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Introduction 

 
 
In the aerospace and aeronautic Industry, the use of composite material is growing 
each year, and, the methodology for designing high-performance structures of 
composite materials is still evolving. As a matter of fact, further advances in the use 
of laminated composites are subordinate to a better understanding of their failure 
mechanisms. In this context having a physical model for each failure mode becomes 
an important point of concern, because these physical models should establish when 
the failure takes place, and they also describe the post-failure behavior. 
However, the analysis and simulation of the failure of composite laminated 
structures are quite cumbersome tasks. As anticipated by Puck, who paid 
particularly attention to the differences in tensile and compressive strength, the 
failure mechanisms are very different from those of traditional metallic structures. 
The combination of various interfaces (fibre, matrix, layers) on a macro scale level 
requires a local dedicated analysis to establish the initiation of failure mechanisms 
of a fibre, a crack in the matrix or a delamination between two different layers. 
The main failure modes of laminated fibre-reinforced composites are the following 
[Ref.15]: 

 Delamination: the process through which composite materials made of 
different plies stacked together tend to delaminate. The bending stiffness of 
delaminated panels can be significantly reduced, even when no visual defect is 
visible on the surface or the free edges. The physics of delamination is quite 
understood, and one of the best numerical tools to predict the propagation of 
delamination consists in the use of Decohesion Elements. These elements have 
been developed, and implemented in commercial Finite Element (FE) codes, 
like ABAQUS. 

 Matrix compression failure: what is commonly considered as matrix 
compression failure is actually shear matrix failure. Indeed, the failure occurs 
at an angle with the loading direction, which is the evidence of the shear nature 
of the failure process. 

 Matrix tensile failure: the fracture on the surface resulting from this failure 
mode is typically normal to the loading direction. Some fiber splitting at the 
fracture surface usually can be observed. 

 Fibre compression failure: this failure mode is largely affected by the resin 
shear behaviour and imperfections such as the initial fibre misalignment of the 
angle and voids. Typically, kinking bands can be observed on a smaller scale, 
and they are the result of the fibre micro-buckling, matrix shear failure or fiber 
failure. 

 Fibre tensile failure: this failure mode is explosive. It releases large amounts 
of energy. In structures that cannot redistribute the load, it typically causes 
catastrophic failure. 

 
Moreover, in composite structures that can accumulate damage before structural 
collapse, the use of failure criteria is not sufficient to predict ultimate failure. 
Simplified models, such as the ply discount method, can be used to predict ultimate 
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failure, but they cannot represent with satisfactory accuracy the quasibrittle failure 
of laminates that results from the accumulation of several failure mechanisms.  
The study of the non-linear response of quasibrittle materials due to the 
accumulation of damage is important because the rate and direction of damage 
propagation defines the damage tolerance of a structure and its eventual collapse. 
Several theories have been proposed for predicting both the initial and the 
progressive failure of composites. Although significant progress has been made in 
this area, there is currently no single theory that accurately predicts failure at all 
levels of analysis, for all loading conditions, and for all types of fiber reinforced 
polymer (FRP) laminates. In fact, the mechanisms that lead to failure in composite 
materials have not been fully understood yet. This is especially true for compression 
failure, both for the matrix and fibre dominated failure modes. For instance, a 
physical model for matrix compression failure should predict that failure occurs 
when some stress state is achieved, as well as what kind of orientation should have 
the fracture plane and how much energy the crack formation should dissipate. 
In general, the greatest difficulty in the development of an accurate and 
computationally efficient numerical procedure to predict damage growth concerns 
with the way in which should be analyzed the material micro-structural changes and 
how those changes to the material response should be related to. While some failure 
theories have a physical basis, most theories represent attempts to provide 
mathematical expressions that give a best fit of the available experimental data in a 
form that is practical from a designer’s point of view. 
The World Wide Failure Exercises (WWFEs), that were conceived and conducted 
by Soden and co-workers and Puck and Schuermann, provided an exhaustive 
assessment of the theoretical methods for predicting material initial failure in Fiber 
Reinforced Polymer composites (FRP). It underlined that, even when analyzing 
simple laminates that have been extensively studied and tested, the predictions of 
most theories different significantly from the experimental observations. During the 
first edition of WWFE (1996) the Puck failure criterion was indicated as one of the 
most effective, the predicted failure envelopes being in good correlation with the 
test results. After WWFE, NASA Langley Research Center revisited existing failure 
theories in order to identify the most accurate models and, when it was possible, to 
introduce some enhancements. The results of this activities is a series of criteria 
named LaRC, today the LaRC05 criterion was defined by extending the approach 
to three-dimensional stress states. 
In the second chapter of this work the reader can find a critical review of the state 
of the art in composite failure theories, together with a consistent number of 
references on this subject.Beside the growth of knowledge, the development of news 
and less approximates failure theories allow to project structural component with 
minor margins. industries can reduce costs of production. This is why: 

 Less amount of material would be used, 
 Minors needed weights in flight 
 More detailed expectation of failure and its prevention 

However, in modern software CAE classical failure theory have just been often 
implemented. Furthermore, the companies are skeptical about improving and using 
new theories. For these reasons during my activity of six months in Thales Alenia 
Space an API for FEMAP software was implemented in the framework of the 
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activity, where both classical (Hoffman) and more recent (LaRC05) failure theories 
to evaluate failure index were implemented.  
The description of the API and its validation are the subjects of chapter 3 and 4. 
Then a briefly comparison of results is reported in chapter 5. Finally, the chapter 6 
presents the results obtained using the API on a previous real case. 
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Chapter 2 - Overview of most popular failure criteria 

 
 
In the next section, is given an overview and the analytic definition of most popular 
two-dimensional failure criteria for anisotropic materials, including the LaRC03, 04 
and 05 criteria. Many different failure criteria have been formulated in order to 
predict failure loads for general stress states. In this text is proposed the following 
classification, in which they could be grouped in two main groups firstly: 

 
1. Failure criteria neglecting interactions between different stress components. 
2. Failure criteria considering interactions between different stress components. 

 
Criteria belonging to the first group are the simplest ones and they usually propose 
one inequality for each one of the three in-plane stresses (or strain) components.  
In the remaining criteria, the failure in one direction may be sensitive to loads along 
other directions (including shear).  
This last group can be divided into the following two subgroups. 
 
a. Criteria proposing one single inequality to define the failure envelope. 
b. Criteria proposing a combination of interactive and non-interactive conditions. 

 
The Hoffman, Tsai–Wu, Liu–Tsai and Tsai–Hill are quadratic criteria and they 
belong to the first group, while the Hashin and Rotem, Hashin, Puck and 
Schuermann and LaRC criteria pertain to the second one.  
In general, one more Failure Indexes (FI) corresponds to each failure criteria. A FI 
exceeding the unitary value means that failure occurs, according to the applied 
criterion. 
Some useful definitions are reported to a better understanding of the following 
concepts: 

 Failure indices: represent a phenomenological failure criterion in that only an 
occurrence of a failure is indicated and not the mode of failure.  

 Strength ratio: is a more direct indicator of failure than the failure index since 
it demonstrates the percentage of applied load to the failure criteria. Strength 
ratio is defined as:  Strength Ratio (SR) = Allowable Stress / Calculated Stress 

For example, a SR = 0.75 not only indicates that a failure has occurred, but also 
indicates that the applied load is 25% beyond the allowable. A FI = 1.25 on the other 
hand does not represent a percentage of failure; just that a failure condition exists 
[20]. 
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2.1 -  Maximum stress and maximum strain criteria 

The maximum stress and maximum strain criteria1 belong to the first group, so it 
does not considers any interaction between different stress components. Considering 
one Cartesian material reference frame, in which direction 1 is the same of the fibres, 
the failure occurs if at least one of the following conditions are satisfied: 
 

 𝜎11 ≥ 𝑋𝑇 𝑜𝑟 𝜎11 ≤ −𝑋
𝐶 ,  

 𝜎22 ≥ 𝑌
𝑇𝑜𝑟 𝜎22 ≤ −𝑌

𝐶 , 
 𝜏12 ≥ 𝑆𝐿.                                            (2.1 − 1) 

 

Where 𝜎11 and 𝜎22 are the in-plane normal stress components, 𝜏12 is the in-plane 
shear stress component. While XT and XC are respectively the material strength in 
the fibre direction under tension and compression (longitudinal tensile and 
compressive strengths), YT and YC are respectively the material strength normal to 
the fibre direction under tension and compression (transverse tensile and 
compressive 
strengths) and SL is the longitudinal shear strength. 
 
The failure index is evaluated as: 
 

𝐹𝐼 = MAX [
𝜎11
𝑋
,
𝜎22
𝑌
,
𝜏12
𝑆
]                                      (2.1 − 2)  

 

with 𝑋 = 𝑋𝑇𝑜𝑟 𝑋 = 𝑋𝑐 if 𝜎11 ≥ 0 𝑜𝑟 𝜎11 < 0,the same for transverse tensile. 
The maximum strain criterion is obtained following the same approach of the 
maximum stress criterion, but taking into account corresponding strains in the 
conditions for failure. 

After that FI is obtained, it is possible to define the corresponding failure load, 𝐿𝐹, 
as: 
 

𝐿𝐹 = 𝑘 ∗ 𝐿,                                            (2.1 − 3) 
 

where L is the acting load and 𝑘 = 1/𝐹𝐼. 
 

                                                 
1 Ref.1 
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2.2 - Tsai–Hill criterion  

The Tsai–Hill criterion was formulated by referring to distortional energy and is 
thus an interactive criterion that takes into account the effect of the in-plane shear 
stress[6,7]. 
The condition for failure is given by the following inequality 
 

(
𝜎11
𝑋
)
2

−
𝜎11𝜎22
𝑋2

+ (
𝜎22
𝑌
)
2

+ (
𝜏12
𝑆𝐿
)
2

≥ 1                                      (2.2 −  1) 

where the failure parameters X and Y depends on the considered quadrant of the 
coordinate plane, being X = XT or X=XC if 𝜎11 ≥ 0 𝑜𝑟 𝜎11 < 0, the same for Y. 

Corresponding failure load is given by formula 2.1-1, but in this case 𝑘 =  1/√𝐹𝐼. 
 

2.3 – Tsai-Wu criterion 

The Tsai–Wu criterion was not derived from a physical basis, but it was formulated 
in order to fit experimental results [8,9]. It is an interactive approach considering in-
plane shear stress effects. 
 
The failure condition is expressed by the following inequality: 
 

𝐴11𝜎11
2 + 2𝐴12𝜎11𝜎22 + 𝐴22𝜎22

2 + 𝐴66𝜏12
2 + 𝐵1𝜎11 + 𝐵2𝜎22 ≥ 1             (2.3 −  1)  

where the first term of inequality is the Tsai–Wu’s failure index and other terms are 
Tsai-WU parameters, whose expressions are given in Tab.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 - Tsai-WU parameters 

The 𝐴12 coefficient is often obtained/corrected by biaxial tests of laminae. 
 

Tsai-Wu parameters 

𝑨𝟏𝟏 
1

𝑋𝑇𝑋𝐶
 

𝑨𝟐𝟐 −
1

2√𝑋𝑇𝑋𝐶𝑌𝑇𝑌𝐶
 

𝑨𝟏𝟐 
1

𝑌𝑇𝑌𝐶
 

𝑨𝟔𝟔 
1

𝑆𝑇𝑆𝐶
 

𝑩𝟏 
1

𝑋𝑇
−
1

𝑋𝐶
 

𝑩𝟐 
1

𝑌𝑇
−
1

𝑌𝐶
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The failure load corresponding to the Tsai–Wu criterion is: 
 

𝐿𝐹 = 𝑘 ∗ 𝐿,  
 
where L is the acting load and k is obtained by: 

𝑘 =   𝑀𝐼𝑁 (
2

±𝐵1𝜎11±𝐵2𝜎22√(4𝐴11+𝐵1
2)𝜎11

2 +2(4𝐴12+𝐵1𝐵2)𝜎11𝜎22+(4𝐴22+𝐵2
2)𝜎22

2 +4𝐴66𝜏12
2
)             (2.3 −  2)  

 

2.4 – Hoffman criteria  

The following formulas were extracted by NX Nastran User’s Guide2 and they were 
implemented in the API. 
The resulting failure index in Hoffman’s theory for an orthotropic lamina in a 

general state of plane stress (2D) with unequal tensile and compressive strengths is 
given by  
 

𝐹𝐼𝐻𝑜𝑓𝑓𝑎𝑚𝑎𝑛2𝐷 =  (
1

𝑋𝑡
−
1

𝑋𝑐
)𝜎1 + (

1

𝑌𝑡
−
1

𝑌𝑐
)𝜎2 +

𝜎1
2

𝑋𝑡𝑋𝑐
+
𝜎2
2

𝑌𝑡𝑌𝑐
+
𝜎12
2

𝑆2
−
𝜎1𝜎2
𝑋𝑡𝑋𝑐

,     (2.5 − 1) 

 
Note that this theory takes into account the difference in tensile and compressive 
allowable stresses by using linear terms in the equation.  
To calculate the strength ratio and then the margin of safety, the following terms are 
defined: 
 
 
 
 
 
 
 
 

Table 2 - Hoffman’s failure index (2D) coefficients 

 
Substituting above terms into Hoffman FI equation and setting FI = 1, the following 
expression for SR has been obtained: 

                                                 
2 Ref. 20 

Hoffman’s failure index (2D) coefficients 

𝑭𝟏 = 
𝟏

𝑿𝒕
−
𝟏

𝑿𝒄
 𝐹22 = 

1

𝑌𝑡𝑌𝑐
 

𝑭𝟐 = 
𝟏

𝒀𝒕
−
𝟏

𝒀𝒄
 𝐹66 =

1

𝑆2
 

𝑭𝟏𝟏 = 
𝟏

𝑿𝒕𝑿𝒄
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𝑆𝑅 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
,      (2.5 − 2) 

where: 

𝑎 = 𝐹11𝜎1
2 + 𝐹22𝜎22

2 + 𝐹66𝜎12
2 − 𝐹11𝜎1𝜎2 

𝑏 = 𝐹1𝜎1 + 𝐹2𝜎2, 

𝑐 = −1. 

     (2.5 − 3) 
In case of composites modelled using solid elements, so for a 3D mesh and stress 
state, the relation of failure index becomes: 
 

𝐹𝐼𝐻𝑜𝑓𝑓3𝐷 = 𝐶1(𝜎2 − 𝜎3)
2 + 𝐶2(𝜎3 − 𝜎1)

2 + 𝐶3(𝜎1 − 𝜎2)
2 + 𝐶4𝜎1 + 𝐶5𝜎2 + 𝐶6𝜎3

+ 𝐶7𝜏23
2 + 𝐶8𝜏13

2 + 𝐶9𝜏12
2 ,                                                         (2.5 − 4) 

 
and the new coefficients are resumed in Tab.3  

Table 3 - Hoffman’s failure index (3D) coefficients 

 
In each case, the following material data are required: 

 𝑋𝑡, 𝑋𝑐 are the maximum allowable stresses in the 1-direction in tension and 
compression;  

 𝑌𝑡, 𝑌𝑐 are the maximum allowable stresses in the 2-direction in tension and 
compression; 

 𝑍𝑡 , 𝑍𝑐 are the maximum allowable stresses in the 3-direction in tension and 
compression; 

 𝑆12 is the maximum allowable in-plane shear stress; 
 𝑆23 is the maximum allowable 23 shear stress; 
 𝑆13 is the maximum allowable 13 shear stress. 

Hoffman’s failure index (3D) coefficients 

𝑪𝟏 =
𝟏

𝟐
(
𝟏

𝒁𝒕𝒁𝒄
+

𝟏

𝒀𝒕𝒀𝒄
−

𝟏

𝑿𝒕𝑿𝒄
) 𝐶6 = (

1

𝑍𝑡
−
1

𝑍𝑐
) 

𝑪𝟐 =
𝟏

𝟐
(
𝟏

𝑿𝒕𝑿𝒄
+

𝟏

𝒁𝒕𝒁𝒄
−

𝟏

𝒀𝒕𝒀𝒄
) 𝐶7 =

1

𝑠23
2  

𝑪𝟑 =
𝟏

𝟐
(
𝟏

𝑿𝒕𝑿𝒄
+

𝟏

𝒀𝒕𝒀𝒄
−

𝟏

𝒁𝒕𝒁𝒄
) 𝐶8 =

1

𝑠13
2  

𝑪𝟒 = (
𝟏

𝑿𝒕
−
𝟏

𝑿𝒄
) 𝐶9 =

1

𝑠12
2  

𝑪𝟓 = (
𝟏

𝒀𝒕
−
𝟏

𝒀𝒄
)  
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2.5 – Hashin criterion  

In Hashin and Rotem´s works3, for the first time the failure of laminated composites 
has been attributed to different physical phenomena: fiber-dominated and matrix-
dominated failure modes. The Hashin criterion proposes a combination of four 
interactive and non-interactive conditions in order to distinguish between matrix or 
fibre failure caused by tension or compression. Firstly they were defined in Ref.10 
and subsequently they were revised in Ref.11 A further version of this criterion was 
proposed by Sun et al, according to some empirical modifications. The Hashin 
criterion is an interactive one, the conditions for failure being given by the following 
inequalities. 
 

a) Matrix Failure for compression (𝜎22 ≥ 0) 
 

(
𝜎22
𝑌𝑇
)
2

+ (
𝜏12
𝑆𝐿
)
2

≥ 1                 (2.4 − 1) 

 

b) Matrix failure for tension (𝜎22 < 0)  
 

(
𝜎22
2𝑆𝑇

)
2

+

[(
𝑌𝐶

2𝑆𝑇
)
2

− 1] 𝜎22

𝑌𝐶
+ (

𝜏12
𝑆𝐿
)
2

≥ 1                (2.4 − 2) 

 

c) Fibre failure for tension (𝜎11 ≥ 0)  
 

(
𝜎11
𝑋𝑇
)
2

+ (
𝜏12
𝑆𝐿
)
2

≥ 1               (2.4 − 3) 
 

d) Fibre failure for compression (𝜎11 < 0) 
 

−
𝜎11
𝑋𝐶

≥ 1               (2.4 − 4) 

In formula b) the term 𝑆𝑇 is the transverse shear strengths which is very difficult to 
measure experimentally. An analytic relation is suggested:  
 

𝑆𝑇 = 𝑌𝐶 cos(𝛼) (sin(𝛼) +
cos(𝛼)

tan(2𝛼)
 ,            (2.4 − 5) 

 

where 𝛼 is the angle of fracture plane, which was also adopted in LaRC criteria. 
 

                                                 
3 Ref. 10 and Ref.11 
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Hashin’s failure index is given by the highest value among the expressions before. 
The failure load corresponding to the Hashin’s criterion is given by: 
 

𝐿𝐹 = 𝑘𝐿             (2.4 − 6) 
 
where, in the case of linear analysis, k can be found by scaling the results computed 
with load L by a varying factor 𝑘𝑡𝑟𝑦 . After a number of iterations, if 𝐹𝐼 ≃ 1 then 
𝑘 = 𝑘𝑡𝑟𝑦. 

 

2.6 – LaRC criteria 

In the first paragraph of this section origins of LaRC criteria will be briefly 
described, then a more detailed treatment of them will follow in the others 
paragraphs. Since LaRC criteria have been reviewed many times until today, only 
LaRC03, LaRC04 and LaRC05 have been reported to streamline the reading. 

2.6.1 - The basic knowledge of LaRC: Puck’s failure criteria  

Puck provided an exhaustive assessment of the theoretical methods for predicting 
material initial failure in Fiber Reinforced Polymer composites. In fact, he was the 
first author who supported the idea of distinguishing and treating separately failure 
criteria the fibre failure (FF) and interfibre failure (IFF).  
For a physically based theoretical treatment of the successive failure process in 
laminates, the Puck theory supplies at least four essential topics: 

1. Non-linear stress and strain analysis before IFF, 
2.  Physically-based action plane related fracture criteria for IFF and FF, 
3.  A continuous degradation after the onset of IFF, 
4.  Considerations on total failure of a laminate. 

Puck made a new attempt based on Hashin's concept using fundamental elements 
of the failure criterion by Mohr and Coulomb. Applying this model, the three-
dimensional state of stress is evaluated in a realistic manner. It is assumed that 
besides the occurrence of fibre failure only tensile stresses and shear stresses in 
loading planes tangential to the fibre direction induce the inter-fibre failure of the 
unidirectionally reinforced composite, whereas compressive stresses in these 
planes obstruct failure. Moreover, by experimental observations he argued that for 
FRP materials, which are intrinsically brittle, have not sense to evaluate failure 

Figure 1 - Angle of fracture plane of an unidirectional lamina subjected to transverse compression 
and in-plane shear 
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using criteria similar to the well-known “Von Mises yield criterion” for ductile 

metals. Therefore, Puck tackles the task of modifying the ideas of Coulomb and 
Mohr for the application on UD-composites. 
The fracture hypothesis adapted to a UD-composite element are the follows: 

a) "The stresses on the fracture plane are decisive for fracture". Though this is 
not a problem idea, it is not as easy to handle, because the location of the 
fracture plane is difficult to evaluate a priori. 

b) “The normal stress 𝜎𝑛 and the shear stress 𝜏𝑛𝑡 and 𝜏𝑛1 on the fracture plane 
are decisive for IFF. A tensile stress 𝜎𝑛 supports the fracture, while in 
contrast a compressive stress ‘makes the material stronger’”. 

In order to characterize certain types of stress Puck introduces the concept of 
‘stressing’. Consider for instance a 𝜎⊥-stressing, it is quite unimportant whether we 
are dealing with a stress 𝜎2 or 𝜎3 stress or with a stress 𝜎𝑛as shown in Fig.2; the 
decisive feature is that it is acting transverse () to the fibre direction [12]. 

 

2.6.1.1 – Failure conditions for fibre failure (FF) 

In this paragraph, will be reported results obtained by Puck studying fibre failure. 
For a more detailed treatment see Ref.13. 
Puck assumed that fibre failure in a UD composite under a combined state of stress 
(𝜎1, 𝜎2, 𝜎3, 𝜏23, 𝜏31, 𝜏21) will occur at the same fibre stress as that which is acting 
in the fibres at failure under uniaxial stress 𝜎1. Starting from this failure hypothesis 
he began with a failure condition for fibre instead of for the unidirectional 
composite: 
 

𝜎𝑓1 = 𝑋𝑓𝑇   𝑓𝑜𝑟 𝜎𝑓1 ≥ 0 

                                              𝜎𝑓1 = −𝑋𝑓𝐶    𝑓𝑜𝑟 𝜎𝑓1 < 0                        (2.6.1 – 1) 

where 

Figure 2 - The basic stressings (stressing means type of stress) of a UD-composite || stressing is 
responsible for fibre failure (FF), while 𝝈⊥, 𝝉⊥⊥, 𝝉⊥∥  stressings cause interfibre failure (IFF). Also shown 
are the planes in which brittle fracture occurs (𝝉⊥∥can not produce a fracture of its action plane, because 
fibres would have to be sheared off. Fracture occurs much easier on the parallel to fibre action plane in 
which 𝝉⊥∥  with the same magnitude as 𝝉⊥∥is acting). 
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 𝑋𝑓𝑇, 𝑋𝑓𝐶   are tensile fibre strength and compressive fibre strength in fibre 
direction (in a UD composite), 

 𝜎𝑓1 is the fibre stress in 𝑥1 direction. 

In case of linear-elastic material behaviour it is possible to evaluate the strengths 
like: 
 

𝑋𝑓𝑇 =
𝑋𝑇
𝐸1
𝐸𝑓1 = 𝜖1𝑇𝐸𝑓1            𝑎𝑛𝑑         𝑋𝑓𝐶 =

𝑋𝐶
𝐸1
𝐸𝑓1 = 𝜖1𝐶𝐸𝑓1      (2.6.1 − 2)  

 
where  

 𝜖1𝑇 and 𝜖1𝐶 are tensile failure strain and compression failure strain of a 
unidirectional layer in 𝑥1 direction,  

 𝐸1 is the elastic modulus of a unidirectional layer in the 𝑥1 direction, 
 𝐸𝑓1 is the fibre modulus in 𝑥1 direction, 
 𝑋𝑇 and 𝑋𝐶 are tensile strength and compressive strength of the unidirectional 

layer parallel to the fibre direction. 

Already at a state of stress where 𝜎1 = 0, but 𝜎2 ≠ 0, stresses of opposite sign 
occur in fibres and matrix in a direction parallel to the fibres because of their 
different elastic moduli and Poisson’s ratios (for 𝜎2 > 0 it is 𝜎𝑓1 < 0 and for 𝜎2 <
0 it is 𝜎𝑓1 > 0) [13]  

Puck was able to write the following failure conditions for fibre failure under 
combined (𝜎𝑓1,𝜎𝑓24) loading taking into account the above hypothesis. 

Tensile fibre failure criterion 

 

1

𝜖1𝑇
(𝜖1 +

𝜈𝑓12

𝐸𝑓1
𝑚𝜎𝑓𝜎2) = 1   𝑓𝑜𝑟 (… ) ≥ 1        (𝑃𝑈𝐶𝐾 − 1) 

 

Compressive “fibre kinking” failure criterion 

 

1

𝜖1𝐶
(𝜖1 +

𝜈𝑓12

𝐸𝑓1
𝑚𝜎𝑓𝜎2) = −1   𝑓𝑜𝑟 (… ) < 1        (2.6.1 − 3) 

 

with 𝜖1𝐶 expresses as appositive value. 
Indeed, Eq. 2.6.1 -3 was modified using an empirical shear correction. In this way, 
Puck correlated it with experimental experience. Its last expression is: 
 

                                                 
4 𝜎𝑓2 is the fibre stress in 𝑥2 direction. 
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1

𝜖1𝐶
|(𝜖1 +

𝜈𝑓12

𝐸𝑓1
𝑚𝜎𝑓𝜎2)| + (10𝛾21)

2 = 1   𝑓𝑜𝑟 (… ) < 0        (𝑃𝑈𝐶𝐾 − 2) 

 

where (10𝛾21)2 is a pure empirical approach. 

In both criterion, the factor 𝑚𝜎𝑓 accounts for a ‘stress magnification effect’ caused 

by different moduli of fibres and matrix. In case of glass fibre, it has been usually 
assumed equal to 1.3, while for carbon fibre its value is about 1.1. 
 

2.6.1.2 – Failure conditions for inter-fibre failure (IFF) 

In the Puck criterion, inter-fibre failure encompasses any matrix cracking or 
fibre/matrix debonding. It recognizes three different inter-fibre modes, referred to 
as modes A, B and C. These are distinguished by the orientation of the fracture 
planes relative to the reinforcing fibres. 

 
 

In each fracture condition must be inserted the stresses 𝜎𝑛, 𝜏𝑛𝑡 and 𝜏𝑛1, which can 
be expressed in terms of 𝜎1, 𝜎2, 𝜏21 using relations in Eqs.2.6.1-4: 
 

Figure 3 - (𝝈𝟐,𝝉𝟐𝟏) fracture curve for 𝝈𝟏=0, representing three different fracture modes A, B, C. The curve 
is generated by two ellipses and one parabola. If a degradation by 𝝈𝟏 takes place, the fracture curve 
shrinks by a factor 𝒇𝒘 under the condition of similarity. 

Figure 4 - Master fracture surface (for 𝝈𝟏 = 𝟎) for UD material in the (𝝈𝒏,  𝝉𝒏𝒕,  𝝉𝒏𝟏) stress space with 

fracture resistances 𝑹⊥
(+)𝑨

, 𝑹⊥∥
𝑨 , 𝑹⊥⊥

𝑨 of the stress action plane. 
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{

𝜎1 = 𝜎1
𝜎𝑛 = 𝜎2 ∗ cos

2 𝜃
𝜏𝑛𝑡 = −𝜎2 sin 𝜃 cos 𝜃 
𝜏𝑛1 = 𝜏21 cos 𝜃

                                 (2.6.1 − 4) 

 

where 𝜃 is the angle between the 𝑥2 axis and the 𝑥𝑛 axis, as it is shown in Fig.5. 

 
To achieve a better agreement with experimental results Puck modified 
introducing different assumptions the basic fracture conditions, which he found. 
To see all the passages the reader can examine Ref.13, in facet in this document 
will be only described the final form of the criteria and the basic terms to obtain 
them. 

Mode A 

Mode A corresponds to a fracture angle 𝜃𝑓𝑝 = 0°. This criterion is invoked if 
transverse stress in the composite is greater than 0 (thus indicating a transverse 
crack perpendicular to the transverse loading). 
So criterion worked out by Puck is expression PUCK-3: 
 

√(
𝜏21
𝑆21
)
2

+ (1 − 𝑝⊥∥
(+) 𝑌𝑇
𝑆21
)
2

(
𝜎2
𝑌𝑇
)
2

+ 𝑝⊥∥
(+) 𝜎2
𝑆21

= 1 − |
𝜎1
𝜎1𝐷

|           (𝑃𝑈𝐶𝐾 − 3)  

 

This is available if 𝜎2 ≥ 0. 
 

Mode B 

Mode B corresponds to a transverse compressive stress (inhibiting crack formation) 
with a longitudinal shear stress, which is below a fracture resistance (coupled with 
empirical constants). Also in this case the angle 𝜃𝑓𝑝 = 0°. 

Figure 5 - Three-dimensional stresses on a UD composite element. (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) coordinate system is fixed 
to fibre direction (𝒙𝟏), laminate mid-surface (𝒙𝟐) and thickness direction (𝒙𝟑). The (𝒙𝟏, 𝒙𝒏, 𝒙𝒕) coordinate 
system is rotated by an angle 𝜽𝒇𝒑from the 𝒙𝟐 direction to the 𝒙𝒏 direction which is normal to the fracture 

plane. The inter-fibre fracture is influenced by the three stresses 𝝈𝟏, 𝝉𝒏𝒕, 𝝉𝒏𝟏only (according to Mohr's 
strength theory). 
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1

𝑆21
(√𝜏21

2 + (𝑝⊥∥
(−)𝜎2)

2

+ 𝑝⊥∥
(−)𝜎2) = 1 − |

𝜎1
𝜎1𝐷

|           (𝑃𝑈𝐶𝐾 − 4) 

 

The above criterion is valid if 𝜎2 < 0 and 0 ≤ |
𝜎2

𝜏21
| ≤

𝑅⊥⊥
𝐴

|𝜏21𝑐|
. 

Mode C 

Mode C, which is a general case, corresponds to a transverse compressive stress 
(inhibiting crack formation) with a longitudinal shear stress, which is significantly 
large enough to cause a fracture on an inclined plane to fibre axis. 
 

[(
𝜏21

2(1 + 𝑝⊥⊥
(−)𝑆21)

)

2

+ (
𝜎2
𝑌𝐶
)
2

]
𝑌𝐶

(−𝜎2)
= 1 − |

𝜎1
𝜎1𝐷

|           (𝑃𝑈𝐶𝐾 − 5) 

 
The angle of fracture plane is obtained from the following relationship: 
 

cos 𝜃𝑓𝑝 = √
𝑓𝑤𝑅⊥⊥

𝐴

(−𝜎2)
                  (2.6.1 − 5) 

 

The criterion for mode C is valid if 𝜎2 < 0 and 0 ≤ |
𝜏21

𝜎2
| ≤

|𝜏21𝑐|

𝑅⊥⊥
𝐴 . 

A final observation to do is that in all criteria above was taken into account the 
phenomena of degradation of fracture resistances due to single fibre failure. In 
fact, single fibre breaks cause local damage in the vicinity of the breaks in the 
form of debonding of fibre and matrix and microcracks in the matrix. By this 
damage the fracture resistances 𝑅𝐴 the composites offers to inter-fibre fracture are 
decreased. This is taken into account by equally decreasing all fracture resistances 
with a weakening factor 𝑓𝑤. In mathematical equations, the term  | 𝜎1

𝜎1𝐷
| was added. 

Description of coefficients and terms used in the inter-fibre failure criteria 

In accordance with the six stressings shown in Fig.2, also six corresponding 
strengths exist and they are designated as follows: 

𝑅∥
𝑡, 𝑅∥

𝑐, 𝑅⊥
𝑡 , 𝑅⊥

𝑐 , 𝑅⊥⊥, 𝑅⊥∥ 

It is important to note that the widely used term ‘strength’ means the 

experimentally determined ultimate load divided by the cross section of the plane, 
which is oriented perpendicularly to the applied stress. This is valid for a tensile or 
compressive load. If a shear strength has to be determined the shear load at failure 
is divided by the area of the plane in which the shear load was acting. However, in 
case of brittle fracture behaviour of the material this plane is in most cases not 
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identical with the fracture plane [12]. The fracture planes which appear when a UD-
composite is loaded by a given stressing until fracture is reached, are also shown in 
Fig.2.  
Puck´s observations lead to the following conclusion: uniaxial transverse 
compressive stressing 𝜎⊥𝑐causes fracture in a plane which does not coincide with 
its action plane (so the fracture is produced manly by shear). Also, pure 𝜏⊥⊥causes 
fracture in a plane which does not have the same direction as own action plane 
(usually it has an angle of 45°). Only the tensile 𝜎⊥𝑡 -stressing and the 𝜏⊥∥-stressing 
produce a fracture in their action planes, i.e. their action plane is also a fracture 
plane. 
For this reason, were defined new resistances, which has been evaluated respect 
the action plane: 

 𝑅⊥
(+)𝐴 – Fracture resistance of the action plane against its fracture due to 

transverse tensile stressing, 
 𝑅⊥⊥

𝐴  – Fracture resistance of the action plane against its fracture due to 
transverse/transverse shear stressing, 

 𝑅⊥∥
𝐴  -  Fracture resistance of the stress action plane against its fracture due to 

transverse/parallel shear stressing. 
In general, these were defined as: “The fracture resistance of an action plane is the 

maximum resistance, with which the action plane can resist its own fracture caused 
by a uniaxial 𝜎⊥𝑡 -stressing or a pure 𝜏⊥⊥or 𝜏⊥∥-stressign respectively” [12]. 

Other terms in above equations are: 

 𝑝⊥∥
(−) - it is the slope of the (𝜎𝑛, 𝜏𝑛1) fracture envelope for 𝜎𝑛 ≤ 0 at 𝜎𝑛 = 0 

 𝑝⊥⊥
(−) - it is the slope of the (𝜎𝑛, 𝜏𝑛𝑡) fracture envelope for 𝜎𝑛 ≤ 0 at 𝜎𝑛 = 0, 

 𝑌𝑇 – it is the composite transverse tensile strength, 
 𝑌𝐶 – it’s the transverse compressive strength. 

To work out the final form of each criterion Puck assumed that the following 
coupling exist: 
 

𝑝⊥⊥
(−)

𝑅⊥⊥
𝐴  

=  
𝑝⊥∥
(−)

𝑅⊥∥
𝐴  
= (

𝑝

𝑟
) = 𝑐𝑜𝑛𝑠𝑡     (2.6.1 − 6)         

 
 
 

2.6.2 - LaRC03  

In this paragraph the physically-based criteria denoted LaRC03 is described, basing 
on Ref. [14]. LaRC03 criterion can be employed in order to predict accurately the 
failure of FRP laminated panels with in-plane stress states without requiring curve-
fitting parameters. It is composed by set of a set of six failure criteria 
This criterion is inspired by Puck’s fundamental assumption of a fragile fracture for 
the matrix failure in compression and consequently implements the action plane 
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concept, according to the Mohr–Coulomb theory. Concerning tensile matrix 
cracking, LaRC03 is associated with Dvorak’s fracture mechanics approach, making 
use of the energy release rates associated with intralaminar crack propagation. A 
criterion for fibre kinking is obtained by calculating the fibre misalignment under 
load, and applying the matrix failure criterion in the coordinate frame of the 
misalignment. Fracture mechanics models of matrix cracks are used to develop a 
criterion for matrix in tension and to calculate the associated in-situ strengths. 

2.6.2.1 - Matrix failure 

In this section, a new set of criteria is proposed for matrix fracture that is based on 
the concepts proposed by Hashin and the fracture plane concept proposed by Puck.  
The matrix can crack under tensile or compressive loads. In the first case the failure 
belongs to a fracture plane normal to the plane of the plies and parallel to the fibre 
direction.  

2.6.2.1.1 - Matrix failure under transverse compression (𝜎22 < 0) 

In case of matrix compression, the plane of fracture should not be normal to the ply, 
but it may have an angle, named ‘angle of fracture plane’. Mohr-Coulomb effective 
stresses were used to evaluate this angle. The M-C criterion is represented 
geometrically by the diagram illustrated in Fig.6. The Mohr’s circle represents a 

state of uniaxial compression. The angle of the plane of fracture 𝛼0 is set in this 
example at 53°, which is a typical fracture angle for composites under transverse 
compression loading. The line AB is the tangent to Mohr’s circle at A and it is called 
the Coulomb fracture line. The M-C criterion postulates that in a state of biaxial 
normal stress, fracture occurs for any Mohr’s circle that is tangent to the Coulomb 

fracture line. The effective stress 𝜏𝑒𝑓𝑓 is related to the stresses 𝜏𝑇 and 𝜎𝑛 acting on 
the fracture plane by the expression 𝜏𝑒𝑓𝑓  = 𝜏𝑇  + 𝜂𝜎𝑛. 

In the literature, tan−1(𝜂)is called the angle of internal friction and it is assumed to 
be a material constant. When η=0, the M-C criterion is equivalent to the Tresca 
condition5.  

                                                 
5 DiLandro explains the role of internal friction on the strength of carbon-fibre composites by noting 

the absence of chemical bonds between fibre and matrix, and that adhesion is attributed to Van der 

Waal’s interactions. Larson examined the relative effects of interfacial friction and roughness on the 
length of interfacial sliding which proceeds from the tip of an impinging fracture oriented 
perpendicular to the interface [16]. 
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In general, the fracture plane can be subjected to transverse as well as in-plane 
stresses, in which case the effective stresses must be defined in both orthogonal 
directions as shown in equation below: 
 

𝜏𝑒𝑓𝑓
𝑇 = 〈|𝜏𝑇| + 𝜂𝑇𝜎𝑛〉 

𝜏𝑒𝑓𝑓
𝐿 = 〈|𝜏𝐿| + 𝜂𝐿𝜎𝑛〉 

(2.6.2 - 1) 
 

where the terms 𝜂𝑇 and 𝜂𝐿 are referred to as coefficients of transverse and 
longitudinal influence, respectively, and the operand 〈𝑥〉  =  𝑥  𝑖𝑓 𝑥 ≥  0; otherwise 
𝑥 =  0. 
Finally, the failure in matrix or this case load is expressed as a quadratic interaction 
between the effective shear stresses acting on the fracture plane. When stress states 
violate the below inequality of failure index, they are not physically admissible: 
 

 𝐹𝐼𝑀𝑐𝑜𝑚𝑝 = (
𝜏𝑒𝑓𝑓
𝑇

𝑆𝑇
)

2

+ (
𝜏𝑒𝑓𝑓
𝐿

𝑆𝑖𝑠
𝐿 )

2

≤  1           (𝐿𝑎𝑅𝐶03 − 1)  

 

where 𝑆𝑇 and 𝑆𝑖𝑠𝐿  are the transverse and longitudinal shear strengths, respectively. 
The subscript M indicates matrix failure. The subscript is indicating that for general 
laminates, the in-situ longitudinal shear strength rather than the strength of a 
unidirectional laminate should be used. Since the constraining effect of adjacent 
plies substantially increases the effective strength of a ply. It is assumed here that 
the transverse shear strength 𝑆𝑇  is not subjected to in-situ effects. 
The stress component acting on the fracture plane can be evaluate with below 
formulas in term of the in-plane stresses and the angle of fracture plane, 𝛼 (Fig 7): 

Figure 6 - Mohr's circle for uniaxial compression and the effective transverse shear 
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{

𝜎𝑛 = cos
2(𝛼)𝜎22

𝜏𝑇 = − sin(𝛼) cos(𝛼)𝜎22
𝜏𝐿 = 𝜏12 cos(𝛼)

                         (2.6.2 - 2) 

 
Consequently, it is possible write effective stresses for an angle of fracture plane 
between 0° and 90° with the following formulas: 
 

𝜏𝑒𝑓𝑓
𝑇 = 〈−𝜎22 cos(𝛼)(sin(𝛼) − 𝜂

𝑇 𝑐𝑜𝑠(𝛼)) 〉 

𝜏𝑒𝑓𝑓
𝐿 = 〈cos(𝛼)(|𝜏12| + 𝜂

𝐿𝑐𝑜𝑠(𝛼)𝜎22) 〉 

 

Calculation of coefficients ηT, ηL and strength ST 

In this paragraph were reported just the expression of the different parameters of 
these formulas, for more details see Ref. [14].  

The coefficients 𝜂𝑇𝑎𝑛𝑑 𝜂𝐿 are obtained from the case of uniaxial transverse 
compression, so 𝜎22 < 0 𝑎𝑛𝑑 𝜏12 = 0 . In addition, at failure the in-plane 
compressive stress is equal to the matrix compressive strength, 𝜎22 =  −𝑌𝐶.  
In these conditions: 

1.  

𝜂𝑇 = −
1

tan(2𝛼0)
                         (2.6.2 − 4) 

 

with usually 𝛼0 = 53° ± 2° from Puck’s study and so 0.21 ≤ 𝜂𝑇 ≤ 0.36.  

For 𝛼0 = 45 ° the coefficients would be equal to zero. 
 

2.  It is difficult to measure experimentally. Hence an expression relating the 
transverse shear strength to the transverse compressive strength was obtained: 
 

𝑆𝑇 = 𝑌𝐶 cos 𝛼0 (𝑠𝑖𝑛𝛼0 +
𝑐𝑜𝑠𝛼0
tan (2𝛼0)

)                         (2.6.2 − 5) 

 

Figure 7 - Fracture of a unidirectional lamina subjected to transverse compression and in-
plane shear 

(2.6.2 - 3) 
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then an angle 𝛼0 = 53° gives 𝑆𝑇 = 0.378 𝑌𝐶, however it is often approximated as 
𝑆𝑇 = 0.5 𝑌𝐶  which implies 𝛼0 = 45°. 
 

3.  The coefficient of longitudinal influence, 𝜂𝐿, can be determined from shear 
tests with varying degrees of transverse compression. In the absence of biaxial 
test data, 𝜂𝐿 can be estimated from the longitudinal and transverse shear 
strengths, as proposed by Puck, so: 
 

𝜂𝐿 = −
𝑆𝐿𝑐𝑜𝑠2𝛼0
𝑌𝐶 cos2 𝛼0

                         (2.6.2 − 6) 

 
this expression was proposed by Puck and it is useful in absence of biaxial test data. 

Determination of the Angle of the Fracture Plane 

The angle of the fracture plane for an unidirectional laminate loaded in transverse 
compression is a material property that is easily obtained from experimental data. 
However, under combined loads, the angle of the fracture plane is unknown. The 
correct angle of the fracture plane is the one that maximizes the failure index in Eq. 
LaRC03-1. 
As it is shown in the Fig. 8, the fracture angle that maximizes the FI for small 
transverse stresses is 𝛼 = 0°. When the applied transverse stress 𝜎22 has a magnitude 
equal to approximately 2/3 of the transverse compressive strength, 𝑌𝐶 , the angle of 
the critical fracture plane switches from 𝛼 = 0° to is 𝛼 = 40°, and then rapidly 
increases to is 𝛼 = 𝛼0, the angle of fracture for uniaxial transverse compression [16]. 

2.6.2.1.2 - Matrix failure under Transverse Tension (𝜎22 > 0) 

A failure criterion to predict matrix cracking under the presence of both in-plane 
shear and transverse tensile stresses should represent the “in-situ” effect occurring 

in laminated composites. The in-situ effect is characterized by higher transverse 
tensile and shear strengths of a ply when it is constrained by plies with different 
fibre orientations in a laminate, when compared with the strength of the same ply in 

Figure 8 - Matrix failure envelopes for a typical unidirectional E-glass/epoxy lamina 
subjected to in plane 
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a unidirectional laminate. It also depends on the number of plies clustered together, 
and on the fibre orientation of the constraining plies.  
The orientation of the constraining plies and the number of plies clustered together 
also affect the crack density and the stiffness reduction of the cracked ply. So, 
accurate in-situ strengths are necessary for any stress based failure criterion for 
matrix cracking in constrained plies, LaRC03 criterion adopted in-situ strengths 
calculated using fracture mechanics solutions for the propagation of cracks in a 
constrained ply. The reader can find a complete argumentation in Ref. [14], only the 
main formulas and terms are only reported now. 
The criterion expects the failure when the failure index, that can be expressed in 
terms of the ply stresses and in-situ strengths 𝑌𝑖𝑠𝑇 and 𝑆𝑖𝑠𝐿 , is minor of the unit: 
 

 𝐹𝐼𝑀𝑡𝑒𝑛𝑠 = (1 − 𝑔)
𝜎22

𝑌𝑖𝑠
𝑇 + 𝑔(

𝜎22

𝑌𝑖𝑠
𝑇 )

2

+ (
𝜏12

𝑆𝑖𝑠
𝐿 )

2

≤ 1                     (LaRC03 − 2)  

 
where  

 𝑔 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝐺𝐼𝑐

𝐺𝐼𝐼𝑐
=

Λ22
0

Λ44
0 (

𝑌𝑖𝑠
𝑇

𝑆𝑖𝑠
𝐿)

2
6 

 𝐺𝐼𝑐(𝑇) =
𝜋𝑎0

2
Λ22
0 (𝑌𝑖𝑠

𝑇)2 , fracture toughness for the T-direction of the mode I 
 𝐺𝐼𝐼𝑐(𝑇) =

𝜋𝑎0

2
Λ44
0 (𝑆𝑖𝑠

𝐿 )2 , fracture toughness for the T-direction of the mode II 
 𝐺𝐼𝑐(𝐿) =

𝜋𝑎0

4
Λ22
0 (𝑌𝑖𝑠

𝑇)2 , fracture toughness for the L-direction of the mode I 
 𝐺𝐼𝐼𝑐(𝐿) =

𝜋𝑎0

4
Λ44
0 (𝑆𝑖𝑠

𝐿 )2 , fracture toughness for the L-direction of the mode II7 
 𝑎0 = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑙𝑖𝑡 𝑠𝑖𝑧𝑒 
 Λ22

0 = 2(
1

𝐸2
−
𝜈21
2

𝐸1
) 

 Λ44
0 =

1

𝐺12
 

 

                                                 
6If g=1 it is possible reverts to the linear version of the criterion proposed by Wu and Reuter for the 
propagation of delamination in laminated composites. Furthermore eq. Larc03-2 reverts to Hashin 
criterion. The term g is defined identically from T-direction values or L-direction values. 
7  𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are the components of the fracture toughness G pertaining to the two modes of energy 
release during the crack propagation. They can be measured from standard fracture tests, however 
Dvorak and Laws formulation for calculating is proposed. 

Figure 9 - Slit crack geometry 
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Finally, the in-situ strengths can be calculated with different formulas basing on 
the geometry of the plies8, which are reported in Tab. 4: 
 
 
 
 
 
 
 
 
 

 

2.6.2.2 - Fibre failure 

2.6.2.2.1 - Fibre Tension Failure 

The LaRC03 criterion for fibre tension failure is a non-interacting maximum 
allowable strain criterion that is simple to measure and is independent from fibre 
volume fraction and Young’s moduli. 

                                                 
8 Thick embedded ply: the length of the slit crack is much smaller than the ply thickness, 2𝑎0 ≪ 𝑡  

Thin embedded ply: having thickness smaller than the typical defect, 𝑡 < 2𝑎0 

Geometry 𝒀𝒊𝒔
𝑻  𝑺𝒊𝒔

𝑳  
Thin embedded 

plies √
8𝐺𝐼𝑐(𝐿)

𝜋𝑡Λ22
0  √

8𝐺𝐼𝐼𝑐(𝐿)

𝜋𝑡Λ44
0  

Thick embedded 
plies √

2𝐺𝐼𝑐(𝑇)

𝜋𝑎0Λ22
0  √

2𝐺𝐼𝐼𝑐(𝑇)

𝜋𝑎0Λ44
0  

Unidirectional 
Laminates 

1.12√2𝑌𝑇 √2𝑆𝐿 

Table 4 - In-situ strengths LaRC03 

Figure 10 - Geometry of slit crack in a thick embedded ply subjected to tension and 
shear loads. 

Figure 11 - Geometry of slit crack in a thin embedded ply. 

Figure 12 - Unidirectional specimens under transverse tension and shear. 
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It is expressed by the follow inequality:  
 

 𝐹𝐼𝐹𝑡𝑒𝑛𝑠 =
𝜀11

𝜀1
𝑇 ≤ 1                    (LaRC03 −  3) 

 

2.6.2.2.2 - Fibre Compression Failure 

Compressive failure of aligned fibre composites occurs from the collapse of the 
fibres as a result of shear kinking and damage of the supporting matrix. Fibre 
kinking occurs as shear deformation leading to the formation of a kink band. 
The first person who analysed kinking phenomenon was Argon, who assumed a 
local initial fibre misalignment. Starting from Argon’s work the calculation of the 

critical kinking stress has been significantly improved incorporating friction and 
material nonlinearity in the models. Several authors have considered that 
misaligned fibres fail by the formation of a kink band when local matrix cracking 
occurs.  

In the present approach, the compressive strength 𝑋𝐶  is assumed to be a known 
material property that can be used in the LaRC03 matrix damage criterion to 
calculate the fibre misalignment angle that would cause matrix failure under 
uniaxial compression. 
 

Calculation of Fibre Misalignment Angle 

The imperfection in fiber alignment is idealized as a local region of waviness, as 
shown in Fig. 13. The ply stresses in the misalignment coordinate frame ‘m’ 
shown in Fig. 13 are: 
 

{

𝜎11
𝑚 = cos2𝜑𝜎11 + sin

2𝜑𝜎22 + 2sin𝜑cos𝜑𝜏12

𝜎22
𝑚 = sin2𝜑𝜎11 + cos

2𝜑𝜎22 − 2sin𝜑cos𝜑𝜏12

𝜏12
𝑚 = −𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑𝜎11 + 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑𝜎22 + (cos

2𝜑− sin2𝜑)𝜏12 

      (2.6.2 − 7) 

 

 

So, to evaluate these new stresses is necessary to calculate the angle 𝜑, which is the 
angle of rotation of material reference system from which is obtained the coordinate 
frame ‘m’. with Eq.(2.6.2-8): 
 

𝜑 =  𝜑0 + 𝜑𝑅 = 
|𝜏12| + (𝐺12 − 𝑋

𝐶)𝜑𝐶

𝐺12 + 𝜎11 − 𝜎22
      (2.6.2 − 8) 

 

with  
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 𝜑0 = 𝜑𝐶 (1 − 𝑋𝐶

𝐺12
) 

 𝜑𝑅 = 𝑡12
𝑚

𝐺12
= 

−𝜑𝜎11+𝜑𝜎22+ |𝜏12|

𝐺12

9 

  𝜑𝐶 = tan−1

(

 
 
1−√1−4(

𝑆𝑖𝑠
𝐿

𝑋𝐶
+𝜂𝐿)(

𝑆𝑖𝑠
𝐿

𝑋𝐶
)

2(
𝑆𝑖𝑠
𝐿

𝑋𝐶
+𝜂𝐿)

)

 
 

 

 

 

Failure Index 

Fibre compression failure by formation of a kink band was predicted by using the 
stresses from Eq(2.6.2-7) and the failure criterion for matrix tension or matrix 
compression. Hence, in the first case the criterion for fibre kinking becomes like 
this: 
 

 𝐹𝐼𝐹𝑐𝑜𝑚𝑝𝑀𝑡𝑒𝑛𝑠
= (1 − 𝑔)(

𝜎22
𝑚

𝑌𝑖𝑠
𝑇 
) + 𝑔 (

𝜎22
𝑚

𝑌𝑖𝑠
𝑇 )

2

+ (
𝜏12
𝑚

𝑆𝑖𝑠
𝐿 )

2

≤ 1                    (LaRC03 −  4)  

 
while for matrix compression is: 
 

 𝐹𝐼𝐹𝑐𝑜𝑚𝑝𝑀𝑐𝑜𝑚𝑝 
= 〈

|𝜏12
𝑚 | + 𝜂𝐿𝜎22

𝑚

𝑆𝑖𝑠
𝐿

〉 ≤ 1                   (LaRC03 −  5)   

 

2.6.2.3 - Matrix Damage under Biaxial Compression 

There is another possible failure of the matrix, in fact in the presence of high 
transverse compression combined with moderate fiber compression, matrix damage 
can occur without the formation of kink bands or damage to the fibers. This matrix 
damage mode was evaluated by using the stresses in the misaligned frame in the 
failure criterion in Eq.LaRC03-1, which gives: 
 

                                                 
9 Using small angle approximations. 

Figure 13 - Imperfection in fibre alignment idealized as local region of waviness. 
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 𝐹𝐼𝑀 = (
𝑡𝑒𝑓𝑓
𝑚𝑇

𝑆𝑇
)

2

+ (
𝜏𝑒𝑓𝑓
𝑚𝐿

𝑆𝑖𝑠
𝐿 )

2

≤ 1                 (LaRC03 −  6)   

 

where the effective shear stress 𝜏𝑒𝑓𝑓𝑚𝑇  and 𝜏𝑒𝑓𝑓𝑚𝐿  are defined in terms of the in-plane 

stresses in the misalignment frame by following equations: 
 

𝜏𝑒𝑓𝑓
𝑚𝑇 = 〈−𝜎22

𝑚𝑐𝑜𝑠𝛼(𝑠𝑖𝑛𝛼 − 𝜂𝑇𝑐𝑜𝑠𝛼)〉 

𝜏𝑒𝑓𝑓
𝑚𝐿 = 〈𝑐𝑜𝑠𝛼(|𝜏12

𝑚 | + 𝜂𝐿𝜎22
𝑚𝑐𝑜𝑠𝛼)〉 

                                                                                                                 (2.6.2 − 9) 
 

As for all matrix, compressive failures herein, the stresses 𝜏𝑒𝑓𝑓𝑚𝑇  and 𝜏𝑒𝑓𝑓𝑚𝐿  are 
functions of the fracture angle α, which must be determined iteratively. 

2.6.3 - LaRC04 

In this paragraph will be described an extension of the LaRC03 plane stress criteria 
to account for general three-dimensional loading and for in-plane shear non-
linearity. 
It consists of six failure indexes expressions for laminated fiber-reinforced 
composites, denoted LaRC0410. As it has been already written the criteria are based 
on physical models for each failure mode and take into consideration non-linear 
matrix shear behavior. The model for matrix compressive failure is based on the 
Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered 
by an initial fiber misalignment angle and by the rotation of the fibers during 
compressive loading. The plane of fiber kinking is predicted by the model. 
Predictions using LaRC04 correlated well with the experimental data, arguably 
better than most existing criteria. The good correlation seemed to be attributable to 
the physical soundness of the underlying failure models. 

2.6.3.1 - Matrix failure 

2.6.3.1.1 -  Tensile Matrix failure 

For this type of failure, the LaRC04 is different from LaRC03 because the 
components of the energy release rate for the crack geometry were determined by 
Dvorak and Laws for a linear orthotropic material. But, it was added an extension 
of their analysis for non-linear shear behaviour. So, three modes components are 
considered, but the mode II and II are combined in a shear mode, 𝐺𝑆𝐻 = 𝐺𝐼𝐼 +
𝐺𝐼𝐼𝐼. 
 
News corresponding components of the fracture toughness are associated to the 
components of the energy release rate, and they are given by: 

                                                 
10 Ref. 15 
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 Transverse direction 
 

𝐺𝐼𝑐(𝑇) =
𝜋𝑎0
2
Λ22
0 (𝑌𝑖𝑠

𝑇)2 

𝐺𝑆𝐻𝑐(𝑇) =
𝜋𝑎0
2
𝜒(𝛾12|𝑖𝑠

𝑢 ) 

 

 Longitudinal direction 
 

𝐺𝐼𝑐(𝐿) =
𝜋𝑎0
4
Λ22
0 (𝑌𝑖𝑠

𝑇)2 

𝐺𝑆𝐻𝑐(𝐿) =
𝜋𝑎0
4
𝜒(𝛾12|𝑖𝑠

𝑢 ) 

                                                                                                                 (2.6.3 − 1) 
 

where 𝑌𝑖𝑠𝑇 is the in-situ transverse tensile strength, and 𝛾12|𝑖𝑠𝑢  is the in/situ in/plane 
shear ultimate strain. These new expressions lead to the following expression for 
the material constant g: 
 

𝑔 =
Λ22
0 (𝑌𝑖𝑠

𝑇)2

𝜒(𝛾12|𝑖𝑠
𝑢 )

        (2.6.3 − 2) 

 
Finally, a failure index for matrix tension can be expressed in terms of the ply 
stresses and in-situ strengths and the following criterion is getting: 
 

𝐹𝐼𝑀𝑡𝑒𝑛𝑠 = (1 − 𝑔)
𝜎22

𝑌𝑖𝑠
𝑇 + 𝑔(

𝜎22

𝑌𝑖𝑠
𝑇 )

2

+
Λ23
0 𝜏23

2 + 𝜒(𝛾12)

𝜒(𝛾12|𝑖𝑠
𝑢 ) 

= 1          (LaRC04 − 1)11 

 

The criterion presented in Eq. (LaRC04 -1) with linear and quadratic terms in 𝜎22, a 
quadratic term in 𝜏23 and a term on the in-plane shear internal energy, 𝜒(𝛾12) [14]. 
As for LaRC03 criterion, there are different expressions for in-situ strengths for 
different geometries of the model: 
  

                                                 
11 If g=1 it is possible reverts to the linear version of the criterion proposed by Wu and Reuter for the 
propagation of delamination in laminated composites. Furthermore eq. Larc03-2 reverts to Hashin 
criterion. Furthermore, the non-linear term in Eq. (LaRC04-1) is also found to be similar to the strain-
energy based criterion proposed by Sandhu, later used by Chang and Scott [17]. 
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Table 5 - In situ strengths LaRC04 

In the absence of specific data, the toughness values 𝐺𝐼𝑐(𝐿) and 𝐺𝑆𝐻𝑐(𝐿) can be 
assumed to have the values measured by standard Fracture Mechanics tests, such as 
the DCB for mode I and the ENF test for mode II. 

2.6.3.1.2 -  Compressive Matrix failure 

Matrix compression specimens fail by shear, which would suggest that the angle of 
the fracture surface with the through-the-thickness direction should be 𝛼0 =
45° along the plane of the maximum shear stress. However, the experiments indicate 
that the angle of fracture under uniaxial compression is generally 𝛼0 = 53° ± 2° for 
most technical composite materials. The fact that 𝛼0 > 45° can be explained by the 
existence of a compressive stress acting on the potential fracture surfaces, and its 
associated friction. The magnitude of the compressive stress, and hence the friction 
stress, is maximum for a fracture surface with 𝛼0 =  0° and decreases monotonically 
until   𝛼0 =  90°, in which case the compressive (and friction) stress is zero. 
Although the shear stress is maximum for 𝛼0 =  45°, the friction stress which 
opposes fracture, decreases with larger values of the angle𝛼0. As a result, fracture 
is expected for values of 𝛼0 larger than 45°, where a critical combination of shear 
and normal stress acts. [15]. 
Like the criteria before experimental evidence on the fracture surface of specimens 
failing suggest that the Mohr-Coulomb criterion is applicable in this case. It is 
represented geometrically in Fig.6 and it postulates: “In a state of biaxial normal 

stress, fracture occurs for any Mohr´s circle that is tangent to the M-C fracture 
line”. 
For a general loading situation shown in Fig. 14, the angle of the fracture plane with 
the through-the-thickness direction, denoted as 𝛼, might assume a different value 
than the one for pure compression.  
 

                                                 

12 For a linear shear law:  𝑆𝑖𝑠𝐿 = √
8𝐺12𝐺𝑆𝐻𝑐(𝐿)

𝜋𝑡
 

13 The in-situ strengths of thick embedded plies are independent of the ply thickness. In case of linear 
shear law, the expression become 𝑆𝑖𝑠𝐿 = √2 𝑆𝐿 and 𝑌𝑖𝑠𝑇 = 1.12√2𝑌𝑇 

Geometry 𝒀𝒊𝒔
𝑻  𝑺𝒊𝒔

𝑳  
Thin embedded 

plies √
8𝐺𝐼𝑐(𝐿)

𝜋𝑡Λ22
0  

√
√1+ 𝛽

48𝐺𝑆𝐻𝑐(𝐿)
𝜋𝑡

(𝐺12)
2 − 1

3𝛽𝐺12
 12 

Thick 
embedded 

plies13 
√
2𝐺𝐼𝑐(𝑇)

𝜋𝑎0Λ22
0  

√
√1+ 𝛽 (

12(𝑆𝐿)2

𝐺12
+ 18𝛽(𝑆𝐿)4) (𝐺12)

2 − 1

3𝛽𝐺12
  

Unidirectional 
Laminates 

𝑌𝑇  𝑆𝐿 
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It depends on the particular combination of shear (𝜏𝑇 𝑎𝑛𝑑 𝜏𝐿) and normal (𝜎𝑛) 
tractions for each value of 𝛼. In plane-stress formulations they are obtained using 
transformation equations: 
 

{
 
 

 
 𝜎𝑛 =

𝜎22
2
(1 + cos(2𝛼))

𝜏𝑇 = −
𝜎22
2
sin (2𝛼)

𝜏𝐿 = 𝜏12cos (𝛼)

       (2.6.3 − 3) 

 
While in a 3D formulation are given by: 
 

{
 
 

 
 𝜎𝑛 =

𝜎22 + 𝜎33
2

+
𝜎22 − 𝜎33

2
cos(2𝛼) + 𝜏23sin (2𝛼)

𝜏𝑇 = −
𝜎22 − 𝜎33

2
sin(2𝛼) + 𝜏23 cos(2𝛼)

𝜏𝐿 = 𝜏12 cos(𝛼) + 𝜏13 sin( 𝛼)

        (2.6.3 − 4) 

 

where 𝛼 ∈  ]−𝜋, 𝜋[. 
 

Then is possible to establish a relation between 𝑆𝑇 , 𝑌𝐶  and 𝛼0 for a pure compression 
case:  
 

𝑆𝑇 = 𝑌𝐶 cos(𝛼0) (sin(𝛼0) +
cos(𝛼0)

tan(2𝛼0)
)         (2.6.3 − 5) 

 

where 𝛼0 can be easily evaluated from compression test and 𝑆𝑇is the transverse (to 
the fibres) shear strength. 

Moreover, form 𝛼0 is possible to calculate the friction coefficient, 𝜂𝑇, by using the 
following relationship: 
 

tan(2𝛼0) =  −
1

𝜂𝑇
        (2.6.3 − 6) 

Figure 14 – Fracture plane for a 3D stress state 
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Motivated by the fact that the M-C criterion can be expressed by several forms, there 
were proposed different expressions of the failure index (Puck and Shürmann, 
LaRC02 or LaRC03), but finally it was demonstrated the LaRc03´s expression over-
estimates the friction stresses, so that in LaRC04´s theory has been proposed the 
following expression of the failure index: 
 

𝐹𝐼𝑀 = (
𝜏𝑇

𝑆𝑇 − 𝜂𝑇𝜎𝑛
)

2

+ (
𝜏𝐿

𝑆𝑖𝑠
𝐿 − 𝜂𝐿𝜎𝑛

)

2

≤ 1          (𝐿𝑎𝑅𝐶04 − 2) 

 
where: 

𝜂𝑛
𝑇𝜎 𝑎𝑛𝑑 𝜂𝐿𝜎𝑛 are shear stresses due to friction.  

To obtain 𝜂𝐿 without experimental data it was suggested the relation: 
 

𝜂𝐿

𝑆𝐿
=
𝜂𝑇

𝑆𝑇
       (2.6.3 − 7) 

 

2.6.3.2 - Fibre failure 

2.6.3.2.1 – Tensile fibre failure 

The criterion adopted in LaRC04 for this type of failure is a non-interacting 
maximum allowable stress criterion, so the formula of failure index is simply: 
 

𝐹𝐼𝐹 =
𝜎11
𝑋𝑇

≤ 1                  (𝐿𝑎𝑅𝐶04 − 3) 

 

2.6.3.2.2 – Compressive fibre failure 

While for matrix compression failure it is possible to represent correctly the failure 
with a relatively simple mechanical model, in this case, depending on the material, 
different failure modes are possible.  
A briefly description of each follows: 

a) Microbuckling: This failure mode consists of the microbuckling of the fibres 
in the elastic matrix. Rosen was the first who proposed a first mechanical model 
for this failure mode (fibres like infinite beams in an elastic matrix and failure 
is attained when compressive load equals the buckling load). In this type of 
failure, the matrix shear properties and material imperfections play a relevant 
role. 

b) Kinking: It can be defined as the localized shear deformation of the matrix 
along a band. Sometimes it is considered as a consequence of microbuckling, 
while others authors consider it as a separate mode. The first author was Argon, 
for whom this failure is the result of matrix shear failure, prompted by an initial 
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fibre misalignment. So, the matrix elastic behaviour and initial material 
imperfections are very important. 

c) Fibre failure: It is a characteristic of fibre with low compressive strength, such 
as Aramid, but it is not predictable for carbon, glass or boron fibres.  
 

For a state if the art review about microbuckling see Ref.15, now follows a more 
detailed description of the kinking failure mode. 
 

2.6.3.2.2.1 – Kinking Failure Mode 

Kinking failure is the most common failure mode 
observed after test in most high fibre-volume-fraction 
advanced composite materials. It is localized in a band 
in which the fibres have rotated by a large amount, and 
the matrix has undergone large shearing deformation 

[17]. A representation is shown in Fig. 15. 
A lot of experimental tests have been carried to 
demonstrate that kinking failure is not a consequence 
of microbuckling. For example, if kinking is a result of 
it the one would expect the kink-band boundary to lies 
normal to the loading axis, so with an angle 𝛽 = 0°. 
However, in most case 𝛽 lie in the range of 30°. Other 

arguments were introduced by Chaplin, Effendi, 
Schultheisz and Waas. A very important aspect for study kinking seems to be the 
presence of initial microstructural defects, such as fibre misalignment. A stream of 
researchers follows the hypothesis from Rosen according to which kink band failure 
is somehow the final result of the microbuckling of the fibres. On the other side, 
another stream follows Argon and argues that kink bands are triggered by localised 
matrix failure next to misaligned fibres. Argon was the first researcher to provide a 
model for kink-band formation. In his model was assumed an initial fibre 
misalignment, which leads to shearing stresses between the fibres. A first relation 
between the compressive failure stress 𝑋𝐶 , the matrix in-plane shear failure stress, 
𝑆𝐿, and the initial fibre misalignment angle 𝜑0 results from his studies: 
 

𝑋𝐶 =
𝑆𝐿

𝜑0
           (2.6.3 − 8) 

 
This was later extended by Budiansky to:  
 

𝑋𝐶 =
𝑆𝐿

𝜑0 + 𝛾𝑢
                  (2.6.3 − 9) 

 

where 𝛾𝑢is the shear strain at failure. 

Figure 15 – Kinking band 
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In the following paragraphs, will be presented main characteristics of the 2D and 
3D models of this failure. 

2.6.3.2.2.1.1 – 2D Kinking Model 

Consider an unidirectional composite with misaligned region that is compressed 
(Fig.16). 

Stresses can be transformed into the misalignment frame using: 
 

{
 
 

 
 𝜎1𝑚1𝑚 =

𝜎11 + 𝜎22
2

+
𝜎11 − 𝜎22

2
cos(2𝜑) + 𝜏12 sin(2𝜑)

𝜎2𝑚2𝑚 =
𝜎11 + 𝜎22

2
−
𝜎11 − 𝜎22

2
cos(2𝜑) − 𝜏12 sin(2𝜑)

𝜏1𝑚2𝑚 = −
𝜎11 − 𝜎22

2
sin(2𝜑) + 𝜏12 cos(2𝜑)

              (2.6.3 − 10) 

 
That becomes for failure under pure compression: 
 

{

𝜎1𝑚1𝑚
𝑐 = −𝑋𝐶 cos2(𝜑)

𝜎2𝑚2𝑚
𝑐 = 𝑋𝐶 𝑠𝑖𝑛2(𝜑)

𝜏1𝑚2𝑚
𝑐 = 𝑋𝐶 sin(𝜑) cos(𝜑)

                  (2.6.3 − 11) 

 

This  new stress state can now be used to check for fibre kinking, however a different 
approach is adopted if material has a linear shear behaviour or non-linear. Indeed, 
in the last case kinking can result either form matrix failure or instability, due to the 
loss of (shear) stiffness for a larger shear strain values. On the other side, for a linear 
material there is no need to check the instability. It is sufficient replacing the stress 
state in the misalignment coordinate frame in a matrix failure criterion and it leads 
directly to the expression for the value of the misalignment angle 𝜑 at failure for a 
pure compression case, 𝜑𝐶. 
A briefly part with the majors’ formulas will follow, but for a more detailed 
argumentation see Ref.15. 
 

Figure 16 - Fibre misalignment frame 
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Case 1 - Kinking for pure compression as the result of matrix failure 

Using LaRC04 matrix compression failure criterion, Eq. LaRC04-2, the expression 
of the misalignment angle 𝜑 at failure for a pure compression case(𝜑𝐶) is: 
 

𝜑𝐶 = 𝑎𝑟𝑐𝑡𝑎𝑛

(

 
1 − √1 − 4(

𝑆𝐿

𝑋𝐶
+ 𝜂𝐿) (

𝑆𝐿

𝑋𝐶
)

2 (
𝑆𝐿

𝑋𝐶
+ 𝜂𝐿)

)

                 (2.6.3 − 12) 

 

In general, it is the sum of an initial misalignment (𝜑0) with the rotation due to 
loading, so: 
 

𝜑0 = 𝜑𝑐 − 𝛾1𝑚2𝑚
𝑐                     (2.6.3 − 13) 

 
Whereas from the constitutive law the shear stress is obtained as a function of shear strain: 

 

𝜏1𝑚2𝑚 = 𝑓𝐶𝐿(𝛾1𝑚2𝑚)                   (2.6.3 − 14) 

 

That for pure axial compressive failure becomes: 
 

𝜏1𝑚2𝑚 =
1

2
sin(2𝜑𝑐) 𝑋𝐶                         (2.6.3 − 15) 

 
It can be possible to obtain the relations summarized in Tab.6   
 

Non-linear behaviour of the material 

𝛾1𝑚2𝑚
𝑐 = 𝑓𝐶𝐿

−1 (
1

2
sin(2𝜑𝑐))𝑋𝐶 

Linear behaviour of the material 

𝛾1𝑚2𝑚
𝑐 =

sin(2𝜑𝑐) 𝑋𝐶

2𝐺12
 

Table 6 - Shear strain possible expressions 
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It is very useful to plot the relationship between the shear strain vs. shear stress 
material law (Left Hand Side - LHS) such as the shear stress resulting from the 
compressive longitudinal loading in a rotate coordinate system (Right Hand Side-
RHS), the result is Fig.17. The point of intersection defines the strain in the 
misalignment frame. In case of material non-linear behaviour, there could be more 
than one, so that the equilibrium position, which defines the orientation of the 
misaligned frame, corresponds to the first because it is that with lowest energy. 

The case in Fig.17(c) represents the second mechanism of failure, for which the 
matrix compression failure criterion is not verified yet, that is the elastic instability 
of matrix. 

Case 2 - Kinking for pure compression as the results of the instability 

In this case a little increase in the compressive load results in the two curves that do 
not touch each other, in fact RHS curve shifts up. So, physically this means that 
there is not an equilibrium position and a catastrophic failure, due to  an unstable 
rotation of fibres. In this case the corresponding values of 𝜑0 and 𝛾1𝑚2𝑚

𝐶  can be 
obtained from the following system: 
 

{
 
 

 
 𝑓𝐶𝐿(𝛾1𝑚2𝑚

𝐶 ) =
𝑋𝐶

2
sin [2(𝜑0 + 𝛾1𝑚2𝑚

𝐶 )]

𝜕𝑓𝐶𝐿(𝛾1𝑚2𝑚)

𝜕𝛾1𝑚2𝑚
|
𝛾
1𝑚2𝑚
𝐶

= 𝑋𝐶cos [2(𝜑0 + 𝛾1𝑚2𝑚
𝐶  )]

                            (2.6.3 − 16) 

 
For a more detailed discussion about the solution of the system see Ref. 15, either 
way, 𝜑𝑜, 𝛾1𝑚2𝑚

𝑐  and 𝜑𝑐 are always defined. 

Knowing the initial misalignment allows the definition of the misalignment angle 
for a generic plane stress situation, 𝜑, by the equation: 
 

𝜑 =
𝜏12
|𝜏12|

 (𝜑0 + 𝛾1𝑚 2𝑚)              (2.6.3 − 17) 

 

Note that, |𝜏12| was used instead because it is the easiest way to consider 
simultaneously the possibility of an initial misalignment ±𝜑𝑜. 

Figure 17 - Left and Right hand side of Eq. (96), for a material with a (a) linear shear behaviour, (b) non-linear 
shear behaviour, and failure by matrix cracking, and (c) non-linear shear behaviour, and failure by instability 
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In this equation, the only unknown variable is 𝛾1𝑚 2𝑚, that for linear beahvior was 
given by Davila’s formula: 

𝛾1𝑚2𝑚 = 
𝜑0𝐺12 + |𝜏12|

𝐺12 + 𝜎11 − 𝜎22
− 𝜑0                   (2.6.3 − 18) 

2.5.3.2.2.1.2 – 3D Kinking Model  

The 2D model assumes that kinking happens in the plane of the lamina, however 
there is a significant evidence that support the importance of 3D analysis. the model 
that follows generalizes the previous one for a generic 3D stress state. 
Consider an unidirectional lamina under compressive stress as shown in Fig.18(a). 
The stresses acting on the (2; 3) plane are shown in Fig. 18(b). While a 2D kinking 
model assumes that the angle 𝜓 in Figs. 18(c) and (d) is equal to zero, on the 
contrary in 3D case the kink plane is at an angle 𝜓 with the 2 axes. 

The actual value of the angle 𝜓 depends on the particular stress state, but also a 
particular distribution of fibre initial misalignment could influence it14. The local 
stresses in the (2; 3) plane can be found as a function of 𝜓 through the use of 
transformation equations: 
 

{
 
 

 
 𝜎2𝜓2𝜓 =

𝜎22 + 𝜎33
2

+
𝜎22 − 𝜎33

2
cos(2𝜓) + 𝜏23 sin(2𝜓)

𝜎3𝜓3𝜓 = 𝜎22 + 𝜎33 − 𝜎2𝜓2𝜓

𝜏12𝜓 = 𝜏12 cos(𝜓) + 𝜏13 sin(𝜓)

𝜏2𝜓3𝜓 = 0

𝜏3𝜓1 = 𝜏31 cos(𝜓) − 𝜏12 sin(𝜓)

               (2.6.3 − 19) 

                                                 
14 If the composite is constrained so that it cannot move laterally, then the kink plane would have an 
angle 𝜓 = 90°. In general, 𝜓 will have a value between 0° and 180°. 

Figure 18 - 3D kinking model 
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For a potential kinking plane oriented at an angle 𝜓, a negative stress 𝜎3𝜓3𝜓 will act 
as to close microcracks in the matrix for alternative kinking planes, while a positive 
𝜎2𝜓2𝜓 will act as to open microcracks thus favouring kinking in that plane. 
Therefore, the kinking plane is expected to be created at the orientation that 
maximizes 𝜎2𝜓2𝜓and minimizes 𝜎3𝜓3𝜓, which coincides with the local principal 
directions. Another argument is that the reduced shear stiffness in the kink band 
would result in fibres rotating in different directions, in case 𝜏2𝜓3𝜓  was nonzero, 
however, experimental observations support the contention that kink bands lie in a 
plane. Hence, with the assumption that the kink plane happens at an angle such that 
𝜏2𝜓3𝜓 = 0, the value of the angle𝜓 that defines the kink plane is given by: 

 

tan(2𝜓) =
2𝜏23

𝜎22 − 𝜎33
                 (2.6.3 − 20) 

 
After defining the kink plane, the stresses are then rotated to the misalignment 
frame. This misalignment frame is defined first determining 𝛾1𝑚2𝑚  solving 
iteratively the Eq. 105 in Ref.15 , if the equation has no solution, then failure will 
take place by instability. 

After obtaining it, the angle 𝜑 is obtained from:  
 

𝜑 =
𝜏12𝜓

|𝜏12𝜓|
 (𝜑0 + 𝛾1𝑚 2𝑚)                 (2.6.3 − 21) 

 

Finally, if 𝛾1𝑚2𝑚  exists, matrix failure is checked next. The first step it is to writing 
stresses in misalignment frame as: 
 

{
 
 
 

 
 
 𝜎1𝑚1𝑚 =

𝜎11 + 𝜎2𝜓2𝜓

2
+
𝜎11 − 𝜎2𝜓2𝜓

2
cos(2𝜑) + 𝜏12𝜓 sin(2𝜑)

𝜎2𝑚2𝑚 = 𝜎11 + 𝜎2𝜓2𝜓 − 𝜎1𝑚1𝑚

𝜏1𝑚2𝑚 =  −
𝜎11 − 𝜎2𝜓2𝜓

2
sin(2𝜑) + 𝜏12𝜓 cos(2𝜑)

𝜏
2𝑚3𝜓

= 𝜏
2𝜓3𝜓

cos(𝜑)− 𝜏
3𝜓1

sin(𝜑)

𝜏
3𝜓1𝑚

= 𝜏
3𝜓1𝜓

cos(𝜑)

                 (2.6.3 − 22) 

 
The LaRC04 criteria for matrix tension failure, and matrix compression failure, can 
be applied in the misalignment frame to predict failure. The type of failure predicted 
is matrix failure, and this might or not promote subsequent fibre kinking. It might 
be trivial in some cases to predict that subsequent fibre kinking takes place like for 
pure compression in the fibre direction, but the same is not true for all load 
combinations[15]. For 𝜎2𝑚2𝑚 < 0, it seems reasonable to assume that failure is by 
kink-band formation only if Eq. (LaRC04-2) is verified with 𝛼 =  0. Otherwise, the 
failure is considered to lead to matrix failure, without kink-band formation. Thus, 
kink-band formation with 𝜎2𝑚2𝑚 < 0 is predicted with the criterion: 
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𝐹𝐼𝐹 =
|𝜏1𝑚2𝑚|

𝑆𝑖𝑠
𝐿 − 𝜂𝐿𝜎2𝑚2𝑚

≤ 1                          (𝐿𝑎𝑅𝐶04 − 4) 

 

while matrix failure under biaxial compression (𝜎11 < −𝑌𝐶) is predicted by 
 

𝐹𝐼𝑀 = (
𝜏𝑇𝑚

𝑆𝑇 − 𝜂𝑇𝜎𝑛
𝑚)

2

+ (
𝜏𝐿𝑚

𝑆𝐿 − 𝜂𝐿 𝜎𝑚
𝑚 
)

2

≤ 1           (𝐿𝑎𝑅𝐶04 − 5) 

 
with  
 

{
 
 

 
 𝜎𝑛

𝑚 =
𝜎2𝑚2𝑚 + 𝜎3𝜓3𝜓

2
+
𝜎2𝑚2𝑚 − 𝜎3𝜓3𝜓

2
cos(2𝛼) + 𝜏2𝑚3𝜓sin (2𝛼)

𝜏𝑇𝑚 =  −
𝜎2𝑚2𝑚 − 𝜎3𝜓3𝜓

2
sin(2𝛼) + 𝜏2𝑚3𝜓 cos(2𝛼)

𝜏𝐿𝑚 = 𝜏1𝑚2𝑚 cos(𝛼) + 𝜏3𝜓1𝑚 sin(𝛼)

  (2.6.−23) 

 

where the angle 𝛼, which is comprised in the interval ]0, 𝜋[, is obtained by trying a 
small number of tentative angles. 
For 𝜎2𝑚2𝑚 ≥ 0, it seems more difficult to agree with a criterion for eventual fibre-
kinking after matrix failure, in the absence of experimental data. Possible solutions 
to identify the conditions triggering fibre-kinking are the use of a threshold value 
for 𝜎11; without further support from experimental data  𝑋

𝐶

2
 is taken.  Thus, for 

𝜎2𝑚2𝑚 ≥ 0, and from Eq.LaRC04-1, the criterion for matrix tensile failure under 
longitudinal compression (with eventual fiber-kinking,𝜎11 <

𝑋𝐶

2
) is: 

 

𝐹𝑀/𝐹 = (1 − 𝑔)
𝜎2𝑚2𝑚

𝑌𝑖𝑠
𝑇

+𝑔(
𝜎2𝑚2𝑚

𝑌𝑖𝑠
𝑇

)

2

+
Λ23
0 𝜏

2𝑚3𝜓
2 +𝜒(𝛾1𝑚2𝑚)

𝜒 (𝛾12|𝑖𝑠
𝑢 )

≤ 1               (2.6.3 − 24) 

 

2.6.4 - LaRC05 

Further development of LaRC criteria is LaRC0515, which was developed during 
World-Wide Failure Exercise (WWFE-II). The philosophy behind the approach is 
that failure models and resulting criteria ought to include as much as possible of the 
physics associated with the failure process at the micromechanical level, while still 
allowing for solutions to be computed for laminae and laminates. 
 

                                                 
15 For more details the reader can see Ref.20. 
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2.6.4.1 -  Failure model at the ply level 

2.6.4.1.1 - Matrix Failure 

The strengths associated with matrix dominated failure in a composite should not be 
expected to be material properties. They are structural properties, dependent on the 
thickness of the ply, and on the neighboring plies in the laminate. Indeed, under the 
same stress state (averaged over ply thickness), the conditions for the propagation 
of micro-cracks are much more favorable for the case of a UD laminate than for a 
thin ply in a multi-axial laminate neighbored by 0° plies. The thickness of the ply 
and the presence of neighboring plies change the boundary conditions of the fracture 
mechanics problem for crack growth. 
Consider the different types of plies presented in Fig.19, which include an 
equivalent slit crack. The equivalent slit crack is an equivalent crack of a well 
defined shape and orientation which purposes to represent the existing microcracks 
in the ply, resulting from manufacturing. 

Matrix-dominated failure in composites has similarities to that of pure polymer. This 
would indicate that criteria analogous to Raghava’s would be amongst the most 
suitable to predict matrix failure in a composite. However, to predict the 
consequences of failure in composites, becomes extremely important knowing the 
fracture angle. Then, is used an adaptation of Mohr-Coulomb’s failure criterion for 
UD composite plies, like already explained previous paragraph. So, the matrix 
failure index is defined as: 
 

𝐹𝐼𝑀 = (
𝜏𝑇

𝑆𝑇
𝑖𝑠 − 𝜂𝑇𝜎𝑁

)

2

+ (
𝜏𝐿

𝑆𝐿
𝑖𝑠 − 𝜂𝐿𝜎𝑁 

)

2

+ (
〈𝜎𝑁〉+

𝑌𝑇
𝑖𝑠
)

2

        (𝐿𝑎𝑅𝐶05 − 1) 

 

with failure being predicted when 𝐹𝐼𝑀 = 1 
The terms in Eq.(LaRC05-1) are: 

 𝜎𝑁 , 𝜏𝐿 𝑎𝑛𝑑 𝜏𝑇 are the traction components in the (potential) fracture plane, see 
Fig.15, and are obtained by stress transformation: 
 

Figure 19 - Slit crack considered for in-situ effects. (a) Ply in a UD laminate; (b) thin outer ply; (c) thin 
embedded ply and (d) thick 
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{
 
 

 
 𝜎𝑁 =

𝜎2 + 𝜎3
2

+
𝜎2 − 𝜎3
2

cos(2𝛼) + 𝜏23 sin(2𝛼)

𝜏𝑇 = −
𝜎2 − 𝜎3
2

sin(2𝛼) + 𝜏23 cos(2𝛼)

𝜏𝐿 = 𝜏12 cos(𝛼) + 𝜏31 sin( 𝛼)

             (2.6.4 − 1) 

 

where 𝛼 is the angle that maximizes 𝐹𝐼𝑀 and is obtained numerically by evaluating 
the function at selected angles in the interval 0° ≤ 𝛼 < 180°. 

 The strengths 𝑌𝑇𝑖𝑠, 𝑆𝐿𝑖𝑠  𝑎𝑛𝑑 𝑆𝑇𝑖𝑠are the in-situ transverse tensile strength, 
longitudinal shear strength and transverse shear strengths, respectively. These 
strengths are in-situ because they depend on the thickness of the ply and on the 
location of the ply in the laminate (inner or outer ply). The different expressions 
for case in Fig.19 are reported in fig.21. 

Where 𝐺𝐼𝑐 , 𝐺𝐼𝐼𝑐𝐿  𝑎𝑛𝑑 𝐺𝐼𝐼𝑐𝑇 are the mode I and mode II (longitudinal and 
transverse) fracture toughness, respectively, Y is a geometry-dependent 
factor, m is equal to either 2, for unstable propagation in the transverse 
direction, or 4, for unstable propagation in the longitudinal direction. While, 
the functions 𝜉(𝜎) represent the area under the strain versus stress curve up to 
the point (𝜀, 𝜎). The detailed expressions are Eq. 13, 14 in Ref.19. 

 
 

Figure 20 - Traction components acting on the matrix fracture plane 
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The slope or friction coefficients 𝜂𝑇 𝑎𝑛𝑑 𝜂𝐿 in equation are introduced to account 
for the effect of pressure on the failure response. Their effect is that of increasing 
the respective shear strengths in the presence of a compressive normal traction 
and reducing the respective shear strengths in the presence of a tensile normal 
traction. The slope or friction coefficient 𝜂𝑇 is obtained from the pure transverse 
compression test as a function of 𝛼0 (Eq.2.5.3 - 2), like in LaRC04. This is the 
particular value of 𝛼 for pure transverse compression, it is a material property 
that can be measured experimentally. Several sources have observed that the 
fracture angle for either glass or carbon composites is typically in the range 51°-
55°. 

 

𝜂𝑇 = −
1

tan (2𝛼0)
         (2.6.4 − 2) 

 
while the slope or friction coefficient 𝜂𝐿is an independent material property 
that needs to be measured experimentally, however in LaRC04 criteria an 
analytic relation with 𝜂𝑇 is proposed as in LaRC03 Eq. 2.6.2 – 6. 

 The last term in the criterion represents the contribution from the positive 
normal traction (〈𝜎𝑁〉+) in opening the cracks. In fact, the McCauley brackets 
〈∙〉+ are defined as 〈𝑥〉+ = 𝑚𝑎𝑥{0, 𝑥}. Therefore, this criterion is intended to 
be applicable for both tensile and compressive matrix failure. 

2.6.4.1.2 - Fibre Kinking Failure 

The physics of axial compressive failure has been already discussed in paragraph 
about LaRC04, then, starting from those concepts some new are explained in this 
paragraph. The micrographs in Fig.22 show different stages of kink-band formation 
in a T300/913 specimen. Matrix splitting in between the fibres can be identified in 
Fig.22(b) and it is the result of the high shear stresses introduced by failure in the 
neighbouring plies. In general, the high localised shear stresses can also be 
introduced by manufacturing defects, such as fibre misalignments. The splitting 
promotes further bending of the fibres, which in turn results in more splitting, 
Fig.22(c). The bent fibres eventually break due to the combination of bending and 
compressive stresses, first at one end and then at the other, finally resulting in a kink 
band, Fig.22(d).  
Experimental observations, as shown in Fig.23, suggest that kink bands are 
preceded by matrix failure and that microbuckling is not necessarily the triggering 
factor for failure. Following the previous observations, fibre kinking is assumed to 

Figure 21 - Formulas for in-situ strengths LaRC05 
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result from shear-dominated matrix failure in a misaligned frame, under significant 
longitudinal compression. However, if the longitudinal compression is not 
significant, the shear-dominated matrix failure on the misaligned frame results in 
fibre splitting but not necessarily in fibre kinking [19]. 
Experimental data for combined longitudinal compression and in plane shear 
suggests that fibre kinking only takes place for an absolute value of longitudinal 
compression greater than 𝑋𝐶/2. However, for longitudinal compression combined 
with transverse tension, experimental results indicate that no kink bands are formed 
if the magnitude of the longitudinal compression is lower than 𝑋𝐶 . 
The criteria proposed for fibre kinking and for splitting use the same failure index 
equation written as: 
 

𝐹𝐼𝐾𝐼𝑁𝐾 = 𝐹𝐼𝑆𝑃𝐿𝐼𝑇 = (
𝜏23
𝑚

𝑆𝑇
𝑖𝑠 − 𝜂𝑇𝜎2

𝑚
)

2

+ (
𝜏12
𝑚

𝑆𝐿
𝑖𝑠 − 𝜂𝐿𝜎2

𝑚 
)

2

+ (
〈𝜎2

𝑚〉+

𝑌𝑇
𝑖𝑠
)

2

  (𝐿𝑎𝑅𝐶05 − 2) 

 
The two failure modes are then distinguished based on the magnitude of longitudinal 
compression with 𝜎1 ≤ −

𝑋𝐶

2
 indicating fibre kinking and 𝜎1 ≥ −

𝑋𝐶

2
 signifying fibre 

splitting. This distinction is relevant for the propagation of failure. 
For a better understanding and visualization of the phenomena in Fig.23 is presented 
the physical model for kink-band formation. So, stress rotation equations are for 
rotation to the kink-band plane 𝜓: 
 

{
 
 

 
 𝜎2

𝜓
= cos2𝜓𝜎2 + sin

2𝜓𝜎3 + 2 sin𝜓 cos𝜓 𝜏23

𝜏12
𝜓
= 𝜏12 cos𝜓 + 𝜏31 sin𝜓

𝜏23
𝜓
= − sin𝜓 cos𝜓𝜎2 + sin𝜓 cos𝜓 𝜎3 + (cos

2𝜓 − sin2𝜓) 𝜏23

𝜏31
𝜓
= 𝜏31 cos𝜓 − 𝜏12 sin𝜓

     (2.6.4 − 3) 

 
and for the subsequent rotation to the misalignment frame: 
 

{

𝜎2
𝑚 = sin2𝜑 𝜎1 + cos

2 𝜑 𝜎2
𝜓
− 2 sin𝜑 cos𝜑 𝜏12

𝜓

𝜏12
𝑚 = − sin𝜑 cos𝜑 𝜎1 + sin𝜑 cos𝜑 𝜎2

𝜓
+ (cos2 𝜑 − sin2𝜑) 𝜏12

𝜓
        (2.6.4 − 4)

𝜏23
𝑚 = 𝜏23

𝜓
cos𝜑 − 𝜏31^𝜓 sin𝜑

 

 
where: 

 𝜓 is the angle of the kink band, it is found numerically in the range [0, 𝜋[ so as 
to maximise the failure index of Eq. LaRC05-2. 

 𝜑 is the misalignment angle. It is the sum of the initial misalignment angle, 𝜑0, 
produced by manufacturing defect, and the shear strain 𝛾𝑚0 expressed in a 
coordinate system aligned with the manufacturing defect. 
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𝜑 = 𝑠𝑖𝑔𝑛(𝜏12
𝜓
)𝜑0 + 𝛾𝑚0          (2.5.3 − 5) 

 
The strain 𝛾𝑚0 is a function of the corresponding shear stress, 𝜏𝑚0, so 𝛾𝑚0 =
𝛾(𝜏𝑚0) , while, the initial misalignment angle 𝜑0 is a material property which 
can be obtained from the longitudinal compressive strength solving the 
following iterative equation: 
 

𝜑0 = 𝜑𝑐 − 𝛾 (
1

2
sin(2𝜑0) 𝑋𝐶)         (2.5.3 − 6) 

 
with 𝜑𝑐 given by the same relation used in LaRC04, 
 

𝜑𝐶 = 𝑎𝑟𝑐𝑡𝑎𝑛

(

 
1 − √1 − 4(

𝑆𝐿

𝑋𝐶
+ 𝜂𝐿) (

𝑆𝐿

𝑋𝐶
)

2 (
𝑆𝐿

𝑋𝐶
+ 𝜂𝐿)

)

          (2.5.3 − 7) 

 

Figure 22 - Sequence of events during kink-band formation. The laminate is being loaded in compression in 
the vertical direction. (a) Misalignment introduced by a matrix crack in an adjacent layer. (b) Matrix-fibre 
splitting exists throughout (see zoom); the first fibre failures are indicated. (c) Further fibre failure. (d) Final 
kink band. Legend. 1 Matrix cracking; 2 Fibre failure 
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2.6.4.1.3 - Fibre Tensile Failure 

Similarly, to LaRC04, the maximum stress failure criterion is used to predict this 
failure mode, indeed, it has been shown to correlate well with existing 
experimental data: 

 

𝐹𝐼𝐹𝑇 =
〈𝜎1〉+
𝑋𝑇

                  (𝐿𝑎𝑅𝐶05 − 3) 

 

Figure 23 - Physical model for kink-band formation. 
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Chapter 3 – The API  

 
 
In the first paragraphs of this chapter will be described the computational 
framework, so the main software used to write the API. Then will follow a 
presentation of the functions of the API, which was written in Visual Basic language 
using libraries of Excel and Femap functions. By using the implemented software 
the user can evaluates the failure index (FI) of the modelled object using Hoffman’s 

formulas for 2D problems and LaRC05 formulas.  Beside others margin of safety 
about sandwich plate are evaluable. A detailed description of the code itself is 
available in Ref. 23. 

3.1 - Computational framework 

What is an API? In computer programming it stands for application programming 
interface. APIs represent an open interface of a software and a set of commands, 
that libraries, software or platforms can use to interact with a program. 
In this way, they allow to expand the functionality of a program. In fact, for a 
developer providing a set of APIs of its software means giving the opportunity to 
others to interact with its platform and, above all, to extend the functions and 
features of the basic structure of the platform. In other words, APIs are a great way 
to promote a program by giving others a way to interact with. The Facebook API, 
giving a concrete example, have enabled developers and third parties to create 
thousands of applications and services that access the data offered by the social 
network: just share your Facebook account to buy, for example, tickets a travel 
agency or complete the purchase from an e-commerce site. 
This last factor is in the business world more important, because it represents a 
strategic component of digital transformation. Furthermore, by automating some 
procedures, the Application Programming Interfaces allow the programmer to avoid 
rewriting routine, avoiding redundancies and unnecessary code replication, which 
translates in a saving of time and money.  
In general an API may be for a web-based system, operating system, database 
system, computer hardware or software library. An API specification can take many 
forms, but often includes specifications for routines, data structures, object classes, 
variables or remote calls. And the separation of the API from its implementation can 
allow programs written in one language to use a library written in another. Then, the 
design of an API has significant impact on its usability. Thus, it attempts to provide 
only the tools a user would expect. The design of programming interfaces represents 
an important part of software architecture, the organization of a complex piece of 
software. 

Software programming in all effects is a language and, as such, it is characterized 
by a syntax (which consists of a series of rules) and a style of code writing that can 
change depending on the programmer. In fact, a developer can adopt different 
writing methods depending on his skills, his experiences and his habits.  
In this case, to create the application two software were used and linked each others:  

 Siemens Femap 

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Software_architecture
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 Visual Studio 
In the graphic interface of the first software the API would be launched and would 
run, while using the second program it was possible to write the code in VISUAL 
BASIC family languages. 

3.1.1 - Femap  

Femap is an advanced engineering simulation software program by Siemens PLM 
Software that creates finite element analysis models of complex engineering 
products ("pre-processing") and systems, and displays solution results ("post-
processing") that allows mechanical engineers to interpret analysis results. In 
general it is used by engineering organizations and consultants to model complex 
products, systems and processes including satellites, aircraft, defense electronics, 
heavy construction equipment, lift cranes, marine vessels and process equipment. 
Femap can virtually model components, assemblies or systems and determine the 
behavioural response for a given operating environment. Therefore, typically it is 
used in the design process to reduce costly prototyping and testing, evaluate 
differing designs and materials, and for structural optimization to reduce weight.  
Product simulation applications include basic strength analysis, frequency and 
transient dynamic simulation, system-level performance evaluation and advanced 
response, fluid flow and multi-physics engineering analysis for simulation of 
functional performance. 
Further in Femap an Integrated BASIC API Programming Environment was 
implemented, in this way it offers a full-featured BASIC development environment 
in a separate window. Directly from the Femap user interface, you can access the 
OLE/COM object-oriented Femap application programming interface (API) that 
provides direct access to all Femap objects and functionality. The BASIC engine is 
fully OLE/COM compliant and can interface with Femap as well as any OLE/COM 
compliant program such as Word or Excel. These powerful customization 
capabilities allow a complete access to Femap full functionality through standard 
nonproprietary programming languages. 
In Fig.24 is reported. the optional FEMAP API editing window. Although the 
window appears to be part of your FEMAP session, it is not. It is merely a code 
editing tool. In fact it is important to repeat that the API script you write is not part 
of FEMAP, but is a standalone program that is interacting with FEMAP. 
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3.1.2 - Visual Basic Language 

In order to write the code was used visual basic language in Microsoft Visual Studio, 
a briefly description of them follows. 

a) Visual Basic: it is a third-generation event-driven programming language and 
integrated development environment (IDE) from Microsoft for its Component 
Object Model (COM) programming model first released in 1991 and declared 
legacy during 2008. Microsoft intended Visual Basic to be relatively easy to 
learn and use. Visual Basic was derived from BASIC, a user-friendly 
programming language designed for beginners, and it enables the rapid 
application development (RAD) of graphical user interface (GUI) applications, 
access to databases using Data Access Objects, Remote Data Objects, or 
ActiveX Data Objects, and creation of ActiveX controls and objects.  

b) Microsoft Visual Studio: it is an integrated development environment (IDE) 
from Microsoft. It is used to develop computer programs, as well as web sites, 
web apps, web services and mobile apps. Visual Studio uses Microsoft 
software development platforms such as Windows API, Windows Forms, 
Windows Presentation Foundation, Windows Store and Microsoft Silverlight. 
It can produce both native code and managed code. 

  

Figure 24 -Femap API editing  window 

https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Legacy_system
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Data_Access_Object
https://en.wikipedia.org/wiki/Remote_Data_Objects
https://en.wikipedia.org/wiki/ActiveX_Data_Object
https://en.wikipedia.org/wiki/ActiveX
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_app
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/Microsoft_Silverlight
https://en.wikipedia.org/wiki/Native_code
https://en.wikipedia.org/wiki/Managed_code
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3.2 - API:  Flowchart 

At the beginning of the programming it was necessary to understand all the 
functions, which the API should execute. Then, it was very important to figure out 
all the relations between them and what data they should read from the model. 
Finally, the last question was how the different output should be displayed to the 
user. To facilitate these phases the flowchart below in Fig.25 was created using an 
free tool online. 

Figure 25 – API basic flowchart  
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3.3 API: Functions and GUIs 

The strength of the API is an user friendly graphic interface, GUI, that allows to 
choose between the different activities. It was thought to reduce at minimum the risk 
of error by user’s utilization. The user can work with API using popup bar on the 
window or the menu on the top side of the GUI. 

With the API it is possible to evaluate failure index with different theories: 

 Hoffman, 
 LaRC05. 

Or to calculate many margin of safety for sandwich panels: 

 basing on Hoffman’s failure index in case of composites laminates as skins, 
 about sandwich panels structures with metallic skins. 

In both case the user can choose the source of stresses to use. Indeed, they can be 
read directly from Femap output vector, that was read by Nastran output file, or they 
are imported by an external file. 
These are the first choices that the user must take when he will start to use the API, 
if one of them is forgotten an error message on ‘window message’ of Femap will 

appeared. 

3.3.1 - Failure Index Operative Mod 

In this operative mode the user must select which theory to use firstly, then a new 
window appears and customer must select if the entire model or a part, a group in 
Femap, will be analyzed.  

Figure 26 - Starting Graphic User Interface, GUI 
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Finally, for Hoffman’s theory the code is able to calculate the associated margin of 
safety, in this case in the new window the user must insert the different factor of 
safety.  
The API returns the contours for each single ply of the failure indexes of each 
element. Another plot is created with the maximum values of FI of the elements 
respect all the plies. 

 

3.3.2 - Sandwich Panel – Margin of Safety 

“Sandwich Panel – Margin of safety” operative mode allows to evaluate different 
margins of safety, MoS, that company must evaluate for the reports of the analysis. 
It is divided in the calculation of MoS about skins, in particular metallic skin, and 
MOS of  the honeycomb. 
For metallic skin the user can select the different MoS below: 

 Dimpling buckling, 
 Wrinkling buckling, 
 Tensile Yielding 
 Compression Yielding 
 Tensile Ultimate 

While for the honeycomb is possible to evaluate MOS in the case it is meshed with 
a laminate element or solid elements.  
For company’s needed beyond the value of the margin of safety (MOS) the 
application find other useful information about the conditions of minimum MOS: 

Figure 27 - GUI for Failure Index Operative Mode 
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 Load case, 
 Element ID, basing on Femap model numeration, 
 Stress used in the calculation of the formula of  margin of safety. 

When a margin of safety is selected the related window will be open, and the 
required parameter will must be manually inserted. 

 
Similarly, to the previous function many plots have been created by the API.  
 

Figure 28 - GUI for Sandwich Panel Operative Mode 
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Chapter 4 - API: Validation 

 
 
During all the time spent to write the code, it was necessary a parallel validation of 
all its parts, and, also the result given by the API were compared with what expected 
by others tools. Hence, it was possible to be sure that the code worked in the 
correctly way in all its functions. 
To do this activity basic model were created from time to time and the analyzed 
using MSC Nastran. At the beginning it was very important to control many times 
debugging line for line that the API was reading the correct properties of the model 
and the resulting stresses from analysis. 

4.1 - Validation of functions to evaluate Hoffman failure index 
and MOS 

At the beginning  in order to support on many aspects the validation of the functions 
of the API that calculate Hoffman failure index, the excel file “Hoffman Failure 

Index” was created to compare the results. It is based on different buttons, which 
allow to run macro written in Visual Basic for Application. These implement the 
equations reported in chapter 2.4. Then simple models were created to be analyzed. 
Thus, the values of Hoffman FI obtained with Femap-Nastran were compared with 
that of Excel and of the API. Finally, to verify that all concerning MOS calculation 
was correct, the external Excel workbook was used again comparing it with the API. 
In the figure below it is possible to see an example of how must be compiled the 
graphic interface in this operative mode. 

 
Figure 29 - Hoffman failure index GUI instructions 
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4.1.1 - Description of the model 

The current example is a 4-ply cantilever beam with a [0/45/-45/0] ply lay-up 
clamped at one end and subjected to a vertical deflection 𝑈𝑧 = 5 𝑚𝑚 at the free end. 
The model representation of the structure has been shown in Fig. 30 along with the 
applied boundary conditions, and its schematic representation has been shown in 
Fig.31. 

Material properties 

The T300/PR319 material system has been considered for the current example, and 
its modelled material properties are listed in Fig. 32. 
 
 
 
 
 
 
 
 

Figure 30- Validation test 1: 4-ply cantilever beam - Model 

Figure 31 - Validation test 1: 4-ply cantilever beam - Schematic representation 

Figure 32- T300/PR319 material properties 
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4.1.2 - Numerical Results of the analysis and comparison  

The analysis of the model was made by using NX NASTRAN and the displacement 

state of the model, which is represented in Fig.33, results from it. During the 
analysis, FEM failure index value for each element of the mesh of each ply was 
evaluated using Hoffman failure theory16. The complete table with numerical values 
of all failure indexes is not provided for sake of conciseness, but only the first 
seventeen were compared and reported in this work.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
16 See chapter 2 for more theoretical details. 

Figure 33 - Validation test 1: 4-ply cantilever beam - Total translation 

Figure 34 - Validation test 1: 4-ply cantilever beam - Hoffman failure indexes evaluated using Nastran 
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The agreement between API values and those from MSC Nastran was confirmed 
by Fig.36 and Fig 37. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Another control that validates these calculations was realized about the maximum 
value of failure index. As it can see in Tab.7 that results obtained with the two 
methods were equals with at least a 10-9 precision. 

Figure 35 - Validation test 1 : 4-ply cantilever beam - Hoffman failure indexes evaluated using Excel file 

Figure 36- Validation test 1: 4-ply cantilever beam - Ply 1 API Hoffman failure indexes distribution 

Figure 37 - Validation test 1: 4-ply cantilever beam - Ply 1 Nastran Hoffman failure indexes distribution 
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And in Fig.38 the contour, with data about maximum FI respect all plies for each 
element, was illustrated. 

Then as already written, to verify that API results about Hoffman margins of 
safety calculation were correct, they were compared with them obtained with the 
excel file. Like example the results for ply 1 were shown below in Fig. 39 and 
Tab.8. 
The image below is the window message of Femap, where the API print final 
results after its execution: 

While Tab 7. reports the value of  MoS and terms using in its formula obtained in 
Excel, however to avoid an excessive length of the table for some elements of ply 
1were only given: 

Max 
FI / 

Source 
Ply 1 Ply 2 Ply3 Ply 4 

Excel 
file 0,168731816 0,193586529 0,571518179 1,524612035 

Api 
Femap 0,168731816 0,193586529 0,571518179 1,524612035 

Table 7 - Validation test 1 : 4-ply cantilever beam -Maximum Hoffman failure index comparison 

Figure 38 - Validation test 1: 4-ply cantilever beam - Ply 1 API Hoffman failure indexes distribution 

Figure 39 - Validation test 1: 4-ply cantilever beam - Margin of Safety API results 
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Element a b SR MOS 

1 0,004174376 0,07039108710 9,193768 8,193768 

2 0,010991326 0,128571112 5,340024 4,340024 

3 0,031690824 0,219125082 3,138776 2,138776 

4 0,028594128 0,210442311 3,28533 2,28533 

5 0,020253345 0,17598765 3,916736 2,916736 

6 0,019172942 0,17214902 4,014232 3,014232 

7 0,013324349 0,141963925 4,842818 3,842818 
Table 8 - Value of MoS and terms resulted from Excel 

It is possible to see that the minimum value for ply one in two cases were exactly 
the same. 
In the end, the function about the way in which should be used imported stresses 
was tested also. Slightly a difference between values was found. It was probably 
induced by a variation in decimal precision when stresses were imported in excel 
and then in Femap. In Fig.40 they were shown: 

4.2 – Failure indexes with LaRC05 theory validation of results. 

There were not commercial codes that evaluated LaRC05 failure indexes. So, it was 
necessary to use an alternative method to validate the written code. It has been 
created an Excel file (“FAILURE INDEX CALCULATION-LARC05.xlsx”), where 
failure indexes of each element for a ply is evaluated automatically. The file needs 
the data entry about material constants, the value of 𝛼0 and the stress state of the 
model.  
During all time spent to create the API there have been a lot of validations of each 
single part of the code. For example it was controlled that the API took the correct 
stresses from Femap. Now, to verify the algorithms to calculate FI, are illustrated 
results for ply 2 of the same laminate of section 4.1. 
 

Figure 40 - Validation test 1 : 4-ply cantilever beam - Margin of Safety API results with imported 
stresses 
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4.2.1 – Fiber tension 

In this case it was possible to compare API outputs with an additional case study, 
that has been reported in Ref.24 which is analysed using the academic code MUL2. 
The failure index has been calculated in the middle plane of the beam. Both results 
have the same order of magnitude and they present a similar distribution along the 
longitudinal axis of the beam. The little difference in numerical values it would be 
caused by the different stress state evaluated by Nastran or MUL2 and the used 
mesh. 

 

 
 
In Tab.9 is presented the comparison between numerical values of failure index. A 
perfect correlation has been reached. 
 
 
 
 

Figure 41 - Validation test 2: Contour plot of the Failure Index for fibre failure under tension, API 

Figure 42 - Validation test 2: Contour plot of the Failure Index for fibre failure under tension, MUL2 



61 
 

Element ID FI tension mode API FI tension mode Excel 

143 0,214615 0.214615 

144 0,223190 0.223190 

145 0,224451 0.224451 

146 0,187702 0.187702 

147 0,198441 0.198441 

148 0,16408 0.164080 

250 0,148524 0.148524 

251 0,173358 0.173358 

252 0,16408 0.164080 

253 0,198441 0.198441 

254 0,187702 0.187702 
Table 9 - Comparison of Failure Indexes for fibre failure under tension 

In Tab.9 the bolding value is the maximum failure index, as it was illustrated in 
Fig.43. In this way it was controlled that the API creating the correct contours from 
new output vectors. 

Further, a last control has been realized comparing the distribution of stresses 𝜎𝑥 in 
Fig.44 with the distribution of failure indexes. The reader can see that they are 
analogous, like it would be predictable basing on the formula LaRC05-3. In fact, 
where are reached maximum stresses, near the fixed -ended, there are maximum 
failure indexes. 

Figure 43 - Validation test 2: Contour plot of the Failure Index for fibre failure under tension, API (not 
elements averaging) 
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Finally, it was verified the valuation of the overall maximum FI of each element. 
The following contour plot is obtained. 
 
 
 
 
 
 
 
 
 
 

 

4.2.2 – Matrix failure 

The matrix failure of the laminate has been calculated for different angles 𝛼17, to 
avoid useless repetitions of images, the case 𝛼 = 0° is just reported in Fig.46. 
However, all cases have been considered in numerical results presentation in 
Tab.10-11. 
 

                                                 
17 𝛼 = 0°, 15°, 30°, 45°, 60°, 75°, 90°,105°, 120°, 135°, 150°, 165°.  

Figure 44 - Validation test 2: Contour plot of the X normal stress, ply 2 
 

Figure 45 - Validation test 2: Contour plot of the maximum Failure Index for fibre failure under tension 
for each element of the mesh. 
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Figure 46 - Contour plot of the Failure Index for matrix failure, 𝜶 = 𝟎° 
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API: 

 
 

Eleme
nt ID 0° 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

143 0.0660
4 

0.0508
7 

0.0315
1 

0.0145
1 

0.0039
5 

0.0000
8 

0.0037
0 

0.0141
3 

0.0311
5 

0.0505
8 

0.0658
8 

0.0716
7 

144 0.1108
4 

0.0739
2 

0.0392
4 

0.0158
7 

0.0016
4 

0.0056
8 

0.0240
2 

0.0519
9 

0.0896
6 

0.1230
7 

0.1399
5 

0.1355
4 

145 0.0675
8 

0.0675
7 

0.0571
5 

0.0398
6 

0.0216
0 

0.0078
4 

0.0010
4 

0.0012
0 

0.0082
1 

0.0219
0 

0.0400
0 

0.0572
1 

146 0.0973
9 

0.0741
4 

0.0452
1 

0.0204
9 

0.0056
3 

0.0005
1 

0.0067
3 

0.0229
8 

0.0490
1 

0.0779
1 

0.0996
2 

0.1068
5 

147 0.0567
6 

0.0604
9 

0.0545
8 

0.0410
5 

0.0246
5 

0.0107
9 

0.0026
5 

0.0003
8 

0.0043
1 

0.0139
1 

0.0286
0 

0.0447
0 

148 0.0664
2 

0.0537
4 

0.0354
7 

0.0178
7 

0.0057
1 

0.0003
9 

0.0020
2 

0.0105
4 

0.0258
0 

0.0445
9 

0.0609
2 

0.0691
2 

250 0.0560
3 

0.0645
8 

0.0628
2 

0.0513
4 

0.0342
1 

0.0176
2 

0.0064
2 

0.0006
9 

0.0020
5 

0.0097
2 

0.0229
0 

0.0402
0 

251 0.0393
6 

0.0353
6 

0.0265
4 

0.0159
8 

0.0070
0 

0.0015
5 

0.0000
7 

0.0025
9 

0.0091
4 

0.0188
9 

0.0293
6 

0.0370
9 

252 0.0664
2 

0.0691
2 

0.0609
2 

0.0445
9 

0.0258
0 

0.0105
4 

0.0020
2 

0.0003
9 

0.0057
1 

0.0178
7 

0.0354
7 

0.0537
4 

253 0.0567
6 

0.0447
0 

0.0286
0 

0.0139
1 

0.0043
1 

0.0003
8 

0.0026
5 

0.0107
9 

0.0246
5 

0.0410
5 

0.0545
8 

0.0604
9 

254 0.0973
9 

0.1068
5 

0.0996
2 

0.0779
1 

0.0490
1 

0.0229
8 

0.0067
3 

0.0005
1 

0.0056
3 

0.0204
9 

0.0452
1 

0.0741
4 

Table 10 - Comparison of Failure Indexes for matrix failure, API 
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Excel: 

 
 

Eleme
nt ID 0° 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

143 0.0660
4 

0.0508
7 

0.0315
1 

0.0145
1 

0.0039
5 

0.0000
8 

0.0037
0 

0.0141
3 

0.0311
5 

0.0505
8 

0.0658
8 

0.0716
7 

144 0.1108
4 

0.0739
2 

0.0392
4 

0.0158
7 

0.0016
4 

0.0056
8 

0.0240
2 

0.0519
9 

0.0896
6 

0.1230
7 

0.1399
5 

0.1355
4 

145 0.0675
8 

0.0675
7 

0.0571
5 

0.0398
6 

0.0216
0 

0.0078
4 

0.0010
4 

0.0012
0 

0.0082
1 

0.0219
0 

0.0400
0 

0.0572
1 

146 0.0973
9 

0.0741
4 

0.0452
1 

0.0204
9 

0.0056
3 

0.0005
1 

0.0067
3 

0.0229
8 

0.0490
1 

0.0779
1 

0.0996
2 

0.1068
5 

147 0.0567
6 

0.0604
9 

0.0545
8 

0.0410
5 

0.0246
5 

0.0107
9 

0.0026
5 

0.0003
8 

0.0043
1 

0.0139
1 

0.0286
0 

0.0447
0 

148 0.0664
2 

0.0537
4 

0.0354
7 

0.0178
7 

0.0057
1 

0.0003
9 

0.0020
2 

0.0105
4 

0.0258
0 

0.0445
9 

0.0609
2 

0.0691
2 

250 0.0560
3 

0.0645
8 

0.0628
2 

0.0513
4 

0.0342
1 

0.0176
2 

0.0064
2 

0.0006
9 

0.0020
5 

0.0097
2 

0.0229
0 

0.0402
0 

251 0.0393
6 

0.0353
6 

0.0265
4 

0.0159
8 

0.0070
0 

0.0015
5 

0.0000
7 

0.0025
9 

0.0091
4 

0.0188
9 

0.0293
6 

0.0370
9 

252 0.0664
2 

0.0691
2 

0.0609
2 

0.0445
9 

0.0258
0 

0.0105
4 

0.0020
2 

0.0003
9 

0.0057
1 

0.0178
7 

0.0354
7 

0.0537
4 

253 0.0567
6 

0.0447
0 

0.0286
0 

0.0139
1 

0.0043
1 

0.0003
8 

0.0026
5 

0.0107
9 

0.0246
5 

0.0410
5 

0.0545
8 

0.0604
9 

254 0.0973
9 

0.1068
5 

0.0996
2 

0.0779
1 

0.0490
1 

0.0229
8 

0.0067
3 

0.0005
1 

0.0056
3 

0.0204
9 

0.0452
1 

0.0741
4 

Table 11 - Comparison of Failure Indexes for matrix failure, Excel 
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4.2.3 – Kinking failure 

For the kinking failure of the structure have been obtained a good agreement of results 
between API and Excel, as it has been shown in Tab.12. 

 

Element ID FI tension mode API FI tension mode Excel 

143 0.067409 0.067409 

144 0.132997 0.131957 

145 0.063656 0.063615 

146 0.098234 0.097921 

147 0.055709 0.055742 

148 0.063641 0.062987 

250 0.0595642 0.0593553 

251 0.0364779 0.0364761 

252 0.0636411 0.0635637 

253 0.0557091 0.0556161 

254 0.0982335 0.0979206 
Table 12 - Comparison of Failure Indexes for kinking failure, API 

 
  

Figure 47 - Contour plot of the Failure Index for kinking failure mode 
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4.2.4 - Failure mode 

The last aspect of the API verified is the contour of failure mode. It allows to know for 
which mode of failure each element collapses. The numbers have the following 
meaning: 

 0 = Fibre Tension Mode 
 2 = Matrix Failure 
 3 = Kink Mode 

An example of contour is Fig.48. 

 
  

Figure 48 - Contour of failure mode. 
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4.3 – Validation of calculation of margin of safety for sandwich 
panel 

To validate each subroutine of the code, that evaluates many MoS for sandwich panels, 
the results obtained with the API were compared with those of many excel files. Those 
last were currently used by engineers for company’s programs. The matching was 
perfect to nine decimal places.  
The models analyzed are components of a real structure, so, their stress state and the 
boundary conditions of each are not reported because Nastran analysis was launched 
for the entire structure, but for calculation of margins the parts were grouped. 

4.3.1 Panel with metallic skins 

4.3.1.1 - Description of the model 

 

 
The example shown in Fig.49 is a sandwich panel with a [0/90/0] ply lay-up.  
In the full structure it has the following mesh data: 
 

 Property 223001 - LAMINATE PLATE Property 
 N° elements: 1389 

 

Figure 49 - Validation test: Sandwich Panel with metallic skins - Model4 
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Layup and materials data 

The sandwich panel was modelled as a laminate with three plies, the first and the last 
one are the skins while the second ply is the honeycomb. The respective thickness were 
reported in Fig.50.  

The metallic skins are made in Al-2024 T81, that was modelled in Femap like an 
orthotropic material 2D with the following characteristics in Fig.51: 
While the honeycomb is made with 3/16-5056-0.001, that has characteristics in Fig.52 

4.3.1.2 - Numerical Results of the analysis and comparison  

For this example were considered ten different load cases for the structure and were 
obtained the following results in Tabs. 13-14-15: 
 

Figure 50 - Validation test: Sandwich Panel with metallic skins - Layup 

Figure 51 - Validation test: Sandwich Panel with metallic skins - Al-2024 T81 Data 

Figure 52 - Validation test: Sandwich Panel with metallic skins - 3/16-5056-0.001 Data 
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Upper skin – Results  

Bottom skin - Results 

Honeycomb – Results 

Margin of 
Safety 

File 
Excel API Case 

Set 
Element 

ID 

Max 
compression 

principal 
stress [Pa] 

Max 
Von 

Mises 
stress 
[Pa] 

Dimpling 0.85 0.85 3 224607 96896704  

Wrinkling -0.99 -0.99 3 224607 96896704  

Tensile 
yielding 0.50 0.50 5 224607  1.7E+08 

Compression 
yielding 0.50 0.50 5 224607  1.7E+08 

Tensile 
ultimate 0.52 0.52 5 224607  1.7E+08 

Table 13 - Validation test: Sandwich Panel with metallic skins - Upper skin MoS 

Margin of 
Safety 

File 
Excel API Case 

Set 
Element 

ID 

Max 
compression 

principal 
stress [Pa] 

Max 
Von 

Mises 
stress 
[Pa] 

Dimpling 1.2 1.2 3 224230 81614800  

Wrinkling -0.99 -0.99 3 224230 81614800  

Tensile 
yielding 0.70 0.70 5 224607  1.49E+08 

Compression 
yielding 0.70 0.70 5 224607  1.49E+08 

Tensile 
ultimate 0.73 0.73 5 224607  1.49E+08 

Table 14 - Validation test: Sandwich Panel with metallic skins - Bottom skin MoS 

Margin of 
Safety 

File 
Excel API Case 

Set 
Element 

ID 

Max 
compression 

principal 
stress [Pa] 

Max 
Von 

Mises 
stress 
[Pa] 

Ultimate, 

L-direction 
2.37 2.37 2 224449 229211  

Ultimate, 

W-direction 
0.69 0.69 5 223203  252135 

L-W 0.67 0.67 2  229211 -
220571 

W-L 0.54 0.54 5  204795 252135 

Table 15 - Validation test: Sandwich Panel with metallic skins - Honeycomb MoS 



71 
 

4.3.2 Panel with composite laminate skins 

4.3.2.1 - Description of the model 

The current example is a sandwich panel with two composite multilayered plates as 
skins. 

Respect the entire model it is defined by the ‘Property 71001 - LAMINATE PLATE 
Property’ and it is meshed using 659 elements. 

Layup and material data 

In this case the layup was more complex than before, indeed, the skins were made of 
two type of composite laminate named: 

 Fabric, 
 M55J18, 

and there were many plies 

                                                 
18 M55J is the name of carbon fibre, however in this context it is the name of the entire laminate plate 
made of it.  

Figure 53 - Validation test: Sandwich Panel with composite laminate skins - Model 
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The reader can see the complete layup in fig.54. 

 
 

Figure 54 - Validation test: Sandwich Panel with composite laminate skins - Layup 
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Fabric: 

M55J 

3/16-5056-0.001 

4.3.2.2 - Numerical Results of the analysis and comparison  

For this example have been considered two load cases and a good match was generally 
found. However, an important difference was crosschecked in minimum margin of 
safety evaluation.  

Figure 55 - Validation test: Sandwich Panel with composite laminate skins - Fabric Data 

Figure 56- - Validation test: Sandwich Panel with composite laminate skins - M55J Data 

Figure 57- Validation test: Sandwich Panel with composite laminate skins - 3/16-5056-0.001 Data 
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Failure index  

In this sub-section the correlation of failure indexes is reported in Tab.16, however all 
plies and elements were not indicated to limit table dimension. The results match with 
10-9 decimal precision. 

In Fig.58 a distribution of failure index for ply 13 was reported. 

Margin of Safety 

The Hoffman MoS of the single element of each ply evaluated with API and excel were 
the same value. Anyway, the final minimum values deduced were not the same, 

Element ID/Ply File Excel Api 
7400

1 
0,00
03 

0,05
98 

0,04
22 

0,00
03 

0,00
03 

0,05
98 

0,04
22 

0,00
03 

7400
2 

0,00
33 

0,05
67 

0,04
79 

0,00
33 

0,00
33 

0,05
67 

0,04
79 

0,00
33 

7400
3 

0,00
36 

0,05
85 

0,04
64 

0,00
37 

0,00
36 

0,05
85 

0,04
64 

0,00
37 

7400
4 

0,00
39 

0,05
61 

0,04
90 

0,00
38 

0,00
39 

0,05
61 

0,04
90 

0,00
38 

7400
5 

0,00
45 

0,05
61 

0,04
94 

0,00
45 

0,00
45 

0,05
61 

0,04
94 

0,00
45 

7400
6 

0,00
73 

0,04
87 

0,05
90 

0,00
72 

0,00
73 

0,04
87 

0,05
90 

0,00
72 

7400
7 

0,00
50 

0,05
98 

0,04
62 

0,00
51 

0,00
50 

0,05
98 

0,04
62 

0,00
51 

Table 16 - Validation test: Sandwich Panel with composite laminate skins - Failure Index comparison 

Figure 58 - Validation test: Sandwich Panel with composite laminate skins - Lam ply 13 Hoffman failure 
index 
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because before the research of the minimum margin was only related to a condition of 
maximum or minimum component of stress. However, it was verified that a 
combination of all the three components of stress, which were not a maximum or 
minimum, can provide a lower value of MoS. 
Herein, in the table, which was exported using the API, the absolute minimum value of 
margins of safety for this model were noted. They are relative to all plies and all load 
case selected. Besides, the stress state that provides it and where it was verified were 
insert together the minimum value for each material in Tab.17. 
 

 Value Load 
Case 

Ply 
ID 

Eleme
nt ID 

Sigma 
X 

[Pa] 

Sigma 
Y 

[Pa] 

Sigma 
XY 
[Pa] 

Comp
lessiv

e 
Mini
mum 
Hoff
man's 
MOS 

0,558
8 2 3 74015 

-
1,3E+

08 

10430
600 

10194
7 

HOFFMAN'MOS for each material in the laminate 

Mater
ial ID Value Load 

Case 
Ply 
ID 

Eleme
nt ID 

Sigma 
X 

[Pa] 

Sigma 
Y 

[Pa] 

Sigma 
XY 
[Pa] 

600 7,368
0 2 29 74888 

-
2,9E+

07 

-
1,1E+

07 

25358
80 

601 0,558
8 2 3 74015 

-
1,3E+

08 

10430
600 

10194
7 

654 6,8E+
14 2 15 74008 1 1 0 

Table 17 - Validation test: Sandwich Panel with composite laminate skins - Minimum MoS by API 

 
 
 
 
 
 
While the data acquired from excel file are presented below in Tab.18. 
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Mater
ial ID 

Eleme
nt ID 

Load 
Case 

Ply 
ID 

Sigma 
X 

[MPa] 

Sigma 
Y 

[MPa] 

Sigma 
XY 

[MPa] 
Value 

601 74019 2 3 
-

155,6
06 

9,557
5 

0,376
0 

0,571
9 

Table 18 - Validation test: Sandwich Panel with composite laminate skins - Minimum MoS by Excel 

Thus, the error committed was estimated as: 
𝑬𝒓𝒓𝒐𝒓: |𝑉𝑎𝑙𝑢𝑒 𝐴𝑃𝐼 –  𝑉𝑎𝑙𝑢𝑒 𝐸𝑥𝑐𝑒𝑙|  ∗ 100 =  |0,558797419 −  0,571892074| ∗ 100 =  𝟏, 𝟑𝟎𝟗𝟓% 

 
  

Figure 59 - Validation test: Sandwich Panel with composite laminate skins - Minimum MoS respect all plies 
contour 
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4.3.3 - Honeycomb meshed with solid elements 

4.3.3.1 - Description of the model 

The case study presented in following section was only the model of honeycomb 
component of a sandwich panel. It was used to validate the routine to evaluate MoS in 
case of a structure meshed with solid elements.  

Its details respect the full model were:  

 Property 10002 – SOLID Property 
 N° elements: 8844 

Layup and material data 

In Femap was modelled with an anisotropic material 3D, that had the properties 
indicated in Fig. 61 

Figure 60 - Validation test: Honeycomb meshed with solid elements - Model 

Figure 61 - Validation test: Honeycomb meshed with solid elements - Material data 
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4.3.3.2 - Numerical Results of the analysis and comparison  

In this test only four load cases were considered in the analysis. The results obtained 
with API were compared with that estimated by Thales Alenia Space and they matching 
with 10-8 precision. They were illustrated in Tab.19: 

 

 
 

Margin 
of Safety 

File 
Excel API Case 

Set 
Element 

ID 
Max 

compression 
principal 

stress [Pa] 

Max 
Von 

Mises 
stress 
[Pa] 

Ultimate, 
L-

direction 
0,92 0,92 2 10291 1244836  

Ultimate, 
W-

direction 
0,87 0,87 2 22397  738272 

L-W 
(Max Txz 

& 
Consistent 

Tyz) 

0,66 0,66 2  1244836 -
419845 

W-L 
(Max Tyz 

& 
Consistent 

Txz) 
0,76 0,76 2  -442865 738272 

Table 19 - Validation test: Honeycomb meshed with solid elements - API Results 

Figure 62 - Validation test: Honeycomb meshed with solid elements - Excel Results 
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Chapter 5 - Common issues when using failure criteria and 
critical discussion 

 
 
In the first part of this chapter will be illustrated a briefly comparison between failure 
indexes obtained from classical criteria and LaRC03 and LaRC04. The data will be 
presented in the stress planes. The case study considered are the same analysed in 
Ref.14 and Ref.15. 
Then a deeper attention was spent to shown the difference from Hoffman criterion 
results and that calculated basing on LaRC05 theory. Both will be evaluated using the 
API. 

5.1 - Comparison of failure indexes between classical and LaRCs 
criteria 

5.1.1 - Unidirectional 0° E-glass/MY750 epoxy 

The first example reported is a 0° E-glass/MY750 epoxy lamina. It has been subjected 
to a biaxial compression.  

In Figs.63-65 are shown failure envelope in the (𝜎11 − 𝜎22) plane of all the failure 
modes represented by the six LaRC03 and LaRC04 criteria. They has been compared 
with Puck’s analysis results, since which showed the best correlation with 
experimental results in the WWFE. In the figures, there is good agreement between 
LaRC and Puck in all quadrants except biaxial compression, where the former predict 
an increase of the axial compressive strength with increasing transverse compression. 
Testing for biaxial loads presents a number of complexities, and experimental results 
are rare. However, Waas and Schultheisz report a number of references in which 
multiaxial compression was studied by superposing a hydrostatic pressure in addition 
to the compressive axial loading. It has been observed that for all materials 
considered, there is a significant increase in compressive axial strength with 
increasing pressure. 

Figure 63 - Biaxial 𝝈𝟏𝟏 − 𝝈𝟐𝟐 failure envelope of 0 E-glass/MY750 epoxy lamina (LaRC03). 
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In the case of LaRC04,from 3D kinking model two possible values of the kinking 
angle were achieved, 𝜓 = 0° and 𝜓 = 90°. Thus meaning that the kink plane can 
either be in the plane of the lamina, or in the through-the-thickness direction. 
Assuming first that the kink band develops in the plane of the lamina, either due to 
the micromechanics of the material or imposed by the testing, the failure envelope 
comes as in Fig.64. Moreover if it is assumed that the kink band is formed in the 
through-the-thickness direction, the envelope shown in Fig.65(a) is predicted. Finally 
if the orientation of the kink plane is unrestricted, the envelope in Fig.65(b) is 

obtained. 
 
 

 

 
 

Figure 64 - Biaxial (𝝈𝟏𝟏 − 𝝈𝟐𝟐) failure envelope of 0° E-glass/MY750 epoxy lamina, assuming a kink 
band in the plane of the lamina (LaRC04). 

Figure 65 - Biaxial (𝝈𝟏𝟏 − 𝝈𝟐𝟐) failure envelope of 0° E-glass/MY750 epoxy lamina (a) assuming through-
the-thickness kinking; (b) assuming that there are no restrictions to the kinking plane(LaRC04). 
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5.1.2 - Unidirectional composite E-Glass/LY556 

The following case study is a unidirectional composite E-Glass/LY556. In the figures 
below it can be observed that within the range of 𝜎22 ≥ 0, all the quadratic failure 
criteria and LaRCs correlate very well.  
In the case of LaRC03 has been represented also results worked out using the 
Maximum Stress criterion, but since it does not prescribe interactions between stress 
components, its failure envelope is rectangular. 

In both images an interesting behavior develops when 𝜎22 becomes compressive. 
Indeed, Hashin’s 1973 criterion gives an elliptical envelope with diminishing 𝜏12 as 
the absolute value of compressive 𝜎22 increases, while the experimental data shows a 
definite trend of shear strength increase as 𝜎22  goes into compression. The envelope 
for Hashin’s 1980 criteria provides a modest improvement in accuracy. But only 
Sun , LaRC03-1, LaRC04-2 and Puck criteria capture the shear strength increase at the initial 
stage of compressive 𝜎22. 

Puck’s envelope  appears to be the most accurate, but it relies on fitting parameters based on 
the same test data. The LaRC03 curve assumed 𝛼0 = 53°, and no other empirical or 
fitting parameter. In the case of matrix tension, Puck’s predicted failure envelope is 
nearly identical to LaRC03-2. On the contrary LaRC04-2 curve fits very well with 
which of Puck. 

 
 
 
 

Figure 66 - Failure envelopes and WWFE test data for unidirectional composite E-Glass/LY556 (LaRC03). 
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5.1.3 - Cross-ply laminates 

The last study reported in this document is on cross-ply laminates chancing 
lamination angle.  

The compression failure of [±𝜃]
𝑠
 laminates in AS4/3502 was studied by Shuart, he 

found that for 𝜃 < 15°, the dominant failure mode in these laminates is interlaminar 
shearing; for 15° < 𝜃 < 50°, it is in-plane matrix shearing; and for 𝜃 > 50°, it is 
matrix compression. 
Fibre scissoring due to matrix material nonlinearity caused the switch in failure mode 
from in-plane matrix shearing to matrix compression failure at larger lamination 
angles. The fracture angle in pure transverse compression is considered to be 

𝛼0 = 53°.  
By this study it was found out that Hashin criteria is not very adequate. In fact for 
𝜃 < 20°, the it result in an overprediction of the failure load because the criterion 
does not account for the effect of inplane shear on fibre failure. Also for lamination 
angles near 70, the failure load was an underpredicted because the criteria do not 
account for the increase in shear strength caused by transverse compression.  
While, all of these effects are represented by both LaRC criteria, which results in a 
good correlation between the calculated and experimental values (Shuart). 

Figure 67 - Failure envelopes and WWFE test data for unidirectional composite E-Glass/LY556 (LaRC04). 
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5.2 - LaRC05 vs. Hoffman results 

The difference between the results Hoffman’s failure index criterion and LaRC05 

criteria will be presented in this paragraph. To do this juxtaposition was used the API 
on models already analyzed for the validation. So, the reader can find detailed 
information about models in chapter 4. 

5.2.1 - Example 1 

The current example is the sandwich panel with two composite multilayered plates as 
skins of paragraph 4.3.2.  To do the comparison will be reported some images of 
failure index contours. 
In Figs.70-73 have been shown the values of failure index of each element of the 
mesh. As example it has been taken ply 1 and ply 13.  

Figure 68 - Compressive strength as a function of ply orientation for [±θ]s AS4/3502 laminates (LaRC03). 

Figure 69 - Compressive strength as a function of ply orientation for [±θ]s AS4/3502 laminates (LaRC04). 
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The load case considered is the ‘MSC/NASTRAN Case 1’. 

 

  

Figure 70 - Contour of Hoffman's failure indexes, Ply 13 

Figure 71 - Contour of LaRC05's failure indexes, Ply 13 
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Figure 72 - Contour of Hoffman's failure indexes, Ply 1 

Figure 73 - Contour of LaRC05's failure indexes, Ply 1 
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Then has been illustrated the results of an other load case, which is 
‘MSC/NASTRAN Case 4’ 

 
 

 
In all case illustrated it is possible observing that the two distributions of failure index 
are similar, but there is a great difference in the values. This difference could be 
generated by the fact that LaRC05 criteria is based on a more accuracy physically 
description of the failure phenomena, so it is less conservative then Hoffman criteria. 
 

Figure 74 - Contour of Hoffman's failure indexes, Ply 13 

Figure 75 - Contour of LaRC05's failure indexes, Ply 13 
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For each case has been committed a discrepancy, Δ, equal to: 

Δ1 =
|𝐹𝐼𝑚𝑎𝑥𝐿𝑎𝑅𝐶05 − 𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |

|𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |
∗ 100 =  

|−0.135|

|0.164|
∗ 100 = 82.31%   

 

Δ2 =
|𝐹𝐼𝑚𝑎𝑥𝐿𝑎𝑅𝐶05 − 𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |

|𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |
∗ 100 =  

|−0.03382|

|0.0389|
∗ 100 = 86.94%   

 

Δ3 =
|𝐹𝐼𝑚𝑎𝑥𝐿𝑎𝑅𝐶05 − 𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |

|𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |
∗ 100 =  

|−0.236|

|0.344|
∗ 100 = 68.60%   

5.2.2 - Example 2 

The current example is the 4-ply cantilever beam of paragraph 4.1. Herein will be 
presented the numerical results obtained for NX NASTRAN Case1 for ply 1. 

 

Figure 77 - Contour of LaRC05's failure indexes, Ply 1 

Figure 76 - Contour of Hoffman's failure indexes, Ply 1 
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Δ =
|𝐹𝐼𝑚𝑎𝑥𝐿𝑎𝑅𝐶05 − 𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |

|𝐹𝐼𝑚𝑎𝑥𝐻𝑜𝑓𝑓  |
∗ 100 =  

|−0.1122|

|0.151|
∗ 100 = 74.30%   

 
Concluding this chapter it is clear from these comparisons that new failure theories 
would allow to include more complex phenomena in the study of fracture. So it 
would be possible to reduce the conservative technical margins, therefore to make 
more light structure and save money. Considering that the maximum values of 
failure index were obtained near constraints and edges, it is, however, necessary that 
further analysis and comparisons be carried out during a more general and large 
investigation. Moreover, if an accurate stress field for each ply of laminate was 
included a more accurate prediction of failure would be evaluated. 
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Chapter 6 - Numerical results on a real case study 

 

 

After spending a lot of time to validate the API and be sure that it provides correct results it 
has been used to a real project. In particular, it has been tested on a sun tracker. 

The main items of the structure are shown in figures from Fig. 78 to Fig. 79. 

 

Figure 78 - Overview top side 

Figure 79 - Overview bottom side 
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According to this design a detailed FEM has been developed for the mechanical 
analysis and an overview has been illustrated in Fig.81. The final STT FEM mass is 
5 Kg including fastners. 

 
 
 
 
 
 
 

Figure 80 - Overview top side) 

Figure 81 - FEM constraints 
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6.1 - Sandwich Panels 

The STT Structure is constituted by sandwich panels with CFRP skins and aluminum 
honeycomb cores. The CFRP prepreg used for the lamination of the panels are 
unidirectional M55J/M18 and fabric T300/M18.  

 
The honeycomb properties are listed in table below (Tab.20) and distributed in the 
panels as shown in Fig. 83 

 
 
 
 

    Min. plate shear 

   Min. 
Compressive “L” direction “W” direction 

 Designa
tion 

Dens
ity 

Stren
gth 

Modu
lus 

Stren
gth 

Modu
lus 

Stren
gth 

Modu
lus 

  [kg/
m3] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] 

1 
3/16 
5056 
0.002 

91.3 5.06 1861 3.3 648 1.9 248 

2 
3/16 
5056 
0.001 

49.6
6 1.79 669 1.38 310 0.76 138 

Table 20 - STT sandwich panels honeycombs 

Figure 82 - FEM skins 
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6.1.1 - Skin Analysis 

In this paragraph is reported the CFRP skins analysis under mechanical load 
application.  
Figure 84 shows the minimum margin of safety detected by analysis. 

 
 

2 

1 

Figure 84 - CFRP skins minimum MOS 

Figure 83 - Honeycombs distribution 
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This minimum MoS relative to all plies and all load case selected has been computed 
in accordance with the stress reported in Tab.21   

 

Table 21 - CFRP skins maxima stresses computed and MoS of the skins 

6.1.2 - Honeycomb Analysis 

The two types of honeycomb have been verified applying the interaction formula. 
The margin of safety is computed as follows: 
 

 

 
SFu is the applied safety factor. 
RF is the reserve factor computed with the following formula: 

 

 
 

1
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 Value Load 
Case Ply ID Eleme

nt ID 
Sigma 
X [Pa] 

Sigma 
Y [Pa] 

Sigma 
XY 
[Pa] 

Compl
essive 
Minim

um 
Hoffm

an's 
MOS 
(API) 

2,74 1 12 21777
1 

-
13895
0384 

-
145931

.6 

13178
27 

HOFFMAN'MOS for each material in the laminate (API) 

Materi
al ID Value Load 

Case Ply ID Eleme
nt ID 

Sigma 
X [Pa] 

Sigma 
Y [Pa] 

Sigma 
XY 
[Pa] 

(T300
) 600 8,20 1 14 21777

1 

-
86875

85 

-
23400

688 

28709
78 

(M55J
/M18) 

601 
2,74 1 12 21777

1 

-
13895
0384 

-
14593

1.6 

13178
27 
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Honeycomb type 1: 

HONEYCOMB 

MOS Value Case Set Element 
ID 

Tau XZ 
[Pa] 

Tau Yz 
[Pa] 

Ultimate, 
L-

direction 
0,518612 2 218659 660890,6  

Ultimate, 
W-

direction 
0,608602 2 218569  343607,3 

W-L (Max 
Txz & 

Consistent 
Tyz) 

0,505641 2  660890,6 47878,96 

W-L (Max 
Tyz & 

Consistent 
Txz) 

0,262248 2  492888,2 343607,3 

Table 22 - MoS of honeycomb type 1 

Honeycomb type 2: 

HONEYCOMB 

MOS Value Case Set Element 
ID 

Tau XZ 
[Pa] 

Tau Yz 
[Pa] 

Ultimate, 
L-

direction 
0,493361 1 218198 672065,4  

Ultimate, 
W-

direction 
0,953562 5 215293  282933 

W-L 
(Max Txz 

& 
Consistent 

Tyz) 

0,492627 1  672065,4 11612,62 

W-L 
(Max Tyz 

& 
Consistent 

Txz) 

0,836183 5  -186609 282933 

Table 23 - MoS of honeycomb type 2 
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Chapter 7 - Concluding remarks 

 
 
The progress in the use of composites materials is greatly influenced by the capability 
of expecting and understanding their failure mode. Many different theories have been 
thought and developed for this purpose. However, some of these are not enough 
accurate since they are based on assumptions true for metallic structures or on a 
reduced knowledge of failure phenomena. 
At the current state of the art the NASA Langley Research Center worked out a series 
of criteria, which obtained a significant correlation with real example. These were 
known as LaRC criteria, and the last criterion developed is the LaRC05. 
A SW tool has been developed during the work developed in order to calculate the 
failure index of layered composite structures according to LaRC05 criterion, starting 
from the stress field calculated by a finite element code. In addition, this tool allows 
the user to calculate the failure index also by referring to the classical Hoffman 
criterion (which is commonly applied in the aerospace Industry). Particular care has 
been devoted to the computational efficiency of the code and to furnish automatic 
reporting capabilities. 
The tool implemented is an API which has been embedded into Femap Siemens SW 
custom tools. FEMAP is a SW commonly used in order to post process FE results. 
The API has been written in Visual Basic language by referring to some Excel and 
Femap libraries. Then, an user friendly graphical interface has been associated to the 
API.  
A number of case-studies have been referred to in order to achieve a proper validation 
of the implemented code and they are illustrated along this work. In order to double-
check the implementation, a preexisting real structure, whose results were already 
available, has been considered as well. Moreover, for the same structure, the 
differences in results produced by passing from Hoffman to LaRC05 criterion have 
been identified and discussed. A number of additional comparisons have thus been 
produced between the results obtained by applying the above two criteria.  
Possible future developments could explore the sensitivity of the failure indexes 
calculated to a progressively more accurate stress field (e.g. the stress-field calculated 
with finite elements formulated with higher order/hierarchical kinematic expansion). 
The outcomes could be further discussed by referring to some test-results. 
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Appendice A – Breve riassunto in italiano della tesi 

Introduzione 

Nell’industria aeronautica e aerospaziale l’uso dei materiali compositi è in continua 
crescita anno dopo anno, rendendo necessario la costante evoluzione delle 
metodologie di progettazione delle strutture in composito. 
In questo contesto è emersa la necessità di comprendere meglio i meccanismi di 
rottura dei laminati in composito, studiando più dettagliatamente i fenomeni fisici alla 
base. Negli anni diversi studiosi hanno lavorato su questo aspetto riuscendo ad 
arrivare a diversi criteri che identificassero quando si possa verificare la rottura, e 
durante la prima edizione dei WWFEs (World Wide Failure Excercises) è stato 
dimostrato che il criterio di Puck fosse il più corretto.  
Partendo dalle idee di Puck al NASA Langley Research Center sono stati ideati e 
studiati una serie di criteri, conosciuti come LaRC. Questi durante la seconda edizione 
dei WWFEs hanno riscontrato un’ottima correlazione con i casi esaminati. Ad oggi 

l’ultima versione è il LaRC05 che estende l’approccio ad uno stato di tensione 3D. 
Poiché i criteri della famiglia LaRC sono recenti e quindi non ancora applicati 
nell’industria, i codici commerciali usati normalmente per la progettazione non li 
implementano per valutare gli indici di rottura (“Failure Index”). Perciò è stato 
sviluppato un tool, sotto forma di API, che si integri con il software commerciale 
Siemens Femap e permetta la valutazione dei FI del criterio LaRC05. 
In questo documento è riportata una prima parte di descrizione dello stato dell’arte 

riguardo i criteri di rottura, da quelli classici a quelli più moderni e adeguati alle 
strutture in composito (Capitolo 2). Successivamente nel terzo capitolo viene descritto 
da prima il concetto di API e il “computational framework” che ha permesso lo 

sviluppo dell’API; e infine è presentata l’API stessa e le sue diverse funzionalità. 
Durante tutta la programmazione del software è stata svolta costantemente e quasi per 
ogni più piccola parte un’attività di debug e validazione del codice. Infine la 

validazione finale di ogni singola macro funzione è stata svolta sfruttando i risultati 
già ricavabili con le analisi FEM, o scrivendo dei fogli Excel apposta o confrontando 
i risultati con quelli ricavabili da procedure aziendali standard. Tutto ciò è oggetto del 
quarto capitolo. 
Il capitolo 5 riporta un confronto, tratto dalla letteratura e dall’applicazione del tool, 

tra i risultati ottenibili con i metodi classici e quelli più moderni. Infine, nell’ultimo 

capitolo è riportato un caso reale su cui sono state sfruttate le funzionalità dell’API. 
 

Capitolo 2 – Stato dell’arte 

I primi ad attribuire la rottura dei laminati in composito a fenomeni fisici differenti 
sono stati Hashin e Rotem. Nel criterio di Hashin sono state proposte quattro 
condizioni di rottura dipendenti e non tra loro, per distinguere tra rottura della matrice 
e della fibra, causata da carichi a trazione o a compressione. 
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Successivamente questo concetto è stato ripreso e migliorato negli studi di Puck, che 
è stato il primo a supportare l’idea di rottura delle fibre e tra le fibre (FF e IFF). 
Le ipotesi alla base della teoria di Puck sono: 

 Analisi non lineare degli stress e deformazioni prima dell’IFF. 
 I due criteri di rottura sono legati dal concetto di piano d’azione fisico 
 Degradazione continua dopo l’inizio dell’IFF 
 Considerazioni sulla rottura complessiva del laminato 

Puck modifica le idee di Coulomb e Mohr per applicarle ai compositi unidirezionali. 

Criteri LaRC  

Successivamente per predire accuratamente la rottura di pannelli laminati in FRP, 
sottoposti a uno stato di tensione piano, senza dover ricorre ad una ricerca dei 
parametri che meglio approssimano le curve, è stato definito un set di sei criteri 
denominato LaRC03. 
Questo è ispirato dall’ipotesi fondamentale di Puck: la matrice si rompe con una 

rottura fragile. Di conseguenza entra in gioco il concetto di piano d’azione, già 

affrontato nella teoria Mohr-Coulomb.  
La matrice può rompersi sotto carichi di trazione o compressione. Nel primo caso la 
rottura avviene lungo un piano normale al piano degli strati e parallelo alla direzione 
delle fibre. 
Per ottenere un criterio che descriva la rottura della fibra per kinking, si deve calcolare il 
disallineamento delle fibre sotto un carico e applicare il criterio di rottura della matrice 
nel sistema disallineato di coordinate. 

Successivamente i criteri LARC03 sono stati estesi al caso più generale di carichi 
tridimensionali e al caso di non linearità del taglio nel piano. Sono stati ottenuti cosi 
altre sei espressioni di failure index che costituiscono i criteri LaRC04.  
Una prima differenza tra i due LaRC riguarda la rottura della matrice a trazione, 
perché viene esteso il concetto del rateo di rilascio di energia per valutare la geometria 
della rottura (introdotto da Dvorak e Laws) nel caso di materiali ortotropi lineari (già 
adottato nel LaRC03) anche nel caso di comportamento non lineare a taglio.  
Invece è stato osservato che la matrice dei provini compressi si rompesse a taglio. In 
particolare dagli esperimenti si è osservato che l’angolo do rottura sotto compressione 

uniassiale è generalmente 𝛼0=53°±2° per molti materiali compositi, invece di 45° 
come ci sarebbe aspettati. Questa rottura è stata modellizzata basandosi, come i 
precedenti criteri, sul criterio di Mohr-Coulomb per ottenere l’angolo di frattura. 

Riguardo la rottura delle fibre, nel caso che siano caricate a trazione viene adottato il 
criterio di massimo stress ammissibile; mentre nel caso di carico a compressione a 
seconda del materiale sono possibili diversi modi di rottura. In particolare viene 
studiato il fenomeno del kinking. 

Il kinking delle fibre è attivato da un angolo di disallineamento iniziale delle fibre e dalla 
rotazione di queste durante un carico a compressione. Si è osservato che il fenomeno del 
kinking è il risultato di una rottura prevalentemente a taglio della matrice in un sistema 
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di riferimento disallineato, sotto una compressione longitudinale. Tuttavia, se la 
compressione non è elevata, può succedere che la rottura della matrice provochi 
solamente lo splitting delle fibre ma non il kinking. 

I valori che si trovano usando il LaRC04 correlano molto bene con I dati sperimentali, 
più degli altri criteri esistenti. L’ottima correlazione è attribuibile alla profonda 

conoscenza del fenomeno fisico alla base del modello della rottura. 

Capitolo 3 – API 

Le API sono degli strumenti di programmazione che le maggiori industrie del mondo 
informatico mettono a disposizione degli sviluppatori per facilitare il loro compito 
nella realizzazione di applicazioni di vario genere.  
Le API possono assumere diverse “forme”: possono essere delle librerie di funzioni 

che permettono al programmatore di interagire con un programma o una piattaforma 
software o semplicemente una serie di “chiamate” a parti di un programma che uno 

sviluppatore può utilizzare per abbreviare il suo lavoro.  
Utilizzando un'API, un programmatore può far interagire due programmi (o due 
piattaforme, o un programma e una piattaforma) altrimenti tra loro incompatibili. 
Utilizzando, quindi, degli “artifici” di programmazione, si possono estendere le 

funzionalità di un programma ben oltre le reali intenzioni dello sviluppatore o della 
software house che l'ha realizzato.  
In questo lavoro è stata creata un’API che si interfacciasse con il software CAE 

“Simens Femap”, ed È stato necessario utilizzare anche l’ambiente di lavoro di 

“Visual Studio Express”. Infatti il codice sorgente del tool è scritto in linguaggio 

Visual Basic, con l’integrazione delle librerie di Femap e Excel. 
Per permettere un utilizzo più semplice e intuitivo possibile da qualunque utente, che 
non conosca fin da subito le capacità dell’API, è stata creta un’interfaccia grafica 

“user friendly”. In questo modo l’utente è guidato in tutte le operazioni da fare, e 

l’utilizzo si riduce alla semplice compilazione dei parametri di input di volta in volta 
necessari.  
Le funzioni svolte dall’API sono: 

 Calcolo dei «failure index» usando due possibili teorie:  
1. Hoffman 
2. LaRC05 – per laminati unidirezionali in composito 

 Valutazione dei margini di sicurezza per il buckling di pannelli sandwich: 
1. Con pelli in metallo: dimpling, wrinkling, tensile yielding, compression 

yielding e tensile ultimate. 
2. Con pelli di laminati in composito  

 
Nella valutazione dei margini di sicurezza per l’honeycomb è possibile valutarli sia 

che sia meshato con elementi di tipo “pcomp” (laminato) che con elementi solidi. 
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Valutati tutti i vari margini di sicurezza per ciascun elemento della mesh della 
struttura, il software valuta anche per quale condizione di carico, in quale elemento e 
in quale strato si è ottenuto il minimo valore. 
Infine è prevista l’esportazione automatica in un file Excel dei risultati. 
L’utente può scegliere quale stato tensionale usare nei calcoli:  
• direttamente quello di Femap (ottenuto dall’analisi FEM basata su Nastran), 
• da un file esterno. 

Capitolo 4 – Validazione API 

Per validare la procedura di calcolo dei “failure index” secondo la teoria di Hoffman 
si è creato un file Excel “Hoffman Failure Index” e proceduto come segue: 

1. Confronto numerico dei failure index prodotti da Nastran e dal file Excel, 
2. Confronto dei contour plots prodotti direttamente dall’analisi con Nastran e 

l’API, 
3. Confronto dei MoS calcolati dall’API e quelli del file Excel, 
Inoltre è stata anche validata la funzione di «import» dello stato di tensione. 

Per validare invece la routine che implementa il set di criteri LaRC05, non essendoci 
altre fonti, si è utilizzato il file Excel “FAILURE INDEX CALCULATION-
LARC05.xlsx” creato apposta. 

Infine per la validazione del calcolo dei MoS per diversi tipologie di pannelli 
sandwich sono stati confrontati i risultati ottenuti utilizzando l’API con quelli ricavati 

da diversi foglio di calcolo Excel usati in ambito aziendale. Nella tesi si riportano 3 
esempi, evidenziando la perfetta correlazione ottenuta. 

Capitolo 5 – Confronto criteri classici e criteri LaRC 

Nella prima parte del capitolo è mostrata la differenza nei valori tra i metodi classici 
e LaRC03 o LaRC04. Si osserva come i criteri LaRC e, anche quello di Puck, 
catturino dei fenomeni che prima venivano esclusi. Così da essere molto vicino ai dati 
sperimentali. 
Nella seconda parte del capitolo invece si riportano due esempi di confronto dei 
risultati ottenuti utilizzando il criterio di Hoffman e LaRC05. Si osserva che a livello 
di distribuzione dei FI sono analoghi, tuttavia a livello numerico presentano un 
notevole differenza dovuta, probabilmente, al fatto che LaRC05 considerando una più 
dettagliata descrizione del fenomeno permettono di essere meno conservativi e più 
accurati nella scelta delel grandezze che contribuiscono alla rottura. 

Capitolo 6 – Caso reale 

In questo capitolo sono riportati i risultati ottenuti applicando l’API ad un sun tracker, 

la cui struttura è costituita da pannelli con pelli in CFRP e honeycomb in alluminio. 
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