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Abstract

Recent trends in aircraft design show a growing interest in lightweight materials and non-
conventional configurations, with the problem of increasing the frequency of occurrence
of aeroelastic phenomena. Hence, active control methods become necessary to avoid
aeroelastic instabilities, in particular for flutter suppression. The so called Receptance
Method is an active control approach that shifts some of the poles of a system to new desired
positions, while retaining the others unchanged. This method is useful for increasing
the flutter boundary, by moving that poles whose interaction leads to the instability.
Experimental implementation of the receptance method was performed on the MODular
aeroelastic FLEXible wing (MODFLEX), with a Multiple-Input Multiple-Output (MIMO)
control strategy. The method was so proved, with an increase of flutter speed up to 22%.
Furthermore, a numerical model of the wing was developed and validated with some tests.

Sommario

Le recenti tendenze nella progettazione di velivoli mostrano un interesse crescente verso
i materiali ultraleggeri e le configurazioni non convenzionali, causando però una più
frequente insorgenza dei fenomeni aeroelastici. I metodi di controllo attivo diventano
così necessari per evitare le instabilità che comportano, ed in particolare per evitare il
fenomeno del flutter. Il Metodo delle Recettanze è un tipo di controllo attivo che permette
di spostare alcuni poli di un sistema posizionandoli dove si desideri, senza influire sugli
altri poli. Così facendo, è possibile incrementare la velocità di flutter muovendo quei poli
la cui interazione provoca l’instabilità. Un’applicazione sperimentalmente del metodo
delle recettanze è stata effettuata sull’ala aeroelastica, flessibile e modulare chiamata
MODFLEX, utilizzando una strategia di controllo con input e output multipli. Il metodo
è stato così dimostrato, ottenendo un aumento della velocità di flutter fino al 22%. Inoltre,
è stato anche sviluppato un modello numerico dell’ala, validato tramite alcuni test.
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Chapter 1

Introduction

To improve flight performance while at the same time reducing operating costs, recent
aircraft designs employ lightweight structures, thanks to new materials and manufacturing
processes. Moreover, many non-conventional aircraft configurations are being considered
in the last years. These innovations, however, impacted on the aircraft stability, leading to
aeroelastic problems more frequently. Hence, active control methods have been investi-
gated with more attention to avoid instabilities on aeroelastic systems and, sometimes, to
safely exploit the benefits of aeroelastic phenomena.

This introduction contains an overview on the field of aeroelasticity, with an historical
background, and focuses in particular the flutter phenomenon. Then, active aeroelastic
control methods are presented.

1.1 Aeroelasticity

The flight of an aircraft, rocket or space shuttle inside the Earth’s atmosphere involves
the contact between their structure and the airflow at high speed, which leads to an
interaction between aerodynamic, elastic and inertial forces. Aeroelasticity is the branch
of physics that studies phenomena generated by this interaction. A classification of the
major disciplines related with the aeroelastic field of study is well represented by the
Collar’s triangle in Figure 1.1. It is usual to divide aeroelastic phenomena into static and
dynamic, by considering whether or not to neglect inertial forces of a structure.

1.1.1 Static aeroelasticity

Static aeroelasticity considers only static aerodynamic forces (independent of time), acting
on an elastic structure, while inertial forces are neglected. An important static phenomenon
is divergence. It occurs at a certain flight speed called divergence point, in which the
aerodynamic load increases the deflection of a system (usually a wing or any lifting
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Figure 1.1: Collar’s aeroelastic triangle

surface), so increasing the load on it. It is an unstable phenomenon without an equilibrium
condition, so it can be really disastrous.

Another static problem is the reduction of control surfaces’ effectiveness, which may
result in control reversal. In this situation the usual functionality of control surfaces,
frequently ailerons, is reversed, leading also to the aircraft fail.

1.1.2 Dynamic aeroelasticity
Dynamic aeroelasticity considers all aerodynamic, elastic and inertial forces. The main
catastrophic dynamic phenomenon is flutter, which occurs beyond a flight speed called
flutter point. In modern aircraft this point is usually reached before the divergence point,
so the focus on this problem is much greater. When an aircraft approaches the flutter point,
its structure (usually the wing) extracts energy from the air stream and it starts to swing
with an amplitude that increases until the structure failure. This unstable self-excited
oscillation is due to a coupling of system modes, which become negatively damped. Thus,
it is important to predict the flutter point, but it is difficult because of the unsteady nature
of aerodynamic forces and moments generated by the oscillation.

There are two types of flutter: hard flutter and soft flutter. A hard flutter occurs when
the damping values drop very rapidly with a speed increase towards the flutter point, while
a soft flutter is a smoother condition. Naturally, hard flutter is more dangerous because,
in that case, a stable system becomes unstable with a small increment of air speed, so it is
more difficult to predict the flutter point experimentally without breaking the structure.

There are different way to predict flutter, well explained by Hodges and Pierce [1].
Classical flutter analysis was used until the late 1970s and it was useful only to predict the
flutter point, with no information about the behaviour of the system away from that point.
On the other hand, the p-method solves the aeroelastic system equations and calculates the
dimensionless parameter p, called "reduced eigenvalue", for a range of airspeed values.
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1.1 – Aeroelasticity

(a) (b)

Figure 1.2: Example of graphs obtained with the p-method: (a) real part of p and (b)
natural frequencies of a wing with an airflow across it at speed between 0 and 70 m/s

Since p is related with complex eigenvalues, it is also a complex number. In Figure 1.2
there is an example of graphs obtained with the p-method applied on a wing. Only the
first 2 modes are considered. In the left-hand side, the real part of p is plotted in a range
of airflow velocity from 0 to 70 m/s. In the other side, the vibrational frequencies, which
are directly related with the imaginary part of p, are plotted for the same range. The flutter
instability occurs when the real part of p becomes positive, at about 60 m/s. At the same
speed, the frequencies approach and couple, becoming a mixed mode over the flutter point.

There are other engineering solutions for flutter called k-method and p-k method. The
k-method considers the aerodynamic damping and stiffness as functions of the "reduced
frequency" k. Furthermore, a fictitious damping g is added to the system of equations,
related with the damping ratio ζ by g = −2ζ . The graph of g versus the airflow velocity
V shows the flutter point when g becomes zero (this method is also called V-g method).
Plotting also the frequencies, information about the mechanism that leads to flutter can be
obtained. This method is widely used by industries for its speed of computation, but its
mathematical formulation is not accurate and sometimes the results obtained away from
the flutter point are not correct. The p-k method solves the problems of the k-method. It is
a combination of the p-method and the k-method, so p is now considered as function of the
reduced frequency k. As said, this method gives better results than the k-method about the
prediction before and after the flutter point. Graphs obtained with the p-k method, applied
on the same wing of the previous example, are in Figure 1.3. These graphs show that the
real part of p becomes zero at about 55 m/s. Moreover, the frequencies do not couple
together at the flutter point, but they approach each other with the air speed increase.

Flutter is not the only dynamic aeroelastic phenomenon. Other important dynamic
instabilities are Limit Cycle Oscillation (LCO), which involves non-linear systems, and
buffeting. However, these phenomena will not be discussed here.
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(a) (b)

Figure 1.3: Example of graphs obtained with the p-k method: (a) real part of p and (b)
natural frequencies of a wing with an airflow across it at speed between 0 and 70 m/s

1.1.3 History of aeroelasticity
Aeroelasticity is not a recent discipline and it is not only concerned with the aerospace
sector, but it is also relevant in fast cars and bridge construction. Indeed, it is famous the
collapse of the Tacoma Narrows Bridge in 1940 caused by flutter, occurred because of a
high speed violent wind, as explained by Billah and Scanlan [2]. Anyway, the first recorded
flutter phenomenon occurred to an aircraft, the Handley Page O/400 bomber in 1916, so the
problem was in that moment studied and solved for the fist time by Lanchester [3] and by
Bairstow and Fage [4]. They found that the failure was caused by the horizontal tail which
had two elevators independently actuated. An antisymmetric elevator mode coupled with
a fuselage torsional mode led to a self-excited oscillation until the failure. Other accidents
linked with aeroelastic phenomena were experienced by aeroplanes during next years until
nowadays. Thus, it was learned that a way to avoid them is with an aeroelastic design, so
a focus on aeroelasticity during the aircraft design.

A great number of books deal with aeroelasticity. Some of them are more classical,
e.g. Fung [5] (1955), Bisplinghoff et al. [6] (1955), Dowell et al. [7] (1978), while
other are more recent, e.g. Hodges and Pierce [1] (2002), Wright and Cooper [8] (2007).
Many of these books deal with cantilever wings and consider unsteady aerodynamic, so
they give theoretical information. Instead, the aeroelastic design of an aerospace system
is usually carried out with structural and aerodynamic Finite Element models in order to
predict aeroelastic phenomena. Then, validation of results is done with wind tunnel tests
or during flight experiments.

For several decades, research activity has been focused to reduce all negative effects
of aeroelastic phenomena. In addition to aeroelastic design, different aeroelastic control
methods have been developed, with the purpose to solve many catastrophic aeroelastic
problems not revealed during the design process.

4



1.2 – Aeroelastic control

1.2 Aeroelastic control
Flutter is a catastrophic phenomenon that needs to be eliminated, or at least it has to occur
at speeds far beyond the flight envelope. Flutter suppression could be performed with
feedback control methods, increasing the flutter boundary by assigning stable poles to the
system.

The problem of vibration suppression is of interest to engineers from almost one
century. Two approaches may be used to solve it: a passive physical modification and an
active control [9]. Passive modifications have been examined by Duncan [10] from 1941.
Adding structural elements to a system such as masses, springs or patches, a number of
poles and zeros can be assigned. However, also the static behaviour of the system is
affected in this way. This method has a limit on the number of eigenvalues that can be
changed and physical limits related with the form and dimension of additional elements.
Furthermore, it is not possible to change poles during flight.

Active controls spread years later, also thanks to Wonham [11] in 1967. He showed
that poles of a controllable dynamic systems can be reassigned with a state feedback.
Several active control methods have been developed until nowadays, and many of them
are described by Inman [12] and Fuller et al. [13]. Partial pole placement is an active
control method useful to move some poles of a system to desired position, retaining the
others unchanged. Datta et al. [14] first proposed the method in 1997, optimized during
years to make it a robust procedure [15]. However, it needs to know the system matrices,
which can be estimated only with Finite Element method for complex systems.

On the other hand, a recent control algorithm known as receptance method1 was
presented by Ram and Mottershead [16] in 2007. This method requires only experimental
measured receptances of the system, so it does not require to know or to evaluate mass,
damping and stiffness matrices. Furthermore, there is no need of model reduction methods,
or to estimate the unmeasured states. The formulation was implemented in several ways
and it followed some developments during years: the paper by Mottershead et al. [17]
shows how the eigenvalue sensitivities can also be assigned, Ram et al. [18] describe the
effect of time delay. An application on a T-shape plate is described by Mottershead et al.
[19], while Tehrani et al. [20] tested the method on a lightweight composite beam and on
a modular test structure. The formulation was also implemented on an Agusta-Westland
W30 helicopter airframe, with a ground vibration test, in 2012 [21].

The receptance method underwent a reformulation in 2013, as described by Ram and
Mottershead [22], which made it faster and more general. Indeed, the original method
[16] was readily usable for a single-input control, while the multiple-input case was
achievable only with a sequence of single-input applications. Furthermore, it needed the
Sherman-Morrison formula [23] to determine the closed loop receptances. On the other
hand, the new reformulation can be used for a multiple-input control in one step, and it

1The receptance is the ratio between the vibrational displacement of a structure and its exciting force.
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1 – Introduction

allows to assign both eigenvalues and eigenvectors. The new reformulation is theoretically
demonstrated with some examples performed on a mass-spring-damper dynamic system.
The system is described by the quadratic pencil with its mass, damping and stiffness
matrices, M, C and K respectively. The receptance matrix is obtained from the inverse of
the dynamic stiffness, which is related with the previous matrices, but practically it could
be measured experimentally from the system. Then, the receptance algorithm allows to
determine feedback gains, G and F, which multiply displacement and velocity feedbacks
of the system respectively, in order to perform the closed loop control.

An experimental application of the receptance method in its reformulated form was
carried out by Fichera et al. [24], but only for the single-input control case.

1.3 Purpose of the study
The main purpose of this work is to demonstrate the experimental feasibility of the
reformulated receptance method in its complete Multiple-Input Multiple-Output (MIMO)
form, by applying it on a flexible wing, with two control surfaces as actuators and two
laser sensors that read the vertical displacement of the wing. The second objective is to
increase the flutter boundary of the wing, thanks to the shift of its poles with the receptance
method: moving a pole in the s-plane means that the natural frequency and damping of
the related mode also change. Indeed, in a complex system, the eigenvalue λ is related
with the natural frequency ωn and the damping value ζ by the equation

λ = σ + iη = −ωnζ ± iωn

√
1 − ζ2 (1.1)

where σ is the real part and η is the imaginary part of the pole.
In accordance with the flutter prediction methods that are described in section 1.1.2,

it is possible to increase the flutter boundary by increasing the frequency separation of its
critical modes or by increasing their damping value. In this way, the flutter phenomenon
may be moved at higher speeds.

The next chapter includes the flexible wing design and its disposition for a wind tunnel
test. A numerical model of the wing is also described and validated by comparing it with
the experimental wing. Chapter 3 explains the most recent reformulation of the receptance
method and its implementation in MATLAB. Applications of the method on the numerical
model and on the experimental wing are presented in the last two chapters.

6



Chapter 2

Aeroelastic model

The experimental wing used to implement the multiple-input receptance method is called
MODFLEX wing (MODular aeroelastic FLEXible wing). It is the latest development of
the experimental wing used by Fichera et al. [24] to perform the single-input control case,
which now has been updated with multiple control surfaces.

This chapter presents the aeroelastic experimental and numerical models of the wing,
and shows the results of a comparison between them in terms of a modal analysis and a
flutter test.

2.1 Experimental model
The modular nature of the wing allows it to be used in different configurations to perform
various analysis. This section contains all the information about the wing design and its
disposition for the experimental analysis.

2.1.1 MODFLEX wing design
The MODFLEX wing was designed as composed by 4 modular aerodynamic sectors and
a tip sector made with 3D printing technologies, while an aluminium alloy spar is the only
structural element. The MODFLEX wing design is shown in Figure 2.1. Although the
initial wing design was with 4 control surfaces on two sectors as in figure, the multiple-
input control was performed with the only 2 control surfaces on the 4th sector (TEO -
Trailing Edge Outer and LEO - Leading Edge Outer), keeping as passive the 2nd sector.
The configuration of the wing for the MIMO control analysis is shown in Figure 2.2.

About physical specifications, each sector is made by ABS, it has a chord c = 0.3 m
and a symmetric aerofoil NACA 0018. Mass and flexural axes are both positioned more
or less at the middle of chord, so at 0.5c, corresponding with the main spar axis. The
spar is in aluminium alloy and it has a particular cross-section shape, as shown in Figure
2.3. This shape was chosen to have the desired values of flexural, torsional and in-plane

7



2 – Aeroelastic model
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Figure 2.1: MODFLEX wing design and dimensions in millimeters
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Figure 2.2: MODFLEX wing configuration with TEO and LEO control surfaces

8
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2

1
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3

34

Figure 2.3: Main spar shape and dimensions in millimeters

Figure 2.4: Brushless motor position for the sector with control surfaces

stiffness and to reach a certain independence between flexural and torsional ones. The
main spar passes through all the sectors and it is fully constrained at one end. Each sector
is connected with the main spar by 2 pins in 2 close points near the middle of chord. By
setting up all sectors with some millimeters of space between them, the stiffness of the
model led by the spar is not modified. Both the control surfaces are connected with the
4th sector and they are actuated by motors mounted inside the connection, as shown in
Figure 2.4. The control surfaces’ hinge axes are at 0.2c and 0.8c, while their span is the
same as the sector. The chosen motors are Maxon EC 16 Ø16 mm, brushless, 60 Watt,
connected with the encoders MR, Type ML, 512 CPT, 3 Channels, the planetary gearheads
GP 16 C Ø16 mm, 0.2-6 Nm and the line drivers ESCON 36/3 ec, 2.7/9 A, 10-36 VDC.
Specification of the motors and the gearheads are in Table 2.1. They were chosen for the
high torque and the light weight.

9



2 – Aeroelastic model

Table 2.1: Specifications of the Maxon EC 16 Ø16 mm motor on the left, the planetary
gearhead GP 16 C Ø16 mm on the right

Part number 395588
Nominal voltage 24 V
Max. continuous torque 17 mNm
Max. continuous current 3.39 A
Max. radial load 10 N
Stall torque 221 mNm
Torque constant 5.25 mNm/A
Speed constant 1820 rpm/V
Rotor inertia 1.07 gcm2

Weight 58 g

Part number 416115
Max. continuous torque 0.5 Nm
Max. radial load 80 N
Radial play 0.08 mm
Mass inertia 0.05 gcm2

Weight 33 g

Figure 2.5: MODFLEX wing installed in the wind tunnel test section

2.1.2 MODFLEX wing disposition for MIMO control

The MODFLEX wing in the configuration shown in Figure 2.2 was fully constrained by
one end with a fixing mechanism that allows to select and keep a desired angle of attack.
It was chosen to keep the wing at zero degrees. The test section where the wing and the
clamping are installed is a 1.2 × 0.6 × 1.0 m open section. It allows a connection with the
low-speed wind tunnel of the University of Liverpool, which has a maximum wind speed
of 20 m/s. A photo of the wing inside the test section is shown in Figure 2.5. Whilst the
system inputs are the control surfaces movement, the outputs are the displacements of two
points along the chord of the 3rd sector, located at 0.25c and 0.75c, both at the middle of

10
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Figure 2.6: MATLAB experimental wing set-up with block diagram

its span. Two laser sensors (Keyence LK-500) mounted on the top of the test section were
used for reading the above mentioned displacements.

The control algorithm was developed in MATLAB Simulink and then implemented in
the real-time acquisition system dSPACE. Its purpose is to move the control surfaces as
desired and to read the wing displacement with the laser sensor. In this way, Frequency
Response Functions (FRFs) of the wing can be computed, necessary for the application
of the receptance method. The experimental wing set-up is shown in Figure 2.6, with a
block diagram to explain the control algorithm.

The wing vertical displacements are read by the laser sensors (called LS1 and LS2),
whose signals pass through an Analogue to Digital converter. Then, a second-order
Butterworth low-pass filter cuts off the frequencies over 10 Hz. The velocity of the
wing movement is obtained by numerically deriving the displacement signals. Both
displacement and velocity values are used to perform the closed loop control, multiplying
them by the F and G gains obtained with the receptance method, and summing them
with the desired deflection commands of the control surfaces. The readings of both the
digital encoders are used as feedbacks for inner loops, which implement PID (Proportional-
Integral-Derivative) controllers to ensure that the desired deflections of the control surfaces
are always really reached. Furthermore, the same inner loops also allow to keep the control
surfaces at zero degrees when required, so to offset their weight. This is achieved by
measuring the angle values when each control surface is at its maximum and minimum

11



2 – Aeroelastic model

angular position. Then, the voltage linked with the middle angular value is used to keep
the control surfaces at zero degrees. These inner loops produce therefore voltage outputs
that pass through Digital to Analogue converters, and then go to the motor drivers, which
provide current to the motors.
To summarise, the inner loops:

• use the encoder readings as feedbacks;
• implement the PID controllers;
• produce the voltage output to sent to the motor drivers, which provide current to the

motors.

The outer loops:

• use the laser readings as feedbacks;
• multiply them by the gain values obtained with the receptance method;
• sum the required command with the desired deflection command and send them,

through the inner loops, to the motors.

However, the outer loops are only used in a second moment, after the computation of the
control gains.

The laser signals are also sent to the Siemens.PLM LMS Test.Lab acquisition system
to compute 4 frequency response functions of the wing, obtained by each combination
between the 2 inputs and the 2 outputs.

PID controller

A PID controller is a simple and widely used type of controller. The input to a PID is
the system error, which is the difference between the system input and the feedback signal
from the output. The input term, its integral and its derivative, are multiplied by gains,
which correspond to the 3 terms of a PID controller: the proportional KP, the integral KI
and the derivative KD gains. According to Franklin et al. [25], the transfer function of
PID controllers is

PID(s) = KP + KI

(
1
s

)
+ KDs (2.1)

where s is the general complex eigenvalue. The proportional term gives an output propor-
tional to the error value. The integral term eliminates the offset, which is the accumulated
error over time. The derivative term improves the dynamic response of the system.

Besides a manual tuning, which needs much experience, there are various empiri-
cal methods that can be used for tuning the three gains. One commonly used is the
Ziegler–Nichols method, introduced by J.G. Ziegler and N.B. Nichols in 1942-1943. This

12



2.2 – Numerical model

method can be used to set only proportional, proportional-integral or full proportional-
integral-derivative controllers. The approach is to keep the integral and the derivative
terms at zero and to evaluate the ultimate proportional gain KU value. KU is the value
obtained when the system output starts to oscillate at a fixed amplitude after a step com-
mand. It is also necessary to evaluate the period of the oscillation TU in that condition.
For a complete PID controller, the three gains are obtained by

KP = 0.6KU KI =
2KP

TU
KD =

KPTU

8
(2.2)

On the experimental MODFLEX wing, the feedback signal to each PID controller was
sent by the encoders. Tuning with the Ziegler-Nichols method, the three gains for both the
motors should be setted at

KU = 2.5 TU = 0.06 −→ KP = 1.5 KI = 50 KD = 0.0113

However, a manual tuning was done to adjust these values, by seeing the response of both
the motors. The gain values kept were, for the LEO control surface

KP = 2 KI = 2 KD = 0.01

while for the TEO control surface the gains were

KP = 2 KI = 1.5 KD = 0.01

2.2 Numerical model
A numerical model of the wing was developed before the manufacturing of the experi-
mental one. Indeed, it was used to calculate the flutter speed by varying the main spar
shape, and to estimate the hinge moment for the control surfaces in order to select the
proper motors.

The numerical model is composed by beam Finite Elements: 40 beam elements for
the spar, 10 elements for each control surface. It has the sectors’ masses concentrated in 4
points (more or less at the centre of each sector), 2% of structural damping and aerodynamic
panels, which are used to solve the unsteady aerodynamic with the MD.Nastran DLM
(Doublet Lattice Method). The 4 control surfaces are all implemented in the model, so
they can be properly locked or unlocked when necessary. A static analysis was performed
with MD.Nastran SOL101, which gave a tip vertical displacement of 39 mm due only to
the wing’s weight.

2.3 Comparison of numerical and experimental models
The main comparisons carried out between the numerical and the experimental models
are about a modal analysis and a flutter test.
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(a) impact along vertical direction (b) impact along horizontal direction

Figure 2.7: Frequency response functions obtained with an hammer test, by impacting
along different directions

2.3.1 Modal test comparison

A modal test [26] was performed on the experimental MODFLEX wing. The natural
frequencies and damping were obtained by using the impact hammer technique with a
web of accelerometers, and by analysing the results on the Siemens.PLM LMS Test.Lab
acquisition system. In detail, both the control surfaces were fixed at zero degrees. Then,
8 accelerometers were positioned on the top of the wing, 1 near the leading edge and
1 near the trailing edge of each sector, in the middle of their span. The wing was
excited by an impulsive force obtained by impacting with the hammer in a point aligned
to one accelerometer, but from the wing bottom. A frequency response function was
then obtained in a range from 0.1 to 80 Hz. Natural frequencies and damping values
were computed from the FRF by the modal parameter estimation technique PolyMAX,
described by Peeters et al. [27]. The in-plane modes are determined by placing only 4
accelerometers on the leading edge of all the sectors, and by impacting along the horizontal
plane near one accelerometer. Synthesized curves of both the FRFs are in Figure 2.7.

In Table 2.2 there are the experimental results compared with those of the numerical
model, obtained with MD.Nastran SOL103. This solution sequence ignores all damping,
so for the numerical model only the frequencies are displayed. The error between the
frequencies of the two models is also calculated.

The 10th mode is different because a local mode was found numerically, while the 10th

experimental peak corresponded to a bending mode. Anyway, there is a small error in
frequency for all the other modes, except for the 3rd bending, which has almost 10 Hz of
difference. This means that the numerical model is representative of the real wing for low
vibrational frequencies, but an improvement is needed to fit also high frequency modes.
Mode shapes are now displayed.
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Table 2.2: Comparison of frequencies and damping of the numerical and experimental
wing models

Numerical model Experimental model
Mode Mode shape Frequency [Hz] Freq. [Hz] Damp. ζ [%] Error [%]

1 1st bending mode 3.03 2.90 0.24 4.5
2 1st torsional mode 4.97 4.81 0.65 3.3
3 1st in-plane mode 6.97 6.41 1.14 8.7
4 2nd torsional mode 15.07 14.64 1.22 2.9
5 2nd bending mode 17.26 18.44 0.51 6.4
6 3rd torsional mode 22.22 21.63 1.10 2.7
7 4th torsional mode 28.21 28.42 0.98 0.7
8 3rd bending mode 37.91 46.73 1.36 18.9
9 2nd in-plane mode 42.05 36.47 1.80 15.3

10N local mode 60.29 - - -
10X 4th bending mode - 67.94 2.06 -

(a) 1 - 1st bending mode (b) 2 - 1st torsional mode

(c) 3 - 1st in-plane mode (d) 4 - 2nd torsional mode
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(e) 5 - 2nd bending mode (f) 6 - 3rd torsional mode

(g) 7 - 4th torsional mode (h) 8 - 3rd bending mode

(i) 9 - 2nd in-plane mode (j) 10N - local mode

Figure 2.8: First 10 mode shapes of the wing numerical model
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2.3 – Comparison of numerical and experimental models

(a) 1 - 1st bending mode (b) 2 - 1st torsional mode

(c) 3 - 1st in-plane mode (d) 4 - 2nd torsional mode

(e) 5 - 2nd bending mode (f) 6 - 3rd torsional mode
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(g) 7 - 4th torsional mode (h) 8 - 3rd bending mode

(i) 9 - 2nd in-plane mode (j) 10X - 4th bending mode

Figure 2.9: First 10 mode shapes of the wing experimental model. They are computed
with accelerometers positioned at 0.125 m, 0.375 m, 0.625 m and 0.875 m from the wing
root

Mode shapes of the numerical wing model were obtained with the Patran post-processor
and they are presented in Figure 2.8, while the experimental mode shapes were computer
by LMS Test.Lab, thanks to the accelerometers disposition on the wing. In Figure 2.9,
experimental modes are shown.

MAC

The so called Modal Assurance Criterion (MAC) (or also Mode Shape Correlation Crite-
rion) quantifies the similarity between the predicted mode shapes, which are obtained by
the numerical wing model, and the measured mode shapes obtained by the experimental
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2.3 – Comparison of numerical and experimental models

Figure 2.10: Modal Assurance Criterion for the first 10 mode shapes obtained by the
numerical and the experimental model

wing. It can be also used for other comparisons, not of interest to us. This parameter is de-
fined by the least square deviation between the numerical mode shape vector (eigenvector)
ϕN and the experimental measured one ϕX , so

MAC(r, q) =

��{ϕN }
T
r {ϕX }q

��2(
{ϕN }

T
r {ϕN }r

) (
{ϕX }

T
q {ϕX }q

) r = 1, . . . , n q = 1, . . . ,m (2.3)

where n and m are the number of analysed modes respectively from the numerical and
the experimental models. The MAC(r, q) parameter is a scalar quantity between 0 and 1,
which indicates if the mode shapes have some correlation. A value close to 0 means that
there is no correlation, so the related modes are different, while a value close to 1 means
that they are the same mode. All parameters obtained with a set of numerical modes and
a set of experimental modes can be presented in a matrix, which ideally is composed by
values of 1 in the diagonal and 0 in the other positions.

The numerical and the experimental mode shapes shown in Table 2.2 are compared
by using the MAC, and the resultant matrix is shown in Figure 2.10. As expected, there
is a correlation between the first 9 modes, while the last one is different. However, some
modes have not a very high MAC index, as for the 8th experimental mode which has
only a correlation of 0.64 with the 8th numerical mode, but it has also a correlation of
0.58 with the 5th numerical mode. This could mean that the numerical model needs
some improvement to better fit the experimental one for high frequency modes, as also
highlighted previously. However, the first 2 modes, which correspond to the 1st bending
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2 – Aeroelastic model

Figure 2.11: Velocity-frequency and Velocity-damping diagrams of the MODFLEX wing

and the 1st torsional modes, have a correlation value near to 1, so the numerical model is
enough accurate for a flutter comparison.

2.3.2 Flutter test comparison
A flutter test comparison was performed with the V-f and V-g diagrams (Velocity -
frequency and Velocity - damping), by computing the 1st bending and the 1st torsional
modes at different air speeds. For the numerical model these diagrams were computed
with MD.Nastran SOL145. For the experimental wing, all the frequency and damping
values were obtained by an hammer test, with the wing mounted inside the wind tunnel
and the control surfaces kept fixed at zero degrees by the motors. The wind was increased,
first with large steps, while near the flutter point it was increased by 0.5 m/s. However, a
stepped sine excitation was used for determining some points, also at high wind speed, as
comparison with the hammer test results. It gave the same frequency and damping values,
so the hammer did not affect aerodynamic during the test. In Figure 2.11 the numerical
results are presented in solid lines and the experimental ones with markers. Numerically,
it results a flutter velocity of Vnum = 16 m/s, while experimentally the flutter instability
occurs with a wind speed of Vexp = 13.5 m/s. The lower flutter speed for the experimental
model is also depicted by the smaller values of damping obtained, as shown in figure.
The numerical model can be improved by reducing the damping values in order to fit
the experimental values. In this way, the numerical flutter speed should be similar to the
experimental one.

20



Chapter 3

Active aeroelastic control

The new reformulation of receptance method is explained in this chapter, including also
an example of application on a system with 2 Degrees of Freedom, controlled by 2 inputs.
The method is implemented in MATLAB by using the state-space model, and it is tested
and proved with the same examples. Other tests are done on the numerical model of the
wing, as shown in chapter 4.

3.1 Receptance method
The receptance method algorithm [22] is here described. The objective is to find F and G
feedback gain matrices in order to perform a closed loop control, by moving some system
poles to required positions.

3.1.1 MIMO receptance method
Consider a multiple-input multiple-output control system with m inputs. Let M, C and
K ∈ Rn×n be symmetric mass, damping and stiffness matrices where n is the number of
Degrees of Freedom (DoFs) of the system. The quadratic eigenvalue problem associated
with the open loop system is

(λ2
kM + λkC +K)vk = 0 k = 1, . . . ,2n (3.1)

where λk are the eigenvalues and vk are the eigenvectors of the open loop system. The
same problem associated now with the closed loop system is

(µ2
kM + µkC +K)wk = B(µkFT +GT )wk k = 1, . . . ,2n (3.2)

where µk are the eigenvalues and wk are the eigenvectors of the closed loop system,
B = [b1 · · · bm] is the control force distribution matrix whose columns are the control
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3 – Active aeroelastic control

vectors of each input, F = [f1 · · · fm] and G = [g1 · · · gm] are the gain matrices of
the control feedback, each column for each input too. Therefore, equations (3.2) become

(µ2
kM+µkC+K)wk =

(
b1(µkfT

1 +gT
1 )+ . . .+bm(µkfT

m+gT
m)
)
wk k = 1, . . . ,2n (3.3)

Assume that the first p eigenvalues of the closed loop {µk}
p
k=1 are different from those

of the open loop {λk}
2n
k=1, while the others are keeping as the same, so µk = λk for

k = p + 1, . . . ,2n. A substitution in (3.3) gives

(λ2
kM+λkC+K)wk =

(
b1(λkfT

1 +gT
1 )+. . .+bm(λkfT

m+gT
m)
)
wk k = p+1, . . . ,2n (3.4)

A non-trivial solution is wk = vk for k = p + 1, . . . ,2n, so from equations (3.1)(
b1(λkfT

1 + gT
1 ) + . . . + bm(λkfT

m + gT
m)
)
vk = 0 k = p + 1, . . . ,2n (3.5)

Otherwise, considering the first p equations that correspond to the p poles to change,
equation (3.3) can be written as

wk = (µ2
kM+µkC+K)−1 (b1(µkfT

1 +gT
1 )+ . . .+bm(µkfT

m+gT
m)
)
wk k = 1, . . . , p (3.6)

The receptance matrix is defined as the inverse of the dynamic stiffness, so

H(s) = (s2M + sC +K)−1 (3.7)

where s is a general eigenvalue. Therefore

wk = H(µk)
(
b1(µkfT

1 + gT
1 ) + . . . + bm(µkfT

m + gT
m)
)
wk k = 1, . . . , p (3.8)

Denote

rµk, j = H(µk)b j k = 1, . . . , p j = 1, . . . ,m (3.9)

and

αµk, j = (µkfT
j + gT

j )wk k = 1, . . . , p j = 1, . . . ,m (3.10)

so equations (3.8) are composed as a linear combination of rµk, j , and they are

wk = αµk,1rµk,1 + . . . + αµk,mrµk,m, k = 1, . . . , p (3.11)

In matrix form, equations (3.10) are written as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
µkwT

k 0 · · · 0 wT
k 0 · · · 0

0 µkwT
k · · · 0 0 wT

k · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · µkwT

k 0 0 · · · wT
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
©­­­­­­­­«

f1
...

fm
g1
...

gm

ª®®®®®®®®¬
=

©­­­­«
αµk,1
αµk,2
...
αµk,m

ª®®®®¬
(3.12)
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or, in a simple notation

Pky = αk k = 1, . . . , p (3.13)

For the other 2n − p equations, since b , 0, equations (3.5) become, in matrix form

⎡⎢⎢⎢⎢⎢⎢⎢⎣
λkvT

k 0 · · · 0 vT
k 0 · · · 0

0 λkvT
k · · · 0 0 vT

k · · · 0
...

...
. . .

...
...
...
. . .

...
0 0 · · · λkvT

k 0 0 · · · vT
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
©­­­­­­­­«

f1
...

fm
g1
...

gm

ª®®®®®®®®¬
=

©­­­­«
0
0
...
0

ª®®®®¬
(3.14)

or, in a simple notation

Qky = 0 k = p + 1, . . . ,2n (3.15)

Combining matrices (3.13) with (3.15), the system of linear equations to be solved is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
...

Pp
Qp+1
...

Q2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

©­­­­­­­­«

f1
...

fm
g1
...

gm

ª®®®®®®®®¬
=

©­­­­­­­­«

α1
...
αp
0
...
0

ª®®®®®®®®¬
(3.16)

Thus, the gains f j and g j are determined by choosing αµk, j , obtaining wk from the control
vectors b j and the measured receptance H(µk) at the desired poles µk (for k = 1, . . . , p and
j = 1, . . . ,m) and calculating the eigenpairs of the system λk and vk (for k = p+1, . . . ,2n).

With this method, there is no need to evaluate the properties of the system such as
M, C and K matrices, because the receptance matrix can be computed from the system’s
response. Note also that, if F and G are real and w and µ are an eigenpair, also the complex
conjugation w and µ are an eigenpair, so from equations (3.10) the choice of αµk, j = αµk, j
gives real values of F and G.

In section 4 of [22] is also expressed a way to choose the arbitrary parameters αk by
imposing modal constraints. From (3.10), the imposition

(µkfT
m + gT

m)wk = 1 k = 1, . . . , p (3.17)

gives

αµk,m = 1 k = 1, . . . , p (3.18)
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for each assigned pole µk . With the nodal constraint wk, j = 0, the other arbitrary
parameters are determined by

eT
j Rkαk = 0 k = 1, . . . , p j = 1, . . . ,m − 1 (3.19)

where e j is the j-th unit vector, Rk is the matrix composed by rµk vectors, so

Rk = [rµk,1 · · · rµk,m] k = 1, . . . , p (3.20)

and αk is

αT
k = (αµk,1 · · · αµk,m−1 1) k = 1, . . . , p (3.21)

In this way, by the m−1 equations (3.19) it is possible to determine all the m−1 parameters
for each pole µk .

It is also possible to impose a modal ratio constraint ρ corresponding to

ρ =
wk,i

wk, j
k = 1, . . . , p i = 1, . . . ,m − 1 j = 1, . . . ,m − 1 (3.22)

and the system of equations to solve is

(eT
i − ρeT

j )Rkαk = 0 k = 1, . . . , p i = 1, . . . ,m − 1 i , j = 1, . . . ,m (3.23)

3.1.2 Example of receptance method application
An example easily explains what happens to a system when the receptance method is
applied. So, let consider a system with 2 DoFs, composed by 2 masses mi for i = 1, 2,
dampers c j and springs k j for j = 1, 2, 3, as shown in Figure 3.1. The open loop system
of equations is the follow{

m1 Üx1 + c1 Ûx1 + c2( Ûx1 − Ûx2) + k1x1 + k2(x1 − x2) = 0
m2 Üx2 + c3 Ûx2 + c2( Ûx2 − Ûx1) + k3x2 + k2(x2 − x1) = 0

(3.24)

where xi for i = 1, 2 are the displacements of the two Degrees of Freedom, Ûxi is the first
time derivative, so the velocity and Üxi is the acceleration of the DoFs. Equations (3.24)
can be grouped by xi, Ûxi, Üxi, so{

m1 Üx1 + (c1 + c2) Ûx1 − c2 Ûx2 + (k1 + k2)x1 − k2x2 = 0
m2 Üx2 − c2 Ûx1 + (c2 + c3) Ûx2 − k2x1 + (k2 + k3)x2 = 0

(3.25)

and in matrix form[
m1 0
0 m2

] (
Üx1
Üx2

)
+

[
c1 + c2 −c2
−c2 c2 + c3

] (
Ûx1
Ûx2

)
+

[
k1 + k2 −k2
−k2 k2 + k3

] (
x1
x2

)
=

(
0
0

)
(3.26)
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m2

m1

k3

k2

k1

c2

c1

c3

x1

x2

Figure 3.1: Mass-spring-damper system with 2 DoFs

so

MÜq + C Ûq +Kq = 0 (3.27)

where q is the DoFs vector. Applying the receptance method, the closed loop system is

MÜq + C Ûq +Kq = B(FT Ûq +GTq) (3.28)

where B,F and G, for 2 inputs, are

B =
[
b11 b12
b21 b22

]
F =

[
f11 f12
f21 f22

]
G =

[
g11 g12
g21 g22

]
(3.29)

This means that the gains modify the damping and stiffness of the system, leading to a
movement of its poles in the required position. Moving terms of (3.28), the new system
becomes

MÜq + (C − BFT ) Ûq + (K − BGT )q = 0 (3.30)

The same example as presented in [22] is now repeated, giving values to the system’s
elements: m1 = 1 kg and m2 = 2 kg for the masses, c1 = 0 N s m−1, c2 = 5 N s m−1 and
c3 = 0 N s m−1 for the dampers, k1 = 5 N m−1, k2 = 5 N m−1 and k3 = 10 N m−1 for the
springs. Therefore, by (3.26)

M =
[
1 0
0 2

]
C =

[
5 −5

−5 5

]
K =

[
10 −5
−5 15

]
The eigenpairs of the system are the follows{
λ1,2 = ±

√
5i v1,2 =

(
1
1

) } {
λ3 = −2.5 v3 =

(
2

−1

) } {
λ4 = −5 v4 =

(
2

−1

) }
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While λ1,2 will be changed with the new poles µ1,2 = −1 ± i, λ3 and λ4 will be kept
unchanged. The input matrix is chosen to be

B =
[
1 1
0 −2

]
Moreover, the arbitrary parameters are

αµk,1 = 1 αµk,2 = 0.5 k = 1,2

knowing that the choice of αµk, j determines the eigenvectors of assigned modes by (3.11).
Now it is possible to compute the receptance matrix as in (3.7) and then r and w respectively
from (3.9) and (3.11). Applying (3.16), the gain matrices needed to perform the closed
loop are

F =
[
−4 −2
−8 −4

]
G =

[
6 3

12 6

]
and the closed loop becomes[

1 0
0 2

] (
Üx1
Üx2

)
+

[
11 7
−9 −3

] (
Ûx1
Ûx2

)
+

[
1 −23
1 27

] (
x1
x2

)
=

(
0
0

)
Note how the symmetry of C and K is lost.

3.2 MATLAB algorithm of the receptance method
The receptance method was implemented in MATLAB. The algorithm developed can
determine the feedback gains for systems with any number of DoFs and inputs. Moreover,
by making use of state-space model, the receptance matrix computation does not need
structural matrices of the system, but only its transfer functions.

3.2.1 State-space model
Working in the state-space form, differential equations of a dynamic system are rewritten
as a set of first-order differential equations. The system variables become state-variables,
which represent the so-called system states. The states could be defined in different way,
but they have to be sufficient to represent the dynamic behaviour of the system.

Consider a dynamic system described as

MÜq + C Ûq +Kq = Bu (3.31)

where u is the input vector, with m rows. The isolation of Üq gives

Üq = −M−1(C Ûq +Kq) +M−1Bu (3.32)
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which may be written in matrix form as(
Ûq
Üq

)
=

[
0 I

−M−1K −M−1C

] (
q
Ûq

)
+

[
0

M−1B

]
u (3.33)

where I is the identity matrix. In a compressed form, the previous equation is expressed
as

Ûx = Assx + Bssu (3.34)

The vector x = (q Ûq)T is called state of the system because it contains the system states.
In this case, it contains 2n elements because it consists of displacements and velocities of
the n DoFs. Ass ∈ R

2n×2n is the system matrix while Bss ∈ R
2n×m is the input matrix.

On the other hand, the DoFs displacements are chosen as outputs, so y = q. In matrix
form it is

y =
[
I 0

] (q
Ûq

)
+ 0 · u (3.35)

or

y = Cssx + Dssu (3.36)

where Css ∈ R
l×2n is the output matrix and Dss ∈ R

l×m is the direct transmission matrix.1.
In this case y = q, so l = n. Equations (3.34) and (3.36) are known as state-space
equations. This method is used for feedback control systems design and it makes easier
to extend the system to more inputs or outputs.

In state-space form, eigenvalues of the system can be found from Ass matrix. In fact,
by considering the system without input terms

Ûx = Assx −→ Ûx − Assx = 0 (3.37)

With a solution for the state vector like

x = x0eλt (3.38)

equation (3.37) becomes

λx0 − Assx0 = 0 −→ (λI − Ass)x0 = 0 −→ (Ass − λI)x0 = 0 (3.39)

which is in the classical eigensolution form.

1Usually the notation is A, B, C and D instead of Ass, Bss, Css and Dss, but the second one is here used
to differentiate them from the control force distribution and the damping matrices.
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3 – Active aeroelastic control

About the transfer function, the Laplace transform of (3.34) is

sx(s) = Assx(s) + Bssu(s) −→ x(s) = [sI − Ass]
−1Bssu(s) (3.40)

Substitution of it inside the Laplace transform of (3.36), gives

y(s) = (Css[sI − Ass]
−1Bss + Dss)u(s) = T(s)u(s) (3.41)

where T(s) is a matrix of transfer functions, which contains the ratios from each output to
each input.

3.2.2 MATLAB algorithm
The state-space model is implemented in MATLAB by creating the Ass, Bss, Css and Dss
matrices from the structural matrices, as in equations (3.33) and (3.35). However, these
4 matrices can be also computed from a numerical model, as done from the MODFLEX
wing numerical model in chapter 4, so, in reality, there is no need to know the M, C and
K structural matrices. Furthermore, it is possible to determine a state-space formulation
also from experimental FRFs, as described in chapter 5.

The matrix of transfer functions T(s), obtained from the equations in state-space form,
is the product of the receptance matrix and the control force distribution matrix. Indeed,
by considering an open loop eigenvalue problem of a mass-spring-damper system

(s2M + sC +K)q(s) = Bu(s) (3.42)

the transfer function is the ratio between the outputs and the inputs, which here are
respectively q(s) and u(s). Therefore, also by the receptance matrix in equation (3.7), the
transfer function matrix is

T(s) =
q(s)
u(s)

= (s2M + sC +K)−1B = H(s)B = rs (3.43)

The transfer function is then used for the computation of the eigenvectors wk of each
desired pole µk , as equation (3.11). If the system is complicated and it is not possible to
know its natural eigenvectors vk , the transfer function can be also used for the evaluation
of them. Indeed, from the example in section 3.1.2, the eigenvectors of the system are

v1,2 =

(
1
1

)
v3 =

(
2

−1

)
v4 =

(
2

−1

)
while, by calculating the transfer function at the natural eigenvalues, so for s = λk , the
matrices obtained are proportional to

r1,2 =

[
(−8.3772 ∓ 0.7493i) (8.3772 ± 0.7493i)
(−8.3772 ∓ 0.7493i) (8.3772 ± 0.7493i)

]
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3.2 – MATLAB algorithm of the receptance method

r3 =

[
−0.5278 −1.0555

0.2639 0.5278

]
r4 =

[
−0.5629 −1.1259

0.2815 0.5629

]
They have 2 columns because of the 2 inputs and 2 rows because of the 2 outputs, but the
ratio between the first and the second row is the same for each column, and it is equal to
vk . Thus, it results

rλk,i = CONST · rλk, j i = 1, . . . ,m j = 1, . . . ,m (3.44)

So, just one column of the transfer function can be used as eigenvector of the system,
because it is proportional to vk .

In conclusion, F and G feedback gain matrices can be obtained by the computation of
the state-space matrices, the selection of the retained and substituted poles and the choice
of αk .

3.2.3 Example with the state-space model
The example in section 3.1.2 can be rewritten with the state-space model by using equations
(3.33) and (3.35), so obtaining

Ass =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1

−10 5 −5 5
2.5 −7.5 2.5 −2.5

⎤⎥⎥⎥⎥⎥⎥⎦ Bss =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
1 1
0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
Css =

[
1 0 0 0
0 1 0 0

]
Dss =

[
0 0
0 0

]
From the state-space system, 4 Bode diagrams can be drawn, which represent the FRFs of
each output forced by each input. All of them are shown in Figure 3.2, in dotted line. Each
top diagram represents the magnitude of the response calculated in decibel (dB), while
each bottom diagram is the phase in degrees (deg). They come from the transfer function
calculated for s = ωi, where ω is the excitation frequency. For each considered frequency,
the transfer function between 1 input and 1 output returns a complex value composed by
a real and an imaginary part, so

rωi = Re(ω) ± Im(ω)i (3.45)

From these, magnitude and phase of the response can be simply obtained by

magnitude [dB] = 20 log10(
√

Re2 + Im2) (3.46)

phase [rad] = arctan
(

Im
Re

)
−→ phase [deg] = phase [rad] ·

180
π

(3.47)
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3 – Active aeroelastic control

(a) 1st output excited by 1st input (b) 1st output excited by 2nd input

(c) 2nd output excited by 1st input (d) 2nd output excited by 2nd input

Figure 3.2: Bode diagrams of a mass-spring-damper system. Dotted line represents the
open loop, solid line is the closed loop

About the x-axis, the frequency can be expressed in rad/s or in Hz, and the relation
between them is

frequency [rad/s] = frequency [Hz] · 2π (3.48)

For this case the frequencies are in Hz in a range from 0.1 to 3 Hz. The MATLAB
function of the receptance method gives the same F and G matrices of the previous
described example. The inputs for the closed loop system are

u = (FT Ûq +GTq) (3.49)
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3.2 – MATLAB algorithm of the receptance method

and thus the terms of the Bss matrix can be added to Ass. From equation (3.33), the system
matrix becomes

AssCL =

[
0 I

−M−1K +M−1BGT −M−1C +M−1BFT

]
(3.50)

or with numbers, for this example

AssCL =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1

−1 23 −11 −7
−0.5 −13.5 4.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦
Bode diagrams of the system controlled in closed loop are shown in Figure 3.2, in solid
line. The open loop poles λ1,2 = ±

√
5i are without damping, resulting in a peak in the

module response, since the desired poles µ1,2 = −1± i have high damping, no clear peaks
are visible for the closed loop.
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Chapter 4

Control analysis of the wing numerical
model

The numerical model of the MODFLEX wing was used to get its state-space formulation,
which represents the response of the wing inside an airstream with a velocity of 10 m/s.
The purpose was to use it in MATLAB and to find F and G gains, by applying the
receptance method.

4.1 Control design
The state-space formulation of the wing has 2 inputs (2 control surfaces) and 4 outputs
(2 laser sensors and 2 encoders of the brushless motors). This system results unstable
because the leading edge control surface of the numerical model has no stiffness, so every
angle different from zero degrees leads to an aerodynamic force not balanced, resulting
in an increase of rotation because of the upfront wind. This instability is removed with
a Linear Time-Invariant (LTI) Simulink block applied to the leading edge input on the
Simulink wing model, with a feedback from the leading edge encoder. It was setted with
the MATLAB sisotool Toolbox. The LTI block is so a transfer function with 2 zeros
and 2 poles, corresponding to

LTI(s) = g
(s + p1)(s + p2)

(s + z1)(s + z2)
= 19.455

(s + 148.7)(s + 13.01)
s(s + 14540)

where pi, zi and g are the poles, zeros and gain of the transfer function. In Figure 4.1 there
is the Simulink control model with the LTI block on an inner loop.

Both the encoders are used to set PID controllers as done for the experimental model.
The Simulink model which shows this loop is presented in Figure 4.2, in which the
"StableSystem" block includes the inner loop of Figure 4.1. PID controllers are used
to have faster and more accurate response of control surfaces’ motors after an input
command. They were manually tuned by observing both the responses in time and in
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4 – Control analysis of the wing numerical model

Figure 4.1: Inner loop of the Simulink wing model

Figure 4.2: Outer loop of the Simulink wing model

frequency domain. Thus, the selected gain values for the controller connected to the
leading edge input are

KP = 0.2 KI = 3 KD = 0.001

while, for the controller connected to the trailing edge input they are

KP = 0.01 KI = 0.1 KD = 0.0001

Bode diagrams of the encoder readings from their input (LE encoder reading from LE
command and TE encoder reading from TE command) are presented in Figure 4.3a and in
Figure 4.3b respectively, with and without the PID controllers. Frequency range is from 1
to 105 Hz. The PID controllers remove the peaks visible at high frequency. Responses of
the motors in time domain registered by the encoders are in Figures 4.4, with and without
the PID controllers. They show the reaction after a step command of 1 degree. The
controller removes the vibration of the motors after a command, but increased a little the
time delay.
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4.1 – Control design

(a) LE command to LE encoder (b) TE command to TE encoder

Figure 4.3: Bode diagrams of the encoder readings for the wing numerical model. Dotted
lines represent the response without the PID controller, solid lines with it

(a) LEO motor response without PID (b) LEO motor response with PID

(c) TEO motor response without PID (d) TEO motor response with PID

Figure 4.4: LEO and TEO motor response in time domain after a step command for the
wing numerical model. Black line is the command, blue line is the response
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4 – Control analysis of the wing numerical model

(a) 1st output excited by 1st input (b) 1st output excited by 2nd input

(c) 2nd output excited by 1st input (d) 2nd output excited by 2nd input

Figure 4.5: Bode diagrams of the wing numerical model. Dotted line represents the open
loop, solid line is the closed loop

4.2 Example of one system pole placement
The open loop system response, registered by its outputs when excited by each input is
shown in Figure 4.5, in dotted line, by using Bode diagrams. Frequency range is between
1 and 6 Hz. 1st and 2nd inputs are respectively the LE and TE control surfaces commands,
while 1st and 2nd outputs are respectively the laser sensor on leading edge and the laser
sensor on trailing edge readings.

The system eigenvalues, determined from the Ass system matrix, are those of the
system with also the poles added by the LTI block and by the PID controllers. The system
eigenvalues that correspond to the peaks visible in the Bode diagrams are

λ1,2 = −1.25 ± 18.59i λ3,4 = −1.31 ± 27.67i
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4.2 – Example of one system pole placement

Figure 4.6: Comparison of the 2 outputs of the wing numerical model, excited by the 1st

input. Blue line represents the 1st output response, red line is the 2nd output response,
both in open loop

They correspond to the first bending and the first torsional modes. Indeed, in Figure 4.6,
the 1st output response and the 2nd output response are presented, both commanded by
the 1st input. The phases of responses at the first peak are

Φ11 = −45.3◦ Φ12 = −56◦

which means that the two points on the wing where the lasers are positioned are oscillating
more or less without phase difference. So this peak shows the resonance corresponding to
the first bending mode. At the second peak, the phases are

Φ21 = −89.8◦ Φ22 = −246◦

They have a phase lag close to 180◦, so they are in opposition and thus the second peak
corresponds to the first torsional mode.

Partial pole placement is done by retaining the complex conjugate couple λ3,4 and
by moving the other couple. It is possible to evaluate the natural eigenvectors from the
transfer function of the system rs computed at s = λi, with i = 1, . . . ,4. The eigenvectors
of the retained poles are then determined in this way, obtaining them proportional to

v3,4 =

[
0.322 ± 0.056i

−0.502 ∓ 0.246i

]
The new poles are placed at

µ1,2 = −2 ± 16i

37



4 – Control analysis of the wing numerical model

Figure 4.7: Pole-zero map of the wing numerical model. Blue X are the poles in open
loop, while red X are the poles in closed loop

in order to increase the damping and to increase the frequency distance to the other couple
of poles. About the αk vector, it may be chosen arbitrarily, so

αµk,1 = 1 αµk,2 = 0.5 k = 1, . . . ,2

where 1 and 2 subscripts mean the first and the second input.
Applying the receptance method, the control gains obtained are

F =
[
−33.5 −16.8
−29.4 −14.7

]
G =

[
1751.7 875.9
819.3 409.6

]
They have values higher than one thousand, which are really high. This is probably because
the selected values of αk move the eigenvectors significantly from the open loop ones,
or because a movement in frequency and damping together needs more control authority.
However, the closed loop system performed with these gains has new eigenvalues in the
desired position. Indeed, Bode plots in Figure 4.5, in solid line, have the first peak at lower
frequency and more damped, as desired.

Figure 4.7 shows the pole-zero map, which represents the poles and the zeros of the
system in open and closed loop. This figure is intentionally zoomed to show the poles
related with the first 2 analysed modes. It displays the shift of the first pole, while the
second one remains in the same position. However, all the other system poles have a
negative real part, so the system results stable before and after the control strategy.
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4.3 – Example of only damping increment

4.3 Example of only damping increment

4.3.1 Arbitrary choice of αk

In this case, only the damping of the same couple of eigenvalues is changed, increasing it
by 0.15. Hence, the new poles are

µ1,2 = −4 ± 18.28i

and αk is selected arbitrarily again, so

αµk,1 = 1 αµk,2 = 0.5 k = 1, . . . ,2

The receptance method algorithm gives the following gain matrices

F =
[
−111.9 −55.9
−63.7 −31.9

]
G =

[
5.9 3.0

−501.1 −250.6

]
They are large values as well. Thus, a modal constraint is needed to be sure that the placed
eigenvectors are similar to the open loop ones, in order to reduce the gain values.

Bode diagrams of this new closed loop are in Figure 4.8, in blue line, while the open
loop is in dotted line.

4.3.2 Choice of αk with a modal constraint
The same example is repeated, but now the arbitrary parameters αk are determined by
imposing a modal ratio constraints as explained in section 3.1.1. A value of ρ = 1 is
chosen because this pole corresponds to a bending mode, so the movement of the 2 points
on the wing registered by the laser sensors should be more or less the same. Thus, from
(3.23), the system of equations to solve is

(eT
1 − eT

2 )R1α1 = 0 (eT
1 − eT

2 )R2α2 = 0

obtaining

αµ1,1 =
rµ1,(2,2) − rµ1,(1,2)

rµ1,(1,1) − rµ1,(2,1)
= 0.36 − 0.17i αµ1,2 = 1

αµ2,1 =
rµ2,(2,2) − rµ2,(1,2)

rµ2,(1,1) − rµ2,(2,1)
= 0.36 + 0.17i αµ2,2 = 1

With these values, the eigenvectors corresponding to the assigned poles, calculated by the
equation (3.11), are proportional to w1,2 = [1 1]T , as expected by the modal constraint
imposition. Thus, the modal shape in closed loop is kept similar as the open loop one.
With the receptance method

F =
[
−26.6 −63.9
−14.4 −37.7

]
G =

[
−120.0 233.9
−186.5 −158.4

]
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4 – Control analysis of the wing numerical model

(a) 1st output excited by 1st input (b) 1st output excited by 2nd input

(c) 2nd output excited by 1st input (d) 2nd output excited by 2nd input

Figure 4.8: Bode diagrams of the wing numerical model. Dotted line represents the open
loop, blue line is the closed loop with only a simple pole damping increase, red line is the
same, but with a modal constraint

The gain matrices show lower values as expected. Indeed, the control force necessary
to move the poles is now lower, because it needs to move only the eigenvalues and not also
the eigenvectors.

Bode diagrams of the system in closed loop with the latest gains are shown in Figure
4.8, in red line. There are not significant differences by comparing them with the ones
obtained without constraint, but, in this case, the new chosen eigenvectors are not casual.

Pole-zero map of the open loop and the closed loop obtained with the modal constraint
is shown in Figure 4.9. Also in this situation, all the other not shown poles are stable.
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4.4 – Example of 2 system poles placement with damping increment

Figure 4.9: Pole-zero map of the wing numerical model. Blue X are the poles in open
loop, while red X are the poles in closed loop with only one pole damping increase and a
modal constraint

4.4 Example of 2 system poles placement with damping
increment

Both the analysed modes are double in their damping now. Therefore, the assigned poles
are

µ1,2 = −2.5 ± 18.43i µ3,4 = −2.6 ± 27.58i

The arbitrary parameters are chosen now with a ratio constraint ρ1 = 1 for the poles of
the first bending mode (µ1,2) and ρ2 = −0.5 for the poles of the first torsional one (µ3,4),
so to have w1,2 = [1 1]T and w3,4 = [1 − 2]T . This is done to keep the closed loop
eigenvectors close enough to the natural eigenvectors, and thus to reduce the control force
needed to move the poles. So, αk are calculated by solving

(eT
1 − eT

2 )R1α1 = 0 (eT
1 − eT

2 )R2α2 = 0

(eT
1 + 0.5eT

2 )R3α3 = 0 (eT
1 + 0.5eT

2 )R4α4 = 0

In this way, the arbitrary parameters are

αµ1,1 =
rµ1,(2,2) − rµ1,(1,2)

rµ1,(1,1) − rµ1,(2,1)
= −0.86 − 0.27i αµ1,2 = 1

αµ2,1 =
rµ2,(2,2) − rµ2,(1,2)

rµ2,(1,1) − rµ2,(2,1)
= −0.86 + 0.27i αµ2,2 = 1
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4 – Control analysis of the wing numerical model

(a) 1st output excited by 1st input (b) 1st output excited by 2nd input

(c) 2nd output excited by 1st input (d) 2nd output excited by 2nd input

Figure 4.10: Bode diagrams of the wing numerical model. Dotted line represents the
open loop, solid line is the closed loop with a damping increment for both poles

αµ3,1 =
−0.5rµ3,(2,2) − rµ3,(1,2)

rµ3,(1,1) + 0.5rµ3,(2,1)
= 12.94 − 2.83i αµ3,2 = 1

αµ4,1 =
−0.5rµ4,(2,2) − rµ4,(1,2)

rµ4,(1,1) + 0.5rµ4,(2,1)
= 12.94 + 2.83i αµ4,2 = 1

With the application of the receptance method, the feedback gains are

F =
[
−56.5 −39.0

93.3 −10.4

]
G =

[
−736.4 185.3

244.3 84.2

]
which are used for the closed loop control, and modify the system as shown in Bode
diagrams of Figure 4.10.
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4.4 – Example of 2 system poles placement with damping increment

Figure 4.11: Pole-zero map of the wing numerical model. Blue X are the poles in open
loop, while red X are the poles in closed loop with a damping increment of both poles

The pole-zero map of the system in open and closed loop is shown in Figure 4.11,
zoomed on the 2 placed poles. Also in this case, the closed loop system remains stable in
closed loop.

The receptance method is so proved on the numerical model of the MODFLEX wing,
leading to a shift of its poles in every desired position. Its application results very simple
and fast, and its implementation to a system with more inputs or outputs is possible without
modifications of the algorithm.
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Chapter 5

Control analysis of the wing
experimental model

The receptance method was applied on the experimental wing and this chapter contains
the results that have been obtained. The MODFLEX wing was setted up as explained in
section 2.1.2. The receptance method was then applied with the following steps:

• The wing was fixed inside the test section, by placing it in the wind tunnel at a
specific air speed.

• Open loop FRFs were computed by using the Siemens.PLM LMS Test.Lab acqui-
sition system. The frequency range of interest comprised the first 2 system modes.
The control surfaces were used as input one at time, with a stepped sine excitation at
a fixed amplitude, by measuring their angular displacement with the digital encoder.
Laser sensors readings were used as output.

• The open loop frequencies and damping values were computed from the FRFs by
the modal parameter estimation technique PolyMAX.

• A state-space formulation was computed from the measured FRFs by using the
SDTools MATLAB Toolbox.

• Closed loop poles for the first bending and first torsional modes were chosen, with
also a modal constraint that determined the closed loop eigenvectors.

• The transfer function matrix of the state-space system was used with the MAT-
LAB algorithm of the receptance method, as described in section 3.2, to compute
displacement and velocity gains.

• F and G gains were included inside the Simulink control algorithm of the wing,
implemented with the dSPACE real-time acquisition system.

• Closed loop FRFs were computed as done for the open loop ones.
• The closed loop frequencies and damping were computed by PolyMAX and com-

pared with the open loop values. Also the flutter speed was compared.
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5 – Control analysis of the wing experimental model

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.1: Open loop frequency response functions of the wing experimental model
with a wind speed of 10 m/s. Red line represents the registered response, black line is the
synthesized curve

5.1 Open loop system with a wind speed of 10 m/s

The MODFLEX wing was mounted inside its test section and positioned in the low-speed
wind tunnel of the University of Liverpool, with a wind speed of 10 m/s. Then, open
loop FRFs were computed with LMS Test.Lab, actuating one control surface at time with
a stepped sine excitation, and keeping the other one fixed. The range of frequency for
the input was between 2 and 6 Hz, with an increment of 0.02 Hz and 10 cycles at each
frequency. An excitation amplitude of 2 degrees was selected both for the LEO and the
TEO control surface.

Frequency and damping values of each peak were computed by the modal parameter
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5.2 – Closed loop control with the receptance method

Table 5.1: Closed loop control tests performed on the wing experimental model

Test Tested control new poles µ1,2 new poles µ3,4

1 ×2 damping 2nd mode - −1.78 ± 25.78i
2 ×3 damping 2nd mode - −2.67 ± 25.71i
3 ×2 damping 1st and 2nd mode −2.51 ± 17.65i −1.78 ± 25.78i
4 ×1.2 frequency 2nd mode - −1.07 ± 30.99i
5 ×0.9 freq. 1st mode, ×1.1 freq. 2nd mode −1.13 ± 16.00i −0.98 ± 28.41i

estimation technique PolyMAX, and shown in Table 5.2. In this way, it was possible to
synthesize the curves by eliminating all the noise obtained with the responses. Both the
registered responses and the synthesized curves are in Figure 5.1, which correspond to the
laser sensor readings LS1 and LS2 with LEO and TEO control surface commands.

The state-space formulation of the experimental wing was computed with SDTools.
Naturally, it is a state-space system with 2 inputs and 2 outputs. Moreover, this system has
4 states, and from the Ass matrix it was possible to find the 4 system eigenvalues, which
corresponded to the bending and torsional modes. They are

λ1,2 = −1.255 ± 17.780i λ3,4 = −0.889 ± 25.829i

These values can also be found from the natural frequency and damping values obtained
by PolyMAX. Prior to the application of the receptance method, the state-space system
was multiplied by the transfer function of the laser sensors filter, not considered with the
computation of the open loop FRFs.

5.2 Closed loop control with the receptance method
The transfer function matrix, computed from the open loop state-space system, is di-
rectly linked with the receptance matrix. This measured receptance was used inside the
MATLAB algorithm, described in the previous chapters, to find F and G gains. Dif-
ferent closed loop controls were tested, placing new poles in various positions. All the
investigated options are presented in Table 5.1.

5.2.1 Test 1 - Double damping for the 2nd mode

As first test, only the second mode was moved, retaining λ1,2. With a double value for the
damping, the second poles couple is

µ3,4 = −1.778 ± 25.783i
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5 – Control analysis of the wing experimental model

Table 5.2: Open loop and all closed loops comparison for the experimental wing at 10 m/s
of wind speed. Resonance frequencies, damping and flutter speed are compared. The
difference between the registered and the expected values of frequency and damping for
each closed loop test are in brackets

1st bending mode 1st torsional mode
Freq. [Hz] Damp. ζ [%] Freq. [Hz] Damp. ζ [%] Flutter [m/s]

Open loop 2.84 7.04 4.11 3.44 13.5
CL Test 1 2.84 (0.0%) 7.98 (13.4%) 4.04 (1.7%) 7.01 (1.9%) 15.5
CL Test 2 2.82 (0.7%) 7.74 (9.9%) 4.08 (0.7%) 10.55 (2.2%) 16.5
CL Test 3 2.84 (0.0%) 13.06 (7.2%) 4.01 (2.4%) 6.81 (1.0%) 15.5
CL Test 4 2.84 (0.0%) 9.37 (33.1%) 4.99 (1.0%) 5.73 (66.6%) 14.0
CL Test 5 2.56 (0.4%) 7.84 (11.4%) 4.49 (0.7%) 4.82 (40.1%) 15.0

The arbitrary parameters αk were computed selecting a ratio constraint ρ = −0.5, so to
have the new eigenvectors for this mode proportional to

w3,4 =

(
1

−2

)
which is similar to the natural eigenvector. Hence, the arbitrary parameters are obtained
by

αµ3,1 =
−0.5rµ3,(2,2) − rµ3,(1,2)

rµ3,(1,1) + 0.5rµ3,(2,1)
= 0.183 + 0.815i αµ3,2 = 1

αµ4,1 =
−0.5rµ4,(2,2) − rµ4,(1,2)

rµ4,(1,1) + 0.5rµ4,(2,1)
= 0.183 − 0.815i αµ4,2 = 1

In this way, applying the receptance method, the feedback gains that lead to the desired
pole placement are

F =
[

0.373 0.584
−0.608 −0.387

]
G =

[
−7.538 11.349

5.216 −16.731

]
These feedback gains were included to the Simulink control model and then closed

loop FRFs were computed in the same manners as done for the open loop ones, with a
wind speed of 10 m/s. The same frequency range and step, and also the same amplitudes
for the control surfaces were selected. Synthesized closed loop FRFs are in Figure 5.2,
compared with the open loop ones. The closed loop frequencies and damping values were
computed with the PolyMAX technique. Results are in Table 5.2, with also the percent
difference between them and the expected results. A good response was obtained in this
case, as shown by the percentage.
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5.2 – Closed loop control with the receptance method

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.2: Synthesized frequency response functions of the 1st closed loop test performed
on the experimental wing. They are computed with a wind speed of 10 m/s and compared
with the open loop FRFs

The flutter point was determined by increasing the wind speed with steps of 0.5 m/s
until the instability, obtaining it at 15.5 m/s. This result is also in Table 5.2. Compared
with the open loop flutter speed, and increase of 15% is obtained by this closed loop test,
an expected result because the torsional mode damping is the one leading to flutter.

5.2.2 Test 2 - Triple damping for the 2nd mode
The second mode damping was multiplied by 3 as second test, keeping again the first
mode unchanged. Thus, assigned poles are

µ3,4 = −2.667 ± 25.706i
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5 – Control analysis of the wing experimental model

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.3: Synthesized frequency response functions of the 2nd closed loop test on the
experimental wing. They are computed with a wind speed of 10 m/s and compared with
the open loop FRFs

The arbitrary parameters were computed in the same way, so they are

αµ3,1 = −0.624 + 1.003i αµ3,2 = 1

αµ4,1 = −0.624 − 1.003i αµ4,2 = 1

The new gains obtained by the receptance method, and used to perform this closed loop
test, are

F =
[

0.781 0.185
−1.177 0.324

]
G =

[
−11.857 21.861

6.699 −24.939

]
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5.2 – Closed loop control with the receptance method

Figure 5.4: Velocity-frequency and Velocity-damping diagrams of the MODFLEX wing
in closed loop with a triple damping value of the 1st torsional mode, compared with the
open loop results

Synthesized FRFs in closed loop are in Figure 5.3, compared with the open loop
responses. Frequency and damping results are also in Table 5.2, showing a good correlation
with the expectations.

Flutter test

A flutter test, as done in section 2.3.2, was performed with this closed loop control test.
The experimental V-f and V-g plots are shown in Figure 5.4, compared with the open loop
results. The flutter point is registered to happen at a speed of 16.5 m/s. An increase of 22%
is so obtained by tripling the torsional mode damping value, and it is a really important
result. In figure, the bending mode in closed loop is plotted until 14 m/s because the high
value of damping made it difficult to find the peak from the frequency response functions.

5.2.3 Test 3 - Double damping for the first 2 modes
The damping of both the first 2 wing modes were doubled in this test, to see if also
an increase of the first bending mode damping is related with the flutter point of the
MODFLEX wing. For this test, the new desired poles are

µ1,2 = −2.510 ± 17.647i µ3,4 = −1.778 ± 25.783i

In order to keep the placed eigenvectors near to the natural ones, the arbitrary parameters
were calculated by imposing a ratio constraint ρ1 = 1 for the first bending mode and
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5 – Control analysis of the wing experimental model

ρ2 = −0.5 for the first torsional mode, so to have

w1,2 =

(
1
1

)
w3,4 =

(
1

−2

)
The arbitrary parameters to use are

αµ1,1 =
rµ1,(2,2) − rµ1,(1,2)

rµ1,(1,1) − rµ1,(2,1)
= −0.460 + 0.087i αµ1,2 = 1

αµ2,1 =
rµ2,(2,2) − rµ2,(1,2)

rµ2,(1,1) − rµ2,(2,1)
= −0.460 − 0.087i αµ2,2 = 1

αµ3,1 =
−0.5rµ3,(2,2) − rµ3,(1,2)

rµ3,(1,1) + 0.5rµ3,(2,1)
= 0.183 + 0.815i αµ3,2 = 1

αµ4,1 =
−0.5rµ4,(2,2) − rµ4,(1,2)

rµ4,(1,1) + 0.5rµ4,(2,1)
= 0.183 − 0.815i αµ4,2 = 1

The receptance method algorithm gives the gains

F =
[
−1.179 3.677
−1.384 1.160

]
G =

[
5.874 −22.787

11.922 −33.798

]
which were used to compute the closed loop FRFs, shown in Figure 5.5. Frequencies
and damping are in Table 5.2. Also in this case, good results were achieved, obtaining
frequencies and damping similar to the expected values. However, a spillover problem
happened, with a vibration at high frequency for the trailing edge control surface when
the first bending peak was reached. This problem could be solved in future by considering
also other modes over the first two, in order to retain also high frequency poles.

The flutter point was registered to be at 15.5 m/s, as obtained with the test 1. Thus, an
increment of the first bending damping does not affect the flutter speed, because the flutter
instability is caused by the first torsional damping that becomes zero.

5.2.4 Test 4 - Frequency increase for the 2nd mode
An increase of damping was just proved with the single-input control by Fichera et al.
[24], while a movement of frequency was never tested on the MODFLEX wing. In this
section it is described the frequency shift on the torsional mode test. Thus, desired poles
of the closed loop are

µ3,4 = −1.067 ± 30.994i

while λ1,2 are kept unchanged. The same modal constraint selected for the other tests was
chosen, so with a ratio ρ = −0.5. The arbitrary parameters obtained in the same manner
are

αµ3,1 = −0.564 + 0.005i αµ3,2 = 1
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5.2 – Closed loop control with the receptance method

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.5: Synthesized frequency response functions of the 3rd closed loop test on the
experimental wing. They are computed with a wind speed of 10 m/s and compared with
the open loop FRFs

αµ4,1 = −0.564 − 0.005i αµ4,2 = 1

The feedback gains calculated with the receptance method are

F =
[

1.690 −3.026
−0.330 0.630

]
G =

[
65.199 −115.159

−83.207 147.287

]
With these values, the closed loop FRFs were computed. The synthesized graphs are in
Figure 5.6, compared with the open loop ones. Modal results are in Table 5.2, which
show a great difference for both the damping values compared with the expectations. It is
uncertain if it is due to an error of the wind speed or if the frequency shift modify also the
damping values.
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5 – Control analysis of the wing experimental model

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.6: Synthesized frequency response functions of the 4th closed loop test on the
experimental wing. They are computed with a wind speed of 10 m/s and compared with
the open loop FRFs

An increase of the wind speed revealed that the flutter point was not moved significantly,
so a frequency increase is not a good way to increase the flutter boundary of the MODFLEX
wing. However, the receptance method was proved also for a natural frequency movement.

5.2.5 Test 5 - Frequency shift for the first 2 modes
As last test, the frequency of both the first bending and the first torsional mode were
moved, by increasing the distance between them. One was multiplied by 0.9, the other
was multiplied by 1.1. New poles were calculated, obtaining

µ1,2 = −1.129 ± 16.002i µ3,4 = −0.978 ± 28.412i
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5.2 – Closed loop control with the receptance method

(a) LS1 output from LEO input (b) LS1 output from TEO input

(c) LS2 output from LEO input (d) LS2 output from TEO input

Figure 5.7: Synthesized frequency response functions of the 5th closed loop test on the
experimental wing. They are computed with a wind speed of 10 m/s and compared with
the open loop FRFs

With the same modal constraints, the arbitrary parameters are

αµ1,1 = −0.289 + 0.542i αµ1,2 = 1

αµ2,1 = −0.289 − 0.542i αµ2,2 = 1
αµ3,1 = −0.652 − 0.230i αµ3,2 = 1
αµ4,1 = −0.652 + 0.230i αµ4,2 = 1

and the obtained feedback gains are

F =
[
−2.258 0.358
−1.751 0.111

]
G =

[
52.774 −130.678

−28.262 16.801

]
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5 – Control analysis of the wing experimental model

The closed loop FRFs are presented in Figure 5.7, compared with the open loop. In Table
5.2 there are the frequency and damping values, computed with PolyMAX. Also in this
test, an increase of the damping value for the second mode was registered, so it is probable
that a change on the natural frequencies modifies also the damping behaviour with the
wind speed.

The flutter point, in this case, increased to 15 m/s, as shown in the same table. This
result explains that also a movement of the frequencies, by increasing the distance between
them, is a solution for flutter.
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Chapter 6

Conclusions

The receptance method is proved to be a suitable way to extend the flight speed envelope
of an aircraft, by shifting the flutter point at higher speed values. The flutter speed is
increased via a partial pole placement by moving natural poles of the system to new
desired positions with an active control. To do so, measured receptance data are the only
information needed from the system, obtained from a modal test. Hence, there is no need
to evaluate the structural matrices M, C and K, which is a very difficult work for complex
systems.

The method was used in its last reformulation, with a Multiple-Input Multiple-Output
control approach. An advantage of the new reformulation is that it is possible to assign
both the eigenvalues and the eigenvectors of the system. In this way, keeping the new
eigenvectors close to the natural ones, smaller feedback gain values are obtained, which
are more practically feasible.

The receptance method worked on the numerical model of a wing. Then, it was tested,
with positive results, on the experimental flexible wing called MODFLEX. Different test
were done on the wing, moving 1 or 2 couples of poles in different ways. The flutter
point moved at higher speed for all of them, with a speed increase up to 22%. About the
numerical model, it is validated since it fits well enough with the experimental results,
registered by a modal and a flutter test.

Further developments of the experimental wing see it controlled with all the designed
control surfaces, so with also the Leading Edge Inner and the Trailing Edge Inner (LEI
and TEI) surfaces on the 2nd sector. Furthermore, the receptance method can be applied
on a different system, not only a wing, to be proved as general active control way useful
to increase the flutter boundary.
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