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Summary

This work developed at the Department of Mechanical, Materials and Aerospace
Engineering of the University of Liverpool concerns the study of nonlinear dynamics
and control on an aeroelastic system. The aim of this work is to study the LCOs
suppression in a nonlinear aeroelastic system through a feedback linearization and
to study the subcritical bifurcation that the nonlinear system presents. The system
considered is a wing section subject to a constant airflow in a wind tunnel test
facility located at the University of Liverpool.

The increased wing flexibility has made the phenomenon of flutter and LCOs
more important and control techniques to suppress these phenomena are required
to enlarge the flight envelope beyond the natural flutter velocity. In this case the
LCO is suppressed using a trailing edge flap; in fact the motion of this control
surface modifies the aerodynamics loads, so that by regulating the flap it is possible
to contrast the LCOs.

A two DOFs mathematical model will be developed, describing the aeroelastic
system under study. This model will take into account the interaction of structural
and elastic phenomena with the aerodynamic one. The structure will be modeled
through a two DOFs plunge-pitch model with a structural nonlinearity; while an
unsteady model will be used for aerodynamics.

The model will be tuned on experimental data to obtain a numerical model
fitting, to describe appropriately the behaviour of the real system. Moreover the
parameters of the nonlinearity will be obtained by a static experimental test on a
nonlinear spring that is the structural nonlinearity of the real system.

The system open loop behaviour will be studied, considering first a linear system
and determining flutter velocity. Then the structural non linearity will be added
to the system so that a complete nonlinear system will be obtained. A comparison
between the wind tunnel test simulation and the mathematical simulations will be
done, and particular attention will be given to the subcritical bifurcation point,
where we will study the unsteady behaviour of the system.

The control strategy applied to the system will be a partial feedback linearization
technique to design a coordinates transformation and a nonlinear input by which
is possible to linearize a part of the system. The linearized subsystem obtained
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will be then made stable with the use of a linear control technique; in this case its
poles are assigned via pole-placement. The control strategy will be implemented and
applied in simulations to verify its effectiveness on a numerical model based on a
real aeroelastic system. The effectiveness of the strategy will be tested by verifying
the suppression of the LCOs in simulation.
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Sommario

Il lavoro di tesi è stato sviluppato presso il dipartimento di ingegneria dell’University
of Liverpool e tratta lo studio della dinamica non lineare e del controllo di un sistema
aeroelastico. L’obbiettivo del lavoro di tesi è lo studio del punto di biforcazione
subcritica e il ciclo limite che sono presenti nel sistema e il suo controllo tramite la
feedback linearization. Il sistema aeroelastico considerato è un’ala a due gradi di
libertà posta in galleria del vento.

L’aumento della flessibilità delle ali ha reso il fenomeno del flutter e dei cicli
limite più significativi e le tecniche di controllo di questi fenomeni sono diventate
necessarie per ampliare gli inviluppi di volo oltre le velocità critiche che i diversi
sistemi presentano. Nel nostro sistema il ciclo limite viene soppresso grazie al flap
presente sul bordo di fuga, che modifica il carico aerodinamico presente sull’ala e ne
permette il controllo.

Basandosi sul modello sperimentale presente in galleria del vento, è stato svi-
luppato un modello matematico a due gradi di libertà, che ci permette di descrive
il sistema, definendo anche le iterazioni strutturali con l’aerodinamica. Per il mo-
dello struttura è stato costruito un modello flesso - torsionale con una non linearità
strutturale, mentre per il modello aerodinamico è stato utilizzato un modello in
stazionario.

I parametri del sistema lineare vengono quindi ottimizzati basandosi sui dati
sperimentali e permettono di descrivere il comportamento del sistema in maniera
più simile possibile al sistema reale. Anche i parametri della non linearità sono
ottimizzati tramite dei test statici sulla molla non lineare presente sul modello in
galleria del vento.

Inizialmente viene studiato il sistema lineare andando a determinare la velocità di
flutter tramite un’analisi agli auto valori del sistema. Successivamente si aggiunge
la non linearità sul grado di libertà flessionale ottenendo il sistema non lineare
completo. A questi punto si vanno ad effettuare delle comparazioni tra i risultati
teorici e quelli sperimentali, prestando particolare attenzione allo studio del punto
di biforcazione subcritica che presenta il sistema.

La strategia di controllo applicata al sistema è la feedback linearization, una
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delle tecniche più utilizzate per il controllo di sistemi non lineari. Questo con-
trollo va a linearizzare parzialmente il sistema attraverso un ingresso non lineare.
Una volta ottenuto il sotto sistema linearizzato è possibile controllarlo attraverso il
riposizionamento dei poli del sistema. Il controllo è stato implementato sia sul mo-
dello matematico sia sul sistema reale in galleria del vento e testato per verificarne
l’efficacia nel sopprimere il ciclo limite che presenta il sistema.
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Chapter 1

Mathematical Model

In this chapter a mathematical model of the aeroelastic system with a structural
nonlinearity is presented. The model describes the behaviour of a wing section at
low speed airflow during a wind tunnel test.

The model is used to describe and analyse the motion of the system, in par-
ticular for estimating the flutter velocity. A definition of aeroelastic flutter is: a
dynamic instability of a flight vehicle associated with the interaction of aerodynamic,
elastic, and inertial forces [5]. Therefore, the flutter phenomenon arises when the
aerodynamic force couples with a flexible body’s natural frequency. This coupling
induces an oscillatory motion with unbounded amplitude. In other word, flutter is
a self-excited oscillatory instability and it could lead to a structural failure due to
oscillatory motion with increasing amplitude. The presence of the structural non-
linearity affects the aeroelastic behaviour, for example our system in the structural
hardening nonlinearity induces Limit Cycle Oscillations (LCOs), this response could
be considered as bounded flutter.

In Section 1.1 the linear structural model is presented. The model is a 2-DOFs
pitch and plunge model andthe structural model is obtained via the classical Euler-
Lagrange approach. In Section 1.2 at the system is coupled with an unsteady aero-
dynamic forcing. In Section 1.3 the model is written in a state space form that is the
notation used to analysis and control the system. Finally, in Section 1.5 a fifth-order
polynomial is added to the plunge DOF in the state space system to describe the
non linear stiffness present in the experimental model.

1



1 – Mathematical Model

1.1 Linear Structural Model
In this section a schematic representation of the real model is presented it is con-
sidered in the experimental validation, of Section 2.1. The test rig is schematically
shown in Figure 1.1. The mathematical model derived in this section describes the
behaviour of the test rig.

In this case this model is fully linear: the structure deformation is proportional
to the applied forces, which could be static or dynamic. The structural nonlinearity
will be added in the DOF plunge, in Section 1.5.

The dynamic of the system is described by a 2 DOFs model. The model consid-
ers a symmetric rigid aerofoil (NACA0018) with 2 DOFs. The translation motion
(plunge) is described by the variable h that is defined as the distance between the
elastic axis (e.a) in its undeformed position and e.a in the current position. The
torsional motion (pitch) is described by the variable α that is defined as the angle
between chord line in undeformed position and chord line in current position. In this
way, it is possible described the motion of each point of aerofoil as a combination of
these two variable; in kinematic point of view system motion are represented. From
the dynamic point of view it is necessary to consider at first inertial and elastic
elements. Elastic elements are two springs that allow motion along the plunge and
pitch DOFs: one translational spring allows h DOF (plunge) while one torsional
spring allows α DOF (pitch). The springs are attached to the same point on the
aerofoil, as shown in Figure 1.1, and determinate the elastic axis, about which the
aerofoil rotates.

U �

h

e.a

Figure 1.1: Lateral view of the aerofoil subject to an airspeed U.

It is possible determinate the mathematical model of the system with the Euler-
Lagrange method. In order to simplify the calculations, the aerofoil shape is assumed
to be flat plate as Figure 1.2, this is not too restrictive because the aerofoil is
symmetric. Euler-Lagrange equation reads:

d

dt

(
∂Ek
∂q̇i

)
+ ∂U

∂qi
+ ∂∆
∂q̇i

= Qi (1.1)

where qi is a generalized coordinate and Qi is the force applied to the i − th coor-
dinate. In our case the generalized coordinates are the two DOFs: q1 = h, q2 = α.
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1.1 – Linear Structural Model

Figure 1.2: 2-DOFs aeroelastic system.

x is measured along chord from e.a. and from the geometry it is possible to define
the horizontal displacement of the aerofoil u and the vertical displacement w. By
considering small pitch angle (α� 1) we obtain:

u = x(cosα− 1) ' 0
w = −h− x sinα ' −h− xα

(1.2)

Hence, the kinetic energy is:

Ek = 1
2

∫ (dw
dt

)2

+
(
du

dt

)2
 ρdx ' 1

2

∫ (
dw

dt

)2

ρdx =

= 1
2mtḣ

2 + Sαḣα̇ + 1
2Iαα̇

2

(1.3)

where mT =
∫
ρdx is the total mass of the wing and its support structure.

Iα =
∫
ρx2dx is the moment of inertia. Sα =

∫
ρxdx = mwxαb is the mass unbalance.

The potential energy is:

U = 1
2khh

2 + 1
2kαα

2 (1.4)

where kh and kα are the springs stiffnesses.
The damping is considered for movement of the two springs in a configuration

mass-spring-damper. So it is possible write the dissipative energy, ∆, as:

∆ = 1
2chḣ

2 + 1
2cαα̇

2 (1.5)
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1 – Mathematical Model

where ch and cα are the damper coefficients.
Finally, Qh and Qα are the work done by the aerodynamic forces on the aerofoil

that we presented in the next section.
Now, solving the Lagrange equation (1.1) for the two generalized coordinates h

and α gives: [
mT Sα
Sα Iα

]{
ḧ
α̈

}
+
[
ch 0
0 cα

]{
ḣ
α̇

}
+
[
kh 0
0 kα

]{
h
α

}
=
{
−L
M

}
(1.6)

These equations describe the motion of the linear structural system and could be
written in the standard notation for mass-spring-damper. It can be seen that while
the stiffness matrix and the damping matrix are diagonal, the mass matrix is just
symmetric, because of the terms Sα coupling the two DOFs of the system.

At the end, it is possible to define the uncoupled natural frequencies of the
system. In fact if Sα and the damping coefficient are fixed to zero one obtains:

ωh =
√
kh
mT

ωα =
√
kα
Iα

(1.7)

1.2 Linear Aeroelastic Model
An airflow with velocity U affects an aerofoil. As shown in Figure 1.1, the airflow
produces aerodynamic forces acting, p(x, t), on any point of the structure which they
interact with. It is possible describe the aerodynamic forces as lift L and moment
M . The sign convention is that p(x, t) is positive up, L is positive up and M is
positive nose up.

For describing the aerodynamic force we considered an unsteady aerodynamics,
because the reduced frequency of the system reads k = ωαb

U
= 0.1. This parameter

defines the degree of unsteadiness of the flow. If 0 ≤ k ≤ 0.05, a system can be
described by quasi-steady aerodynamics, if k ≥ 0.05 a system can be described by
unsteady aerodynamics. The unsteady aerodynamic theory needs to account three
separate physical phenomena:

1. The relative wind vector on the aerofoil is not fixed in space.

2. The aerofoil unsteady motion disturbs the flow and causes a vortex to be shed
at the trailing edge.

3. The motion of the aerofoil accelerates air particles near the aerofoil surface.

The first and the second phenomena change the effective angle of attack and thus
change the lift. The last one effect is less significant than the other and affects both
lift and moment [5].
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1.2 – Linear Aeroelastic Model

Theodorsen derived a theory of unsteady aerodynamics for a symmetric two-
dimensional aerofoil and its derivation is based on linear potential-flow theory [7].
According to Theodorsen’s theory, lift and moment about the flexural axis can be
written as:

L(t) =πρsP b2
(
ḧ+ Uα̇− baα̈

)
+ 2πsPρUbC(k)

(
ḣ+ Uα + bα̇

(1
2 − a

))
+

+ T10UsP
π

β

(1.8)

M(t) =πsPρb2
(
baḧ− Ub

(1
2 − a

)
α̇−

(1
8 + a2

)
α̈
)

+ (T4 + T10)U2sPβ+

+ 2πsPρUb2C(k)
(1

2 + a
)(

ḣ+ Uα + bα̇
(1

2 − a
)

+ T10UsP
π

β
) (1.9)

where sP is the span, T10 and T4 are described by Theodorsen and dipend on the
control surface hinge location:

T10 =
√

1− d2 + arccos(d) T4 = d
√

1− d2 − arccos(d) (1.10)

The first part of each expression shows the noncirculatory terms and the second part
shows the circulatory terms which are dependent upon the value of Theodorsen’s
function, C(k). The circulatory terms occurs due to the vorticity in the flow.

Theodorsen’s function is used to model the changes in amplitude and phase
of the sinusoidal unsteady aerodynamic forces relative to the quasi-steady forces
for different reduced frequences. Theodorsen’s function is expressed as C(k) =
F (k) + iG(k), where C(k) is a complex quantity (required since both the amplitude
and the phase need to change), is expressed as a function of reduced frequency such
that:

C(k) = F (k) + iG(k) = H
(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(1.11)

where H(2)
n (k) are Hankel functions of the second kind. The real part and imaginary

part of Theodorsen’s function versus 1/k are plotted in Figure 1.3. From the figure
it is possible to notice that C(k) = 0.5 for k −→ +∞, instead for the steady case,
where k = 0, C(k) is real and equal to C(k) = 1. When the terms are multipled by
C(k), the function magnitude reduced and a phase lag is introduced [5].
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1 – Mathematical Model

1/k
0 5 10 15 20 25

F(
k)

,-G
(k

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F(k)
G(k)
F(k)fung
G(k)fung

Figure 1.3: The real and imaginary part of Theodorsen’s function C(k) and Jones
approximation.

1.3 State Variable Representation
For control purpose it is necessary to rewrite the dynamics is a state space repre-
sentation with real coefficients. The Theodorsen’s function is complex. Therefore
an approximation will be considered:

C(k) = 1− 0.165

1− 0.0455
k

i
− 0.335

1− 0.3
k
i

(1.12)

by replacing the reduced frequency k with sb

U
, s is the Laplace variable. Figure 1.3

shows the differences between the Theodorsen’s function and the Jones’s approxi-
mation. According to this approach, C(k) can be approximated as:

C(s) = 1− 0.165s
s+ 0.0455U

b

− 0.335s
s+ 0.3U

b

= 0.5 + a1s+ a0

s2 + b1s+ b0
(1.13)

where a1 = 0.1080075U
b
, a0 = 0.006825U

2

b2 ,b1 = 0.3455U
b
, b0 = 0.01365U

2

b2 .
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1.3 – State Variable Representation

The Theodorsen’s function C(s) can be treated as a second-order transfer func-
tion of a filter with input

vf (t) = Uα + ḣ+ b(1
2 − a)α̇ = aTv xp (1.14)

where the partial state vector reads xp =
[
h α ḣ α̇

]T
∈ R4 and the vector av ∈ R4

is defined as
av =

[
0 α ḣ b(1

2 − a)
]T

(1.15)

The output of the filter is denoted as yf (t) which is related to input vf (t) as

ŷf (s) = C(s)v̂f (s) (1.16)

where ŷf (s) and v̂f (s) represent Laplace transforms of yf (t) and vf (t), respectively.
Note that the input to the filter C(s) is a linear combination of the plunge and pitch
variables, i.e the structural DOFs of the system.

The transfer function C(s) of the filter has a minimal realization of dimension
two. Although one can derive a variety of equivalent realizations of C(s), we consider
a representation of the filter of the form

ẋf1 = xf2 (1.17)
ẋf2 = vf − b0xf1 − b1xf2 (1.18)

with its output given by
yf = 1

2vf + a0xf1 + a1xf2 (1.19)

Finally, it is possible define the state vector including the filter state as:

x =
[
h α ḣ α̇ xf1 xf2

]T
=
[
x1 x2 x3 x4 x5 x6

]T
(1.20)

Now it is possible write the lift L(t) and moment M(t) in (1.8) and (1.9) as:

L(t) =2πsPρUbyf
(
ḣ+ Uα + bα̇

(1
2 − a

))
+ πsPρb

2
(
ḧ+ Uα̇− baα̈

)
+

+ T10UsP
π

β

(1.21)

M(t) =πρsP b2
(
baḧ− Ub

(1
2 − a

)
α̇− b2

(1
8 + a2

)
α̈
)

+ (T4 + T10)sPU2β+

+ 2πsPρUb2yf

(1
2 + a

)(
ḣ+ Uα + bα̇

(1
2 − a

)
+ T10UsP

π
β
)

(1.22)
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1 – Mathematical Model

Substituting the aerodynamics forces, Eq. (1.21) and Eq. (1.22) in Eq. (1.6),
and collecting the terms involving ḧ and α̈ and solving for them gives:[

ḧ
α̈

]
= A1x+B1β (1.23)

where A1 ∈ R2x6 and B1 ∈ R2. The matrix A1 could be divided in three different
submatrices:

[A1] =
[
−[M ]−1[D] −[M ]−1[K] −[M ]−1[F ]

]
=
[
[P ] [Q] [R]

]
(1.24)

where [M ] is the structural and aerodynamic inertia, [D] is the structural and aero-
dynamic damping, [K] is the structural and aerodynamic stifness and [F ] contains
the parameters that dipend by new states.

Now the model (1.23) is linear respect the two variables pitch and plunge and
their first, so we can rewrite it in a state variable representation:

ẋ =



0 0 1 0 0 0
0 0 0 1 0 0
q1 q2 p1 p2 r1 r2
q3 q4 p3 p4 r3 r4
0 0 0 0 0 1
0 U 1 b(0.5− a) −b0 −b1


x+



0
0
g3
g4
0
0


β = Ax+Bβ (1.25)

where qi, pi, ri are the element inside A1. The equation of motion include aero-
dynamic forces which are nonlinearly dependent on the freestream velocity. So the
behaviour of the system is depending on the airflow velocity.

1.4 Nonlinear Model
In this section a structural nonlinearity is incorporated into the system in the form
of a hardening polynomial stiffness in the plunge DOF. This is achieved in the
experimental by a clamped-clamped tensioned wire, as described in 2.1. Therefore
a fifth-order polynomial nonlinearity is added in the mathematical model to the
plunge DOF to describe the nonlinear stiffness induced by the tensioned wire:

kh(h) = k0 + k2h
2 + k4h

4 (1.26)

where k1, k3 and k5 are estimated via a static force/displacement test as explained
in the next chapter.

In Eq. (1.26) it is possible observe that as the stiffness increases as the displace-
ment increases. Introducing such nonlinearity in the space state, Eq. (1.25), the
complete nonlinear aeroelastic system is obtained:

ẋ = f(x) +Bβ (1.27)

8



1.4 – Nonlinear Model

where:

f(x) =



x3
x4

(q̃1 + fnl1(x1))x1 + q2x2 + p1x3 + p2x4 + r1x5 + r2x6
(q̃3 + fnl3(x1))x1 + q4x2 + p3x3 + p4x4 + r3x5 + r4x6

x6
Ux2 + x3 + b(0.5− a)x4 − b0x5 − b1x6


(1.28)

The terms q̃1 and q̃3 include k0, the linear part of the nonlinear spring stiffness. In
this way it is possible to isolate the nonlinear functions fnl1(x1) and fnl3(x1), and
the system could be written as:

ẋ = Ax+ fnlψ(h) +Bβ (1.29)

where ψ(h) = k2h
3 + k4h

5 is the structural nonlinearity.

9
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Chapter 2

Experimental Rig and Model
Tuning

In this chapter the experimental rig and the identification method of the system are
presented. The experimental setup used for the validation of the numerical model
presented in Chapter 1 is a 2-DOF pitch-plunge aerofoil section. Hereinafter the
geometrical characteristics of the experimental model are presented together with
the used for introducing the structural hardening nonlinearity. These topics are also
presented in ref. [1], but in the following they will be elaborated more and new
elements will be added.

An identification method was required to determine the structural parameters of
the model that was not possible to measure directly on the test rig. The resulting
mathematical model describes as accurately as possible the behaviour of the physi-
cal model. The model tuning is performed by collecting multiple experimental FRFs
(Frequency Response Function), and then using them as objective for a last square
optimisation for the initial elastic model. Once the elastic model is tuned it is pos-
sible to add the other contributions like the aerodynamic force and the nonlinearity.
This is possible since the system can be break-down into subsystems by removing
the aerodynamics for analyzing the structural part. A grey-box approach has been
chosen to describe what is the known of the physical system in the indentification.
In this case the model tuning is applied only to estimate the structural parameters
that are unknown or ancertain.

In the first part of the chapter the test rig is presented. In the second part of
the chapter the identification of the linear system is considerate. In the last part is
presented how the nonlinearity parameters are estimated.
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2 – Experimental Rig and Model Tuning

2.1 Experimental Rig
The experimental setup is a rigid wing represent a 2-DOFs pitch-plunge aerofoil
section installed in a slow-speed wind tunnel at the University of Liverpool. The
wind tunnel presents a test section of 1.2 ×1.6 m and a maximum flowstream ve-
locity of 20 m/s. The aeroelasticity is slown in Figures 2.4 and 2.5. The geometric
caracteristics of the aerofoil are summerized in the Table 2.1. The aerofoil section
is supported by horizontal and vertical linkages and a torque tube, this solution
prevents spanwise tilting or bending. The aerofoil section has a NACA 0018 profile;
the wing has a trailing edge flap in the center covery 30% of the span. The flap
can rotate of ±5 deg, up to a bandwidth of 15 Hz; the flap can over work up to
30 Hz at lower amplitude. In the experimental validation, the control surface was
commanded in closed loop with saturation of ±3 deg. The plunge and pitch stiff-
ness are introduced independently in both direction by adjustable leaf springs. The
structural nonlinearity is added in the plunge DOF throught a clamped-clamped
wire arrangement in the form of a hardening polynomial stiffness form [8].

wing
chord 0.35 m
span 1.2 m

flap section
chord 0.0875 m
span 0.42 m

Table 2.1: 2-DOFs rig geometrical characteristic.

1

1

Figure 2.1: Actuator construction: 1 - piezoelectric stacks [11].
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2.1 – Experimental Rig

A dSPACE real-time control system is used for closed-loop control. The inputs to
dSPACE are the voltages from three laser displacement sensors opportunely located,
as shown in Figure 2.2. The control output from dSPACE is amplified by two
amplifiers to the "V-stack" piezoelectric stack arrangement that actives the trailing
edge flap on the wing. Two amplifiers are needed because the actuator is composed
by twin piezostacks oriented as a "V", hence the name: V-stack. The flap moves
when one piezostack extendes meanwhile the other retractes by the same measure,
this is achieved by powering the same voltages to two piezostack but out of phase
of 180 deg [8].

Figure 2.2: Laser location on test rig [8].

underformed position

e.a

1 2

2

1 e.a

d1 d2

h

α

Figure 2.3: Schematic representation of the laser position in the test rig.

The flap is the input to the system during closed-loop and its the control law, is
calculated through the partial feedback linearization technique presented in Chapter
4. Plunge and pitch deflections are mesured, their velocities, plus the two aerody-
namic states are reconstructed in real-time, the latter by the last two rows of the
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2 – Experimental Rig and Model Tuning

equation (1.25).
The deflections are obtained by geometrical relations between the positions of

the lasers in point 1 and point 2. Figure 2.1 shows a schematic representation
of the elements that permit the measurement of the displacements. From Figure
2.3 is possible to determinate the geometrical relations between the displacement
measured by the lasers and the pitch and plunge measurement:

h = y2 + (y1 − y2) d1

d1 + d2
(2.1)

α = arctan
(
y1 − y2

d1 + d2

)
(2.2)

Where y1 is the displacement measured by the laser in the point 1 and y2 is the
displacement measured by the laser in the point 2. d1 and d2 are the distances
between the elastic axes (e.a.) and the point 1 and point 2 respectively. In this way
plunge (h) and pitch (α) are obtain. The velocities are then numerically derived.

All the displacement readings are numerically filtered with a second order But-
terworth filter with a cutoff frequency of 15 Hz. Figures 2.4 and 2.5 show the test
rig where are pointed the most important elements, already described in detailed
and they are referred also in the following Table 2.1.

(a) laser displacement sensors
(b) torsion bar
(c) aerofoil section
(d) trailing edge control surface
(e) pitch spring
(f) plunge spring - nonlinear
(g) aerofoil vertical support
(h) plange spring - linear

Table 2.2
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2.1 – Experimental Rig

a

a
b

a

c

d

Figure 2.4: Wind tunnel test section - view 1.

e

f

h

g

Figure 2.5: Wind tunnel test section - view 2.
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2 – Experimental Rig and Model Tuning

2.2 Parameters Estimation of the Linear System
The linear system described in Eq. (1.6), without the aerodynamic forcing L and
M , is written in the standard form of a mass-spring-damper coupled system. If a
harmonic force is applied to the system, its response is related to the parameters
that describe the physical model. The response of the system is formed by two
terms: the general solution (or the transient response) and the particular solution
(or the steady state response). The solutions are two functions in time domain,
one for each DOF, but the identification method needs a response in the frequency
domain and it is possible derived the analytical transfer function from the physical
model. The model tuning is made by the comparison between the analytical and the
experimental transfer functions. The last one are reconstructed collecting several
experimental FRFs of the system. As already explained, the identification method
start from a certain parameters dataset and adjust them to fit analytical transfer
functions to the experimental one. In this case, the fitting is made solving the
problem as a nonlinear least squares problem minimizing the least squares of the
errors of each data point. This identification is classified as a grey-box approach
because it uses a priori knowledge of the physical system.

In this case, for computing the two FRFs, the system is excited with a known
force (F ) applied on the plunge DOF with a shaker. All the tests are carried out
with the deflection constrained. The tests can be described in a mathematical model
by considering the linear system, Eq. (1.6) without the aerodynamic forcing, but
with a sinusoidal force F on the plunge DOF.[

mT Sα
Sα Iα

]{
ḧ
α̈

}
+
[
ch 0
0 cα

]{
ḣ
α̇

}
+
[
kh 0
0 kα

]{
h
α

}
=
{
F
0

}
(2.3)

By applying the Laplace transform to the system, Eq. (2.3), we obtain for each
DOF an FRF. The overall system is described by two linear systems: the first
relative to plunge DOF with input pitch DOF and the force, the second relative to
pitch DOF with input plunge DOF:

H(s) = − Sαs
2

mT s2 + chs+ kh
A(s) + F (s)

mT s2 + chs+ kh
(2.4)

A(s) = − Sαs
2

Iαs2 + cαs+ kα
H(s) (2.5)

where H(s) = L{h(t)} and A(s) = L{α(t)}. It is possible to rewrite the transfer
function as:

H(s) = Iαs
2 + cαs+ kα

(mT s2 + chs+ kh)(Iαs2 + cαs+ kα)− S2
αs

4 F (s) (2.6)

A(s) = − Sαs
2

(mT s2 + chs+ kh)(Iαs2 + cαs+ kα)− S2
αs

4 F (s) (2.7)
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2.2 – Parameters Estimation of the Linear System

The two transfer functions have the same four poles and so the overall system has
two couples of poles.

The initial set of parameters is chosen based on direct and indirect test rig mea-
sures: the linear spring stiffness, kh and kα, are measured from a static force/displacement
test. The natural frequency and the damping ratio are measured from a model anal-
ysis test. The terms xα and mw are measured by a static moment test with pitch
spring disconnected. The resulting initial parameters dataset, and the optimized
ones are reported in Table 2.3. It was necessary to consider several trails varying
in a reasonable range the initial dataset to avoid local minimum. In fact, for model
tuning algorithms, local minima are possible and the several trails allow the conver-
gence to the global minimum. The initial dataset was chosen to obtain the smallest
residuals possible. Figures 2.6 and 2.7 show the resulting FRFs obtained from the

Initial parameters Optimized parameters

mT [kg] 10.6956 12.4518

mw [kg] 5.0260 6.2168

Iα [kgm2/rad] 0.0382 0.0404

xα [−] 0.0186 0.0230

ζk [−] 0.0128 0.0183

ζα [−] 0.0174 0.0082

kh [N/m] 2930 3514.8

kα [Nm/rad] 32.4297 33.6299

Table 2.3: Parameters dataset.

experimental model tuning at zero speed. In the Figures, there are the comparisons
between the initial estimation (green dashed lines) and the experimental FRFs data
(black dotted lines), and the optimized estimation (purple solid lines). There are
some differences between the initial dataset and the experimental FRFs, while in
average the discrepancy becomes smaller between the estimated FRFs and the ex-
perimental one as expected. The fit is more precise about the peaks and the larger
values because they are associated to bigger residual values, so their fit gives a larger
contribution on reducing the overall error.
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2 – Experimental Rig and Model Tuning

Furthermore we can determinated the system frequency which are defined in
the peaks present in the FRFs. From Figures 2.6 and 2.7, we note that the first
peak is the natural frequency of the plunge DOF at 16.65 rad/s and second one is
the pitch natural frequency at 28.90 rad/s, the frequencies obtain depend by the
mass unbalance Sα and by damping coefficients, then they will be different from the
uncoupled natural frequencies defined in 1.7:

ωh =
√
kh
mT

= 16.80rad/s ωα =
√
kα
Iα

= 28.85rad/s

The difference between the natural frequencies uncoupled and coupled is small, but
it can be notice that the two peak move away from each other. Figure 2.6 shows
the FRF plunge DOF, where the peak of the natural plunge frequency it is well
defined, while the pitch frequency peak it is small, then the two DOFs in this case
are slightly coupled. On the contrary, Figure 2.7 shows the FRF pitch DOF, where
both frequency peaks are well defined, so in this case the two are coupled in a strong
way.
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Figure 2.6: Results from experimental model tuning for plunge DOF.
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Figure 2.7: Results from experimental model tuning for pitch DOF.

2.3 Nonlinear parameters estimation
In this section the estimation of the stiffness parameters of the nonlinear springs is
presented. The nonlinearity used is a pretensioned, clamped-clamped wire attached
to the plunge DOF, as explain in Section 2.1. The stiffness parameters of a nonlinear
spring are considered to be in a polynomial form:

kh(h) = kh0 + kh1h+ kh2h
2 + kh3h

3 + kh4h
4 + kh5h

5 + . . . (2.8)

In this case, a fifth-order polynomial nonlinearity is considered. It is possible
to write the mathematical model of a pretensioned clamped-clamped wire used for
introduced the nonlinearity in the test rig:

F = 4T0

L
δ + 8

L3 (EA− T0)δ3 − 16EA
L5 δ5 (2.9)

where T0 is the wire pretension, in our case the pretension is 1 kg, L is length of wire,
E is elastic modulus, A is the wire section and δ is the displacement. The parameters
are estimated from the measurement by fitting the data with a polynomial fifth-order
curve. The resulting parameters dataset are shown in Table 2.4 and a comparison
of the estimated curve and the experimental data points are shown in Figure 2.8.
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2 – Experimental Rig and Model Tuning

kh0 [N/mm] 0.1987

kh2 [N/mm3] 0.1066

kh4 [N/mm5] 1.2760e− 3

Table 2.4: Nonlinear parameters dataset.

mm
0 1 2 3 4 5

kg

0

0.5

1

1.5

2 Experimental measures
Fitted degree 3
Fitted degree 5

Figure 2.8: Comparison between the experimental measures and the estimated poly-
nomial.
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Chapter 3

Open loop behaviour

In this chapter the behavior of the open loop system is analyzed. In the first step the
linear system was considered and an eigenvalue analysis was performed to determine
the natural frequencies and the damping coefficients of the modes of the system.
With this analysis is possible to determine the flutter velocity that is a threshold
for the behaviour of the system; the aeroelastic wing such velocity is stable under
and unstable above it. The time responses of the linear system have been studied,
too. In the second part of the chapter, the nonlinear system was analysed. If in
the linear system the instability can be completely described as divergent behavior,
in nonlinear case, something different could happens. In fact the system can have
different points of equilibrium, such as LCO. However, in the nonlinear case, specific
nonlinear methods like describing functions have to be used for a more accurate
analysis.

3.1 Linear system behaviour
The linear system response depends on the airflow velocity U , once the aerodynamic
forces are added to the structural model. In this section, it will be considered the
linear system in state space, to which the filter filtered in section 1.3 has already
been applied.

Eigenvalues analysis is exploited at different freestream velocity, the results are
shown in Figures 3.1, 3.2, 3.3. The airflow range of interest is between 0-25 m/s; the
system’s eigenvalues are six, the first four are two complex conjugate pairs, and each
pair is associated to one DOF: the real part describes the system damping and the
imaginary part describes the system natural frequency. The last two eignvalues are
real and describes the behavior of the two new aerodynamic states added in Section
1.3.

Figures 3.1 and 3.2 show the behaviour of the four complex conjugate eigenvalues.
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Figure 3.1: Pitch and plunge DOFs damping.
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Figure 3.2: Pitch and plunge DOFs natural frequency.
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3.1 – Linear system behaviour

In Figure 3.1, the system damping is represented and it is possible see that a branch
of the graph becomes positive, determining a flutter velocity at 20.3 m/s. Meanwhile,
the other branch increases its modulus and so its stability. In Figure 3.2 there
is presented the system frequencies, where the pitch frequency decrease with the
velocity and plunge one increases. The two frequencies crossed shortly before the
flutter velocity. Finally, it is possible to notice that at zero speed the system damping
is the structural damping, and, similarly, in the same way the system frequecies are
coupled natural frequencies of the system, as defined in Section 2.2. If we consider
the frequency domain, we observe the peaks of the coupled natural frequencies, a
presented in Figures 2.7 and 2.6 at zero speed. With increasing speed, the two peaks
approach each other, until they collapsed in a single peak, i.e in an undefined single
mode. After the two frequencies crosses each other, they move away, this situation
happens near the flutter velocity.

The numerical flutter velocity Uf =20.3 m/s is very close to the experimental
one Uf,exp =19.4 m/s [8], the error between the two flutter velocities is below 5%.
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Figure 3.3: Aerodynamic states.

Figure 3.3 describes the behaviour of the aerodynamics states, they are null at
zero speed and become negative while increasing the airspeed. The second aerody-
namic state becomes positive near 25 m/s, but the system is already unstable, the
flutter velocity is already exeeded, hence it is not relevant for studing the system
behaviour.
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3 – Open loop behaviour

Figures 3.4, 3.5 and 3.6 present the time responses of the system at airflow
velocity lower than the flutter one, due to a perturbation of the pitch angle of 5° as
shown in Figure 3.4. The system is stable and all the state converge to the origin in
small period of time in accordance to their damping. The two aerodynamic states are
impossible to observe directly on the model, but in any case are stable, as expected
after the study of the eigenvalues of the system.
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Figure 3.4: Pitch and plunge open loop response at U =10 m/s.
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Figure 3.5: Pitch and plunge velocities open loop response at U =10 m/s.
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Figure 3.6: Aerodynamic states open loop response at U =10 m/s.
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3 – Open loop behaviour

3.2 Generic Nonlinear Aeroelastic Behaviour
The structural fifth-order polynomial nonlinearity is introduced in the system to
produce a nonlinear aeroelastic behavior; in this case, the nonlinear behaviour is a
LCO. Of course, the LCO is not the only nonlinear behavior possible, but it is the
main aeroelastic response phenomena and it is the simplest dynamic bifurcations
that is possible to observe. A limit cycle is an isolated closed trajectory in the
phase space. A stable, nonlinear system can exhibit self-sustained oscillations, as
the one under investigation. Such system presents a stable limit cycle because all
the trajectories in the phase plane converge on the limit cycle and remain even if
slighly disturbed.

In general, in flight vehicles, the nonlinearities are not wanted, but LCO may be
considered a "good" nonlinear behavior because may prevent a catastrophic flutter
leading to loss of the flight vehicles [6].

(a) Nonlinearity leanding to stable LCO. (b) Nonlinearity landing to stable (solid
line) and unstable (dotted line).

Figure 3.7: Schematic of LCO response [6].

The generic possibilities that can be observe in nonlinear aeroelastic behavior
with LCOs are shown in Figure 3.7, in both of them the LCO amplitude is plotted
vs airspeed. Figure 3.7(a) shows an aeroelastic system that is stable below the flutter
velocity, independently by the small or large perturbations applyed to the system.
Beyond the flutter velocity, the LCO amplitude increases in a nonlinear way. The
LCO amplitude depends by the nonlinearity present in the aeroelastic system: if the
nonlinear stiffness coefficients are an all compered to the stiffness of the related DOF,
the LCO amplitude may become large and, arrived at certain airspeed, it may be
possible observe divergence of the system. On the other hand, if the nonlinearity is
bigger and so are the polynomial coefficients, the LCO amplitude is smaller and the
divergence occurs at higher airspeed. Figure 3.7(b) shows the other cases where the
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3.2 – Generic Nonlinear Aeroelastic Behaviour

onset of the LCO occurs below the flutter velocity, this happens if the perturbation
applied to system is large enough. Now two LCOs exist at the same time: the
stable (solid line), and unstable one (dotted line). Stable LCOs exist when, for any
perturbation, the system returns to the same LCO. Instead, a system undergoing
an unstable LCO, if disturbed moves away from the unstable LCO towards the
stable LCO. In Figure 3.7 the arrows show the system behavior when the airspeed is
increased or decreased. The system under investigation show an LCO below flutter
velocity, called subcritcal LCO [6].

In theory, if there are not perturbations, both stable and unstable LCOs are
possible dynamics. It is also possible to notice the hysteretic response in the ampli-
tude; it increases and then decreases. The conseguences LCO of on a flying vehicle
are the reduced vehicle performances and airframe structural fatigue (usually LCO
amplitude does not reach the structural failure limits) [6].

3.2.1 Nonlinear System Behaviour
A nonlinear system can have different point of equilibrium as LCO; in general, a
divergence from the origin can conduct a nonlinear system towards instability or
towards another attractor. Once added the hardening nonlinearity, Eq. (3.1), to
the linear model, the nonlinear aeroelastic model shows convergency, towards the
state origin, behaviour analogous to the linear case below the critical velocity. Above
flutter velocity, an initial small perturbation leads to a self sustained oscillation, that
is an LCO. The hardening non linearity added to the plunge DOF is:

kh(h) = k0 + k2h
2 + k4h

4 = 3700.67 + 1.0657e8h2 + 1.2760e12h4 (3.1)

where the estimated parameters are presented in table 2.4; they are converted from
N/mm in the table, to N/m in the polynomial in Eq. (3.1).

The onset of the LCO for the numerical model occurs at 16 m/s and is induced by
an initial perturbation of 5 deg applied to the pitch DOF. While experimentally, the
onset occurs at a lower velocity, around 12.5 m/s. During the numerical simulations
has been notice that the onset of the LCO does not occur below the flutter velocity
if the initial perturbation on the pitch DOF is lower then 5 deg, in this case the
LCO occurs at the flutter velocity. Furthermore, if the initial perturbation is too big
the system reached the divergence before the LCO is established. An error always
present in the experimental simulation is the free-play effects of the flap, in fact
there will always be some rotation of the flap also if it is not actuated, in these
study the freeplay model is not included in the analysis.

Phase portraits and time domain LCO diagrams have been compared between
the numerical and experimental results. Figure 3.8 shows the comparison of the
plunge and pitch time domain LCO diagrams. It is possible to notice that there
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3 – Open loop behaviour

is a small difference in the LCO frequency and by a Fourier analysis on the LCO
responses, the oscillation frequencies for the numerical 4.3 Hz and the experimental
cases 4.4 Hz are obtained. The LCO frequencies for the two DOFs are identical,
both for the experimental LCO and for the numerical one. The numerical and
experimental differences can be attributed to differences in the underlying linear
model at increasing airstream velocity. Moreover, it is possible to notice that, if the
numerical LCO is symmetric for both DOFs, only the experimental pitch LCO is
symmetric, while the experimental plunge LCO is not. At last, it is also noticed
that the experimental LCOs ampitudes are bigger than the predicted ones [1]. It is
important mention that plunge and pitch present the same frequency but they are
out of phase, as shown in Figure 3.9. By considerlly the phase of the plunge null it
is possible to calculated the out of phase of the pitch, that has a value of more than
50 deg at 17 m/s.

Figure 3.10 shows the comparison of the plunge and pitch phase portraits; sim-
ilar consideration can be drawn. Figure 3.8 shows some differences in the LCOs
amplitude, the biggest differences are present in the plunge phase portrait, but the
shape is quite well rapresented. Instead, the pitch phase portrait is a good match-
ing for the LCO amplitude but the shape is less regular. This may be due to a non
perfectly polynomial nonlinearty being introduced in the experimental model. Due
to rig limitations, is possible that the pretensioned wire exhibits a loose behaviour
in the near-zero-despacement region [1].
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Figure 3.8: Time domain LCO diagrams - numerical vs experimental.

The aeroelastic system presents a LCO below the flutter velocity, the onset of
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3.2 – Generic Nonlinear Aeroelastic Behaviour
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Figure 3.10: Phase portraits - numerical vs experimental.

the LCO occurs for 16 m/s for the numerical model, instead the flutter velocity
is at 20 m/s. The system presents a subcritical point, and it may observed an
unstable LCO. It is important to note that the signs of the nonlinear stiffness terms
in the polynomial, Eq.(3.1), that describe the structural nonlinearity added in the
plunge DOF, or all positive. Referring to the literature, a subcritical bifurcation was
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3 – Open loop behaviour

not expected because the coefficients are all positive, the system should be stable
until the flutter velocity, as Figure 3.7(b). Referring to the literature, for observing
a subcritical point in the aeroelastic system one or more stiffness term should be
negative, usually the negative term is kh2. In the case studied it is possible observe
an unstable LCO also if all the stiffness terms in the polynomial nonlinearity are
positive.

3.3 Subcritical bifurcation point
In this section the study of the bifurcation point is presented exposed. As already
explained, the onset of the LCO occurs before the flutter velocity, so the system
presents a subcritical behavior. The subcritical bifurcation point indicates the pres-
ence of an unstable behavior of the system. From the stable behavior of the sys-
tem, shown in Figure 3.7, we suppose that the system presents an unstable LCO,
as explain in the Section 3.2. For describing the unstable branch in the graph-
ics airspeed-LCO amplitude it is necessary apply the describing function method:
it is an approximate method for analyzing nonlinear system, it is based on quasi-
linearization of the nonlinear system under investigation, it is one of the widely used
method for analyzing limit cycle in closed-loop controllers.

3.3.1 The describing function method

G(i�)

N.L

r

x

y

Figure 3.11: Feedback connection [10].

All the systems behavior is nonlinear and they could be describing as linear
only for small perturbation. The describing function method allows studying the
existence of periodic solution for Single-Input-Single-Output (SISO) system. It is
possible to apply this method if the nonlinear physical system can be presented
as a feedback connection of a linear dynamical system and a nonlinear element.
Considering the SISO nonlinear system presented in Figure 3.11, we assume:

1. the external input is null (r=0),

2. the nonlinearity is in algebric form, time-invariant and memoryless,
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3.3 – Subcritical bifurcation point

3. the linear element is a strictly proper rational transfer function.

For studying the existence of periodic solution, it is assumed that such solution
satisfies x(t + 2π/ω) = x(t) for all t, where ω is the frequency of oscillation. The
general method for finding periodic solutions is usually called the harmonic balance
method. The idea of the method is to rapresent a periodic solution by a Fourier
series and seek a frequency ω and a set of Fourier coefficients that satisfy the sys-
tem’s equation. For semplifing the exposition, we consider a sinusoidal input to the
nonlinearity:

x(t) = X sin(ωt) (3.2)
The nonlinearity output is a periodic solution with the same input frequency ω, that
can be written as a Fourier series:

y(t) =
∞∑
n=1

(an cos(nωt) + bn sin(nωt)) (3.3)

where

an = 1
π

∫ π

−π
y(t) cos(nωt)d(ωt) bn = 1

π

∫ π

−π
y(t) cos(nωt)d(ωt)

There are no constant terms because the output is assumed symmetric respect the
origin. an and bn depend on the input signal amplitude X. We take the first
harmonic of y(t):

y(t) ' Y1(X) sin(ωt+ ϕ1(X)) (3.4)
where:

Y1 =
√
a2

1 + b2
1 ϕ1 = arctan

(
a1

b1

)
We considered only the first harmonic for two main reasons: higher harmonic am-
plitudes usually are smaller than the first and the linear part of the system is a
low-pass filter, so it reduces the amplitude of the higher harmonic.

In order that the system presents a LCO, it has to satisfy the equation:

F (X)G(iω) + 1 = 0 (3.5)

This equation is known as harmonic balance equation. The function F (X) defined
as:

F (X) = 1
X

(b1(X) + ia1(X)) = 1
X
Y1(X) expiϕ1(X) (3.6)

that is the describing function of the nonlinearity. Such describing function is ob-
tained by applying a sinusolidal signal at the input of the nonlinearity and by cal-
culating the ratio of the Fourier coefficient if the first harmonic is the output. It can
be seen as an equivalent gain of a linear time invariant element [10].
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3 – Open loop behaviour

The describing function method states that if Eq. (3.5) has a solution, then
there is probably a periodic solution of the system with frequency and amplitude
near the describing function ones. Conversely, if Eq. (3.5) has no solution, then the
system probably does not have a periodic solution [10].

3.3.2 Application describing function method

We already know the stable output of the system, they were obtained calculating
the solution of the nonlinear system. Applying the describing function method we
expected to get the unstable output of the system. We study the state space model
Eq. (1.25) but considering the relations between the states, it is sufficient considered
three of them, rearranging Eq. (1.25), we can write:

ḧ− q1h− q2α− p1ḣ− p2α̇− r1xf1 − r2xf2 − fnl1ψ(h) = 0 (3.7)
α̈− q3h− q4α− p3ḣ− p4α̇− r3xf1 − r4xf2 − fnl3ψ(h) = 0 (3.8)

ẋf2 − Uα− ḣ− b(0.5− a)α̇ + b0
U2

b2 xf1 + b1
U

b
xf2 = 0 (3.9)

where ψ(h) = k2h
3 + k4h

5 is the nonlinearity of the system. It is polynomial, mem-
oryless and time-invariant, so it observes all the conditions assumed. Furthermore,
the system can be represented by the feedback connection of Figure 3.11, so it is
possible apply the describing function method.

In this case, three equations are considered that describe plunge, pitch and aero-
dynamic behavior, so three inputs are needed, we take the first harmonic of each
input and we choose the time origin in way that we can assume the phase of the
first harmonic of the plunge equal to zero:

h = Ah cos(ωt) −→ ḣ = −Ahω sin(ωt) −→ ḧ = −Ahω2 cos(ωt)
α = Aα cos(ωt+ ϕα) −→ ḣ = −Aαω sin(ωt+ ϕα) −→ α̈ = −Aαω2 cos(ωt+ ϕα)

xf2 = Ax cos(ωt+ ϕx) −→ −Axω sin(ωt+ ϕx) −→ xf1 = Ax
ω

sin(ωt+ ϕx)

There are six unknown: three amplitudes (Ah, Aα, Ax), two phases (ϕα, ϕx)
and frequency (ω). Substituting the input and their derivatives in Eq. (3.9) and
focusing the attention only on the structural nonlinearity, gives:

fnl1
(
A3
hk2 cos3(ωt) + A5

hk4 cos5(ωt)
)

(3.10)

fnl3
(
A3
hk2 cos3(ωt) + A5

hk4 cos5(ωt)
)

(3.11)
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3.3 – Subcritical bifurcation point

It is possible to replace the nonlinear trigonometric elements:

cos3(α) = 3
4 cos(α) + 1

4 cos(3α)

cos5(α) = 5
8 cos(α) + 5

16 cos(3α) + 1
16 cos(5α)

Where the harmonics higher than the first one are negligible; considering only the
first harmonic is not too restrictive because the LCOs shapes are smooth and they
are centered in the origin, then the higher harmonics do not affect the behavior of
the system. Replacing the rewritten nonlinearity and colleting cos(ωt) and sin(ωt)
gives six equations, two for each original one:

−Ahω2 − q1Ah − q2Aα cosϕα + p2Aαω sinϕα − r1
Ax
ω

sinϕx − r2Ax cosϕx

− 3
4fnl1A

3
hk2 −

5
8fnl1A

5
hk4 = 0

(3.12)

− q2Aα sinϕα + p1Ahω + p2Aαω cosϕα − r1
Ax
ω

cosϕx − r2Ax sinϕx = 0 (3.13)

−Aαω2 cosϕα − q3Ah − q4Aα cosϕα + p4Aαω sinϕα − r3
Ax
ω

sinϕx−

r4Ax cosϕx −
3
4fnl3A

3
hk2 −

5
8fnl3A

5
hk4 = 0

(3.14)

−Aαω2 cosϕα + q4Aα sinϕα + p3Ahω + p4Aαω cosϕα

− r3
Ax
ω

cosϕx − r4Ax sinϕx = 0
(3.15)

−Axω sinϕx − AαU cosϕα + b(0.5− a)Aαω sinϕα

+ b0
U2

b2
Ax
ω

sinϕx + b1
U

b
Ax cosϕx = 0

(3.16)

−Axω cosϕx − AαU sinϕα + Ahω + b(0.5− a)Aαω cosϕα

+ b0
U2

b2
Ax
ω

cosϕx − b1
U

b
Ax sinϕx = 0

(3.17)

There are six equations with six unknown, then the system is solvable in a closed
form. By solving the system we obtain only the two stable solutions shown in Figures
3.12 and 3.13. The system was solved in different ways, but the unstable solution
was not found. One of the possible reasons is that the unstable solution, is not an
LCO. There is certainly an unstable behavior of the system that connect the stable
LCO to the stationary condition of the system, and its study will the aim of future
studies.
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3 – Open loop behaviour

Figures 3.12 and 3.13 show the stable solutions of the system: the solution at
zero amplitude and at the amplitude of the established LCO, these amplitudes are
the same that were observe in predicted LCO in Figure 3.8. The arrows show denote
path of the system response when flight speed is increasing or decreasing. As already
said, in the figures we can notice that the onset of the LCO occurs at 16 m/s and
the flutter velocity at 20.3 m/s. At the flutter velocity the amplitudes of both DOFs
up from zero to the amplitude of the LCO. Figure 3.12 shows the amplitude of the
plunge LCO that remain constant when decreasing the velocity, and slighly descrise
near 16 m/s, while the amplitude pitch LCO increase while decreasing the velocity
as shown in Figure 3.13. In both case the trends in the figure are as expected.
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Figure 3.12: Plunge LCO amplitude.
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Figure 3.13: Pitch LCO amplitude.

Figure 3.14 and 3.15 show the frequency of the LCOs vs airspeed, the plunge
and pitch LCO frequency are the same, the two graphs fit perfectly, as it is possible
see in the figures.
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Figure 3.14: Plunge LCO frequency.
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Figure 3.15: Pitch LCO frequency.
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Chapter 4

Control Design and Closed-Loop
Behaviour

In this chapter the derivation of the control design used on the system is presented.
For controlling the system we consider a feedback linearization, described in Section
4.1. A coordinates transformation to make the system linearisable is shown along
with the design of a nonlinear controller to cancel the nonlinearity. In the second
part of the chapter the design of the control is presented. A schematic of control
strategy is explained that we used to build the Simulink project then it is coupled
to the dSPACE real-time control system used for closed-loop control. At the end
of the chapter the experimental validation of the control design is presented and
the closed-loop behaviour of the system is studied. These topics are been already
discussed in [1], but here they will be elaborated in more depth and expanded.

4.1 Feedback Linearization

The complete aeroelastic system is nonlinear, for this reason the feedback lineariza-
tion approach is considered to make the system linear at first and then design a
stabilizing linear controller. This techniques is an exact cancellation of all the term
that introduced nonlinearity in a given nonlinear system. Let us consider:

ẋ = f(x) + g(x)u
y = h(x)

(4.1)

The relative degree of the system can be seen as the number of times the out-
put should be differentiated before a direct coupling between input and the output
derivative occurs. In particular, taking Lie derivatives of h along the solution of the
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4 – Control Design and Closed-Loop Behaviour

system considered as long as the input u does not appear yields:

y = h(x)
ẏ = Lfh+ (Lgh)u
ÿ = L2

fh+ (LgLfh)u
...

y(r) = Lrfh+ (LgLr−1
f h)u

The Lie derivatives is defined as: the derivative of y in the direction of x: Lfφi =
dφ
dx
·x. So it is possible to define the relative degree as: the smallest integer such that

LgL
r−1
f h is not zero.
For a system with well defined relative degree it is possible to define the following

feedback law:
u =
−Lrfh+ v

LgL
r−1
f h

(4.2)

Notice that, by applying the following change of coordinates

z = T (x) = [h(x), Lfh(x), . . . , Lr−1
f h(x)]T ∈ Rr (4.3)

one can easily see that:
ż = Az +Bv (4.4)

where v is a scalar auxiliary input and matrices A and B are given as:

A =



0 1 0 · · · 0
0 0 1 0 ...
... ... . . . . . . ...
0 0 · · · 0 1
0 0 · · · 0 0

 B =



0
...
...
0
1


The equation (4.4) defines the state space equations of a chain of integrators and it
can be controlled by applying standard linear systems synthesis tecniques.

It is important to remarks that equation (4.3) defines, in general, a partial change
of coordinates. If r < n, n − r additional state equations are needed in order to
describe the inner dynamics of the original system. If r = n, z ∈ Rn is the new
state of the system.

When the relative degree is strictly less than the system’s dimension, only a par-
tial feedback linearization can be achieved by applying the equation transformation
and then the feedback law Eq. (4.2). In fact Eq. (4.4) does not descibe the dy-
namics of the whole system. In order to fully describe the dynamics of the original
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4.1 – Feedback Linearization

system 4.1, but in different coordinates, one needs to specify n − r extra variables
and compute their derivative. Then it is possible to choose a change of coordinates
x̂ = [z, ξ] where z is specified in Eq. (4.3) and ξ ∈ Rr−n is a function of x so that
the resulting set of differential equation takes the normal form:

ż = Az +Bv

ξ̇ = φ(ξ, z)
(4.5)

It is important to notice that while z-equations are linear, the ξ equations are
nonlinear but input independent. The internal dynamic are forced by the value of
the output y and derivatives. Given the cascaded structure of the normal form, one
way to design the control v is using standard linear synthesis techniques so that
the upstream system is globally asymptotically stabilized to any desired equilibrium
state. To ensure that overall cascade is stable we may assume that the ξ-subsystem
(the internal dynamics) is input to state stable with respect to the input variable z.
This type of assumption on the internal dynamics are usually called minimum-phase
assumption. If the system is minimum phase then the overall system is asymptot-
ically stable. This link between the internal dynamics of a linear system and the
position of its zeroes in the complex plane proves that the notion of zeres of a
transfer function has a natural counter-part in the context of nonlinear systems.
For this reason the internal dynamics when evolving autonomously, that is with z
indentically zero, define the zero-dynamics.
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4 – Control Design and Closed-Loop Behaviour

4.2 Feedback Linearization Applied to the Aeroe-
lastic System

The feedback linearization method is used for suppressing the LCO that occurs when
the airspeed goes over a critical speed. The system under analysis here needs to be
made linearisable via a transformation, as there does not exist an input capable
of cancelling the nonlinearity. A system using trailing edge actuators as in [2] is
partially feedback linearisable, while with both liading and trailing edge actuators
it is possible to make an excatly feedback linearization. Now it is needed to choose
a system output, y, for partially linearizing respect to it. The output chosen here is
the picth variable y = α, because it does not present structural nonlinearities.

The first step in feedback linearization controller design is finding the transfor-
mation T (x) that allows the linearization of the system

T (x) =



φ1(x)
φ2(x)
φ3(x)
φ4(x)
φ5(x)
φ6(x)


(4.6)

The correct expression for T (x) is derived by calculating the Lie derivatives of the
output variable y(t).

The output considered is: y = φ1 = x2 and calculating its derivative yields:

φ̇1 = dφ1

dx
· ẋ = dφ1

dx
· (f(x) + g(x)) = Lfφ1 + Lgφ1 (4.7)

Calculating separately the two derivative, the first results:

Lfφ1 = dφ1

dx
· f(x) =

[
0 1 0 0 0 0

]
x3
x4
...

 = x4 (4.8)

meanwhile the second term is zero:

Lgφ1 = dφ1

dx
· g(x) =

[
0 1 0 0 0 0

]


...
g3
g4
...


= 0 (4.9)

as expected the output derivative is:

φ̇1 = x4 = φ2 (4.10)
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4.2 – Feedback Linearization Applied to the Aeroelastic System

Calculating the other derivatives, it is possible determinated the relative degree
of the system with the selected output. Determining the second derivative reads:

φ̇2 = dφ2

dx
· (f(x) + g(x)) = Lfφ2 + Lgφ2 (4.11)

It can be noted that the second term is not zero:

Lgφ2 =
[
0 0 0 1 0 0

]


...
g3
g4
...


= g4 (4.12)

this indicates that the relative degree of the system is equal to two.
Now it is necessary to find the remaining four derivatives, the transformation

functions are defined such that Lgφi = 0 with i = 1, . . . , 6, it is possibile to write
the conditions as:

Lgφ3 =
[
dφ3

dx1

dφ3

dx2

dφ3

dx3

dφ3

dx4

dφ3

dx5

dφ3

dx6

]


...
g3
g4
...


= 0 (4.13)

Lgφ4 =
[
dφ4

dx1

dφ4

dx2

dφ4

dx3

dφ4

dx4

dφ4

dx5

dφ4

dx6

]


...
g3
g4
...


= 0 (4.14)

Lgφ5 =
[
dφ5

dx1

dφ5

dx2

dφ5

dx3

dφ5

dx4

dφ5

dx5

dφ5

dx6

]


...
g3
g4
...


= 0 (4.15)

Lgφ6 =
[
dφ6

dx1

dφ6

dx2

dφ6

dx3

dφ6

dx4

dφ6

dx5

dφ6

dx6

]


...
g3
g4
...


= 0 (4.16)

For φ3, φ5 and φ6 we can choose:

φ3 = x1 (4.17)
φ5 = x5 (4.18)
φ6 = x6 (4.19)
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4 – Control Design and Closed-Loop Behaviour

These choices simplify the derivatives calculation, to φ3 corrisponds the plunge dof,
to φ5 and φ6 corrisponds the two additional state xf1 and xf2 respectively. The
variables defined in Eq. (4.19) verify the conditions Eq. (4.13), Eq. (4.15) and Eq.
(4.16). The second condition is verified for this transformation function:

dφ4

dx3
g3 + dφ4

dx3
g4 = 0 ⇒ φ4 = x3g4 − x4g3 (4.20)

So the resulting transformation is:

T (x) =



φ1(x)
φ2(x)
φ3(x)
φ4(x)
φ5(x)
φ6(x)


=



x2
x4
x1

g4x3 − g3x4
x5
x6


=



α
α̇
h

g4ḣ− g3α̇
xf1
xf2


(4.21)

Applying the trasformation to the the dynamic system:


φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6


=



φ2
∆1

1
g4
φ4 + g3

g4
φ2

∆2
φ6
∆3


+



0
g4
0
0
0
0


β (4.22)

where

∆1 =q3φ3 + q4φ1 + p3
1
g4
φ4 +

(
p4 + g3

g4
p3

)
φ2 + r3φ5 + r4φ6 (4.23)

∆2 =(g4q2 − g3q4)φ1 +
(
p1g3 + p2g4 − g3

(
p4 + p3

g3

g4

))
φ2

+ (g4q1 − g3q3)φ3 +
(
p1 − p3

g3

g4

)
φ4 + r3φ5 + r4φ6

(4.24)

∆3 =Uφ1 − bUφ5 − b1φ6 +
(
b
(1

2 + a
)

+ g3

g4

)
φ2 + φ4

g4
(4.25)

It is possibile to split the overall system into two different subsystems: the first
depends on the input β: {

φ̇1
φ̇2

}
=
{
φ2
∆1

}
+
{

0
g4

}
β (4.26)
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while the second subsystem is not effected explicitly by the input:

φ̇3
φ̇4
φ̇5
φ̇6

 =



1
g4
φ4 + g3

g4
φ2

∆2
φ6
∆3


(4.27)

and represents the internal dynamics or zero dynamics. It must be stable in order
to guarantee the stability of the overall system. In fact it is dangerous for internal
states of the system to grow unbounded, as there is not any external input that acts
on the subsystem.

The feedback linearization is exploited with a control law of the form:

β = Ψ(x) + Γ(x) · v (4.28)

where
Ψ(x) = −

dφ2
dx
f(x)

dφ2
dx
g(x)

= −Lfφ2

Lgφ2
Γ(x) = 1

dφ2
dx

= 1
Lgφ2

(4.29)

Applying the control law to the system:

β = −∆beta + v

g4
(4.30)

where ∆beta is given by:

Lfφ2 = dφ2

dx
f(x) =

[
0 0 0 1 0 0

]
f(x) = ∆beta (4.31)

with
∆beta = q3 + fnl2(x1) + q4x2 + p3x3 + p4x4 (4.32)

This control law linearizes the first subsystem Eq. (4.26), that becames:{
φ̇1
φ̇2

}
=
[
0 1
0 0

]
+
{

0
1

}
v (4.33)

where v is an auxiliary input that can be designed using any linear control technique
to guarantee the stability of the subsystem. In this case, a pole placement control
strategy is adopted:

v = −f̄1φ1 − f̄2φ2 (4.34)

where f̄1 determines the closed loop natural frequency, whereas f̄2 affects the closed
loop damping.
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4.2.1 Inner Dynamics
Zero dynamics must be stable to apply feedback linearization, so its stability has to
be verified. The subsistem describing the inner dynamics of the system is defined
in Eq. (4.27). The zero dynamics of the system are obtained by setting φ1 = 0
and φ2 = 0, so it is necessary to nullify the terms corrisponding to the linearized
subsystem: 

φ̇3
φ̇4
φ̇5
φ̇6

 =



1
g4
φ4

A43φ3 + A44φ4 + r3φ5 + r4φ6
φ6

1
g4
φ4 − bUφ5− b1φ6


(4.35)

where

A43 = g4q1 − g3q3

A44 = p1 − p3
g3

g4

Writing the system that described the inner dynamics in matrix form, we obtain:


φ̇3
φ̇4
φ̇5
φ̇6

 =


0 1

g4
0 0

A43 A44 r3 r4
0 0 0 1
0 1

g4
−bU −b1




φ3
φ4
φ5
φ6

 (4.36)

The zero dynamics are linear, but simulating them at the same velocities chosen for
the test validation in the wing tunnel (described in section 4.4). A stable response is
obtained. In fact, the real parts of all eigenvalues of 4.36 are negative, so the inner
dynamics of the system are stable. The stability of the inner dynamic guarantees
only its local stability, but it is a necessary condition of the aeroelastic model.
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4.2.2 Pole Placement via Feedback Linearization
In this section the pole placement control strategy is presented. This control strategy
used to add damping to the poles associted with pitch mode, then adding damping
the pole reconstructed for creating v and v is integrated in the control law Eq.
(4.30). The feedback linearization decoupled the pitch DOF from the overall system
because it is the output y choose at the begining of the creation of the controller.
The controller is implemented with a desired value of the pitch damping ration. In
this case, the damping is increasing by a defined percentage. So when the pole si
modified, in reality only the real part is changed with desired value, meanwhile the
immaginary part unchanged respectto the open loop linear natural frequencies[8].

From Eq. (4.34) and Eq. (4.33) it is possible writing:{
φ̇1
φ̇2

}
=
[

0 1
−f1 −f2

]{
φ1
φ2

}
(4.37)

where f1 = ω2
CL and f2 = 2ζCLωCL. This system describes only the pitch motion, it

is decoupled to the overall aeroelastic system. By modified the f2 gain, the desire
ζCL can be placed, as already write it is modified only pitch damping ζCL and not
the its natural frequency ωCL. In the partial feedback linearization the controller
law executes two task: 1) cancellation of the feedback dynamics, 2) implementation
of the pole placement, the linear control requirement.

It is important to note that Eq. (4.37) linearized only of the pitch DOF and not
of the all state of the system. The stability of the other states that define the inner
dynamics of the system are already verified [2].
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4.3 Simulink Design
In this section the control strategy that is used in the aeroelastic system control-loop
is presented. This control strategy is the same that it is applied in the constructions
of the Simulink model of the control design. The Simulink model will be built and
embedded in the data-acquisition/control system, in our case it is dSPACE.

The control law that will be applied in the system is the feedback linearization,
whose theoretical part is explained in the previous section and where it is possible
notice that controller will need the access to the states of the system in real time. If
the structural states pitch and plunge can be calculated directly by the measurement
and their velocities can be numerically derived, but the two aerodynamic states can
not be measured directly, so it becomes necessary find another way. In this case the
aerodynamic states are reconstructed in real-time by the last two-row of the state
space model Eq. (1.25) [8]

ẋ5 = x6

ẋ6 = Ux2 + x3 + b(0.5− a)x4 − b0x5 − b1x6

So the mathematical model has to embed in the experimental control loop. The
compute flap deflection angle is sent to the numerical aeroelastic model that was
embedded in the experimental one, which calculate in real-time the full state vector,
the structural states, i.e. the first four element, are replaced by the measure value
to set up an hybrid state vector [8]:

x = [x1 x2 x3 x4︸ ︷︷ ︸
measured

x5 x6︸ ︷︷ ︸
compluted
real−time

]T

This hybrid vector is then used to calculate the control input. Finally, the hybrid
vector is sent back to the numerical aeroelastic model, which allows computation of
the state vector at the next time step. Figure 4.1 shows a schematic of the control
strategy that we applied in the Simulink design for creating the control law. In
our case, the time step between the measurements is 0.001 s, so the control loop is
evaluated once every time step. The time step can be considered small enough to
guarantee small variation of the state variable that is calculated by the embedded
numerical model. The time step is decided by dSPACE [8].

Below it the different steps necessary for obtaining the dSPACE output are
outlined [8]:

1. The measurements of the three laser displacement sensors, whose position was
explain in section 2.1, are read and filtered to remove noise into dSPACE.

2. From the filtered displacement plunge (x1) and pitch (x2) are calculated, and
their velocity are numerically derived: plunge velocity (x3) and pitch velocity
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(x4). Through pitch and plunge displacements and lasers the flap rotation
angle β is calculated.

3. The numerical aeroelastic model computes the full state vector x, thanks the
structural states (x1, x2, x3, x4) and the flap rotation angle obtained in real-
time.

4. The two aerodynamic states (x5, x6) are selected from the full state vector x.

5. The new hybrid vector is set up: by adding up the two aerodynamic state to
the structural states.

6. The input to the experimental system is calculated.

7. The output from dSPACE is sent to the piezoelectric actuator of the flap to
obtain the required rotation.

dSPACE
input

computed
structural

states
deflection

select

x5-x6

numerical
aeroelastic 

model
compute

input

dSPACE

output

Figure 4.1: Schematic of control.
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4.4 Closed-Loop Behaviour
In this section the closed loop behaviour of the system is presented. The feedback
linearization method is applied to the system for suppressing the LCO that occurs
when the airspeed goes over the critical speed of 16 m/s and the system is stabilized.
The control design was presented in the last chapter, here the controller is applied
on the test rig and validated.

Experimentally, the model was taken at the predetermined velocity and the LCO
was excited by introducing a perturbation to the pitch DOF. Once the LCO was fully
established, the controller was switched on and the data recordered [1]. For each
case we considered, five different tests were done to enlarge a consistent outcome.

Four different cases were considered for the experimental validation. The test
matrix is as follow:

1. Model undergoing LCO at 17 m/s, controller gain computed for 17 m/s with
poles assigned with imaginary part unchanged respect to the open loop linear
natural frequencies, real part increased of 10, 20 and 30%;

2. Model undergoing LCO at 15 m/s, controller gain computed for 17 m/s with
poles assigned with imaginary part unchanged respect to the open loop linear
natural frequencies, real part increased of 30%.

3. Model undergoing LCO at 15 m/s, controller gain computed for 15 m/s with
poles assigned with imaginary part unchanged respect to the open loop linear
natural frequencies, real part increased of 30%.

4. model undergoing LCO at 19 m/s, controller gain computed for 17 m/s with
poles assigned with imaginary part unchanged respect to the open loop linear
natural frequencies, real part increased of 30%.

The controller was built for the first test case with a damping increase of 30%.
We would expect the controller to work at maximum efficiency in this case. Of
course the controller should work in case of lower velocity, but we will verified if it
works also for higher velocity. The controller is activated at the same time along an
established LCO as in the experimental case, in this way it is possible a consistency
in comparison, but in the numerical case less time is required for LCO decay.

Considering the first case, it is possible to compare the controller behaviour at
different damping. Figures 4.2 and 4.3 show the controller stabilize the LCOs of
both DOFs, plunge and pitch, in the first figure damping is increased of 10% instead
in the second damping is increased of 20%, as the figures show the LCOs suppressed,
but the decay time is the same for both damping considered. Meanwhile, in theory
the time decay of the case with 10% additional damping should be longer than
the case with 20% additional damping. For the first two damping considered there
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Figure 4.2: Test case 1: closed-loop response for 10% damping at 17 m/s.

time [s]
0 1 2 3 4 5 6 7 8 9

pl
un

ge
 [m

m
]

-10

0

10

controller ON

time [s]
0 1 2 3 4 5 6 7 8 9

pi
tc

h 
[d

eg
]

-1

0

1

Figure 4.3: Test case 1: closed-loop response for 20% damping at 17 m/s.

are no differences in the closed-loop aeroelastic system response. Considering the
highest damping (increased of 30%) in Figure 4.4, it is possible to note that the
decay time is lower than the other cases, as expected. In all the cases the pitch
decay time is slightly lower respect the plunge decay time, one reason for this could
be that the nonlinearity is introduced in the plunge DOF.

Figure 4.4 shows the comparison between the numerical simulation and the ex-
perimental data for the test case with 30% additional damping. Both the numerical
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Figure 4.4: Test case 1: closed-loop response for 30% damping at 17 m/s.
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Figure 4.5: Test case 1: flap motion for closed-loop response for 30% damping at 17
m/s.

and the experimental controllers are capable of suppressing the established LCO.
The decay time for the numerical simulation is 2s for both DOFs meanwhile for the
experimental one is 5s [1]. A lot of reasons may be the causes for this discrepancy,
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such as the loss of accuracy during the calculation of pitch and plunge deflections,
and introduction of noise during numerical derivatives of pitch and plunge to obtain
their velocity. Another reason could be the phase delays resulting from the filtering
of signals that is required for numerical differentiation. Another major source of
discrepancy could be the dynamics not being cancelled out completely, so the pitch
motion is not uncoupled from the remaining dynamics, this is reflected in the nature
of the measured pitch motion.

Figure 4.5 shows the comparision between the numerical and the experimental
flap deflection. It can be seen that experimentally the flap experiences an initial
region in which is saturated, due to the fact that the the control surface was com-
manded in open loop with a saturation of ±3 deg, but it is still effective in reducing
the LCO amplitude. Comparison between the fitted exponentials decays was done
as well and shows a reasonable agreement in the region after the flap saturation [1].
Finally, it is possible to notice that the signal is not as smooth for negative ampli-
tude as in the positive one. The reasons could be the asymmetry in the motion of
the flap and freeplay.

Figures 4.6 and 4.8 show the cases 2 and 3, where the LCOs were established at
15 m/s. For these two cases no comparison with predictions is possible. Because, as
already mentioned above in the mathematical model flutter occurs at 16 m/s. As it
may be expected, the controller succeeds in supressing the LCO and the decay time
is 3s, a time dacay slighly lower than the case 3, where the ad-hoc controller was
used instead.
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Figure 4.6: Test case 2: closed-loop response for 30% damping and controller gain
computed for 17 m/s at 15 m/s.
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Figure 4.7: Test case 3: closed-loop response for 30% damping and controller gain
computed for 15 m/s at 15 m/s.
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Figure 4.8: Test case 4: closed-loop response for 30% damping and controller gain
computed for 17 m/s at 19 m/s.

The off-design controller is still capable of stabilising the system even at the
higher airspeed velocity of 19 m/s. The flap presented a longer initial saturation
and the decay time is increased to 8 s. So the system has a greater instability and is
more complex to control. This behaviour is expected at inscreasing velocities as in
this case. Moreover, initially the system seems to exhibit a beating behaviour that
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may be due to the larger movement to the poles approaching the flutter velocity
coupled with the attempt to place them to an off-design condition [1].
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Chapter 5

Conclusions and Further Works

In this work a nonlinear rigid wing section model has been investigated. At the
begining, a mathematical model has been determined. It has been designed as a
two DOFs plunge-pitch model since this is a choice widely used in the literature to
describe the motion of rigid aerofoils. The structural-elastic equations have been
determined via the Euler-Lagrange approach considering the kinetic and potential
energies of the system in its motion. For the aerodynamic equations, Theodorsen
theory has been used to describe an unsteady aerodynamic, but a filter was applied
to write the system in space state.The resulting two DOFs plunge-pitch model is
accurate to describe a rigid wing section and the unsteady aerodynamic has been
verified by previous studies and the polynomial nonlinearity has also been confirmed
by the literature

In Chapter 2, the experimental rig used in the experimental tests in the wind
tunnel hwas described. Moreover, a method to obtain a numerical model describing
the real system has been presented. Such a method has been applied on experimen-
tal data to adjust the model parameters so to fit the experimental system behaviour.
Here the aim was to adjust the parameters of analytical FRFs to fit the experimen-
tal one. For this step, only the structural subsystem has been considered, i.e all
experimental and analytical FRFs have been calculated without aerodynamic part,
so at zero airspeed. This fitting has been formulated as a nonlinear least squares
problem; the initial parameters dataset has been calculated empirically and the an
appropriate algorithm has been used to adjust the parameters dataset to minimize
the least square error. Then the estimetion of the nonlinear parameters has been
carried out from a static force test. The fitting of the structural model has reached
a good result with such dataset. So the tuning of the numerical model with the
experimental FRFs is available approach.

In Chapter 3, the open-loop behaviour of the aeroelastic system has been studied.
An analysis of the system eigenvalues has been made for increasing free-stream
velocity in order to determine the flutter velocity. Then a fifth-order hardening
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nonlinearity was introduced in the equation to describe the structural nonlinearity
present in the real system. At the end, the overall system was obtained and it
presented a bifurcation leading to an LCO. When the critical velocity is reached,
the self-sustained oscillations of plunge and pitch DOFs occur. Two main differences
has been observed between the model and the real system: the first is the different
frequency between numerical and experimental ones. But the most relevant ones are
the different amplitudes of the LCOs. However, the discepancies are around 20-30
%, so the model turned out to be a fair description of the qualitative behaviour
of the system. At the end, the subcritical bifurcation point has been studied by
applying the describing function method for determining the unstable behaviour
of the system. However, the unstable behaviour has not been determinated, one
reason could be that the unstable solution is not a periodic one and so it could not
be determinated via describing function method. In fact, with this method the two
stable solution, at LCO established and at zero amplitude, has been determinated
with a good result.

In Chapter 4, the suppression of LCO by using the feedback linearization control
strategy has been presented and the numerical simulations of the resulting controlled
model has been reported. An output feedback linearization controller has been
considered. This strategy is based on the design of an input to cancel the nonlinear
part of the system so to stablise it with a linear controller. In this case, it was
only possible to linearize the system partially. So a coordinates transformation has
been used to decompose the system into two subsystems. The first one can be
made linear by using a designed input that cancels the nonlinearity. The second one
does not depend on the input, and rapresents the inner dynamic, that tuned out
asymptotically stable. As result, the controller stablises the system suppressing the
LCOs with good preformances. In fact, the active control is capable of suppressing
LCO in at the design airspeed and 15% below and above it.

Future research could usefully explore new improvements of the design control.
Moreover the highlighted discepances in open-loop behaviour, especially the poten-
tial presence of a subcritical bifurcation leading to LCO should be investigated.
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