy +

+ C̃44

Ú
Ω
Fτ,zFs,z dΩ

Ú
l
NiNj dy + C̃26

Ú
Ω
Fτ,xFs dΩ

Ú
l
NiNj,y dy +

+ C̃26

Ú
Ω
FτFs,x dΩ

Ú
l
Ni,yNj dy

(3.37)

Kijτs
xy = C̃66

Ú
Ω
FτFs,x dΩ

Ú
l
Ni,yNj dy + C̃45

Ú
Ω
Fτ,zFs,z dΩ

Ú
l
NiNj dy +

+ C̃23

Ú
Ω
Fτ,zFs dΩ

Ú
l
NiNj,y dy + C̃36

Ú
Ω
FτFs dΩ

Ú
l
Ni,yNj,y dy +

+ C̃26

Ú
Ω
Fτ,xFs,x dΩ

Ú
l
NiNj dy

(3.38)

Kijτs
xz = C̃45

Ú
Ω
Fτ,zFs dΩ

Ú
l
NiNj,y dy + C̃12

Ú
Ω
Fτ,xFsz dΩ

Ú
l
NiNj dy +

+ C̃16

Ú
Ω
FτFs,z dΩ

Ú
l
Ni,yNj dy + C̃44

Ú
Ω
Fτ,zFsx dΩ

Ú
l
NiNj dy

(3.39)

Kijτs
yx = C̃66

Ú
Ω
Fτ,xFs dΩ

Ú
l
NiNj,y dy + C̃45

Ú
Ω
Fτ,zFs,z dΩ

Ú
l
NiNj dy +

+ C̃23

Ú
Ω
FτFs,x dΩ

Ú
l
Ni,yNj dy + C̃36

Ú
Ω
FτFs dΩ

Ú
l
Ni,yNj,y dy +

+ C̃26

Ú
Ω
Fτ,xFs,x dΩ

Ú
l
NiNj dy

(3.40)

Kijτs
yy = C̃66

Ú
Ω
Fτ,xFs,x dΩ

Ú
l
NiNj dy + C̃36

Ú
Ω
Fτ,xFs dΩ

Ú
l
NiNj,y dy +

+ C̃36

Ú
Ω
FτFs,x dΩ

Ú
l
Ni,yNj dy + C̃55

Ú
Ω
Fτ,zFs,z dΩ

Ú
l
NiNj dy +

+ C̃33

Ú
Ω
FτFs dΩ

Ú
l
Ni,yNj,y dy

(3.41)
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Kijτs
yz = C̃22

Ú
Ω
Fτ,zFs,x dΩ

Ú
l
NiNj dy + C̃55

Ú
Ω
Fτ,zFs dΩ

Ú
l
NiNj,y dy +

+ C̃13

Ú
Ω
FτFs,z dΩ

Ú
l
Ni,yNj dy + C̃16

Ú
Ω
Fτ,xFs,z dΩ

Ú
l
NiNj dy

(3.42)

Kijτs
zx = C̃45

Ú
Ω
FτFs,z dΩ

Ú
l
Ni,yNj dy + C̃12

Ú
Ω
Fτ,zFs,x dΩ

Ú
l
NiNj dy +

+ C̃16

Ú
Ω
Fτ,zFs dΩ

Ú
l
NiNj,y dy + C̃44

Ú
Ω
Fτ,xFs,z dΩ

Ú
l
NiNj dy

(3.43)

Kijτs
zy = C̃45

Ú
Ω
Fτ,xFs,z dΩ

Ú
l
NiNj dy + C̃55

Ú
Ω
FτFs,z dΩ

Ú
l
Ni,yNj dy +

+ C̃13

Ú
Ω
Fτ,zFs dΩ

Ú
l
NiNj dy + C̃16

Ú
Ω
Fτ,zFs,x dΩ

Ú
l
NiNj dy

(3.44)

Kijτs
zz = C̃55

Ú
Ω
FτFs dΩ

Ú
l
Ni,yNj,y dy + C̃11

Ú
Ω
Fτ,zFs,z dΩ

Ú
l
NiNj dy +

+ C̃45

Ú
Ω
FτFs,x dΩ

Ú
l
Ni,yNj dy + C̃45

Ú
Ω
Fτ,xFs dΩ

Ú
l
NiNj,y dy +

+ C̃44

Ú
Ω
Fτ,xFs,x dΩ

Ú
l
NiNj dy

(3.45)

The assembling loop of the stiffness matrix is shown in fig. 3.3.
Finally, the work of the external forces δLext can be expressed as:

δLext =
Ú
V

(δuT F̃ ) dV =

= δqTτi

Ú
V

(Ni(y)Fτ (x, z)F̃ ) dV =

= δqTτiP
τi

(3.46)

where F̃ is the generic load and P τi is the vector of the nodal forces, so the following
linear algebraic system has to be solved:

K̃q = F̃ (3.47)

in which K̃ is the global stiffness, q is the loading and F̃ is the unknowns arrays,
respectively.
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Figure 3.3: Assembly procedure for a stiffness matrix for a solid model[55].
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Chapter 4

Numerical modelling of bonded
joints

The theoretical insights expressed in the previous chapters for the calculation of Young’s
and shear modulus, the Poisson’s coefficient and the stress and strain evolution allow only
to show the theoretical behaviour of materials under loads and constraints. This chapter
shows the numerical results obtained by using the MUL2 CODE [3] and the aim is dual:
first of all, the validation of the code in reference to literature results and to the commercial
finite element package ABAQUS; then, the investigation of concentration and distribution
of Peel and Shear stresses in lap joints of different nature such as butt joint, single lap
and double lap joint. Values of stress for both MUL2 CODE and ABAQUS have been
normalized by the Young’s modulus of the adhesive to make the results independent from
the material used.

4.1 Adhesive butt joint of thin plates

The problem solved in this report is the 3D solution (fig. 4.1) of a two-dimensional case of
study taken from T. Sawa’s works[50][9] included in the da Silva & Ochsner’s essay[49] and
it consists in two adherends bonded by an adhesive: each finite strip was analysed through
the two-dimensional theory of elasticity based on the three-body contact problem using
Airy’s stress functions, which were selected from solutions for the method of separation
of variables. Then, in order to verify the analytical results, an experiment was performed
concerning the strains produced on the adherends (thickness H = 4mm) in which the
specimens were prepared from steel and aluminum.
From the hypothesis and geometrical relationships reported in [50] and using Cartesian
coordinates (x, y, z), physical characteristics can be evaluated in the following tab. 4.11:

In [50] the tensile loading is applied to both ends of the adherends developed by
Fourier series and called F (x) and G(x) respectively for the top and bottom adherend

1In the table 4.1, “1” stands for the bottom adherend, “2” for the adhesive and “3” for the top adherend.
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Quantity Value Geometrical characteristics Value
E1 75 GPa E2 25 GPa

E3 50 GPa
G1 28.195 GPa G2 9.398 GPa

G3 18.79 GPa
ν1 0.33 ν2 0.33

ν3 0.33
h1 0.4 mm
h2 0.08 mm
h3 0.4 mm

H (thickness) 0.4 mm
l (half-length) 1 mm

Table 4.1: Butt joint - Material and geometrical properties.

Figure 4.1: Adhesive butt joint, Sawa[50].

stress distribution; the boundary conditions are described by:

• on finite stripe of adherend I:


σIx = τ Ixy = 0, x = ±l
σIy = F (x) = a0 + q∞

s=1 ascos
!
sπx
l

"
, y1 = h1

τ Ixy = 0
(4.1)
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• on finite strip of the adhesive (II):

σIIx = τ IIxy = 0, x = ±l (4.2)

• on finite strip of the adherend III:

σIIIx = τ IIIxy = 0, x = ±l
σIIIy = G(x) = b0 + q∞

s=1 bscos
!
sπx
l

"
, y1 = h1

τ IIIxy = 0
(4.3)

• at the interface between finite strips I and II:



(σIy)y1=−h1 = (σIIy )y2=h2

(τ Ixy)y1=−h1 = (τ IIy )y2=h2

(uI)y1=−h1 = (uII)y2=h21
∂νI

∂x

2
y1=−h1

=
1
∂νII

∂x

2
y2=h2

(4.4)

where a0, b0, as, bs are the Fourier’s coefficients referred to F (x) and G(x).

4.1.1 MUL2 CODE discretization

The beam element chosen to analyse the butt-joint are the cubic beam elements 2B4
through the thickness (fig. 4.2 e 4.3) used for their high accuracy and the symmetry
conditions are applied.
The cross-section domain used in MUL2 CODE is shown in fig. 4.4: the entire butt joint
was divided into 8 rectangular elements and, so, an uniform mesh was used across the
joint itself; an isotropic material was defined with no lamination. In order to simplify the
problem, differently from Sawa, the forces acting on the joint studied with MUL2 CODE
were not deducted from a Fourier’s expansion, but from a force grid only on the top face
made by concentrated forces applied on the nodes 13, 14, 15. Then, the joint has been
clamped through z-axis on bottom face (nodes 1, 2, 3), through x-axis across that plane
(nodes 2, 5, 8, 11, 14) and the 4th node of the central node 8 was clamped through
y-axis: this way of representation on MUL2 CODE created a case of study equivalent
to the Sawa’s one (opposing forces on top and bottom faces); static analysis with MITC
integration is performed. The entire analytical method used in MUL2 CODE is shown
only for this section: further analysis will be conducted with the same process.

Figure 4.2: 2B4: the central node used for analysis is highlighted.
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4 – Numerical modelling of bonded joints

Figure 4.3: MUL2 CODE butt joint analysed. On the left, the butt joint is shown while, on the right,
the 2B4 through the thickness and y-axis.

Figure 4.4: MUL2 CODE HLE discretization.
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In tab. 4.2 the DOFs of polynomial expansion analysis is reported:

Model DOFs
HLE 1 315
HLE 2 777
HLE 3 1239
HLE 4 1869
HLE 5 2667
HLE 6 3633
HLE 7 4767
HLE 8 6069

Table 4.2: DOFs - Butt joint.

The stress tension σym corresponds to the value of tension in the interface of the section
(at z = h2); after normalising values by σym, graphical results can be calculated (fig. 4.5,
4.6, 4.7):

Figure 4.5: Stress σxz (Shear Stress) distribution - Adhesive butt joint.

As it is possible to see, results show the efficiency ofMUL2 CODE in capturing almost
the same values of stresses of an analytical and, then, experimental computation[50] (the
little gap between the two solutions is probably due to the different type of forces applied
on the two joints): this comparison and matching between the MUL2 CODE and this
first literature result is used as validation in order to use the code for the analysis of the
following lap joints.
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Figure 4.6: Stress σzz (Peel Stress) distribution - Adhesive butt joint.

Figure 4.7: Stress σxx (Longitudinal Stress) distribution - Adhesive butt joint.
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4.2 Single Lap Joint - MUL2 CODE analysis

4.2.1 First Approach: cross axis

Using the MUL2 CODE, two approaches can be adopted to model lap joints. The first
one, hereinafter First Approach, allows to model structures placing the main axis through
thickness, so, the y-axis of figure fig. 4.8 and fig. 4.9. This approach is useful to study the
distribution of stresses, strains and other factors like temperature or crack development in
thick plate which have loads applied both on upper and bottom face: in this way, in fact,
the beam elements chosen will lean upon the cross axis detecting each single variations of
the problem’s unknowns.

X X

Y

Z

O

Figure 4.8: Single Lap Joint: cross-section.

Z

Y

X

O

Figure 4.9: Single Lap Joint: 2B4 mesh.

Therefore, in the First Approach is possible to model and change the whole cross-
section domain of the beam structure enabling the variation of the meshes while the
beam element chosen remain the same. The pros and cons regarding the use of the First
Approach are reported in the following lines. First of all, changing the mesh signifies
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change the entire model: even if the structure analysed is the same as before, a refined
mesh is more complex to implement on the code because each time the connectivity matrix
has to be changed and, in order to have the best precision which is expected from a
graded mesh, the structure has to be divided into more and more elements to obtain an
acceptable refined mesh; this means the change of the nodes on which loads and constraints
are applied (and the following re-computation and reassignment of forces values on the
nodes, if a grid force is used). However, this method allows to study single lap joints
with different thickness only adding other structural nodes to the beam element and not
changing the entire model: it can be used very well for composite plates because, when
a composite layer is applied upon another one, the mesh can remain the same, while the
new layer is investigated with the new beam element added to the previous one. Legendre
polynomials are used from the 1st until the 8th order, enabling to achieve a prediction
about the stress distribution more and more precise. In this section, results obtained by
Vable & Maddi shown in the chapter 2 are compared to lap joints studied with MUL2

CODE with uniform or graded meshes: respectively, Peel Stress refers to Mode I and
Shear Stress refers to Mode II of deformation described in the previous chapter.

4.2.1.1 Uniform Mesh: Peel and Shear Stress results

The adhesive region has been initially studied with an uniform mesh (Fig. 4.10); adherends
and adhesives are implemented with huge elements to evaluate the strength of the code and
to compare results with the literature ones. On the adherends, two elements of 12.7 mm
on the left and right extremity have been placed in order to recreate the same boundary
conditions of [34] and, in fact, those nodes were clamped through z-axis (in [34] in these
two region two carriages stop movements of the joint in the vertical direction); each 4th
node of the 2B4 for every structural node of the connectivity is clamped through y-axis:
this is the only possible way both to block movements in that direction and to respect the
symmetry of the joint, giving an uniform y-boundary condition; horizontal translation is
blocked with a x-constraint in the origin, i.e. the central node of the joint, not to affect
the symmetrical distribution of stresses and strains.

Figure 4.10: Uniform cross section HLE discretization [mm].
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Loads are applied on the two external sides and a grid force made of 28 concentrated
forces is applied on them, 14 on the nodes I of the 2B4 creating the sides and the other
14 on the node VII of the 2B4 (fig. 4.11). Static analysis with MITC integration is used.

Figure 4.11: Grid force used both on left side (the same grid has been made on the right side).

Model DOFs Peel Stress Shear Stress
HLE 1 483 0.0496 0.3144
HLE 2 1197 0.1453 0.5021
HLE 3 1911 0.3106 0.6829
HLE 4 2877 0.3417 0.6672
HLE 5 4095 0.3591 0.5999
HLE 6 5565 0.3607 0.6466
HLE 7 7287 0.3576 0.6315
HLE 8 9261 0.3499 0.6132

Vable & Maddi / 0.8099 0.5099

Table 4.3: DOFs and Max values of Peel and Shear stress at the free edges - Single Lap Joint: uniform
mesh (1st approach).

Peel and Shear Stress at the beginning and at the end of the adhesive region (x1 =
−6.35 mm and x2 = 6.35 mm) have the same values because of geometrical, load and
constraint symmetry (tab. 4.3). For Peel Stress (fig: 4.12), the peaks in adhesive region
is due to the concentration of stress and the difference between the literature solution
and MUL2 CODE in the peak value at the extremity is evident: this because, as seen
before, the mesh created in the adhesive region in [34] is made only by one single element
through all the adhesive zone (fig . 1.11), while the uniform mesh of the software contains
4 elements, providing more precise results even if the mesh is coarse. The increment of the
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expansion order is clear in the two figures: from a linear shape function (HLE 1) which can
not fit well even the shape function of literature, to the HLE 3 and higher orders which
maintain the shape function of literature, but converge to unique results. In the lowest
peaks Peel stress is negative and this situation describes a compression area: the equality
of loads at the extremity provokes a bending of the lap and a resulting redistribution of
stresses in adherends which determine the new, even very little, buckling. Shear Stress (fig.
4.13) has a parabolic shape and, as opposed to Peel Stress, from the 2nd to 8th polynomial
order values found by MUL2 CODE are bigger than literature: this result is due to the
different mesh which in [34] underestimates the peaks. The lowest point of transversal
stress, as it is expected, leans in the centre of the adhesive because of symmetrical loads
and constraints applied on the lap.

Figure 4.12: Peel Stress - Single Lap Joint: uniform mesh (1st approach).
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Figure 4.13: Shear Stress - Single Lap Joint: uniform mesh (1st approach).

4.2.1.2 First Graded Mesh: Peel and Shear Stress results

In this section, the study will be leaded by using a first graded mesh (fig. 4.14). Adhesive is
divided into 8 rectangular mesh elements (thus, redoubling the number of mesh elements
than the previous case) of which 4 are placed next to the free edges of the adhesive
zone in order to enrich that region and provide better and better fitting of results. The
boundary conditions and the distribution of loads are the same as the previous section,
after regenerating the mesh and adding the new points created on the adhesive region.

Peel and Shear Stress (fig. 4.15, 4.16) at the beginning and at the end of the adhesive
region (x1 = −6.35 mm and x2 = 6.35 mm) have the same values because of geometrical,
load and constraint symmetry. For Peel Stress the convergence to an unique solution
appears from the lowest expansion orders and also the compression zone is low enhanced
and, so, the new refined mesh achieves its aim. Shear Stress shows a particular shape in
the free edges, only detected by the HLE orders from 6th to 8th: the stress begins negative
(compression area) and in very few millimetres it reaches great values; the mesh used in
MUL2 CODE should be refined another time in order to describe this behaviour also with
lowest Legendre’s expansion orders because the computational cost, as we can see form
the table with numbers of DOFs, seriously increases (tab. 4.4).
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Model DOFs Peel Stress Shear Stress
HLE 1 693 0.1859 0.4726
HLE 2 1785 0.1736 0.5731
HLE 3 2877 0.4368 0.6452
HLE 4 4389 0.4008 0.6022
HLE 5 6321 0.3755 0.5309
HLE 6 8673 0.3523 0.4309
HLE 7 11445 0.3370 0.3121
HLE 8 14637 0.3149 0.1925

Vable & Maddi / 0.8925 -0.1434

Table 4.4: DOFs and Max values of Peel and Shear stress at the free edges - Single Lap Joint: first
graded mesh (1st approach).

Figure 4.14: First Graded Mesh cross section HLE discretization [mm].
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Figure 4.15: Peel Stress - Single Lap Joint: first graded mesh (1st approach).

Figure 4.16: Shear Stress - Single Lap Joint: first graded mesh (1st approach).
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4.2.1.3 Second Graded Mesh: Peel and Shear Stress results

The last mesh used to study the single lap is shown below (fig. 4.17). Adhesive is divided
into 12 rectangular mesh elements so redoubling the number of mesh elements leaning in
the adhesive than the previous analysis: these ones are 0.35 mm long and they can easily
investigate the free edges, but on the contrary the computational cost (tab. 4.5) and the
complexity of creating the model increase very fast.

Figure 4.17: Second Graded Mesh cross section HLE discretization [mm].

Model DOFs Peel Stress Shear Stress
HLE 1 903 0.2337 0.48
HLE 2 2373 0.2925 0.5221
HLE 3 3843 0.3696 0.4225
HLE 4 5901 0.3381 0.1662
HLE 5 8547 0.2991 -0.0304
HLE 6 11781 0.2603 -0.104
HLE 7 15603 0.2449 -0.0969
HLE 8 20013 0.2419 -0.0652

Vable & Maddi / 0.8925 -0.1434

Table 4.5: DOFs and Max values of Peel and Shear stress at the free edges - Single Lap Joint: second
graded mesh (1st approach).
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Peel and Shear Stress at the beginning and at the end of the adhesive region (x1 =
−6.35 mm and x2 = 6.35 mm) have the same values because of geometrical, load and
constraint symmetry. For Peel Stress (fig: 4.18) the convergence to an unique solution
appears from the lowest expansion orders (as before) and also the 1st expansion order can
fit better the shape of the stresses of the other higher orders. As we can see, the Shear
Stress (fig. 4.19) can be now investigated with lower Legendre’s expansion orders (from
the 4th) which manages to reach notable results at low DOFs and, so, low complexity of
the model, which is the main aim pursued by MUL2 CODE.

Figure 4.18: Peel Stress - Single Lap Joint: second graded mesh (1st approach).

Figure 4.19: Shear Stress - Single Lap Joint: second graded mesh (1st approach).
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4.2.2 Second Approach: longitudinal axis

The second version of MUL2 CODE is called Second Approach and, in opposite to the
previous one, it allows to model structures whose main axis is through the main dimension
of the beam, so, the y-axis of fig. 4.20. This approach is the most usual way to study beam
elements because it models the beam as the classical beam theories described (EBBT and
Timoshenko) and, for this reason, this version will be used when in the following sections
a comparison with MUL2 CODE will be needed.

Z

X

O

Y

Figure 4.20: Single Lap Joint: 2B4 mesh.

In the Second Approach is possible to model and change the number, the type and
the distance between the nodes of beam elements chosen, while the meshes and the whole
connectivity of the structure remain the same. This tool allows creating models with
variable sections through the axis and also more complex lap (as double lap joint) can be
created easily (each section will have its own connectivity file which describes its material
and geometrical properties, fig. 4.21).

Figure 4.21: Single Lap Joint: cross-sections. From left: bottom adherend, the adhesive central zone
and the top adherend.

In fact, after creating a simple mesh as for uniform case studied before, it’s possible to
achieve better precision only enriching the number of nodes of the beam elements and, for
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that reason, the mesh will be the same in the following analysis, only the discretization
on the axis will be changed. This version allows also to impose boundary conditions and
loads as if they were an unique entity and, in fact, the input file is the same or them: an
entire plane blocking or with forces applied on it can be created on the nodes of the beam
element (i.e. using the coordinates of the main axis) and this is a more uniform way to
apply loads than the grid force; as a consequence, from the lowest order expansions the
shape of the function proposed by [34] should be fitted.
Legendre polynomials are used from the 1st until the 8th order, enabling to achieve a
prediction about the stress distribution more and more precise. In this section, results
obtained by Vable & Maddi shown in the chapter 2 are compared to lap joints studied with
MUL2 CODE with uniform or graded meshes: respectively, Peel Stress refers to Mode I
and Shear Stress refers to Mode II of deformation described in the previous chapter.

4.2.2.1 Uniform Mesh: Peel and Shear Stress results

The axis of the single lap has been initially modelled with an uniform mesh, thus the shape
and the distance between each node of the beam elements are the same (4.23 mm totalling
43 nodes on the entire length of the axis). For the first two regions long 12.7 mm on both
the extremities, 1B4 element is used to apply both loads and boundary conditions through
z-axis; each node of the B4 elements used have been clamped with planes through x-axis:
this is the only possible way both to block movements in that direction and to respect the
symmetry of the joint; horizontal translation is blocked with a y-constraint in the central
node of the joint, not to affect the symmetrical distribution of stresses, strains and loads,
applied as planes on the external 1B4 nodes. Static analysis with MITC integration is
used.

Model DOFs Peel Stress Shear Stress
HLE 2 2613 0.3325 0.6336
HLE 3 4101 0.3669 0.6337
HLE 4 6081 0.3414 0.6554
HLE 5 8553 0.3616 0.6323
HLE 6 11517 0.3559 0.6602
HLE 7 15000 0.3571 0.6374

Vable & Maddi / 0.8099 0.5099

Table 4.6: DOFs and Max values of Peel and Shear stress at the free edges - Single Lap Joint: uniform
mesh (2nd approach).

Peel and Shear Stress at the beginning and at the end of the adhesive region (y1 =
63.5mmmm and y2 = 76.2 mm) have the same values because of geometrical, load and
constraint symmetry. Both for Peel and Shear Stress (fig. 4.22, 4.23) the convergence
to an unique solution appears from the lowest expansion orders and this means a solid
modelling and code implementation even if the DOFs (tab. 4.6) and, so, the complexity
of the model, is significantly huger.
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Figure 4.22: Peel Stress - Single Lap Joint: uniform mesh (2nd approach).

Figure 4.23: Shear Stress - Single Lap Joint: uniform mesh (2nd approach).
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4.2.2.2 Graded Mesh: Peel and Shear Stress results

In this section, the axis of the single lap is no more regularly spaced, but thicker beam
elements will be used graded mesh: the distance between each node of the beam elements
is the same 4.23 mm except for the free edges on adhesive region, in which the distance
between each node is 0.11 mm, totalling 49 nodes on the entire length of the axis. As the
previous case, for the first two regions long 12.7 mm on both the extremities, 1B4 element
is used to apply both loads and boundary conditions through z-axis; each node of the B4
elements used have been clamped with planes through x-axis: this is the only possible
way both to block movements in that direction and to respect the symmetry of the joint;
horizontal translation is blocked with a y-constraint in the central node of the joint, not
to affect the symmetrical distribution of stresses, strains and loads, applied as planes on
the external 1B4 nodes. Static analysis with MITC integration is used.

Model DOFs Peel Stress Shear Stress
HLE 2 3279 0.307 0.186
HLE 3 5163 0.299 0.170
HLE 4 7683 0.281 0.177
HLE 5 10839 0.307 0.172
HLE 6 14634 0.299 0.177
HLE 7 19071 0.32 0.18

Vable & Maddi / 0.8925 -0.1434

Table 4.7: DOFs and Max values of Peel and Shear stress at the free edges - Single Lap Joint: graded
mesh (2nd approach).

Both for Peel and Shear Stress (fig. 4.24, 4.25) the convergence to an unique solution
appears from the lowest expansion orders and the increased density of points is due to
the bigger number of nodes than the uniform axis case; because of geometrical, load and
constraint symmetry, Normal and Shear Stress at the beginning and at the end of the
adhesive region (y1 = 63.5mmmm and y2 = 76.2 mm) have the same value. As we can
see, the code is able to balance the computational cost (tab. 4.7) due to this simulation
with a more precise values of stresses achieved from 2nd expansion order towards the higher
ones.

The MUL2 CODE allows to export data with the graphic software Paraview: in fig.
4.26 and 4.27, the stress concentration in the adhesive region (respectively for top and
bottom adherend interfaces) evaluated across the longitudinal axis y is shown.
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Figure 4.24: Peel Stress - Single Lap Joint: graded mesh (2nd approach).

Figure 4.25: Shear Stress - Single Lap Joint: graded mesh (2nd approach).
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Figure 4.26: Stress distribution across the longitudinal axis y for interface between bottom adherend
and adhesive.

Figure 4.27: Stress distribution across the longitudinal axis y for interface between top adherend and
adhesive.
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4.2.3 ABAQUS validation

Results obtained with the MUL2 CODE and the commercial finite element package
ABAQUS are compared; ABAQUS models created are (tab. 4.8):

• Model-1 : each part was assumed as a deformable 2D Planar shell type, CPE8 el-
ements were used for the mesh (8-node biquadratic plain strain quadrilateral ele-
ments); mesh control of the adhesive’s region is made through a linear decrease of
the size of mesh elements (from 0.795 mm on the middle of the adhesive to 0.0795
mm at the free edges); adhesive’s thickness is discretized into 4 mesh elements

• Model-2 : adhesive was assumed as a deformable 3D solid part, SC8R were used for
the mesh (8-node quadrilateral in-plane general-purpose continuum shell, reduced
integration, finite membrane strains); top and2 bottom adherends were assumed as
deformable 3D shell parts, S8 elements were used for the two parts; mesh control of
the adhesive’s region is made through a linear decrease of the size of mesh elements
(from 0.795 mm on the middle of the adhesive to 0.0795 mm at the free edges);
adhesive’s thickness is discretized into 2 mesh elements

Model Adherends Adhesive
Number Type Number Type

Model 1 GLA 324 CPE8 160 CPE8
Model 1 GNL 324 CPE8 160 CPE8

Model 2 800 S8 1600 SC8R

Table 4.8: Mesh properties - ABAQUS validation.

All the mesh used in the previous models use the hourglass control and stresses are
calculated in the integration points. The materials used for analysis have equivalent me-
chanical properties as [34] andMUL2 CODE, such as the Young’s modulus E = 69000 Pa
and the Poisson’s ratio ν equal to 0.32 for the adherends (which is assumed as a simple
isotropic material) and E = 3000 Pa and ν = 0.36 for the adhesive, assumed as an isotropic
material too: the Young’s modulus are not expressed in GPa because the three models are
created using the millimetres scale of length. On the both extremities of the adherends
of the three models, concentrated forces applied on the mesh point act of respectively
-150 N on the left side and 150 N on the right side: this leads to an almost equivalent
loading field as the code and [34]. Vertical displacements are blocked with carriages on the
adherends (recreating the two elements of 12.7 mm on the left and right extremities) and,
as seen in pag. 65, the central node of the structure is clamped in the horizontal direction
in order to implement the exact equivalent boundary conditions as the previous models.
The ABAQUS models properties are summarized in the following table and compared to
MUL2 CODE HLE 7 “Second Approach: longitudinal axis” (pag. 64, tab. 4.9):

The extreme peaks for Peel and Shear stress in Model-1 shows divergences from the
literature and MUL2 CODE : the great drops of stress is due to the 2D Planar shell type
used for analysis which does not perform very well at the extremities if a geometrical linear
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Property Model-1 GLA Model-1 GNL Model-2 HLE 7
Elements 808 808 3200 16
Nodes 2855 2855 4365 49
DOFs 5710 5710 18441 19062

Table 4.9: DOFs - Single Lap Joint: ABAQUS validation.

analysis (GLA) is carried out; a comparison with analysis including non-linear effects at
the extremities (Geometrical Non Linearity, GNL) is highlighted in fig. 4.28:

Figure 4.28: Peel (top) and Shear (bottom) stress evolution for 2D Planar shell type elements using
linear analysis (GLA, dashed line) and including non-linearities at the extremities (GNL, solid line).

Below, results for M. Vable & J. Maddi[34], MUL2 CODE and the commercial finite
element package ABAQUS are shown (fig. 4.29, 4.30): the Model-2 is that one which is
able to model the single lap at best because 3D shell type can describe a solid element with
very thin thickness and, for that, it will be taken as reference for the complete validation
of MUL2 CODE ; for Model-1, the GNL analysis is presented. As it’s possible to see, even
it has almost the same shape, the code is not so precise in detecting the values on the
free edges and, in fact, the gap between code’s and Model-2’s solution is almost 0.1 which
is probably due to the different meshes in that region (uniform on the cross-section for
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the code and well refined with linear decreasing for Model-2) and, also in the compression
region, the code provides higher values than the ABAQUS model: a refinement of the
mesh of the cross-section in the code is necessary. For Shear stress, the code has almost a
mean value between [34] and Model-2 and, as told before, it can not reach the same values
of stresses studied by ABAQUS model: except for these gaps, the code can be considered
solid and accurate, although it is recommended to refine not only the mesh of the axis, but
also changing the cross-section’s one in order to provide more and more precise results not
detectable with a coarse mesh on the cross-section, even if the axis is very refined meshed
as that one used for this comparison.

Figure 4.29: Peel Stress - ABAQUS validation.

Figure 4.30: Shear Stress - ABAQUS validation.
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4.3 Single Lap Joint - ABAQUS analysis

4.3.1 Parametric Study

As seen in the previous section, analysis of peaks values at the extremities for both Peel
and Shear stresses can exhibit deviations from the attended results if only linear study is
performed; in order to understand the behaviours of different laps in the simplest possible
way, a parametric study was performed using a Python code to extend the possible cases
of study. Single Lap Joint was created with an unique 3D deformable solid extrusion
part sectioned into three elements (Bottom Adherend, Adhesive and Top Adherend) to
which two different sections (and, so, two different materials) were assigned. Bottom and
Top Adherend, then, were sectioned into three cells: two cells for the adhesive zone (with
opposite direction for mesh bias ratio to achieve the best precision on the adhesive’s free
edges) and one external cell whose mesh bias ratio is oriented towards the adhesive zone in
order to increase the number of mesh elements in the study zone; the mesh type used for
the following analysis is C3D8, the default ABAQUS mesh type for solid parts. Parameters
setted include:

• Geometrical and mechanical characteristics of both Adherends and Adhesive

• Type of mesh and number of mesh elements on every elements’ edges (length, height
and depth)

• Boundary Conditions

• Output and Analysis settings

First of all, some tests of convergence of the parametric code were made to assure
solidity and stability of the models created with it; then, it was used to create four Single
Lap Joints with the same geometry and materials characteristics of [34], but with different
numbers of plies through the thickness of the adherends (1, 2, 4 or 6 plies: tab. 4.10): the
aim is the study of linear/non-linear (GLA/GNL) behaviours (fig. 4.31, 4.32).

Model Adherends Adhesive
Number Type Number Type

1 ply 1000 C3D8 400 C3D8
2 plies 2000 C3D8 400 C3D8
4 plies 26400 C3D8 10560 C3D8
6 plies 239600 C3D8 143760 C3D8

Table 4.10: Mesh properties - Parametric study.

The evolution of Peel and Shear Stress is shown below (fig. 4.33, 4.34): 1 element
adherends is almost the same as [34] in both Peel and Shear stress, demonstrating from
one side the modelling weakness of this configuration, but from the another convergence
of the Python code to the literature results (for “4 elements” the non-linear analysis is
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Figure 4.31: Peel Stress - linear (GLA)/non linear(GNL) analysis (Parametric study).

Figure 4.32: Shear Stress - linear (GLA)/non linear(GNL) analysis (Parametric study).

presented). At the free edges, the critical zones, the parametric models exhibit similarities
to MUL2 CODE, capturing the same shape even with lower values.
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Figure 4.33: Peel Stress - Parametric study.

Figure 4.34: Shear Stress - Parametric study.
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4.3.2 Damage study: cohesive elements

In this section, the adhesive is no longer modelled in ABAQUS as a solid homogeneous
part, but, in order to study the behaviour of crack propagation, it is described as a cohesive
element with an energetic damage evolution law and elastic traction characteristics with
the following physical and mechanical properties:

Elastic Properties Cohesive element
E1 [GPa] 1.83
G1 [GPa] 1.9
G2 [GPa] 1.8

Table 4.11: Cohesive element: material properties.

The adherends are defined as solid shell planar homogeneous parts and meshed with
4 or 8 elements across the thickness (tab. 4.12) to analyse the evolution and diffusion
of Peel and Shear stress with two different configurations from the adhesive through the
adherends until the top and bottom faces of the top and bottom adherends, respectively:
this was made to simulate an experiment in which on the faces of the two adherends
some strain gauges have been applied. Concentrated forces applied on the mesh point act
of respectively -150 N on the left side and 150 N on the right side (to keep an almost
equivalent loading field as the code and [34]) with a tabular amplitude and on the interfaces
between adherends and adhesive a no friction property with hard contact has been imposed
not to affect the results with friction interaction between those surfaces; the models have
been studied with dynamic implicit analysis and a time period of 60 steps corresponding
to a minute of testing during which the damage evolution is the following (in ABAQUS, a
broken portion of the cohesive element is drawn with an horizontal line at y = 1 because
the software describes the percentage of progressive damage, fig. 4.35, 4.36, 4.37, 4.38)

Model Adherends Adhesive
Number Type Number Type

4 plies 324 CPE4 40 COH2D4
8 plies 648 CPE4 40 COH2D4

Table 4.12: Mesh properties - Study of damage for cohesive elements.
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Figure 4.35: Percentage of damage evolution: on the left, at the 0% of the entire displacement
corresponding to the total time period of the ABAQUS analysis; on the right, at the 60.68%.

Figure 4.36: Percentage of damage evolution: on the left, at the 67.35% of the entire displacement
corresponding to the total time period of the ABAQUS analysis; on the right, at the 74%.

Figure 4.37: Percentage of damage evolution: on the left, at the 80.68% of the entire displacement
corresponding to the total time period of the ABAQUS analysis; on the right, at the 87.35%.

Figure 4.38: Percentage of damage evolution: on the left, at the 94% of the entire displacement
corresponding to the total time period of the ABAQUS analysis; on the right, at the Total displacement.

77



4 – Numerical modelling of bonded joints

In fig. 4.37 the length of the broken part of the adhesive is almost 1.35 mm which
is a very convenient distance to place the virtual gauges because the half-length of the
adhesive is 6.35 mm (fig. 4.39).

Figure 4.39: Single Lap geometry used for the analysis: the white dots positioned on the adherends are
are the four virtual gauges used for analysis.

At first, a convergence test between the gauges A and C and between the gauges B
and D was performed in order to validate the model and to appreciate its solidity and
similarity to a real experiment: due to the symmetrical geometry, loads and boundary
conditions, the values of Peel and Shear stresses found are the same across the gauges.
Then, the evolutions of Peel and Shear stress during the entire test are shown for the 4-
and 8-plies adherends in fig. 4.40, 4.41, 4.42, 4.43 (results have been normalised by the
Young’s modulus of the adhesive to make the results independent from the material used):
at the step corresponding to 48.41 s, the peaks of stresses are evident, demonstrating a
correlation between the damage propagation in the adhesive and the values reached in
the adherends, even if there is not a perfect correspondence. For Peel stress, the 8-plies
adherends configuration shows lower peaks than 4-plies, achieving a numerical convergence
of the model towards its values of stress.
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Figure 4.40: Peel Stress evolution for the 4-plies adherends analysis.

Figure 4.41: Shear Stress evolution for the 4-plies adherends analysis.
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Figure 4.42: Peel Stress evolution for the 8-plies adherends analysis.

Figure 4.43: Shear Stress evolution for the 8-plies adherends analysis.
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4.3.3 Composite materials and cohesive elements

Generally, the adherends of the bonded joints are made of composites which are materi-
als obtained by the physical or chemical union of two or more materials macroscopically
distinct and insoluble and having better technological properties than those of the compo-
nents; the most used composite materials in aerospace engineering are made of a polymer
matrix reinforced with fibres and they have little thickness, anisotropic characteristics
in terms of elastic properties and toughness, high stiffness and strength. The Classical
Lamination Theory (CLT) allows to analyse the global behaviour of laminated materi-
als studying the relationships between loads, strains and stresses and it is based on the
hypothesis which states that the plies are perfectly connected among them and an orthog-
onal plan to the middle plan before the deformation maintains its properties also after
the deformation and, so, the continuity of strains and stresses is guaranteed through the
interface, but composites have greater difficulties of analysis compared to isotropic mate-
rials and in fact for them the FEM numerical methods will be used instead of analytical
solutions; composites in FEM can be described both as shell elements so having one ele-
ment in the thickness, homogeneous properties through the thickness and able to study the
deformations in plane stress conditions and solid elements, having more than one element
in the thickness, orthotropic properties and able to study the interlaminar stresses.
In this section, the bonded single lap joint will be modelled with the same cohesive ad-
hesive as before, but with composite shell type adherends made of HM Graphite/epoxy
with the following physical and mechanical properties:

Elastic Properties HM Graphite/epoxy
E1 [GPa] 230
E2 [GPa] 6.6
G12 [GPa] 4.8

ν12 0.25

Table 4.13: Composite layers: material properties.

For adherends, naming x and y respectively the longitudinal and vertical axis and
rotating plies around this latter, two configurations and different angle orientations will
be studied; for simplicity and to keep the plots as clear as possible, the analysis will be
named on the basis of the angle of orientation of the ply at the interface between the
adherends and the adhesive in the following way:

• Adherends made of 4 plies:

– Interface 0◦: [0◦/90◦]s
– Interface 45◦: [45◦/0◦]s
– Interface -45◦: [−45◦/0◦]s
– Interface 90◦: [90◦/0◦]s
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• Adherends made of 8 plies:

– Interface 0◦: [0◦/45◦/-45◦/90◦]s
– Interface 45◦: [45◦/-45◦/0◦/90◦]s
– Interface -45◦: [−45◦/45◦/0◦/90◦]s
– Interface 90◦: [90◦/45◦/-45◦/0◦]s

Adhesive is modelled as a cohesive elements having the same properties described in
the previous section. The models have been studied with dynamic implicit analysis and a
time period of 60 steps corresponding to a minute of testing; concentrated loads applied
on the mesh point act of respectively -150 N on the left side and 150 N on the right side
(to keep an almost equivalent loading field as the code and [34]) with a tabular amplitude
and on the interfaces between adherends and adhesive a no friction property with hard
contact has been imposed not to affect the results with friction interaction between those
surfaces; vertical displacements are blocked with carriages on the adherends (recreating
the two elements of 12.7 mm on the left and right extremities) and the central node of the
structure is clamped in the horizontal direction in order to implement the exact equivalent
boundary conditions as the previous models: results for Peel and Shear stress for the two
configurations (4- and 8-plies adherends) will be compared at the same step time and
they have been normalised by the Young’s modulus of the adhesive (to make the results
independent from the material used). Results for the step corresponding to 20s and 60s
are shown in order to have a comparison between stresses at the beginning and at the end
of the test. For the model with 4 plies, the layers are two for each ply, while the model
with 8 plies has one layer for each ply, so the number of total layers is the same (tab.
4.14).

Model Adherends Adhesive
Number Type Number Type

4 plies 628 CPE4 40 COH2D4
8 plies 628 CPE4 40 COH2D4

Table 4.14: Mesh properties - Study of damage for cohesive elements.

In fig. 4.44 the curves have the same shape as literature and MUL2 CODE, but the
peaks of Ply 90◦ for 8-plies are higher than 4-plies: this shows that this type of plies
configuration is the weakest among the other and it leads to early breakups of the lap
because the fibres are positioned perpendicularly to the external loads applied on the
extreme edges. The configuration for Ply 0◦ appears the strongest one among the others.
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Figure 4.44: Peel Stress evolution for the 4-plies adherends (top) and 8-plies adherends (bottom)
analysis evaluated at 1/3 of the entire displacement corresponding to the total time period of the

ABAQUS test.
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The curves of fig. 4.45 have the same shape as literature and MUL2 CODE, but for 4-
plies they have lower values due to a not totally correct modelling of this configuration for
the lap joint: in fact, the Ply 90◦ configuration for 8-plies is able to detect the approaching
breakup while for 4-plies the same configuration has only a little deviation from the shape
as it is possible to see in the two lines which begins and ends the shape of the curve. As
for Peel Stress, the configuration for Ply 0◦ appears the strongest one among the others.

Figure 4.45: Shear Stress evolution for the 4-plies adherends (top) and 8-plies adherends (bottom)
analysis evaluated at 1/3 of the entire displacement corresponding to the total time period of the

ABAQUS test.
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At the end of the test (fig. 4.46), the Ply 90◦ configuration demonstrates the lowest
performances and in fact it is the first composite material which has breakups for a great
length in the adhesive element (almost 2 mm, but also the Ply 45◦ and Ply -45◦ configu-
rations (which are overlapped) express their weakness in tensile loading applications. The
non-symmetry of the plots is due to numerical approximations made by the software’s
computational solver. As for the same plot for Peel Stress at the time step corresponding
to 20s, the configuration for Ply 0◦ rests the strongest one among the others.

Figure 4.46: Peel Stress evolution for the 4-plies adherends (top) and 8-plies adherends (bottom)
analysis evaluated at the total displacement corresponding to the Total time period of the ABAQUS test.
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At the end of the test (fig. 4.47), the configuration for Ply 0◦ demonstrates its strength
among the others because it shows almost the same minimum peak value as the other
configurations (in 8-plies the peak converges to a lower result than for 4-plies) and it
also does not experience breakups, although the two external edges of the curves express
a damaged adhesive. As expected, the Ply 90◦ configuration is the weakest one and it
reveals its lack of structural and engineering importance for a single lap joint model.

Figure 4.47: Shear Stress evolution for the 4-plies adherends (top) and 8-plies adherends (bottom)
analysis evaluated at the total displacement corresponding to the Total time period of the ABAQUS test.
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4.4 Hybrid-adhesive double lap joint
In order to reduce Peel and Shear stresses, a combination of stiff and flexible adhesives
along the bondline can be used, as analysed by Pires et al. in [24]: Pires’ results indicate
that joints’ strength can be optimised by appropriate geometrical and material property
selection to become higher for joints with bi-adhesive bondlines compared with those with
single adhesives in the bondline. The double lap joint studied derives from Ozer & Oz’s
works[22] (the case analysed is l1/l2 = 0.7): Aluminum alloy 7075 was used as inner
and outer adherends, Hysol EA9313 and Terokal 5045 epoxy adhesives were used as stiff
and flexible adhesives, respectively; the double lap joint has the following geometrical and
physical characteristic (fig. 4.48, tab. 4.15) taken from [22, pag. 51]:

Figure 4.48: Double Lap Joint, Ozer & Oz.

Geometrical characteristics Value
lf 3.6456 mm
ls 5.208 mm
La 100 mm

width 25 mm
Ta 1.5 mm

EAdherend 71.7 GPa
EFlexibleAdhesive 0.4374 GPa
EStiffAdhesive 2.274 GPa
νAdherend 0.33

νFlexibleAdhesive 0.38
νStiffAdhesive 0.36

σ 3.6 kN

Table 4.15: Hybrid-adhesive double lap joint - Material and geometrical properties.
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4.4.1 First Approach: cross axis, uniform mesh

The double joint (fig. 4.49) is bounded through x- and z- in the outer adherends and only
through x-axis in the inner adherend; each 4th node of the cross section’s 2B4 (fig. 4.50)
has been bounded through y-axis (tab. 4.16). A load of 3.6 kN is applied to the left side
of the inner adherend and, after normalising values by the average value of σxz, graphical
results can be obtained (fig. 4.51, 4.52).

Figure 4.49: Hybrid-adhesive double lap joint cross section HLE discretization.

Figure 4.50: Hybrid-adhesive double lap joint mesh: cross axis.

88



4 – Numerical modelling of bonded joints

Model DOFs Peel Stress Shear Stress
HLE 6 9282 0.6673 1.3632
HLE 7 12222 0.6583 1.3522
HLE 8 15603 0.6597 1.3289

Ozer & Oz / 0.7032 1.3333

Table 4.16: DOFs and Max values of Peel and Shear stress at the free edges - Hybrid-adhesive double
lap joint: uniform mesh (1st approach).

Figure 4.51: Peel Stress - Hybrid-adhesive double lap joint: uniform mesh (1st approach).

Figure 4.52: Shear Stress - Hybrid-adhesive double lap joint: uniform mesh (1st approach).
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4.4.2 Second Approach: longitudinal axis, uniform mesh

In the second approach, the axis considered is the longitudinal axis: in this way, variable
sections through the longitudinal axis can be evaluated (Fig. 4.53). Mesh can be changed
for the different regions without changing the global connectivity (Fig. 4.54): in order to
study the mechanical behaviour at the connection point between adherend and adhesive
and between Stiff and Flexible adhesives, a graded mesh is highly recommended (fig. 4.55,
4.56, tab. 4.17).

Figure 4.53: Hybrid-adhesive double lap joint cross section HLE discretization: the three central ones
correspond to the cross section of the Flexible Adhesive, then the Stiff Adhesive and then again the

Flexible Adhesive.

Figure 4.54: Hybrid-adhesive double lap joint mesh: cross axis.
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Model DOFs Peel Stress Shear Stress
HLE 6 13869 0.6598 1.3741
HLE 7 18228 0.6682 1.3602

Ozer & Oz / 0.7032 1.3333

Table 4.17: DOFs and Max values of Peel and Shear stress at the free edges - Hybrid-adhesive double
lap joint: uniform mesh (2nd approach).

Figure 4.55: Peel Stress - Hybrid-adhesive double lap joint: uniform mesh (2nd approach).

Figure 4.56: Shear Stress - Hybrid-adhesive double lap joint: uniform mesh (2nd approach).
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Chapter 5

Conclusions

Three different types of joints with increasing complexity have been investigated in this
thesis.
The first part of the results are devoted to the assessment of MUL2 CODE implemented
for the first time with Hierarchical Legendre Expansion Order. The use of Carrera Unified
Formulation has been fundamental in order to write the displacements field in a compact
formulation. The second part concerns the complete study of a single lap joint in ABAQUS
proceeding by steps from homogeneous mechanical properties to orthotropic composite
material for adherends and cohesive elements for adhesives.
The results showed by the present thesis allow to state that:

• The MUL2 CODE based on HLE is an efficient method to study bonded joints
and, generally, composites structures: numerical results and the global shapes of the
curves obtained are very close to literature benchmarks and also to numerical exact
solutions deriving from ABAQUS

• The MUL2 CODE can detect the most relevant behaviours of the significant zones
of a loaded structure as well as the commercial finite element package ABAQUS, for
example having highlighted, using a thinner and thinner mesh in those regions, that
the Peel Stress in the free edges of the single lap joints tends to zero

• Implementing a parametric Python code which use the ABAQUS solver can be the
easiest way to perform excellent analyses on single lap joints because its results can
achieve the same accuracy of the highest expansion order of MUL2 CODE

• It is possible to collect precise information about the evolution of the stress adhe-
sive characteristics which propagate through the thickness of the single lap joint by
applying gauges on the external skin of the adherends

• The most important layer of an adherend made by composite is that one at the
interface with adhesive which can determine more than the other ones (whose angles
of orientation of fibres less affect the behaviour of the structure) the toughness of
the lap
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