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Chapter 1

Introduction

The present work takes origin from studies carried out at the Institut de Mécanique et
d’Ingénierie (I2M) Laboratory of Bordeaux, France, about the study and research of an
hybrid global optimization strategy for designing variable angle tow (VAT) laminates.
In the aerospace and aeronautical engineering, the main topics which must be considered
in the structural study field are essentially three: structure, defined as an aggregation of
different components which aim to sustain loads, composite materials, stated as a mate-
rial composed of at least two different materials, combined in such way to get properties
superior to those of the individual constituents and optimisation defined as a systematic
process which allows the designer to find an optimum configuration of the composite struc-
ture at each pertinent scale, according to the requirement provided in the specifications
for the problem at hand. Starting from these definitions, structural optimisation may be
defined as "the rational establishment of structural design that is the best of all possible
design within a prescribed objective and given set of geometrical and/or behavioral limi-
tations"[3].
Generally speaking, composite structures should be designed to withstand applied forces
without exceeding acceptable values of deformations, as well as being as cheaper and
lighter as possible.
In this background VAT represent a generalisation of the concept of classical straight
fibre-renforced composites. The orientation angle of each constitutive ply can be locally
arranged in order to optimise the behaviour of the composite. In particular, for each layer
the fibre path varies pointwise and can be adapted to the stress field in order to max-
imise the stiffness by minimising, simultaneously, the mass of the components. Of course,
VAT composites can be tailored only through modern manufacturing processes like the
automated fibre placement (AFP) technique. Although VAT composites show superior
performances when compared to classical straight-fibre format, on the other hand the de-
sign process is quite cumbersome and requires the implementation of an ad-hoc multi-scale
optimisation strategy able to optimise locally the VAT composite at each pertinent scale
(i.e., typically mesoscopic and macroscopic ones). Of course the problem of designing a
VAT composite is usually characterised by a huge number of design variables when com-
pared to classical composites. Starting from research studies carried out at I2M laboratory
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1 – Introduction

on this subject [10] and [9], this thesis aims at proposing a hybrid analytical/numerical
approach for determining the derivatives of some relevant quantities (e.g. stiffness, feasi-
bility constraints, etc.) for VAT composites. This approach will be then integrated in the
framework of the multi-scale two-level (MS2L) optimisation strategy developed at I2M
[10] and [9].
In the framework of the MS2L methodology, the design problem is split into two sub-
problems. At the first-level of the strategy (macroscopic scale) the goal is to determine
the optimum distribution of the laminate stiffness properties over the structure, while the
second step aims at retrieving the optimum fibres-path in each layer meeting all the re-
quirements provided by the problem at hand. This thesis will focus only on the first-level
of the strategy.
The MS2L optimisation strategy relies on: (a) the polar formalism for describing the be-
haviour of the VAT laminate, (b) the B-Spline hypersurfaces formalism for describing the
spatial variation of the laminate stiffness and (c) an hybrid optimisation tool (genetic and
gradient-based algorithms) to perform the solution search.
The polar formalism, firstly introduced by Verchery in [4], is an algebraic technique to
represent a plane tensor using only tensor invariants. The advantage of this framework
is that it is based on true tensor invariants having also a geometrical meaning which can
be used as intrinsic quantities characterizing the material as well as the related elastic
symmetries, allowing to study their effect in the process of finding the optimal solution
[1].
The B-spline hypersurface framework allows reducing the number of design variables re-
quired to describe the pointwise variation of the laminate polar parameters (and hence the
laminate stiffeness matrices) by ensuring, simultaneously, the continuity of the fibres path
over the structure (through the continuity of the stiffness properties at the macroscopic
scale).
The software and tools used to perform the analysis are essentially three: the Genetic
Algorithm BIANCA [7], the ANSYS automatic parametric design language (APDL) is
utilised to build the parametric finite elment (FE) model of the VAT composite which is
interfaced with the previous algorithm during the whole optimisation process.
The originality of this work is twofold. The first original point is the description of the
macroscopic behaviour of the laminate through the laminate polar parameters. The sec-
ond one is the use determination of the derivative of some peculiar properties of the VAT
composite, i.e. the energy and the feasibility constraints in the framework of the B-Spline
hypersurfaces formalism, in order to perform the gradient descent optimisation.
The rest of the manuscript is structured as follows: second and third chapters present the
key points of matemathical optimisation theory and the composite materials general the-
ory, by focusing especially on the notation of the polar method and the energy evaluation.
The fourth chapter introduces the proposed optimisation strategy to perform the solution
search for different kind of problems. Firstly, the proposed approach is applied to the
minimisation of the strain energy of a classical composite composed of unidirectional plies
(straight fibre format) by considering feasibility constraints on the laminate polar param-
eters as well as a geometric constraint on the overall number of plies. In a second time,
the same problem has been solved by considering a VAT composite. For each problem two
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different geometric configurations of the structure have been considered (a simple rectan-
gular plate and a plate with an hole) subject to different boundary conditions (BCs). The
numerical results of the approach are presented and discussed in chapter five. Finally,
some conclusive remarks and future perspectives ends the manuscript.
The present work do not pretend to be exhaustive since the study fields taken into account
are huge and high skilled. However, the reader interested is addressed to the appropriate
references listed in the bibliography for a deeper insight in the matter.
As a conclusive remark, a short note: in the following, the terminology, nomenclature and
mathematical formulation arising from various engineering and mathematical fields are
considered standard and known by the reader, although quick references are made when
necessary to facilitate the understanding of particular topics.
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Chapter 2

Optimization Theory

2.1 Fundamentals of Deterministic Optimization
Mathematical Optimization or Mathematical Programming, alternatively spelled opti-
mization is the selection of a best element (with regard to some criterion) from some set
of available alternatives. In the simplest case, an optimization problem consists of maxi-
mizing or minimizing a real function by systematically choosing input values from within
an allowed set and computing the value of the function; more generally, optimization in-
cludes finding "best available" values of some objective function given a defined domain
(or input), including a variety of different types of objective functions and different types
of domains. We use the following notation:

• x is the vector of variables, also called unknowns or parameters;

• f is the objective function, a (scalar) function of x that we want to maximize or
minimize;

• ci are constraint functions, which are scalar functions of x that define certain equa-
tions and inequalities that the unknown vector x must satisfy.

Using this notation, the optimization problem can be written as follows:

min
x∈Rn

f(x) subject to
;

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I (2.1)

where E and I are sets of indices for equality and inequality constraints.

2.2 Unconstrained and Constrained Optimization

Quoting [17], problems with the general form (2.1) can be classified according to the nature
of the objective function and constraints (linear, nonlinear, convex), the number of vari-
ables (large or small), the smoothness of the functions (differentiable or nondifferentiable),
and so on. An important distinction is made between problems that have constraints on

4
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the variables and those that do not.
Unconstrained optimization problems, for which we have I=E=0 in (2.1), are often used
as well as reformulations of constrained optimization problems, in which the constraints
are replaced by penalization terms added to objective function in order to avoid constraint
violations.
Constrained optimization problems occur from models in which constraints are present;
these constraints may be a simple bound, a general linear or a nonlinear constraints. When
the objective function and all the constraints are linear functions of x and the problem is
defined as a Linear programming problem while, when at least some of the constraints or
the objective are nonlinear functions, the problems is defined as a Nonlinear programming
problem.

2.3 Global Optimization and Convexity

With regard to nonlinear optimization problems, it has to be said that many algorithms
seek only a local solution, i.e. a point at which the objective function is smaller than at all
other feasible nearby points, and don’t always find the global solutions requested in some
applications, due to the difficulty in recognising and locating them. Convex minimization
is a subfield of optimization that studies the problem of minimizing convex functions over
convex sets. The convexity makes optimization easier than the general case since local
minimum must be a global minimum, and first-order conditions are sufficient conditions
for optimality. If the objective function in the optimization problem (2.1) and the feasible
region are both convex, then any local solution of the problem is in fact a global solution.

2.4 Optimization Algorithms

Optimization algorithms are iterative. They begin with an initial guess of the variable
x and generate a sequence of approximatives calculations (called “iterates”) until they
find a solution. The algorithms can be distinguishes one from another depending on the
strategy used to evaluate the new iterate: some algorithms make use of the values of the
objective function f , the constraint functions ci , and even the first and second derivatives
of both these functions; others use informations from previous iterations while some use
the local informations at the current point. Regardless of these different approaches, all
good optimization algorithms should be:

• Robust, i.e. the algorithm should perform well on a wide variety of problems for all
acceptable starting points;

• Efficient, i.e. the algorithm shouldn’t require excessive time or storage to be per-
formed;

• Accurate, i.e. the algorithm should be able to identify a solution with precision,
without being too much sensitive to errors in the data or to errors due to computer
implementation.

5
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These goals may conflict: a rapidly convergent method for a large unconstrained nonlinear
problem may require too much computer storage while a robust method may also be the
slowest. According to [17], tradeoffs between convergence rate and storage requirements,
and between robustness and speed, and so on, are central issues in numerical optimization.
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Chapter 3

Structural Materials Theory

3.1 Composite Materials
A composite material consists in two or more materials, combined on a macroscopic scale
in order to obtain a third material which shows the best qualities of its constituents and
sometimes even qualities that the constituents don’t possess. Commonly there are four
classes of composite materials that are actually used:

• Fibrous composite materials made up of fibers and martix,

• Particulate composite materials made up of macro size particles in a matrix,

• Laminated composite materials made up of layers of various materials, including
composites of the first two types,

• Combination of the first three categories.

Speaking about the first category, fibers are the reinforcement material, where the desired
properties are maximized in a given direction, while matrix is the binder material which
duty is to support and protect the fibers, along to transfer the stresses between broken
fibers. Typical fibers for composite applications have high strength and stiffness in fiber
direction, while they are weak and flexible perpendicular to it; also other physical proper-
ties, like electrical or thermal conductivity may be totally different when measured along
or perpendicular to a fiber. Fibers are stiffer and stronger than the same material in bulk
form and have a very high length-to-diameter ratio. Instead, the matrix is considerably
lower in density, stiffness and strength and usually have its bulk-form properties. In the
case of structural applications, fiber-reinforced composite materials are usually a thin layer
called lamina or ply that represents the fundamental building block of the composite and
consists of many fibers embedded in a matrix material. A collection of laminae stacked
to obtain the desired stiffness and thickness is called laminate and the sequence of the
various laminae’s orientations is called lamination scheme or stacking sequence; usually
the layers are bounded together with the same matrix material used in the single lamina.
The lamination scheme and material properties of individual lamina provide an added
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flexibility to designers to tailor the stiffness and strength of the laminate to match the
structural stiffness and strength requirements. The main disadvantages of laminates made
of fiber-reinforced composite materials are delamination and fiber debonding: delamina-
tion is due to the mismatch of material properties between layers, which produces shear
stresses between the layers, while fiber debonding is caused by the mismatch of material
properties between matrix and fiber. An other drawback presents in this kind of laminates
is that, during the manufacturing, material defects such as interlaminar voids, incorrect
orientation or damaged fibers may be introduced affecting the performances of the total
laminate.

3.2 Mechanics of Composite Structures
The design of a laminate is a complex and difficult issue; while for a homogeneous material
plate, the only design variable is the thickness, the laminate has final mechanical caracter-
istics that depend by the ones of the lamina, the numbers of the laminae and their relative
orientation. The design phase include the design of both resistance and stiffness along the
elastic response. The Classic Laminate Theory (CLT) aims to provide a mathematichal
model able to synthesize the elastic response of a laminate like it was made up by only
one equivalent layer. The hypotesis behind the classic laminate theory are:

• The laminate consists of perfectly bonded layers. There is no slip between the
adjacent layers. In other words, it is equivalent to saying that the displacement
components are continuous through the thickness.

• Each lamina is considered to be a homogeneous layer such that its effective properties
are known.

• Each lamina is in a state of plane stress.

• The individual lamina can be isotropic, orthotropic or transversely isotropic.

• The laminate deforms according to the Kirchhoff-Love assumptions for bending and
stretching of thin plates (as assumed in classical plate theory). The assumptions are:

– The normals to the mid-plane remain straight and normal to the midplane even
after deformation.

– The normals to the mid-plane do not change their lengths.

The choice of this kinematic model results in the presence of mechanical consequences, like
the incapability to tracking down shear deformations on the plate thickness. Considering
Figure 3.1, the displacement field of a point P of coordinates (x,y,z) can be written as
follow:

u =


u0(x, y)− z ∂w0(x,y)

∂x

v0(x, y)− z ∂w0(x,y)
∂y

w0(x, y)

 (3.1)

8
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Figure 3.1: Classic Laminate Theory kinematic model

from which it can be seen that the displacemente field is linear in z. From the assumptions
on the kinematic behaviour, it follows that the strain field is an in-plane deformation field
and the middle plane small strain tensor ε0 can be computed as

ε0 =


ε0
x

ε0
y

ε0
s

 =


∂u0(x,y)

∂x
∂v0(x,y)
∂y

∂u0(x,y)
∂y + ∂v0(x,y)

∂x

 (3.2)

while the opposite of the middle plane curvature tensor κ, thanks to small displacements
and rotations hypothesis, can be computed as

κ =


κx
κy
κs

 = −


∂2w0(x,y)

∂x2
∂2w0(x,y)

∂y2

2∂
2w0(x,y)
∂y∂x

 (3.3)

Finally the strain tensor can be written as

ε = ε0 + zκ→


εx
εy
εs

 =


ε0
x

ε0
y

ε0
s

+ z


κx
κy
κs

 (3.4)

The knowledge of the strain field allows to compute the stress field and, consequently, the
internal actions resultants. The stress field is generally considered plane, like the strain
field, even if it’s not, due to the small values of stress σ

Í
3 compared to the eligible ones

and to the small thickness of the plate. The link between σ and ε is given by the Hooke’s
Law:

{σ} = [Q] {ε} (3.5)

where [Q] is the reduced stiffness matrix.
The resultants calculated are only the membrane and bending ones, since no stresses are
acting in the z-direction, and are computed, through Voigt’s notation,as follows:

9
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Nx

Ny

Ns

 =


s h/2

−h/2 σx dzs h/2
−h/2 σy dzs h/2
−h/2 σs dz

 ,


Mx

My

Ms

 =


s h/2

−h/2 σxz dzs h/2
−h/2 σyz dzs h/2
−h/2 σsz dz

 (3.6)

Since the strain field is unique for all the layers and described by two tensor that don’t
depend on the z coordinate, referring to Figure 3.2 and re-writing equation (3.6) in an
extended form, it’s possible to establish the following relations:

[A] =
nØ
k=1

s zk
zk−1

[Qk] (δk) dz

[B] =
nØ
k=1

s zk
zk−1

[Qk] (δk) z dz

[D] =
nØ
k=1

s zk
zk−1

[Qk] (δk) z2 dz

(3.7)

that allows to obtain the foundamental law of laminates which matrix format is given
below I

{N}
{M}

J
=
C

[A] [B]
[B] [D]

DI )
ε0*
{κ}

J
(3.8)

and represents the real founding law under the assumptions made.

Figure 3.2: Laminate reference frame

3.3 Variable Stiffness Laminates
In the traditional design of the composite laminates previously introduced, the purpose is
to find out the material arrangement that best satisfies some requirements like strength,
stiffness and cost; fiber orientation angles are constant for each layer of the laminate and
usually limited to 0, 90, and ±45 degrees. This approach ignored the full potential of
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composites because only a limited number of possible combinations of fiber orientation
and stacking sequence can be used. Variables stiffness laminates are laminates within
which stiffness properties are a function of spatial location; this means, in other words,
that stiffness properties change point to point. Through tailoring of fiber orientations
and laminate thickness spatially in an optimal fashion, mechanical properties of a part
can be improved. This stiffness variation may be discrete, by defining several different
patches within a laminate, or continuous, by varying the fiber angle orientation continu-
ously within a ply’s domain.
The composite laminate showing a variable angle tow are called VAT composite.
The variation of fiber orientation is achieved by Automated Fiber Placement (AFP) ma-
chines which allow to place the fibre, i.e. the tow, along a curvilinear path. The utilisation

Figure 3.3: Stiffness variation configuration

of VAT laminates increases considerably the complexity of the design process, due to the
increase of the design variables number but allows the designer to obtain different and non-
conventional solutions saving weight, improving mechanical properties and performances.

3.4 Polar Method

Anisotropy is the dependence of a physical property on the direction [13]. The intrinsic
difficulty of anisotrophy is that the response depends on a considerable number of param-
eters and that these parameters depend upon the reference frame chosen to describe the
phenomenon. This means that anisotropy is often described by non invariants quantities
which requires us to specify the reference frame along with the parameters that represent
the behaviour of the material only in that specific reference frame. Apart this difficulty,
it has to take into account the rappresentation of the tensor representation; normally a
Cartesian representation is used which still presents the drawbacks listed above: frame-
dependance and no-intrinsic representation. Therefore it seems natural to use, in some
cases, a tensor invariants representation in order to describe the behaviour of a contin-
uum by material intrinsic quantities. The polar method is a mathematical technique that
allows to describe the n-rank tensor introduced above with a set of tensor invariants. A
second-rank symmetric tensor Tij , (i, j = 1,2), within the local frame of the elementary
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ply, can be defined as follow:
T11 = T + Rcos2Φ,

T12 = Rsin2Φ,

T22 = T −Rcos2Φ,

(3.9)

where T , R and Φ are respectively the isotropic modulus, the deviatoric modulus and the
polar angle. In the case of a second-rank plane symmetric tensor, we can arbitrarly choose
Φ in order to fix the reference frame, while the two polar moduli T and R are tensor
invariants.
The relations between the polar moduli and the component of tensor are:

T = T11 + T22
2 ,

Rei2Φ = T11 − T22
2 + iT12.

(3.10)

In case of a frame rotation of θ amplitude, the Cartesian components (3.9) can be expressed
as follows:

Txx = T + Rcos2(Φ− θ),
Txy = Rsin2(Φ− θ),
Tyy = T −Rcos2(Φ− θ).

(3.11)

In the case of a fourth-rank elasticity tensor, Verchery introduced the polar components
T0, T1, R0, R1, Φ0 and Φ1, where T0 and T1 are the isotropic moduli, R0 and R1 are the
anisotropic ones, while Φ0 and Φ1 are the polar angles [4]. As stated for the second-rank
plane tensor, even for the fourth-rank elasticity tensor the tensor invariants are T0, T1,
R0, R1 together with the difference Φ0 - Φ1, which means that one of the two polar angles
can be arbitrarily chosen in order to fix the reference frame. These entities can be used
to render explicit the tensor Cartesian components in a polar representation as:

T1111 = T0 + 2T1 + R0cos(4Φ0) + 4R1cos(2Φ1),
T1122 = −T0 + 2T1 −R0cos(4Φ0),
T1112 = R0sin(4Φ0) + 2R1sin(2Φ1),
T2222 = T0 + 2T1 + R0cos(4Φ0)− 4R1cos(2Φ1),
T2212 = −R0sin(4Φ0) + 2R1sin(2Φ1),
T1212 = T0 −R0cos(4Φ0).

(3.12)

The inverse relations can be written as follows:

8T0 = T1111 − 2T1122 + 4T1212 + T2222,

8T1 = T1111 + 2T1122 + T2222,

8R0ei4Φ0 = T1111 − 2T1122 − 4T1212 + T2222 + 4i(T1112 − T2212),
8R1ei2Φ1 = T1111 − T2222 + 2i(T1112 + T2212).

(3.13)
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Again, in case of a frame rotation of θ amplitude, the Cartesian components of the fourth-
rank tensor are:

Txxxx = T0 + 2T1 + R0cos(4Φ0 − θ) + 4R1cos(2Φ1 − θ),
Txxyy = −T0 + 2T1 −R0cos(4Φ0 − θ),
Txxxy = R0sin(4Φ0 − θ) + 2R1sin(2Φ1 − θ),
Tyyyy = T0 + 2T1 + R0cos(4Φ0 − θ)− 4R1cos(2Φ1 − θ),
Tyyxy = −R0sin(4Φ0 − θ) + 2R1sin(2Φ1 − θ),
Txyxy = T0 −R0cos(4Φ0 − θ).

(3.14)

The polar method is particulary important when a a fourth-rank elasticity plane tensor
is taken into account because, in this specific case, the polar invariants are linked to the
symmetries of the tensor and, consequently, they immediately acquire physical meaning.
The algebraic characterization of the (elastic) symmetries, offered by the polar method,
can be seen as a different solution technique, instead of the standard geometrical approach,
to the problem of finding the elastic symmetries. In the study of a fourth-rank elasticity
plane tensor four types of elastic simmetries exist:

Ordinary orthotropy Φ0 − Φ1 = K
π

4 , K = 0,1 (3.15)

R0 - Orthotropy R0 = 0 (3.16)
Square symmetry R1 = 0 (3.17)
Isotropy R0 = R1 = 0. (3.18)

The studied cases presented in this work will take into account only the first symmetry
(3.15).
For more details the reader is addressed to [6] and [13].

3.4.1 Polar formalism application on FSDT

In order to simplify the following section, in the writing of all the governing equations of
the laminate, the Voigt’s notation will be used. The passage from the previously notation
can be easly denoted by the following relationships:

{11,22,33,32,31,21} ⇐⇒ {1,2,3,4,5,6} ,

{xx, yy, zz, zy, zx, yx} ⇐⇒ {x, y, z, q, r, s} .
(3.19)

The structure considered is a multilayer plate constiuted by a n number of identical layers;
this configuration implies that all the layers have same thickness and material properties.
Let us define δk the fiber orientation angle of the k-th ply, tply the thickness of the single
layer and h = ntply the total thickness. Accordingly to [12], the constitutive law of the
laminated plate are: I

{N}
{M}

J
=
C

[A] [B]
[B] [D]

DI
{ε0}
{κ}

J
(3.20)
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{F} = [H] {γ0} (3.21)

where [A] is the membrane stiffness matrix, [B] is the membrane/bending coupling stiffness
matrix, [D] is the bending stiffness matrix and [H] is the out-of-plane shear stiffness matrix.
Furthermore, {N}, {M} and {F} are vectors containing respectively the membrane forces,
the bending moments and the shear forces per unit length, while {ε0}, {χ0} and {γ0} are
the vectors corresponding to the in-plane strains, the curvatures and the out-of-plane
shear strains evaluated in the middle plane of the plate. The in-plane stiffness matrices
introduced before can be written in the following form:

[A] = h

n

nØ
k=1

[Q(δk)] ,

[B] = 1
2

3
h

n

42 nØ
k=1

bk [Q(δk)] ,

[D] = 1
12

3
h

n

43 nØ
k=1

dk [Q(δk)] ,

(3.22)

where [Q(δk)] is the in-plane reduced stiffness matrix of the single ply. The out-of-plane
shear stiffness matrix [H] can be represented as follows:

[H] =


h
n

qn
k=1

è âQ(δk)
é

(basic),
5h

12n3
qn
k=1(3n2 − δk)

è âQ(δk)
é

(modified).
(3.23)

where
è âQ(δk)

é
is the out-of-plane shear stiffness matrix of the single ply. The studied cases

presented in this work will take into account the basic expression of (3.23).
The componentes of the matrices [Q(δk)] and

è âQ(δk)
é
can be expressed by using the polar

formalism in the following way:

Qxx = T0 + 2T1 + R0cos(4Φ0 + δk) + 4R1cos(2Φ1 + δk),
Qxy = −T0 + 2T1 −R0cos(4Φ0 + δk),
Qxs = R0sin(4Φ0 + δk) + 2R1sin(2Φ1 + δk),
Qyy = T0 + 2T1 + R0cos(4Φ0 + δk)− 4R1cos(2Φ1 + δk),
Qys = −R0sin(4Φ0 + δk) + 2R1sin(2Φ1 + δk),
Qss = T0 −R0cos(4Φ0 + δk).

(3.24)

and âQqq = T + Rcos2(Φ + δk),âQqr = Rsin2(Φ + δk),âQrr = T −Rcos2(Φ + δk).
(3.25)

Regarding this work, as previously said, the simmetry 3.15 is taken into account, with K
value settled as 0. The value of K is very important in optimization problems: in fact,
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it has been seen in several cases that changing K from 0 to 1 or vice-versa transforms
an optimal solution into an anti-optimal one. Referring to Eq. 3.15 simmetry, in order
to express every elements of the elastic tensor, i.e. of the stifness matrix, as a function
of R0, R1 and Φ1, and re-writing as Φ0 = Φ1 + K π

4 , the following expressions must be
introduced:

cos(4Φ0) = cos(4Φ1 + Kπ) = cos(4Φ1),
sin(4Φ0) = sin(4Φ1 + Kπ) = sin(4Φ1),

cos(2Φ0) = cos(2Φ1 + K
π

2 ) = cos(2Φ1),

sin(2Φ0) = sin(2Φ1 + K
π

2 ) = sin(2Φ1).

(3.26)

In this light, Eq. 3.24 can be re-written as:

Qxx = T0 + 2T1 + R0Kcos(4Φ1) + 4R1cos(2Φ1),
Qxy = −T0 + 2T1 −R0Kcos(4Φ1),
Qxs = R0Ksin(4Φ1) + 2R1sin(2Φ1),
Qyy = T0 + 2T1 + R0Kcos(4Φ1)− 4R1cos(2Φ1),
Qys = −R0Ksin(4Φ1) + 2R1sin(2Φ1),
Qss = T0 −R0Kcos(4Φ1).

(3.27)

For the sake of clarity and in order to simplify and better understanding the mechanical
response of the structure, the following homogenised matrices will be taken into account:

[A∗] = 1
h

[A] ,

[B∗] = 2
h2 [B] ,

[D∗] = 12
h3 [D] ,

[H∗] =
I 1

h [H] (basic),
12
5h [H] (modified).

(3.28)

These homogenised matrices can be expressed by using the polar parameters which the
extended form can be found in (B.1). In conclusion, since in the majority of the real
engineering applications the laminate is considered uncoupled, when a quasi-homogeneous
laminate is used the following properties are satisfied:

[B∗] = [0] ,

[C∗] = [A∗]− [D∗] = [0] ,
(3.29)

where [C∗] is the homogeneity matrix. From this it can be seen that the only quantities
used are the anisotropic polar moduli and the polar angles of the membrane stiffness
matrix and that this generally applies even in the framework of the FSDT; moreover the
matrix [D∗] is assumed to be the same as [A∗].
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3.5 Strain Energy Evaluation
The concept of strain energy is of fundamental importance in applied mechanics and is
defined as the energy stored in a body due to deformation caused when external loads
are applied. From the Virtual Displacement Principle (VDP) definition, claiming that
external virtual work is equal to internal virtual work when equilibrated forces and stresses
undergo unrelated but consistent displacements and strains, in the static case, we know
that:

δLi = δLe (3.30)

where δLi represents the internal virtual work and δLe is the external virtual work. The
matrix form of (3.30) is:

δLi =
Ú
V
{σ}T {δε} dV (3.31)

By replacing (3.5) in (3.31) we can write:

δLi =
Ú
V
{ε}T [Q] {δε} dV (3.32)

since [Q] = [Q]T . From the cinematic equation we can write the following relation:

{ε} = [b] {u} (3.33)

where {u} is the displacements vector and [b] is a differential operator. Equation (3.31)
can be re-written as follows

δLi =
Ú
V

î
{u}T [b]T

ï
[Q] {δ ([b] {u})} dV (3.34)

Introducing [N ] as the shape function matrix, the displacement vector {u} can be linked
with the nodal displacement vector using

{u} = [N ] {U} . (3.35)

It’s now obiouvsly convenient to express {δε} as a function of {U} as

{δε} = [b] [N ] {U} (3.36)

and introducing the deformations interpolation matrix [B] = [b] [N ] we obtain

δLi =
Ú
V

î
{U}T [B]T

ï
[Q] {δ ([B] {U})} dV (3.37)

where the nodal displacement vector {U} is indipendent of interpolation. This allows to
re-written (3.31) as

δLi = {U}T
Ú
V

[B]T [Q] [B] dV {δU} (3.38)

and in a compact form
δLi = [U ]T [K] {δU} (3.39)
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where
[K] =

Ú
V

[B]T [Q] [B] dV (3.40)

is the generic expression of the element stiffness matrix.
At this point it’s easy to written the strain energy expression form the VDP as follows:

E = 1
2

Ú
V
{σ}T {ε} dV (3.41)

In the FSDT field, we need to add the shear contribute to the fundamental laws (3.8).
This contribute can easily derived by splitting {σ} , {ε} and [Q] in two parts, bending and
shear. The founding law (3.8), in the FSDT field, can be re-written as:

{N}
{M}
{T}

 =

[A] [B] [0]
[B] [D] [0]
[0] [0] [H]



)
ε0*
{κ})
γ0*

 (3.42)

where [H] is the shear stiffness matrix.
In the case of uncoupled laminates, the resultants equations can be simplified as follows:

{N} = [A]
î

ε0
ï

{M} = [D] {κ}

{T} = [H]
î

γ0
ï (3.43)

Stating that: Ú
V

dV =
Ú h/2

−h/2
dz

Ú
Ω

dΩ =
nØ
k=1

Ú zk+1

zk

dz

Ú
Ω

dΩ (3.44)

and referring to (3.6) and (3.43), the expression (3.41) of the strain energy can be re-
written as:

E = 1
2

Ú
Ω

î
ε0
ïT

[A]
î

ε0
ï

+ {κ}T [D] {κ}+
î

γ0
ïT

[H]
î

γ0
ï

dΩ (3.45)

Using Voigt’s notation introduced in (3.19), the expression (3.45) become:

E = 1
2

Ú
Ω

 Ø
i=x,y,s

Ø
j=x,y,s

Aijεiεi +
Ø

i=x,y,s

Ø
j=x,y,s

Mijκiκj +
Ø
i=q,r

Ø
j=q,r

Hijγiγj

 dΩ (3.46)

3.5.0.1 Strain Energy Derivatives

The calculation of the energy derivatives is accomplished in the same way by using the
derivatives of the homogenised matrices (3.22) whose extended form is given in (B.2).
In FEM field, the governing global equation is written as

[K] {U} = {F} (3.47)
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where [K] is the global stiffness matrix, given by the assembling of the elements stiffness
matrices, {F} is the global force vector, given by the assembling of the elements forces
and {U} is the global displacement vector. Referring to a general derivation parameter υ,
the derivative of (3.47) with respect to υ is:

∂

∂υ
([K] {U}) = ∂

∂υ
({F})

∂

∂υ
[K] {U}+ [K] ∂

∂υ
{U} = {0}

(3.48)

The expression of strain energy in the FEM field is

E = {U}T {F} (3.49)

whose derivative with respect to the general derivation parameter υ is

∂E
∂υ

= ∂

∂υ

1
{U}T {F}

2
= ∂

∂υ

1
{U}T [K] {U}

2
= ∂

∂υ
{U}T [K] {U}+ {U}T ∂

∂υ
([K] {U})

(3.50)
According to (3.48), the derivative

∂

∂υ
({F}) = {0} (3.51)

allows to write the simplified expression of (3.50)

∂E
∂υ

= ∂

∂υ
{U}T [K] {U} (3.52)

Defining more clearly

∂

∂υ
{U}T = ∂

∂υ

3
{F}T

è
K−1

éT4
= ∂

∂υ

3
[K]T {U}T

è
K−1

éT4
= {U}T ∂

∂υ
[K] [K]−1

(3.53)
since [K] = [K]T .
Replacing (3.53) into (3.52) we obtain

∂E
∂υ

= {U}T ∂

∂υ
[K] [K]−1 [K] {U} = {U}T ∂

∂υ
[K] {U} (3.54)

The derivative strain energy expression obtained is particularly interesting: as we know,
[K] is defined as follows

[K] =

[A] [B] [0]
[B] [D] [0]
[0] [0] [H]

 (3.55)

which shows that the derivative of [K] is given by the derivatives of the matrices [A],[B],[D]
and [H] or their corresponding homogenised.
Regarding this work, the derivatives are computed with respect to the following polar
parameters:
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• RA∗
0K , introduced using the relation RA∗

0K = (−1)KRA∗
0 ,

• RA∗
1 ,

• ΦA∗
1 ,

whose complete expressions are given in B.2.
In conclusion, we can state that the derivative of the energy, with respect to a general pa-
rameter, can be evaluated by simply deriving the matrices constituting the global stiffness
matrix [K].

19



Chapter 4

Methodology

Unconstrained and constrained optimization strategies are many and various. Everyone of
those approaches suit better certain problems than others which is why a good knowledge
of the problem analysed is needed in order to choose the best solution method.

4.1 Unconstrained Methods

In the field of unconstrained optimization, the logical steps to chase the solution are the
same for all the following presented algorithms while the methodology to compute this
very solution changes due to different problem approach.
All algorithms for unconstrained minimization require to supply a starting point, which is
usually denoted by x0. If there is a good knowledge about the application and the data
set, the point x0 may be choose to be a reasonable estimate of the solution. Otherwise,
the algorithm must choose the starting point, either by a systematic approach or in some
arbitrary manner.
Beginning at x0 a sequence of iterates is generated by optimization algorithms in the
form of {xk}∞k=0 that terminate when either no more progress can be made or when a
solution point has been approximated with sufficient accuracy. In order to decide how to
move from one iterate xk to the next and how to perform the value of the current iterate,
the algorithms use information about the function f at xk, and when is possible, also
informations from previous iterates x0,x1,. . . ,xk−1. They use these informations to find a
new iterate xk+1 which presents a lower function value than xk.
Two fundamental strategies for moving from the current point xk to a new iterate xk+1
were developed: Line Search and Trust Region.
In the Line Search strategy, the algorithm computes a direction pk and seeks along this
direction from the current iterate xk for a new iterate which presents a lower function value.
The distance to move along pk can be obtained by solving the following one-dimensional
minimization problem to find the step length α:

min
α>0

f(xk + αpk) (4.1)
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Solving (4.1) exactly, means to obtain the minimum error from the direction pk but, in
spite of this, such approach may be computationally expensive and usually unnecessary.
Instead, the line search algorithm generates a limited number of trial step lengths until it
finds one that loosely approximates the minimum of (4.1).
In the Trust Region strategy, the informations gathered about f are used to build a model
function mk whose behaviour near the current point xk is approximately the same to that
of the objective function f . Since the model mk may not be a good approximation of the
objective function f when x is far from xk, we limit the search for a minimizer of mk to
some region around xk. In other words, we find the candidate step p by approximately
solving the following subproblem:

min
p

mk(xk + p) (4.2)

where xk + p lies inside the trust region. If the calculated solution doesn’t compute an
adequate decrease in f , we conclude that the trust region is too large-the trust region
radius is too big-we decrease it and re-solve (4.2).
In conclusion, the line search and trust-region methods differ in the choice of the decreasing
direction and in the computation of the move to the next iterate. Line Search begins by
fixing the direction pk and then identifying an appropriate step length αk. In Trust Region,
the maximum distance is choosen first — the trust-region radius ∆k — and then the
algorithm searches a direction and a step that will allow to obtain the best improvement
possible subject to this distance constraint. If the step is proved to be unsatisfactory, the
distance measure is reduced ∆k and the computation performed again.
All the following algorithm can be found in (A).

4.1.1 Line Search Approach

As previously said, each iteration of a line search method computes a search direction pk
and then calculate the advancement along that direction. The iteration is given by the
following equation

xk+1 = xk + αkpk (4.3)

where αk is a positive scalar called the step length. The good and successful behaviour of
a line search method depends on effective choices of both the direction pk and the step
length αk. The majority of line search algorithms demand pk to be a descent direction,
that satisfies the property pT∇fk < 0 which assures that the function f can decrease along
this direction. Moreover, the search direction is often computes as follow

pk = B−1
k ∇fk (4.4)

where Bk is a non-singular and symmetric matrix, that changes according to the used
algorithm. In the steepest descent method, Bk is the identity matrix I, while in Newton’s
method, Bk is the exact Hessian ∇2fk. In quasi-Newton methods, Bk is an approximation
to the Hessian, updated at every iteration by the evaluation of a low-rank formula. When
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pk is defined by (4.4) and Bk is positive definite, we have

pTk∇fk = −∇fTk B−1
k ∇fk < 0

and consequently pk is a descent direction.

4.1.1.1 Step Length

The computation of the step length αk is challenging because on one hand we would like
to choose αk in order to have a significant reduction of f , but on the other hand we don’t
want to increase the computational cost. The ideal choice would be the global minimizer
of the univariate function φ(.) defined by:

φ(α) = f(xk + αpk) α > 0

but normally this procedure is too it is too expensive. Typical line search algorithms test a
variable number of candidate values for α stopping only when one of these values statisfies
certain conditions. The line search is done in two stages: first of all, a bracketing step
finds an interval containing desirable step lengths, and then a bisection or interpolation
step computes the best step length possible within the interval.

Backtracking Method In unconstrained minimization, a backtracking line search is a
line search method to determine the maximum advancement along a given search direction.
It starts with a not-to-large estimate of the step size and then decrease iteratively the step
size until a reduction of the objective function, that presents similiar value to the one
anticipated, is observed, based on the local gradient of the objective function.

Wolfe conditions The most conventional inexact line search condition stipulates
that αk should allow a sufficient decrease in the objective function f , according to the
inequality:

f(xk + αpk) ≤ f(xk) + c1α∇fTk pk (4.5)
for some c1 ∈ (0,1). The previous inequality, called the Armijo condition or sufficient
decrease condition, states that the reduction of the objective function f depends to both
the step length αk and the directional derivative ∇fTk pk. In spite of all, equation (4.5)
is not enough to guarantee that the algorithm makes reasonable progress because it is
satisfied for all sufficiently small values of α. To avoid steps too short a second inequality,
called the curvature condition, is introduced, which demands αk to meet

∇f(xk + αpk)T pk ≥ c2∇fTk pk (4.6)

for some constant c2 ∈ (c1,1). In (4.6) the left-handside is the derivative φ
Í(αk), which

means that this second condition ensures that the slope of φ at α is greater than c2
times the initial one φ

Í(0). The sufficient decrease and curvature conditions are known
collectively as the Wolfe conditions.
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Golden Section Method The golden section is a first-order iterative optimization
and derivative-free method for finding the minimum of a function. The basic idea for
minimizing a unimodal function over [a, b] is iteratively reducing the interval of uncertainty
by comparing the function values of the observations. When the length of the interval of
uncertainty is reduced to some desired degree, the points on the interval can be regarded
as approximations of the minimizer. Such a class of methods only needs to evaluate the
function and has wide applications, especially it is suitable to nonsmooth problems and
those problems with complicated derivative expressions. The technique derives its name
from the fact that the algorithm maintains the function values for triples of points whose
distances from a golden ratio.

Interpolation Method The interpolation method represents a different approach of
line search. This method approximates φ(α) = f(xk + αpk) by fitting a quadratic or
cubic polynomial in α to known data and choosing a new value of α which minimizes the
polynomial. Then the bracketing interval is reduced by comparing the new value of α and
the known points. Usually if the function has good analytical properties, the interpolation
method is superior to the golden section method described in the last subsection.

4.1.1.2 Line Search Methods

Gradient Descent Gradient descent, known also as steepest descent, is a first-order
iterative optimization algorithm. The basis for the method is the simple observation that
a continuous function should decrease, at least initially, if one takes a step along the
direction of the function negative gradient (or of the approximate gradient) at the current
point. The steepest descent direction −∇fk is the most obvious choice for search direction
for a line search method becaus, among all the directions we could move from xk, it is the
one along which f decreases most rapidly.

Newton’s Method Newton’s Method is a first and second-order iterative optimization
algorithm in which, referring to equation (4.4), the direction is computed as follow

pk = −∇2f−1
k ∇fk (4.7)

The main issue of Newton’s method is that the Hessian matrix ∇2fk may not be definite
positive which could make pk not to be a descent direction. Since the exact Newton
iteration is not guaranteed to produce descent directions when the current iterate is not
close to a solution, in order to obtain a globally convergent iteration, the Hessian matrix
is modified and approximanted to make it positive definite and consequently obtain a
consistent descent direction.

Quasi-Newton Methods Quasi-Newton methods are first-order iterative optimization
algorithm, which requires only the gradient, like steepest descent method, used as an alter-
native to Newton’s method when the Hessian is unavailable or too expensive to compute
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at every iteration. The direction in Quasi-Newton Methods is defined as follow

pk = −B−1
k ∇fk (4.8)

where the matrix Bk is updated at every iteration by an updating formula. The most-
popular Hessian updating formula are the BFGS and the DFP which are described below.
The BFGS method, named after Broyden, Fletcher, Goldfarb and Shanno, use function
values and gradients to build up the Hessian approximation in which the initial approxi-
mation of the Hessian is the identity matrix. The new approximated value of the Hessian
is given by

(BFGS) Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k (4.9)

where
ρk = 1

yTk sk
, sk = xx+1 − xk, yk = ∇fk+1 −∇fk (4.10)

The DFP method, named after Davidon, Fletcher and Powell, is similar to the BFGS in
which at each step the inverse Hessian is updated by the sum of two symmetric rank one
matrices.

(DFP ) Hk+1 = Hk −
Hkyky

T
k Hk

yTk Hkyk
+ sks

T
k

yTk sk
(4.11)

In order to strengthen both the agorithms and avoid Hk to become singular, the following
curvature condition is required

sTk yk ≥ 0 (4.12)

4.1.2 Trust Region Approach

As previously said the Trust Region method, known also as restricted step method, define a
region around the current iterate and then choose the step to be the approximate minimizer
of the model in this region; if the step is not satisfactory the method compute a new radius
for the region and find a new value of the objective function. To obtain each step, we seek
a solution of the subproblem

min
p∈Rn

mk(p) = fk +∇fTk p + 1
2pTBkp ëpë ≤ ∆k (4.13)

where mk is the model function. The first step to compute in a trust-region method is to
obtain the trust-region radius ∆k at each iteration; the choice is based on the agreement
between the model and the objective function at the last iteration. Given a step pk we
define

ρk = f(xk)− f(xk + pk
mk(0)−mk(pk)

(4.14)

where the numerator represents the actual reduction and the denominator the predicted
reduction
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4.1.2.1 Subproblem Solution Methods

Eq. (4.13) represents the so-called trust region subproblem that need to be solved in order
to compute the step pk. There are various methodologies implemented to solve (4.13) as
the ones presented below. Refer to Appendix A for the following algorithms.

Exact Method The exact method is the simplest approach to solve the sub-problem
(4.13) which use the Cholesky factorization B+λ(l)I = RTR to compute an appropriate pk
that presents an high computational cost that can be stopped after two or three iterations.

Cauchy Point Even if we seek for a optimal solution of the subproblem (4.13), it’s
enough, in order to achieve a global convergence, compute an approximate value of pk
that lies in the trust region and returns a sufficient reduction of the model function.
This sufficient reduction can be quantified by the Cauchy Point which calculation is not
expensive and provide crucial information in deciding the acceptability of an approximate
solution. A trust region method will achieve global convergence if the step pk allows a
reduction of the function model hat is at least some fixed positive multiple of the decrease
attained by the Cauchy step.

Dogleg and Double Dogleg Methods Since the Cauchy point method only imple-
ments a gradient descent method-which performs poorly in some cases- with a particular
choice of step length we can improve the search of the approximate solution of (4.13).
The dogleg method represents the first improved approach based on including the curva-
ture information from Bk and substituting the curvilinear path of p with a two-segment
approximation.
The double dogleg method combines the ideas of quasi-Newton and trust region methods
and computes in each iteration the step pk as the linear combination of the steepest de-
scent direction and a quasi-Newton search direction; this method works well for medium
to moderately large optimization problems where the objective function and the gradient
are much faster to compute than the Hessian or one of its approximations.

4.2 Constrained Methods

In this section, some constrained optimization algorithms are presented. We don’t pre-
sume to be exhaustive because this research field is worldwide very prolific of new ideas
and applications but, nevertheless, the basic ideas constituting the background for the
most part of the known constrained optimization algorithms are illustrated. In the field of
constrained optimization it is possible to identify three different kind of problems: linear,
quadratic and sequential quadratic. Linear programs have a linear objective function and
linear constraints, which may include both equalities and inequalities; quadratic programs
have a quadratic function of several variables subject to linear constraints while sequential
quadratic programs have both quadratic function and constraints. First of all we can iden-
tify two different approaches in constrained optimization problems solving: the first one,
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always referring to (2.1), is to transform the constrained problem into an unconstrained
one, and then use an unconstrained algorithm, such as Newton or Quasi-Newton, to solve
it, while the second one consists in solving successive constrained quadratic subproblems.

4.2.1 Linear Programming

In linear programming there are two main methods used to solve the constrained prob-
lem, by approximating an unconstrained equivalent one: the Penalty method and the
Lagrangian method.

Penalty Method
The penalty method replaces a constrained optimization problem by a series of uncon-
strained problems whose solutions ideally converge to the solution of the original con-
strained problem. The Penalty method or Quadratic Penalty method, defines individual
terms for the constraints that are multiplied by a positive coefficient; by making this
coefficient larger, we penalize constraint violations, thereby forcing the minimizer of the
penalty function closer to the feasible region for the constrained problem. Referring to
(2.1) the corresponding penalty function can be written as follows:

Q(x, ε) = f(x) + ε

2
Ø
i∈E

c2
i (x) + ε

2
Ø
j∈I

(max {−cj(x),0})2 (4.15)

where ε > 0 is the penalty parameter. In order to penalize the constraint violations with
increasing severity, we drive ε→∞.

Lagrangian Method
In general, the Lagrangian is the sum of the original objective function and a term that
involves the functional constraint and the so called Lagrangian Multiplier λ. Referring
again to (2.1), the Lagrangian function associated is:

La(x, λ, µ) = f(x)−
Ø
i∈E

λici(x)−
Ø
j∈I

µjcj(x) (4.16)

where λ = (λi) and µ = (µi) are the Lagrangian multipliers associated with equality and
inequality constraints. In order to define x∗ a minimizer for (2.1) problem the following
conditions must be satisfied:

∇xL(x∗, λ∗, µ∗) = ∇f(x∗)−
Ø
i∈E

λi∇ci(x)−
Ø
j∈I

µj∇cj(x) = 0,

ci(x∗) = 0 ∀i ∈ E ,

cj(x∗) = 0 ∀j ∈ I,

µ∗ ≥ 0 ∀j ∈ I,

µ∗cj(x∗) = 0 ∀j ∈ I

(4.17)

The previous conditions are called the Karush-Kuhn-Tucker conditions and a point x∗ is
called a KKT point for L if there exist λ∗ and µ∗ such that (x∗, λ∗, µ∗) satisfy (4.17).
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4.2.2 Quadratic Programming

Speaking of quadratic programming, the approach is the same as the linear program-
ming but where, some modification are introduced. While the Quadratic Penalty method
presents the same expression, certain changes are introduced in the Lagrangian method,
which is now called the Augmented Lagrangian method.

Augmented Lagrangian Method
The Augmented Lagrangian is related to the Quadratic Penalty previously described but,
unlike the penalty approximation, this approach preserves smoothness and reduces the
ill conditioning. Keeping referring to (2.1), and taking into account only the equality
contraints, the augmented Lagrangian function is

La(x, λ, ε) = f(x)−
Ø
i∈E

λici(x) + ε

2
Ø
i∈E

c2
i (x) (4.18)

where we see that the augmented Lagrangian differs from the (standard) Lagrangian (4.16)
by the presence of the squared terms, while it differs from the quadratic penalty function
(4.15) in the presence of the summation term involving λ. In this sense, it is a combination
of the Lagrangian function and the Quadratic Penalty function. In presence of both
equality and inequality constraints, the Augmented Lagrangian function is defined as
follows

La(x, λ, µ, ε) = f(x)+
Ø
i∈E

λici(x)+ε

2
Ø
i∈E

c2
i (x)+

Ø
j∈I

µTmax

;
cj(x),−ε

2µ

<
+ε

2
Ø
j∈I

max

;
cj(x),−ε

2µ

<2

(4.19)

4.2.3 Sequential Quadratic Programming

For reason of clarity, before introducing the SQP method, a brief introduction of the term
active set is provided to the reader. Accordingly to [17] and (2.1), the active set A(x) at
any feasible x consists of the equality constraint indices from E together with the indices
of the inequality constraints i for which ci(x) = 0; that is,

A(x) = E ∪ {i ∈ I | ci(x) = 0}

At a feasible point x, the inequality constraint i ∈ I is said to be active if ci(x) = 0 and
inactive if the strict inequality ci(x) > 0 is satisfied. The active set at x consists of those
constraints ci(x) that are active at the current point.
A general active set method based starts by making a guess of the optimal active set A,
that is, the set of constraints that are satisfied as equalities at a solution. We call our guess
the working set and denote it by W . We then solve a problem in which the constraints
in the working set are imposed as equalities and the constraints not in W are ignored.
We then check to see if there is a choice of Lagrange multipliers such that the solution
x obtained for this W satisfies the KKT (4.17). If so, we accept x as a local solution of
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(2.1). Otherwise, we make a different choice of W and repeat the process. This approach is
based on the observation that, in general, it is much simpler to solve equality-constrained
problems than to solve nonlinear programs.
The Sequential Quadratic Programming (SQP) methods are mostly active set based and
can be considered as an extension of Newton’s method to the constrained field. The basic
idea is to move away from the current point by minimizing a quadratic model of the prob-
lem. Unlike the Penalty and Lagrangian methods previously described, which are mostly
effective when the constraints are linear, the SQP methods are succesful when significant
nonlinearities are present in the constraints; they can be used both in line search and
trust-region frameworks and are appropriate for small or large problems.
Using A(x) to denote the Jacobian matrix of the constraints, we can write the KKT con-
ditions of the constrained problems as a system of n+m equations in the n+m unknowns
x and λ:

F (x, λ) =
C
∇fx(x)−A(x)Tλ

c(x)

D
(4.20)

whose Jacobian is

F
Í(x, λ) =

C
∇2
xxL(x, λ) −A(x)Tλ
A(x) c(x)

D
(4.21)

The Newton step from iterate (xk, λk) is given byC
xk+1
λk+1

D
=

C
xk
λk

D
+

C
pk
pλ

D
(4.22)

where pk and pλ solve the KKT systemC
∇2
xxL(x, λ) −A(x)Tλ
A(x) 0

DC
pk
pλ

D
=

C
∇f(x)−AT

k λk
−ck

D
(4.23)

4.3 B-spline Curves and Surfaces

In this section, the fundamentals of the B-Spline Curves and Surfaces theory are briefly
recalled, since the VAT composite plate case study is performed using this particular
mathematichal framework. A B-spline curve is a generalization of the Bézier curve

C(u) =
nØ
i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (4.24)

where the basis functions Bi are the classical nth-degree Bernstein polynomials. The geo-
metric coefficients of this polynomial are the so called control points {Pi}, while the places
where the polynomials meet are known as knots. Given n + 1 control points P0, P1, . . . , Pn
the B-spline curve of degree p defined by these control points and knot vector U is
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C(u) =
nØ
i=0

Ni,p(u)Pi 0 ≤ u ≤ 1 (4.25)

where Ni,p(u) are standard blending functions of degree p. According to the notation of
[15], a B-spline surface is defined as

S(u, v) =
nuØ
i=0

nvØ
j=0

Ni,p(u)Nj,q(v)Pi,j (4.26)

where u and v are scalar dimensionless parameters both defined in the interval [0,1], p
and q are the B-spline degrees along u-direction and v-direction, respectively, and Pi,j =
{xi,j , yi,j , zi,j} are the Cartesian coordinates of the control points in the form of Greville
abscissae [14]. The net of (nu + 1) × (mu + 1) control points constitutes the so-called
control net.

Figure 4.1: B-Spline Surface Control Net Figure 4.2: B-Spline Surface

The blending functions are defined recursively by means of the Bernstein polynomials as
follows:

Ni,0(u) =
; 1 if Ui ≤ u ≤ Ui+1,

0 otherwise ,

Ni,p(u) = u− Ui
Ui+p − Ui

Ni,p−1(u) + Ui+p+1 − u

Ui+p+1 − Ui+1
Ni+1,p−1(u)

(4.27)

where Ui is the i-th component of the non-periodic non-uniform knot vector :

U =

0, . . . , 0ü ûú ý
p+1

, up+1, . . . , ur−p−1, 1, . . . , 1ü ûú ý
p+1

 (4.28)

The size of the knot vector is mu + 1 where
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mu = nu + p + 1

Analogously, the Nj,q(v) are defined on the knot vector V, whose size is mv:

V =

0, . . . , 0ü ûú ý
q+1

, vq+1, . . . , vs−q−1, 1, . . . , 1ü ûú ý
q+1

 (4.29)

mv = nv + q + 1

The knot vectors U and V are two non-decreasing sequences of real numbers that can be
interpreted as two discrete collections of values of the dimensionless parameters u and v.
As the control points, also the knot vectors components form a net. One basic property of
the blending functions is the local support property: Ni,p(u) = 0 if u is outside the interval
[Ui, Ui+p+1); this property is likewise valid for Nj,q(v) = 0 on [Vj , Vj+q+1). For a deeper
insight in the B-Spline Curves and Surfaces theory, the reader is addressed to [15].

4.4 Matlab fmincon

According to MathWorks Support definition, fmincon is a non-linear programming solver
to find minimum of constrained nonlinear multivariable function. The input required by
this function are:

• x0 is the initial point, specified as a real vector or real array;

• f is the function to minimize, specified as a function handle or function name;

• ci linear and non-linear constraints specified as

– matrices if linear
– function handle or function name if non-linear

The algorithms implemented are:

• Interior Point;

• Trust Region Reflective;

• SQP;

• Active Set;

Every FMINCON algorithm allow the user to provide the gradient for the objective func-
tion and for the non-linear constraints; therefore, Trust Region and Interior Point Method
allow to provide the Hessian matrix of the objective function too. Regarding this works,
the algorithm used is the Active Set, by providing in addition the constraints and function
gradients.
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4.5 Genetic Algorithm BIANCA

Genetic Algorithms represent a special class of evolution-based systems, often referred
as Evolution Programs [7]. A genetic algorithm (GA) is a method for solving both con-
strained and unconstrained optimization problems based on a natural selection process
that mimics biological evolution. The algorithm repeatedly modifies a population of in-
dividual solutions. At each step, the genetic algorithm randomly selects individuals from
the current population and uses them as parents to produce the children for the next gen-
eration. Over successive generations, the population "evolves" toward an optimal solution.
The architecture of a standard GA is give in Figure 4.3.
The standard GA is composed by the union of 3 fundamental operators:

• the selection operator,

• the crossover operator,

• the mutation operator.

Figure 4.3: The architecture of the standard GA

The selection operator is an operator that acts in the following way: considering a Nind

individuals population and using the value of the fitness function of each individual, the
selector operator selects, with a higher probability, the individuals having a high value of
the fitness function. The fitness function gives a numerical value at each individual-point
of the design space, and consequently the most adapted individuals (i.e. points which are
candidates to be potential optimal solutions) will be the points having higher values of the
fitness function. After assigning a fitness value to each individual of the population, the
selection operator determines which individuals will take part into the real reproduction
process, which will leads to the creation of the new generation of individuals.
The crossover operator is the operator that concretely achieves the creation of new indi-
viduals with a process articulated in two steps:
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• the Nind individuals are coupled forming the couples of parents,

• every single gene of each chromosome of the individual’s genotype is randomly cut,
in one or more locations (the same positions for each homologous gene of the couple):
at this point two new individuals are created by mixing and crossing the information.

Figure 4.4: Effect of the crossover operator on two homologous genes of the parents’
couple.

The mutation operator acts in a random way on the structure of the individuals at the
level of the genes of the new individuals generated after the crossover phase. The mutation
operator works on the single bit of the chain, by switching it from 0 to 1 or vice-versa. The
main aim of the mutation process consists in increasing biodiversity among the individuals
composing the population. Introducing and increasing biodiversity, through the mutation
mechanism, is a crucial point in the GA search process: in fact, through the biodiversity
it is possible to avoid a premature convergence of the algorithm towards local minima
and/or pseudo-optimal solutions.

Figure 4.5: Effect of the mutation operator on the bits of the single gene.

For a deeper insight in the Genetic Algorithm BIANCA theory, the reader is addressed to
[7].

4.6 ANSYS Mechanical APDL
The numerical analysis of both study cases of this thesis is carried out in ANSYS Me-
chanical, where several codes have been programmed in the ANSYS Parametric Design
Language (APDL). The general procedure for both the problems is divided in two main
stages, an initial and a final one. In the initial stage the geometry and the boundary
condition of the plate are defined, as well as the values of the constant polar parameters
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while, the polar parameters which represent the optimization variables, firstly are given as
dimensionless values by a random selection, subjected to a volume constraint, performed
by MATLAB function rand and after as the output of the genetic algorithm BIANCA.
The physical loads and constraints of the plate are defined in this stage as well. In the final
stage the evaluation of the energy and its derivatives with respect to the polar parameters
R0, RA∗

1 and Φ1A∗ is performed by using several macro implemented by the author.

4.6.1 Pre Integrated Matrices

Composite materials usually present different values of thickness and orientation for each
layer. In the environment of ANSYS Mechanical APDL, the definition of the laminate
properties can be accomplished in two different ways:

• by providing directly the material properties as Young Modulus, Poisson Ratio,
Shear Modulus, etc. ;

• by providing directly the structural matrices describing the laminate.

Within the framework of this work, the polar parameters are used in order to describe the
laminate; this leads, in order to perform the analysis with ANSYS Mechanical APDL, to
the use of Pre Integrated Matrices built as functions of the polar parameters as described
in section (3.4.1). In particular, as regards this works, the homogenised matrices given
in (B.1) are used because, as previously said, the best practice, in order to analyse the
elastic response of the multilayer plate, is the introduction of the homogenised structural
matrices dependent on the polar parameters.
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Chapter 5

Study cases

The purpose of this work is to minimize the strain energy of an elementary multilayered
composite plate. In order to achieve this goal, two different study cases are taken into
account: the first study case focuses on the Unidirectional Fiber composites field while
the second study case takes into account the study of VAT composites one.
Unidirectional fiber distribution means that constant values of the polar parameters RA∗

0K ,
RA∗

1 and ΦA∗
1 are taken into account and kept fixed throughout the whole plate, while a

VAT fiber distribution presents several values of the polar parameters, defined as unknowns
in certain points of the plate.
Regarding the analysis, the two studies were firstly performed by using ANSYS Mechanical
APDL and MATLAB function fmincon, then, for reasons subsequently explained, with
the genetic alghoritm BIANCA, before repeating the first procedure.

5.1 Description of the problem
Concerning the study cases here presented, the optimization strategy is applied to a uni-
directional laminated plate as well to a VAT laminate plate. Both plates have a fixed total
thickness and are made of a carbon-epoxy pre-preg strips whose properties, in terms of
technical constants and polar parameters as well, are listed in Table 5.1. Regarding the
values of RA∗

0K , RA∗
1 and ΦA∗

1 , the lower and upper bounds are given in the respectively
study case sections along the geometrical characteristics.

Technical constants Polar parameter of [Q] Polar parameter of
è âQé

E1 [MPa] 161000.0 T0 [MPa] 23793.3868 T [MPa] 5095.4545
E2 [MPa] 9000.0 T1 [MPa] 21917.8249 R [MPa] 1004.5454
G12 [MPa] 6100.0 R0 [MPa] 17693.3868 Φ [deg] 90.0
ν12 0.26 R1 [MPa] 19072.0711
ν23 0.10 Φ0 [deg] 0.0

Φ1 [deg] 0.0

Table 5.1: Material properties of the carbon-epoxy pre-preg strip taken from [10].

34



5 – Study cases

About the mechanical behaviour, the following hypotesis [10] have been made:
• the geometry and the BCs of the structure are know and fixed;

• the plates are made of identical plies;

• the material presents a linear elastic behaviour;

• the properties are uniformly distributed throughout the unidirectional fiber plate
while apply locally in each point of the structure in the VAT plate;

• the elastic responses of the plates are described in the theoretical framework of
the FSDT and the stiffness matrices ar expressed in terms of the laminate polar
parameter, as showed in 3.4.1.

5.2 Matemathical Statement of the Problem
The problem focuses on the definition of the optimal distribution of the laminate polar
parameters in order to achieve the minimization of the strain energy. In this background,
the solution of the structural optimisation problem is searched for an orthotropic and
quasi-homogeneous plate subject to given BCs.
Therefore the optimisation problem can be formulated as follows:

min
x

E(x)

subject to
g(x) ≤ 0

(5.1)

where E(x) is the strain energy.
Regarding this work, a volume constraint is taken into account, which means that, in
adddition of the formulation of the optimisation problem , the geometric and feasibility
constraints on the polar parameters (which arise from the combination of the layers ori-
entations and positions within the stack) must also be considered. This constraint ensure
that the optimum values of the polar parameters resulting from the first step correspond
to a feasible laminate that will be designed during the second step of the optimisation
strategy. Since the laminate is quasi-homogeneous, such constraints can be written only
for matrix [A∗] as follows: 

−R0 ≤ RA∗
0K ≤ R0,

0 ≤ RA∗
1 ≤ R1,

2
3
RA∗

1
R1

42
− 1−

3
RA∗

0K
R0

4
≤ 0

(5.2)

First and second constraints of 5.2 can be taken into account as admissible intervals for
the relevant optimisation variables, i.e. on RA∗

0K and RA∗
1 . Hence, the resulting feasibility

constraint on the laminate polar parameters is:

g(x) = 2
A

RA∗
1

R1

B2

− 1−
A

RA∗
0K

R0

B
≤ 0. (5.3)
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5.3 Preliminary Analysis
As previously said, in the first analysis, the minimization of the strain energy is performed
by interfacing ANSYS Mechanical APDL and MATLAB function fmincon. The analysis
requires a main MATLAB code and an ANSYS programming file, as well as several sub-
rutines. The main MATLAB code carries out the random generation of the initial point
and the calling of fmincon and it’s supported by the secondaries scripts of the objective
function and constraint function respectively. The main ANSYS program file uses four
different macros to evaluate the strain energy and its derivatives; those macros calculate
respectively the general value of the strain energy, and the three derivatives of the ho-
mogenized matrices [A∗], [D∗] and [H∗] with respect to the polar parameter RA∗

0K , RA∗
1

and ΦA∗
1 , following used to calculate the energy derivatives with respect to the same polar

parameter, according to the explanation in chapter 3.5. The MATLAB code receives the
objective function value in the initial point, calculated by the rand function, and the gra-
dients’ values of the energy derivatives with respect to the polar parameter RA∗

0K , RA∗
1 and

ΦA∗
1 from the ANSYS program file; after it accomplishes a minimization with fmincon

reducing the strain energy value at each iteration. This first analysis brought out that
the problems taken into account aren’t strongly convex problems. This means that, as
shown in the results, the solver stopped to minimize the function both after finding a local
minimun or after reaching the maximum number of iterations and the minimum strain
energy value returned by fmincon it’s different for different starting points.

5.4 Unidirectional Fiber Composite Plate
The first study case implemented presents two analysis of a quasi-homogenised unidirec-
tional fiber composite fixed-ended plate subjected to a volume constraint: in the first
analysis the plate is subjected to a tensile stress of 100N while in the second analysis the
plate is subjected to a bending stress of 50N . The FE model is built within the ANSYS Me-
chanical environment and is made of SHELL181 elements based on the Reissner-Mindlin
kinematic model, having 4 nodes and six Degrees Of Freedom (DOFs) per node. The
geometry data of the plate and the BCs are given in Table 5.2 and Table 5.3 respectively.

Length [mm] Width [mm] Thickness [mm]
360 140 3

Table 5.2: Unidirectional Fiber Composite Plate Dimensions

Sides BCs
AD Ux, Uy, Uz = 0

ϕx, ϕy, ϕz = 0
AB,BC,CD free

Table 5.3: BCs of the Unidirectional Fiber Composite Plate
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The lower and upper bounds of the mechanical design variables RA∗
0K , RA∗

1 and ΦA∗
1 [10],

in the case of the unidirectional fiber composite plate are listed in Table 5.4.

Design Variable Type Lower bound Upper bound
RA∗

0K Continuous -17693.3868 17693.3868
RA∗

1 Continuous 0.0 19072.0711
ΦA∗

1 Continuous -90.0 90.0

Table 5.4: Design space of the Unidirectional Fiber Composite Plate problem

Figure 5.1: Unidirectional fiber composite plate BCs

5.4.1 Simple Plate subjected to tensile stress

The model of the problem is shown in Figure 5.2.

Figure 5.2: Plate subjected to tensile stress model
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As previously said, since the problems is not strongly convex, which means that multiple
local minimum are present, the strain energy minimum in the function minimizer differs,
depending on the initial point, as shown in Table 5.5.

Case Iteration Func. Eval. RA
∗

0K RA
∗

1 ΦA∗
1

I 150 2387 0.826752 0.632359 −0.746026
II 63 983 −0.804919 0.278498 0.093763
III 150 2401 0.915014 0.964888 −0.684774
IV 150 2401 0.941186 0.957167 −0.029249

Table 5.5: MATLAB fmincon input and output parameters

Case R0k RA
∗

1 Φ1A∗ S.E.
I 0.836485 0.654227 −0,064563 0.003664
II −0.660452 0.266998 0.356304 0.005335
III 0.914285 0,964573 −0.681874 0.034824
IV 0.941293 0.957162 −0.028476 0.002846

(a) Adimensional values of local minimum

Case R0k[MPa] RA
∗

1 [MPa] Φ1A∗ [◦] S.E.[N ∗mm]
I 14800.2643 12477.4827 −5.81070 0.036643
II −11685.643 5092.02814 32.06740 0.053350
III 16176.7987 18396.4127 −61.3687 0.348243
IV 16654.6701 18255.0592 −2.56288 0.028464

(b) Dimensional values of local minimum

Table 5.6: Results for the unidirectional fiber composite plate traction analysis
performed with ANSYS APDL and MATLAB fmincon

5.4.2 Simple Plate subjected to bending stress

The model of the problem is shown in Figure 5.3.

Case Iteration Func. Eval. RA
∗

0K RA
∗

1 ΦA∗
1

I 150 2388 0.826752 0.632359 −0.746026
II 150 2388 −0.804919 0.278498 0.0937630
III 150 2401 0.915014 0.964888 −0.684774
IV 150 2401 0.941186 0.957167 −0.029249

Table 5.7: MATLAB fmincon input and output parameters
Even in this case, the problem is not strongly convex, so the strain energy minimum in
the function minimizer differs depending on the initial point, as shown in Table 5.7.
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Figure 5.3: Bending plate model

Case R0k RA
∗

1 Φ1A∗ S.E.
I 0.906010 0.816583 0.124673 0.184091
II −0.902457 0.158075 −0.45288 0.238652
III 0.914255 0.964566 −0.681875 1.524272
IV 0.942872 0.957524 −0.026928 0.130706

(a) Adimensional values of local minimum

Case R0k[MPa] RA
∗

1 [MPa] Φ1A∗ [◦] S.E.[N ∗mm]
I 16030.34455 15573.93012 11.22064 552.27
II −15967,5268 3014.82180 −40.7588 715.956
III 16176.26616 18396.26337 −61.3687 4572.81
IV 16682.60647 18261.97336 −2.42357 392.118

(b) Dimensional values of local minimum

Table 5.8: Results for the unidirectional fiber composite plate traction analysis
performed with ANSYS APDL and MATLAB fmincon

5.5 Unidirectional Fiber Composite Hole Plate

In this section, the same analysis of 5.4 were performed with the same plate model used
hereinafter in Chapter 5.6 in order to have a full comparison, in all fairness, of the results
obtained. The initial points are the same as in the Chapter 5.4 to provide the reader an
additional comparison with the previously results as well. The geometry data of the plate
and the BCs are given in Table 5.9 and 5.10 while the design space of the problem is
settled as same as Table 5.4. The two load configuration are the same as Chapter 5.4, as
well as the FE model elements. Both the dimensional and adimensional values, which are
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used by fmincon to perform the analisys, of all the polar parameters, i.e. the optimisation
variables, and the strain energy are here provided. The values of the polar parameters are
valid only associated to the local strain energy minimum returned by fmincon, since, as
said, the problem analysed is not strongly convex.

Length [mm] Width [mm] Thickness [mm] Radius[mm]
330 110 3 25

Table 5.9: Unidirectional Fiber Composite Hole Plate Dimensions

Sides BCs
AD Ux, Uy, Uz = 0

ϕx, ϕy, ϕz = 0
AB,BC,CD free

Table 5.10: BCs of the Unidirectional Fiber Composite Hole Plate

Figure 5.4: Unidirectional Fiber Composite Hole Plate BCs

5.5.1 Hole Plate subjected to tensile stress

The model of the problem is shown in Figure 5.5.

Case Iteration Func. Eval. RA
∗

0K RA
∗

1 ΦA∗
1

I 150 2387 0.826752 0.632359 −0.746026
II 150 2363 −0.804919 0.278498 0.093763
III 150 2401 0.915014 0.964888 −0.684774
IV 150 2401 0.941186 0.957167 −0.029249

Table 5.11: MATLAB fmincon input and output parameters
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Figure 5.5: Hole plate traction model

Case R0k RA
∗

1 Φ1A∗ S.E.
I 0.836144 0.660571 0.036537 0.005218
II 0.137766 0.268899 0.091363 0.007437
III 0.914264 0.964568 −0.681874 0.047743
IV 0.941638 0.957478 −0.020400 0.004503

(a) Adimensional values of local minimum

Case R0k[MPa] RA
∗

1 [MPa] Φ1A∗ [◦] S.E.[N ∗mm]
I 14794.21678 12598.45788 3.28833 0.052177
II 2437.54912 5128.47877 8.22271 0.074380
III 16176.43086 18396.30999 −61.36872 0.477430
IV 16660.77979 18261.09865 −1.83606 0.045038

(b) Dimensional values of local minimum

Table 5.12: Results for the unidirectional fiber composite hole plate traction analysis
performed with ANSYS APDL and MATLAB fmincon

5.5.2 Hole Plate subjected to bending stress

The model of the problem is shown in Figure 5.6.
Case Iteration Func. Eval. RA

∗
0K RA

∗
1 ΦA∗

1
I 400 6388 0.826752 0.632359 −0.746026
II 400 6349 −0.804919 0.278498 0.0937630
III 400 6401 0.915014 0.964888 −0.684774
IV 400 6401 0.941186 0.957167 −0.029249

Table 5.13: MATLAB fmincon input and output parameters
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Case R0k RA
∗

1 Φ1A∗ S.E.
I 0.906010 0.816583 0.124673 0.184091
II −0.902457 0.158075 −0.45288 0.238652
III 0.914255 0.964566 −0.681875 1.524272
IV 0.942872 0.957524 −0.026928 0.130706

(a) Adimensional values of local minimum

Case R0k[MPa] RA
∗

1 [MPa] Φ1A∗ [◦] S.E.[N ∗mm]
I 16030.34455 15573.93012 11.22064 552.27
II −15967,5268 3014.82180 −40.7588 715.956
III 16176.26616 18396.26337 −61.3687 4572.81
IV 16682.60647 18261.97336 −2.42357 392.118

(b) Dimensional values of local minimum

Table 5.14: Results for the unidirectional fiber composite hole plate bending analysis
performed with ANSYS APDL and MATLAB fmincon

Figure 5.6: Hole plate bending model

For sake of clarity, it should be specified that the assial violet arrows displayed in both
Figure 5.5 and Figure 5.6 are due to the use of a master node in order to apply the tensile
force, and bending as well, insted of applying a line force, as it’s done in Chapter 5.4.
This was done because of some errors displayed during some test analysis, likely due to
the use of the polar parameters approach to assemble the pre-integrated matrices given
by the ANSYS Mechanical model.
It can be noticed that, regarding the analysis performed for the hole plate, the results
show that even this problem is not strongly convex, which means again that the strain
energy minimum in the function minimizer differs depending on the initial point. In both
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configurations the solver stopped because of the maximun number of iteration reached or
because a local minimum was found.

5.6 VAT laminate plate

Concerning the VAT analysis, the involvement of BIANCA is due to the fact that the prob-
lem of the strain energy minimization is not strongly convex, as highlighted in sections 5.4
and 5.5. The procedure adopted acts according to a two-lvel optimisation strategy, which
is based on two steps: in order to choose a feasible starting point, a first analysis with the
Genetic Algorithm BIANCA is performed, then, an optimisation with MATLAB function
fmincon is carried out with the initial point returned by BIANCA. The initial point re-
turned by BIANCA, consists of a various number of polar parameter adimensional values,
respectively, RA∗

0K , RA∗
1 and ΦA∗

1 . In addition to the Genetic Algorithm, the VAT hole
plate study case, take into account the B-Spline Surfaces issue too, whose mathematical
background is given in section 4.3. A brief introduction to the modus operandi followed by
BIANCA to calculate the initial point and to the B-Spline design, is here given below; for
a deeper insight in the Genetic Algorithm BIANCA methodology and B-Spline surfaces,
the reader is addressed to [16] and [15] respectively.

5.6.1 BIANCA Environment

There are two different kind of inputs for BIANCA. In particular, the main inputs for
the code are written in two input files with extension .gen and .opt respectively; the first
input file contains the genetic parameters of the simulation, whilst the second contains the
optimisation parameters. The .gen file structure is designed as an item of values whose
the most relevant are defined below:

• number of population npop;

• number of individuals nind;

• stop criterion stop crit which could be the number of generation, the finding of the
individual which satisfy the sill value on the objective function or a combination of
the both;

• crossover probability pcross;

• mutation probability pmut;

• shift operator probability pshift;

• Itime, represents the number of generation during which the populations are iso-
lated. Every Itime generations an exchange of the best feasible individuals among
the populations is realised.

Within the framework of this work, the previous parameters are given in Table 5.15
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Parameters Value
npop 2
nind 120

stop crit FIXED GENERATION
pcross 0.85
pmut 0.008
Itime 10

Table 5.15: Input parameters for .gen file GA BIANCA
The input file with extension .opt contains the optimisation parameters of the simulation.
The most relevant structure items of the file are defined below:

• MODEL NAME, name of the file;

• MODEL I, name of the input file;

• MODEL O, name of the output file;

• MAXORMIN, ID for maximisation or minimisation;

• nobj , number of objective function;

• CONSTR, ID for constraints;

• nconstr, number of constraints.

At the end of the optimisation process, three output files, with three different extension,
are returned, filled with different information. The .bio file contains the informations about
the best feasible individual for every generations; the .pop contains the informations about
the whole population every 10 generations while the .sta file contains the informations
about the statistics on the whole population for each generation. The data necessary for
this work have been taken from the .bio file and handled as explained in the following
sections.

5.6.2 B-spline Domain

In order to introduce the B-spline framework into the study case take into account the
following procedure was followed. The B-spline is defined only on the top half of the
plate then simmetry conditions are applied in order to minimize the time needed for the
single analysis. For a VAT composite, in the most general case, which is the case of this
work, all of the three indipendent polar parameters can vary over the structure [9]. In the
mathematical framework of B-spline surfaces, the variation of the laminate anisotropic
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Figure 5.7: Top half plate

modulus RA∗
0K and RA∗

1 and of the polar angle ΦA∗
1 are stated as follows:

RA∗
0K (ξ, γ) =

nuØ
i=0

nvØ
j=0

Ni,p (ξ) Nj,q (γ) R
A∗(i,j)
0K ;

RA∗
1 (ξ, γ) =

nuØ
i=0

nvØ
j=0

Ni,p (ξ) Nj,q (γ) R
A∗(i,j)
1 ;

ΦA∗
1 (ξ, γ) =

nuØ
i=0

nvØ
j=0

Ni,p (ξ) Nj,q (γ) ΦA∗(i,j)
1 .

(5.4)

Eq. 5.4 fully represents a B-spline surface where, p and q are the degrees of the respectively
B-spline basis function Ni,p and Nj,q, ξ and γ represent the dimensionless coordinates
linked to the Cartesian coordinates of the laminated plate,

ξ = x

a
, γ = y

b
(5.5)

where a and b are the length and width of the plate along x and y and ΦA∗(i,j)
1 is the value

of the laminate polar angle at the generic control point [9]. For sake of clarity, since the
B-spline is defined only on half plate, the adimensional coordinates along y are computed
by dividing the value of y only with b/2.
The use of this formulation to describe the mechanical design variables is convenient
because presents the following advantages [9]:

• use an iso-geometric surface for describing the variation of RA∗
0K , RA∗

1 and ΦA∗
1 over

the structure implies the no discontinuity of the three indipendent polar parameters
over the plate;

• thanks to the B-spline representation the laminate polar parameters are determined
solely on each control point of the control net, implying in this way a significant
reduction in the number of design variable involved.

Therefore, the optimisation variables of the problem can be grouped into the vector:

x =
î

R
A∗(0,0)
0K , . . . , R

A∗(nu,mv)
0K , R

A∗(0,0)
1 , . . . , R

A∗(nu,mv)
1 , ΦA∗(0,0)

1 , . . . , ΦA∗(nu,mv)
1

ï
. (5.6)

The total number of the design variables is hence equal to 3 × (nu + 1) × (mu + 1).
BIANCA returns the values of RA∗

0K , RA∗
1 and ΦA∗

1 for each chromosome, i.e. the control
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point, at every generation, along with the objective function value; regards this work, a
FIXED GENERATION stop criteria is settled at 150 generations and the starting point for
fmincon optimization consists of the values of the polar parameters for each chromosome
at the last generation.

5.6.3 Plate subjected to a Tensile Force

Concerning the VAT plate, the traction analysis is performed twice, changing the number
of control points and consequently, the parameters defining the B-spline surface, as well
as the number of constraints. The two configurations input parameters, along with the
results the gradient descent algorithm performed by fmincon and the distribution of the
optimisation variables aon the structure, are given in the following sections in complete
and extended form.

5.6.3.1 First Configuration

In the first configuration, the parameters defining the B-spline surface are set as follows:

• nu = 7 and nv = 2 (hence 8 control points along the x-direction and 3 control points
along the y-direction, for a total of 24 for each half of the plate),

• p = q = 2 (degrees of the blending functions along each direction).

Moreover, the B-spline is defined over the following uniform knot-vectors:

U = {0 0 0 0.1667 0.333 0.50 0.6667 0.8333 1 1 1}
V = {0 0 0 1 1 1}

(5.7)

Since every polar parameters is represented by means of a B-spline surface, it’s suffice to
list the values of the three polar parameters RA∗

0K , RA∗
1 and ΦA∗

1 , in each control points to
define the B-spline surface.
The first step of the optimization strategy, performed by the Genetic Algorithm BIANCA,
returns the values of the x vector for two different populations, identifying all feasible initial
points since every triplet, which is associated with a chromosome, i.e. control point, satisfy
the volume constraint 5.3.
The values indicated in Table 5.16, 5.17 and 5.18 represent the dimensional results of the
second step of the optimization strategy.

nv nu

0 1 2 3 4 5 6 7
0 −82.8813 9459.2466 −12048.7699 14511.8710 −1330.8238 −987.6821 4238.8484 11720.6625
1 11987.4720 −2054.6110 15109.5183 −1186.3902 12373.1642 16729.9236 3481.9918 17209.5304
2 −1708.1173 5316.0812 14286.3118 13098.5065 14718.3024 7461.8439 17077.8420 12269.7404

Table 5.16: Traction: first configuration. Optimum value of RA∗
0K for each control point

of the B-spline surface after fmincon optimisation

46



5 – Study cases

nv nu

0 1 2 3 4 5 6 7
0 2587.4659 11653.2840 1054.6358 9194.1354 4160.8775 7248.9277 4237.1816 12751.8749
1 4295.5383 9508.3633 12886.5374 10368.7720 11152.0656 13718.9320 8060.6601 15557.0176
2 7125.8999 14170.0946 15869.7981 11898.2344 15719.9439 12565.4741 6689.4775 9987.5886

Table 5.17: Traction: first configuration. Optimum value of RA∗
1 for each control point of

the B-spline surface after fmincon optimisation

nv nu
0 1 2 3 4 5 6 7

0 7.4724 5.5286 16.7837 33.1412 −80.8743 21.0034 7.6254 31.9055
1 49.1421 46.3208 4.2582 9.6918 23.4234 −55.5737 13.2198 −37.8037
2 3.1890 −35.1636 2.3094 6.6710 −8.2783 14.4136 9.1234 7.0125

Table 5.18: Traction: first configuration. Optimum value of ΦA∗
1 for each control point of

the B-spline surface after fmincon optimisation

Figure 5.8: Traction: first configuration. Optimal distribution of the anisotropic
modulus RA∗

0K over the VAT plate resulting from the second step of the optimisation

In order to clarify better the meanings of the results obtained, an illustration of the
placement of the anisotropic polar parameters RA∗

0K , RA∗
1 , as well of the polar angle ΦA∗

1
is depicted in Figures 5.8, 5.9 and 5.10.
The optimal solution for the first population found at the end of the second step of the
optimisation process, is characterised by a strain energy value of 0.056109 N ·mm.
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Figure 5.9: Traction: first configuration. Optimal distribution of the anisotropic
modulus RA∗

1 over the VAT plate resulting from the second step of the optimisation

Figure 5.10: Traction: first configuration. Optimal distribution of the polar angle ΦA∗
1

over the VAT plate resulting from the second step of the optimisation

5.6.3.2 Second Configuration

In the second configuration, the parameters defining the B-spline surface are set as follows:

• nu = 6 and nv = 3 (hence 7 control points along the x-direction and 4 control points
along the y-direction, for a total of 28 for each half of the plate),

• p = q = 2 (degrees of the blending functions along each direction).
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Moreover, the B-spline is defined over the following uniform knot-vectors:

U = {0 0 0 0.2 0.4 0.6 0.8 1 1 1}
V = {0 0 0 0.5 1 1 1}

(5.8)

The procedure followed for the second configuration analysis is the same of the one followed
for the first configuration.

nv nu

0 1 2 3 4 5 6
0 10878.9204 −8457.5450 −11916.6552 16932.3765 −15341.1925 −7246.8573 5759.4274
1 16482.6991 12781.4372 8111.6393 13092.7523 −3095.9180 13680.8097 12020.4269
2 3926.0917 17174.5105 7592.7631 14095.8966 −985.8489 12366.3503 12124.1986
3 −743.7096 11812.8835 −5655.6557 14649.3634 −1020.4395 16517.2896 −15963.8228

Table 5.19: Traction: second configuration. Optimum value of RA∗
0K for each control

point of the B-spline surface after fmincon optimisation

nv nu

0 1 2 3 4 5 6
0 15156.9754 5257.4071 5947.2058 2293.1305 1081.3101 4754.0379 7718.3146
1 8613.1952 6338.7173 2610.0510 8370.8274 988.0935 13945.1742 8967.4208
2 11819.8397 13497.7243 14579.0345 14933.2600 9806.3631 15865.4265 1789.7537
3 2125.3344 7848.8248 652.5147 9340.2798 9880.9349 11297.8181 2274.4779

Table 5.20: Traction: second configuration. Optimum value of RA∗
1 for each control point

of the B-spline surface after fmincon optimisation

nv nu

0 1 2 3 4 5 6
0 −14.3401 −41.0850 83.8416 10.8212 54.9853 −54.1056 −21.9062
1 25.9531 4.3108 5.3666 28.0645 12.0528 28.4164 −4.1349
2 −82.7859 28.0645 −4.6627 −18.3871 −13.8123 0,0879 15.9237
3 −11.3490 21.0264 −34.2228 28.4164 −31.2317 13.6363 1.4956

Table 5.21: Traction: second configuration. Optimum value of ΦA∗
1 for each control point

of the B-spline surface after fmincon optimisation
As before, illustrations of the placement of the anisotropic polar parameters RA∗

0K , RA∗
1 , as

well of the polar angle ΦA∗
1 , along the entire geometry of the plate is depicted in Figures

5.11, 5.12 and 5.13.
The optimal solution for the first population found at the end of the second step of the
optimisation process, is characterised by a strain energy value of 0.0614186 N ·mm. The
values of the strain energy obtained by increasing to 28 the number of control points is
slightly higher than the value returned by the first analysis performed with 24 control
points displaying a better evaluation of the objective function.
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Figure 5.11: Traction: second configuration. Optimal distribution of the anisotropic
modulus RA∗

0K over the VAT plate resulting from the second step of optimisation

Figure 5.12: Traction: second configuration. Optimal distribution of the anisotropic
modulus RA∗

1 over the VAT plate resulting from the first-step of optimisation

5.6.4 Plate subjected to a Bending Force

As in Chapter 5.6.3, the bending analysis is performed twice, changing the number of
control points and consequently, the parameters defining the B-spline surface, as well
as the number of constraints. The two configurations input parameters, along with the
results the gradient descent algorithm performed by fmincon and the distribution of the
optimisation variables aon the structure, are given in the following sections in complete
and extended form.
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Figure 5.13: Traction: second configuration. Optimal distribution of the polar angle ΦA∗
1

over the VAT plate resulting from the first-step of optimisation

5.6.4.1 First Configuration

In the first configuration, the parameters defining the B-spline surface are set as follows:

• nu = 7 and nv = 2 (hence 8 control points along the x-direction and 3 control points
along the y-direction, for a total of 24 for each half of the plate),

• p = q = 2 (degrees of the blending functions along each direction).

Moreover, the B-spline is defined over the following uniform knot-vectors:

U = {0 0 0 0.677 0.333 0.50 0.6667 0.8333 1 1 1}
V = {0 0 0 1 1 1}

(5.9)

Since every polar parameters is represented by means of a B-spline surface, it’s suffice to
list the values of the three polar parameters RA∗

0K , RA∗
1 and ΦA∗

1 , in each control points
to define the B-spline surface. The first step of the optimization strategy, performed
by the Genetic Algorithm BIANCA, returns the values of the x vector for two different
populations, identifying all feasible initial points since every triplet, which is associated
with a chromosome, i.e. control point, satisfy the volume constraint 5.3.
The values indicated in Table 5.22, 5.23 and 5.24 represent the dimensional results of the
second step of the optimization strategy.

nv nu

0 1 2 3 4 5 6 7
0 12972.0574 −2127.2716 16549.0097 5019.9210 2695.2478 5406.6499 15814.9351 17654.3045
1 389.6584 −3955.6844 13593.0286 15316.8171 −4117.9613 −2496.7336 1462.8800 −11503.4565
2 3088.7655 2205.9695 16435.5914 −1974.2715 184.1291 −1182.9223 455.4691 9557.2595

Table 5.22: Bending: first configuration. Optimum value of RA∗
0K for each control point of

the B-spline surface after fmincon optimisation
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nv nu

0 1 2 3 4 5 6 7
0 9953.0294 8449.1553 15583.4873 79.5866 8165.4646 1337.0536 3167.5468 12690.2755
1 4860.8113 6673.3288 7205.3574 13367.8527 8192.9592 3213.0362 4445.2789 1289.2566
2 2941.8453 10696.4545 15759.6030 11348.7814 11653.5856 4193.6337 8282.2873 1337.0536

Table 5.23: Bending: first configuration. Optimum value of RA∗
1 for each control point of

the B-spline surface after fmincon optimisation

nv nu

0 1 2 3 4 5 6 7
0 −18.8393 62.5484 −2.4861 59.9657 −5.2335 −18.5676 −9.2837 55.7838
1 −23.1512 −22.9294 −39.8177 15,0004 −27,9244 54,4931 45,5400 49.8259
2 −23.2215 24.4660 26.9365 −0,0582 −15.5127 −6.1302 60.3542 4.61573

Table 5.24: Bending: first configuration. Optimum value of ΦA∗
1 for each control point of

the B-spline surface after fmincon optimisation

Figure 5.14: Bending: first configuration. Optimal distribution of the anisotropic
modulus RA∗

0K over the VAT plate resulting from the second step of the optimisation

In order to clarify better the meanings of the results obtained, an illustration of the
placement of the anisotropic polar parameters RA∗

0K , RA∗
1 , as well of the polar angle ΦA∗

1
is depicted in Figures 5.14, 5.15 and 5.16.
The optimal solution for the first population found at the end of the second step of the
optimisation process, is characterised by a strain energy value of 653.934 N ·mm. As done
for the plate subjected to a tensile stress, even in the bending study case, two different
configuration have been take into account, of whom the results of the second one are given
in the next chapter.
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Figure 5.15: Bending: first configuration. Optimal distribution of the anisotropic
modulus RA∗

1 over the VAT plate resulting from the second step of the optimisation

Figure 5.16: Bending: first configuration. Optimal distribution of the polar angle ΦA∗
1

over the VAT plate resulting from the second step of the optimisation

5.6.4.2 Second Configuration

In the second configuration, the parameters defining the B-spline surface are set as follows:

• nu = 6 and nv = 3 (hence 7 control points along the x-direction and 4 control points
along the y-direction, for a total of 28 for each half of the plate),

• p = q = 2 (degrees of the blending functions along each direction).
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Moreover, the B-spline is defined over the following uniform knot-vectors:

U = {0 0 0 0.2 0.4 0.6 0.8 1 1 1}
V = {0 0 0 0.5 1 1 1}

(5.10)

The procedure followed for the second configuration analysis is the same of the one followed
for the first configuration.

nv nu

0 1 2 3 4 5 6
0 −6713.3610 12360.6506 14657.7470 17121.7627 2695.5956 2679,7645 9994,8800
1 6861.8436 14952.7226 15184.2528 8622.2344 8220.1923 15561.7650 5023.5206
2 −13442.2537 12045.4871 10121.2324 15225.3567 13416.6454 −12126.5003 −10915.2060
3 1781.5792 −4547.2777 −2886.8170 17041.5341 −10876.1203 5172.9097 −4382.7633

Table 5.25: Bending: second configuration. Optimum value of RA∗
0K for each control point

of the B-spline surface after fmincon optimisation

nv nu

0 1 2 3 4 5 6
0 9033.1380 10593.4518 3436.8057 2554.1173 9409.8822 8771.0870 12083,0360
1 7234.1979 15840.9182 11627.8183 8065.9977 13153.6124 14485.8082 14025.7718
2 544.6127 12085.3871 8090.0403 8376.0299 2385.1069 563.4093 8062.2718
3 751.2131 4412.2929 7192.4227 14800.4772 7594.8972 15126.4826 939,0169

Table 5.26: Bending: second configuration. Optimum value of RA∗
1 for each control point

of the B-spline surface after fmincon optimisation

nv nu

0 1 2 3 4 5 6
0 −13,3907 −0,2389 −11,2307 51.9069 6.1424 27.2623 72.6980
1 7.7857 −28.7606 −4.6054 −5.5153 71.3590 23.9192 9.3942
2 32.2912 35.1897 0.2601 −5.2761 −87.7045 57.1067 −39.8523
3 67.0318 −79.9083 15.9933 −21.7601 3.2316 84.5878 −52.6019

Table 5.27: Bending: second configuration. Optimum value of ΦA∗
1 for each control point

of the B-spline surface after fmincon optimisation
As before, illustrations of the placement of the anisotropic polar parameters RA∗

0K , RA∗
1 , as

well of the polar angle ΦA∗
1 , along the entire geometry of the plate is depicted in Figures

5.11, 5.12 and 5.13.
The optimal solution for the first population found at the end of the second step of the
optimisation process, is characterised by a strain energy value of 650.436 N · mm. The
values of the strain energy obtained by increasing to 28 the number of control points is
slightly higher than the value returned by the first analysis performed with 24 control
points displaying a better evaluation of the objective function. As summary, the results
obtained are listed in Table 5.28.
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Figure 5.17: Bending: second configuration. Optimal distribution of the anisotropic
modulus RA∗

0K over the VAT plate resulting from the second step of optimisation

Figure 5.18: Bending: second configuration. Optimal distribution of the anisotropic
modulus RA∗

1 over the VAT plate resulting from the first-step of optimisation

Study Case Control Points S.E.(N*mm)
Traction 24 0.05611
Traction 28 0.06142
Bending 24 653.934
Bending 28 650.436

Table 5.28: Summary of the strain energy values
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Figure 5.19: Bending: second configuration. Optimal distribution of the polar angle ΦA∗
1

over the VAT plate resulting from the first-step of optimisation
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Chapter 6

Conclusions

6.1 Final Considerations
In this thesis, the analytical formulae of the derivatives of the strain energy as well as of
the feasibility constraints for VAT composites to be integrated into MS2L optimisation
strategy ( an effective and general method for the design of VAT composites) have been
derived. [10].
Regarding this work, the optimisation strategy has been applied to solve the first-level
problem (laminate macroscopic scale) focusing on the minimization of the strain energy of
a VAT multilayered plate subjected to both a volume constraint (on the overall number of
layers) and feasibility constraints on the laminate polar parameters. The proposed design
process is not submitted to restrictions: any parameter characterising the VAT composite
(at each scale) is an optimisation variable. This allows the designer to look for a true
global minimum, hard to be obtained otherwise.
The framework of the two-level approach used relies on two crucial assumption:

• the use of high order theories, to take into account the influence of the shear stiffness
on the VAT structure;

• the use of B-spline hypersurfaces, to describe the polar parameters point-wise dis-
tribution over the laminate structure.

This last point leads to some important advantages for the resolution of the related opti-
misation problem. Indeed, B-spline hypersurfaces leads to a considerable reduction in the
number of design variables (the polar parameters are defined solely in each point of the
control network of the B-spline hypersurface). Secondly, thanks to the strong convex-hull
property of the B-spline blending functions the optimisation constraints of the problem
can be imposed only on the control points: if they are met on such points they are au-
tomatically fulfilled over the whole domain [10]. The use of the B-spline hypersurface
does not affect the accuracy of the results because, thanks to the local support property
of B-spline blending functions [15], each control point affects the shape of the B-spline
hypersurface within its influence region, i.e. the control point local support, which is a
sort of neighbourhood defined for each control point.
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6 – Conclusions

In this study all the laminate independent polar parameters (for a quasi-homogeneous
fully orthotropic laminate), i.e. RA∗

0K , RA∗
1 and ΦA∗

1 vary over the structure, which allows
to obtain the most general combination returning the global minimum of the objective
function. The original and creative part of the optimisation research and study carried
out in this work relies on the use of the energy derivatives with respect to all the three
polar parameters that here represents the optimisation variables. Taking into account
all the values of the derivatives allows obtaining a more efficient and complete gradient
descent optimisation, which would be difficult to obtain in other ways.
It has to be said that, since only simple geometric and mechanical constraints are taken
into account, regardless of manufacturability possibilities, the results proposed may not
represent a feasible configuration for the actual fabrication technology.
Concerning the future perspectives of this thesis, more aspects are needed to be studied
and investigated. First of all, a manufacturability constraint must be take into account,
like the minimun radius achievable by the actual AFP technology, the variation of the vol-
ume fiber, the possible presence of tow gaps and overlaps... in order to achieve a feasible
and realistic result.
Research studies are currently ongoing on these aspects.
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Appendix A

Algorithms

The following algorithms were described in Chapter 2 and then implemented on MATLAB
in order to be tested

A.1 Unconstrained Algorithms

A.1.1 Line Search Algorithms

A.1.1.1 Step Length Algorithms

Algorithm 1 Armijo Backtracking Method
Set: αin > 0, ρ ∈ (0,1), c1 ∈ (0,1)

α← αin
Positive Direction
while f(xk + αpk) > f(xk) + c1α∇fTk pk do

α1 ← ρα
Set: fk1 ← f(xk + α1pk)− f(xk)− c1α1∇fTk pk
end while
Negative Direction
while f(xk − αpk) > f(xk)− c1α∇fTk pk do

α2 ← −ρα
Set: fk2 ← f(xk + α2pk)− f(xk)− c1α2∇fTk pk
end while
if fk1 < fk2 then

α← α1
else

α← α2
end if
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Algorithm 2 Golden Section Method
Set: ϕ = (1 +

√
5)/2, I = [a, b] , tol

Compute: f(a), f(b)
Set: c = b− (b− a)/ϕ

d = a + (b− a)/ϕ
while ë (c− d) ë> tol do
if f(c) < f(d) then

b← d
else

a← c
end if

end while

Algorithm 3 Cubic Interpolation Method
Set: x0, α1, α2, f(x0),∇f(x0), f(α1), f(α2)

ρ← 1
α2

1α
2
2(α1−α2)

[A]←
C

α2
2 −α2

1
−α3

2 α3
1

D

[B]←
C
f(α1)− f(x0)− α1∇f(x0)
f(α2)− f(x0)− α2∇f(x0)

D
Solve:

!a
b

"
= ρAB

if a = 0 then
α← −∇f(x0)

2b
else if d = b2 − 3a∇f(x0) then

α← −b+
√
d

3a
end if
if α < a then
return α

else
if α > b then
return b

else
return a

end if
end if
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A.1.1.2 Descent Algorithms

Algorithm 4 Gradient Descent Method
Set: x0, Ô, kmax
Set: xk ← x0, k → 0
Compute: ∇f(xk)
while ë∇f(xk)ë > Ô & k < kmax do

pk = − ∇f(xk)
ë∇f(xk)ë

Compute: αk {with the chosen step length method}
xk+1 ← xk + αkpk
xk ← xk+1
k ← k + 1

end while

Algorithm 5 Newton Method
Set: x0, Ô, kmax
Set: xk ← x0, k → 0
Compute: ∇f(xk),∇2f(xk)
while ë∇f(xk)ë > Ô & k < kmax do

pk = −∇2f(xk)−1∇f(xk)
ë∇f(xk)ë

Compute: αk
xk+1 ← xk + αkpk
xk ← xk+1
k ← k + 1

end while

Algorithm 6 Quasi Newton Method
Set: x0, Ô, kmax
Set: xk ← x0, k → 0,∇2f(xk)→ I
Compute: ∇f(xk)
while ë∇f(xk)ë > Ô & k < kmax do

pk = −∇2f(xk)−1∇f(xk)
ë∇f(xk)ë

Compute: αk {with the chosen step length method}
xk+1 ← xk + αkpk
Compute: ∇2f(xk) {with (.) (.)}
xk ← xk+1
k ← k + 1

end while
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Algorithm 7 Conjugate Gradient Method
Set: x0
Set: r0 ← Ax0 − b, p0 ← −r0, k → 0,
while rk /= 0 do

αk ←
rT

k rk

pT
k
Apk

xk+1 ← xk + αkpk
rk+1 ← rk + αkpk

βk+1 ←
rT

k+1rk+1

rT
k
rk

pk+1 ← −rk+1 + βk+1pk
k ← k + 1

end while

Algorithm 8 Preconjugate Gradient Method
Set: x0, M {preconditioner}
Set: r0 ← Ax0 − b
Solve: My0 = r0 ← for y0
Set: p0 ← −r0, k → 0
while rk /= 0 do

αk ←
rT

k yk

pT
k
Apk

xk+1 ← xk + αkpk
rk+1 ← rk + αkpk
Mk+1 ← rk+1

βk+1 ←
rT

k+1yk+1

rT
k
rk

pk+1 ← −yk+1 + βk+1pk
k ← k + 1

end while

Algorithm 9 Fletcher-Reeves Method
Set: x0
Compute: f0 = f(x0),∇f0 = ∇f(x0)

Set: p0 = −∇f0, k → 0
while ∇f(xk) /= 0 do
Compute: αk {with the chosen step length method}
Compute: ∇f(xk+1)
βFRk+1 ←

∇f(xT
k+1∇f(xk+1

∇f(xk)T ∇f(xk)
pk+1 ← −∇f(xk) + βFRk+1pk
k ← k + 1

end while
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Algorithm 10 Polak-Ribière Method
Set: x0
Compute: f0 = f(x0),∇f0 = ∇f(x0)

Set: p0 = −∇f0, k → 0
while ∇f(xk) /= 0 do
Compute: αk {with the chosen step length method}
Compute: ∇f(xk+1)
βPRk+1 ←

∇f(xT
k+1(∇f(xk+1)−∇f(xk))

∇f(xk)T ∇f(xk)
pk+1 ← −∇f(xk) + βPRk+1pk
k ← k + 1

end while
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A.1.2 Trust Region Algorithm

Algorithm 11 Trust Region Method with BSFG

Set: ∆max, ∆in ∈ (0, ∆max), µ ∈
è
0, 1

4

2
Set: k → 0, B → I
while ë∇f(xk)ë > Ô & k < kmax do
Compute: pk {by solving approximately (.)}
Compute: ρk {from (.)}
if ρk < 1

4 then
∆k+1 = 1

4ëpkë
else if ρk > 3

4 & ëpkë = ∆k then
∆k+1 = min(2∆k, ∆k+1)

else
∆k+1 = ∆k

end if
if ρk > µ then

xk+1 ← xk + pk
else

xk+1 ← xk
end if
Compute: ∇2f(xk) {with (.) (.)}
k ← k + 1

end while

A.1.2.1 Trust Region Subproblem Algorithms

Algorithm 12 Exact Trust Region Method
Set: ∆,∇f(xk), B
Set: r = B−1∇f(xk)
Compute: λl = |2(max(eig(B))|
for k = 1 : 3 do

Compute: B + λI = RTR
Solve: RTRPl = −∇f(xk)
Solve: RT ql = pl

Set: λl+1 ← λl +
1

ëplë
ëqlë

22 1ëplë−∆
∆

2
end for
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Algorithm 13 Cauchy Point Method
Set: ∆,∇f(xk), B
if ∇f(xk)TBk∇f(xk) ≤ 0 then

r ← −∆ ∇f(xk)
ë∇f(xk)ë

else
α← ∇f(xk)T ∇f(xk)

∇f(xk)TBk∇f(xk)
end if
if ëα∇f(xk) ≤ ∆ then

r ← −α∇f(xk)
else

r ← −∆ ∇f(xk)
ë∇f(xk)ë

end if

Algorithm 14 Dogleg Method
Set: ∆,∇f(xk), B
Set: sn ← −B−1∇f(xk)

sg ← −∇f(xk) ë∇f(xk)ë2

∇f(xk)TBk∇f(xk)
if ësgë > ∆ then

r ← ∆ sg

ësgë
else if ësgë < ∆ then

r ← sn
else

a← ësgë2
b← ësnë2
c← ësg − snë2
a+b−c

2
α← b−∆2

b−d+
√
d2−ab+∆2c

r ← αsg + (1− α) sn
end if
return r
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Algorithm 15 Double Dogleg Method
Set: ∆,∇f(xk), B
Set: sn ← −B−1∇f(xk)

sg ← −∇f(xk) ë∇f(xk)ë2

∇f(xk)TBk∇f(xk)

γ ← ësgë2

sT
g sn

if ësgë > ∆ then
r ← ∆ sg

ësgë
else if γësnë ≥ ∆ then

a← γ2ësnë2 − ësgë2
b← ∆2 − ësgë2
α← a−b

a+sqrtab
r ← αsg + (1− α) sn

else if ësnë ≥ ∆ then
r ← ∆sn

ësnë
else

r ← ësnë
end if
return r

Algorithm 16 Penalty Method
Set: x0, ε, k → 0, err
while err > ε & k < kmax do
Compute: Pk with {4.15}
Compute: xk {with the chosen descent method}

Set: err = ∇P (xk)
k ← k + 1

end while

Algorithm 17 Lagrangian and Augmented Lagrangian Method
Set: x0, ε, k → 0, err
while err > ε & k < kmax do
Compute: Lk with {4.16} or {4.19}
Compute: xk {with the chosen descent method}

Set: err = ∇L(xk)
k ← k + 1

end while
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Appendix B

Homogenised Matrices and
Derivatives

In this section the polar parameters of the homogenised matrices are reported and ex-
pressed as functions of the polar parameters of the lamina reduced stiffness matrices and
of the geometrical properties i.e layer orientation and position. An extended discussion of
this topic can be found in [7].
The polar parameter RA∗

0K is introduced using the relation RA∗
0K = (−1)kRA∗

0 where k is
the number of the ply. For reason of simplification will be written c4ϕ and c2ϕ instead of
cos(4ΦA∗

1 ) and cos(2ΦA∗
1 ) as well as s4ϕ and s2ϕ instead of sin(4ΦA∗

1 ) and sin(2ΦA∗
1 ).

Moreover, the extended form of the homogenised matrices and the respective derivatives
with respect to [A∗] polar parameters RA∗

0K , RA∗
1 and ΦA∗

1 are given below.

B.1 Homogenised Matrices

Homogenised Matrix [A∗]

TA∗
0 = T0,

TA∗
1 = T1,

RA∗
0 ei4ΦA∗

0 = 1
n

R0ei4Φ0
nØ
k=1

ei4δk ,

RA∗
1 ei2ΦA∗

1 = 1
n

R1ei2Φ1
nØ
k=1

ei2δk .

(B.1)

[A∗] =

TA∗
0 + 2TA∗

1 + RA∗
0Kc4ϕ + 4RA∗

1 c2ϕ −TA∗
0 + 2TA∗

1 −RA∗
0Kc4ϕ RA∗

0Ks4ϕ + 2RA∗
1 s2ϕ

−TA∗
0 + 2TA∗

1 −RA∗
0Kc4ϕ TA∗

0 + 2TA∗
1 + RA∗

0Kc4ϕ− 4RA∗
1 c2ϕ −RA∗

0Ks4ϕ + 2RA∗
1 s2ϕ

RA∗
0Ks4ϕ + 2RA∗

1 s2ϕ −RA∗
0Ks4ϕ + 2RA∗

1 s2ϕ TA∗
0 −RA∗

0Kc4ϕ


(B.2)
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Homogenised Matrix [B∗]

TB∗
0 = 0,

TB∗
1 = 0,

RB∗
0 ei4ΦB∗

0 = 1
n2 R0ei4Φ0

nØ
k=1

bke
i4δk ,

RB∗
1 ei2ΦB∗

1 = 1
n2 R1ei2Φ1

nØ
k=1

bke
i2δk .

(B.3)

The expression of [B∗] is not provided because [B∗] = [0].

Homogenised Matrix [D∗]

TD∗
0 = T0,

TD∗
1 = T1,

RD∗
0 ei4ΦD∗

0 = 1
n3 R0ei4Φ0

nØ
k=1

dke
i4δk ,

RD∗
1 ei2ΦD∗

1 = 1
n3 R1ei2Φ1

nØ
k=1

dke
i2δk .

(B.4)

The expression of [D∗] is not provided because [D∗] = [A∗].

Homogenised Matrix [H∗]

TH∗ =
I

T (basic),
2T (modified),

RH∗ei2ΦH∗ =

 RA∗
1

R
R1

ei2(ΦA∗
1 +Φ−Φ1)

R
R1

ei2(Φ−Φ1)(3RA∗
1 ei2ΦA∗

1 −RD∗
1 ei2ΦD∗

1 )

(B.5)

[H∗] =
T + RA∗

1
R
R1

è
cos2(Φ + Φ1 − ΦA∗

1 )
é

RA∗
1

R
R1

è
sin2(Φ + Φ1 − ΦA∗

1 )
é

RA∗
1

R
R1

è
sin2(Φ + Φ1 − ΦA∗

1 )
é

T −RA∗
1

R
R1

è
cos2(Φ + Φ1 − ΦA∗

1 )
é (B.6)

The homogenised out-of-plane shear stiffness matrix is here straight expressed as functions
of the polar parameters of [A∗] while the correct and complete discussion can be found in
the corrigendum of [6].
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B.2 Homogenised Matrices Derivatives

B.2.1 Homogenised Matrix [A∗] Derivatives

Derivative with respect to RA∗
0kC

∂[A∗]
RA∗

0K

D
=

 c4ϕ −c4ϕ s4ϕ
−c4ϕ c4ϕ −s4ϕ
s4ϕ −s4ϕ −c4ϕ

 (B.7)

Derivative with respect to RA∗
1C

∂[A∗]
RA∗

1

D
=

4c2ϕ 0 2s2ϕ
0 −4c2ϕ 2s2ϕ

2s2ϕ 2s2ϕ 0

 (B.8)

Derivative with respect to ΦA∗
1C

∂[A∗]
ΦA∗

1

D
=

−4RA∗
0Ks4ϕ− 8RA∗

1 s2ϕ 4RA∗
0Ks4ϕ 4RA∗

0Kc4ϕ + 4RA∗
1 c2ϕ

4RA∗
0Ks4ϕ −4RA∗

0Ks4ϕ + 8RA∗
1 s2ϕ −4RA∗

0Kc4ϕ + 4RA∗
1 c2ϕ

4RA∗
0Kc4ϕ + 4RA∗

1 c2ϕ −4RA∗
0Kc4ϕ + 4RA∗

1 c2ϕ 4RA∗
0Ks4ϕ


(B.9)

B.2.2 Homogenised Matrix [D∗] Derivatives

Due to the approximation [A∗] = [D∗] the expression of the derivatives of [D∗] are the
same as the ones of [A∗] and therefore not re-written.

B.2.3 Homogenised Matrix [B∗] Derivatives

The expressions of [B∗] derivatives are not provided since [B∗] = [0].

B.2.4 Homogenised Matrix [H∗] Derivatives

Derivative with respect to RA∗
0K Since there is no dependence between RA∗

0K and [H∗]
polar parameters, the derivative with respect to RA∗

0K is zero.C
∂[A∗]
RA∗

0K

D
=
è
0
é

(B.10)

Derivative with respect to RA∗
1C

∂[H∗]
RA∗

1

D
=
 R

R1

è
cos2(Φ + Φ1 − ΦA∗

1 )
é

R
R1

è
sin2(cos2(Φ + Φ1 − ΦA∗

1 )
é

R
R1

è
sin2(cos2(Φ + Φ1 − ΦA∗

1 )
é

R
R1

è
cos2(cos2(Φ + Φ1 − ΦA∗

1 )
é (B.11)
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Derivative with respect to ΦA∗
15

∂[H∗]
Φ1A∗

6
=
 RA∗

1
R
R1

2sen
è
2(Φ + Φ1 − ΦA∗

1 )
é
−RA∗

1
R
R1

2cos
è
2(Φ + Φ1 − ΦA∗

1 )
é

−RA∗
1

R
R1

2cos
è
2(Φ + Φ1 − ΦA∗

1 )
é
−RA∗

1
R
R1

2sen
è
2(Φ + Φ1 − ΦA∗

1 )
é (B.12)
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