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Abstract 
 
The following study deals the trajectories analysis towards asteroids. 

In particular, the asteroid 2008 EV5, which it is part of the NASA ARM program, has been considered 

following the importance of its composition and for its orbit.  

In fact, for its composition will be possible to see as it is a C-type asteroid, which means that it may 

have 40% of extractable volatile material and about 18% metals, while its orbit is similar at the Earth’s 

orbit. 

 

The ARM (Asteroid Redirect Mission) program consists of two mission segments:  

 

1. the ARRM (Asteroid Redirect Robotic Mission), the first robotic mission to visit a large (greater 

than ~100 m diameter) near-Earth asteroid (NEA), in order to collect a multi-ton boulder from 

its surface and return it to a stable orbit around the Moon or the Earth;  

 

2. the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore the boulder 

and return to Earth with samples. 

 

In this study, the first mission segment will be considered and studied. 

In order to do this, the indirect methods will be used: these methods are based on the theory of optimal 

control and solve the optimization problem by defining and solving a boundary value problem. 

 

All this will allow to found, considering different duration and different launch windows, the different 

solutions for the going and return trip (and their trajectories) and then, analysing these data and 

evaluating the best solutions, the optimal solutions for the complete trip will be found and analysed, in 

order to obtain the best mission which will be able to satisfy the imposed constraints. 

In this case, the imposed constrains will allow to obtain a mission with the lowest propellant 

consumption and the higher boulder mass available. 
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Chapter 1 
1. Introduction 
 
1.1   NASA ARM program 

 

The ARM program is part of NASA’s plan to advance the new technologies and spaceflight capabilities 

needed for a human mission to the Martian system in the 2030s, as well as other future human and 

robotic missions.  

This program includes the Asteroid Redirect Robotic Mission (ARRM) and the Asteroid Redirect 

Crewed Mission (ARCM), along with leveraging the global asteroid-observation community’s efforts 

to detect, track and characterize candidate asteroids. 

 

At the beginning, NASA intention was to capture an entire small asteroid (around 4–10 m in size) using 

a robotic mission, in order to test the developed technology and to obtain additional data on the human 

exploration and planetary defence but, subsequently, a new approach in order to collect a boulder from 

a large asteroid was evaluated.  

From this, after that the different about these two approaches were evaluated (where their feasibility, the 

identification about the most important differences between them and the evaluation of the key risks and 

figures of merit for each concept was considered/evaluated), the ARRM program was born. 

Then, as consequence of this, the ARRM program will be the first robotic mission to visit a large (greater 

than ~100 m diameter) near-Earth asteroid and collect a multi-ton boulder from its surface, along with 

regolith samples.  

This mission will allow to capture an asteroid boulder and then to return it in a stable orbit around the 

Earth (or around the Moon), in order that the astronauts will be able to explore, study and use it. In order 

to perform this, a multi-ton boulder will be mounted on the spacecraft. 

In this way, the human and robotic missions could be performed to capture these asteroids so to use their 

material, so to benefit scientific and partnership interests (domestic and international) and expanding 

the knowledge of small celestial bodies, besides being able to mining asteroid resources for commercial 

and exploration needs.  

 

The second ARM program is the ARCM, which will provide a compelling science focus for the early 

flights of the Orion program (this will take place before the infrastructure for more ambitious flights 

will be available). In addition, this program will provide the opportunity for astronauts to work in space 

with unaltered asteroid material, testing the activities that would be performed and tools that would be 

needed for later exploration of primitive body surfaces in deep space.  
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Then, in order to perform all these aims, it is clear that an adequate propulsion system must be designed. 

In fact, another main objective of the ARM concerns with the development of a high-power Solar 

Electric Propulsion (SEP) vehicle, which could be able to operate for many years in interplanetary space, 

which is critical for deep-space exploration missions.  

In addition, all that will be useful for the following human spaceflight missions, in order to provide the 

systems and operational experience that will be required for the future human exploration of Mars 

(including the Martian moons). [1] 

 

Then, summarizing, it is so possible to understand as the Asteroid Redirect Mission includes the 

following three segments: 

- IDENTITY: Ground and space-based assets detect and characterize potential target asteroids; 

- REDIRECT: Solar electric propulsion (SEP) based system redirects asteroid to cislunar space; 

- EXPLORE: Crew launches aboard SLS rocket, travels to redirected asteroid, study and returns    

samples to Earth. 

 

In this way, the mission will be useful even for its contribution at the Deep Space Human Exploration 

and all that will be useful in order to: 

- Demonstrate advanced autonomous proximity operations in deep-space and with a natural body; 

- Using high-power solar electric propulsion to transport multi-ton masses in space; 

- Demonstrate integrated crewed/robotic vehicle operations in deep-space; 

- Use astronaut EVA (Extra Vehicular Activity) in deep space for sample selection, handling, and 

containment on just the second extra-terrestrial body in history. [2] [3] 

 

 
Figure 1: Possible scenarios of ARM program [2] 
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1.2   Asteroid 2008 EV5 
 

As knows, the solar system includes a high number of asteroids with different dimension, shape and 

composition, then to choose one in order to perform the ARM program may be complicated.                

However, NASA has identified, among different candidate targets (as Ryugu, Bennu, and Itokawa) the 

asteroid 2008 EV5 as the reference target for the ARRM.  

The asteroid 2008 EV5 (discovered on 4 March 2008), scientifically called 341843,  is a sub-

kilometer asteroid, classified as near-Earth object and potentially hazardous asteroid of the Aten group 

(a group of asteroids, whose orbit brings them into proximity with Earth, with a semi-major axis of less 

than 1 AU and with an high eccentricity). 

During the years, this asteroid has been well characterized by ground-based radar and by the infrared 

wavelengths, so as to allow the discovery the satellite composition. In fact, 2008 EV5 is a carbonaceous 

chondrite asteroid (C-type) , which is believed to be water/volatile-rich (up to 40%) and may contain 

significant amounts of organic materials (about 18% metals).  

For example, 1000 metric ton C‐type asteroid may contain 400 ton of volatile elements (water, carbon 

dioxide, nitrogen, ammonia, etc), 180 ton of metal (roughly 170 ton of iron, 13 ton of nickel and 2 ton 

of cobalt) and 400 ton of other elements. [4] 

In this way is explained because these satellites are studied and analysed, being them an excellent source 

of raw materials useful in every industrial field.  

However, this particular composition may have been caused by its creation process: in fact, the asteroid 

2008 EV5 was initially a part of a much larger body in the asteroid belt (with a likely diameter greater 

than 100 kilometres), but was product as a reassembly of ejected fragments after that its parent body 

experienced a large cratering event or, more likely, a catastrophic disruption event that resulted in a 

highly fractured, shattered, or reaccumulated object. [5] 

In addition to its composition, another important reason that allow to explain why this asteroid has been 

choose is in its orbital and physical characteristics, because these proprieties are similar at the Earth’s 

orbit and even compatible with the planned ARM timeline and operations.  

In this way, a significant mass return (even greater than 20 t) will be possible with the start of ARRM 

program in the 2020 and of ARCM in late 2025.  

Another reason, about the choice of this asteroid, it is that his orbital parameters are known in accurate 

way, besides being an asteroid big enough and therefore such as to allow a landing on its surface. In 

fact, for the orbital parameter, it is possible to see as the asteroid 2008 EV5 orbital parameter [6] [7] in 

the heliocentric reference system frame are the following 

https://en.wikipedia.org/wiki/Asteroid


1. Introduction 

6 
 

Asteroid 2008 EV5’s orbital parameters 

Semimajor axis 0.958242 AU 

Eccentricity 0.083401 

Inclination 7.437° 

Ascending node 93.384° 

Argument of Perihelion 234.848° 

Mean anomaly 63.658° 

Perihelion 0.8783 AU 

Aphelion 1.0382 AU 

Orbit period 342.619 days 

 

Table 1: 2008 EV5’s orbital parameters referred at the heliocentric reference system and referred at 23 March 2018 

 

and, for an easier comparation, the Earth’s orbital parameters [8] are the following 

 

Earth’s orbital parameters 

Semimajor axis 1.0000001 AU 

Eccentricity 0.01671022 

Inclination 0.00005° 

Ascending node 174.9° 

Argument of Perihelion 288.1° 

Perihelion 0.98329 AU 

Aphelion 1.0167 AU 

Orbit period 365.256 days 

 

Table 2: Earth’s orbital parameter in the heliocentric reference system 

 

Now, using these parameters, could be useful to compared the 2008 EV5’s orbit with the Earth one.  
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Figure 2: Asteroid 2008 EV5’s orbit (white) compared with the nearest planets, in the heliocentric reference system 

 

From this figure, and just like previously said about the Athena’s asteroids characteristics, it is possible 

to see how the asteroid’s orbit intersects the Earth one in two different points: this represent an important 

aspect to consider during the trajectories analysis, because this has a high repercussion on the propellant 

consumption. In fact, a lower propellant consumption will be required if a manoeuvre in the asteroid 

descending node (point 1) will be achieve, while a higher propellant consumption will be required in the 

ascending node (point 2).  

In addition, a 3D view can be useful in order to see the relative position of each orbit in the heliocentric 

reference system. 
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Figure 3: 3D visual of the asteroid and Earth orbit in the heliocentric reference system 

 

At this point, it could be even interesting to report the asteroid dimensions: it is possible to notice how 

2008 EV5 is an oblate spheroid of 400 m in diameter, with a very slow rotation in a retrograde direction; 

furthermore, it presents a 150 m diameter concave feature, that maybe could be an impact crater or a 

relic feature from a previous episode of rapid rotation that caused the asteroid's shape to reconfigure. [9] 

 

Figure 4: A 2008 EV5 representation 
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1.3 Interplanetary Trajectories Optimization 
 

In order to perform any interplanetary mission, it is important to adopt a control on one parameter (for 

example the thrust vector) in order to have an optimal problem that allows to find the optimal control 

law to maximize or minimize a specified performance index. In fact, for the great propellant 

consumption influence on the orbital transfers and manoeuvres, it is essential to minimize the required 

propellant consumption or to maximize the final satellite/vehicle mass, having the initial mass fixed. 

In this way, the optimal problem allows to persecute a strategy where the interplanetary mission is 

achieved with a maximum final mass.  

Then, it is possible to affirm that this peculiar procedure allows for an almost mechanical derivation of 

the boundary conditions, which must be satisfied by an optimal trajectory, depending on the specific 

constraints of the problem under analysis. 

 

To use this method, there is a problem concerning its utilization: in fact, this method not allow to obtain 

an analytics solution, because too much simplifications are required; so, the only way to use it, in order 

to found the optimal solution, it is to solve the problem using approximate solutions or numerical 

methods. For these numerical methods, three cases could be used: the direct methods, the indirect 

methods and the evolutionary algorithmic.  

The first one transforms the problem into a parameter optimization (nonlinear programming, where the 

trajectory is discretised) and solve it by means of gradient-based procedures, over to be an approach that 

requires a tentative solution; the indirect methods use the optimal control theory to transform the 

optimization problem into a boundary value problem (BVP) solved by means of shooting procedures, 

while the evolutionary algorithms exploit large populations of solutions which evolve according to 

specific rules towards the global optimum.  

Now, focusing on the indirect methods, it is possible to see as their offer many advantages:                                

first, they allow for an exact, even though numerical, optimization (in the limits of the adopted 

dynamical model and integration accuracy); in addition, as far as low-thrust missions are concerned, the 

computational cost of indirect methods is typically lower compared to direct methods, which require a 

much larger number of variables for an accurate trajectory description and, in the end, the indirect 

approach provides useful theoretical information on the problem which is dealt with. 

 

However, alongside the advantages, there are also disadvantages:  

for example, some difficult could be available in order to reach the convergence, and this could be 

possible if a flyby is present, because the trajectory will assumes constrains in the intermediate points 

(should be even the problem related to thermal or dynamic loads, but in this case, not being in the 
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atmosphere, this is not considered); furthermore, it is even possible to have problems caused by the state 

variables discontinuity, in particular for the terms related at the impulsive manoeuvres, flyby and the 

disposal of exhausted stages. Another problem could interest the difficult to integrated the values 

because of the controls discontinuity, in particular for the thrust control (here, the switching function 

plays an important role).  

At the end, it is important to notice that, as the direct methods, the indirect methods require a tentative 

solution and convergence to the optimum is typically obtained if the tentative solution is sufficiently 

close to the optimal one. 
 

Nevertheless, the indirect methods allow to assume in advance the structure of the trajectory. In fact, the 

trajectory is divided into phases called "arcs", where there are homogeneous control laws in each arc, 

with constraints and discontinuities in correspondence of the arcs extremes. Besides that, it is always 

possible to check and modify the structure of the trajectory. [10] [11] [12] 

 

The aim of the thesis is to find return trajectories for the asteroid objective of different duration and for 

different launch windows, in order to explore all the possible opportunities and find among them the 

most convenient ones. In order to perform this, the indirect methods have been used in order to analysed 

the trajectories in order to reach the asteroid 2008 EV5 and to return in a stable orbit around Earth (with 

a boulder takes from 2008 EV5). 
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Chapter 2 
2. Optimization of space trajectories with the indirect method 
 

2.1 Introduction 
 

The spacecraft trajectory has a big impact on the feasibility and cost of a space mission, where the 

minimization of required propellant may be fundamental to deliver a sufficient payload mass and 

guarantee the mission feasibility, or to allow for a less expensive launcher, and thus reducing costs. 

Furthermore, even the final mass or payload maximization and propellant mass or flight time 

minimization are aspects that must be typically dealt during a mission planning. Then, to allow to 

achieve these aspects, an efficient optimization method is required and, to do this, three different 

methods could be used. 

The first one is the direct method, which it transforms the problem into a parameter optimization 

(nonlinear programming) and solve it by means of gradient-based procedures; the second one is the 

indirect method, which uses the optimal control theory to transform the optimization problem into a 

boundary value problem (BVP) solved by means of shooting procedures; the last includes the 

evolutionary algorithms, exploit large populations of solutions which evolve according to specific rules 

towards the global optimum.  

 

2.1.1 Advantages and disadvantages of the indirect methods 
 

Considering the different methods useful to perform a space trajectory optimization, in this thesis only 

the indirect method will be used, and to better understand this choice, the advantages and disadvantages 

of this method will be highlighted. 

Starting from the advantages, it is possible to see as this method: 

 

- allows to have an exact, even though numerical, optimization (in the limits of the adopted 

dynamical model and integration accuracy); 

 

- the computational cost of this method is typically lower compared to direct methods, which 

require a much larger number of variables for an accurate trajectory; 

 

- the indirect approach provides useful theoretical information on the problem which is dealt with. 

 

Unfortunately, just like previously said, this method includes even the following three drawbacks:  
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- the necessity of deriving analytic expressions for the necessary conditions, that could become 

discouraging when dealing with complex problems;  

 

- the convergence region for a shooting algorithm may be quite small, as it is necessary to guess 

values for adjoint variables that may not have an obvious physical meaning; 

 

- for problems with path inequalities, it is necessary to guess the sequence of constrained and 

unconstrained sub-arcs. 

 

Nevertheless, exist a way that allows to mitigates the drawbacks of the indirect methods by simply 

making the position of the problem and the derivation of the optimal conditions more general and easy.  

 

It is even important to notice like the capability of achieving the numerical solution is dependent on the 

tentative solution which is assumed to start the procedure. However, the simplicity of the theoretical 

approach permits a fast formulation of a series of optimization problems with increasing difficulty: in 

fact, the solution of the most complex problem is obtained via the solution of similar but easier problems 

(just like direct methods). 

In the end, a last important aspect to notice is about the two-body problem model, which will be 

considered in order to find the optimal trajectory. 

 

2.2 Optimal control theory 
 

The indirect approach to optimization uses the optimal control theory (OCT), which is based on calculus 

of variations and it is adapted at the optimization of space trajectories and to exploit the capabilities of 

the numerical procedure that has been selected to solve the BVP (boundary values problem) resulting 

from the OCT application.  

Here, it is possible to notice as the system is described by a set of state variables x, and the differential 

equations that rule the evolution from the initial to the final state (the external boundaries) are functions 

of x, of the control variables u and the independent variable t (usually, the time). So, it is possible to 

have the following formulation 

 
d𝐱

d𝑡
= 𝐟 ( 𝐱 , 𝐮 , 𝑡 ) 

 

(1) 
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Moreover, the trajectory between the initial and final point (the external boundaries) is usefully split 

into n arcs at the points (internal boundaries), where the state or control variables are discontinuous or 

constraints are imposed.  

The j-th arc starts at 𝑡(𝑗−1)+
 and ends at 𝑡𝑗−

, where the state variables are 𝑥(𝑗−1)+
and 𝑥𝑗−

 respectively 

( 𝑗− and 𝑗+ denote values just before and after point j): in this way, it is possible to take into account the 

possible discontinuities of the variables (for example, the velocity and the mass are discontinuous after 

an impulsive manoeuvre) and, in the limits, also of time (for example in the case of flyby around a 

planet, if the time of stay inside the sphere of influence is not overlooked) that apply to the junction 

points between the various arches (internal contours). Furthermore, mixed-type boundary conditions 

may be imposed where these conditions involve the values of the variables of state and of the 

independent variable time both at the external contours than internal ones. 

 

In general, nonlinear constraints are imposed at both internal and external boundaries, and where these 

boundary conditions are grouped into a χ vector 

 

𝜒 ( 𝑥(𝑗−1)+
 , 𝑥𝑗−

 , 𝑡(𝑗−1)+
 , 𝑡𝑗−

 ) = 0       J = 1, . . . , 𝑛 

Additional path constraints may hold along an entire arc; constraints may also concern the control 

variables u. 

 

The optimal problem is to look for extremal values (that is maximum or minimum values relative) of a 

functional which, in its general form, has the following formulation 

 

𝐽 =  𝜑 ( 𝑥(𝑗−1)+
 , 𝑥𝑗−

 , 𝑡(𝑗−1)+
 , 𝑡𝑗−

 ) + ∑  ∫ 𝜙( 𝒙(𝑡) , 𝒖(𝑡) , 𝑡 ) 𝑑𝑡          𝑗 = 1, … , 𝑛
 𝑡𝑗−

𝑡(𝑗−1)+𝑗

 

 

Here, it is possible to see like the functional 𝐽 is the sum of two terms:  

the function φ, which depends on the values assumed from variables and time at the boundaries (internal 

and external) and the integral extended to the entire trajectory of function 𝜙, which depends on time and 

on the values assumed at each point by variables and controls.  

In addition, it is possible to notice how with the use of suitable auxiliary variables it is possible to refer 

to the case 𝜑 = 0 (Lagrange formulation) or 𝜙 = 0  (formulation of Mayer, which is preferred). 

 

At this point may be useful to rewrite the functional by introducing the Lagrange multipliers, the μ 

constants associated with boundary conditions and the λ variables (also called “added variables”) 

associated to the equations of state. Then, doing this, the following formulation has been obtained 

(2) 

 

(3) 
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𝐽∗ =  𝜑 +  𝜇𝑇𝜒 + ∑  ∫ ( 𝜙 +   𝜆𝑇 ( 𝑓 −  �̇� )) 𝑑𝑡          𝑗 = 1, … , 𝑛
 𝑡𝑗−

𝑡(𝑗−1)+𝑗

 

 

where the temporal derivative is indicated by the dot “˙”. 

At this point, it is possible to see that the two functionals 𝐽 and 𝐽∗ depend on time t, on state variables 

𝒙 and theirs �̇� derivatives (in particular from the values that time and variables assume at the extremes 

of each arc, 𝑡𝑗 and 𝒙𝑗) and from the u controls. Obviously, if boundary conditions and state equations 

are satisfied, the two functional and their extremal values coincide.  

 

Now, by integrating by parts in order to eliminate the dependence on the derivatives of the �̇�  variables, 

it is possible to obtain 

𝐽∗ =  𝜑 +  𝜇𝑇𝜒 + ∑  ( 𝜆𝑇
(𝑗−1)+

 𝑥(𝑗−1)+
−  𝜆𝑇

j−
𝑥𝑗−

 ) +  

𝑗

+ ∑  ∫ ( 𝜙 +  𝜆𝑇𝑓 −   �̇�𝑇𝑥 ) 𝑑𝑡          𝑗 = 1, … , 𝑛
 𝑡𝑗−

𝑡(𝑗−1)+𝑗

 

 

and differentiating it is possible to get the variation before the 𝛿𝐽∗ functional itself (in this case, the 

matrix is indicated by the square brackets) 

 

𝛿𝐽∗ =  (−𝐻(𝑗−1)+
+  

𝜕𝜑

𝜕𝑡(𝑗−1)+

 +  𝜇𝑇
𝜕𝜒

𝜕𝑡(𝑗−1)+

 ) 𝛿𝑡(𝑗−1)+
+ 

 

+ (𝐻j−
+ 

𝜕𝜑

𝜕𝑡j−

 +   𝜇𝑇 𝜕𝜒

𝜕𝑡j−

 ) 𝛿𝑡j−
+   (𝜆𝑇

(𝑗−1)+
+  

𝜕𝜑

𝜕𝑥(𝑗−1)+

 +  𝜇𝑇 [ 
𝜕𝜒

𝜕𝑥(𝑗−1)+

 ]) 𝛿𝑥(𝑗−1)+
+ 

 

+ (−𝜆𝑇
j−

+  
𝜕𝜑

𝜕𝑥j−

+ 𝜇𝑇 [ 
𝜕𝜒

𝜕𝑥j−

 ]) 𝛿𝑥j− + ∑ ∫ (( 
𝜕𝐻

𝜕𝑥
+ �̇�𝑇) 𝛿𝑥 +  

𝜕𝐻

𝜕𝑥
 𝛿𝑢) 𝑑𝑡  𝑗 = 1, … , 𝑛

 𝑡𝑗−

𝑡(𝑗−1)+𝑗

  

 

 and so, the system Hamiltonian has been defined as 

 

𝐻 =  𝜙 +  𝜆𝑇𝑓 

 

The (necessary) condition of optimum prescribes the stationarity of the functional and therefore the 

cancellation of its first variation for any choice of  𝛿𝑥 , 𝛿𝑢 ,  𝛿𝑥 (𝑗−1)+ , 𝛿𝑥𝑗− , 𝛿𝑡 (𝑗−1)+ , 𝛿𝑡j−
   variations, 

compatible with differential equations and boundary conditions. 

(4) 

 

(5) 

 

(6) 

 

(7) 
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The introduction of additive variables and constant allows, with an appropriate choice, to cancel the 

coefficient of each variations in the expression at the same time (6), so to ensuring the stationarity of the 

functional expressed by the condition  𝛿𝐽∗ = 0.  

 

Now, in order to obtain the Euler-Lagrange differential equations for the added variables, the 𝛿𝑥  and 𝛿𝑢 

coefficients inside the integral should be cancelling for each point of the trajectory. Then  

 

𝑑𝜆

𝑑𝑡
= − ( 

𝜕𝐻 

𝜕𝑥
)

𝑇

 

 

and the algebraic equations for the controls appear as 

 

( 
𝜕𝐻

𝜕𝑢
 )

𝑇

= 0 

 

By this, it is interesting to note how the control laws are formally independent from the search of 

maximum or minimum values of 𝐽. 

In addition, particular attention must be paid if one of the checks is subject to a constraint, because this 

must belong to a given admissibility domain (for example, the thrust value must be between the 

minimum value 0 and the maximum value 𝑇𝑚𝑎𝑥); furthermore, the cases where the constraint depends 

on the time or the state variables are not considered, while those are where it is explicit and constant. 

In the presence of a such constraint, the optimal value of the control at each point of the trajectory is 

that which, belonging to the eligibility domain, it makes maximum, if the maximum values of 𝐽 are 

investigating, or minimum, if the minima are investigating, the Hamiltonian (7) at that point (here all is 

on Pontryagin’s Maximus Principle based, which is used to find the best possible control for taking 

a dynamical system from one state to another, especially in the presence of constraints for the state or 

input controls, so that the control Hamiltonian  take an extreme value over controls in the set of all 

permissible controls).  

 

In this way, basically two possibilities are available: 

 

- the optimal value of the control is given by equation (9), if it falls within the eligibility domain 

and therefore the constraint does not intervene at that point (locally “not bound” control); 

 

- the optimal value is at the ends of the domain, that is the control assumes the maximum value 

or minimum, if the one provided by equation (9) does not fall within the eligibility domain 

("bound" control). 

(8) 

 

(9) 
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A particular case is available if the Hamiltonian H is linear with respect to one of the controls subject to 

constraints, as in equation (9), where the control does not appear explicitly and can therefore not be 

determined. In this case, there are still two possibilities (refers to the case where J should be maximized): 

 

- if in the equation (7) the coefficient of the control in question is not null, then H is maximized 

for the maximum control value if the coefficient is positive and minimum if it is negative (bang-

bang control), in accordance with the Pontryagin’s Maximus Principle; 

 

- if in the equation (7) the coefficient of the control in question is identically zero during a finite 

interval of time (singular arc), then it is necessary to impose the cancellation of all subsequent 

derivatives of the coefficient with respect to time, up when in one of them there is no explicit 

control: the optimal control it is then determined by setting the latter derivative equal to zero. 

 

Here, for the missing boundary conditions, it is convenient to refer to the j-th boundary, writing for this 

the conditions that derive from considering it as extreme final of (j -1)-th sub-interval or as initial 

extreme of the j-th sub-interval; in this way, cancelling in order the coefficients of 

 𝛿𝑥 j− , 𝛿𝑥𝑗+ , 𝛿𝑡 j− , 𝛿𝑡j+
 (these values must be cancelling in this order) in the expression (6), it is possible 

to obtain: 

 

−𝜆𝑇
j−

+  
𝜕𝜑

𝜕𝑥j−

 +   𝜇𝑇 [ 
𝜕𝜒

𝜕𝑥j−

 ] = 0          𝑗 = 1, … , 𝑛 

 

𝜆𝑇
j+

+ 
𝜕𝜑

𝜕𝑥j+

 +   𝜇𝑇 [ 
𝜕𝜒

𝜕𝑥j+

 ] = 0          𝑗 = 1, … , 𝑛 − 1 

 

𝐻j−
+  

𝜕𝜑

𝜕𝑡j−

 +   𝜇𝑇
𝜕𝜒

𝜕𝑡j−

= 0            𝑗 = 1, … , 𝑛  

 

−𝐻j+
+  

𝜕𝜑

𝜕𝑡j+

 +  𝜇𝑇
𝜕𝜒

𝜕𝑡j+

= 0            𝑗 = 1, … , 𝑛 − 1 

 

where the subscripts 𝑗− and 𝑗+  indicate the values assumed respectively immediately before and after 

the point j (it is necessary to distinguish as they may occur, as said, discontinuity in junction points 

between sub-intervals). The equations (10) and (12) have no meaning at the beginning of the trajectory 

( 𝑗 = 0 ), while equations (11) and (13) do not have them term ( 𝑗 = 𝑛 ).  

(10) 

 

(11) 

 

(12) 

 

(13) 
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By that, eliminating the additional constants μ from equations (10) ÷ (13), the optimal boundary 

conditions have been obtained 

 

𝜎 ( 𝑥(𝑗−1)+
 , 𝑥𝑗−

 , 𝜆(𝑗−1)+
 , 𝜆𝑗−

 , 𝑡(𝑗−1)+
 , 𝑡𝑗−

) = 0 

 

which, with the assigned conditions (2), they complete the differential system given by the equations 

(1) and (8).  

Now, considering a generic state variable x, if it is subjected to particular conditions at the boundary, 

equations (10) and (11) provide particular conditions of optimum for the corresponding additional 𝜆𝑥 

variable: 

 

- if the x status variable is explicitly assigned to the initial instant (the vector of the χ conditions 

imposed contains the equation 𝑥0 − 𝑎 = 0 with an assigned value), on the corresponding added 

variable there are no conditions ("free" 𝜆𝑥0); the similar situation occurs at the end time if the 

variable is there assigned; 

 

- if the initial value of the 𝑥0 state variable does not appear in the φ function and even not in the 

boundary conditions, the corresponding added variable is nothing at initial time (𝜆𝑥0 = 0); even 

in this case where these considerations are extended to a similar situation at the final time; 

 

- if a status variable is continuous and not assigned to the i internal point (where the equation 

𝑥𝑗+ =  𝑥𝑗− is contained by χ), the corresponding added variable is also continuous 

(𝜆𝑥𝑗+ 
=  𝜆𝑥𝑗− 

) ; 

 

- if a status variable is continued and explicitly assigned to an internal contour (χ contains the 

equations 𝑥𝑗+ =  𝑥𝑗− = 𝑎), the corresponding variable added has a "free" discontinuity, that is 

the value of  𝜆𝑥𝑗+ 
and it is independent by 𝜆𝑥𝑗− 

and must be determined by the optimization 

procedure. 

 

Similarly, if H does not explicitly depend on time, equations (12) and (13) also they provide, in some 

cases, particular boundary conditions: 

 

- if the initial 𝑡0 time does not explicitly appear in the boundary conditions and even not in the φ 

function, the Hamiltonian is null at the initial instant (𝐻0 = 0); similarly, the Hamiltonian is 

annulled at the final time if this does not explicitly intervene in χ and 𝜑. 

 

(14) 
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- if the intermediate 𝑡𝑗 time does not appear explicitly in the 𝜑 function (the only one condition 

in χ which involves the continuity of time 𝑡𝑗+ =  𝑡𝑗− ) the Hamiltonian is in j continuous 

(𝐻𝑗+ =  𝐻𝑗−); 

 

- if the 𝑡𝑗 time is explicitly assigned, (in χ the equations appear 𝑡𝑗+ =  𝑡𝑗− = 𝑎 ) the Hamiltonian 

has at that point a "free" discontinuity. 

 

 

2.3 Differential problem to limits 
 

The indirect method adopted for the optimization of orbital transfers provides the application of the 

theory of optimal control to the system of equations (1), which has boundary conditions depending on 

the type of orbits between which the transfer takes place. The optimal control theory formulates a new 

system of differential equations (BVP) in which some of the initial values of the variables are unknown. 

The solution to this problem consists in finding which initial values allow, by numerically integrating 

the differential system, to satisfy all the boundary conditions, both imposed and optimal. 

 

 

2.3.1 Boundary values problem (BVP) resolution method 
 

In this paragraph, the BVP resolution method and how the optimal problem comes formulated to adapt 

to its characteristics will be described. 

 

As seen in the previous chapter, the optimal control theory formulates the optimal problem as a 

mathematical problem subject to differential and algebraic constraints. Since some initial values of the 

state variables and additions are unknown, the optimal problem results in a differential problem at the 

limits (BVP), with the differential equations (1) and (8), in which the controls are determined by the 

algebraic equations (9), supported from the imposed boundary conditions (2) and excellent conditions 

(14). It is important to notice as the problem presents some features: 

 

- the integration interval is subdivided into sub-intervals, where the differential equations could 

have different expression; 

 

- the duration of each sub-interval is generally unknown; 
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- the boundary conditions may be non-linear and involve the values of the variables both external 

and internal contours; 

 

- the variables could be discontinuous to the internal contours and their value after the 

discontinuity could be unknown. 

 

The main difficulty of the indirect optimization techniques is the solution of the problem to the limits 

that emerge from their application: the method, for its solution, is an indispensable tool and the 

correspondence between its characteristics and those of the problem under consideration. The BVP 

solution is obtained by reducing it to a succession of problems at the initial values, which is brought to 

convergence according to the Newton method. 

 

In order to resolve the indefiniteness of each sub-interval duration, the independent variable t has been 

substituted with a new ε variable defined in the j-th sub-interval, so to allows integration.  

By this, the following relation has been obtained: 

 

𝜀 = 𝑗 − 1 +  
𝑡 − 𝑡𝑗−1

𝑡𝑗 − 𝑡𝑗−1
= 𝑗 − 1 +  

𝑡 − 𝑡𝑗−1

𝜏𝑗
  

 

where 𝜏𝑗 is the duration (usually unknown) of the sub-interval.  

In this way, the internal and external contours are fixed, thanks to the introduction of the 𝜏𝑗  unknown 

parameters and correspond to consecutive whole values of the new independent variable 𝜀. 

To describe the method, the generic equations system given by (1) and (8) has been considered, in which 

the expressions (9) have been substituted for the controls. There is therefore a differential problem in 

the state and additions variables 𝒚 =  (𝒙 , 𝝀) : 

 
𝑑𝑦

𝑑𝑡
= 𝑓∗( 𝑦, 𝑡 ) 

 

It is necessary to keep in mind that also constant parameters appear in the problem under examination, 

such as the durations of the 𝜏𝑗 sub-intervals or the variables values after one discontinuity: it is therefore 

useful to refer to a new vector 𝒛 =  (𝒚 , 𝒄) ,which contains the status and additions variables and the new 

c vector of the constant parameters.  

At this point, applying the change of independent variable, the differential equations system takes the 

following formulation 
𝑑𝑧

𝑑𝜀
= 𝑓( 𝑧, 𝜀 ) 

(15) 

 

(16) 

 

(17) 
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By explicating the second member of the equations (17), for the state and additions variables, it is 

possible to have: 

 
𝑑𝑦

𝑑𝜀
=  𝜏𝑗 

𝑑𝑦

𝑑𝑡
  

 

while for the constant parameters 
𝑑𝑐

𝑑𝜀
= 0 

 

The boundary conditions are generically expressed, without distinguishing between imposed and 

optimal conditions, such as 

𝜓 ( 𝑠 ) = 0 

 

where s is a vector that contains the values that the variables assume at each contour (internal or external) 

𝜀 = 0 , 1 , . . . , 𝑛 , and the unknown parameters. 

 

𝑠 = ( 𝑦0 , 𝑦1 , … , 𝑦𝑛, 𝑐 ) 

 

The initial values of some variables are usually unknown, and the search must allow to determining, 

through an iterative process, which values must be assumed in order to satisfy the equations (20).  

The procedure will be described assuming that none of the initial values is known.  

 

The r-th iteration begins with the integration of equations (17) with the initial 𝑝𝑟 values found at the end 

of the previous iteration, so to fix 

𝑧 ( 0 ) = 𝑝𝑟 

 

Made this, the next step is to proceed to the integrate the equations along the entire trajectory, taking 

into account any discontinuities to the internal contours (to start the procedure, at the first iteration it is 

necessary to choose attempt values 𝑝1). In each contour the state variables value is determined and at 

the end of the integration the error is calculated on the boundary conditions 𝜓𝑟 to the r-th iteration. 

A 𝛥𝑝 variation leads to varying the error on the boundary conditions of a quantity that, taking into 

account only the terms of the first order, is equal to 

 

𝛥𝜓 =  [ 
𝜕𝜓

𝜕𝑝
 ] 𝛥𝑝 

(18) 

 

(19) 

 

(20) 

 

(21) 

 

(22) 

 

(23) 
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Having to cancel the error on the boundary conditions, so to get 𝜓 =  −𝜓𝑟 , at each iteration the initial 

values are corrected by a quantity 

𝛥𝑝 = 𝑝𝑟+1 − 𝑝𝑟 =  − [ 
𝜕𝜓

𝜕𝑝
 ]

−1

𝜓𝑟 

 

until the boundary conditions (20) are verified with the desired precision.  

The matrix that appears in equation (24) is calculated as a product of two matrices: 

 

[ 
𝜕𝜓

𝜕𝑝
 ] =  [ 

𝜕𝜓

𝜕𝑠
 ] [ 

𝜕𝑠

𝜕𝑝
 ] 

 

where the former can be immediately obtained by deriving the boundary conditions with respect to the 

quantities that appear. The second matrix contains the derivatives values of the variables to the contours 

with respect to the initial values, that are the values that are assumed to the contours 𝜀 (= 0 , 1 , . . . , 𝑛) 

from the matrix 

 

[ 
𝜕𝑧

𝜕𝑝
 ] =  [ 𝑔(𝜀)] 

 

and it is obtained by integrating the differential equation system obtained by deriving the main system 

(17) with respect to each of the initial values: 

 

[ 𝑔 ̇ ] =
𝑑

𝑑𝜀
[ 

𝜕𝑧

𝜕𝑝
 ] =  [ 

𝜕

𝜕𝑝
 ( 

𝑑𝑧

𝑑𝜀
 )] =  [ 

𝜕𝑓

𝜕𝑝
 ]  

 

where the dot “˙” indicates the derivative with respect to the new independent ε variable.  

Now, explicating the Jacobian of the principal system (17), equation (27) takes the following form 

 

[ �̇� ] = [ 
𝜕𝑓

𝜕𝑧
 ] [ 

𝜕𝑧

𝜕𝑝
 ] =  [ 

𝜕𝑓

𝜕𝑧
 ] [ 𝑔 ]  

 

A particularity about the application of this method to indirect optimization problems are the symmetry 

properties of some Jacobian terms. 

The initial values for homogeneous system (28) are derived from the relation (22); thus, the identical 

matrix is obtained 

 

[ 𝑔(0)] = [ 
𝜕𝑧 (0)

𝜕𝑝
 ] = [ 𝐼 ]  

(24) 

 

(25) 

 

(26) 

 

 

(27) 

 

(28) 

 

(29) 
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It should be noted that this method also allows discontinuities in the variables to be treated. 

In fact, for a discontinuity in the i point, it is sufficient to update both the vector of z variables that the 

g matrix through the relation h, that binds the variables values before and after the discontinuity 

 

𝑧𝑖+ = ℎ (𝑧𝑖−) 

 

[ 𝑔𝑖+ ] = [ 
𝜕ℎ

𝜕𝑧
 ] [ 𝑔𝑖− ]  

 

(for this reason, defining the s vector it is not distinct between the vectors 𝑦𝑖+ and 𝑦𝑖−, in as the one 

known function, through h, of the other and of the c vector).  

Obviously, if some of the initial values variables are known, the problem results simplified since the 

vector p is reduced to the unknown components of z (0) estimation and the ψ vector only to not explicit 

conditions at the initial time. 

In addition, the matrix that appears in equation (24) can also be evaluated numerically:  

its i-th row is obtained by varying the i-th p component of a small 𝛥𝑝 quantity (keeping the others fixed) 

and then integrating the equations (17).  

Done this, it is possible to calculate the variation of the boundary conditions 𝛥𝜓 (𝛥𝑝) and, by linearizing, 

get the corresponding line as 𝛥𝜓𝑇

𝛥𝑝⁄ . 

This procedure allows, in some cases, to obtain a simpler and rapid solution of BVP (values suitable for 

𝛥𝑝, found empirically, are of the order of 10−6 − 10−7 ) but it is not always able to guarantee the 

convergence: the determination of the matrix in equation (24) is, in fact, less accurate than its calculation 

through the solution of the system (28) and, given the great sensitivity of the problem, the numerical 

approximations introduced could compromise the convergence. 

 

A similar numerical procedure can also be used for the calculation of the Jacobian and the matrix 

[
𝜕𝜓

𝜕s
⁄ ]: it is therefore preferred to maintain the analytical evaluation and use, in the code setting, the 

values obtained numerically for verify, through comparison with those provided by the analytical 

expressions of the Jacobian and the matrix [𝜕𝜓
𝜕s

⁄ ], the accuracy of these expressions. 

The integration of all differential equations, both for the main system (17) and for the homogeneous one 

(28), it is performed with a variable pitch and order method based on the Adams’ formulas (a linear 

multistep method used for the numerical solution of ordinary differential equations). 

 

(30) 

 

(31) 
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For example, if the required accuracy is equal to 10−7 , it is required that the maximum error 𝐸𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑖 (𝜓𝑖) on the boundary conditions is lower than this value. 

The introduced linearization for the calculation of the 𝛥𝑝 correction given by the equation (24), to be 

made to the initial values of the attempt, introduces errors that can compromise the convergence by 

increasing rather than decreasing the error on the boundary conditions and to improve the procedure, 

some tricks have been used: 

 

- to avoid getting too far from the solution, the correction made is actually a fraction of the 

determined one, that is 

 

𝑝𝑟+1 = 𝑝𝑟 + 𝐾1𝛥𝑝 

 

with 𝐾1 =  0.1 ÷  1, values determined empirically during the first tests of the codes, depending 

on whether the starting solution is relatively distant or close to the one searched. 

 

- at each iteration, after that the new vector of the initial attempt values 𝑝𝑟+1 has been determined 

through the (32) and the motion equations have been integrated, the maximum error on the 

𝐸𝑚𝑎𝑥
𝑟+1  boundary conditions is compared with the one obtained to the previous 𝐸𝑚𝑎𝑥

𝑟  iteration:  

if the maximum error is less than a multiple of the previous one, that is, if 𝐸𝑚𝑎𝑥
𝑟+1 <  𝐾2 𝐸𝑚𝑎𝑥

𝑟 , 

proceed with the new iteration. In order to converge to the solution, the error on the boundary 

conditions could, in the first iterations, increase, the 𝐾2 value must be higher than the unit: so, 

a 𝐾2 =  2 ÷  3 value guarantees good results. 

 

- if, on the other hand, the error at the new iteration is too large compared to the previous one, the 

bisection of the correction made will be apply, halving it: in this way, these equations of motion 

are integrated with the attempt values: 

 

𝑝𝑟+1 = 𝑝𝑟 + 𝐾1𝛥𝑝/2 

 

thus, repeating the comparison between the new maximum error obtained and that of the 

previous iteration and, if necessary, repeating the bisection. A maximum number of 5 bisections 

is set, after which the procedure stops, meaning that the chosen attempt solution is not able to 

lead to convergence. 

 

 

 

(32) 

 

(33) 
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2.4 Optimization of space trajectories 
 

The preliminary analysis of spacecraft trajectories is typically carried out assuming a point mass 

spacecraft under the influence of a single body, nevertheless, the two-body model can also be used to 

deal with interplanetary trajectories, as the patched-conic approximation that is usually employed in the 

initial analyses. An efficient approach only analyses the heliocentric legs; at the patch points with the 

planetocentric legs, suitable boundary conditions take the manoeuvres inside the planets’ spheres of 

influence into account.  

 

In the following pages, the formulation of the trajectory optimization in the two-body problem will give, 

making particular reference to the heliocentric legs of an interplanetary trajectory, due to the peculiarity 

of the relevant boundary conditions.  

 

The state of the spacecraft is described by position r, velocity v, and mass m and the state equations are 

the following 

 
𝑑𝑟

𝑑𝑡
= 𝑣 

𝑑𝑣

𝑑𝑡
= 𝑔 +  

𝑇

𝑚
 

𝑑𝑚

𝑑𝑡
= −

𝑇

𝑐
 

 

where T is the engine thrust and g is the gravitational acceleration, while the propellant mass-flow rate 

is expressed by the ratio of the thrust magnitude to the constant effective exhaust velocity c. 

Furthermore, it is even possible to see the Hamiltonian, defined by equation (7) 

 

𝐻 =  𝜆𝑟
𝑇 𝑣 +  𝜆𝑟

𝑇  (𝑔 +
𝑇

𝑚
) −  𝜆𝑚

𝑇

𝑐
 

 

and the Euler–Lagrange equations for the adjoint variables, equation (8), provide 

 

[ 
𝑑𝜆𝑟

𝑑𝑡
 ]

𝑇

=  − 𝜆𝑟
𝑇  [ 

𝜕𝑔

𝜕𝑟
 ] 

 

  [ 
𝑑𝜆𝑣

𝑑𝑡
 ]

𝑇

=  − 𝜆𝑟
𝑇  

 

(34) 

 

(35) 

 

(36) 

 

(37) 

 

(38) 

 

(39) 

 

(40) 
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𝑑𝜆𝑚

𝑑𝑡
=  

𝜆𝑣  𝑇

𝑚2
 

 

where the gravity-gradient matrix appears in equation (38).  

Equations (34) – (36) and (38) – (39) constitute the system of differential equations, which is integrated 

numerically.  

The thrust direction and its magnitude are typically the control variables, which must maximize H in 

agreement with PMP. The optimal thrust direction is therefore parallel to the velocity adjoint vector 𝜆𝑣, 

which is named primer vector.  

In addition, the switching function 

𝑆𝐹 =  
𝜆𝑣  

𝑚
−  

𝜆𝑚 

𝑐
 

 

has been introduced so to be possible to rewritten the equation (37) as 

 

𝐻 =  𝜆𝑟
𝑇 𝑣 +  𝜆𝑟

𝑇 𝑔 + 𝑇 𝑆𝐹 

 

The thrust magnitude assumes its maximum value when the switching function 𝑆𝐹 is positive, whereas 

it is set to zero when 𝑆𝐹 is negative, again to maximize the Hamiltonian.  

Singular arcs occur when 𝑆𝐹 remains zero during a finite time; the equation (42) is not sufficient to 

decide the optimal thrust magnitude (singular arcs are here excluded and, in addition, they may be 

required during atmospheric flight).  

To improve the numerical accuracy, the trajectory is split into maximum-thrust arcs and coast arcs.  

The number and order of the arcs, i.e., the trajectory switching structure, are assigned a priori, and the 

arc time-lengths are additional unknowns. The boundary conditions for optimality state that the 

switching function 𝑆𝐹 must be null at the extremities of each thrust arc.  

The numerical procedure provides the optimal solution that corresponds to the assigned switching 

structure.  

This solution is then checked in the light of PMP, by means of an analysis of the switching function; if 

PMP is violated, coast or propelled arcs are inserted or removed, in accordance with the behaviour of 

𝑆𝐹, to obtain an improved solution (e.g., a coast arc is introduced when 𝑆𝐹 becomes negative during a 

propelled arc). 

 

Suitable boundary conditions define the mission and here the reference is made to interplanetary 

trajectories: a similar (and usually simpler) analysis can be carried out for different cases (for example, 

orbital manoeuvres of an Earth satellite).  

 

(41) 

 

(42) 
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At the exit from Earth’s sphere of influence, spacecraft and Earth positions coincide (to notice that the 

influence sphere’s dimension can be neglected) and the mass is typically a function of the hyperbolic 

excess velocity 𝑣∞0 =  𝑣0 − 𝑣𝐸(𝑡0) ,where subscript E refers to the Earth.  

The boundary conditions at the initial point (subscript 0) are 

 

𝑟0 = 𝑟𝐸  (𝑡0) 

 

𝑚0 = 𝑓 (𝑣∞0) 

 

The arrival at the target body with zero-hyperbolic excess velocity is here considered, as it appears to 

be the most general end condition, corresponding to the rendezvous with an asteroid or to the minimum-

energy approach to a planet.  

The relevant boundary conditions at the final point (subscript n) are therefore 

 

𝑟𝑛 = 𝑟𝑇 (𝑡𝑛) 

 

𝑣𝑛 = 𝑣𝑇 (𝑡𝑛) 

 

where subscript T denotes the target body.  

The final mass 𝑚𝑛is the performance index which is maximized.  

 

In some cases, the spacecraft would fly too close to the planet surface, where a constraint on the periapsis 

height might be required. In this occurrence, an additional condition on the velocity turn arises 

 

𝑣∞𝑔+ 
𝑇 𝑣∞𝑔− =  − cos 2𝜙 𝑣∞𝑔−

2   

 

where cos 𝜙 =  
𝑉𝑝

2

𝑉∞𝑔−
2 + 𝑉𝑝

2 , with 𝑉𝑝 =  √
𝜇𝑝

𝑅𝑝
⁄  being the circular velocity at the minimum allowable 

distance from the planet surface. 

 

To improve the convergence, the trajectories are first optimized by introducing additional degrees of 

freedom and letting the relevant bodies assume the best phasing with the Earth. The corresponding 

trajectories, which define the most favourable positions of the target planets at encounter, could be flown 

every year departing on the same day.  

The positions of the planets on the encounter day of each year in the launch window are then compared 

to the optimal-phasing positions; favourable opportunities occur when differences are small. [10] [11] 

[12] [13] [14] [15] 

(43) 

 
(44) 

 

(45) 

 

(46) 

 

(47) 
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Wanting to sum up, it is possible to see as the indirect method’s procedure is a powerful means to deal 

with the optimization of spacecraft trajectories. The necessary conditions for optimality are easily 

obtained even for complex problems. This has permitted the extension of the indirect approach to 

problems that were usually left to direct methods. When the problem is formulated in a convenient way, 

for instance by following the guidelines provided here, extremely accurate solutions can be obtained 

with very short computation times. Robustness is typically an issue when indirect methods are adopted; 

however, tentative solutions which allow for convergence can be built by properly splitting the trajectory 

in elementary legs (optimized separately), or by employing continuation techniques, or, finally, by 

exploiting periodicities in the motion of the relevant bodies and building on existing solutions. 

 

 

2.5 Electric propulsion 
 

In order to achieve the mission, a Hall effect thruster will be used, this because the electric propulsion 

(EP) can boost the performance of interplanetary missions due to the low propellant consumption in 

comparison to chemical propulsion.  

It is important to notice how the missions could be performed using one or more thrusters, and so a 

problem of power partitioning among the thrusters exist and where the propellant gains can be obtained 

with an optimal power splitting. Nevertheless, in this thesis, the power partitioning will be not 

considered, but a little consideration is available in the programming code: in fact, the thrust magnitude 

and propellant mass flow rate of a thruster are related to its input power and, as a consequence, the 

effective exhaust velocity is also a function of the input power.  

Then cubic relations have been assumed for T and q 

 

𝑇 =  𝑎0 +  𝑎1𝑃 +  𝑎2𝑃2  +  𝑎3𝑃3 

𝑞 =  𝑏0 + 𝑏1𝑃 +  𝑏2𝑃2  +  𝑏3𝑃3 

 

In addition, many EP systems could present the capability of varying specific impulse and thrust 

magnitude at constant thrust power. High thrust and low specific impulse are used where the thrust can 

be favourably exploited to reduce the trip time. Where the thrust is less useful, a large specific impulse 

is adopted to reduce the propellant consumption. 

Furthermore, the engine could operate using a fraction of the available power, and one has 𝑇 =  2𝑃
𝑐⁄  

with 0 ≤ 𝑃 ≤  𝑃𝑎 . Then, the Hamiltonian could be rewritten as 

 

𝐻 =  𝜆𝑟
𝑇 𝑣 + 𝜆𝑟

𝑇 𝑔 + (
𝜆𝑣

𝑚
− 

𝜆𝑚

𝑐
 )  2

𝑃

𝑐
 

(48) 

 (49) 

 

(50) 
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where the optimal specific impulse is first determined.  

Now, by nullifying 𝜕𝐻
𝜕𝑐 ⁄  

 

𝑐𝑜𝑝𝑡 = 2 
𝑚 𝜆𝑚

 𝜆𝑣
 

 

Here, it is possible to see as the Hamiltonian linearly depends on P and a bang-bang control arises and 

if the specific impulse is unbounded, the engine can operate with 𝑐 = 𝑐𝑜𝑝𝑡 . In addition, it is possible to 

finds that the power coefficient in the Hamiltonian is always positive and the thruster is always on at 

maximum power (𝑃 =  𝑃𝑎 ). On the contrary, in the presence of bounds on the attainable values of c, 

variable between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥, coast arcs may be required depending on the sign of the power 

switching function 

 

𝑆𝑃 =
 𝜆𝑣

𝑚
− 

 𝜆𝑚

 𝑐𝑚𝑎𝑥
 

 

It is even important to notice as these considerations are hold even for solar electric power (SEP) 

systems, where the available power dependent on the distance between Satellite (and even the solar 

arrays inclination) and Sun. [11] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(51) 

 

(52) 
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Chapter 3  

3. Fortran code to find and analyse the trajectories 
 

 

3.1 Introduction 
 

At this point of the discussion, after the description of the methodology underlying the problem (where 

even astrodynamics’ equations have been implemented, not considering the atmosphere effects), it is 

possible to describe how the FORTRAN code works. [16] 

The implemented FORTRAN code allows to analyse the various trajectories based on the received 

inputs, which are read by the program in order to give the trajectory for the required case from the input 

values. To note how the developed code allows to analyse any asteroid / case simply changed the input 

values.  

Another important aspect to note is that, for the going and return trip, two different codes (ARM1 for 

the going trip and ARM2 for the return trip) has been compiled (but the methodology is the same), where 

the first considers a direct mission from Earth to asteroid, while the second one considers a trip from 

asteroid to Earth but with even a flyby (necessary to reach the final orbit around the Earth); by this, is 

clear to note as two different input values will be required. 

 

 

3.2 ARM1v0 
 
Just like previous said, the methodology described in the previous chapter has been used and 

implemented in the ARM1v0 code, where the initial velocity 𝑣0 has been set as fixed (this is the reason 

because 𝑣0 appeared in the code name after ARM1). 

Then, one time that the code has been implemented, the input values has been used to found and analyse 

the different trajectories for this case. 

In particular, the values that appeared in the input code are attempt values, which came from previous 

study and / or cases about the asteroid 2008 EV5.  

This has been done for two reasons:  

 

1. the orbital parameters available in the input code are, both for the Earth and for the asteroid, 

always the same. All this is true in most cases, but some changes are necessary if you need to 

analyse the trajectories in different time intervals (this it will be explained shortly); 
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2. these codes are used only as a starting point, this because the program is able to calculate the 

new correct values for the case in question. 

 

Now, wanting to start from the beginning, it is possible to see how the (default) input code (for the direct 

mission case) assumes the following compilation 

 

 
Figure 5: Default input values for the ARM1v0 code 

 

It is possible to see as the first three rows are made by 18 sequential numbers, that could go from 0 to 4, 

and which have the following meaning: 

 

- if the number 0 appeared, this mean that the satellite is in a coasting phase, where the thruster 

is turn off (𝑇 = 0); 

 

- if the number 1 appeared, this mean that the satellite is in a propulsive g phase; here, it is possible 

to see that if 𝑆𝐹 > 0 , the thruster is turn on (𝑇 ≠ 0), while if 𝑆𝐹 < 0 , the thruster is turn off 

(𝑇 = 0); 

 

- if the number 2 or 3 appeared, this mean that a flyby is required; in this case, the flyby is not 

required, but it is possible to note how the number 2 allows to have a flyby at free height, while 

the number 3 to have a flyby at constrained height; 

 
- if the number 4 appeared, the code ignores this phase because there is a phase. 

 

In this particular case, it is possible to see as only a number 1 appeared: this mean that the code must 

find the solution only for a direct trajectory from Earth to asteroid. 
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Furthermore, it is possible to explain the remaining 17 numbers, which represent the unknow values of 

the problem (these values are the constant parameters and the initial unknow values provided by the 

previous studies). In order, these values are: 

 

𝑡0     𝑡1    𝜆𝜗01
    𝑡∗    𝑣∞0    𝑟0    𝜗0     𝜑0     𝑢0    𝑣0    𝑤0    𝜆𝑟0

    𝜆𝜑0
    𝜆𝑢0

    𝜆𝑣0
    𝜆𝑤0

    𝑚0  

 

where 𝑡0 and 𝑡1 are the departure and arrival date, 𝜆𝜗01
 takes into account the location of the Earth based 

on the day considered, 𝑡∗  is the optimal time to perform the mission (in these cases has been set to be 

null because this value will be found during the analysis), while the others data are the initial values 

referred at the satellite position, as its velocity, acceleration and initial mass. 

The final values that include mf, Dt, Dt (days) and vinf will be not explain because this are output values; 

in fact, the FORTRAN program reads the input values and then prints the results in the same input values 

code. 

 

At this point, it is important to notice two aspects.  

The first one is that the default 𝑡0 and 𝑡1 times will be used to analyse only the first case (and its 

“subcase” at different durations), while, for subsequent cases these values will be increased or decreased, 

in accord to find the trajectory solution for different years and months. 

The second one is about the  𝑤0 , 𝜆𝑤𝑜 , 𝜆𝜑𝑜 and 𝜗0  values, which could be modified according to the 

node from which the satellite will start (this will be better explained in the "Results" chapter). 

 

In this way, everything about the input values that will be used by the program has been said; then, it is 

possible to talk about how the code will work. 

 

The FORTRAN program will read the input values and then, by user input, some additional values could 

be provided. In particular, the code will require the iteration interval values so to use them to reach the 

convergence, the duration (dimensionless) and the escape velocity. 

 

The iteration interval values are required because, it is possible that, for the default interval values, the 

program could not be able to reach the convergence. In this case, in fact, these values could be reduced 

so to try to achieve the convergence (the convergence is reached when all 17 unknow values reached a 

value at least of 10−6). 

 

The duration user input is required in order to find the trajectory solution for different times. In fact, 

during the first run, a duration value of 0 will be imposed in order to find the optimal case for the trip 
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time imposed in 𝑡0 and 𝑡1. Subsequently, the runs will be evaluated starting by the nearest duration value 

that allows to have the convergence until a duration value around 20, in order to have different solutions 

for the same departure date (in fact, increasing the duration value, the departure date will be 

approximately the same (it could change a few days) while the arrival date will increase). 

 

For the escape velocity user input, a value will be imposed and this same value will be used for all these 

analysis, in order to be able to analyse every trajectory so to find the best one. 

 

In this way, for every time and for each duration, it will be possible to find the data about each trajectory 

from Earth to asteroid. 

 

3.3 ARM2vf 
 

For the return trip, the same method used for the going trip has been adopted, but with just a little 

consideration. In this case, in fact, the mission requires a flyby around the Earth, in order to allow, to 

the satellite, to reach a stable orbit around the Earth so to leave the boulder that will be taken by asteroid 

2008ev5.  

In addition, the FORTRAN code is a little different because, in this case, it has been imposed that the 

final velocity, that is the velocity which the satellite will arrive in the stable orbit around the Earth, is 

imposed (for this reason in the code name appeared vf after ARM2). 

By these considerations, the (default) input values will include even the flyby, and it is possible to see 

how the input values appeared 

 

 
Figure 6: Default input values for the ARM2vf code 
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It is possible to see like the satellite will leave the asteroid, then will perform a flyby and the will follow 

a trajectory that will put it in the final orbit around the Earth (from the numerical sequence 1-2-1). Here, 

it is important to notice like the flyby value has been imposed to be 2, this because a flyby at free height 

is preferred. However, in the FORTRAN program there is a check that, in the case that the flyby will be 

too short, will recommend to change the value from 2 to 3 (however, this “problem” could be solved 

changing the iteration interval that will be imposed by the user, just like the arm1v0 code). 

 

So, from this new code, it is possible to see like the unknow values will be no more 17 but 27; in 

particular 

 

𝑡0     𝑡1    𝜆𝜗01    𝑡3     𝜆𝜗23    𝑡
∗   𝑢2    𝑣2    𝑤2    𝜆𝑟2

    𝜆𝜑2
    𝜆𝑢2

    𝜆𝑣2
    𝜆𝑤2

 𝑣∞0   

 

  𝑟0    𝜗0     𝜑0     𝑢0    𝑣0    𝑤0    𝜆𝑟0
    𝜆𝜑0

    𝜆𝑢0
    𝜆𝑣0

    𝜆𝑤0
    𝑚0 

 

and, even for this case, the explanation is the same for the going trip, with the addition of the time, 

position and velocity values after the flyby. 

 

To note as this code runs just like the previous one, even if there are small differences. 

In fact, the code required, as user input, to insert the iteration values, the duration value, the initial mass 

and the final velocity. But in case, while for the iteration values the approach is the same to the amr1v0 

code, here it is possible that a problem about the initial mass value exists.  

In fact, in this case, it is possible that a determined initial mass value could be reach the convergence 

for some duration but could not converge for the next one. In this case, if this problem appears, will be 

necessary to check the switching function value to understand if there is a problem about the thruster 

and, eventually, to solve it reducing the initial mass value for the considered case (further explanations 

will be provided in the following chapter) or if is only a convergence problem. 

 

At the end, the last user input will be the final velocity 𝑣𝑖𝑛𝑓, that is the value at which the satellite will 

arrive in the target orbit around Earth. 

 

Another important aspect to notice is that, in this case and in general, the optimal duration is higher than 

the going trip case and the maximal duration for each case will arrive until 30 or almost and no more 

20, in order to have more time to perform the mission and, in general, to allow to have a save of 

propellant consumption. 
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Even in this case, different solutions for different time will be found but, in order to find them, only 

multiples of one year will be considered, because only a node of the asteroid’s orbit is the best to perform 

the mission with the lowest 𝛥𝑣, and so the lowest propellant consumption (also here, further 

explanations will be provided in the following chapter). 

 

Even in this case, just like the previous one, for every time and for each duration will be possible to find 

the data about each trajectory from asteroid to Earth, included the flyby around this last one. 

 

 

3.4 Expected results 
 

Using these FORTRAN code, it will be possible to evaluate how the performance change with duration 

and year for both cases, in order to find all the possible trajectories that will be able to perform the 

mission. In fact, the first results that will be obtained will be about the trend of the dimensionless mass 

compared with the different durations. 

Done this, the best results will be found/analysed in order to have the highest final mass at the end of 

the mission and an appropriate coincidence time among the arrival date on the asteroid and the departure 

date from the latter.  

In this way, the best results will be obtained for the going and return case and in this way will be possible 

to obtain the complete optimal trajectory. Then, from this, it will be possible to represent and report all 

mission characteristics, both in terms of trajectory travelled, both in terms of consumption and durations, 

as well as having other useful values. 
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Chapter 4 
4. Results: from individual trips to the complete mission 
 

 

4.1 Initial conditions 
 

In this section, the previous FORTRAN codes will be used in order to study the different solutions for 

the going and return trip, and then to find the best solution able to perform the mission. 

It is import to notice that the study will be interest only the interplanetary trip and not the launch. 

However, the launcher with the satellite will be launched by Cape Canaveral (28° 27’ 20’’ N, 80° 31’ 

40’’ W) and, after the separation, the satellite will perform a flyby around the moon in order to achieve 

the desired escape velocity, which will be used to find the trajectory to reach the asteroid 2008ev5. 

In addition, in this thesis, no information about the satellite components is known, except for the 

propeller (which is Hall effect thruster). 

 

4.2 Going trip  
 

To allow to perform the mission, a Delta IV Heavy launcher will be used so to insert the satellite in a 

LEO orbit at 500 km from Earth’s surface; furthermore, thanks to Moon flyby will be possible to provide 

an escape velocity of 𝑣∞ = 1.3 𝑘𝑚
𝑠⁄  and an escape mass of 10000 kg (which includes a propellent 

mass of 5000 kg, value estimated for the ARM mission).  

To notice that, for this going trip, further flyby will not be required to reach 2008 EV5. 

In order to starts the analysis, a FORTRAN code has been developed in order to, using an iterative 

process, solve the optimal problem. In this way, the code has been used to evaluate the final mass trend 

compared to the trajectory duration, starting by 1 year (about value 6 referred to dimensionless time) 

until the case at 3-3.5 years (about value 19-20). 

Then, following this procedure, a default case where the parameters have been taken by previous studies 

about this mission (just like said previously) has been analysed (to notice that, for the going trip, a high 

duration value (>20) is not required otherwise the mission will take too much time in order to be 

completed). So, by this first analysis, for the default case the following the results have been founded 
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 Duration Days m_f (dim. Less) Departure date Arrival date 

D
ef

au
lt 

0 (optimal case for 7.378) 428.93 0.8599 18/06/2022 21/08/2023 
          

6.5 377.86 0.8453 18/06/2022 01/07/2023 
7 406.93 0.8573 22/06/2022 03/08/2023 

7.5 435.99 0.86 18/06/2022 28/08/2023 
8 465.06 0.86 16/06/2022 24/09/2023 

8.5 494.12 0.8601 18/06/2022 25/10/2023 
9 523.19 0.8634 04/07/2022 09/12/2023 

9.5 552.26 0.8708 07/07/2022 11/01/2024 
10 581.32 0.8764 02/07/2022 04/02/2024 

10.5 610.39 0.8793 24/06/2022 25/02/2024 
11 639.45 0.88 19/06/2022 20/03/2024 

11.5 668.52 0.88 19/06/2022 17/04/2024 
12 697.59 0.8801 20/06/2022 18/05/2024 
13 755.72 0.8803 20/06/2022 14/07/2024 
14 813.85 0.88 14/06/2022 05/09/2024 
15 871.98 0.8803 21/06/2022 09/11/2024 
16 930.12 0.883 20/06/2022 05/01/2025 
17 988.25 0.8833 15/06/2022 27/02/2025 
18 1046.38 0.8834 15/06/2022 27/04/2025 
19 1104.51 0.8834 15/06/2022 23/06/2025 

 

Table 3: Default case results for the going trip 

 

By this figure, it is possible to notice as some rows have been coloured with a different colour. This is 

because, in the general case, the converge has been obtained relatively quickly. But, in some cases, it 

was necessary to relax the procedure (ie, to multiply the theoretical corrections by a small coefficient) 

to overcome some convergence difficulties. 

 

 At this point, using the values available in the Table 3, the dimensionless final mass-duration graph has 

been plotted 
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Figure 7: Graph for the default case, where the dimensionless mass is compared with the duration 

 

By this figure it is possible to notice how the mass grows with increasing duration, as is obvious, because 

more time is available to perform the mission, so there is no hurry to reach the asteroid (in this way, it 

is possible to make lower ΔV manoeuvres and be able to safe more propellant).                             

By the figure it is even possible to see like, for some sections, the final mass is constant and could be 

explain in the following way: in these sections the mission ends with a non-propelled arc, which is added 

to obtain the required duration but, in reality, the rendezvous is obtained at the duration corresponding 

to the left end of the “landing”: in these sections, the duration is optimal because is possible to perform 

the trip in different times and with the same mass amount. Then, in order to choose the optimal duration, 

the dimensionless final mass value and the duration must be carefully evaluated on the basis of the 

results to be obtained, i.e. high mass and acceptable duration. 

 

After this first case, other solutions have been found changing the default case in order to achieve new 

trajectories at different times. In particular the solutions at ± 6, ±12, +18 and -24 months have been 

found, but to find them, a significant correction on the tentative solution have been done:                                    

the 𝑣∞ velocity is exploited to change the plane and therefore the departure takes place near a node, 

because here is easier to change the inclination plane, however the attempt solution changes according 

to how much the mission is moved. In fact 
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- If the mission is moved by a whole number of years, the node and the attempt solution do not 

change; 

 

- If instead the mission is moved by an odd multiple of 6 months, the node changes and the attempt 

values of the quantities relative to the motion outside the plane ( 𝑤0 , 𝜆𝑤𝑜 , 𝜆𝜑𝑜) are to be 

changed sign while 𝜗0 increases of π. 

 
 

For example, for the +6 months case, the 𝜗0 value has been increased to +3 (because +6 is one year, 

correctly is 6.28, and +3 are +6 months) while to  𝑤0 , 𝜆𝑤𝑜 , 𝜆𝜑𝑜 the signs have been changed. 

A detailed file with all results (tables and graphs for each case) is available in Appendix I. 

At this point of the study, every value of the going trip for each case has been found, so to allow to 

obtain the following summary graph 

 
Figure 8: Graph for the overall departures 

 

Analysing this graph has been possible to see that the interesting solutions are the one with a high 

dimensionless mass and a high optimal duration range (that is, where the mass is kept constant).  

From this is possible to see that the best solutions, for different durations, are the following 
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 Case Duration Departure date Arrival date m_f (dim. less) 
Fo

r 
sh

or
t  

du
ra

tio
ns

 +6 months 
7 27/12/2022 07/02/2024 0.8544 
9 13/12/2022 19/05/2024 0.8739 
12 23/12/2022 20/11/2024 0.8759 

  

+18 months 
7 18/12/2023 28/01/2025 0.8778 
9 22/12/2023 29/05/2025 0.8786 
12 27/12/2023 24/11/2025 0.8809 

      
 Case Duration Departure date Arrival date m_f (dim. less) 

Fo
r 

lo
ng

 
du

ra
tio

ns
 Default 

18 

15/06/2022 27/04/2025 0.8834 
+6 months 21/12/2022 02/11/2025 0.8819 
-6 months 13/12/2021 25/10/2024 0.8795 

+12 months 12/06/2023 23/04/2026 0.8823 
-12 months 21/06/2021 02/05/2024 0.8824 
-24 months 24/06/2020 07/05/2023 0.8797 

 

Table 4: Optimal results for the going trip 

 

It is important to note that these solutions will be useful to find the best return trip solution, because 

have a good temporal coincidence and a high mf is essential.  

 

 

4.3 Return trip  
 

For the return trip solutions, the same approach used for the going trip has been used, but with some 

differences. The most important one is that, in this case, the flyby around Earth is necessary in order to 

be sure to be in the same plane of the Earth and to be able to reach the final velocity required in order to 

arrive in the final orbit where the boulder will stay.  

The other difference is the reference mass, namely the mass of boulder taken from 2008 EV5, because 

this value has a strong influence on the return trajectory and his convergence. But first to consider the 

“mass boulder convergence problem”, the default analysis will be analysed. 

Just like done for the going trip, the analysis starts by the new default case, where the flyby had been 

considered and furthermore, a reference mass of 30000 kg is considered (to notice as this mass includes 

the dry mass, the residual propellant mass of the going journey and the mass boulder) and a final velocity 

𝑣𝑓𝑖𝑛 = 0.7 𝑘𝑚
𝑠⁄  have been imposed.  

In this first iteration of the optimal default case, the following results have been obtained 
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Figure 9: Arm2vf results for the default case 

In this figure, in addition to convergence of the code, it is possible to see the different dates for the 

various phases of the return trip and how the mass changes (the second last column from the right). In 

this way, the following mission steps have been founded: 

1) the satellite leaves the asteroid on 14/11/2023 and the dimensionless mass goes from 1 (before 

to leaves) to 0.9532 (when the manoeuvres are required to get into the trajectory of the return);  

 

2) after the previous step, the satellite reaches the node, on 23/12/24, where the flyby is required 

(in order to change the inclination plane) with a dimensionless mass of 0.9532 and, after the 

manoeuvres, the new value is 0.9011; 

 
 

3) at this point, the Earth must be reach, because the satellite is already in the right plane compared 

to the Earth: so, to do this, a trip of more 2 years (the arrival date is on 04/03/2026) is necessary 

to re-intercept the Earth and reaches a stable orbit where the boulder will be released. 

 

After this observation, as done in the previous paragraph, the complete duration values for this case have 

been found, with the only different that, in this case, the value of the duration reaches up to 30 or as far 

as convergence was possible. 
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 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 
D

E
FA

U
L

T
 

0 (optimal case for 14.476) 841.52 0.901 14/11/2023 23/12/2024 04/03/2026 
          

14 813.85 0.899 12/12/2023 24/12/2024 05/03/2026 
14.5 842.92 0.901 12/11/2023 23/12/2024 04/03/2026 
15 871.98 0.901 14/10/2023 23/12/2024 04/03/2026 

15.5 901.05 0.901 15/09/2023 23/12/2024 04/03/2026 
16 930.12 0.901 17/08/2023 23/12/2024 04/03/2026 

16.5 959.18 0.901 19/07/2023 23/12/2024 04/03/2026 
17 988.25 0.902 20/06/2023 23/12/2024 04/03/2026 
18 1046.38 0.905 23/04/2023 23/12/2024 05/03/2026 
19 1104.52 0.91 22/02/2023 22/12/2024 02/03/2026 
20 1162.65 0.91 26/12/2022 22/12/2024 02/03/2026 
21 1220.78 0.91 29/10/2022 22/12/2024 02/03/2026 
22 1278.91 0.91 31/08/2022 22/12/2024 02/03/2026 

22.5 1307.98 0.91 02/08/2022 22/12/2024 02/03/2026 
23 1337.05 0.91 05/07/2022 22/12/2024 03/03/2026 

23.5 1366.11 0.91 06/06/2022 22/12/2024 03/03/2026 
24 1395.18 0.91 08/05/2022 22/12/2024 03/03/2026 
25 1453.31 0.91 10/03/2022 22/12/2024 02/03/2026 
26 1511.44 0.91 11/01/2022 22/12/2024 03/03/2026 

26.5 1540.51 0.91 13/12/2021 22/12/2024 03/03/2026 
27 1569.57 0.91 14/11/2021 22/12/2024 03/03/2026 

27.5 1598.64 0.91 16/10/2021 22/12/2024 03/03/2026 
28 1627.81 0.91 17/09/2021 22/12/2024 03/03/2026 

28.5 1656.77 0.91 19/08/2021 22/12/2024 03/03/2026 
29 1685.84 0.91 21/07/2021 22/12/2024 03/03/2026 

29.5 1714.91 0.91 22/06/2021 22/12/2024 03/03/2026 
30 1743.97 0.91 24/05/2021 22/12/2024 03/03/2026 

 

Table 5: Default results for the return trip 

 

and just like before the dimensionless final mass – duration graph has been plotted 
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Figure 10:  Graph for the return trip (default case) 

 

At this point, it is easy to see how the same method used for the going trip has been used even for the 

return trip: in fact, even for this case, others different solutions have been evaluated. Nevertheless, in 

the following cases, a great constrain has been considered: in fact, while in the going cases the departure 

could be performed at the ascending or descending node, in the return case only one node could be used. 

In particular, only the descending node could be used in order to reach the Earth and the reason is very 

simple. Seeing the following figure   

 
Figure 11: Nodes position for the asteroid’s orbit 
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It is possible to see how the two orbits (Earth and asteroid ones) intersect in two points (1 and 2), but 

only the higher point (number 1, which correspond to the descending node) will allow to achieve the 

manoeuvres with the less ΔV possible compared at the second one (which requires strong corrections, 

so a higher ΔV): this is the reason why it was chosen to operate only in the descending node, so to imply 

that only annual intervals can be used for the study of the different cases for the return. 

Now, after this observation, even the cases with a dimensionless time of ± 6 and +12 have been analysed, 

but for the cases at + 6 and + 12 the “mass boulder convergence problem” appeared:                                                                     

for these two cases, each optimal code was not able to reach the convergence for the reference mass of 

30000 kg, while it was able only for 20000 kg (actually a little more, around 23500 kg, but for an easy 

comparison the 20000 kg has been set). The reason of this problem was in the switching function, which 

was always positive: this meant that the thruster was always on, suggesting that there is not enough 

acceleration to perform the transfer. 

This explanation had been confirmed even by a preliminary analysis where, a comparison between the 

default mass at 20 ton (𝑚𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡20
) and the mass for the case at +1 year at 20 ton (𝑚𝑓+1_20

) (even for 

the case at +2 year) was made; in fact, it was confirmed by the fact that the 

𝑚𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡20
≫  𝑚𝑓+1_20

 

proof that the fault is the lack of sufficient thrust (in fact the switching function signals it). 

Having done this, only 4 cases were obtained.  

However, wanting to have as many cases as possible so as to have even more chance of coinciding with 

the values of the going case, further analyses were carried out. 

In fact, for each or almost of these cases, 3 sub-cases have been studied (this has been done in order to 

have a greater number of trajectories with different times distribution between the sections before and 

after the flyby): each single solution code has been modified so to obtain new solutions where: 

- the flyby time (from the flyby position to final orbit around Earth) has been moved one year 

forward; 

 

- the flyby time and the trip time (the time from asteroid to flyby position) have been moved one 

year forward; 

 
 

- the flyby time has been moved two years forward (in this way the satellite have more time to 

reach the correct position, as well as allowing less consumption and more mass on board). 

(53) 
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Analysing these new values, some cases have been not able to reach the convergence for duration 30 

but, in particular for some cases, the duration was much less (even around 20) and the reason was even 

the same: the switching function, which plays an important role because, when it is active, the engine 

pushes when it should not and in this way the trajectory is altered, so as to lose the convergence.  

 

After all this, every value needed has been found (the results for the different cases for the return trip 

are in Appendix II) and the overall graph for the return trip could be plotted 

 
Figure 12: Graph of overall arrivals 

 

Now, from this graph, just like for the going trip, the best values will be considered with the same 

method used before (the same for the going trip).  

The best values, for different durations, are in Appendix 3.  
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4.4 Complete trip 
 

At this point, all the required information has been obtained and has been possible to find the best 

solution in order to achieve the mission in an acceptable time and, especially, to allow to have a high 

boulder mass and less propellant consumption as possible. 

The first step was to find the best solution for the going trip. For do this has been important to compared 

the date of the going trip with the date of the return trip and, in order to have more coincidence and more 

final dimensionless mass as possible, the case at -24 months, at duration 18, has been chosen  

 Case Duration Departure date Arrival date m_f (dim. less) 

Fo
r 

lo
ng

 
 d

ur
at

io
ns

 Default 

18 

15/06/2022 27/04/2025 0.8834 
+6 months 21/12/2022 02/11/2025 0.8819 
-6 months 13/12/2021 25/10/2024 0.8795 

+12 months 12/06/2023 23/04/2026 0.8823 
-12 months 21/06/2021 02/05/2024 0.8824 
-24 months 24/06/2020 07/05/2023 0.8797 

 

Table 6: Optimal result for the going trip 

 

and the going trajectory has been possible to analyse. 

In order to plot the following graphs, a MATLAB code has been implemented, using the output files of 

the chosen solution. 

The first graph is useful to see the complete trajectory where Earth, asteroid and satellite appear together 

 
Figure 13: 3D Trajectory travelled by the satellite (referred to the best solution for the going trip) 
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From this 3D graph, it is possible to notice how the satellite performs the inclination change in order to 

reach 2008 EV5, and how the satellite starts its trip from the descending node. Now, for a better 

understanding of the satellite orbit, the 2D graph is showed 

 

 

Figure 14: 2D Trajectory travelled by the satellite (referred to the best solution for the going trip) 

 

In this 2D graph, even if only a stretch of orbit has been showed, it is easier to see the descending node 

(around coordinates (0 , -1)) and the elliptic orbit travelled by satellite. 

To follow, another important graph shows the motion in the vertical plane 
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Figure 15: Satellite vertical motion for the optimal solution during the going trip 

and it is possible to see how the satellite starts its travel from an inclination of 0° and then, after an 

inclination of 2.5° provided by the escape velocity, how the satellite is able to reach the asteroid at 

7.4368° using the thruster. 

Moreover, speaking about the thruster, it is possible to see how the latter works from the switching 

function graph 

 
Figure 16: Switching function for the optimal solution during the going trip 
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From this figure it is possible to see how the thruster is turned on when 𝑆𝐹 > 0, while for 𝑆𝐹 < 0 is 

turned off. To notice that the thruster is turned on for few time, and how the propellant consumption is 

of 1203 kg (obtained by the difference between the initial mass and the mass after landing on the 

asteroid) 

𝑚𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 = 10000(1 − 0.8797) = 1203 𝑘𝑔  

The final graph for the going trip that will be show allows to see the radius of perihelion and aphelion 

and how their change with the trip time. In order to find these values, the output file is required: in this 

file the energy and the eccentricity are provided for every time, but to find the radiuses a calculation is 

required. From the energy has been possible to calculate the semi-major axis as: 

𝑎 =  − 
𝜇𝐸𝑎𝑟𝑡ℎ

2𝐸𝑔
 

where  𝜇𝐸𝑎𝑟𝑡ℎ= 398600 𝑘𝑚3

𝑠2⁄  and represent the gravitational parameter of the Earth. 

The next step was to found the radius of perihelion (𝑟𝑝) and aphelion (𝑟𝑎) as: 

𝑟𝑝 = 𝑎(1 − 𝑒) 

𝑟𝑎 = 𝑎(1 + 𝑒) 

Done this, has been possible to obtain the following graph 

 
Figure 17: Apogee and perigee radius values for the optimal going trip 

 

In conclusion, from the FORTRAN code used to find this solution, it was found that the required ΔV in 

order to perform this first trip is 𝛥𝑉𝑔𝑜𝑖𝑛𝑔  = 3 .3472 𝑘𝑚
𝑠⁄ . 

(54) 

 

(55) 

 

(56) 

 (57) 
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At this point, the final step required to find the best return trip solution using the chosen going trip 

solution. In order to do this, the arrival date on the asteroid of the going trip have been considered in 

order to find the most possible solutions so to allow the coincidence among the arrival date of the going 

trip and the departure date of the return trip. Then, since the date of arrival on asteroid is fixed for 

07/05/2023, the following return trip solutions have been founded 

Case Duration Departure date Flyby date Arrival date m_f (dim. less) 
Default 15 14/10/2023 23/12/2024 04/03/2026 0.9010 

Default (trip) 20 28/12/2023 22/12/2025 04/03/2027 0.8997 
Default (trip) 22 02/09/2023 22/12/2025 04/03/2027 0.9018 

+1 year (+1FB) 27 28/11/2023 23/12/2025 15/03/2028 0.9172 
+1 year (+1FB) 28 30/09/2023 23/12/2025 15/03/2028 0.9172 
Default (+2FB) 03/10/2023 23/12/2024 18/03/2028 0.9150 
Default (+2FB) 

30 
09/06/2023 23/12/2024 18/03/2028 0.9160 

+1 year (+1 FB) 06/06/2023 23/12/2025 15/03/2028 0.9172 
+2 years (+2FB) 27/11/2023 23/12/2025 04/09/2028 0.9101 

 

Table 7: Optimal results for the return trip 

However, the solution chosen as optimal was the default one with duration 15 by the consideration of 

the following two reasons: 

1) this solution allows to have the fastest return trip compared with the other ones, in addition to 

allowing to have almost 5 months in which it is possible to carry out studies of the asteroid; 

 

2) this solution allows to have the highest dimensionless final mass (although slightly lower than 

the default case with duration 22, but the value is similar) because, just like said in the return 

trip paragraph, the default return trip allows to have a dimensionless final mass of 30 ton that is 

greater compared with the cases at 20 ton. 

 
 

At this point, has been possible to make the same graphs likes the going trip. In fact, in the following 

graph is possible to see the 3D complete trajectories 
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Figure 18: 3D Trajectory travelled by the satellite (referred to the best solution for the return trip) 

 

where it is possible to see how the satellite, in order to reach the final orbit around the Earth, should 

starts from the ascending node of the 2008 EV5‘s orbit and changes his inclination; then, after having 

travelled for an orbit, it is in a useful position to carry out the flyby of the Earth. In this way the satellite 

finds itself in an orbital coplanar with the terrestrial one and after a little more than a year, will meet the 

Earth and will achieve the desired final orbit. 

The satellite orbit before the flyby is in the following 2D figure 

 
Figure 19: 2D Trajectory travelled by the satellite (referred to the best solution for the return trip) 
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and it is possible even to see how the orbit trajectory changes during the trip 

 
Figure 20: Satellite vertical motion for the optimal solution during the return trip 

 

By this last figure, it is possible to notice how the satellite starts from the ascending node of 2008 EV5 

and as after having travelled the orbit, the flyby allows to zero the inclination of the satellite with respect 

to the terrestrial orbit, so to have the two orbits coplanar. 

In conclusion, the last graphs useful to see are about the radius of perihelion and aphelion and the 

switching function. For the first one, it is possible to see like the radiuses, calculated in the same way 

like the previous case, change in the following mode 
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Figure 21: Apogee and perigee radius values for the optimal return trip 

 

while the switching function graph shows like, in this case, the thruster works for more time 

(remembering that the thruster is switching on when SF>0). 

 

Figure 22: Switching function for the optimal solution during the going trip 
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Finally, in order to calculate the propellant consumption, the solution code has been used and has been 

possible to calculate the propellant consumption before the flyby manoeuvre and the propellant 

consumption required to reach the destination. 

𝑚𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑚𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝐵 + 𝑚𝑎𝑓𝑡𝑒𝑟 𝐹𝐵 = 1404 + 1563 = 2967 𝑘𝑔  

 

Another important value to considered is the radius which the flyby will be achieve and, in order to 

calculate it, the FORTRAN code is required again. Then, from the code, the required values are  

 
Figure 23: Flyby results for the optimal case 

 

which they represent the rotation, the velocity at perihelion, the circular velocity at the minimum 

perihelion (velocities expressed in the heliocentric reference system) and the relative velocity (that is 

𝑣∞). 

Now, in order to find the radius where the flyby will be achieved, the following expression has been 

used 

sin ( 
𝛿

2
 ) =  

𝜇
𝑅𝑝

𝜇
𝑅𝑝

+ 𝑣∞
2

 

referred at the following figure 

 
Figure 24: Flyby scheme 

(58) 

 

(59) 
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Using this expression, the 𝑅𝑝 has been calculated as 

𝑅𝑝 =  − 
𝜇 [sin (

𝛿
2) − 1]

sin (
𝛿
2) 𝑣∞

2
=  − 

398600 [sin (
54.1494

2
) − 1]

sin (
54.1494

2 ) 3.58322
=  37163 𝑘𝑚 

 

Furthermore, the required ΔVs have been obtained considering a specific impulse of 𝐼𝑠𝑝 = 2600 𝑠 

(remembering that a Hall effect thruster will be used). Then, by 

𝐼𝑠𝑝 =  
𝑐

𝑔
 ⇒ 𝑐 =  𝐼𝑠𝑝 ∙ 𝑔 =  2600 𝑠 ∙ 9.81 

𝑚

𝑠2 
= 25506 

𝑚

𝑠 
 

and using the Tsiolkovsky’s equation  

 

𝛥𝑉𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝐵  = 𝑐 𝑙𝑛 (
𝑚0 𝑟𝑖𝑓

𝑚0 𝑟𝑖𝑓 − 𝑚𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝐵
) =  25506 𝑙𝑛 (

30000

30000 − 1404
) = 530.93 𝑚

𝑠⁄  

𝛥𝑉𝑎𝑓𝑡𝑒𝑟 𝐹𝐵  = 𝑐 𝑙𝑛 (
𝑚0 𝑟𝑖𝑓

𝑚0 𝑟𝑖𝑓 − 𝑚𝑎𝑓𝑡𝑒𝑟 𝐹𝐵
) =  25506 𝑙𝑛 (

28596

28596 − 1563
) =  622.63 𝑚

𝑠⁄  

 

So, the total ΔV value required for the return trip is 

𝛥𝑉𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜𝑡  = 𝛥𝑉𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝐵 + 𝛥𝑉𝑎𝑓𝑡𝑒𝑟 𝐹𝐵 =  1.153 𝑘𝑚
𝑠⁄  

 

4.4.1 Results summary 
 

As previously said, for the ARM mission a mass of 5000 kg for the propellant and for the dry mass was 

hypothesized, for a total of 10000 kg.  

Since the going trip will require a propellant mass of 1203 kg, it is possible to see how the mass still 

available (and therefore usable for the return) will be of 3797 kg and from this, bearing in mind that an 

initial mass of 30000 kg was imposed for the return, it is possible to see that it includes the dry mass 

(5000 kg), the residual propellant mass (3797 kg) and the boulder mass. 

So, from all this, considering that the return trip will require a propellant consumption of 2967 kg, it is 

seen how the boulder mass that will be possible to withdraw from the asteroid 2008 EV5 will be of 21203 

kg and how the remaining propellant mass will be of 830 kg: this is an excellent result both because it 

(60) 

 

(61) 

 

(62) 

 

(63) 

 

(64) 
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is possible to carry out the mission with less propellant than the budgeted one, and because, in case of 

necessity of any kind, there will still be some propellant to be used to carry out any type of manoeuvre, 

always within the limits of the possible. 

In the end, it is possible to see how the required ΔV for the return is lower than that the going, thanks to 

the flyby manoeuvre. 

In conclusion, it is possible to see a summary table concerning the complete mission 

 Departure 
date Fly by date Arrival date ΔV [km/s] 𝒎𝟎 [kg] 𝒎𝒇𝒖𝒆𝒍[kg] 

GOING 
TRIP 24/06/2020 x 07/05/2023 1.3 10000 1203 

RETURN 
TRIP 14/10/2023 23/12/2024 04/03/2026 1.153 30000 2967 

   Total mission duration 
[days] 2080 

   𝜟𝑽𝒕𝒐𝒕 [km/s] 2.453 
   𝒎𝒑𝒓𝒐𝒑𝒆𝒍𝒍𝒂𝒏𝒕 𝒕𝒐𝒕[kg] 4170 
   𝒎𝒃𝒐𝒖𝒍𝒅𝒆𝒓[kg] 21203 

 

Table 8: Complete trip information 
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5. Conclusion  
 

From this study, it has been possible to see, how a trajectory for whether space mission can be analysed 

in order to perform and achieve the mission with the best results. In fact, in this case, the target was to 

bring a boulder from asteroid 2008 EV5 to a stable orbit around the Earth, having even the constrains to 

perform a mission that allows to have a save of propellant consumption (the total mission time was 

important but not very relevant). In order to achieve this, all the mission opportunities were found in a 

large launch window, from which the best in terms of fuel consumption convenience could be identified. 

This was the strategy adopted in this study, but it is not said that it is the optimal one.  

In fact, the same mission could be analysed imposing to execute it in the shortest time possible, therefore 

not considering the possible excessive propellant consumption; or could be possible to do even a longer 

mission or one that exploits more than one flyby or does it exploiting another celestial body (in all these 

cases, different FORTRAN codes should be implemented). 

That said, it is possible to see how any mission (whether interplanetary or not) is influenced by many 

parameters and how, by modifying them (even small ones), the mission can be compromised.  

All this make to think about the high difficulty that is present at the base of every space mission, be it 

past, present or future. 
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Appendixes 
 

Appendix I: Results for the going trip 
 

Interval iteration values 

1     2     500 (default) 
0.1     2     500 

0.01     2     2000 
 

Case: Default  
 

 Duration Days m_f (dim. less) Departure date Arrival date 

D
ef

au
lt 

0 (optimal case for 7.378) 428.93 0.8599 18/06/2022 21/08/2023 
          

6.5 377.86 0.8453 18/06/2022 01/07/2023 
7 406.93 0.8573 22/06/2022 03/08/2023 

7.5 435.99 0.86 18/06/2022 28/08/2023 
8 465.06 0.86 16/06/2022 24/09/2023 

8.5 494.12 0.8601 18/06/2022 25/10/2023 
9 523.19 0.8634 04/07/2022 09/12/2023 

9.5 552.26 0.8708 07/07/2022 11/01/2024 
10 581.32 0.8764 02/07/2022 04/02/2024 

10.5 610.39 0.8793 24/06/2022 25/02/2024 
11 639.45 0.88 19/06/2022 20/03/2024 

11.5 668.52 0.88 19/06/2022 17/04/2024 
12 697.59 0.8801 20/06/2022 18/05/2024 
13 755.72 0.8803 20/06/2022 14/07/2024 
14 813.85 0.88 14/06/2022 05/09/2024 
15 871.98 0.8803 21/06/2022 09/11/2024 
16 930.12 0.883 20/06/2022 05/01/2025 
17 988.25 0.8833 15/06/2022 27/02/2025 
18 1046.38 0.8834 15/06/2022 27/04/2025 
19 1104.51 0.8834 15/06/2022 23/06/2025 
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Case: +6 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

+ 
6 

m
on

th
s 

0 (optimal case for 8.034) 467.08 0.8737 11/12/2022 22/03/2024 
          
6 348.79 0.8627 15/06/2023 29/05/2024 

6.5 377.86 0.8175 25/12/2022 07/01/2024 
7 406.92 0.8544 27/12/2022 07/02/2024 

7.5 435.99 0.8697 19/12/2022 28/02/2024 
8 465.06 0.8737 11/12/2022 20/03/2024 

8.5 494.12 0.8738 11/12/2022 18/04/2024 
9 523.19 0.8739 13/12/2022 19/05/2024 

9.5 552.26 0.8747 16/12/2022 20/06/2024 
10 581.32 0.8749 14/12/2022 18/07/2024 

10.5 610.39 0.8748 12/12/2022 13/08/2024 
11 639.45 0.8746 09/12/2022 09/09/2024 

11.5 668.52 0.8749 13/12/2022 12/10/2024 
12 697.58 0.8759 23/12/2022 20/11/2024 
13 755.72 0.8815 21/12/2022 14/01/2025 
14 813.85 0.8818 18/12/2022 11/03/2025 
15 871.98 0.8818 19/12/2022 09/05/2025 
16 930.12 0.8818 17/12/2022 05/07/2025 
17 988.25 0.8817 16/12/2022 30/08/2025 
18 1046.38 0.8819 21/12/2022 02/11/2025 
19 1104.51 0.8828 21/12/2022 29/12/2025 
20 1162.65 0.8829 20/12/2022 24/02/2026 
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Case: -6 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

- 6
 m

on
th

s 

0 (optimal case for 8.778) 510.31 0.8576 08/12/2021 02/05/2023 
          

7.5 435.99 0.8048 12/12/2021 20/02/2023 
8 465.06 0.8432 18/12/2021 28/03/2023 

8.5 494.12 0.8564 11/12/2021 19/04/2023 
9 523.19 0.8576 08/12/2021 15/05/2023 

9.5 552.26 0.858 12/12/2021 17/06/2023 
10 581.32 0.8593 14/12/2021 19/07/2023 

10.5 610.39 0.8598 11/12/2021 14/08/2023 
11 639.45 0.8598 10/12/2021 10/09/2023 

11.5 668.52 0.8598 11/12/2021 10/10/2023 
12 697.59 0.8609 18/12/2021 16/11/2023 
13 755.72 0.873 24/12/2021 19/01/2024 
14 813.85 0.8794 15/12/2021 08/03/2024 
15 871.98 0.8795 14/12/2021 04/05/2024 
16 930.12 0.8795 14/12/2021 01/07/2024 
17 988.25 0.8793 10/12/2021 24/08/2024 
18 1046.38 0.8795 13/12/2021 25/10/2024 
19 1104.52 0.8818 20/12/2021 29/12/2024 
20 1162.65 0.8826 17/12/2021 22/02/2025 
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Case: +12 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

+ 
12

 m
on

th
s 

0 (optimal case for 6.908) 401.608 0.8723 17/06/2023 22/07/2024 
          
6 348.79 0.8627 15/06/2023 29/05/2024 

6.5 377.86 0.8701 20/06/2023 02/07/2024 
7 406.92 0.8724 16/06/2023 27/07/2024 

7.5 435.99 0.8723 14/06/2023 23/08/2024 
8 465.06 0.8723 13/06/2023 20/09/2024 

8.5 494.12 0.8724 17/06/2023 23/10/2024 
9 523.19 0.8753 26/06/2023 30/11/2024 

9.5 552.26 0.8792 23/06/2023 26/12/2024 
10 581.34 0.881 15/06/2023 16/01/2025 

10.5 610.39 0.8812 12/06/2023 11/02/2025 
11 639.45 0.8812 10/06/2023 11/03/2025 

11.5 668.52 0.8812 11/06/2023 09/04/2025 
12 697.59 0.8812 12/06/2023 10/05/2025 
13 755.72 0.8813 13/06/2023 07/07/2025 
14 813.85 0.8812 11/06/2023 01/09/2025 
15 871.99 0.8815 16/06/2023 04/11/2025 
16 930.12 0.8823 12/06/2023 28/12/2025 
17 988.25 0.8822 09/06/2023 22/02/2026 
18 1046.38 0.8823 12/06/2023 23/04/2026 
19 1104.52 0.8824 12/06/2023 21/06/2026 
20 1162.65 0.8824 11/06/2026 17/08/2026 
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Case: -12 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

- 1
2 

m
on

th
s 

0 (optimal case for 8.137) 473.06 0.8412 13/06/2021 29/09/2022 
          

7.5 435.99 0.8274 16/06/2021 26/08/2022 
8 465.06 0.8406 15/06/2021 23/09/2022 

8.5 494.12 0.8413 13/06/2021 20/10/2022 
9 523.19 0.842 21/06/2021 26/11/2022 

9.5 552.25 0.8498 09/07/2021 13/01/2023 
10 581.32 0.8593 12/07/2021 14/02/2023 

10.5 610.39 0.8663 08/07/2021 30/09/1901 
11 639.45 0.8707 30/06/2021 31/03/2023 

11.5 668.52 0.8725 23/06/2021 23/04/2023 
12 697.59 0.8734 24/06/2021 22/05/2023 
13 755.72 0.8763 25/06/2021 21/07/2023 
14 813.85 0.8762 19/06/2021 11/09/2023 
15 871.99 0.8764 23/06/2021 12/11/2023 
16 930.12 0.8801 02/07/2021 18/01/2024 
17 988.25 0.8823 21/06/2021 05/03/2024 
18 1046.38 0.8824 21/06/2021 02/05/2024 
19 1104.52 0.8824 21/06/2021 29/06/2024 
20 1162.65 0.8822 15/06/2021 21/08/2024 
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Case: +18 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

+ 
18

 m
on

th
s 

0 (optimal case for 7.069) 410.99 0.8779 17/12/2023 31/01/2025 
          
6 348.79 0.8602 29/12/2023 12/12/2024 

6.5 377.86 0.8739 25/12/2023 06/01/2025 
7 406.92 0.8778 18/12/2023 28/01/2025 

7.5 435.99 0.8779 16/12/2023 24/02/2025 
8 465.06 0.8779 16/12/2023 25/03/2025 

8.5 494.12 0.878 17/12/2023 24/04/2025 
9 523.19 0.8786 22/12/2023 29/05/2025 

9.5 552.26 0.8794 21/12/2023 25/06/2025 
10 581.34 0.8794 19/12/2023 22/07/2025 

10.5 610.39 0.8794 18/12/2023 19/08/2025 
11 639.45 0.8794 19/12/2023 18/09/2025 

11.5 668.52 0.8795 23/12/2023 22/10/2025 
12 697.59 0.8809 27/12/2023 24/11/2025 
13 755.72 0.8814 23/12/2023 16/01/2026 
14 813.85 0.8815 22/12/2023 15/03/2026 
15 871.99 0.8815 24/12/2023 14/05/2026 
16 930.12 0.8815 23/12/2023 10/07/2026 
17 988.25 0.8815 24/12/2023 07/09/2026 
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Case: -24 months 
 

 Duration Days m_f (dim. less) Departure date Arrival date 

-2
4 

m
on

th
s 

0 (optimal case for 13.6658) 794.43 0.8702 24/06/2020 28/08/2022 
         
8 465.06 0.7744 14/06/2020 22/09/2021 

8.5 494.12 0.8126 10/06/2020 17/10/2021 
9 523.19 0.8183 09/06/2020 14/11/2021 

9.5 552.26 0.8212 27/06/2020 31/12/2021 
10 581.32 0.8319 15/07/2020 17/02/2022 

10.5 610.39 0.8419 16/07/2020 18/03/2022 
11 639.45 0.8493 10/07/2020 10/04/2022 

11.5 668.52 0.8549 01/07/2020 01/05/2022 
12 697.59 0.8586 22/06/2020 21/05/2022 

12.5 726.65 0.862 24/06/2020 21/06/2022 
13 755.72 0.8666 29/06/2020 25/07/2022 

13.5 784.79 0.8699 26/06/2020 20/08/2022 
14 813.85 0.8703 23/06/2020 14/09/2022 
15 871.98 0.8703 20/06/2020 09/11/2022 

15.5 901.05 0.8704 27/06/2020 15/12/2022 
16 930.12 0.8733 07/07/2020 24/01/2023 

16.5 959.18 0.877 05/07/2020 19/02/2023 
17 988.25 0.8791 29/06/2020 14/03/2023 

17.5 1017.32 0.8797 24/06/2020 08/04/2023 
18 1046.38 0.8797 24/06/2020 07/05/2023 

18.5 1075.45 0.8799 26/06/2020 06/06/2023 
19 1104.52 0.8804 26/06/2020 05/07/2023 

19.5 1133.58 0.8805 23/06/2020 01/08/2023 
20 1162.65 0.8805 20/06/2020 27/08/2023 
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Appendix II: Results for the return trip 
 

Case: Default  
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

D
E

FA
U

L
T

 

0 (optimal case for 14.476) 841.52 0.901 14/11/2023 23/12/2024 04/03/2026 
          

14 813.85 0.899 12/12/2023 24/12/2024 05/03/2026 
14.5 842.92 0.901 12/11/2023 23/12/2024 04/03/2026 
15 871.98 0.901 14/10/2023 23/12/2024 04/03/2026 

15.5 901.05 0.901 15/09/2023 23/12/2024 04/03/2026 
16 930.12 0.901 17/08/2023 23/12/2024 04/03/2026 

16.5 959.18 0.901 19/07/2023 23/12/2024 04/03/2026 
17 988.25 0.902 20/06/2023 23/12/2024 04/03/2026 
18 1046.38 0.905 23/04/2023 23/12/2024 05/03/2026 
19 1104.52 0.91 22/02/2023 22/12/2024 02/03/2026 
20 1162.65 0.91 26/12/2022 22/12/2024 02/03/2026 
21 1220.78 0.91 29/10/2022 22/12/2024 02/03/2026 
22 1278.91 0.91 31/08/2022 22/12/2024 02/03/2026 

22.5 1307.98 0.91 02/08/2022 22/12/2024 02/03/2026 
23 1337.05 0.91 05/07/2022 22/12/2024 03/03/2026 

23.5 1366.11 0.91 06/06/2022 22/12/2024 03/03/2026 
24 1395.18 0.91 08/05/2022 22/12/2024 03/03/2026 
25 1453.31 0.91 10/03/2022 22/12/2024 02/03/2026 
26 1511.44 0.91 11/01/2022 22/12/2024 03/03/2026 

26.5 1540.51 0.91 13/12/2021 22/12/2024 03/03/2026 
27 1569.57 0.91 14/11/2021 22/12/2024 03/03/2026 

27.5 1598.64 0.91 16/10/2021 22/12/2024 03/03/2026 
28 1627.81 0.91 17/09/2021 22/12/2024 03/03/2026 

28.5 1656.77 0.91 19/08/2021 22/12/2024 03/03/2026 
29 1685.84 0.91 21/07/2021 22/12/2024 03/03/2026 

29.5 1714.91 0.91 22/06/2021 22/12/2024 03/03/2026 
30 1743.97 0.91 24/05/2021 22/12/2024 03/03/2026 
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Case: Default (+1FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

D
E

FA
U

L
T

 (+
1 

FB
) 

0 (optimal case for 20.99) 1220.52 0.9125 11/11/2023 23/12/2024 15/03/2027 
            

20.5 1191.71 0.9098 10/12/2023 23/12/2024 16/03/2027 
21 1220.78 0.9125 11/11/2023 23/12/2024 15/03/2027 

21.5 1249.85 0.9125 13/10/2023 23/12/2024 15/03/2027 
22 1278.91 0.9125 13/09/2023 23/12/2024 15/03/2027 

22.5 1307.98 0.9125 15/08/2023 23/12/2024 15/03/2027 
23 1337.05 0.9125 17/07/2023 23/12/2024 15/03/2027 

23.5 1366.11 0.9133 19/06/2023 23/12/2024 16/03/2027 
24 1395.18 0.9148 21/05/2023 23/12/2024 16/03/2027 

24.5 1424.24 0.9169 22/04/2023 23/12/2024 16/03/2027 
25 1453.25 0.9193 23/03/2023 23/12/2024 15/03/2027 

25.5 1482.37 0.9218 21/02/2023 23/12/2024 15/03/2027 
26 1511.44 0.9234 23/01/2023 23/12/2024 14/03/2027 

26.5 1540.51 0.9236 25/12/2022 23/12/2024 14/03/2027 
27 1569.57 0.9236 26/11/2022 23/12/2024 14/03/2027 

27.5 1598.64 0.9236 28/10/2022 23/12/2024 14/03/2027 
28 1627.71 0.9236 29/09/2022 23/12/2024 14/03/2027 

28.5 1656.77 0.9236 31/08/2022 23/12/2024 14/03/2027 
29 1685.84 0.9236 02/08/2022 23/12/2024 14/03/2027 

29.5 1714.91 0.9236 04/07/2022 23/12/2024 14/03/2027 
30 1743.97 0.9236 05/06/2022 23/12/2024 15/03/2027 
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Case: Default (+1FB & trip) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

D
E

FA
U

L
T

 (+
1 

FB
 &

 tr
ip

) 

0 (optimal case for 20.6177) 1198.56 0.9018 21/11/2023 22/12/2025 04/03/2027 
            

19 1104.52 0.8899 26/02/2024 24/12/2023 07/03/2027 
19.5 1133.58 0.8955 27/01/2024 23/12/2025 06/03/2027 
20 1162.65 0.8997 28/12/2023 22/12/2025 04/03/2027 

20.5 1191.71 0.9017 28/11/2023 22/12/2025 04/03/2027 
21 1220.78 0.9018 30/10/2023 22/12/2025 04/03/2027 

21.5 1249.85 0.9018 01/10/2023 22/12/2025 04/03/2027 
22 1278.91 0.9018 02/09/2023 22/12/2025 04/03/2027 

22.5 1307.98 0.9018 04/08/2023 22/12/2025 04/03/2027 
23 1337.05 0.9018 06/07/2023 22/12/2025 04/03/2027 

23.5 1366.11 0.9023 08/06/2023 22/12/2025 05/03/2027 
24 1395.18 0.9031 10/05/2023 23/12/2025 05/03/2027 

24.5 1424.24 0.9042 10/04/2023 22/12/2025 04/03/2027 
25 1453.31 0.9056 11/03/2023 22/12/2025 03/03/2027 

25.5 1482.37 0.9069 09/02/2023 21/12/2025 02/03/2027 
26 1511.44 0.9078 11/01/2023 21/12/2025 02/03/2027 

26.5 1540.51 0.9078 13/12/2022 21/12/2025 03/03/2027 
27 1569.57 0.9078 14/11/2022 21/12/2025 03/03/2027 

27.5 1598.64 0.9078 16/10/2022 21/12/2025 03/03/2027 
28 1627.71 0.9078 17/09/2022 21/12/2025 03/03/2027 

28.5 1656.77 0.9078 19/08/2022 21/12/2025 03/03/2027 
29 1685.84 0.9078 21/07/2022 21/12/2025 03/03/2027 

29.5 1714.91 0.9078 22/06/2022 21/12/2025 03/03/2027 
30 1746.97 0.9079 24/05/2022 22/12/2025 03/03/2027 
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Case: Default (+2FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

D
E

FA
U

L
T

 (+
2 

FB
) 

0 (optimal case for 27.3548) 1590.20 0.915 10/11/2023 23/12/2024 18/03/2028 
            

27.2 1581.20 0.9148 19/11/2023 23/12/2024 18/03/2028 
27.3 1587.01 0.915 13/11/2023 23/12/2024 18/03/2028 
27.4 1592.83 0.915 07/11/2023 23/12/2024 18/03/2028 
27.6 1604.45 0.915 26/10/2023 23/12/2024 18/03/2028 
27.8 1616.08 0.915 15/10/2023 23/12/2024 18/03/2028 
28 1627.71 0.915 03/10/2023 23/12/2024 18/03/2028 

28.2 1639.33 0.915 22/09/2023 23/12/2024 18/03/2028 
28.4 1650.96 0.915 10/09/2023 23/12/2024 18/03/2028 
28.6 1662.59 0.915 29/08/2023 23/12/2024 18/03/2028 
28.8 1674.21 0.915 18/08/2023 23/12/2024 18/03/2028 
29 1685.84 0.915 06/08/2023 23/12/2024 18/03/2028 

29.2 1697.47 0.915 25/07/2023 23/12/2024 18/03/2028 
29.4 1709.09 0.915 14/07/2023 23/12/2024 18/03/2028 
29.6 1720.72 0.9152 02/07/2023 23/12/2024 18/03/2028 
29.8 1732.35 0.9155 21/06/2023 23/12/2024 18/03/2028 
30 1743.97 0.916 09/06/2023 23/12/2024 18/03/2028 
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Case: -12 months 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

-1
 y

ea
r 

0 (optimal case for 14.445) 839.75 0.9098 17/11/2022 26/12/2023 06/03/2025 
          

13 755.72 0.9049 09/02/2023 27/12/2023 06/03/2025 
13.5 784.78 0.9077 11/01/2023 27/12/2023 05/03/2025 
14 813.85 0.9094 13/12/2022 26/12/2023 06/03/2025 

14.5 842.92 0.91 14/11/2022 26/12/2023 06/03/2025 
15 871.98 0.9100 16/10/2022 26/12/2023 06/03/2025 

15.5 901.05 0.91 16/09/2022 26/12/2023 05/03/2025 
16 930.12 0.91 18/08/2022 26/12/2023 05/03/2025 

16.5 959.18 0.91 20/07/2022 26/12/2023 05/03/2025 
17 988.25 0.91 21/06/2022 26/12/2023 05/03/2025 

17.5 1017.31 0.91 23/05/2022 26/12/2023 05/03/2025 
18 1046.38 0.91 24/04/2022 26/12/2023 05/03/2025 

18.5 1075.45 0.91 26/03/2022 26/12/2023 05/03/2025 
19 1104.51 0.9101 24/02/2022 25/12/2023 05/03/2025 
20 1162.65 0.9104 28/12/2021 25/12/2023 05/03/2025 

20.2 1174.27 0.9104 16/12/2021 25/12/2023 05/03/2025 
20.4 1185.90 0.9104 05/12/2021 25/12/2023 05/03/2025 
20.6 1197.53 0.9104 23/11/2021 25/12/2023 05/03/2025 
20.8 1209.15 0.9104 12/11/2021 25/12/2023 05/03/2025 
21 1220.78 0.9104 31/10/2021 25/12/2023 05/03/2025 

21.2 1232.41 0.9104 19/10/2021 25/12/2025 05/03/2025 
21.4 1244.03 0.9104 08/10/2021 25/12/2023 05/03/2025 
21.6 1255.66 0.9104 26/09/2021 25/12/2023 05/03/2025 
21.7 1261.47 0.9104 20/09/2021 25/12/2023 05/03/2025 
21.8 1267.29 0.9104 14/09/2021 25/12/2023 05/03/2025 
22 1278.91 0.9104 03/09/2021 25/12/2023 05/03/2025 
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Case: -12 months (+1FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

-1
 y

ea
r 

(+
1 

FB
) 

0 (optimal case for 21.97) 1277.36 0.9305 13/09/2022 25/12/2023 14/03/2026 
            

21 1220.78 0.9301 09/11/2022 25/12/2023 14/03/2026 
21.5 1249.85 0.9304 11/10/2022 25/12/2023 14/03/2026 
22 1278.91 0.9305 12/09/2022 25/12/2023 14/03/2026 

22.5 1307.98 0.9305 14/08/2022 25/12/2023 14/03/2026 
23 1337.05 0.9305 16/07/2022 25/12/2023 14/03/2026 

23.5 1366.11 0.9305 17/06/2022 25/12/2023 14/03/2026 
24 1395.18 0.9305 19/05/2022 25/12/2023 14/03/2026 

24.5 1424.24 0.9305 19/04/2022 25/12/2023 14/03/2026 
25 1453.31 0.9305 21/03/2022 25/12/2023 14/03/2026 

25.5 1482.38 0.9305 20/02/2022 25/12/2023 14/03/2026 
26 1511.44 0.9305 22/01/2022 25/12/2023 14/03/2026 

26.5 1540.51 0.9305 24/12/2021 25/12/2023 14/03/2026 
27 1569.57 0.9305 25/11/2021 25/12/2023 14/03/2026 

27.5 1598.64 0.9305 27/10/2021 25/12/2023 14/03/2026 
28 1627.71 0.9305 28/09/2021 25/12/2023 14/03/2026 

28.5 1656.77 0.9305 30/08/2021 25/12/2023 14/03/2026 
29 1685.84 0.9305 01/08/2021 25/12/2023 14/03/2026 

29.5 1714.91 0.9305 03/07/2021 25/12/2023 14/03/2026 
30 1743.97 0.9305 04/06/2021 25/12/2023 14/03/2026 
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Case: -12 months (+1FB & trip) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

-1
 y

ea
r 

(+
1 

FB
 &

 tr
ip

) 

0 (optimal case for 19.87) 1155.09 0.9092 02/01/2023 22/12/2024 02/03/2026 
            

18.5 1075.45 0.9067 24/03/2023 22/12/2024 03/03/2026 
19 1104.52 0.908 22/02/2023 21/12/2024 02/03/2026 

19.5 1133.58 0.9089 23/01/2023 21/12/2024 02/03/2026 
20 1162.65 0.9092 26/12/2022 22/12/2024 02/03/2026 

20.5 1191.71 0.9092 27/11/2022 22/12/2024 02/03/2026 
21 1220.78 0.9092 29/10/2022 22/12/2024 02/03/2026 

21.5 1249.85 0.9092 30/09/2022 22/12/2024 02/03/2026 
22 1278.91 0.9092 31/08/2022 22/12/2024 02/03/2026 

22.5 1307.98 0.9092 02/08/2022 22/12/2024 02/03/2026 
23 1337.05 0.9092 05/07/2022 22/12/2024 03/03/2026 

23.5 1366.11 0.9092 06/06/2022 22/12/2024 03/03/2026 
24 1395.18 0.9094 08/05/2022 22/12/2024 03/03/2026 

24.5 1424.24 0.9096 08/04/2022 22/12/2024 03/03/2026 
25 1453.31 0.9099 10/03/2022 22/12/2024 02/03/2026 

25.5 1482.37 0.9102 09/02/2022 22/12/2024 02/03/2026 
26 1511.44 0.9102 11/01/2022 22/12/2024 03/03/2026 

26.5 1540.51 0.9102 13/12/2021 22/12/2024 03/03/2026 
27 1569.57 0.9102 14/11/2021 22/12/2024 03/03/2026 

27.5 1598.64 0.9102 16/10/2021 22/12/2024 03/03/2026 
28 1627.71 0.9102 17/09/2021 22/12/2024 03/03/2026 

28.5 1656.77 0.9102 19/08/2021 22/12/2024 03/03/2026 
29 1685.84 0.9102 21/07/2021 22/12/2024 03/03/2026 

29.5 1714.91 0.9102 22/06/2021 22/12/2024 03/03/2026 
30 1743.97 0.9102 24/05/2021 22/12/2024 03/03/2026 
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Case: -12 months (+2FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

-1
 y

ea
r 

(+
2 

FB
) 

0 (optimal case for 28.3644) 1648.89 0.9347 11/09/2022 25/12/2023 18/03/2027 
            

27.6 1604.45 0.9344 26/10/2022 25/12/2023 18/03/2027 
27.8 1616.08 0.9345 14/10/2022 25/12/2023 18/03/2027 
28 1627.71 0.9346 02/10/2022 25/12/2023 18/03/2027 

28.2 1639.33 0.9347 21/09/2022 25/12/2023 18/03/2027 
28.4 1650.96 0.9347 09/09/2022 25/12/2023 18/03/2027 
28.6 1662.59 0.9347 28/08/2022 25/12/2023 18/03/2027 
28.8 1674.21 0.9347 17/08/2022 25/12/2023 18/03/2027 
28.9 1680.03 0.9347 11/08/2022 25/12/2023 18/03/2027 
29 1685.84 0.9347 05/08/2022 25/12/2023 18/03/2027 

29.2 1697.47 0.9347 24/07/2022 25/12/2023 18/03/2027 
29.4 1709.09 0.9347 13/07/2022 25/12/2023 18/03/2027 
29.6 1720.72 0.9347 01/07/2022 25/12/2023 18/03/2027 
29.8 1732.35 0.9347 20/06/2022 25/12/2023 18/03/2027 
30 1743.97 0.9347 08/06/2022 25/12/2023 18/03/2027 
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Case: +12 months  
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

+1
 y

ea
r 

(2
0 

to
n)

 

0 (optimal case for 15.4454) 897.87 0.8849 19/09/2024 22/12/2025 06/03/2027 
          

15 871.98 0.8797 17/10/2024 24/12/2025 08/03/2027 
15.5 897.88 0.8849 19/09/2024 22/12/2025 06/03/2027 
16 930.12 0.8849 18/08/2024 22/12/2025 06/03/2027 

16.5 959.18 0.8852 20/07/2024 22/12/2025 06/03/2027 
17 988.25 0.8865 22/06/2024 22/12/2025 07/03/2027 

17.5 1017.32 0.8889 25/05/2024 22/12/2025 08/03/2027 
18 1046.38 0.8924 26/04/2024 23/12/2025 09/03/2027 

18.5 1075.45 0.8968 28/03/2024 23/12/2025 09/03/2027 
19 1104.52 0.9016 27/02/2024 22/12/2025 07/03/2027 

19.5 1133.58 0.9064 27/01/2024 21/12/2025 06/03/2027 
20 1162.65 0.9101 28/12/2023 21/12/2025 05/03/2027 
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Case: +12 months (+1FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

+1
 y

ea
r 

(+
1 

FB
) 

0 (optimal case for 21.5619) 1253.45 0.8104 20/09/2024 20/12/2025 26/02/2028 
            

21 1220.78 0.8104 28/10/2024 23/12/2025 02/03/2028 
21.5 1249.85 0.8104 24/09/2024 20/12/2025 26/02/2028 
22 1278.91 0.8104 26/08/2024 20/12/2025 26/02/2028 

22.5 1307.98 0.8106 27/07/2024 19/12/2025 25/02/2028 
23 1337.05 0.8122 28/06/2024 19/12/2025 25/02/2028 

23.5 1366.11 0.8148 31/05/2024 20/12/2025 26/02/2028 
24 1395.18 0.8179 03/05/2024 21/12/2025 27/02/2028 

24.5 1424.24 0.8214 04/04/2024 21/12/2025 27/02/2028 
25 1453.31 0.825 05/03/2024 20/12/2025 26/02/2028 

25.5 1482.38 0.8286 03/02/2024 18/12/2025 24/02/2028 
26 1511.44 0.9111 25/01/2024 22/12/2025 15/03/2028 

26.5 1540.51 0.9158 26/12/2023 22/12/2025 15/03/2028 
27 1569.57 0.9172 28/11/2023 23/12/2025 15/03/2028 

27.5 1598.64 0.9172 29/10/2023 23/12/2025 15/03/2028 
28 1627.71 0.9172 30/09/2023 23/12/2025 15/03/2028 

28.5 1656.77 0.9172 01/09/2023 23/12/2025 15/03/2028 
29 1685.84 0.9172 03/08/2023 23/12/2025 15/03/2028 

29.5 1714.91 0.9172 05/07/2023 23/12/2025 15/03/2028 
30 1743.97 0.9172 06/06/2023 23/12/2025 15/03/2028 
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Case: +12 months (+1FB & trip) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

+1
 y

ea
r 

(+
1 

FB
 &

 tr
ip

) 0 (optimal case for 22.8495) 1328.297 0.7957 23/10/2024 08/11/2026 12/06/2028 
           

22.8 1325.42 0.7985 27/10/2024 09/11/2026 13/06/2028 
23 1337.05 0.8011 27/10/2024 06/11/2026 25/06/2028 

23.1 1342.86 0.8042 22/10/2024 07/11/2026 26/06/2028 
23.2 1348.67 0.8058 17/10/2024 07/11/2026 27/06/2028 
23.5 1366.11 0.8083 08/10/2024 08/11/2026 05/07/2028 
23.7 1377.74 0.8083 29/09/2024 08/11/2026 07/07/2028 
24.4 1418.43 0.8099 06/10/2024 03/12/2026 25/08/2028 
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Case: +12 months (+2FB) 
 

 Durata Giorni m_f (dim. less) Data partenza Data flyby Data arrivo 

+1
 y

ea
r 

(+
2 

FB
) 

0 (optimal case for 27.9677) 1625.83 0.8309 18/09/2024 22/12/2025 02/03/2029 
            

27.7 1610.27 0.8294 05/10/2024 22/12/2025 03/03/2029 
28 1627.71 0.8309 17/09/2024 22/12/2025 02/03/2029 

28.2 1639.33 0.8309 05/09/2024 22/12/2025 02/03/2029 
28.4 1650.96 0.8309 24/08/2024 22/12/2025 02/03/2029 
28.6 1662.59 0.8309 12/08/2024 22/12/2025 02/03/2029 
28.8 1674.21 0.8309 01/08/2024 21/12/2025 02/03/2029 
29 1685.84 0.8311 20/07/2024 21/12/2025 02/03/2029 

29.2 1697.47 0.8314 08/07/2024 21/12/2025 02/03/2029 
29.4 1709.09 0.8318 27/06/2024 21/12/2025 02/03/2029 
29.6 1720.72 0.8325 16/06/2024 21/12/2025 02/03/2029 
29.8 1732.35 0.8334 04/06/2024 22/12/2025 03/03/2029 
30 1743.97 0.8344 24/05/2024 22/12/2025 03/03/2029 
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Case: +24 months  
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

+2
 y

ea
rs

  

0 (optimal case for 15.4454) 897.88 0.8849 19/09/2024 22/12/2025 06/03/2027 
          

15 871.99 0.8798 17/10/2024 24/12/2025 08/03/2027 
15.5 901.05 0.8849 16/09/2024 22/12/2025 06/03/2027 
16 930.12 0.8849 18/08/2024 22/12/2025 06/03/2027 

16.5 959.18 0.8852 20/07/2024 22/12/2025 06/03/2027 
17 988.25 0.8864 22/06/2024 22/12/2025 07/03/2027 

17.5 1017.32 0.889 25/05/2024 22/12/2025 08/03/2027 
18 1046.38 0.8925 26/04/2024 23/12/2025 09/03/2027 

18.5 1075.45 0.8968 28/03/2024 23/12/2025 09/03/2027 
19 1104.52 0.9016 27/02/2024 22/12/2025 07/03/2027 

19.5 1133.58 0.9064 27/01/2024 21/12/2025 06/03/2027 
20 1162.65 0.9101 28/12/2023 21/12/2025 05/03/2027 
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Case: +24 months (+1FB) 
 

 Duration Days m_f (dim. less) Departure date Flyby date Arrival date 

+2
 y

ea
rs

 (+
1 

FB
) 

0 (optimal case for 21.5619) 1253.45 0.8104 20/09/2024 20/12/2025 26/02/2028 
            

21.5 1249.85 0.8104 24/06/2024 20/12/2025 26/02/2028 
22 1278.91 0.8104 26/08/2024 20/12/2025 26/02/2028 

22.5 1307.98 0.8106 27/07/2024 19/12/2025 25/02/2028 
23 1337.05 0.8122 28/06/2024 19/12/2025 25/02/2028 

23.5 1366.11 0.8148 31/05/2024 20/12/2025 26/02/2028 
24 1395.18 0.818 03/05/2024 21/12/2025 27/02/2028 

24.5 1424.24 0.8214 04/04/2024 21/12/2025 27/02/2028 
25 1453.31 0.825 05/03/2024 20/12/2025 26/02/2028 

25.5 1482.38 0.8286 03/02/2024 18/12/2025 24/02/2028 
26 1511.44 0.8315 04/01/2024 17/12/2025 23/02/2028 

26.5 1540.51 0.8327 06/12/2023 18/12/2025 24/02/2028 
27 1569.57 0.8327 07/11/2023 18/12/2025 24/02/2028 

27.5 1598.64 0.8327 09/10/2023 18/12/2025 24/02/2028 
28 1627.71 0.8327 10/09/2023 18/12/2025 24/02/2028 

28.5 1656.77 0.8327 12/08/2023 18/12/2025 24/02/2028 
29 1685.84 0.8327 14/07/2023 18/12/2025 24/02/2028 

29.5 1714.97 0.8327 15/06/2023 18/12/2025 24/02/2028 
30 1743.97 0.8331 17/05/2023 18/12/2025 24/02/2028 
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Case: +24 months (+2FB) 
 

 Durata Giorni m_f (dim. less) Data partenza Data flyby Data arrivo 

+2
 y

ea
rs

 (+
2 

FB
) 

0 (optimal case for 24.8891) 1446.86 0.8828 16/09/2024 22/12/2025 02/09/2028 
            

24.6 1430.06 0.8816 01/10/2024 23/12/2025 31/08/2028 
25 1453.31 0.8828 10/09/2024 22/12/2025 02/09/2028 

25.5 1482.38 0.8828 12/08/2024 22/12/2025 02/09/2028 
26 1511.44 0.8829 13/07/2024 22/12/2025 02/09/2028 
27 1569.57 0.8862 18/05/2024 23/12/2025 04/09/2028 

27.5 1598.64 0.8897 21/04/2024 23/12/2025 05/09/2028 
28 1627.71 0.8943 22/03/2024 23/12/2025 05/09/2028 

28.5 1656.77 0.8998 19/02/2024 23/12/2025 02/09/2028 
29 1685.84 0.9049 21/01/2024 22/12/2025 01/09/2028 

29.5 1714.91 0.909 24/12/2023 22/12/2025 03/09/2028 
30 1743.97 0.9101 27/11/2023 23/12/2025 04/09/2028 
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Appendix III: Optimal results for the return trip 
 

Case Duration Departure date Flyby date Arrival date m_f (dim. less) 
Default 

15 
14/10/2023 23/12/2024 04/03/2026 0.9010 

-1 year 16/10/2022 26/12/2023 06/03/2025 0.9100 
Default 

20 

26/12/2022 22/12/2024 02/03/2026 0.9100 
-1 year 28/12/2021 25/12/2023 05/03/2025 0.9104 

-1 year (trip) 26/12/2022 22/12/2024 02/03/2026 0.9092 
Default (trip) 28/12/2023 22/12/2025 04/03/2027 0.8997 

Default 

22 

31/08/2022 22/12/2024 02/03/2026 0.9100 
-1 year (+1FB) 12/09/2022 25/12/2023 14/03/2026 0.9305 
-1 year (trip) 31/08/2022 22/12/2024 02/03/2026 0.9092 
Default (trip) 02/09/2023 22/12/2025 04/03/2027 0.9018 

Default 
25 

10/03/2022 22/12/2024 02/03/2026 0.9100 
-1 year (+1FB) 21/03/2022 25/12/2023 14/03/2026 0.9305 
-1 year (trip) 10/03/2022 22/12/2024 02/03/2026 0.9099 

Default 

27 

14/11/2021 22/12/2024 03/03/2026 0.9100 
-1 year (+1FB) 25/11/2021 25/12/2023 14/03/2026 0.9305 
-1 year (trip) 14/11/2021 22/12/2024 03/03/2026 0.9102 

Default (+1FB) 26/11/2022 23/12/2024 14/03/2027 0.9236 
Default (trip) 14/11/2022 21/12/2025 03/03/2027 0.9078 

+1 year (+1FB) 28/11/2023 23/12/2025 15/03/2028 0.9172 
Default 

28 

17/09/2021 22/12/2024 03/03/2026 0.9100 
-1 year (+1FB) 28/09/2021 25/12/2023 14/03/2026 0.9305 
-1 year (trip) 17/09/2021 22/12/2024 03/03/2026 0.9102 

Default (+1FB) 29/09/2022 23/12/2024 14/03/2027 0.9236 
Default (trip) 17/09/2022 21/12/2025 03/03/2027 0.9078 

+1 year (+1FB) 30/09/2023 23/12/2025 15/03/2028 0.9172 
Default (+2FB) 03/10/2023 23/12/2024 18/03/2028 0.9150 
-1 year (+2FB) 02/10/2022 25/12/2023 18/03/2027 0.9346 

Default 

30 

24/05/2021 22/12/2024 03/03/2026 0.9100 
Default (+1FB) 05/06/2022 23/12/2024 15/03/2027 0.9236 
Default (trip) 24/05/2022 22/12/2025 03/03/2027 0.9079 

Default (+2FB) 09/06/2023 23/12/2024 18/03/2028 0.9160 
-1 year (+1FB) 04/06/2021 25/12/2023 14/03/2026 0.9305 
-1 year (+2FB) 08/06/2022 25/12/2023 18/03/2027 0.9347 
-1 year (trip) 24/05/2021 22/12/2024 03/03/2026 0.9105 

+1 year (+1 FB) 06/06/2023 23/12/2025 15/03/2028 0.9172 
+2 years (+2FB) 27/11/2023 23/12/2025 04/09/2028 0.9101 
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