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Abstract

In the framework of the Circular Restricted Three Body Problem,
this work aims to identify and design particular trajectories con-
necting the Earth and a family of quasi-periodic orbit around the
collinear libration points in the Sun-Earth system. These particular
periodic orbits represent the state of the art, in terms of trajec-
tory design, concerning the majority of the space missions targeting
tasks as the solar system observation, outer space observation or
particular events observation (i.e. gravitational waves).

Firstly it has been developed a computational procedure to inte-
grate the differential equations of motion deriving from the CR3BP
model in an effort to design separately both the transfer phase to
the QPO and the QPO itself. Then, aiming to define a much more
close to reality force model, it has been taken in consideration many
different perturbations. Simplifications regarding the circular and
planar orbits of the primary bodies have been overcome considering
the evolution in time of both Sun and Earth ephemerides respect to
the solar system barycenter. In this sense, for the purpose of this re-
search, it has been decided to directly solve the differential equations
of motion for the generic probe given the position of other N bod-
ies (contributions of both inner and outer solar system planets have
been considered, obviously also the Moon gravitational field effect
has been investigated). To obtain the final set of equations it has
been added the solar radiation pressure contribution, considering a
simple spherical model.

Finally, adopting the CR3BP trajectory as reference, the com-
plete force model differential equations have been integrated with
intent to revisit the baseline solution by minimizing the number
and the overall cost of the necessary correction maneuvers. Many
trajectories have been designed aiming to optimize the departure-
from-the-Earth epoch and the geometric characteristics of the QPO
insertion.

ix



Chapter 1

Dynamics of the Three
Body Problem

On Christmas Day, 1642, the year Galileo died, there was born in the Manor
house of Woolsthorpe-by-Colsterworth a male infant so tiny that, as his mother
told him in later years, he might have been put into a quart mug, and so frail that
he had to wear a bolster around his neck to support his head. This unfortunate
creature was entered in the parish register as ’Isaac son of Isaac and Hanna
Newton’. There is no record that the wise men honored the occasion, yet this
child was to alter the thought and habit of the world.

-James R.Newman[2]

1.1 Historical introduction and basic laws of or-
bital mechanics

Before Isaac Newton’s birth, two men prepared the ground to his fundamental
discoveries. These two scientist are the Dane Tycho Brahe and Johannes Von
Kepler; Brahe put together an incredibly meticulous series of data regarding
Mars’ position and other planets, Kepler was gifted with the patience and in-
nate mathematical perception needed to unlock the secrets hidden in Tycho’s
data. It’s important to understand that since the time of Aristotle, planets were
assumed to revolve in circular path or combinations of smaller circles moving
on larger ones, but referring to the accurate research of Brahe, Kepler found
immense difficulties in recognize such a theory as correct. From 1601 and 1606,
Kepler tried to fit lots of geometrical curves to Brahe’s Mars observation. After
many years and attempts, finally in 1609 he grasped the solution to his problem
and identified the elliptical nature of falling object’s motion and published his
first two laws of motion; the third came out in 1613:

• First Law - The orbit of each planet is an ellipse, with the Sun at focus.

• Second Law - The line joining the planet to the Sun sweeps out equal areas
in equal times.

• Third Law - The square of the period of a planet is proportional to the
cube of its mean distance from the Sun.

Page 1



Chapter 1. Dynamics of the Three Body Problem

The three fundamental Kepler’s laws describe only the aspect and the geo-
metrical characteristics of planets motion, however there was still an unsolved
riddle, the nature of this motion; few years later Isaac Newton unveiled the
answer to the major question: ’why are the planets moving along such an el-
liptical path?’. During a 2-year closing period of the University of Cambridge,
due to the plague, in 1666 the 23 years old Isaac Newton conceived the law of
gravitation, the laws of motion and developed the fundamental concepts of the
differential calculus. Anyway the entire scientific community learns about his
discoveries only twenty years later, in 1685, Edmund Halley, consulting Newton
in Cambridge about the planetary motion, casually disclosed the aforementioned
Newton’s researches. In 1687 sir Isaac Newton published his masterpiece, The
Mathematical Principles of Natural Philosophy or more simply, the Principia,
one of the main achievements of the human knowledge about physics.

In the first book of the Principia the famous three laws of motions are
introduced:

• First Law - Every body continues in its state of rest or of uniform motion
in a straight line unless it is compelled to change that state by forces
impressed upon it.

• Second Law - The rate of change of momentum is proportional to the force
impressed and is in the same direction as that force.

• Third Law - To every action there is always opposed and equal reaction.

It is possible to notice that the second law can be rewrote mathematically as
follows:

ΣF = mr̈ (1.1)

Where ΣF refers to the sum of all the forces perceived by the point mass m,
resulting in an acceleration of the mass itself, r̈, measured in an inertial reference
frame. Besides the three fundamental laws of motion, Isaac Newton formulated
the law of gravity asserting that two bodies attract each other with a force
directly proportional to the product of their masses and inversely proportional
to the square of the distance between them. Using the vector notation, this law
can be expressed as follow:

Fg = −GMm

r2

r

r
(1.2)

Where Fg is the force on mass m due to mass M and r is the vector from M to
m. G refers to the Universal Gravitational Constant. Applying equation (1.2)
to equation (1.1), it is possible to develop the equation of motion of planets and
satellites.

1.2 The N-Body Problem

During is motion, a body (i.e. a satellite, a probe or a celestial body) is being
affected by many gravitational forces and could experience other forces of dif-
ferent nature, as example, for the purpose of this research, the solar radiation
pressure. It is possible to refer to this model considering a system of n-bodies
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Chapter 1. Dynamics of the Three Body Problem

Figure 1.1: N-body model representation

(m1,m2,...,mi,...,mN), mi is the body whose motion is the objective of the analy-
sis. Figure 1.1 enlightens schematically the characteristics of the N-body model.
It is aiming to determine how this body move through the force field experienc-
ing all the gravitational forces related to aforementioned point masses, without
neglecting additional forces. The resulting equation motion is a vector sum of
all gravitational forces and other external. The first step is to choose an inertial
reference frame in which, during the time of analysis, all the position vectors of
involved bodies are known. Applying the Newton’s law of universal gravitation
(1.2), it is possible to explicate the formulation of force Fgn excited by the nth

body on mi, the body whose motion it is trying to evaluate

Fgn = −Gmimn

rni3
rni (1.3)

Where the distance vector between the nth body and mi has been expressed as

rni = ri − rn (1.4)

Thus the sum vector of all the gravitational forces acting on body mi may be
written as

Fg = −Gmim1

r1i
3

r1i −
Gmim2

r2i
3

r2i − ...−
Gmimn

rni3
rni (1.5)

Obviously in the equation (1.5) the contribution relative to the attraction force
excited by the ith body on itself. Using the summation notation the equation
(1.5) could be explicated as

Fg = −Gmi

n∑
j=1,j 6=i

mj

rji3
rij (1.6)

Assuming that the mass of the ith body remains constant, it is possible to write
the formulation of the ith body acceleration vector as

r̈i =
FTOTAL
mi

(1.7)

Where FTOTAL represents the sum of the gravitational forces acting on the ith

body, equation (1.6), and the other external forces. For the purpose of this
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Chapter 1. Dynamics of the Three Body Problem

research will be considered the effect of the solar radiation pressure and the
effect of Earth’s oblateness, Chapter 3. It will be used a numerical integration
method to achieve a numerical solution to the differential equations of motion
(1.7).

1.3 Circular Restricted Three Body Problem

The formulation of the CR3BP presented in this Chapter, follows the work
of Victor Szebehely, one of the key figure in the development of the Apollo
program. His text, Theory of Orbits, is considered the definitive text about
the restricted three body problem; further explanations of the formulation of
equations of motion here presented could be found far more detailed in his pub-
lication [4].

The restricted three body problem has to be considered as a simplification
of tne N-body problem. This model takes into account only three bodies, a
primary and a secondary body (collectively termed the primaries) and a third
characterized by a mass negligible respect to the others; this third body has to
be considered as the generic probe whose motion it is trying to identify. Figure

Figure 1.2: Geometric Schematization of the Restricted Three Body Problem

1.2 schematically shows the geometrical representation of the restricted three
body problem model. It has been assumed that the primaries are subject to
the Keplerian laws of motion and each of them describe a circular orbit around
the barycenter of the system; according to the assumption of the third body
negligible mass respect to the others, the system barycenter could be evaluated
considering only the primary bodies. Then it is possible to analyze the motion
of the generic spacecraft, the third body, in a non-inertial frame of reference
which rotates about the center of mass of the system; such a reference frame
is defined as a synodic or rotating reference frame. Referring to Figure 1.2 an
inertial coordinate system α, β, γ is centered at the barycenter. Synodic frame
is denoted by the x, y, z axes and again it is centered at the barycenter. X-axis
points from the origin of the system considered to the secondary body. Z-axis
is directed as the angular momentum of the system, then the Y-axis completes
the right-hand coordinate frame. The motion could be considered as planar in
the x-y plane.

Page 4



Chapter 1. Dynamics of the Three Body Problem

Once the system has been modeled, the next step is to adimensionalize the
parameters characterizing the model. It is very useful, studying the restricted
three body problem, to take into account some dimensionless quantities. The
normalization process is implemented such in a way that the sum of the masses,
the distance between the primaries and the gravitational parameter are equal
to one; the orbital period is normalized to a value of 2π. The aforementioned
parameters are normalized using a quantity related to the mass values of the
primary and expressed as follows

µ =
m2

m1 +m2
(1.8)

Where m2 ¡ m1 are respectively the mass values of the secondary and the primary
bodies. So the dimensionless quantities are:

• Sum of primaries masses (total mass of the system): m1+m2=1

• Mass value of the primary body: m1=1-µ

• Mass value of the secondary body: m2=µ

• Distance between primaries: 1

• Position of the primary body: [-µ 0]

• Position of the secondary body: [1-µ 0]

• Gravitational Parameter: 1

• Orbital Period: 2π

Now it is possible to explicate the equations of motions relative to the restricted
three body problem. Using the notation adopted in Figure 1.2, the equation
(1.6) may be written as∑

F = m3R̈s/c = −Gm3m1

R31
3 R31 −G

m3m2

R32
3 R32 (1.9)

Adimensionalizing the equation by the mass parameter µ, it is possible to write
the formulation of the acceleration vector of the third body in the inertial frame
as

R̈
I

s/c = −1− µ
R1

3 R1 −
µ

R2
3 R2 (1.10)

Where parameters R1 and R2 are referred to the distance of the primary and
secondary masses from the third.

R2
1 = (x+ µ)2 + y2 + z2

R2
2 = (x− 1 + µ)2 + y2 + z2

(1.11)

It is possible to express the velocity of the spacecraft in the inertial reference
frame through the velocity evaluated in the synodic frame. Will be introduced
the angular velocity which is adimensionalized to unit, ωIxR=γ̂=ẑ. The equa-
tions of spacecraft velocity may be written as

Ṙ
R

s/c = (ẋ− y)x̂+ (x+ ẏ)ŷ (1.12)
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Chapter 1. Dynamics of the Three Body Problem

Ṙ
I

s/c = Ṙ
R

s/c + ωIxR ×Rs/c (1.13)

It is possible to combine equations (1.13) and (1.12), then, differentiating the
result, it is obtained this formulation of spacecraft acceleration

Ṙ
R

s/c = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (1.14)

The equation (1.14) may be written, combining it with equation (1.10), splitting
the three components of acceleration

ẍ = 2ẏ + x− (1− µ)x+µ
R1

3 − µx−1+µ
R2

3

ÿ = −2ẋ+ y − (1− µ) y
R1

3 − µ y
R2

3

z̈ = −(1− µ) z
R1

3 − µ z
R2

3

(1.15)

These last three equations represent the adimensionalized equations of motion
expressed in the synodic reference frame.

1.3.1 Pseudo Potential and Jacobi Constant

It will now introduced a pseudo-potential quantity Ω, which will be further
useful to analyze extensively the CR3BP. it will be identified three components
of the pseudo-potential, respectively along x, y and z direction. To evaluate the
potential it is necessary to integrate the left sides of equation of motion (1.15)
with respect to x, y and z. Thus the pseudo-potential Ω may be written as

Ωx = x2

2 + 1−µ
R1

+ µ
R2

+ f(y, z)

Ωy = y2

2 + 1−µ
R1

+ µ
R2

+ f(x, z)

Ωz = 1−µ
R1

+ µ
R2

+ f(x, y)
(1.16)

Equations (1.16) may be combined and rearranged to express the formulation
of the pseudo-potential as a function of position of the generic particle and
parameterµ

Ω =
1

2
(x2 + y2) +

1− µ
R1

+
µ

R2
(1.17)

Once the expression of the potential has been found, it is possible to write the
equations of motion in terms of potential itself

ẍ = 2ẏ + ∂Ω
∂x

ÿ = −2ẋ+ ∂Ω
∂y

z̈ = ∂Ω
∂z

(1.18)

Or in a differential form

ẍẋ+ ÿẏ + z̈ż =
∂Ω

∂x
ẋ+

∂Ω

∂y
ẏ +

∂Ω

∂z
ż (1.19)

Integrating the equation (1.19) with time, a constant of integration has been
introduced. It is possible to refer to this constant, C, as the Jacobi Constant

ẋ2 + ẏ2 + ż2 = 2Ω− C (1.20)
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Or in terms of velocity and position evaluated in the rotating reference frame

C = 2Ω− V 2 (1.21)

Considering a generic particle in motion through the system delineated by the
restricted three body model, a certain value of pseudo-potential Ω and velocity
may be assigned to it. Once these parameters have been fixed, the value of the
Jacobi constant limits the motion of the particle to certain regions. The for-
bidden regions could be found generating the zero-velocity curves. Considering
equation (1.21), setting the velocity value to zero, it is possible to map these
resultant zero-velocity curves for positions near to the primary bodies. The
motion of an object with a specified Jacobi constant is bound within its zero-
velocity curve and can only cross the boundaries under some non-conservative
force, such as thrusting. Figure 1.3 enlightens the zero-velocity curves ,consid-
ering only the motion of the third body in the x-y plane, for the Earth-Moon
CR3BP.

Figure 1.3: Zero velocity curves in the Earth-Moon system, shown in the synodic
frame. The libration points are shown as red dots.

1.3.2 Libration Points

Inside the system described by the CR3BP it is possible to find five equilibrium
points, these are defined as libration points or Lagrangian points. At the libra-
tion points the gravitational forces acting on the third body are balanced by
the centripetal acceleration. Thus, considering the equations of motion (1.15),
setting the synodic velocity and acceleration to zero, if the body of negligible
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mass moves in the x-y plane, two equations come out

x− (1− µ)x+mu
R3

1
− µx−1+µ

R3
2

= 0

y − (1− µ) y
R3

1
− µ y

R3
2

= 0
(1.22)

In order to find the first three solutions to this system of equations, y is set
to zero, the first of (1.22) become a quintic equation and solving for x yields
the three collinear libration points. Evaluating both the first and the second
equation of (1.22) also the fourth and fifth libration points emerge; in particular
these points are defined as the equilateral libration points, cause they form an
equilateral triangle with the primaries. Collinear libration points lie on x-axis
and conventionally L1 is placed between the primary and the secondary, L2,
whose distance form the secondary is the same of L1, is placed beyond the
secondary and L3 is placed on the fra side of the primary along the negative
direction of x-axis. Figure 1.4 shows a schematic representation of Lagrangian
points positions in Earth-Moon system. If a generic third body is placed exactly

Figure 1.4: Libration Points, synodic reference frame. Earth-Moon system

at the libration points with initial velocity in the synodic frame equal to zero,
it would remain stationary relative to the motion of primary and secondary
body. Nevertheless, linearizing the equation of motions near Lagrangian points
enlightens that the three collinear points are unstable. Besides, observing Figure
1.3 it is possible to see that these three equilibrium points are placed in saddle
points in the graph. Particles positioned in collinear points will drift away under
the effect of minimal perturbations. Instead the equilateral triangle libration
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points, L4 and L5, are stable, in fact, looking to the zero-velocity curves, they
are surrounded by contours. Mathematically L4 and L5 are stable until the
inequality µ < 0.0385 is satisfied, however considering both the Earth-Moon
system and Sun-Earth system, this relation is fully satisfied. Section 1.5 will
report values of Lagrangian points position and µ, considering both the CR3BP
Earth-Moon system and the CR3BP Sun-Earth system.

1.3.3 Linearized Solutions to the CR3BP

It’s aiming now to find solutions to aforementioned equations of motion. The
purpose of such an operation is to find suitable orbits around the collinear libra-
tion point; in particular the focus will point on L1 and L2, due to the scientific
relevance of these points. First of all it is useful to linearize these equations
in the proximity of the equilibrium point considered. Referring to the libra-
tion point coordinates in the synodic frame as (x0,y0,z0), a new dimensionless
constant may be introduced

K =
1− µ

(x0 + µ)3
+

µ

(x0 − 1 + µ)3
(1.23)

Considering (1.23), the linearized equations of motion may be rewritten as

ẍ− 2ẏ = Vxxx

ÿ + 2ẋ = Vyyy

z̈ = Vzzz,

(1.24)

Where three new terms have been introduced

Vxx = 2K + 1

Vyy = 1−K
Vzz = −K

(1.25)

Dividing the system in two parts, the in-plane subsystem (first couple of equa-
tions (1.24)) and out-of-plane equation (third equation (1.24)), and then ap-
plying the eigenvalue research method, two characteristic equations emerge and
may be written, introducing the eigenvalue λ, as

λ4 + (4− Vxx − Vyy)λ2 + VxxVyy = 0

λ2 − Vzz = 0
(1.26)

Relative to the selected libration point, two important constants are obtained

ω = 1√
2

√
2−K +

√
9K2 − 8K

λ = ± 1√
2

√
K − 2 +

√
9K2 − 8K

(1.27)

It is now possible to formulate a solution for the system (1.24). Such a solution
expresses the evolution in time of the three components of both position and
velocity, regarding the third body moving in the binary system of primaries.
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It has been obtained an harmonic solution, coefficients and phase angles def-
inition process will identify different families of periodic orbits. State vector
components, as a function of time, may be written as follows

x(t) = A1e
λt +A2e

−λt +Axcos(ωt+ φ)

y(t) = c1A1e
λt − c1A2e

−λt −Aysin(ωt+ φ)

z(t) = Azcos(ωzt+ ψ)

u(t) = A1λe
λt −A2λe

−λt −Axωsin(ωt+ φ)

v(t) = c1A1λe
λt + c1A2λe

−λt −Ayωcos(ωt+ φ)

w(t) = −Azωzsin(ωzt+ ψ)

(1.28)

Where A1 and A2 are the instability’s amplitude and Ax,Ay and Az are the
stable amplitude of the characteristic ellipse. Three dimensionless constants
have been introduced

ωz =
√
K

c1 = λ2−2K−1
2λ

c2 = ω2+2K+1
2ω

(1.29)

From system (1.28), setting instability amplitude values to zero, Lissajous peri-
odic orbits are obtained. Lissajous orbits actually are the most relevant periodic
orbit involved in scientific mission and with these simplifications the problem is
easier to resolve, considering the reduced number of amplitude as inputs. Fur-
thermore the y-axis amplitude could be expressed as a function of the x-axis
amplitude

Ay = c2Ax (1.30)

Obviously this type of solution is not feasible in real applications, many pertur-
bations have to be taken in consideration during the trajectory design procedure.
As a matter of fact, for the purpose of this research quasi-periodic orbits will

Figure 1.5: Lissajous Orbit around L2 in the adimensionalized synodic frame,
Earth-Moon system. Ax=10000km, Az=1000km, propagation time 100 days

be considered; these orbits are the result of a numeric integration operation of
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the equations of motion (1.15), so they represent a numerical solution to the
CR3BP. Instead Lissajous orbits are an analytical solution to the CR3BP, how-
ever, further in this research, they will be adopted as a benchmark to produce
final quasi-periodic orbits around the libration point considered.

1.4 Lagrangian Points Orbits Applications

The Lagrangian points colonization provides many opportunities concerning the
human space exploration and scientific research. Practically, engineers focus is
pointed to the libration points situated in the Earth-Moon system and in the
Sun-Earth system. In addition, moving through the libration points space,
from and to the primaries, would significantly reduce the DV (velocity change)
requirements.

Placing outposts in the collinear points L1 and L2 of the Earth-Moon sys-
tem would guarantee many advantages concerning the space exploration. As
an example the L1 point, due to its locked position between Earth and Moon,
could be an excellent location to supervise, manage and coordinate communi-
cations between the Earth and any nearside lunar mission. It could also serve
as a useful station to provide maintenance and upkeep to spaceships involved
in Lunar exploration; reach the Moon surface from L1 requires few hours, thus
an L1 outpost would provide a fundamental support in case of emergency. The
L2 point instead is completely shielded from the Earth radiation, it could be
an excellent location to place radio telescopes, due to the much less interfer-
ence perceived in such a position. However an hypothetical station located on
the lunar farside surface would fulfill same purposes. Considering the unstable
nature of collinear points, any mission concerning these locations must provide
active station-keeping operations. L4 and L5 are stable and could be used as
waypoints to the cislunar space exploration.

Considering the state of the art of space exploration, much more interest
is pointed to the Sun-Earth system; in particular the L1 and L2 Lagrangian
points provides perfect locations for solar observations purposes, L1 is in con-
stant sunlight, and to observe deep-space and outer planets, L2 is perpetually
shadowed by the Earth. Again the stability of L4 and L5 could provide excel-
lent location to expand launch opportunities for outer planets missions. Further
in this Chapter the focus will be pointed on accomplished or planned missions
to Sun-Earth collinear libration points, whose scientific interest is constantly
growing.

1.4.1 Earth-Moon System

Compared to the amount of space mission involving both L1 and L2 libration
point in the Sun-Earth system, the quantity of spacecrafts exploring libration
points in the Earth-Moon system is slightly lower. Few probes were been placed
in periodic orbit around near Moon libration points, two of them are NASA’s
spacecraft THEMIS B and THEMIS C.These are part of The Time History
of Events and Macroscale Interactions during Substorms (THEMIS), a NASA
constellation composed by 5 satellites. The objective of this mission began in
February 2007 was to study energy releases from the Earth’s magnetosphere.
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Figure 1.6: Sun-Earth System Representation

On May 19, 2008 the Space Sciences Laboratory (SSL) at Berkeley announced
NASA had extended the THEMIS mission to the year 2012. Two satellites,
THEMIS B and THEMIS C, were moved into lunar orbit, this mission was
named ARTEMIS. ARTEMIS P1, previously THEMIS B, in early 2010, per-
formed two Lunar flybys and an Earth flyby, later it approached an insertion in
a Lissajous-type orbit around Lunar L2. ARTEMIS P2 (THEMIS C) completed
a Lunar flyby and performed three deep-space maneuvers before the insertion in
its Lissajous orbit around Lunar L2. As of August 2017, both lunar probes are
in stable orbits, and the health of all instruments and the spacecraft remains
very good. However ARTEMIS P1 and P2 were first spacecrafts to achieve a
periodic orbit, Lissajous like, around Lunar Lagrangian points.

Launched in on January 24 1990, Hiten was the first Japanese Lunar probe.
Hiten had to be placed into an high elliptical orbit, swinging close to the Moon,
but an ignition deficit occurred and the spacecraft didn’t reach its nominal al-
titude. Thanks to the work of Edward Belbruno and James Miller of the Jet
Propulsion Laboratory the deficiency was corrected and Hiten continued its mis-
sion. Belbruno and Miller designed a trajectory based on the Weak Stability
Boundary Theory. This course would result in the probe being captured into
temporary lunar orbit using zero delta-v, such a trajectory is defined as ballistic
transfer. Definitively, Hiten was the first spacecraft to demonstrate the feasi-
bility of a low energy trajectory. Once Hiten performed its nominal mission, it
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Figure 1.7: ARTEMIS’s Artist’s Impression

was placed in a looping orbit swinging through Lunar L4 and L5 searching in
these regions for trapped particles. What Hiten was searching for are the Ko-
rdylewski clouds, large concentrations of dust particles that may exist at Lunar
L4 and L5. There is still debate as to whether they actually exist, due to their
extreme faintness. It is supposed that these particles clouds may be transient
phenomena, as a matter of fact that inner planets of our Solar System perturb
the stability of L4 and L5 in the Earth-Moon system.

1.4.2 Sun-Earth System

In this Section will exposed a brief overview of the most interesting missions
involving Lagrangian points L1 and L2 in the Sun-Earth system. Trajectories
employed in such missions will be taken into account as benchmark results for
the purpose of this research.

Herschel

At the moment that this research is written, the Herschel Space Observatory
is the largest infrared space observatory. Equipped with a 3.5 meter diameter
reflecting telescope and instruments cooled to close to absolute zero, Herschel
observes at wavelengths that have never previously been explored. In recent
years the infrared astronomy unveiled a large number of galaxies and also sur-
prisingly discovered a large amount of water vapor which fulfill our galaxy, the
Milky Way. Furthermore, thanks to the in-space infrared observation, free from
Earth’s atmosphere restrictions, it has been possible for the astronomers to dis-
cover planetary systems and to understand a large scale of events occurring in
the early Universe, like the birth of galaxies. [13]

After a roughly 50-day journey from Earth, Herschel entered its operational
orbit around the second Lagrange point of the Sun-Earth system (L2), for a
nominal mission lifetime of three years. Herschel mission began on 14 May
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2009, launched together with ESA’s Planck Spacecraft from Kourou, French
Guiana. The two probes moved to the Lagrangian L2, 1.5 million km away
from the Earth, independently and reached different operative orbits. After the
completion of the transfer orbit, Herschel reached it orbit around L2 in the Sun-
Earth system, a large Lissajous orbit of large amplitude (700000 km). Lissajous
orbits are the natural motion of a satellite around a collinear libration point
in a two-body system and require less momentum change to be expended for
station keeping than halo orbits, where the satellite follows a simple circular or
elliptical path about the libration point. Herschel orbit was characterized by a
period of 178 and an excursion above and below the ecliptic plane of 500000 km.
Due to the unstable nature of orbits around collinear libration points, several
correction maneuvers had to be planned about every month.

Figure 1.8: Herschel’s Artist’s Impression

Infrared observation requirements had driven the choice of an around-L2 or-
bit, as a matter of fact that a near Earth orbit is too much affected by Earth
thermal influx. Furthermore, a quasi-periodic orbit around a libration point in
the Earth-Moon system would have permitted to reach low temperatures neces-
sary to Herschel observations, but in such an orbit both the Earth and the Moon
would have not been very far from the telescope line-of-sight. Thus the chosen
Lissajous orbit around L2 in the Sun-Earth system resulted as the optimal tra-
jectory to guarantee satisfying performances of payload. Herschel’s operations
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were concluded on 17 June 2013, after that the spacecraft were switched off and
placed in his final heliocentric orbit for the post-operation phase.

Gaia

Gaia is an ongoing mission, its goal is to produce the most precise three-
dimensional map of our galaxy, the Milky Way, surveying an unprecedented
one per cent of 100 billion stars composing the galaxy’s population. During
the mapping operation, Gaia will measure the motion of each star that it can
detect. Stars are moving around the center of the galaxy, this motion was im-
parted upon each star during its birth. Analyzing stars motion, astronomers
can peer back in time, understanding the galaxy’s birth. By constructing such
an ambitious map, astronomers will be able to study the formation of the Milky
Way. During its operation phase, Gaia will observe at least 70 times each one of
its one billion source. The astrometry concept influencing Gaia’s development
has been demonstrated by the Hypparcos mission. This measuremnt principle is
based on subsequent observations of star sources in two fields of view. For this
purpose the spacecraft rotates slowly, keeping constant its angular rate value
at 1deg per minute around a selected axis perpendicular to the two fields of
view planes. With a basic angle of 106.5deg separating the astrometric fields
of view, objects transit in the second field of view 106.5 minutes after crossing
the first one. Gaia’s payload is composed by a single integrated instrument

Figure 1.9: Gaia’s First Sky Map

which performs three different functions: spectrometry, fotometry and astrom-
etry. By detecting stars position and recording them brightness, together with
the incredible accuracy of astrometric measurements, scientists will be able to
discover planets belonging to faraway planetary systems, asteroids in our Solar
System, icy bodies in the outer Solar System, brown dwarfs and far-distant su-
pernovae and quasars. Gaia’s possibilities are enormous, this makes its scientific
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return unique.
The spacecraft was launched from Kourou, French Guiana, on 19 December

2013, by a Soyuz-Fregat launcher. The assembly Fregat-Gaia was placed in a
parking orbit, then the Fregat boost injected Gaia on its transfer trajectory
to the Sun-Earth system Lagrangian point L2. Gaia operational orbit is a
Lissajous-type periodic orbit. The orbit has a period of about 180 days and
is characterized by amplitude values of 340000 km and 90000 km. Such an
orbit provides a stable thermal and low radiation environment, furthermore, the
absence of Sun. Earth and Moon from the instrumental field of view, guarantees
very high observing efficiency. Gaia’ operational phase is planned to last about
5 years and may be extended by one year [12].

Euclid

Protons, electrons, neutrons and atoms, the ordinary matter, almost constitute
the entire Universe. This is the largely accepted theory about Universe’s compo-
sition for a long time. About thirty years ago, astronomers overcame this idea,
as a matter of fact, in the intervening years, the emerging picture of Universe’s
composition changed drastically. Now it is assumed that the aforementioned
ordinary matter represents only the 4%, the mass-energy budget is drastically
dominated by two other components: dark energy and dark matter.

Euclid is a planned ESA mission to map the geometry of the dark Universe.
The mission will investigate the distance-redshift relationship and the evolu-
tion of cosmic structures. It achieves this by measuring shapes and redshifts
of galaxies and clusters of galaxies out to redshifts ∼2, or equivalently to a
look-back time of 10 billion years. It will therefore cover the entire period over
which dark energy played a significant role in accelerating the expansion [11].
Euclid will represent an unprecedented source of knowledge of regarding Uni-

Figure 1.10: Euclid Artist’s Impression

verse comprehension and composition, supporting the astronomical community
research and impacting upon all branches of astronomy. As a matter of fact it

Page 16



Chapter 1. Dynamics of the Three Body Problem

would produce a large amount of data and spectral images of almost half of the
entire sky. Euclid will be a discovery machine on an unprecedented scale, and
may well be the major feeder for more detailed studies both with ground-based
facilities and future satellites.

Euclid will start his journey from the Europe’s Spaceport in French Guiana,
carried by a Soyuz launch vehicle. The transfer trajectory aims to the insertion
in a large amplitude Halo orbit around L2 in the Sun-Earth system and it will
last about 30 days. At the insertion on the quasi-periodic orbit no maneuvers
are predicted. The designed Halo orbit is characterized by an amplitude of ∼
1e6 km around L2; this orbit is selected to provide best conditions to operate.
First of all a good radiation environment is guarantee, essential to sensitive
detectors operations, furthermore Euclid’s orbit has very stable observing con-
ditions, which are sufficiently far away from the disturbing Earth-Moon system.
Lastly, station-keeping maneuvers are planned every 30 days, a good trade off
between low-budget necessities and scientific requirements.

James Webb Telescope

The James Webb Telescope (JWST) has been developed in coordination be-
tween three space agencies, NASA, ESA and CSA. Scheduled to launch in Oc-
tober 2018, it will take the heritage of the Hubble telescope. With his capabili-
ties, the JWST will investigate the Universe aiming to observe many events and
objects distant in time and space, trying to detect particular phenomena as the
formation of the first galaxies. Current ground and space based instruments
are unable to reach performances of the James Webb Telescope. JWST will
have the ability to see high-redshift objects, much more distant and old than
any other source previously observed. Considering the JWST as a successor
of Hubble and not its replacement,Hubble will keep in life until JWST will be
completely operative. As a matter of fact The JWST has been designed to
collect images in deeper infrared than Hubble moving beyond the observation
capabilities of the Spitzer Space Telescope and the Infrared Space Observatory.
The JWST will be placed in an Halo orbit around L2 in the Sun-Earth system,
its operative lifetime is planned to last five years. Differently from the Hubble
telescope, the JSWT will be placed far away from the Earth, thus astronauts
will be obviously unable to perform maintenance on the telescope.

SOHO

The Solar Heliospheric Observatory (SOHO) is stationed in an Halo orbit around
L1 in the Sun-Earth system, in such a position, the observatory enjoys ann un-
interrupted view of the Sun and its activity. It is the second mission orbiting L1
to observe the SUN (the first was ISEE-3. Scientists all around the world use
images and data provided by SOHO and predict bad space weather affecting
our own planet. SOHO investigate both the Sun interior through its surface
and its incredibly storming atmosphere. Discoveries include complex currents
of gas flowing beneath the visible surface, and rapid changes in the pattern of
magnetic fields. In the atmosphere SOHO sees non-stop explosions and also
remarkable shock waves and tornadoes [15]. SOHO represents an international
cooperation between NASA and ESA, Europe’s industry built the spacecraft
for ESA, including nine instruments of the twelve composing SOHO’s payload,
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NASA instead launched the spacecraft and perform communications and contin-
uous operations. The spacecraft was launched in 1995, due to the large success
of the mission, its operational lifetime was extended from 1998 to 2018. It is

Figure 1.11: SOHO Trajectory Representation

important to notice that the enlargement of the mission due to perfect orbit
insertion with low fuel consumption. Despite problems regarding gyros failures
and a four months period of SOHO disappearance in 1998, scientists and engi-
neers had successfully kept the instruments and the spacecraft itself operative
and well performing. SOHO’trajectory to L1 is characterized by a direct trans-
fer, it was launched on December 2, 1995, carried by an Atlas II launcher. The
observatory orbits around L1 in Halo orbit characterized by an x-axis amplitude
of ∼ 200000 km and a z-axis amplitude of ∼ 120000 km. It cycles L1 twice a
year approximately due to its orbit duration of 178 days. SOHO is permanently
outside of the magneto-sphere, appropriate for the in situ sampling of the solar
wind and particles and its particular orbit allows uninterrupted observation of
the Sun, appropriate for all the investigations. [10].

Lisa Pathfinder

Lisa Pathfinder is a probe designed to test the technology needed to develop in
future in space gravitational waves detectors. Gravitational waves are ripples
in space-time predicted for the first time by A.Einstein in his General Theory
of Relativity. Detecting these waves could increase scientists knowledge about
General Relativity. Whilst ground-based detectors are already being used to try
to identify high-frequency gravitational waves, a space-based mission would try
to pick up frequencies from 10-4 Hz to 10-1 Hz. This corresponds to galactic-
scale events such as the coalescence of supermassive black holes. LISA was
launched from Kourou in French Guiana, carried by Vega launcher on December
3 2015. The launcher placed LISA in an elliptical parking orbit (perigee 200 km,
apogee 1540 km), then, once the final stage of Vega was jettisoned, LISA started
a transfer phase characterized by six maneuvers planned to raise the apogee and
performed by the onboard thrusters. After the completion of the apogee-raising
phase, LISA moved to its nominal orbit around L1 in the Sun-Earth system.
This operational orbit is a Lissajous-like quasi-periodic trajectory, characterized
by amplitude values of 500000 km x 800000 km around Lagrangian L1. Such
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Figure 1.12: LISA Pathfinder’s Journey to Space

an orbit guarantee a sufficiently far distance from main massive bodies, whose
gravitational fields may induce tidal forces on the spacecraft. Moreover LISA’s
orbit has constant illumination from the Sun and fulfills thermal and gravi-
tational stability requirements concerning spacecraft operations. After sixteen
months of science operations, LISA Pathfinder completed successfully its mis-
sion on 30 June 2017, demonstrating the technology to build ESA’s future space
observatory of gravitational waves. Unfortunately, just before LISA started its
operations, precisely on September 15, 2016, high-frequency gravitational waves
coming from two collapsing black holes had been firstly detected with the Ad-
vanced Laser Interferometer Gravitational-Wave Observatory (LIGO) [14].
However, considering LISA Pathfinder’s achievements, LISA will be the first
space-based gravitational wave observatory. It will consist of three different
spacecrafts separated by 2.5 million km in a triangular formation, following the
Earth’s in his revolution motion. Launch is expected to be in 2034.

1.5 Astrodynamic Constants

In this Section are reported all the astrodynamics constants values considered
during the development of this research. Successively, considering the aforemen-
tioned parameters, evaluated dimensionless mass parameter µ and Lagrangian
points positions, concerning both the Earth-Moon system and Sun-Earth sys-
tem are shown. Values reported are rounded to the 4th decimal digit. First of
all, for what concerns the main astronomical constants, it has been assumed
following values:

• Gravitational Constant - 6.6726e-20 km3/kgs2.

• Astronomical Unit, Sun-Earth Reference Distance - 1.4960e8 km
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Body Radius [km] Mass [kg] Grav. Par. µ [km3s-2]

Sun 6.9600e5 1.9899e30 1.3271e11
Earth 6.3781e3 5.9737e24 3.9860e5
Moon 1.7374e3 7.3477e22 4.9028e3

Mercury 2.4397e3 3.3018e23 2.2032e4
Venus 6.0518e3 4.8686e24 3.2486e5
Mars 3.3962e3 6.4186e23 4.2828e4

Jupiter 7.1492e4 1.8990e27 1.2671e8
Saturn 6.0268e4 5.6860e26 3.7941e7
Uranus 2.5559e4 8.6841e25 5.7945e6

Neptune 2.4764e4 1.0246e26 6.8365e6
Pluto 1.1950e3 1.3033e22 8.6961e2

Table 1.1: Planetary Constants

• Earth-Moon Reference Distance - 3.8440e5 km

• Speed Of Light - 3.0000e8 m/s2

• Solar Constant - 1367 W/m2

Table 1.1 highlights planetary constants values considered carrying out the anal-
ysis concerning the entire Solar System gravitational field. These values are
computed by means of Spice Toolkit which provides access to all planets and
principal bodies ephemerides. For what concerns Spice usage, to obtain all
the object’s ephemerides and physics parameters, following generic kernels have
been used:

• Spacecraft and Planet Kernel, SPK - de430.bsp

• Leapseconds Kernel, LSK - naif0012.tls.pc

• GM and Mass Kernel - gmde431.tpc

Focusing on the precise location of Lagrangian points in both Earth-Moon sys-
tem and Sun-Earth system, firstly dimensionless mass parameters are introduced

• Earth-Moon System - µ=0.012150584

• Sun-Earth System - µ=3.0035e-6

Point EM (x) EM (y) SE (x) SE (y)

L1 0.836915 0 0.990027 0
L2 1.155682 0 1.010034 0
L3 -1.005063 0 -1.000001 0
L4 0.500000 0.866025 0.500000 0.866025
L5 0.500000 -0.866025 0.500000 -0.866025

Table 1.2: Lagrangian Points Dimensionless Coordinates
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Once mass parameters are determined, coordinates of libration points are eval-
uated and listed in Table 1.2, then these values are dimensionalized using afore-
mentioned distance values, results are reported in Table 1.3 (SE refers to coordi-
nates of Lagrangian points relative to the Sun-Earth system, EM To coordinates
of Lagrangian points relative to the Earth-Moon system).

Point EM (x) EM (y) SE (x) SE (y)

L1 3.217102e5 0 1.481059e8 0
L2 4.442442e5 0 1.510989e8 0
L3 -3.866958e5 0 -1.495941e8 0
L4 1.922000e5 3.329002e5 7.479655e7 1.295522e8
L5 1.922000e5 -3.329002e5 7.479655e7 -1.295522e8

Table 1.3: Lagrangian Points Coordinates
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Chapter 2

CR3BP approach to
Trajectory Construction

In this Chapter it will be explained the strategy adopted to build, throughout
the application of a numerical integration process, quasi-periodic orbits around
targeted libration points. Moreover the focus will be pointed on transfer tra-
jectories whose purpose is to connect the Earth and the quasi-periodic orbits,
QPO, just built. These procedures rely so far on the Circular Restricted Three
Body Problem force model. According to what has been written in Section
1.4, design operations are oriented to find trajectories in the Sun-Earth system,
libration points in such a binary model are object to a greater scientific and
engineering interest.

This chapter concerns the first design step aiming to compute an hypotheti-
cal trajectory whose usefulness is to connect the Earth and a Lagrangian point
in both Earth-Moon system and Sun-Earth system. The focus will point on
the Sun-Earth system, nevertheless the entire process is completely scalable to
the Earth-Moon system; however it is also necessary to notice that, relate the
design process to the Earth-Moon system means that the desired trajectory will
connect the primary body (the Earth) to the libration points which are closer to
the secondary (the Moon). Such an approach is much more complicated due to
the necessity of passing closer to the secondary mass, whose gravitational field
could heavily affect the motion of the hypothetical spacecraft, the third mass.
Instead, considering the Sun-Earth system, it is aiming to design a trajectory
to move from the secondary mass (the Earth) to the libration points L1 and L2,
avoiding any close approach to the primary mass (the Sun).

Firstly it will be explained the computational approach adopted to correctly
design all the supposed trajectories, then, considering a distinction of two differ-
ent sections characterizing these trajectories, it will be reported the methodology
to design each subdivision. These sections are the Quasi-Periodic Orbit, QPO,,
the proper scientific orbit around the considered libration point, and the Trans-
fer Phase, which connect the Earth to the QPO. In this sense it will be clear all
the causes which have led to the decision of differentiate the design method for
the Transfer Phase and the QPO. Even though both sections are designed using
the numerical integration of the differential equations of motion, the Transfer
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Phase is characterized by a ’backwards’ numerical integration, instead of a clas-
sical integration process used to design the QPOs. Both the numerical methods
will be analyzed in the next Section. All the code implemented to design and
analyze each trajectory is written in Mathworks’ MATLAB environment.

2.1 Computational Approach

In order to design every kind of trajectory, solving the circular restricted three
body problem, it is necessary to identify a suitable numerical method which
could provide a solution to differential equations of motion (1.15). The equations
are now reported for practical reasons

ẍ = 2ẏ + x− (1− µ)x+µ
R1

3 − µx−1+µ
R2

3

ÿ = −2ẋ+ y − (1− µ) y
R1

3 − µ y
R2

3

z̈ = −(1− µ) z
R1

3 − µ z
R2

3

(2.1)

Practically a numerical integration method has been adopted to solve (2.1) and
compute the third body state vector, position and velocity values, as function
of time.

Differential equations could be adopted to describe all sort of systems which
are subject to change. Applications span through nearly all science and engineer-
ing study fields, nevertheless differential equations are suitable to describe many
systems regarding economics, biology, social science, etc. Moreover adopted dif-
ferential equations could be very complex, in addition the systems described
are so large, thus it could be difficult rather than impossible to find a purely
analytical solution. In this sense, numerical methods could be useful to find
solutions to the differential equations considered. For practical purposes, a nu-
merical approximation could be often considered sufficient, the algorithm that
will be further presented can be used to compute this approximation. For the
sake of completeness it is necessary to take notice of another method to achieve
a solution of differential equations, in fact techniques from calculus could be
used to obtain a series expansion of the solution.

It is now necessary to introduce the definition of the generic first-order dif-
ferential equation as an initial value problem of the form

ẏ(t) = f(t, y(t))

y(t0) = y0

(2.2)

Where y0 is a given vector which represents the initial value or the initial con-
dition. Previously it is been referred to the differential equation as first order
differential equation. Such a definition refers to the fact that in the consid-
ered equation appears only the first derivative of y, higher order derivatives are
completely absent. Without loss of generality it is possible, while debating this
issue, to refer only to the aforementioned first order differential equations. In
fact higher-order systems may be reduced to the first order case introducing
new variables and creating a larger system of first order differential equations.
Thus introducing a generic second order equation

ÿ = −y (2.3)
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It may be rewritten as a system of first order differential euqations

ẏ = z

ż = −y
(2.4)

Now recalling the system (2.1) it is clearly observable that such a system contains
second order differential equations. Thus it is possible to convert this system,
introducing three new variables, to a first order differential equations system.
It may be written as

ẋ = u

ẏ = v

ż = w

u̇ = 2v + x− (1− µ)x+µ
R1

3 − µx−1+µ
R2

3

v̇ = −2u+ y − (1− µ) y
R1

3 − µ y
R2

3

ẇ = −(1− µ) z
R1

3 − µ z
R2

3

(2.5)

Inside the system (2.5) only first order derivatives of the six variables x, y, z, u,
v, w appear. The aforementioned variables set represents the state vector, at a
defined time point, t, of the hypothetical third body moving through the main
bodies binary system. It is now clear that the initial condition, necessary to
apply the considered numerical method, is identified by the precise state vector
measured at a selected epoch, from which the propagation of the trajectory will
start.

2.1.1 Introduction to Numerical Integration Methods

What does numerical integration means? Using this method it is possible to
compute, from a selected and completely defined initial condition, y0, each
successive point, y1, y2, y3, etc., that satisfy the evolution (2.2). Thus an
algorithm computes as much precise as possible or required the value of yn+1

given the value of yn . It is now briefly presented some basic numerical methods
including Euler, Heun and Midpoint methods.

Euler Method

The Euler method is very simple to apply; considering the generic first order
differential equation (2.2), Euler’s formula may be written as

yn+1 = yn + ∆t · f(tn, yn) (2.6)

Given a user specified time step, ∆t, Euler’s formula permits to directly evaluate
yn+1 computing only the derivative value at tn. However such a method is
not recommended to use, it is not so accurate especially if compared to other
methods and using the same time step. The major imprecision is due to the
fact that the derivative varies between tn and tn+∆t, but such a method relies
only on the evaluation of the derivative value at tn. Considering a smaller time
step would reduce the error. Figure 2.1 shows a representation of the Euler’s
method principle.
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Figure 2.1: Euler’s Method Principle Representation

Heun Method

The Heun method’s principle is more complex than the Euler’s. Practically the
derivative isn’t evaluated at the starting point tn; a better estimation is given
evaluating the slope as the average value between the derivatives at the starting
point, tn, and at the end point, tn+1. The Heun’s formula may be written as
(always referring to generic first order differential equation (2.2))

yn+1 = yn +
∆t

2
· (f(tn+1, yn+1) + f(tn, yn)) (2.7)

Where the derivative at the end point is evaluated using the Euler’s method
and tn+1 corresponds to tn+∆t. Such an algorithm could be considered as an
improvement of the Euler’s method and it is a simple example of a predictor-
corrector algorithm.

Midpoint Method

Lastly it is presented the Midpoint Method which basically use the aforemen-
tioned Euler’s method to evaluate the slope at ∆t/2 and further evaluate the
value of yn+1 using this slope value. The Midpoint’s formula may be expressed
as follows

k1 = f(tn, yn)

k2 = f(tn + ∆t
2 , yn + ∆t

2 k1)

yn+1 = yn + ∆k2

(2.8)

2.1.2 Runge-Kutta Method

Further in this Section it will be outlined the basic principle of the Runge-
Kutta numerical method. Focus on such a numerical method is justified by the
fact that the computational process, designed to solve the system of differential
equations of motion (2.5), is based on an explicit Runge-Kutta (4,5) formula,
the Dormand-Prince pair [6].

It is common to refer to The Runge-Kutta Method to indicate the most
widely used numerical method belonging to family of Runge-Kutta methods:
the fourth-order Runge-Kutta Method also known as RK4. It is now reported
the principle of this method in order to introduce the family of explicit RK
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methods, a generalization of the aforementioned RK4. Recalling the general
definition of the differential equation (2.2), the 4th order Runge-Kutta’s formula
may be written as

yn+1 = yn + ∆t · (1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4) (2.9)

Where it has been defined k1, k2, k3 and k4 as follows

k1 = f(tn, yn)

k2 = f(tn + ∆t
2 , yn + ∆t

2 k1)

k3 = f(tn + ∆t
2 , yn + ∆t

2 k2)

k4 = f(tn + ∆t, yn + ∆tk3)

(2.10)

Thus it is possible to express the RK4 approximation of yn+1 as the sum of yn

plus the weighted average of four increments. These increments are calculated
by multiplying the time step ∆ by four different estimated slope values, specified
by the function f. In particular it may be written

• k1 is related to the slope evaluated at the starting point using the Euler’s
method

• k2 is related to the slope evaluated at the midpoint. The y value at the
midpoint ∆t/2 is evaluated considering y + k1h/2

• k3 is related to the slope evaluated at the midpoint. The y value at the
midpoint ∆t/2 is evaluated considering y + k2h/2

• k4 is related to the slope evaluated at the end of the interval. The y value
at the end point ∆t is evaluated considering y + k3h

As it has been previously said, the RK4 method could be generalized to de-
fine the family of explicit Runge-Kutta methods. The generic formula may be
written as follows

yn+1 = yn + ∆t

s∑
i=1

biki (2.11)

Where slope values k may be expressed as

k1 = f(tn, yn)

k2 = f(tn + c2∆t, yn + ∆t(a21k1))

k3 = f(tn + c3∆t, yn + ∆t(a31k1 + a32k2))

...

ks = f(tn + cs∆t, yn + ∆t(as1k1 + as2k2 + ...+ as,s−1ks−1))

(2.12)

In the expression of the slope values (2.12) and in the generic Runge-Kutta
formula, (2.11), it has been introduced three groups of coefficients (s represents
the number of stages considered)

• The matrix [aij] for 1≤j¡i≤s is known as the Runge-Kutta matrix

• Coefficients bi for i=1,2,...,s are known as the weights
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• Coefficients ci for i=2,3,...,s are known as the nodes

It is necessary to notice that the RK method is considered consistent only if

i−1∑
j=1

aij = ci for i = 2, 3, ..., s (2.13)

Aforementioned coefficients may be rearranged using the Butcher Tableau

0

c2 a21

c3 a31 a32

... ...

cs as1 as2 ... as,s−1

b1 b2 ... bs−1 bs

(2.14)

The implemented code, used to solve system of differential equations of mo-
tion (2.5), MATLAB’s built in function, ode45, is based on the Dormand-Prince
Method an adaptive Runge-Kutta (4,5) method. An adaptive method is used
with a view to optimize the time span considered and adopt for each step the
optimal time step. In particular a Runge-Kutta adaptive method exploits two
methods, one with an higher order than the other, on the same Butcher Tableau.
Thus the time step is modified until the error between the two methods is lower
than the absolute error required. Several techniques are provided to correctly
evaluate how to scale efficiently the time step. The Dormand-Prince pair is
based on the evaluation of seven different slope values, k1, k2, ..., k7, these val-
ues are used in two different linear combinations to find two approximations of
the next point, a 5th order approximation and a 4th order approximation. The
Butcher Tableau of the Dormand-Prince pair may be written as follows

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 26360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

35
384 0 500

113
125
192 − 2187

6784
11
84 0

(2.15)

Where the first row of b coefficients represents the 4th order approximation of
the solution, the second row represents the 5th order approximation. Through-
out the design process of each trajectory, different absolute error requirements
have been imposed. This has been done to better balance precision require-
ments, characterizing some particular aspect of the design process, and overall
computational costs.
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’Backwards’ Numeral Integration

Section 2.3 will focus on the design process of the Transfer Phase. Due to the
extreme sensitivity, to even slightly variations of the initial conditions, of such
a problem, it could result much easier to set an arbitrary point on the quasi-
periodic orbit considered and try to reach the Earth. Thus it is necessary to
adopt a ’backwards’ numerical integration strategy, considering the state vector
of the aforementioned point on QPO as the initial condition of the system of
differential equations of motion. Then a decreasing time span will be adopted to
easy compute a sufficiently accurate numerical approximation of the solution.
Again such a process is easily applicable using the MATLAB’s ode45 solver.
Considering what it has just been said reasons it has been chosen to design
QPOs before the transfer phase are completely clear, the first point of the se-
lected quasi-periodic orbit will be adopted as ’initial’ condition to numerical
integrate backwards the transfer phase.

2.2 Quasi-Periodic Orbits

The arrival quasi-periodic orbit could be considered as the most relevant part
of the supposed final trajectory. QPO’s selection is driven by scientific stake-
holders necessities and requirements. Different geometric characteristics could
be chosen, nevertheless the time of propagation and maintenance on such an
orbit is an important parameter which could affect the entire mission. Lastly
and more important, different mission objectives could be accomplished orbit-
ing around different libration points in different binary systems. Again recalling
considerations made in Section 1.4, the focus will point on collinear libration
points in the Sun-Earth system, with particular emphasis to L2.

Generically design attempts are made to aim to the analytical solution of the
circular restricted three body problem, 1.3.3. All the periodic orbits resulting
from the analytical solution of the CR3BP could be considered as the nominal
solution to which it is trying to reach out. Practically, due to the assumptions
and simplifications made to derive the analytical equations, the numerical solu-
tion, computed applying the aforementioned numerical methods to the system of
differential equations of motion, (2.5), will diverge from the analytical solution.
Such a solution highlights the theoretical existence of many different families of
periodic orbits, in reality these orbits aren’t achievable, thus it is necessary to
almost find, according to the numerical solution, quasi-periodic orbits around
the selected libration point.

It is now illustrated the practical process adopted to find the quasi-periodic
orbits. First of all it has to be computed the analytical periodic orbits, thus a
process of geometrical characteristics definition has to be accomplished. In the
case of this particular treatment, the focus will point on the Lissajous periodic
orbits, so X-axis and Z-axis amplitude have to be defined along with the phase
angle values and the time of propagation. Once an analytical periodic orbit has
been computed, it will be considered as reference to build the final quasi-periodic
orbit. Previously in this Chapter, it has been underlined the need to choose an
initial condition to properly solve, using numerical integration methods, the
system of differential equations of motion which characterize the CR3BP. Thus
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the first point of the selected analytical periodic orbit will be considered to be
the initial condition used to solve the aforementioned ODE’s system.

Solving the equations of motion using as initial condition the first point
of the analytical periodic orbit will result in an orbit whose path drastically
diverge from the reference periodic solution. Thus, to obtain a quasi-periodic
orbit, it is necessary to even slightly vary the initial condition, in terms of
velocity components, until a quasi-periodic orbit around the libration point is
obtained. This orbit will be the hypothetical arrival QPO, to whom the transfer
phase will connect. Figure 2.2 briefly shows the process of initial condition

Figure 2.2: Initial Condition, Definition Process

definition. Five different solution of the equations of motion are reported, each
one derives from different initial condition values (only velocity components
variations are considered). These values are variations of the initial condition
of the analytical Lissajous periodic orbit of 2e5 km X-Axis amplitude, Ax, 5e4
km Z-Axis amplitude, Az, and 180 deg phase angle, φ; such an orbit has been
propagated for 360 days. The numerical QPO shaded in red could be considered

Figure 2.3: Numerical QPO. Ax=2e5, Az=5e4, φ=180deg
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as an acceptable result.
It is now reported a confrontation of different numerical solutions charac-

terized by different amplitude values; each orbit has been propagated for 360
days. Figure 2.3 shows in detail the QPO based on the Lissajous orbit of, Ax

equal to 2e5, Az equal to 5e4, φ equal to 180deg. Variations to this trajectory
are reported on Figure 2.4 and Figure 2.5.

Figure 2.4: Numerical QPO. Ax=2e5, Az=1e4, φ=180deg

Figure 2.5: Numerical QPO. Ax=3e5, Az=5e4, φ=180deg

From Figure 2.3, 2.4 and Figure 2.5 it can be seen that no significant differ-
ences arise varying amplitude values; shapes of the numerical solutions remain
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similar. A different analysis is provided modifying the value of the phase angle,
φ. Setting Ax equal to 2e5 km and Az equal to 5e4, Figure 2.6 and Figure 2.7
report QPO with different φ values.

Figure 2.6: Numerical QPO. Ax=2e5, Az=5e4, φ=135deg

Figure 2.7: Numerical QPO. Ax=2e5, Az=5e4, φ=225deg

Analyzing orbits resulting from different φ values it could be noticed substantial
differences in terms of shape and orientation. This aspect is very significant and
furthermore it is important to consider that the definition of the phase angle
value will strictly affect the design process of the transfer phase, fixing the ar-
rival condition characteristic of such a phase. Further in this research it will
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be highlighted that the phase angle value, φ, represents a critical parameter
to be considered in order to design an optimal and satisfying trajectory to a
Lagrangian point, including the corresponding quasi-periodic orbit around it.

For the sake of completeness, Figure 2.8 show a numerical quasi-periodic or-
bit around the Sun-Earth Lagrangian point L1. No significant differences could
be detected by comparing it with the corresponding QPO around L2, Figure
2.3.Further considerations made about transfer to and orbit around L2 could
be reported to L1 trajectories, without loss of generality.

Figure 2.8: Numerical QPO around L1. Ax=2e5, Az=5e4, φ=0deg

2.3 Transfer Phase

All that’s left now, once the arrival QPO has been defined, is to properly design
a transfer trajectory to connect such an orbit, around the libration point, to the
Earth. Previously it has been said that the state vector, of the first point of the
quasi-periodic orbit, would be considered as the initial condition to solve, always
through numerical methods, the system of differential equations of motion, thus
finding the aforementioned transfer trajectory. Obviously, operating a process
of backwards numerical integration, it is necessary to adopt a decreasing time
span, so the state vector at the arrival in QPO becomes the ’initial’ state of the
transfer phase traveled backwards.

Operationally it must be defined a propagation time limit by which the
transfer phase has to be accomplished. Then initial state vector could be prop-
agated backwards in time until the trajectory reach its minimum distance from
the Earth, at that point the numerical integration process is stopped; an hypo-
thetical transfer trajectory has been designed. The transfer phase design shall
be optimized for the achievement of a sufficiently close approach to the Earth,
precisely it is aiming to find a transfer trajectory which starts from an altitude
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value, over the Earth surface, no higher than 4e4 km. As it has already been
done designing the numerical quasi-periodic orbits, to better design a satisfying
the transfer phase, it is necessary to act on the velocity components of the initial
state vector. The optimal trajectory, in terms of closer as possible approach to
the Earth, could be found just slightly modifying the initial condition.

No parameters have to be set in order to design any transfer phase, prelimi-
nary initial condition values are determined by the choice of the quasi-periodic
orbit. Figure 2.9, Figure 2.10 and Figure 2.11 show different transfer phases
evaluated for three QPOs, which differ from each other only in X-Axis and Z-
Axis amplitude. All the Figures report the analytical periodic orbit shaded in
blue, not the numerical QPO, for representation clarity’s sake.

Figure 2.9: Transfer Trajectory. QPO: Ax=2e5, Az=5e4, φ=180deg

Figure 2.10: Transfer Trajectory. QPO: Ax=2e5, Az=1e4, φ=180deg

Analyzing Figure 2.9, Figure 2.10 and Figure 2.11, it could be noticed that no
significant differences could be detected in the shape pattern of the transfer
trajectories. Amplitudes variations of QPOs slightly affect geometrical charac-
teristics of the transfer phase. Instead Figure 2.12 and Figure 2.13 show two
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Figure 2.11: Transfer Trajectory. QPO: Ax=3e5, Az=5e4, φ=180deg

much more transfer trajectories deriving from QPOs of X-Axis amplitude equal
to 2e5 km and Z-Axis amplitude equal to 2e5 km and Z-Axis amplitude equal
to 5e4 km, which differ form the one depicted in Figure 2.9 only in phase angle
value, φ.

Figure 2.12: Transfer Trajectory. QPO: Ax=2e5, Az=5e4, φ=135deg

More differences arise varying the phase angle value, highlighting a similar to
the QPO design behaviour. Again the φ value seems to be the predominant
variable designing even the transfer phase. Further in this dissertation, observ-
ing that this geometric characteristic uniquely define the connection between
the transfer phase and the QPO, it will refer to the φ angle as the Insertion
Phase Angle or much easier as the Insertion Angle.

It’s important to notice that the connection point has just been considered
to be initial condition for both QPO and Transfer Phase (in this case it is bet-
ter to refer to such a state vector as the arrival condition), thus it has been
modified twice to meet both QPO and Transfer Phase design requirements and
constraints. So this aspect could result in an instant variation of velocity, in
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Figure 2.13: Transfer Trajectory. QPO: Ax=2e5, Az=5e4, φ=225deg

terms of module and direction, at the aforementioned junction point. Never-
theless this DV does not pose a problem for the trajectory design process, it
shouldn’t be taken into account for further analysis. In fact, the trajectory de-
signed according to the CR3BP model will be used only as reference to go over
considering the complete force model. Chapter 4 illustrates how the CR3BP
Trajectory will be used as reference path, only in terms of position state vector,
to define a new Trajectory propagated according to the complete force model,
Chapter 3. In this sense, velocity values will not be considered.

Figure 2.14: Transfer Trajectory. QPO around L1: Ax=2e5, Az=5e4, φ=0deg

For the sake of completeness, Figure 2.14 show a transfer trajectory to an ana-
lytical periodic orbit around the Sun-Earth Lagrangian point L1. No significant
differences could be detected by comparing it with the corresponding trajec-
tory to a QPO around L2 depicted in Figure 2.9. The only aspect worthy of
consideration is that the transfer trajectory mainly propagates in the region of
positive y values. This is obviously justifiable considering that it is assuming
to travel the QPO in a clockwise direction, moreover the transfer trajectory
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approaches the QPO from the right, thus the resulting trajectory pattern is
completely consistent. Further considerations made about transfer to and orbit
around L2 could be reported to L1 trajectories, without loss of generality.

Lastly, some examples about the trajectory design process complete results,
according to the CR3BP, are provided in Section 5.1.
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Chapter 3

Complete Force Model

Neptune existence was predicted before the planet itself was discovered. On
November 10, 1845, Urban Le Verrier, French mathematician, presented a mem-
oir regarding the motion of Uranus. His calculations highlighted errors in Uranus
orbit calculation, supposing the existence of an external and unknown body
whose presence could have perturbed the planet’s path. On August 31, 1846,
Le Verrier presented another memoir, now giving the mass and orbit of the new
body. He finally sent his results by post to Johann Gottfried Galle at the Berlin
Observatory. Neptune was discovered just after midnight, on September 24 af-
ter less than an hour of searching and less than 1 degree from the position Le
Verrier had predicted. Further continuous observations had confirmed the cal-
culation of Neptune’s orbit made by La Verrier, thus Galle replied to the French
mathematician: ”the planet whose place you have computed really exists”.

3.1 Perturbations to the CR3BP

Basically the CR3BP model predicts the motion of a generic body of negligible
mass, respectively to the entire mass of the system, under the gravitational fields
influence produced by two primary bodies. Besides these bodies are orbiting
in a circular path around the barycenter of the three mass system and their
motion is considered planar. Such a three body system could depict, with a
rather acceptable tolerance, many coupled bodies mutual motion inside the Solar
System. Common examples are the Sun-Earth system and the Earth-Moon
system, whose applications have been yet highlighted in Chapter 1, systems
coupling the Sun and one of the solar system planet, or even a three body
system involving Jupiter or Saturn and one of their moons. However many
perturbations have to be taken into account if the aim is to design a much
more accurate trajectory in such a two main bodies gravitational field. Going
forward through this Section three main perturbations to the circular restricted
three body problem will be highlighted. First of all the elliptical restricted three
body problem will be introduced, thus it will be shown how the eccentricity of
the primaries orbits could be taken into account, then it will be discussed the
influence of the main ’third perturbing bodies’ in the solar system and finally the
effect of the solar radiation pressure will be considered adopting an appropriate
spherical model.
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3.1.1 Introducing The Elliptical Restricted Three Body
Problem

The main fault of the approximation induced by the adoption of the circular
restricted three body problem is its low reliability to treat long-term motion
regarding the majority of dynamical systems characterizing the celestial me-
chanics. There is a preponderant feature which lead to this significant fault, the
eccentricity of the orbits of both primaries. To consider these bodies orbiting
along an elliptical path around the system barycenter, spreads significant effects
in determining the correct third body’s motion. Introducing elliptic orbits for
primaries motion generalizes the CR3BP and improves its applicability. Fol-
lowing the work of V. Szebehely and G. E. O. Giacaglia [3] it will be extended
the applicability of the CR3BP increasing its reliability in long-term dynamic
systems analysis; the set of equations relative to the elliptical problem may be
written as

ξ′′ − 2η′ = wξ

η′′ + 2ξ′ = wη
(3.1)

In the equations of motion (3.1) primes indicate derivatives respect to the true
anomaly of the secondary body, referring for example to the Sun-Earth system,
f represents the Earth’s true anomaly value along Earth’s orbit around the Sun.
Then ξ and η are the synodic Cartesian rectangular dimensionless coordinates
of the third body in a non uniformly rotating system. This couple of coordinates
is obtained dividing the dimensional (ξ*,η*) by the variable distance between
the primaries. Thus it may be written

ζ =
1 + e cos f

a(1− e2)
ζ∗ (3.2)

Where ζ=ξ+η, ζ*=ξ*+η*, i2=-1, a is the semi-axis major of the secondary
elliptic orbit and e is the eccentricity of both primaries orbits. Lastly w may
be expressed as

w(ρ1, ρ2) = (1 + e cos f)−1Ω(ρ1, ρ2) (3.3)

Where
ρ1(ξ, η) = r1(ξ, η)

ρ2(ξ, η) = r2(ξ, η)
(3.4)

From equations (3.1), (3.2), (3.3) and (3.4) it is possible to notice that set-
ting the eccentricity value, e, to zero, otherwise considering circular orbits for
the primaries, the equations of motions relative to the elliptical problem be-
come equal to those relative to the circular restricted three body problem. The
CR3BP could be considered as a particular and simplified case from the elliptical
model.

Table 3.1 and Table 3.2 report keplerian elements regarding both Earth’s
and Moon orbit [16]. As comparison to the Earth’ orbit, considering the en-
tire Solar System, Mercury is the planet which presents the highest eccentricity
value, 0,20564 (Pluto, whose planetary status had been demoted, has an eccen-
tricity of 0,24883), instead Venus and Neptune orbits have lower eccentricity
values, 0,00678 and 0,00859 respectively; the Moon has the most eccentric orbit
considering the large moons of the Solar System. These values are obviously
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Eccentricity [rad] Rate [rad/Cy] SemiMajor Axis [AU] Rate [AU/Cy]

0.01671123 -0.00004392 1.00000261 0.00000562

Table 3.1: Earth’s Orbit Keplerian Elements. Values validity: 1800 AD - 2050
AD

Eccentricity [rad] Semi-Major Axis [km] Inclination [deg] Period [days]

0.0554 384400 5.16 27.322

Table 3.2: Moon’s Orbit Keplerian Elements. Epoch: 01 Jan 2000 12:00:00.000

referred to the present configuration of the Solar System; secular perturbations
tend to modify planets and satellites orbit along long-term periods.

Figure 3.1: Earth’s Orbit Eccentricity and Semi-Major Axis Variation; 1 Year
Time Span, from 01 Jan 2019 to 01 Jan 2020

Figure 3.2: Moon’s Orbit Eccentricity and Semi-Major Axis Variation; 1 Year
Time Span, from 01 Jan 2019 to 01 Jan 2020

Page 39



Chapter 3. Complete Force Model

Such a refined elliptical model application permits to drive a more accurate
evaluation of an hypothetical long-term motion of the third body through the
primaries system. However it has yet to be considered a simplified model. Aim-
ing to accomplish an accurate trajectory design involving such unstable regions
of space like those around Lagrangian points, it is necessary, for example, to
overcome restrictions imposed by considering primaries orbits planar; moreover
eccentricity and semi-major axis values, even if only slightly, are not constants
in time Figure 3.1 and Figure 3.2 show variations of eccentricity and semi-major
axis values along a one year time span; keplerian elements are evaluated using
ephemerides sources 3.2 . Thus, considering the much more complex implemen-
tation of the elliptical equations of motion, for the purpose of this research, to
design the baseline trajectory has been considered the classical CR3BP model.
In Section 3.2 will be introduced the ephemerides based approach to the force
field modeling operation, so designing the final trajectory, the circular orbit as-
sumption will be overcame easily considering the exactly state vector of each
body which perturbs the motion of the hypothetical spacecraft. Considering
final trajectory results coming from both a CR3BP and an Elliptical Restricted
Three Body Problem preliminary design, no significant variations have been
found, so considering the aforementioned difficulty of implementation, the ap-
plication of CR3BP to preliminary mark the desired trajectory is justified.

3.1.2 Solar Radiation Pressure

Introducing the nature of such a dynamical perturbation due to the effect of
the solar radiation pressure, it’s important to understand the behaviour of a
photon which collides with a generic body. Interacting with a solid surface, a
photon of light would exchange its momentum whose amount corresponds to
the photon energy value divided by the velocity of light. The surface reached by
the aforementioned photon perceives a radiation pressure, equal to the vector
difference between the incident and reflected momentum flux. It is possible to
refer to the Solar radiation as a continuous flux of particles originated from the
Sun. Solar radiation isn’t the only source of electromagnetic radiation, others
are the radiation pressure due to the Earth albedo, the Earth infrared radiation
and the spacecraft’s own thermal emission. However these sources could be
neglected considering the purpose of this research.

Implementing the perturbation driven by the solar radiation pressure, a sim-
ple spherical model, or ’cannonball ’ model, has been taken in consideration.
Such a model assumes that the hypothetical spacecraft is an invariant sphere
characterized by constant thermo-optical properties, thus it is necessary to de-
fine a cross-sectional area exposed permanently and continuously to the Sun
and a coefficient of reflectivity, CR. For what concerns this research, it has
been assumed that the complete trajectory designed is free from umbra and
penumbra regions or rather it is always in complete sunlight. The coefficient of
reflectivity, CR, as defined by David A. Vallado [9], indicates how and in what
measure the hypothetical spacecraft reflects the incoming Sun radiation; values
of CR spans from 0 to 2. Setting the coefficient of reflectivity equal to 0 corre-
sponds to assume that the spacecraft is translucent to incoming radiation, non
of the radiative force is transferred to the body. If the spacecraft behaves as a
black body, the coefficient has to be set equal to the unit value, 1; in this case
all the incoming radiation is absorbed and re-radiated, all of the radiative force
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is transferred to the spacecraft. Lastly, considering a coefficient of 2 highlights
that the spacecraft behaves as a flat mirror perpendicularly oriented respect to
the incoming solar radiation; all the radiation itself is reflected, the spacecraft
perceives twice the radiation force. So considering such a spherical model, the
equation of the force due to the solar radiation pressure may be written as

a = −ΦA

mc
CR

s

s3
(3.5)

• F is the acceleration due to the solar radiation pressure on the sphere
modeled spacecraft

• Φ is the Solar Flux expressed in W/m2

• A is the cross-sectional area of the spacecraft expressed in m2

• c is the speed of light expressed in m/s

• m is the mass of the spacecraft expressed in kg

• CR is the coefficient od reflectivity

• s is the distance between the spacecraft and the Sun expressed in m

Considering what it has just been said, such a perturbation, related to the
effect of the solar radiation upon the hypothetical probe, is directly dependent
by the physical and geometrical properties of the probe itself. Thus in order
to evaluate the additional acceleration, due to the incoming Sun radiation, it
is necessary to define a preliminary shape of the spacecraft traveling along the
designed trajectory. Taking as reference the nature of this research, it has been
considered justifiable to adopt ESA Euclid’s spacecraft characteristics, Section
1.4, to evaluate the perturbation driven by the solar radiation. Table 3.3 reports
all the data useful to compute the additional acceleration. Moreover considering

Surface Area [m2] Coefficient of Reflectivity CR Mass [kg]

16 1.1 2100

Table 3.3: Euclid’s spacecraft main characteristics

Euclid’s spacecraft as reference model to compute the solar radiation pressure
component of the complete force field is useful to validate the force model itself.
In Chapter 4 a validation of the designed force model is presented; the cross-
validation is in fact based on a discarded Euclid’s trajectory.

3.1.3 Third Bodies Perturbations

In Chapter 1 main features of such a dynamical model like the circular restricted
three body model have been discussed; moreover, previously in this chapter, it
has been cleared up the relevance of overcoming restrictions imposed by con-
sidering primaries orbits circular and planar. Lastly it has been highlighted
the nature of an additional perturbation driven by the solar radiation pressure,
thus, in order to design an accurate and reliable force model, to propagate all the
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Figure 3.3: Solar System Representation. Credit to Adam Dorman

analyzed trajectories, it is necessary to take into account another type of per-
turbation, gravitational attraction due to the presence of external third bodies.
Modeling the complete force field, through which it has been assumed that the
hypothetical spacecraft is moving, gravitational fields of all the Solar System
planets have been considered, besides Pluto perturbation has been included.
Moreover it has been made necessary to take notice of Moon’s gravitational
field, whose influence, along the early transfer-to-Lagrangian phase, acts upon
spacecraft trajectory above all other perturbations considered; Section 5.2 will
be highlighted the relevance of such a third body perturbation.

To evaluate all the gravitational fields included in the complete force model,
it has been assumed a simplified spherical model.

3.2 Ephemerides Approach to Complete Force
Field Design

Ascertained that the CR3BP system of differential equations could represent a
reliable and rather simple to apply tool to design the chased trajectory, con-
sidering both restrictions driven by such a dynamical system and all the sort
of perturbations presented in Section 3.1, it is clear that a much more precise
and refined force model has to be implemented to correctly propagate the final
trajectory. Taking notice to what it has just been said about the implementa-
tion complexity of a system of equations of motion derived from an elliptical
restricted model, recalling the impossibility of neglecting the effects of the solar
radiation pressure and the gravitational fields of main Solar System bodies, a
different approach has to be adopted to model an acceptable complete force
field.

For the purpose of this research, it has been decided to directly solve the
differential equations of motion for the generic ith body given the position of
other N bodies, adding the force or the acceleration component induced by the
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solar radiation, where the aforementioned N bodies are represented by the Sun,
all the planets of the Solar System, including Pluto, and the Moon. In terms of
acceleration the equation (1.5) may be written as

a = −Gm1

r1i
3

r1i −
Gm2

r2i
3

r2i − ...−
Gmn

rni3
rni (3.6)

The vector equation (3.6) express the overall acceleration perceived by the ith

body, the hypothetical spacecraft. Adding the component relative to the solar
radiation pressure, equation (3.5), it is possible to express the system of differen-
tial equations of motion adopted to propagate all the trajectories designed and
analyzed throughout this research. In terms of acceleration the system could be
expressed as

a = −ΦA

mc
CR

r1i

r1i
3
− Gm1

r1i
3

r1i −
Gm2

r2i
3

r2i − ...−
Gmn

rni3
rni (3.7)

Where m1, m2, ..., mn are the mass values of the N bodies considered and r1i,
r2i, ..., rni represents distance values between the aforementioned bodies and the
ith body. Adopting the astronomical symbols:

• Sun - �

• Mercury - '

• Venus - ♀

• Earth - ♁

• Moon-$

• Mars - ♂

• Jupiter - X

• Saturn - Y

• Uranus - Z

• Neptune - [

• Pluto - \

It is possible to write the system of differential equations of motion, (3.7), as
follows

a = −ΦA

mc
CR

r�i
r�i3

−
Gm�
r�i3

r�i −
Gm'
r'i

3
r'i −

Gm♀
r♀i3

r♀i −
Gm♁
r♁i

3
r♁i −

Gm$
r$i3

r$i

−
Gm♂
r♂i

3
r♂i −

GmX
rXi

3
rXi −

GmY
rYi

3
rYi −

GmZ
rZi3

rZi −
Gm[
r[i

3
r[i −

Gm\
r\i

3
r\i

(3.8)
Numerical values of both bodies mass values and gravitational constant are
reported in Section 1.5.

To solve the system of differential equations of motion, (3.8), a numerical
integration process has been adopted; such a process is based on an explicit
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Rung-Kutta (4,5) formula, the Dormand-Prince pair. It is a single-step solver
in computing the solution as a time function, it needs only the solution at the
immediately preceding time point [6]. Observing equation (3.8), it is clearly
that precisely evaluate positions of all bodies characterizing the force model
is fundamental to solve the aforementioned system. Thus it is necessary to
use a computational tool whose usefulness is to provide ephemerides of desired
celestial body along a defined time span, in this sense the SPICE Toolkit has
been employed.

3.2.1 SPICE Toolbox

SPICE is an observing geometry information system, provided by NAIF (an
acronym which stands for NASA’s Navigation and Ancillary Information Fa-
cility) to assist scientists and engineers in planning and interpreting scientific
observations from space-based instruments; moreover SPICE usefulness could
be oriented to mission engineering tasks. The nascent SPICE system was fo-
cused on assisting scientists with data analysis tasks, but it was quickly realized
by the space exploration community that the design characteristics of SPICE
made it equally suitable for use in mission design, mission operations, and ob-
servation planning. Today SPICE is routinely used in all phases of planetary
missions, and portions of SPICE are increasingly being used on other types of
space science missions. Introducing a SPICE data overview, it is possible to
identify many different type of data kernels, necessary to perform every type of
analysis in SPICE environment. Table 3.4 provide a brief summary of these data
files typologies. Kernels adopted in this research are reported in Section 1.5. It
is now introduced a brief description of most useful tools, belonging to SPICE
library, adopted to compute all the necessary celestial bodies ephemerides.

• bodvrd - The routine bodvrd supply physical data, radius and gravita-
tional parameter values, of celestial bodies. Values reported in Section 1.5
have been obtained using this tool.

• str2et and et2utc - The routine str2et convert a string representing an
epoch to a double precision value representing the number of TDB seconds
past the J200 epoch corresponding to the input epoch; instead the routine
et2utc perform the inverse procedure.

• sxform - The routine sxform return the state transformation matrix from
one frame to another at a specified epoch.

• spkezr - The routine spkezr return the state vector, position and velocity,
of a target body relative either to an observing body or a specific point like
the Solar System barycenter, optionally corrected for light time (planetary
aberration) and stellar aberration. It is obviously necessary to define in
input the time or the time span of observation and the reference frame
considered.

Recalling the system of differential equations of motion (3.8) and considering
the aforementioned tools requirements, it clearly appears essential to define an
inertial reference frame under which ephemerides are defined; in fact assuming a
non-inertial reference frame would make lose validity to the considered equations
of motion. Aiming to get a numerical solution to the (3.8) system of equations,
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Logical Components Data Files (Kernels) Contents

Planet and
Spacecraft

SPK

Space Vehicle or
Target Body
Trajectory

(Ephemerides)

Planet PCK
Target Body Size,

Shape and
Orientation

Instrument IK
Instrument Field of

View Size, Shape and
Orientation

Camera-Matrix CK

Orientation of Space
Vehicle or any

articulating
Structure on it

Events EK

Events Information:
Science Plane,

Sequence of Events
and Experimenter’s

Notebook

Other FK
Reference Frame

Specifications

Other LSK
Leapseconds
Tabulation

Other SCLK
Spacecraft Clock

Coefficients
Other DSK Digital Shape Models

Table 3.4: Kernels Contents

ephemerides, under which relative distances between each celestial body and
the hypothetical spacecraft are computed, refer to the J2000 reference frame
centered in the Solar System barycenter. Thus it is also taking in consideration

Figure 3.4: J2000 Reference Frame Rappresentation
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the Sun motion around the barycenter of the entire Solar System, even so it is
slightly moving around such a point whose position is located rather close to
the Sun barycenter (the Solar System barycenter could be periodically found
inside the Sun volume or at a maximum distance of rather 2.5 Sun radii from
the Sun barycenter itself) at low speed values of less than 20 m/s.

The definition of the J2000 reference frame is based on the Earth’s equatorial
plane and on the Ecliptic plane, determined from observations of planetary data.
The X-direction of such a reference frame is called vernal equinox and represents
the intersection the equatorial and ecliptic plane. The Z-direction is normal to
the mean equator of date at epoch J2000 TDB, approximately Earth’s spin
axis orientation at that epoch (J2000 TDB is 01 JAN 2000 at 12:00:00.000
TDB). The Y-direction complete the set of three. Figure 3.4 shows a simplified
representation of the axes orientation of the J2000 reference system.

3.2.2 Perturbations Effects

In order to provide a brief overview of all the perturbations effects driven both
by the third bodies gravitational fields and by the solar radiation pressure, a
simple simulation has been carried out in STK environment (references to this
software usage provided in Section 5.3) and it is now reported. First of all an
initial condition, characterized by values of epoch, position and velocity com-
pletely coherent with a quasi-periodic orbit around Sun-Earth L2, has been
fixed. Subsequent to such a state point definition, the initial condition itself has
been propagated for 30 days (designing the final trajectory, this time step rep-
resents the maximum interval of free propagation considered) using 5 different
propagators:

• H0 Propagator - Only Sun and Earth gravitational fields

• H1 Propagator - Moon perturbation added to H0

• H2 Propagator - Spherical Solar Radiation Pressure added to H1

• H3 Propagator - Inner Solar System Planetary systems gravitational
fields added to H2

• H3 Propagator - Outer Solar System Planetary systems gravitational
fields added to H3

Figure 3.5, Figure 3.6, Figure 3.7 and Figure 3.8 highlights the effects of adopting
different propagators which include different sources of perturbation.
Looking in particular to Figure 3.5 and Figure 3.6 it is possible to observe the
error in terms of position using a propagator whose composition neglects the
effect of third bodies perturbations (Moon and Solar System planets) and Solar
Radiation Pressure; discrepancies raise exponentially to values around 8000 km,
fluctuation of higher precision propagators depends mainly on mutual positions
of the inner and outer planets of the Solar Systems, strictly dependent from the
epoch analyzed. Error magnitude raises exponentially considering a larger time
span; in fact, propagating the aforementioned initial conditions for 90 days,
the position error, evaluated adopting the H4 Propagator instead of the H0
Propagator, reach values around 2e5 km.
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Figure 3.5: Propagators Confrontation. Distance [km] from H0 Trajectory

Figure 3.6: Terminal Section of Position Error Confrontation Curve

Figure 3.7: Propagators Confrontation. Velocity [m/s] (respect to the Earth)

Excluding the third body perturbation driven by the Moon from the H4
Propagator, it has been obtained the H4Mod Propagator. Making a 30 days
comparison of position error, considering both H4 and H4Mod, it is possible
to observe the preponderant effect of Moon perturbation over any other whose
effect has been taken in consideration. Figure 3.9 show such a result. Thus,
considering the Sun-Earth system, it is obviously clear and demonstrated the
most relevant perturbation is driven by the Moon gravitational field. Evidently,
for this analysis it has been considered the real Earth’s orbit path to design
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Figure 3.8: Terminal Section of Velocity Error Confrontation Curve

Figure 3.9: H4 and H4Mod Propagators Confrontation. Distance Magnitude
[km] from H0 Trajectory

even the less accurate propagator, so restrictions in terms of orbit circularity
characterizing the CR3BP have been in this sense overcame. Finally deepened
considerations about Moon’s perturbation are highlighted in Section 5.2.1.
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Complete Force Model
Approach to Trajectory
Optimization

This Chapter is concerned with the procedure developed to ’translate’ the hy-
pothetical trajectory designed in the context of the CR3BP, taking into con-
sideration a quite close to reality force model. Firstly a clear overview of the
numerical and mathematical tools, adopted while designing and parsing the tra-
jectories, will be provided. Thus the most relevant aspects of the ’translation’ to
the complete force model algorithm will be exposed. Finally, trying to retrace
an ESA Euclid’s discarded trajectory, it shall try to give some validation of both
the complete force model and the algorithm adopted.

4.1 Computational Approach

This Chapter will focus on the methodology used to determinate a continuous
path fitted for connect the Earth to a quasi-periodic orbit around a desired La-
grangian point in a particular binary system. The approximation provided in
Chapter 2 is based on the numerical solution of the system of differential equa-
tions of motion regarding the circular restricted three body problem. Whereas,
adopting the complete force model proposed in Chapter 3 and then propagating
the initial conditions concerning the aforementioned approximation, the solution
will diverge quite rapidly.

The method developed provides improved initial conditions, at specified
intervals along the entire path, taking into consideration the expanded force
model; then such improved propagated trajectories can be ’patched’ together for
a continuous motion along the path previously drawn according to the CR3BP.
Operationally, using this methodology, it is firstly attempted to define a se-
quence of specific points, a mesh, belonging to the previously designed CR3BP
adimensionalized trajectory. These points shall be considered as bounds of many
sub-trajectories arcs to be determined according to the designed complete force
model. Thus each of these arcs is characterized by a specific initial condition, a
state vector which has to be proper modified, in terms of velocity module and
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direction, so that, numerical solving the equations of motion, (3.8), a trajectory
connecting the initial position to the next mesh point can be designed.

All the numerical integration processes are accomplished adopting the same
approach exposed in Section 2.1. Further in this Section, main features of the
proposed methodology will be exposed.

4.1.1 Dimensionalize the CR3BP Solution

At this point it shall be noticed the presence of inconsistencies considering
the hypothetical CR3BP Trajectory and the complete force model proposed in
Chapter 2, specifically an adimensionalized trajectory has just been designed,
thus it is necessary to translate it in a dimensional reference system. Such a
reference system must be consistent with the equations of motion (3.8), so the
trajectory propagated under the equations of the CR3BP shall be dimensional-
ized and translate from the synodic frame, Section 1.3, to the J2000 reference
frame, centered in the Solar System barycenter, Section 3.2.1.

Recalling the planar and circular orbit constraints, concerning to the CR3BP
assumptions, it is clear that, aiming to adopt a close-to-reality complete force
model, seeking to dimensionalize the aforementioned trajectory, it is not possible
to adopt constant values of primaries distance. Clearly this has to do with the
fact taht primaries orbits are elliptical, thus their mutual distance values vary as
a function of time. This tallies with the need to define an epoch value to be al-
located to the initial point of the supposed trajectory. By doing so, it is possible
to assign, to each adimensionalized trajectory point, an epoch value, computed
from the first. Obviously, these epoch values are computed considering the time
values previously assigned to each CR3BP trajectory point, assuming a zero
value for the first point.

Figure 4.1: Dimensionalization Comparison. Constant Sun-Earth Distance
(shaded in red); Real Sun-Earth Distance (shaded in blue). Earth Centered
Synodic Ref Frame.

Once an epoch value has been assigned to each point, it is possible to dimen-
sionalize the matching state vector computing the real primaries distance value.
Such a parameter should be evaluated using the SPICE Toolbox, Section 3.2.1.
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Figure 4.1 and Figure 4.2 highlight the difference found using both a constant
primaries distance value and computing the evolution in time of this parameter;
an arbitrary quasi-periodic orbit around the L2 Lagrangian point in the Sun-
Earth system has been used to show the comparison (Ax=2e5 km, Az=5e4 km
and φ=180 deg ; epoch: 01 Jan 2019 00:00:00).

Clearly such an operation has no physical meaning and can’t be considered
as a methodology to solve the elliptical restricted three body problem. By the
way, dimensionalizing the CR3BP trajectory it has been created a path to be
retraced under the effect of the complete force model proposed, getting to the
final solution. Lastly it has to be noticed that, referring to this dimensional
path, it is only considering the position components. The final result of the
dimensionalization process of the CR3BP trajectory will be a series of points, a
path, deriving from this trajectory, characterized by an epoch value and three
position components, expressed under the inertial J2000 reference frame (cen-
tered in the Solar System barycenter).

Figure 4.2: Dimensionalization Comparison. Constant Sun-Earth Distance
(shaded in red); Real Sun-Earth Distance (shaded in blue). Solar System
Barycenter, J2000 Ref Frame.

Having translate the CR3BP trajectory (at least in terms of position), it is now
possible to point the focus on the evaluation of the trajectory arcs connecting
each two consecutive mesh points. For the sake of completeness, it has to be
said that the first point of the adimensionalized trajectory will represent the ini-
tial condition from which start even the propagation under the complete force
model. For this reason it is necessary to dimensionalize and translate also its
velocity components, first point complete state vector will be adopted as first
attempt to be propagated in order design a proper first trajectory arc.

Adopting a Variable Step Size Mesh

Clearly, it is fundamental to create an optimal mesh starting from the CR3BP
trajectory; it is aiming to choose the best number of trajectory’s points to
be considered as nodes of such a mesh. These points will define the path to be
retraced under the equations of motion defined by the complete force model, thus
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they represent the bounds of the trajectory arcs which have to be propagated.
Basically it would be possible to consider a mesh as fit as the number of points
characterizing the preliminary trajectory (the quantity and the distribution in
time of such these points is determined by the numerical integration time step,
Section 2.1). Clearly such a mesh would be too dense and completely useless,
furthermore, as it will be explained in the next Section, the numerical approach
adopted to identify the correct initial conditions, which propagation define a
trajectory arc connecting the current mesh point to the next, could not converge
to an acceptable solution if the time step between the two mesh points is too
large. Thus an adaptive time step has been considered to define an optimal
mesh; in this sense an upper limit of 30 days time step and a lower limit of 1
hour time step have been imposed. Due to the nature of the numerical procedure
further exposed, there will be a much more dense mesh in the early phase of
the transfer trajectory, then the time step will increase to the maximum value
of 30 days in parallel to the QPO approach and up-keeping. This upper limit
has been set as compromise between the need of computational cost reduction
and the scientific and engineering requirements fulfillment.

4.1.2 Trajectory Arcs Construction

Given two generic consecutive mesh points it is necessary to define a numerical
procedure to determine which initial condition will produce a solution to the
complete force model equations of motion, resulting in a trajectory arc which
connects the aforementioned mesh points. State vectors at the beginning and
at the end of each interval are defined as six-dimensional target points (three
position components plus three velocity components). An integrated path be-
tween two consecutive mesh points is defined as a trajectory segment. Further
exposed procedure was firstly presented by K. C. Howell and H. J. Pernicka [8].

Figure 4.3: Schematic Representation of a Single Step of the Iterative Correction
Process.

Once the mesh points or the target points have been determined, trajectory
segments between target positions are determined modifying the velocity state
vector at the beginning of the interval, trying to match the resultant trajectory
segment end point with the position value at the end of the interval. This first
iterative process is made using a differential corrector. Segments are patched
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together, resulting in a trajectory which is continuous in position but presenting
also velocity discontinuities, DV, at each mesh point. To expose an example of
such a process, the method is summarized for the case of an arbitrary interval
between two hypothetical mesh points separated by a certain time step. Figure
4.3 shows an hypothetical step of the iterative correction process.

The State Transition Matrix

Before entering the explanation of the correction process, it is necessary to intro-
duce the concept of State Transition Matrix of partial derivatives. The function
of the State Transition Matrix, STM, is to relate the coordinate variations for
the times tk and tk+1, in addition such a matrix could pose cumbersome anlayt-
ical expression when the equations of motion regard a much more complex and
accurate force model. For the purpose of this research a particular method has
been considered to compute the STM, the Markley’s Method [7].

The Markley’s method uses two different states at the times tk and tk+1, and
then it evaluates the transition matrix between them by using the expression
of the equations of motion. This method consists of making one approximation
for the STM of the state vector based on the Taylor series expansion for a
determined interval of propagation ∆t. It is possible to express the differential
equation of the state transition as follows

d

dt
Φ(t, t0) = A1(t)Φ(t, t0) (4.1)

Where it has been introduced the A1(t) matrix, defined using the gradient
matrix G(t)

A1(t) =

[
0 I

G(t) 0

]
and G(t) =

∂

∂r
a(r, t) (4.2)

In equations (4.1) and (4.2) it has been referred to r=(x,y,z)T as the Cartesian
position state vector at the generic time t. The vector a(r,t) represents the
acceleration of the hypothetical spacecraft; components of such a vector could
be evaluated, at each time instant, through the equations of motion (3.8). G(t)
matrix expression could be expanded as follows

G(t) =
∂

∂r
a(r, t) =


∂ax
∂x

∂ax
∂y

∂ax
∂z

∂ay
∂x

∂ay
∂y

∂ay
∂z

∂az
∂x

∂az
∂y

∂az
∂z

 (4.3)

Thus, performing successive derivatives of the differential equation (4.1), fol-
lowed by substitutions, gives the derivative of the transition matrix:

di

dti Φ(t, t0) = Ai(t)Φ(t, t0)

Ai(t) = ˙Ai-1(t) + Ai-1(t)A1(t)
(4.4)

The dot represents the derivative with respect to the time. Developing Φ(t,t0)
in Taylor’s series at t=t0, using the matrices Ai(t0) for i=1,...,4 and the initial
condition Φ(t0,t0)≡I, the transition matrix of the position and velocity obtained
after some simplification [7] may be written as

Φ(t, t0) ∼
[
Φrr Φrv

Φvr Φvv

]
(4.5)
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Φ(t,t0) is a 6x6 matrix where, considering that ∆t≡t-t0 and G0≡G(t0),

Φrr = I + (2G0 + G) (∆t)2

6

Φrv = I∆t+ (G0 + G) (∆t)3

12

Φvr = (G0 + G)∆t
2

Φvv = I + (G0 + 2G) (∆t)2

6

(4.6)

Having introduced the concept of State Transition Matrix and having also pro-
vided a method to evaluate it, according to the complete force model proposed,
it is now possible to proceed in the explanation of the iterative correction pro-
cess.

Iterative Correction Process

Looking again to Figure 4.3, aiming to find a trajectory segment which connects
the starting and the arrival points, it is necessary to define the proper initial
condition, in terms of velocity, which, once propagated along the tk-tk+1 time
span, provides the required result. Further it will refer to the situation shown
in Figure 4.3 as an example to illustrate the generic iterative correction process.

The first guess for the initial point state vector is Xk={xk,yk,zk,uk,vk,zk}T,
and vector states associated with the other target points are Xk+1 and Xk+1

*.
Clearly if k=0, in other words considering the first trajectory segment, the first
guess in terms of velocity is equal to the velocity value at the first point of
the CR3BP trajectory, properly dimensionalized and translated in the J2000
reference frame. The first segment is computed by numerically integrating Pk,
along with the transition matrix, for the time tk-tk+1 to the point Pk+1

*. In
general, the state values at Pk+1

* will not equal the target values at Pk+1. A
differential correction process is used to modify the velocity components at Pk to
meet the position requirement at Pk+1. The vector relationship can be written
as follows

δX∗k+1 ' Φ(t∗k+1, tk)δXk +
δX

δt

]
P∗

k+1

δ(t∗k+1 − tk) (4.7)

The three scalar equations in (4.7) contain four unknown: changes in the velocity
components, δuk δvk δwk, and change in the segment time, δ(tk+1-tk). There
are many solutions to such a problem. However a rearranged linear form of the
scalar equations could be expressed as follows

Lc = b (4.8)

Where

L =


Φ14 Φ15 Φ16 u

Φ24 Φ25 Φ26 v

Φ34 Φ35 Φ36 w

 evaluated at Pk+1
*

c = {δuPk
, δvPk

, δwPk
, δ(t∗k+1 − tk)}T

b = {δxPk+1
, δyPk+1

, δzPk+1
}T

(4.9)
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Elements Φij are elements of the aforementioned 6x6 State Transition Matrix.
The last three scalar equations of (4.7) are not used. Assuming that all the
unknowns in c have equal importance, a result from linear algebra states the
solution to (4.8) with the smallest Euclidean norm is given by

c = LT (LLT )−1b (4.10)

Once the vector c of velocity variations at Pk has been evaluated, the integration
is restarted at tk considering the modified initial state and proceeds for the new
time interval. Such a process has to be iterated until the position Pk+1

* converge
to the position Pk+1 within some small tolerance (as example, for the purpose
of this research, a tolerance of 1 km has been set). The following trajectory
segment is computed following the same steps, using as initial guess the arrival
point state vector, Xk+1, of the previous segment. The two segments are now
patched; in calculation of both segments, starting and arrival positions are fixed,
and the just explained iterative process corrects velocity so that the resulting
path is continuous in position, but not in velocity. This process is repeated for
all the trajectory segments bordered by the selected mesh points.

As it is previously said, such a process only guarantees a path continuous in
position, in fact, at each junction point, a certain velocity discontinuity arise.
Such a DV has to be provided by the spacecraft, thus it represents an infinite
maneuver which has to be performed to continue traveling along the charted
trajectory. The overall sum of these maneuvers somehow represents the cost
in terms of propellant budget of the mission; taking also notice that every sin-
gle maneuver complicates the entire mission, it is necessary to minimise the
number of these impulsive burns. Thus it is clearly fundamental to drastically
reduce the number of mesh points considered, discarding any of them which is
unnecessary. Figure 4.4 shows a representation of the final result of the iter-

Figure 4.4: Final Corrected Trajectory Representation. CR3BP Trajectory
at Variable Primary Distances Dimensionalization (shaded in blue), Complete
Force Model Trajectory (shaded in red), Mesh Points (cyan dots). Earth Cen-
tered Synodic Ref Frame.

ative process applied over the entire CR3BP trajectory. The final trajectory,
propagated considering the complete force model is shaded in red; an arbitrary
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quasi-periodic orbit around the L2 Lagrangian point in the Sun-Earth system
has been used to show the comparison (Ax=2e5 km, Az=5e4 km and φ=180
deg ; epoch: 01 Jan 2019 00:00:00). As it was anticipated, the resulting mesh
of boundary points is much more dense in the Earth-Moon system proximity.
This is due to the higher intensity and variability of the proposed force model
in such this region. However such an elevated number of maneuver points has
to be avoided, especially when the considered maneuver is performed too much
close to the Earth system (injection precision requirements could be too far out
to reach, due to the stronger effect of the Earth-Moon gravitational fields). Sec-
tion 5.3 will concern the trajectory optimization process to sensitively reduce
the number of maneuvers to be planned. Further results will be exposed in the
next Chapter.

4.2 Algorithm Validation

It is now illustrated the strategy adopted to perform a preliminary validation
of the entire aforementioned process adopted to design a trajectory connecting
the Earth and a quasi-periodic orbit around a generic Lagrangian point. In this
regard, it has been considered, as reference solution, a discarded ESA’s Euclid
[11] trajectory (further information about this mission are reported in Section
1.4). The aim of this validation process is to recreate such an Euclid type tra-
jectory, starting from a preliminary design phase, under the CR3BP equations
of motion, and then modifying this solution to meet the complete force model
constraints. Further in this Section it will refer to the reference Euclid trajec-
tory as RET.

Figure 4.5: Reference Euclid Trajectory (RET). Earth Centered Synodic Refer-
ence Frame

Only available sources, regarding RET, are a complete set of ephemerides, com-
puted in the synodic Earth-centered reference frame, from which it has been
possible to draw a simple representation reported in Figure 4.5.
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CR3BP Preliminary Design

Firstly it is necessary to properly define the geometric characteristics of the
CR3BP quasi-periodic orbit which it is trying to recreate. The considered Eu-
clid’s orbit around the Sun-Earth L2 libration point is a Lissajous type quasi-
periodic orbit. Furthermore it is possible to observe, from Figure 4.5, that such
a QPO is characterized by large amplitude values, in addition these values seems
to be pretty similar and ranging from 3e5 km to 4e5 km. Recalling considera-
tions made in Chapter 2, the insertion phase angle value still has to be defined;
looking to the transfer phase shape and the insertion in QPO location, Figure
4.5, a 180 deg insertion phase angle value has been adopted.

An analysis made by trial and error has been accomplished, thus, to retrace
the RET, it has been selected a CR3BP trajectory ending in a QPO of Ax=3.2e5
km, Az=3.4e5 km and φ=180 deg. Figure 4.6 shows a geometrical confrontation
between the RET and the aforementioned proposed trajectory.

Figure 4.6: RET (shaded in blue). Computed CR3BP Trajectory (shaded in
red)

It is important to notice that the designed trajectory has been built under the
CR3BP equations of motion and further dimensionalized adopting a variable
Sun-Earth distance value. Instead the RET is a trajectory propagated according
to the complete force model equations of motion, thus such a confrontation has
to be considered only useful to narrow down the analysis space and select a
proper preliminary trajectory to be modified under the complete force model
equations of motion.

Complete Force Model Design

It has been previously said that, aiming to compute the final trajectory, it is nec-
essary to define an epoch value from which the propagation has to be initiated.
Taking as reference the epoch values characterizing the RET, a rounded initial
time has been selected to design the trajectory of comparison. The selected
initial epoch is the 3rd of November, 2017. In Figure 4.8 it is possible to observe
the trajectory resulting from the correction process illustrated previously in this
Chapter (shaded in red).
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Figure 4.7: STK representation of both RET and computed trajectory.
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Figure 4.8: RET (shaded in blue). Final Corrected Trajectory (shaded in red)

Such a trajectory has clearly been propagated under the complete force model
equations of motion, Chapter 3. As it is possible to see from Figure 4.8, the
computed final trajectory is pretty similar to the RET. In particular the quasi-
periodic orbit around the Sun-Earth L2 libration point is very much like the
RET corresponding phase. Moreover some views from the Figure 4.8 highlight
even slightly differences between the two transfer phases. However, for what
concerns the transfer phase, different shapes could be obtained simply varying
the minimal distance value from Earth which it is trying to achieve. As exam-
ple the aforementioned final trajectory starts from an altitude over the Earth
surface of approximately 1e4 km. Anyway such a shape difference could be
neglected observing that the transfer phase inserts the hypothetical spacecraft
in the QPO in a similar manner, considering both the RET and the computed
trajectory; moreover they present approximately the same transfer time from
the Earth to the insertion in QPO.

This final solution, present a DV budget of approximately 400 m/s (the sum
of all the velocity discontinuities along the complete path). This value could be
lowered adopting an ignition sequence optimization strategy (such a method-
ology will be exposed in depth in Section 5.3). An optimized DV budget of
approximately 150 m/s could be finally achieved. Considering the geometric
conformity of the RET and the computed trajectory, whose DV budget appears
to have an acceptable value, if compared with that characterizing similar trajec-
tories, it may be concluded that the proposed methodology, adopted to design
a trajectory under a complete force model, is valid and applicable.
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Results

In order to provide a clear overview of research achievements, main features of
evaluated trajectories are shown in this chapter. First of all geometric char-
acteristics will be highlighted, then these will be related to some propellant
budgeting consideration; for this purpose some response surfaces will be assem-
bled steering research objective towards an optimization problem in terms of
Delta-V necessities.

5.1 Trajectories Found

According to Chapter 4, the generic final trajectory propagated considering
complete force model, comes out from a baseline path well defined by the in-
tegration of the differential equations of motion and by the analytical solution
of CR3BP. In particular the geometrical definition of the quasi-periodic orbit
around the libration point derives from a specific analytical solution. In this
sense, referring to the Lissajous solution to the CR3BP, once few parameters
(x-axis amplitude, z-axis amplitude, time of propagation) are selected, a single
Lissajous periodic orbit is determined. The following step is to find a numerical
solution to the CR3BP rather similar to this Lissajous orbit. Such a numerical
solution is achieved through a numerical integration process, so correctly varying
the initial conditions evaluated considering the analytical solution, it is possible
to get a numerical solution close enough to the aforementioned Lissajous orbit.
Proceeding in the dissertation it is referred to final trajectories as:

TXXX − ZZZ

Where:

• XXX Refers to x-axis amplitude of Lissajous Orbit [1e3 km]

• ZZZ Refers to z-axis amplitude of Lissajous Orbit [1e3 km]

5.1.1 Nominal Periodic Orbit Selection

The code and the relative procedure developed to find suitable trajectories could
manage large typologies, in terms of geometric traits, of Lissajous orbits around
both L1 and L2 libration point in Sun-Earth System or Earth-Moon System;
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nevertheless the focus will be pointed on three different quasi-periodic orbits
around L2 in Sun-Earth System, due to scientific significance of this orbit class,
ascertained during the state of the art analysis of mission involving periodic
orbit around Lagrangian points. QPOs are propagated for one year after the
end of nominal transfer phase; these orbits are:

• T200-050

• T200-010

• T300-050

They have been selected after preliminary and rough evaluation phase consid-
ering only the stability of the numerical solution to the differential equations
of CR3BP; moreover geometries considered are similar to one of the proposed
hypothetical relative to Euclid trajectory, benchmark solution of the study.

5.1.2 Variables domain

Given the nominal QPO, two other variables have been considered: the insertion
angle on QPO and the launch date. First it is necessary to consider the inser-
tion angle on the quasi-periodic orbit found; this variable refers to the phase
angle of the analytical Lissajous orbit, assuming 0 degrees in case of insertion
at the furthest point from the Earth, in xy plane, of QPO and 180 degrees for
the closest point (it is considered an orbit around L2 in Sun-Earth system).
Once the phase angle is selected the code can evaluate the transfer trajectory
from an undefined Earth departure orbit (further analysis could concern about
the merging operation of transfer phase and launch phase) through a process of
backward integration. The coupling of transfer trajectory and QPO gives the
baseline final trajectory. Then it is needed to define a launch Epoch relative
to the first point of the transfer phase in order to evaluate the final trajec-
tory. This will be propagated considering the proposed complete force model
(time parameter is fundamental to obtain correct ephemerides of solar system
perturbing bodies, giving a correct solution of the N-body problem).

Finally there are four different variables defining the complete solution; given
one nominal periodic orbit solution, Section 5.1.1, it has been defined a simple
domain characterized by two parameters: insertion phase angle, IPA, values
span from 135 degrees to 225 degrees with 15 degrees step (the Earth-pointing
arc), and launch date which values vector contains the first and the fifteenth
day of every month of 2019. Referring to the launch date vector, the analysis
will take in consideration a time span of one year, this assumption is justified
by the duration of the revolution motion of the Earth around the Sun. The
perturbation driven by the elliptical shape of Earth’s orbit (CR3BP considered
circular orbits) is characterized by a periodic nature and presents rather the
same value after one complete Earth’s revolution. Considering a time step
of 15 days gives the possibility of take in consideration the revolution motion
of the Moon around the Earth; again will arise a periodic perturbation driven
by the elliptical shape of Moon’s orbit. This step value permits to achieve a
good comprehension of the behaviour of the solutions field over the variables
domain, without increasing computational costs. No more contributions have
been taken into account modeling the variables domain as a matter of fact that
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Figure 5.1: Earth’s Orbit around the Sun

Figure 5.2: Moon’s Orbit around the Earth
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Sun, Moon and Earth contributions to the N-body problem solution are prepon-
derant respect to the other bodies gravitational field. Underlying relevance of
aforementioned time span, in Figure 5.1 and Figure 5.2 respectively the Earth’s
orbit around the Sun and the Moon’s orbit around the Earth are shown. Each
orbit is evaluated starting from a launch epoch between the first of January
2019 to the first of January 2020. Each position vector derive from ephemerides
data calculated using Spice toolkit. As reference, to compute circular orbits it
has been considered following values:

• Earth’s Orbit Radius - 1,4960E+8 km

• Moon’s Orbit Radius - 3,8440E+5 km

In Figure 5.3 it is possible to see a simple representation of the variables domain
through which the final trajectory research activity will be driven. Each point
represents a single trajectory characterized by the QPO geometry (equal over
the domain) and specific values of insertion angle and launch date.

Figure 5.3: Domain of Final Trajectory Variables

5.1.3 CR3BP Solution

The baseline path of the final complete model trajectory is marked by an adi-
mensionalized numerical solution of the CR3BP, therefore this first sketchy re-
sult is completely independent from the time variable. Reminding consideration
of Chapter 2, the adimensionalized solution derives from an orbital model which
considers the Earth in an exact circular motion around the barycenter of the
two-body Sun-Earth system. Then the adimensionalization parameter is equal
to the Astronomical Unit, the distance between Earth and Sun centers of mass:

AdimensionalizationParameter = 1, 4960E + 8km

Analyzing the trajectory obtained considering the CR3BP model, it is possi-
ble to distinguish two different phases. Firstly, the transfer phase starts from
an altitude, over the Earth surface, lower than 30000 km (independently from
the trajectory built, this altitude value is a constraint imposed by preliminary
settings of the code) and reaches the quasi-periodic orbit, QPO. The second
phase is represented by the QPO itself, propagated for 360 days. The insertion
in QPO, the connection between these two ’sub-trajectories’, is strictly char-
acterized by the insertion angle value considered. This parameter affects both
the construction of the QPO and the research operation of the transfer trajec-
tory. Once a precise insertion phase angle value is selected, initial conditions,
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regarding the backward integration procedure, aiming to the transfer trajectory
definition, are determined. In particular it was found a strictly dependence from
the insertion angle value for what concerns the capability of the code to find
trajectories which approach much closer the Earth. Choosing higher values of
insertion angle allows to easily achieve a transfer trajectory which starts from
altitudes lower than 10000 km.

Figure 5.4: T200-050, Insertion Phase Angle in QPO 135, CR3BP propagation

Figure 5.5: T200-050, Insertion Phase Angle in QPO 180, CR3BP propagation
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Figure 5.6: T200-050, Insertion Phase Angle in QPO 225, CR3BP propagation

In order to underline these differences, it’s now taken into account the trajec-
tory T200-050 propagated according to CR3BP; in Figure 5.4, Figure 5.5 and
Figure 5.6 are shown variations of T200-050 depending on different insertion
phase angle values. Plots are obtained in Matlab environment.
Graphic results confirm what has just been assessed, the trajectory T200-050
characterized by 225 degrees insertion angle shows a closer Earth-approach than
the other two, which are rather similar in this sense. There are clear geomet-
ric differences between the trajectories evaluated, specifically they diverge from
each other in terms of amplitude of quasi-periodic orbit, even though the ana-
lytical solution is the same; it depends on the convergence of numerical solution
which is conditioned by the assumption of a significant value of z-axis amplitude
of Lissajous analytical periodic solution. It has to be taken in consideration that
the variables domain exploration will ignore approach-to-Earth performances of
different trajectories, as a matter of fact that, in this sense, results could be
improved well-defying and optimizing the launch phase.

Results achieved considering the CR3BP model are slightly meaningful, in
fact it hasn’t been assumed yet the effect of considering the Earth in an elliptic
orbit around the barycenter of the Sun-Earth system; in fact, contrary to circular
simplification, the mutual distance between the two main bodies would change;
moreover, aiming to a closer to reality solution, it has to be considered the effect
of perturbations of third bodies and solar radiation pressure.

5.1.4 Complete Force Model Solution

According to what has been said in Chapter 3, the complete force field which
distinguishes the space around Earth and Sun-Earth collinear libration points,
L1 and L2, is variable in time, due to non circularity of Earth’s motion around
Solar system barycenter and to the presence of the Moon, Figure 5.7.
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Figure 5.7: Complete Force Field representation for a representative Epoch
span, L1 and L2 positions are approximated and based on CR3BP
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Earth’ satellite revolution introduces non negligible irregularities in Sun-Earth
force field; the elliptic orbit considered for the Earth revolution and the presence
of the Moon as a third body are the most relevant perturbations of circular
restricted three body problem, then it is necessary to take these aspects into
account converting the baseline CR3BP solution to the final trajectory.

The first step in order to get the final solution is to introduce a correct mesh
for the baseline trajectory. This meshing operation allows to consider only few
points of the initial path, based on CR3BP equations of motion. Then the
mesh points will be linked towards a differential corrector acting on the initial
state vector, obtaining a multiple arc trajectory propagated according to the
complete force field. Sudden variations of acceleration field intensity could af-
fect the convergence of the differential corrector solution, in other words, two
points too much separated in time could not be connectable using a single arc,
due to aforementioned acceleration variations; otherwise, considering too many
points, a too dense mesh, entail a large computational cost and above all a large
number of impulsive maneuvers, increasing DV budget, to overtake the velocity
discontinuities between two consecutive arcs.
It’s clearly necessary to consider a variable mesh. For this purpose it has been
taken into account a mesh spanning from a 30 days step between two consecu-
tive points, to a 60 minutes step. Closer step are related to the early transfer
phase, where the Earth-Moon gravitational field contributions to local accel-
eration are greater then any other, whereas a larger step could be considered
escaping from Earth’s sphere of influence and during up-keeping operations in
QPO orbit. Figure 5.8 represents a sample of the meshing operation result, it’s
evident the higher density of points in the region closer to the Earth. Once a

Figure 5.8: Mesh Points for T200-050 Trajectory, launch date 15 MAR 2019,
Insertion Angle 180

mesh-based path has been established, through an operation of differential cor-
rection of the state vector at any mesh point (Chapter 4), required to guarantee
continuity at every between-arc connection , it is possible to propagate all the
intermediate initial conditions according to the complete force model system of
differential equations. Some final trajectories are shown; in Figure 5.9, Figure
5.10 and Figure 5.11 it is possible to observe a graphic representation of T200-
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Figure 5.9: Different views of T200-050 propagated considering the complete
force model and different launch epoch values, insertion angle in QPO value 135
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Figure 5.10: Different views of T200-050 propagated considering the complete
force model and different launch epoch values, insertion angle in QPO value 180
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Figure 5.11: Different views of T200-050 propagated considering the complete
force model and different launch epoch values, insertion angle in QPO value 225
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050 trajectory, considering an insertion angle in QPO of respectively135, 180
and 225 degrees propagated starting from different Epoch values.
As it has been previously said, main geometric differences come varying inser-
tion angle, whereas variation of launch date parameter would entail significant
variations in DV consumption. Following on from considering a time-variable
mesh as baseline path, evaluating trajectories at different epochs imply that
these will be characterized by different primary points due to variations in force
model caused by different main bodies mutual position, depending on time pa-
rameter; these different points are linked by different trajectory arcs, however,
meshes are completely generated from the CR3BP solution which is time in-
dependent, so any primary point belong to this unique trajectory, justifying
minimum differences in shape spotted driving the analysis at different launch
epoch values. Later in this Chapter will be examined in depth physical and
geometric characteristics relative to trajectory T200-050; the analysis has been
driven in STK environment.

5.2 Response Surfaces based on preliminary DV
budget

For what has been said in Section 5.1.4, final trajectories found are the result
of an assembly operation of many arcs, each patch point of these sections is
characterized by the presence of certain discontinuity in terms of velocity. In
order to overcome these irregularities a series of impulsive maneuvers, located
at every patch point, is planned; each of them provides a change of velocity
vector precisely fitted to void the discontinuity; Figure 5.12.

Figure 5.12: Graphical velocity discontinuity representation

It is clear that the sum of these maneuvers will represent a rugh estimation of DV
amount that the probe has to provide during his mission. Further improvements
could drive the analysis to consider the effect of finite thrust and consequently
to optimize time, modulus and direction of injections in order to couple two or
many maneuvers and reduce the overall final DV cost.

5.2.1 DV budget estimation

Taking as reference the trajectory T200-050, evaluated considering an insertion
angle in QPO of 180 degrees and as starting epoch the 15th of March 2019
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at midnight, in this paragraph will be given an overview of the evaluated DV
budget. Table 5.1 shows each DV modulus and related components expressed in
the J2000 reference system (centered in the solar system barycenter), moreover
the transfer phase and the QPO distinction has been highlighted. DV values
are expressed in [m/sec]. Later in Section 5.2, it will be shown that even if the

Phase Time of Ignition DV (x) DV (y) DV (z) DV

TRN 15 MAR 2019 01:00 3.4315 2.7089 1.4905 4.6190
TRN 15 MAR 2019 02:00 1.7045 2.9571 1.5558 3.7511
TRN 15 MAR 2019 03:00 0.4802 2.5202 1.2943 2.8736
TRN 15 MAR 2019 04:00 2.6009 5.2126 2.6285 6.3910
TRN 15 MAR 2019 16:00 5.7776 0.8979 0.5260 5.8705
TRN 16 MAR 2019 16:00 20.8553 7.5095 4.8575 22.6922
TRN 21 MAR 2019 16:00 32.1496 5.7517 4.5849 32.9803
TRN 26 MAR 2019 16:00 0.7093 5.8971 3.3989 6.8433
TRN 25 APR 2019 16:00 0.8567 2.4207 1.4234 2.9360
TRN 25 MAY 2019 16:00 5.8334 1.3602 0.1892 5.9929
TRN 24 JUN 2019 16:00 9.6357 1.9336 0.0620 9.8280
QPO 24 JUL 2019 16:00 0.8088 2.3407 1.8472 3.0895
QPO 23 AUG 2019 16:00 2.9345 6.6260 2.4636 7.6541
QPO 22 SEP 2019 16:00 0.9116 0.2968 0.5360 1.0984
QPO 22 OCT 2019 16:00 0.3923 0.6172 0.1327 0.7433
QPO 21 NOV 2019 16:00 5.3765 4.9539 2.5786 7.7519
QPO 21 DEC 2019 16:00 7.3940 3.3535 0.5734 8.1391
QPO 20 JAN 2020 16:00 2.5825 4.0702 0.7128 4.8727
QPO 19 FEB 2020 16:00 1.7713 4.9539 2.4088 5.7863
QPO 20 MAR 2020 16:00 1.0347 2.2523 0.6664 2.5667
QPO 19 APR 2020 16:00 2.6085 2.8771 1.7725 4.2689
QPO 19 MAY 2020 16:00 8.0102 0.9227 0.1221 8.0641
QPO 18 JUN 2020 16:00 6.7816 7.1932 2.6227 10.2279

Total DV estimation : 169.0406 [m/s]

Table 5.1: Estimated DV

trajectory above mentioned presents really good results in terms of DV budget,
actually ,in this sense, it is not the best which has been obtained, nevertheless it
will be taken as an example in order to underline the effect of Moon perturbation.

Perturbation driven by the Moon

As it is possible to see from Table 5.1 two mesh points, the sixth and the sev-
enth, respectively placed at 16 MAR 2019 16:00 and 21 MAR 2019 16:00, present
higher values of DV corrections respect to the average of the others character-
izing the trajectory taken into exam. Further analysis have shown that this
behaviour strictly depends on the gravitational effect of the Moon. Perturba-
tions driven by this body haven’t been considered finding baseline solution, in
fact, for this purpose, only the gravitational effect of Sun-Earth system has been
taken into account, coherently with the CR3BP model. Figure 5.13 shows the
weight of gravitational effect of both Sun and Earth over the total amount of
force per unit of mass perceived by the probe. The force values are obtained
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considering the complete force model, Chapter 3. It is clear that the trajectory
section considered is distinguished by a sinusoidal pattern around values close
to unit. These deviations are due to the Moon’s gravitational effect, the probe,
crossing regions delimited by mesh points 6 and 7, comes closer to the Moon.
Actually, the probe, moving away from the Earth, keeps it distance from the
Moon rather fixed, due to the particular combination of its trajectory and the
Moon’s orbit itself. This mutual motion increase Moon’s perturbation to the
CR3BP model, in fact, in this condition, Moon’s gravitational field becomes less
negligible respectively to the Earth and Sun fields. The perturbation caused by
the presence of a fourth body to the CR3BP model solution is more important
in this phase then in anyone else. This aspect force the algorithm to find a
more expensive solution, in terms of DV, to connect consecutive points. Fur-
ther improvements could drive the analysis to consider a narrow and dense time
span in order to optimize the launch Epoch and avoid negative contributions
driven by Moon proximity. Taking as reference the time span considered in

Figure 5.13: Percentage weight of Sun-Earth combined gravitational effect over
total force per unit of mass perceived by the probe, evaluated according to the
complete force model

the previous analysis, the trajectory section between 15 MAR 2019 16:00 and
26 MAR 2019 16:00, Figure 5.14, enlights the condition which drives an in-
creasing perturbation effect of Moon’s gravitational attraction. As a matter of
fact, during the period taken into exam, the probe moves away from the Earth,
increasing constantly its distance from the planet, but remains rather at same
distance from the Moon. The combined effect of these two conditions makes the
attractive force contribution given by the satellite not negligible. During this
phase the gravitational attractive force of the Moon weights on the complete
force model for about 1-2%. Using the STK environment it is possible to have
a clear representation of what has beforehand been discussed about; in Figure
5.15 it is possible to observe the evolution in time of mutual position of Earth,
Moon and the hypothetical probe considered.
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Figure 5.14: Probe distance from Earth and Moon, spanning from 15 MAR
2019 16:00 to 26 MAR 2019 16:00

5.2.2 Building Response Surfaces

Owing to the procedure illustrated in this research, once geometrical parame-
ters of the quasi-periodic orbit arund the collinear libration point, L2 point in
Sun-Earth system as benchmark, has been selected, the resulting QPO orbit,
propagated considering the CR3BP model, is to be considered as the only uni-
vocal aspect which characterize the final result. It’s necessary to introduce two
more parameters to completely define the conclusive trajectory: the phase angle
of insertion in the QPO, which determines the transfer phase, and the launch
epoch, affecting the force model, in terms of gravitational body mutual position,
where the probe will be included.

These variables define uniquely the final trajectory and they have been eval-
uated as design variables in an optimization process to find the solution char-
acterized by lowest DV needs. Because of the impracticability of defining a
function which relate the aforementioned trajectory characteristics and its DV
budget, it has been necessary to resort to a statistic methodology. Response
Surface Methodology (RSM) explores the relationships between several explana-
tory variables and one or more response variables. The method was introduced
by George E. P. Box and K. B. Wilson [1]. The main idea of RSM is to use
a sequence of designed experiments to obtain an optimal response, therefore a
copious number of analysis have been performed in order to assign a rough DV
estimation to every trajectory figuring out from the points considered building
the variables domain, Section 5.1.2. Then the variables domain mesh has been
tightened adding query points every 24 hours along the ’epoch axis’ and every
one single degree step along the ’phase angle axis’; the interpolated value at a
single query point is thus based on a cubic interpolation of the values at neigh-
boring grid points in each respective dimension. The interpolation is based on
a cubic spline using not-a-knot end conditions. Such a response surface per-
mits to better identify best directions of DV optimization, pointing to the most
performant values of launch epoch and insertion phase angle; once an optimal
region is located, more experiments could be driven considering a limited span.
A similar method will reduce the computational cost of the analysis without
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(a) 15 MAR 2019 16:00

(b) 16 MAR 2019 16:00

(c) 21 MAR 2019 16:00
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(d) 26 MAR 2019 16:00

Figure 5.15: STK Visualization of relative positions of Earth, Moon and Probe
at different mesh point epochs

significant lacks of information due to a bad conditioned variables pool.
Figure 5.16, 5.17 and 5.18 show the resulting response surfaces regarding

three different baseline trajectories: T200-050, T200-010 and T300-050 respec-
tively. According to 5.1.2 the analysis span along the entire 2019, considering
the launch epoch variable, and between values of 135 degrees and 225 degrees,
considering the insertion phase angle. Diagrams shown refer to Day OTY as
value on y-axis, this variable concerns to the number of days past after the first
of January 2019; furthermore IPA refers to the value of insertion phase angle
considered. Along z-axis is reported the DV value relative to the single trajec-
tory analyzed, expressed in m/s. These solutions have been chosen in order to
figure out how the geometrical characteristics of target quasi periodic orbit in-
fluence the DV budget of the mission, in other words the aim of such a multiple
analysis is to establish which type of QPO is more stable and is less affected by
force model perturbations.

First of all it will be taken into account the response surface relative to
T200-050, the benchmark solution, a trajectory characterized by a QPO build
over a baseline Lissajous orbit with an x-axis amplitude of 200000 km and a
z-axis amplitude of 50000 km; this surface is shown in Figure 5.16. Taking
into consideration the diagram reporting level surfaces, it is possible to identify
some remarkable regions. Foremost fundamental differences in terms of overall
correction maneuvers cost are caused by variations of launch epoch; fixing the
time variable and changing only the insertion phase angle value, less DV vari-
ations are registered. Two main regions of low DV cost come to notice. The
first is placed between the day 50 and day 100 of 2019, approximately this time
span refers to the month of March, in particular values of DV lower than 200
m/s are obtained considering insertion phase angles next to 135 degrees and
180 degrees. Solution proposed in Section 5.2.1 is just part of this region. Then
increasing launch epoch values, moving forward through the year, a region of
solutions characterized by elevated values of DV budget figures out. Nearby the
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Figure 5.16: Response Surface, Trajectory T200-050
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Figure 5.17: Response Surface, Trajectory T200-010
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Figure 5.18: Response Surface, Trajectory T300-050
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160th day of the year, it is possible to notice a particular region of variables
domain presenting really low quality solution, DV values over 400 m/s, and a
singularity up to 1 km/s due to badly conditioned launch epoch and transfer
geometry affected by unfavorable mutual position of Sun, Earth and in partic-
ular Moon, which pass really close to the hypothetical probe. Going forward
through the year another low overall maneuvers cost region comes out nearby
day 300 of 2019; starting the mission during the second half of October could
permit to reach really low values of DV budget, lower than 150 m/s considering
again insertion phase angles next to 135 degrees and 180 degrees.

Paying now attention to Figure 5.17, relative to trajectory T200-010, it
comes out that results found are pretty closer to them highlighted by the prece-
dent analysis of T200-050. Regions of low and high DV budget are strictly the
same in terms of both launch epoch and insertion phase angle; only remarkable
difference is the magnitude of singularity registered at day 165 and phase angle
195, considering the aforementioned nature of this discontinuity, strictly related
to punctual position of the Moon, it is possible to consider the response surfaces
relative to T200-050 and T200-010 almost equivalent.

Lastly it is necessary to consider Figure 5.18 and the response surface re-
garding T300-050. In this case it is clear that final estimation of DV values are
certainly higher than the beforehand mentioned cases. Analyzing the diagram
reporting level surfaces, it comes out that considering quasi periodic orbits and
relative transfers, geometrically similar to the T300-050 benchmark, drives the
overall cost of the mission through higher average values along the time span of
launch epoch; moreover in this case, larger portion of elevated DV singularity
occurs. The nature of the discontinuity is always similar to the previously men-
tioned, however in this case the magnitude of the singularity is completely out
of scale reaching values up to 3 km/s.

In Table 5.2 best solutions, relatively to baseline trajectory T200-050, are
reported. Further in Section 5.2.3 they will be taken in consideration as ob-
jective of a deepened optimization process, aiming to reduce negative effects of
Moon perturbation during the first phase of transfer to QPO.

Baseline Trajectory T200-050

Launch Epoch Insertion Phase Angle DV [km/s] Transfer [days]

15MAR2019 135 0.1705 90
15MAR2019 180 0.1690 120
15OCT2019 135 0.1520 90
15OCT2019 180 0.1378 120

Table 5.2: Best solution found, Trajectory T200-050

5.2.3 Final Optimization

Two different variables could be the objective of the last optimization process.
Firstly an analysis of the time variable, the launch epoch, will be conducted
in order to avoid main negative effects of Moon’s perturbation; once a refined
launch epoch will be obtained, the focus will move to the geometrical variable,
the insertion phase angle. Lastly a completely refined solution, the optimized
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trajectory, will be attained and in Section 5.3 will be simulated and further
analyzed using the AGI’s STK simulation tool.

It is necessary to remark that such an optimization process could be driven
in different directions. The problem of finding suitable trajectories could be
affected by multiple constraints dictated by scientific necessities or mission ob-
jectives, thus, for many reasons, the solution characterized by the lowest DV
value could be useless or unsuitable. Nevertheless, due to the academic and
theoretical purpose of this research, the refinement procedure will aim to search
the global minimum over the variables domain.

Launch Epoch, avoid Moon perturbation

Referring to what has been discussed about in Section 5.2.1, in the first phase of
transfer trajectory, the perturbation due to the Moon’s gravitational attraction
could not become negligible, causing an increase in terms of maneuvers entity
to overcome this discontinuity in the force field. To precisely select the launch
epoch could improve performances, however this problem is really sensitive to
minimal variations of the initial conditions, thus it is necessary to consider
a thicker time span than the one previously used. In this paragraph results
reported in Table 5.2 will further be investigated and, keeping constant their
geometrical characteristics, the analysis will span 10 days before and 10 days
after the original launch epoch. Two days step will be adopted aiming to find
better solutions in terms of overall maneuvers cost. Figure 5.19, 5.20, 5.21 and
Figure 5.22 report results of the additional analysis operation.

Figure 5.19: Overall DV values for T200-050, insertion phase angle 180 degrees;
launch epoch spans from 01 MAR 2019 to 01 APR 2019

First of all focus must be pointed on differences between real DV values
evaluated during the optimization process and interpolated values coming from
response surfaces; the initial span of 15 days doesn’t accomplish at all to pre-
cisely model the behaviour of the problem response, nevertheless it’s adequately
thick to locate regions of local minimum and maximum over the variables do-
main without worsening computational cost. Analyzing the achieved results it is
possible to identify refined solutions regarding the four trajectories further ana-
lyzed (Table 5.2), resume of the optimized trajectories is shown in Table 5.3. By
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Figure 5.20: Overall DV values for T200-050, insertion phase angle 135 degrees;
launch epoch spans from 01 MAR 2019 to 01 APR 2019

Figure 5.21: Overall DV values for T200-050, insertion phase angle 180 degrees;
launch epoch spans from 01 OCT 2019 to 01 NOV 2019

reducing the time step between two consecutive values of launch epoch, it has
been possible to take notice of effects due to the Moon gravitational force on the
probe motion; to reduce performance losses in terms of DV, it is important to
select an opportune value of the time variable, aiming to avoid disadvantageous
configuration of Earth-Moon system and to avoid too much closer approach to
the Earth’ satellite.

This additional optimization process has reduced the overall maneuvers cost
of considered trajectories by 30% in some cases, despite they were just best
solutions of previous analysis. Further improvements could be attained reduc-
ing again the timestep or considering a larger number of solutions extrapolated
from response surfaces, however considering the goodness of the achieved results
and the nature of this research, trajectories displayed in Table 5.3 are consid-
ered properly refined and optimal for what concerns the launch epoch selection.
Referring to these optimized solutions, it is possible to notice that the first (23
MAR 2019; IPA 135) and the fourth (21 OCT 2019; IPA 180) present almost
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Figure 5.22: Overall DV values for T200-050, insertion phase angle 135 degrees;
launch epoch spans from 01 OCT 2019 to 01 NOV 2019

the same value of DV budget, 0.118 m/s, which is the minimum value reached,
thus both trajectories could be considered as the equivalent global minima of
the domain.

Baseline Trajectory T200-050

Launch Epoch Insertion Phase Angle DV [km/s] Transfer [days]

23MAR2019 135 0.1181 90
21MAR2019 180 0.1225 120
21OCT2019 135 0.1293 90
21OCT2019 180 0.1187 120

Table 5.3: Refined solutions achieved optimizing the launch epoch, Trajectory
T200-050

Insertion Phase Angle, transfer phase enhancement

The last step consists in precisely select the insertion phase angle in QPO.
This variable doesn’t affect particularly the nature of the consequent quasi pe-
riodic orbit (considering minimal deviations from the reference value), but could
drive significant differences in geometrical characteristics of the transfer portion
of the complete trajectory. These differences come out from the high sensi-
tivity of the problem to the initial conditions, thus changing by few degrees
the insertion phase angle could modify substantially the overall DV budget of
the entire trajectory considered. Variations from reference values could scatter
the attainments of the time variable optimization process. In this sense it is
recommended to select all baseline trajectories, selecting insertion phase angle
values, that will be objectives of response surfaces construction and then select
a worthwhile launch epoch. Response Surfaces previously found could be con-
sidered affordable to such a theoretical purpose, nevertheless it is suggested to
decrease the step between insertion phase angle values to obtain a more precise
tool to investigate the variables domain; critically higher computational costs
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have pushed away this type of analysis, however minimum values aforemen-
tioned could be considered really close to what has to be the optimal solution,
in this sense dissimilarities are negligible.

5.3 STK Simultation

In this Section refined solutions evaluated in Section 5.2.3 will be simulated in
the STK environment. The aim of such an activity is first to use the Astrogator
tool with the purpose of validate the result obtained in terms of overall DV
budget, secondly, to analyze trajectories found and better contextualize them.
Systems Tool Kit (formerly Satellite Tool Kit), often referred to by its initials
STK, is a physics-based software package from Analytical Graphics, Inc. that
allows the user to perform complex analysis of ground, sea, air, and space assets,
and share results in one integrated solution. At the core of STK is a geome-
try engine for determining the time-dynamic position and attitude of objects
(”assets”), and the spatial relationships among the objects under consideration
including their relationships or accesses given a number of complex, simulta-
neous constraining conditions. Using STK it is possible to perform multiple
analysis and extrapolate report about physical condition, attitude, position et
alii about multiple objects.

For what concerns to this research, once a refined solution has been evalu-
ated, its ephemerides has been computed and imported in STK environment.
The software uses the ephemerides data to create a satellite object describing
the desired trajectory. Once this procedure has been accomplished, it is possi-
ble to start the simulation and get all sort of information desired. Figure 5.23,
Figurefig:finalsim2 and Figure 5.25 show best trajectories assembled; further in
this Chapter it will be referred to these as:

• PT135: baseline CR3BP trajectory T200-050, launch epoch at 23 MAR
2019 and insertion phase angle 135 degrees.

• PT180: baseline CR3BP trajectory T200-050, launch epoch at 21 OCT
2019 and insertion phase angle 180 degrees.

5.3.1 Result Validation

The aim of this Section is to validate results obtained in terms of DV budget
and geometrical conformity concerning both PT135 and PT180. To do this a
validation procedure has been designed by means of the STK’s Astrogator tool.
In particular the Astrogator tool can manage independently an analysis proce-
dure designed to target the necessary instant maneuver, starting from a defined
state vector, to reach, for instance, a selected point in the space with a certain
tolerance. Thus the analysis is structured as follows: first of all every mesh
point of considered trajectories will be imported in STK environment, actually,
to start the propagation, the state vector of the first mesh point is needed, then
Astrogator will connect autonomously each mesh point, creating trajectory arcs
and planning instant maneuvers at these connection points. For this purpose,
the software’s propagator takes count of main Solar system bodies gravitational
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Figure 5.23: Simulation of PT135 trajectory
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Figure 5.24: Simulation of PT180 trajectory
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Figure 5.25: Different Views of Simulated PT135 and PT180

force, additionally also the solar radiation pressure is considered by means of a
spherical solar radiation pressure model. Notice that the conformity between
the complete force model introduced in Chapter 3 and the internal STK propa-
gation tool has been guaranteed. Thus, the designed validation procedure, will
collect the resulting DV values, comparing these with reference evaluated values
of PT135 and PT180. Besides the geometric conformity between the aforemen-
tioned trajectories and the Astrogator simulation will be verified. Validation
results will be shown simultaneously for both PT135 and PT180 referring firstly
to DV budget considerations, then the focus will be pointed on the trajectory
correspondence.

DV Budget Validation

Table 5.4 and Table 5.5 show the DV budget confrontation between values re-
garding the aforementioned PT135 and PT180 and the relative trajectories built
and simulated using Astrogator. For each ignition point are reported maneuvers
DV magnitudes of both evaluated trajectory and the simulated equivalent, then
it has been calculated the percentage deviation of the simulated value from the
reference one. DV values are expressed in [m/s]. Achieved results by means
of STK simulation highlight the effectiveness of evaluated performances, as re-
gards the optimal trajectories found, in terms of overall DV budget. In fact both
single maneuvers magnitude and the total budget estimation present values of
percentage error lower than 1% respect to both PT135 and PT180 parameters.
Actually, considering both cases, it is possible to observe that the first maneu-
ver magnitude, is characterized by a deviation more significant than the others,
even if this deviation remain below the 5%. This singularity is due to the par-
ticular proximity to the Earth. At such these distances the perturbation caused
by the Earth oblateness and its non-spherical gravitational field becomes non
negligible. In this sense differences between gravitational models adopted by
STK and the designed force model (Chapter 3), could generate such an error,
higher than everyone else, but still negligible considering the purpose of this
research.
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Time of Ignition PT135 DV Astrogator DV Percentage Error

23 MAR 2019 01:00 1.7174 1.7501 +1.8685
23 MAR 2019 02:00 1.3149 1.3172 +0.1746
23 MAR 2019 03:00 0.9705 0.9760 +0.5635
23 MAR 2019 04:00 2.1211 2.1274 +0.2961
23 MAR 2019 16:00 0.9139 0.9148 +0.0984
24 MAR 2019 16:00 5.6581 5.6576 -0.0088
29 MAR 2019 16:00 10.9959 10.9961 +0.0018
03 APR 2019 16:00 12.8069 12.8105 +0.0281
03 MAY 2019 16:00 6.0251 6.0324 +0.1210
02 JUN 2019 16:00 9.0496 9.0544 +0.0530
02 JUL 2019 16:00 17.5984 17.6045 +0.0347
01 AUG 2019 16:00 6.1643 6.1687 +0.0713
31 AUG 2019 16:00 6.8385 6.8427 +0.0614
30 SEP 2019 16:00 4.1856 4.1927 +0.1693
30 OCT 2019 16:00 2.1075 2.1134 +0.2792
29 NOV 2019 16:00 5.8436 5.8457 +0.0359
29 DEC 2019 16:00 5.0975 5.1020 +0.0882
28 JAN 2020 16:00 6.7350 6.7397 +0.0697
27 FEB 2020 16:00 5.9400 5.9435 +0.0589
28 MAR 2020 16:00 2.1514 2.1597 +0.3843
27 APR 2020 16:00 2.7250 2.7326 +0.2781
27 MAY 2020 16:00 1.1666 1.1661 -0.0429

Total DV estimation 118.1269 118.2460 +0.1007

Table 5.4: DV Budget Validation, PT135

Geometric Conformity

The focus is now pointed on geometric characteristics of simulated trajectories.
It’s important to verify that the propagated multiple arcs don’t separate from
the reference trajectory which it is trying to retrace. In this sense in Figure 5.26
and Figure 5.27 are shown mutual distances between two hypothetical probes
traveling along the simulated and the reference trajectories PT135 and PT180.
As it is possible to observe, this deviation remains under 10 km considering both
cases. It is possible to assert that the simulated result essentially coincides with
trajectories previously built, PT135 and PT180. Discontinuities in diagrams
come across each time of ignition where the two trajectories obviously coincide
and the mutual distance between probes is zero. These discontinuities are due to
the time step considered to plot diagrams. It has been considered a step value
of one hour, in such a time period, probes cover much larger space than the
relative distance between them, thus this results in a discontinuity in distance
evolution when probes’ trajectories coincide, exactly at ignition points.

These results validate the goodness and the practicability of PT135 and
PT180 in addition to the correctness of the procedure presented by this research
aiming to the construction of an hypothetical transfer to a periodic orbit around
collinear libration point L2 in Sun-Earth system and its up-keeping.
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Time of Ignition PT180 DV Astrogator DV Percentage Error

21 OCT 2019 01:00 0.5628 0.5482 -2.6633
21 OCT 2019 02:00 0.5033 0.5032 -0.0199
21 OCT 2019 03:00 0.4115 0.4092 -0.5621
21 OCT 2019 04:00 0.8191 0.8169 -0.2693
21 OCT 2019 16:00 0.9430 0.9429 -0.0106
22 OCT 2019 16:00 6.9963 6.9969 +0.0086
27 OCT 2019 16:00 11.8111 11.8123 +0.0102
01 NOV 2019 16:00 7.3582 7.3531 -0.0694
01 DEC 2019 16:00 4.4644 4.4570 -0.1660
31 DEC 2019 16:00 7.9610 7.9600 -0.0126
30 JAN 2020 16:00 4.1053 4.1116 +0.1532
29 FEB 2020 16:00 12.6751 12.6758 +0.0055
30 MAR 2020 16:00 1.5894 1.5925 +0.1947
29 APR 2020 16:00 3.8368 3.8383 +0.0391
29 MAY 2020 16:00 3.0389 3.0424 +0.1150
28 JUN 2020 16:00 10.3953 10.3940 -0.0125
28 JUL 2020 16:00 6.3964 6.3931 -0.0516
27 AUG 2020 16:00 3.6985 3.6964 -0.0568
26 SEP 2020 16:00 0.7437 0.7497 0.8003
26 OCT 2020 16:00 5.4313 5.4298 -0.0276
25 NOV 2020 16:00 4.2393 4.2316 -0.1820
25 DEC 2020 16:00 10.2286 10.2262 -0.0235
24 JAN 2021 16:00 10.4883 10.4834 -0.0467

Total DV estimation 118.6975 118.6645 -0.0278

Table 5.5: DV Budget Validation, PT180

Figure 5.26: Deviation between PT135 and the related simulated trajectory

5.3.2 Analysis Report

STK gives the possibility of extrapolating all sort of physical data regarding
many objects belonging to the contemplated scenario. Therefore will be pre-
sented the main characteristics of PT135 and PT180 coming out from STK
simulation; pointing in particular on mutual distances between the hypothetical
probe traveling along the considered trajectory and the main bodies which are
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Figure 5.27: Deviation between PT180 and the related simulated trajectory

perturbing the force field, Sun, Earth and Moon. Secondly will be reported the
evolution of the acceleration magnitude perceived by the probe, in particular
this aspect will be related to mutual position of system’s main bodies.

Main Bodies Distances

Figure 5.28 and Figure 5.29 show distances values from Sun, Earth and Moon re-
garding the beforehand mentioned probe, for what concerns PT135 and PT180.

First of all, looking at diagrams shown in Figure 5.28 and Figure 5.29, it’s

Figure 5.28: Distances Values Evolution, PT135

clear the sinusoidal behaviour of the evolution of Sun distance value; trajec-
tories PT135 and PT180 are strictly related to the Earth’s revolution motion,
thus it is expected an year-long periodicity for what concerns mutual position
between Earth and Sun. Considering that these two bodies essentially define
the considered force field, the choice of analyzing the time variable, the launch
epoch, over a year period is justified. Secondly, paying attention to Earth dis-
tance and Moon distance trends, it is possible to observe that evaluating both
PT135 and PT180 cases, the Earth is always much closer to the probe than the
Moon until it reaches a distance from the Earth of about 1e6 km. This value
represents essentially the radius of the Earth’s sphere of influence. Thus, from
this point, even if the Moon could be closer to the probe than the Earth, it’s
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Figure 5.29: Distances Values Evolution, PT180

too much distant from the trajectory considered to be taken in consideration
as a critical perturbation to the force field, which is still mainly defined by
the Sun-Earth system gravitational field. What has just been said agrees with
arguments fully investigated in Section 5.2.3.

Acceleration Magnitude

Figure 5.30 and Figure 5.31 show acceleration magnitude values regarding the
beforehand mentioned probe, for what concerns PT135 and PT180. Dia-

Figure 5.30: Acceleration Values Evolution, PT135

grams report again distances evolution from Earth and Moon, these variables
are useful to analyze the acceleration trend. As it is possible to observe from
the diagrams shown, considering both reference trajectories, acceleration values
decrease rapidly escaping from the Earth. This drastic drop, Figure 5.32, stops
once the acceleration reaches values swinging between 0.2 mm/sec2 and 0.01
mm/sec2. This range is defined by the position of the hypothetical probe in the
Sun-Earth system, in other words the magnitude of the acceleration, the entity
of the force field, is essentially sized by the Earth and Sun gravitational attrac-
tion. However it is very interesting to point out that the acceleration evolution,
after the main initial drop, presents a two-way sinusoidal nature. Firstly, accel-
eration values swing due to the motion of the Earth; as it is possible to observe
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Figure 5.31: Acceleration Values Evolution, PT180

Figure 5.32: Acceleration Values Evolution, enlarged visual; from this diagram
it is possible to observe the initial drop

from diagrams in Figure 5.30 and in Figure 5.31 the trend presents a peak when
the Earth is much closer and vice versa. A second sinusoidal trend nestles in the
first, this one is due to the Moon motion; again the acceleration raises to a local
maximum when the probe is closer to the Moon. Obviously the Moon pres-
ence doesn’t substantially affect the overall acceleration magnitude, it causes
oscillations around a trend defined mainly by the Sun-Earth gravitational field.

5.3.3 Ignition Sequence Optimization

Analyzing the evaluated DV budget, it is possible to notice that the first section
of the transfer phase is generally characterized by a large number of ignitions
at low level of DV magnitude. First of all a good trajectory must consider the
least possible number of corrections. Moreover, during the initial phase of the
trajectory, higher values of acceleration affect the probe’s motion, due to the
Earth’s gravitational field, so lower DV couldn’t be attained considering the pre-
cision needed. To overtake these problems an analysis of the ignition sequence
has been accomplished examining both PT135 and PT180. Some ignitions will
be merged selecting only fewer mesh points where apply trajectory corrections.
Choosing the optimal mesh points where plan new maneuvers is fundamental,
as a matter of fact that the overall DV budget could drastically increase scaling
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Time of Ignition PT135 DV Corrected DV

23 MAR 2019 01:00 1.7174 -
23 MAR 2019 02:00 1.3149 -
23 MAR 2019 03:00 0.9705 -
23 MAR 2019 04:00 2.1211 -
23 MAR 2019 16:00 0.9139 6.4419
24 MAR 2019 16:00 5.6581 -
29 MAR 2019 16:00 10.9959 -
03 APR 2019 16:00 12.8069 -
03 MAY 2019 16:00 6.0251 7.3375
02 JUN 2019 16:00 9.0496 9.0544
02 JUL 2019 16:00 17.5984 17.6045
01 AUG 2019 16:00 6.1643 6.1687
31 AUG 2019 16:00 6.8385 6.8427
30 SEP 2019 16:00 4.1856 4.1927
30 OCT 2019 16:00 2.1075 2.1134
29 NOV 2019 16:00 5.8436 5.8457
29 DEC 2019 16:00 5.0975 5.1020
28 JAN 2020 16:00 6.7350 6.7397
27 FEB 2020 16:00 5.9400 5.9435
28 MAR 2020 16:00 2.1514 2.1597
27 APR 2020 16:00 2.7250 2.7326
27 MAY 2020 16:00 1.1666 1.1661

Total DV estimation 118.1269 93.1801

Table 5.6: DV Budget Comparison, PT135

badly the mesh point sequence. Once this new sequence is selected, using again
the STK Astrogator tool, it is possible to propagate the modified trajectory and
evaluate the overall DV budget. Table 5.6 and Table 5.7 show corrected DV
budget taking in exam both PT135 and PT180.
As it is possible to observe, modified trajectories present less correction points
during the transfer phase. Anyway overall DV budget value is rather similar
to them previously evaluated, even lower. The ignition sequences have been
modified in order to optimize the transfer phase, whereas the up-keeping phase
in the quasi-periodic orbit remain strictly the same in both cases. The generic
QPO is characterized by low values of acceleration, so even low DV magnitude
could be achieved without lack of precision. Furthermore even if higher time
step between subsequent ignition points are feasible, analyzing precedent mis-
sions constraints, it is clear that taking as reference a period of 30 days between
two corrections represents a good compromise between the objective of reduce
the overall DV budget and the need of satisfy scientific mission requirements.
Corrected trajectories are similar and geometrically coherent with PT135 and
PT180, differences in terms of ephemerides are negligible. Obviously these mod-
ified trajectories are obtained modifying the initial conditions of the transfer
phase respect to the original. Considering PT135 it is necessary to consider a
velocity variation, respect to initial condition of the transfer phase, of 3.75 m/s
magnitude; considering PT180 a variation of 0.85 m/s occurs. However these
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Time of Ignition PT180 DV Corrected DV

21 OCT 2019 01:00 0.5628 -
21 OCT 2019 02:00 0.5033 -
21 OCT 2019 03:00 0.4115 -
21 OCT 2019 04:00 0.8191 -
21 OCT 2019 16:00 0.9430 -
22 OCT 2019 16:00 6.9963 6.3719
27 OCT 2019 16:00 11.8111 -
01 NOV 2019 16:00 7.3582 -
01 DEC 2019 16:00 4.4644 3.9892
31 DEC 2019 16:00 7.9610 7.9600
30 JAN 2020 16:00 4.1053 4.1116
29 FEB 2020 16:00 12.6751 12.6758
30 MAR 2020 16:00 1.5894 1.5925
29 APR 2020 16:00 3.8368 3.8383
29 MAY 2020 16:00 3.0389 3.0424
28 JUN 2020 16:00 10.3953 10.3940
28 JUL 2020 16:00 6.3964 6.3931
27 AUG 2020 16:00 3.6985 3.6964
26 SEP 2020 16:00 0.7437 0.7497
26 OCT 2020 16:00 5.4313 5.4298
25 NOV 2020 16:00 4.2393 4.2316
25 DEC 2020 16:00 10.2286 10.2262
24 JAN 2021 16:00 10.4883 10.4834

Total DV estimation 118.6975 96.0108

Table 5.7: DV Budget Comparison, PT180

variations could be transferred to the hypothetical launch phase, which is not
taken in consideration for the purpose of this research.
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The design procedure proposed seems to provide significant results
in terms of trajectory design and optimization. The obtained tra-
jectories demonstrate geometric conformity and comparable overall
cost to the ones that have been previously adopted, Section 1.4.

Results from Chapter 5 indicate that it is possible to optimize,
alongside the investigation of the particular variables domain de-
signed, both the transfer phase and the station-keeping in the quasi
periodic orbit aiming to reduce the DV budget in terms of number
and overall cost of the planned maneuvers. The resulting response
surfaces highlight particular low DV areas in terms of departure
epoch, this depends from the periodically variations of mutual po-
sitions of Earth and Sun. Furthermore, it has been identified the
strong influence of the Moon gravitational field on the very first
portion of the transfer phase. The launch epoch has revealed itself
as the dominant variable in terms of trajectory optimization, the
effect of the geometry of QPO insertion is clearly concrete, but less
preponderant.

The adoption of a simulation software has validate both the com-
plete force model proposed in this research and the design process
developed to obtain the particular trajectories object of this work.
In addition, this validation process, has provided further analysis
from which it has been possible to better optimize the overall ig-
nition sequence, by reducing the overall DV cost of 15%-20% from
previous results.

Finally, a further optimization step could be achieved properly
designing the launch phase, better defining the strategy of insertion
in the transfer phase.
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