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Introduction

Context
This project has been carried out in collaboration with the French Institute for
Research in Computer Science and Automation (INRIA) in the framework of
the European Horizon 2020 project AeroGust.

One of the most important source of structural load for both aircrafts and wind
turbines is given by wind gusts, knowing with accuracy the aeroelastic response
is therefore essential in the design phases of a new project. Rapid and precise
tools need to be developed in order to aid the engineers in choosing the best
configuration, the one that minimizes the gusts induced loads. The AeroGust
project aims to improve the knowledge in the field of fluid-structure interaction
in order to increase the competitivity of the aeronautical and wind energy in-
dustry, reducing the level of conservatism and the number of wind tunnel tests
necessary to understand the aeroelastic response.
In this context, computational fluid dynamics (CFD) plays a major role, espe-
cially thanks to the ever increasing performance of modern CPUs, which allow
to perform quick and fairly accurate simulations. In order to further reduce the
costs related to CFD, innovative solutions can be employed, such as the im-
mersed boundary method, with the aim of gradually reduce the time spent on
mesh generation, and, moreover, fully exploit massively parallel architectures of
supercomputers, using cartesian grids and avoiding remeshing at each timestep.
The main goal of this thesis is thus the investigation of a mathematical model
for wind turbine simulation, based on the immersed boundary method, that
could allow a considerable reduction in CFD costs while maintaining the accu-
racy of a Navier-Stokes solver, without recurring to low fidelity approaches for
fluid-structure interaction. In this sense, the present work has to be seen as a
small part of an ambitious project, that aims to change the methodologies in
which aeroelasticity is investigated in both the aviation and wind energy worlds.
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Structure of the thesis
The first chapter deals with the mathematical model proposed for the study of
fluid-structure interaction, the immersed boundary method is presented with a
particular attention to the penalized Navier-Stokes equations. Then the tur-
bulence model is introduced, with an explanation of the Wall Modelled Large
Eddy Simulation methodology. As a conclusion the Finite Element structural
model is presented and the coupling between the two solver is illustrated.
The second chapter explains the validation of the fluid model, that has been
implemented in a cartesian code and was already validated for low Reynolds
flows and needed to be tested at high Reynolds conditions, using the popular
flow past a cylinder benchmark, for which numerous experimental and numer-
ical results can be found in literature. The validation of the structural model
is shown too. In the third chapter the proposed model is extended to Octree
grids, which are hierarchical cartesian grids, that allow local mesh refinements,
increasing the efficiency and accuracy of simulations. The introduction of local
refinements leads to the presence of level-jumps in the domain, requiring special
treatments of these regions. where numerical instabilities can develop, causing
simulations to diverge. The proposed Octree solver is tested on low and high
Reynolds flows in order to understand the characteristics of the employed dis-
cretization.
In the fourth and last chapter a model for the simulation of a wind turbine blade
in a rotating frame of reference is presented and discussed. The geometry of the
blade is discretized starting from a CAD model, then the mathematical model
is improved in order to take into account inertial reactions in both the struc-
ture solver and the Navier-Stokes model. As a conclusion, some preliminary
simulations are run and their results are presented.
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Chapter 1

The mathematical model

Over the last decades, many efforts have been made towards accurate numer-
ical simulation of flows around moving bodies and fluid structure interaction
in general. All the models developed can be divided in two distinct families,
the first category is made by Arbitrary Lagrangian Eulerian methods, which are
based on unstructured body fitted meshes that are deformed after each timestep.
These methods are very accurate, but very hard to implement highly expensive
from a computational viewpoint due to constant dynamic mesh adaptation and
partitioning in case of massively parallelized simulations. The second family is
represented by Immersed Boundary methods, where the computational grid is
not body fitted, therefore the interface between the body and the fluid is buried
within the cells of the mesh, allowing the use of simpler cartesian or octree grids,
whose parallelization is straightforward and requires a low amount of memory.
Furthermore, since the body is not a boundary of the domain anymore, there is
no need of a constant dynamic adaptation.
Among the last category of models is possible to identify two approaches to
deal with the presence of an immersed boundary, the first is the discrete forc-
ing, which is applied to discretized Navier-Stokes equation in a manner that
strongly depends on the spatial discretization, the second way is the continuous
forcing, which is applied to the equations before discretization, and is almost
independent of the spatial discretization. The main advantage of the discrete
forcing, such as in the ghost-cell method proposed by Mittal et al. [1], is the
possibility to achieve a sharp representation of the fluid-solid interface, exactly
as if the mesh were body fitted. On the other hand, its drawback is the problem
of the so-called "‘fresh cells"’, a situation that is encountered dealing with mov-
ing interfaces: some solid cells might emerge into the fluid between one timestep
and another as a result of the boundary motion. Continuous forcing methods
are not sharp, indeed the immersed boundary is diffused, leading to a loss of
accuracy in the proximity of the body, but they allow to bypass the special
treatment of fresh cells, as remarked by Bergmann et al. [2]. For the present
work, a continuous forcing model was employed, the penalization method [3],
which will be briefly described in the following section.
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1.1 Governing equation of fluid motion

Figure 1.1: Domain of the problem

Since the present work deals with low Mach number flows, incompressible vis-
cous Navier-Stokes equations are considered. Let Ωf be the fluid domain and
Ωs be the solid domain, Ω = ΩfUΩs and Γ = ∂Ωs be the boundary of the solid
domain. The governing equations are:

∇ · V = 0 in Ωf
∂V
∂t

+
!
V · ∇

"
V = −∇p

ρ
+ ν∇2V in Ωf

V(x, 0) = V0(x) in Ωf
V = Vb(x, t) in Ωs
V = VΓ(t) on Γ

(1.1)

where V is the velocity vector, ρ is the fluid density and ν is the kinematic
viscosity. The body velocity can be either imposed in case of an infinitely stiff
solid, otherwise it is the result of the forces exerted by the fluid and therefore a
proper structural model is necessary in order to evaluate body kinematics.
The entire system can be described as a single flow using the penalization
method, where the solid body is considered as a porous fluid with very low
permeability K:

∇ · V = 0
∂V
∂t

+
!
V · ∇

"
V = −∇p

ρ
+ ν∇2V + χB

K

!
Vb − V

" (1.2)

where χB is the characteristic function:

χB =
I

0 in Ωf
1 in Ωs

(1.3)

It has been demonstrated by Angot et al. [3] that the system of equations 1.2
converges to the system 1.1 as K → 0. The surface of the body is described
using several points called Lagrangian markers, through which is possible to re-
construct a signed distance function ϕ, called level set. The relationship between
the level set and the characteristic function is:

χB = 1 −H
!
ϕ

"
(1.4)
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where H is the Heaviside function.
Using the level set function, it is possible to define the outward normal vector
of the fluid-solid interface:

n =
3

∇ϕ
ë∇ϕë

4
ϕ=0

(1.5)

The penalized Navier-Stokes equations are solved numerically using a classi-
cal fractional step projection method. Space and time discretization will be
discussed in detail in chapter 2 and chapter 3.

1.2 Turbulence model
As stated in [4], characteristic Reynolds numbers of a wind turbine flow in oper-
ative conditions are of the order of millions, which means that the fluid motion is
characterized by the presence of turbulent boundary layers and multiscale vorti-
cous structures in the wake, thus performing a direct numerical simulation is not
possible. Given the highly unsteady nature of the flow that will be simulated,
the most promising approach is the so-called Large Eddy Simulation (LES),
that allows to resolve only the largest structures of the turbulence, which are
the ones that carry the largest part of the energy and give the biggest contribu-
tion to the transport phenomena, whereas small structures, which are associated
with turbulent energy dissipation, are modelled using a sub-grid model. The
mathematical formulation of LES is based on a low pass filter operator G, so
that filtered variables are defined as:

ψ =
ˆ
x1

ˆ
x2

ˆ
x3

G
!
r,x

"
ψ

!
x

"
dx1dx2dx3 (1.6)

applying 1.6 to the system 1.1, filtered equations are obtained. Considering a
spatially uniform filter, filtering operation commutes with differentiation. The
continuity equation is linear, therefore filtering the equation is equivalent to
apply the divergence operator to the filtered variables:

∂Ui
∂xi

= ∂Ui
∂xi

= 0 (1.7)

where Einstein notation is employed. The filtered momentum equation is

∂Uj
∂t

+ ∂UiUj
∂xi

= −1
ρ

∂p

∂xj
+ ν

∂2Uj
∂xi∂xi

(1.8)

Due to the nonlinearity of the convective term, the form of the equation is
different from the non-filtered one, the filtered product UiUj is not equal to
the product of filtered velocities. The residual-stress tensor is defined as the
difference of the two:

τij = U iU j − UiUj (1.9)

so that equation 1.8 can be rewritten as:

∂Uj
∂t

+ ∂U iU j
∂xi

= −1
ρ

∂p

∂xj
+ ν

∂2Uj
∂xi∂xi

+ ∂τij
∂xj

(1.10)
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From a phisycal point of view the residual-stress tensor can be interpreted as
the exchange of momentum at the filtered scale exerted by the subgrid turbulent
structures. Let kT be the residual kinetic energy:

kT = 1
2τii (1.11)

then the residual-stress tensor can be decomposed into an isotropic component
and an anisotropic one 1.12:

τsij = τij − 2
3kT δij (1.12)

where δij is the Kronecker delta. The isotropic component is included in the
modified filtered pressure term:

p∗ = p+ 2
3ρkT (1.13)

The filtered momentum equation can now be rewritten into its final form:

∂Uj
∂t

+ ∂U iU j
∂xi

= −1
ρ

∂p∗

∂xj
+ ν

∂2Uj
∂xi∂xi

+
∂τsij
∂xj

(1.14)

In order to solve the equation, the problem needs to be closed using what is
called a subgrid model, which express the anisotropic residual-stress tensor as
a function of the filtered variables. Most of the subgrid models rely on the
Boussinesq hypotesis, which states that τSij is parallel to the filtered rate of
strain tensor:

τsij = νeSij = νe

3
∂Ui
∂xj

+ ∂Uj
∂xi

4
(1.15)

where νe is the eddy viscosity. The first and the simplest subgrid model is the
Smagorinsky one [5]:

νe =
!
CS∆

"2S (1.16)

where CS is the Smagorinsky constant, whose classical value is 0.17, ∆ is the
length of the filter, with:

S =
ñ

2SijSij (1.17)

The model is very simple to implement, but its main drawback is the poor
performance in transitional flows, indeed the appropriate value of CS depends
on the flow regime. Many efforts have been made to extend this model, one of
the most notable is the dynamic model proposed by Germano et al. [6], which
is capable of predict with accuracy region of laminar, transitional and fully
developed turbulent flow, but it is not easy to apply to complex tridimensional
geometries. For the present work, the Vreman model [7] has been employed:

νe = c

ó
Bβ

αijαij
(1.18)
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with:

αij = ∂Uj
∂xi

(1.19)

βij∆2
mαmiαmj (1.20)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 (1.21)

c ≈ 2.5CS (1.22)

thi model is simpler to implement than the dynamic one, and it is equally capa-
ble of predicting the various characteristic of different flow regimes, furthermore
νe is always positive, which means that local backscatter is not predicted, but
there are not stability issues caused by negative turbulent dissipation.
The filtered system of equations is thus closed by applying the Boussinesq hy-
potesis to the anisotropic residual stress tensor, whose contribution to the mo-
mentum equation is:

∂τsij
∂xj

= ∂

∂xj

5
νe

3
∂Ui
∂xj

+ ∂Uj
∂xi

46
(1.23)

using Vreman model, eddy viscosity is a function of filtered velocities, hence,

∂τsij
∂xj

= ∂νe
∂xj

∂Ui
∂xj

+ ∂νe
∂xj

∂Uj
∂xi

+ ∂2Uj
∂xi∂xi

(1.24)

the turbulent stress term is decomposed into an additional viscous term and
two higly non-linear terms related to the gradient of the eddy viscosity, whose
contribution is, as it will be shown in chapter 2, usually very small and they are
therefore negligible.

1.3 Near Wall Modelling
Despite the growth in computer performances, wall resolved Large Eddy Simula-
tion still remains unfeasible for flows of industrial interest. It has been estimated
by Choi et al. [8] that the number of grid points required by a wall resolved
LES is of the order of Re

13
7
L , whereas it is approximately equal to ReL for wall

modelled LES.
The simplest approach to wall modelling is the use of the so-called wall func-
tions, by which is possible to impose a correction on the predicted velocity in
the first cells close to the fluid-body interface. The idea behind this technique
is that the turbulent boundary layer velocity profile, on a flat plate and with
no external pressure gradient, is universal if properly normalized. Let uτ be the
friction velocity, defined as:

uτ =
ò
τw
ρ

(1.25)
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where τw is the wall shear stress:

τw = µ

3
∂U

∂y

4
w

(1.26)

where U is the tangential velocity and y is the normal direction. Using the
friction velocity it is possible to define two adimensional variables:

y+ = yuτ
ν
, U+ = U

uτ
(1.27)

by which an universal velocity profile can be described. The turbulent boundary
layer can be divided into four subregion:

• viscous sublayer,

• buffer layer,

• logarithmic layer,

• wake region,

in the outer layer, which is composed by part of the logarithmic layer and the
wake region, the flow is strongly dependent on the geometry and on the Reynolds
number, whereas in the inner layer, formed by the other regions, it is possible
to define a function f so that U+ = f

!
y+"

, as it is represented in figure 1.2.

Figure 1.2: Turbulent boundary layer profiles for different Reynolds numbers

Traditionally, the universal profile has been described using two distinct ana-
lytical functions:

u+ = f
!
y+"

=

y+, if y+ < 5
1
k

log y+ +B, if y+ > 30, y

δ
< 0.3

(1.28)

where k = 0.41 is the Von Karman constant, B = 5.2 and δ is the boundary
layer thickness, which is a function of the Reynolds number. The buffer layer
is a transition region between the two laws. It is possible to find in literature
many different efforts to describe the profile with a unified law, such as the one
by Spalding [9].
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For the present work the Reichardt’s wall law [10] is considered:

u+ = fw
!
y+"

= 1
k

log
!
1 + ky+"

+ 7.8
3

1 − e− y+
11 − y+

11 e
−0.33y+

4
(1.29)

As it can be noticed in figure 1.3, the advantage of using Reichardt’s wall law is
the possibility of capturing with a reasonable level of accuracy the three different
regions of the inner layer using only one analytical expression.

Figure 1.3: Reichardt’s wall law

The numerical implementation follows the guideline of De Tullio [11]: in a first
loop, all the interface cells in the fluid are identified, in these cells the velocity
will be imposed using 1.29, then, for each interface cell, the tangential velocity
U2 is evaluated in a point located on the same local normal at a distance ∆, as
shown in figure 1.4. The position of point 2 is:

x2 = x1 +
#
∆ − ϕ

!
x1

"$ ∇ϕ
!
x1

"..∇ϕ
!
x1

".. (1.30)

Using U2, it is possible to obtain a first approximation of the wall shear stress:

τw ≈ µ
U2

∆ (1.31)

therefore it is possible to evaluate the friction velocity:

uτ =
ò
τw
ρ

≈
ò
νU2

∆ (1.32)

by which the distance in wall units of the second point can be calculated and
used to update uτ :

y+
2 = ∆uτ

ν
⇒ u+

2 = fw
!
y+

2
"

⇒ uτ = U2

u+
2

(1.33)
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Figure 1.4: Implementation of the wall law

the iterative process stops when convergence is reached. Once the final value of
the friction velocity has been calculated, the distance of the interface point in
wall units is:

y+
1 =

ϕ
!
y1

"
ν

(1.34)

where ϕ is the level set function. The adimensional velocity is evaluated using
the wall law:

u+
1 = fw

!
y+

1
"

(1.35)

thus, the tangential velocity to impose at the interface cell is:

U1 = uτu
+
1 (1.36)

The choice of the distance ∆ results critical for the well behaviour of the wall
correction, if the distance is too large, the point where U2 is evaluated may be
in the outer layer and the law of the wall does not allow to predict the flow with
accuracy, especially in the wake region. On the other hand, if ∆ is too small, U2
is calculated too close to the interface. All the results that will be presented are
obtained imposing ∆ equal to twice the biggest value of the level set function
in all the interface points.
Since the point where U2 is evaluated is not necessarily the center of a cell,
velocity values need to be interpolated in order to obtain U2. The interpolation
is made by looking for neighbour cells through the closest node of the cell which
owns the point 2 and then using Radial Basis Funtions.

1.4 Structural model
Wind turbine blades are very slender structures with an internal configuration
very similar to that of airplane wings, their structural response can therefore be
described with a reasonable level of accuracy using beam models. The spatial
discretization of the elasticity problem relies on the finite element method. The
considered element possesses two nodes, each with six degrees of freedom: three
displacements and three rotations.
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Let X-Y-Z be the global reference system:

• X axis corresponds to the beam axis,

• Y axis is parallel to the lagwise movement direction (flapwise bending
axis),

• Z axis is parallel to the flapwise movement directions (lagwise bending
axis).

Figure 1.5: Blade cross section and global reference system

The kinematics of the beam are described using the Eulero-Bernoulli theory for
bending combined with the Saint-Venant hypotesis for the torsional motion. In
the global system, the displacement field is:

u(x, y, z) = ut(x) + (z − zt)θy(x) − (y − yt)θz(x)
v(x, y, z) = vc(x) − (z − zc)θx(x)
w(x, y, z) = wc(x) + (y − yc)θx(x)

(1.37)

where yt and zt are the coordinates of the Tension center (T), yc and zc the
coordinates of the Shear center (C), ut is the axial displacement of T, vc and
wc are the bending displacement of C. Let X’-Y’-Z’ be the reference system
centered in T and parallel to the global one, the deformation field is:

εxx = ut,x + (zÍ − zÍ
t)θy,x − (yÍ − yÍ

t)θz,x
εxy = −(zÍ − zÍ

c)θx,x
εxz = (yÍ − yÍ

c)θx,x
(1.38)

Since modern wind turbine blades are made of lightweight carbon fiber rein-
forced polymers, the stress-strain relation is that of an anisotropic materials:σxx

σxy
σxz

 =

E11 E12 E13
E12 E22 E23
E13 E23 E33

 εxx
εxy
εxz

 (1.39)
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The internal reactions are defined as:

N =
ˆ
A

σxxdA

Mx =
ˆ
A

#
(yÍ − yÍ

c)σxz − (zÍ − zÍ
c)σxy

$
dA

My =
ˆ
A

zÍσxxdA

Mz = −
ˆ
A

yÍσxxdA

(1.40)

Substituting 1.39 and 1.38 in 1.40 and integrating on the cross sectional area,
the following system of equations is obtained:

N
Mx

My

Mz

 =


EA AT 0 0
AT GJ FT −LT
0 FT EIyÍyÍ −EIyÍzÍ

0 −LT −EIyÍzÍ EIzÍzÍ



ut,x
θx,x
θy,x
θz,x

 (1.41)

where:

• EA is the axial stiffness;

• GJ is the torsional stiffness;

• EIyÍyÍ , EIzÍzÍ , EIyÍzÍ are the bending stiffnesses, respectively around the
Y’ axis, Z’ axis and the flap-lag coupling term;

• AT , FT and LT are respectively, the axial-torsion coupling, the flap-
torsion coupling and the lag torsion coupling, they are strongly dependent
on the orientation of carbon fibers.

The balance equation for the elasticity problem can be written using the virtual
work principle:

Wint = Wext (1.42)

where Wext is the work of the external forces and Wint that of the internal
forces:

Wint =
ˆ L

0

!
ut,xN + θx,xMx + θy,xMy + θz,xMz

"
dx (1.43)

the spatial variation of the displacements is described using the so-called shape
functions: )

u
*

=
#
N

$ )
s
*

(1.44)

where
)
u

*
is the displacements vector:)

u
*

=
)
ut vc wc θx θy θz

*T (1.45)
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#
N

$
is the shape function matrix:

[N ] =


L1 0 0 0 0 0 L2 0 0 0 0 0
0 H1 0 0 0 H3 0 H2 0 0 0 H4
0 0 H1 0 −H3 0 0 0 H2 0 −H4 0
0 0 0 L1 0 0 0 0 0 L2 0 0
0 0 −H1,x 0 H3,x 0 0 0 −H2,x 0 H4,x 0
0 H1,x 0 0 0 H3,x 0 H2,x 0 0 0 H4,x


with Li and Hi respectively the Lagrange polynomials of the first order and the
Hermite polynomials of the third order.

)
s
*
is the vector of nodal displacements:)

s
*

=
))
s1

* )
s2

**
)
si

*
=

)
ut,i vc,i wc,i θx,i θy,i θz,i

*
Using the given definitions, equation 1.44 can be expressed as a function of the
nodal displacements:

Wint =
)
s
*T #

Kel

$ )
s
*

(1.46)

with
#
Kel

$
being the stiffness matrix of the element. Wext is made by the

contribution of inertial forces and external loads and it can be rewritten as a
function of nodal displacements:

Wext = Win +Wlds = −
)
s
*T #

Mel

$ )
s̈
*

+
)
s
*T )

Fel
*

(1.47)

where
#
Mel

$
is the mass matrix of the element and

)
Fel

*
is the vector of nodal

loads. The equation 1.42 can be simplified using expressions 1.46 and 1.47,
obtaining the final spatial discretization of the elasticity problem for a single
element of the structure:#

Mel

$ )
s̈
*

+
#
Kel

$ )
s
*

=
)
Fel

*
(1.48)

For an accurate description of the procedure to obtain the mass and stiffness
matrices and their elements, see [12]. The linear system 1.48 can be extended
to the whole structure by properly assembling the two matrices and the loads
vector, hence: #

M
$ )
d̈
*

+
#
K

$ )
d
*

=
)
F

*
(1.49)

where
)
d
*
is the vector of nodal displacements for the entire structure. Equation

1.49 is discretized in the time domain using the Newmark method [13]:


ḋ
!
t+ ∆t) = d̈(t) + ∆t

#
(1 − γ)d̈(t) + γd̈

!
t+ ∆t

"$
d
!
t+ ∆t) = d(t) + ∆tḋ(t) + ∆t2

2
#
(1 − 2β)d̈(t) + 2βd̈

!
t+ ∆t

"$ (1.50)

with 0 ≤ β ≤ 1
2 and 0 < γ ≤ 1. If γ = 0.5 the method is of the second order

regardless of β. If β > 0.25 the method is unconditionally stable, therefore no
limits of ∆t are imposed by stability issues. For the present work γ = β = 0.5
is chosen.
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Substituting equation 1.49 into 1.50, the fully discretized system of equation for
the elasticity problem is obtained:

 ∆t
2

#
K

$ #
M

$
#
M

$
+ ∆t2

2
#
K

$
0

 
)
dk+1

*
)
ḋk+1

*
 =


#
M

$ )
ḋk

*
− ∆t

2
#
K

$ )
dk

*
+ ∆t

)
Fk

*
#
M

$ ! )
dk

*
+ ∆t

)
ḋk

* "
+ ∆t2

2
)
Fk

*


where dk = d(tk) and dk+1 = d(tk+1).

1.5 Fluid-Structure Coupling
It is possible to distinguish two distinct methodologies to deal with numerical
simulation of the fluid structure interaction [14]: the monolithic approach and
the partitioned approach. The first consists in a total coupling of the fluid
with the elastic body, leading to a single system of equations, whose solution
describes the entire domain of the problem. The latter separates the elasticity
problem from the Navier-Stokes equation and solves two distinct systems of
equations, allowing to split the two domains and threat them with two different
codes. While the monolithic approach can achieve better accuracy and it is
very well suited for immersed boundary methods, the partitioned one is more
flexible and easier to implement, since requires little modifications to both the
structure and the fluid codes. Furthermore, splitting the domains allows to use
different meshes for the two, not only in term of number of computational cells,
but also in term of topology, such as coupling a 3D finite volume method with
a 1D finite element model.

Figure 1.6: Partitioned scheme

14



In order to exploit the simplicity of the beam structure model, a partitioned
scheme has been employed, which means that, as represented in figure 1.6, dur-
ing each time iteration there is an exchange of information between the Navier-
Stokes algorithm and the FEM code, which needs to know the aerodynamics
forces to apply to the blade to evaluate the displacements, that are communi-
cated back to the fluid solver to update the geometry and the body velocity.
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Chapter 2

Validation of the model

Before performing simulations on complex geometries such as a wind turbine
blade, the model has to be validated using well documented reference test cases,
which allow to compare the results in term of aerodynamic coefficients and flow
characteristics. Concerning wall modelled large eddy simulation (WMLES), one
of the most popular benchmarks is the flow past a circular cylinder, thanks to
the high number of experimental results in literature (see [15], [17] and [18])
and to the characteristic of the flow, highly unsteady with the development of
a turbulent wake due to the separation of the boundary layer.
A first validation run was performed at a Reynolds number of 3900 in order
to assess the performance of the mathematical model for a low Reynolds flow.
Average wake velocity profiles and aerodynamic coefficients are compared with
experimental data and results from other well documented CFD simulations.

Figure 2.1: Isolines of streamwise velocity at x=2, 100 levels, Re = 3900

In figure 2.2, mean wake velocity profiles for three different values of the stream-
wise coordinate are presented, dashed lines values are obtained neglecting the
contribution of the gradient of the eddy viscosity to the residual stress tensor,
whereas the continuous lines are obtained using the full LES model. The dots
represent the experimental data used as a reference. As anticipated in chapter
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Figure 2.2: Comparison of average wake velocity profiles

1 the gradient of the eddy viscosity has a small impact on the solution and
the profiles obtained with both of the LES models are well correlated with the
experimental values of Parnaudeau et al. [19]. The streamwise velocity isolines
are illustrated in figure 2.1, it is clearly visible that the separation is laminar
and the transition occurs in the wake, with the formation of small turbulent
structures, which means that the topology of the flow at low Reynolds numbers
is correctly predicted by the model.
In this chapter, the methodology of the validation will be presented, and the
results obtained for a high Reynolds number flow will be discussed.

2.1 Discretization of the Navier-Stokes equation
The validation of the model the implementation was made on a stable in-house
developed cartesian finite difference code, called NaSCAR3D, in order to use a
well estabilished numerical discretization of the penalized Navier-Stokes equa-
tion and concentrate the testing efforts only on the WMLES model. The pe-
nalized incompressible Navier-Stokes 1.2 are solved using the classical Chorin
algorithm [20], also known as predictor-corrector scheme, which consists in three
steps: prediction, projection and correction. In the prediction step a virtual ve-
locity field is evaluated by solving an unsteady advection-diffusion equation:

u∗
i − uni
∆t = −1

2
!
3Cn−Cn−1"

− 1
ρ

δpn

δxi
+ ν + νe

2
!
Dn+D∗"

+ χB
K

!
uiB−u∗

i

"
(2.1)

where:

C =
δ
!
Ujui

"
δxj

(2.2)

D = δ2ui
δxjδxj

(2.3)

are respectively the convective and diffusive terms. u is the cell-centered velocity,
U is the face-centered velocity. The operator δ/δxi is the central difference
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approximation of the first derivative. A second-order Adams-Bashfort scheme
has been used for the convective term and a second order Crank-Nicholson
integration has been chosen for the viscous term. Since the equation 2.1 does
not take into account the incompressibility constraint, the predicted velocity
fields are not divergence free. Let pÍ be the pressure correction, defined as
pn+1 − pn, the relationship between the virtual velocity and the velocity at the
(n+1)-th step is:

un+1
i = u∗

i − ∆t
ρ

∂pÍ

∂xi
(2.4)

The virtual velocity is projected into a divergence free space applying the di-
vergence to equation 2.4 and imposing the incompressibility condition to un+1:

∂u∗
i

∂xi
= ∆t

ρ

∂2pÍ

∂xi∂xi
(2.5)

which is a Poisson equation for the pressure correction. The discretization of
the equation is straightforward:

δ2pÍ

δxiδxi
= ρ

∆t
δu∗
i

δxi
(2.6)

Using cell-centered velocity to compute the divergence may lead to pressure
oscillation, hence the equation 2.6 is solved using a face-centered discretization.
The face-centered velocity is evaluated using the following scheme:

u∗∗
i = u∗

i + ∆t
3
δpn

δxi

4
cc

(2.7)

U∗∗
i = F

!
u∗∗
i

"
(2.8)

Ui = U∗∗
i − ∆t

3
δpn

δxi

4
fc

(2.9)

with F being an interpolation function. The equation 2.6 becomes:3
δ2pÍ

δxiδxi

4
fc

= ρ

∆t

3
δUi
δxi

4
fc

(2.10)

The equation 2.10 is solved using the Generalized Minimum Residual algorithm
[21] and homogeneous Neumann boundary conditions for pÍ. The last step
consists in updating the pressure and velocity fields:

un+1
i = u∗

i − ∆t
ρ

3
δpÍ

δxi

4
cc

Un+1
i = Ui − ∆t

ρ

3
δpÍ

δxi

4
fc

pn+1 = pn + pÍ

(2.11)

The Vreman subgrid model has been directly introduced in the prediction step,
whereas the wall function can be seen as a second correction step, applied di-
rectly to un+1, in order to avoid strong perturbations of the divergence of the
virtual velocity before the projection step.
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2.2 Validation run set-up
Thanks to the use of the MPI standard, the NaSCAR3D code is able to run
simulation on massively parallelized supercomputers, its scalability has been
proven up to thousands of cores. For the high Reynolds number simulation, two
different machines have been used:

• Occigen: each node is composed by two 12-core Intel Haswell CPUs with
a clock speed of 2.6GHz, with 64 or 128 GB of shared RAM

• Turing: IBM Blue Gene/Q, each node is made by 16 POWERPC A2
CPUs with a clock frequency of 1.6GHz, with 16 GB of shared RAM

The axis of the cylinder corresponds to the x-axis of the domain, the streamwise
direction is z, the diameter of the cylinder is equal to 1. The levelSet function
for the cylinder is evaluated in an analytical way:

ϕ =
ð
x2 + y2 −R (2.12)

The size of the computational domain is [0, 4]× [−8, 8]× [−8, 16]. The boundary
conditions are:

• inlet: Dirichlet condition for the velocity

• Outlet: homogeneous Neumann condition for the velocity

• x-boundaries: periodic conditions

• y-boundaries: homogeneous Neumann condition for the velocity

The velocity of the undisturbed flow is: U∞ = 25, the fluid density is ρ = 1 and
the dynamic viscosity is: µ = 1.7857 · 10−4, in order to obtain:

Re = ρU∞D

µ
= 1.4 · 105

The convective time is defined as:

t = L

U∞
= 0.04

and it represents the time needed to a fluid particle travelling at U∞ to cover
a distance equal to one diameter. The Smagorinsky constant CS has been set
to 0.4, which is a higher value than the standard one, which is around 0.17,
but, during the low Reynolds tests, it has been found that a lower value of CS
was not enough to dissipate the turbulent energy after the formation of the
first eddies, making simulations diverge. Since the boundary layer is laminar
at the considered Reynolds number, the Reichardt wall function is not suited,
therefore a linear correction is implemented: u+ = y+, which can be considered
a sort of laminar wall function. The initial velocity field is the fully developed
flow for Re = 3900, in order to save the time necessary to trigger the vortex
shedding phenomenon, which is very slow to develop.
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2.3 First run results
A first run has been performed on a 100 × 800 × 1200 computational grid, with
a complessive number of 96 millions of cells, using the 32 nodes of the Occigen
machine for a total number of 768 cores. In this configuration, a simulation of
60 convective times requires about 20 wall clock hours.

Figure 2.3: Contour surfaces of the norm of the vorticity, 10 levels

The contour lines of the norm of the vorticity are represented in figure 2.3, it
is possible to observe the strong vorticity in the boundary layer, moreover, the
separation is still laminar and the transition occurs in the wake.

Figure 2.4: Time evolution of the aerodynamic coefficients

In figure 2.4 is reported the time evolution of both the lift and the drag co-
efficients, the CL oscillates quite smoothly around the zero line, whereas the
drag coefficient presents irregular fluctuations with a mean value of 1.02, which
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is slightly lower than the experimental and numerical results found in literature.

Average wake velocity profiles were evaluated in two different position, z = 1
and z = 3, the averaging operation is made both along the x-axis and in time.
The comparison is made using the experimental results of Cantwell et al. [18].
The profiles are presented in figure 2.5 and 2.6, for z = 1 the streamwise and the
normal velocities are plotted, on the other hand, in the second position, only
the streamwise velocity is used for the comparison.

Figure 2.5: Normalized velocity profiles, z = 1

Figure 2.6: Normalized velocity profile, z = 3

The profiles are obtained by averaging the field over a span of 50 convective
times (a first simulation of 60 convective times was performed to remove the
influence of the initial transient). The streamwise velocity seems to fit pretty
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well the experimental data, even though the velocity in the centerline is too
small; on the other hand the normal velocity is totally different. Since the
centreline velocity is negative at z = 1, the discrepancy in the profile could
be explained as overestimation of the recirculation bubble in the mean flow
downstream the cylinder. In an effort to better understand the behaviour of
the mean flow in the wake, the average centreline velocity has been plotted, as
reported in figure 2.7.

Figure 2.7: Centreline velocity profile

The recirculation region seems to be too large, furthermore upstream the cylin-
der it is possible to notice some spurious fluctuations with an amplitude of 2%
of the inlet velocity.

Figure 2.8: Contour surfaces of the streamwise velocity, 10 levels

Those fluctuations cannot be observed in figure 2.8 with 10 contour levels, but
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they are clearly visible in figure 2.9, using 100 isolines.

Figure 2.9: streamwise velocity contour lines for x = 2, 100 levels

Figure 2.10: streamwise velocity contour lines for x = 2 and CS = 1, 100 levels

In order to figure out the cause of those oscillation, several small runs were
performed, in which it was tested the response of the code to the variation of
some simulations parameters, such as:

• CFL coefficient, which limits the ∆t;

• order of the time discretization;

• absolute tolerance of the GMRES solver for the Poisson equation;

• boundary conditions;
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• Smagorinksy constant.

It was found that the only parameter that had an influence on the fluctuations
is the Smagorinsky constant, indeed, increasing the value to 1, the oscillations
are smoothed, as it can be notice in figure 2.10 and 2.11, but, on the other hand,
a higher eddy viscosity leads to the dissipation of the small turbulent structures
in the wake.

Figure 2.11: Centreline velocity profile, CS = 1

It has been proven that the cause of the spurious oscillations is the lack of
turbulent dissipation, which can be compensated by using a higher Smagorinsky
constant. It is as well known that the action of dissipation is dominant at
the smallest scales of the flow, therefore a lack of it might be triggered by an
underresolved simulation, hence a more refined grid might be needed in order
to obtain better results.

2.4 Second run results
A second run was made on the Turing machine, using a refined mesh with double
the number of point in each direction, which means that the total number of cells
is 8 times the one used for the first run, leading to 768 millions computational
points and over 3 billions of unknowns. Due to the smaller clock speed of
the Turing machine, a very high number of processors was necessary: 8192
physical cores were employed. The IBM Blue Gene/Q architecture supports the
multithreading, the optimal performance of the NaSCAR3D is achieved with
2 threads per core, so that a total amount of 16384 threads was reached. In
this configuration 20 wall clock hours were just enough to simulate slightly less
than 3 convective times, not only due to the worse performance of the machine,
but also due to the CFL condition that impose a smaller time step for each
Navier-Stokes iteration when the grid is refined. A preliminary 20 wall clock
hours run was made in order to understand if the finer mesh is able to dissipate
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the spurious oscillation, the result is reported in figure 2.12 and it proves the
hypothesis: there are very less fluctuations upstream the cylinder.

Figure 2.12: Centreline velocity profile, finer mesh, CS = 0.4

An additional period of approximately 42 convective times has been simulated,
the first 20 have not been taken into account for the computation of average
profiles, in order to let the turbulence develop on the fine grid, therefore the
statistics are made on the last 22 convective periods of simulation. The profiles
are reported in figures 2.13, 2.14 and 2.15.

Figure 2.13: Average velocity profile, finer mesh, z = 1

In figure 2.13 are represented the mean velocity profiles at z = 1, both the
streamwise and the normal component of the velocity are well correlated with
the experimental measurements, the centreline velocity although is still negative
and quite far from the values of Cantwell and Coles [18]. On the other hand
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the normal profile is totally different from the one obtained in the first run 2.5,
confirming that the first series of simulation was made on a mesh that was too
coarse.

Figure 2.14: Average streamwise velocity profile, finer mesh, z = 3

Figure 2.14 shows the profile of the streamwise velocity at z = 3, except in
central region of the wake, the values are comparable with measurements. In
figure 2.15 the centreline velocity is plotted, the oscillations upstream the cylin-
der are still presents, but their amplitude has decreased to the 0.2% of the
undisturbed velocity. Downstream the cylinder, within the wake, the velocity
is underestimated when compared to the experimental reference.

Figure 2.15: Average streamwise velocity profile, finer mesh, y = 0

It has to be said that the timespan over which the statistics were evaluated
was not long enough to reach full convergence, indeed, considering the Strouhal
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number:

St = fD

U∞
(2.13)

where f is the frequency of the vortex shedding. For high Reynolds number flows
past bluff bodies, the St is approximately equal to 0.2, which means that each
vortex shedding cycle has a period roughly equal to 5 convective times. As re-
marked by Breuer [22], statistics should be evaluated over at least 100 convective
times, which correspond to about 20 vortex shedding cycles. A similar runtime
would have required an unaffordable number of computational time, given that
the present simulation already consumed more than 2.5 million hours (evalu-
ated as the product of wall clock hours and number of physical cores employed).
Even though 22 convective times is not sufficient for the full convergence of the
average profiles, the results are close to the experimental data, confirming that
the mathematical model presented in chapter 1 is able to predict with accuracy
unsteady turbulent phenomena.

Figure 2.16: Time evolution of the aerodynamic coefficients, finer mesh

The value of the average drag coefficient is in the same range of the results found
in literature, as it is shown in table 2.1.

Case CD
Present work, WMLES 1.084
Luo et al. [25], PANS 0.82 − 1.28
Luo et al. [25], DES 0.84

Kim [23], LES 1.21
Breuer [22], LES 0.971 − 1.454

Travin et al. [24], DES 1.08
Cantwell et al. [18], exp. 1.237

Table 2.1: Comparison of drag coefficient values
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In figure 2.17, the contour plot of the instantaneous streamwise velocity field
at x = 2 is represented, using 100 levels; it is possible to appreciate the high
number of turbulent structures in the wake, whose size is significantly smaller
compared to what can be observed in figure 2.1, for the low Reynolds simulation.

Figure 2.17: Isolines of instantaneous streamwise velocity, 100 levels

Figure 2.18: Pseudocolor plot of instantaneous streamwise velocity, x = 2
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Figure 2.19: Pseudocolor plot of instantaneous norm of vorticity, x = 2

In figure 2.19 the plot of the instantaneous vorticity norm is reported, the maxi-
mum vorticity is detected in the boundary layer, then laminar separation occurs.
The fluid dynamic instability causes the generation of large scale vortices in the
near wake, where the transition from laminar to turbulent flow is observed. The
stretching phenomenon gives rise to the inertial cascade, where turbulent en-
ergy is transferred to small scales and then dissipated, the flow has become fully
turbulent.

2.5 Validation of the structure model
The finite element model has been validated using the cantilever beam test
case, whose results can be compared with the Euler-Bernoulli beam theory,
that allows to obtain simple analytic expressions of displacements and natural
frequencies of the structure.

Figure 2.20: Cantilever beam
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For the validation, fictitious structural parameters are used:

EIyy = EIzz = 106 Nm2, L = 22.25 m,EA = 109 N, ρA = 1 Kg/m

where E is the young modulus, Iyy and Izz are the inertia with respect to the
y and z axis, L is the length of the beam, A is the area of the cross section and
ρ is the density of the material. Three test cases are considered:

• case 1: static test, uniform axial load,

• case 2: static bending test, uniform transverse load,

• case 3: free bending vibrations.

For the first test case, the analytic solution is given by the equation:

d2u

dx2 = − q

EA
(2.14)

where u is the axial displacement and q is the load. The clamped-free constraints
are: 

u(0) = 0
du

dx
(L) = 0

hence:

u = qL2

EA

3
ξ − ξ2

2

4
(2.15)

where ξ = x/L. The load q has been chosen in order to obtain:

u(L) = qL2

2EA = 1 (2.16)

therefore, q = 4.04 · 106 N/m.

Figure 2.21: Test case 1: comparison of analytic and FEM results
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For the second test case, the analytic solution is provided by the equation:

d4v

dx4 = p

EIzz
(2.17)

where v is the deflection and p is the transverse load. The clamped-free con-
straints for bending are: 

u(0) = 0
du

dx
(0) = 0

d2u

dx2 (L) = 0

d3u

dx3 (L) = 0

hence: 
v = pL4

24EIzz
ξ2!

ξ2 − 4ξ + 6
"

θz = dv

dx
= pL3

6EIzz
ξ
!
ξ2 − 3ξ + 3

" (2.18)

The load q has been chosen in order to obtain:

u(L) = pL4

8EIzz
= 1 (2.19)

therefore, p = 32.64 N/m. The analytic tip rotation for this test case is:

θz(L) = pL3

6EIzz
= 0.0599 (2.20)

Figure 2.22: Test case 2: comparison of analytic and FEM results, deflection
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Figure 2.23: Test case 2: comparison of analytic and FEM results, rotation

In figure 2.21, 2.22 and 2.23 are shown the comparisons between the FEM model
and the analytical results, the numerical values lie exactly on the curve obtained
using the Euler-Bernoulli theory, certifying the quality of the static model. All
the tests are performed using 200 elements.
The free bending vibration case aims to evaluate the eigenfrequency of the
system, which are the natural frequencies of the structure in absence of external
forces. It is a dynamic test, therefore it involves the mass matrix and allows to
validate the inertial response of the model. The dynamic equilibrium equation
is:

ρA
∂2v

∂t2
+ EIzz

∂4v

∂x4 = 0 (2.21)

The natural frequencies can be evaluated analytically by means of the following
expression:

fi =
!
αiL

"2

2π

ó
EIzz
ρAL4 (2.22)

where αi depends on the boundary conditions. From a numerical viewpoint the
free vibration is recreated by imposing an initial deformation and then releasing
the structure. Then applying the Fourier transform to the tip displacement time
history, the spectrum of the response is obtained, the peaks of the spectrum
represent the natural frequencies of the beam.

f1 f2 f3 f4
Analytic 1.130 7.084 19.835 38.868
FEM 1.130 7.081 19.770 38.395

Table 2.2: Comparison of FEM and Analytic eigenfrequencies (in Hz)

In figure 2.24 the spectrum of the tip displacement is shown, it can be noticed
that natural frequencies obtained sampling the response of the FEM model
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Figure 2.24: Test case 3: single side amplitude spectrum

are well correlated with the analytic values, the comparison of the results is
reported in table 2.2. There is a slight loss of accuracy in the values for the
fourth structural mode that can be explained with the choice of a too large
timestep for the Newmark time integration.

Figure 2.25: Test case 3: propagation of transverse waves in the beam
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Chapter 3

An Octree solver for
incompressible flows

Using uniform cartesian grids allows easy parallelization and a low memory
usage, since there is no need to store information about the connectivity and the
geometry of finite volumes, but, on the other hand, the impossibility of making
local refinements makes the mesh inefficient, such as the one used for the high
Reynolds cylinder simulation. Block structured grids permit to maintain the
advantages of the cartesian ones, with the possibility of creating an adaptive
mesh by refining where more detail is needed or coarsening where it is not. This
approach fits very well with the immersed boundary method, where the mesh
is not body fitted, and thus needs to be properly refined in the proximity of the
fluid-solid interface.

Figure 3.1: Local refinement close to the surface of a cylinder

One of the most popular approach to generate and handle block structured
meshes is the use of hierarchical data structures named Octree (Quadtree in 2D)
where each element is a cube, or squares, and refinement is made by halving
the size of the cell, creating thus a nested grid. Thanks to their simplicity,
Octrees are well suited for automatic mesh refinement (AMR) techniques, such
as the one used to obtain the grid represented in figure 3.1, where levelset-based
refinement and coarsening criteria have been employed.
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Local refinements lead to a globally non-uniform grid, which means that a finite
difference discretization is not straightforward, whereas a finite volume method
is much more suited. In this chapter an innovative algorithm for the solution
of the Navier-Stokes equations on Octree grids will be presented and discussed,
with a particular attention to the treatment of level jumps.

3.1 The Octree data structure
The Octree structure can be viewed in its dual nature, the tree and the grid,
as it is represented in figure 3.2. The tree is defined as a collection of intercon-
nected cells, also called octants. Each refinement generates 8, 4 in 2D, disjointed
subtrees, whose nodes are called children. Nodes without children are named
leaves.

Figure 3.2: Dual nature of the data structure

An Octree data structure is said to be linear when only the leaves of the tree
are stored in memory, which means that the usage of computational resources
is optimal. While ordering the cells of a cartesian grid is straightforward, the
same cannot be said about block structured meshes, sorting is achieved using
space-filling curves that cross each element of the grid once.

Figure 3.3: Z-order space-filling curve

As remarked by Raeli [26], there are many different examples of space-filling
curves, one of these is the Z-Order, introduced by Morton [27], who also pro-
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posed a procedure, commonly known as the Morton code, to identify cells neigh-
bours, based on simple manipulations of binary numbers. This algorithm avoids
the evaluation and the storage of complex connectivity matrices, contributing
to the low memory usage of Otrees. The Z-order is also used to compute the
parallel partition of the domain and the communication between two different
subdomains is made thanks to one layer of ghosts cells where the information
is shared between two processors.

Figure 3.4: Example of Z-order based parallel partition obtained on 24 cores

For the present work, the generation and the handling of the Octree structure
was made possible by the PABLO library1, which deals with Z-ordered, linear
Octrees, parallelized using the MPI paradigm.

3.2 Finite volume discretization
The penalized Navier-Stokes equation 1.2 can be rewritten in the Lagrangian
form: 

∇ · V = 0
DV
Dt

= −∇p+ 1
Re

∇2V + χB
K

!
Vb − V

" (3.1)

where:

D

Dt
= ∂

∂t
+ V · ∇ (3.2)

is the Lagrangian derivative, which is formed by the time rate of change plus
a convective contribution. Equation 3.1 is written in a non dimensional form,
all variables are normalized with respect to some arbitrary reference values. A
semi-Lagrangian scheme is employed, which means that equations are still solved

1Optimad, PABLO https://github.com/optimad/PABLO
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using an Eulerian point of view, but, instead of approximating the partial time
derivative and the convective term separately, time discretization is achieved by
approximating the Lagrangian derivative:

DV
Dt

≈ Vn+1 − Vn
λ

∆t (3.3)

where Vn
λ is the velocity at the root of the characteristic, defined as:

Vn
λ = V

!
x − ∆tV(x, tn), tn

"
(3.4)

using an explicit first order scheme to propagate the characteristic backwards.
The finite volume method is applied to the integral form of equations 3.1, which
is:


˛
∂Ω

V · ndσ = 0

D

Dt

ˆ
Ω

VdΩ = −
˛
∂Ω
pndσ + 1

Re

˛
∂Ω

δV
δn

dσ + χB
K

ˆ
Ω

!
VB − V

"
dΩ

(3.5)

Equation 3.5 is valid for each cell of the domain, thus, applying numerical
integration and writing for one finite volume:


Ø
i

Vi · ni∆Si = 0

DVi

Dt
∆Ωi = −

Ø
j

pjnj∆Sj + 1
Re

Ø
j

3
δV
δn

4
j

∆Sj + χB
K

!
Vb − V

"
∆Ωi

where δ/δn is a centered approximation of the derivative in the face normal
direction. Combining 3.4 with the space-discretized equations and using the
predictor-corrector scheme, a classical three stage algorithm is obtained, whose
prediction step consists in solving the following linear system:

V∗
i − ∆t

∆Ωi
1
Re

Ø
j

3
δV∗

δn

4
j

∆Sj = Vn
λi (3.6)

where for the viscous term an implicit Euler scheme has been employed. The
projection step is obtained imposing the divergence free condition on the virtual
velocity, leading to a finite volume discretized Poisson equation:

Ø
j

3
δp

δn

4n+1

j

∆Sj = 1
∆t

Ø
j

V∗
j · nj∆Sj (3.7)

The linear systems in the first two steps are solved using GMRES [21] or the sta-
bilized biconjugate gradient (BCGSTAB) [28] algorithm. The computed pres-
sure is used in the correction step:

V∗∗
i = Vn

i − ∆t
∆Ωi

Ø
j

pn+1
j nj∆Sj (3.8)
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The penalization is taken into account as an additional correction, in order to
finally obtain the velocity at the (n+1)-th step:

Vn+1
i = (1 − χBi)V∗∗

i + χBiVBi (3.9)

In this algorithm the pressure is not involved in the prediction step, therefore
during each projection step the pressure is completely re-evaluated. This scheme
is said to be non-incremental, and it is more precise, since there is no cumu-
lative error on the pressure field, but it is less stable than the incremental one,
due to be bigger correction imposed by the pressure.

3.3 Treatment of level-jumps
Octrees can be described as hierarchical cartesian grids, which means that each
refinement block is made by uniformly spaced cells, the transition regions where
the mesh is non-uniform are called level-jumps and the correct discretization of
the equations around these portions of the grid is fundamental for the accuracy
of the whole numerical scheme. Several different approach can be employed in
order to cope with level-jumps, in this work two methods will be presented,
the first one is the diamond’s method, introduced by Coudière [29], which is
illustrated in figure 3.5.

Figure 3.5: The diamond’s method

The value of Φ in the center of the intersection is given by:

Φi = 1
2

!
Φt + Φb

"
where Φt and Φb are the values on the nodes of the intersection. Since a fully
collocated scheme is considered, nodal values are obtained by interpolating Φ
among surrounding cells.
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The gradient of Φ on the intersection is obtained solving the following linear
system: 

∇Φ · tc = Φout − Φin
∆c

∇Φ · tbt = Φt − Φb
∆l

(3.10)

An order of convergence of 2 has been proven on the heat equation, as reported
in [30].
Although the diamond’s method results very accurate, it has been shown, by
Olshanskii et al. [31], that some spurious discretely divergence-free modes may
occur at level-jumps when a high number of degrees of freedom is used to com-
pute fluxes. These modes can be suppressed by locally reducing the amount of
degrees of freedom required by the discretization, forcing the modes not to be
divergence-free anymore.

Figure 3.6: A divergence-free level-jump mode

In order to avoid level-jump modes, an alternative scheme has been developed,
with the goal of using the lowest possible number of degrees of freedom in the
proximity of the interface between the coarse and the fine grid.

Figure 3.7: Alternative scheme for evaluating fluxes at level-jumps

The proposed discretization is illustrated in figure 3.7 for a bidimensional grid,
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the value of the considered variable in the hanging node N is obtained by linear
interpolation of the values in the three cells involved in the level-jump:

ΦN = 1
3ΦC + 2

3ΦM = 1
3ΦC + 2

3
1
2

Ø
i

ΦFi = 1
3

!
ΦC + ΦF1 + ΦF2

"
(3.11)

in a similar manner the normal discrete gradient can be evaluated in N:3
δΦ
δn

4
N

= ΦM − ΦC
3
2∆l

= 1
3∆l

!
ΦF1 + ΦF2

"
− 2

3∆lΦC (3.12)

Where a first order approximation of the normal derivative has been employed
and ∆l is the size of the finer cells. The values obtained for the node N are used
to compute the fluxes between the coarse cell and both the finer ones, meaning
that the flux entering the two small cells is the same. This is equivalent to
treat the finer cells as a unique rectangular volume centered on the point M,
in this way the spurious level-jump modes are suppressed, since they can be
divergence-free only if all the three fluxes are equal to zero. Expressions 3.11
and 3.12 can be easily extended to a tridimensional geometry, where a coarse
cell has four finer neighbours. The hanging node value is:

ΦN = 1
3ΦC + 2

3
1
4

Ø
i

ΦFi = 1
3ΦC + 1

6
Ø
i

ΦFi (3.13)

and the normal gradient:3
δΦ
δn

4
N

= ΦM − ΦC
3
2∆l

= 1
6∆l

Ø
i

ΦFi − 2
3∆lΦC (3.14)

This approach has been validated by solving the 3D Poisson’s equation:

∇2Φ = q (3.15)

with forcing term:

q = 6 cos
!
x2 + y2 + z2"

− 4
!
x2 + y2 + z2"

sin
!
x2 + y2 + z2"

(3.16)

The analytical solution is known and it is:

Φexact = sin
!
x2 + y2 + z2"

+ C (3.17)

where C is a constant dependent on the boundary condition. A convergence
analysis has been performed in three different configurations:

• case 1: domain size L = 2, single cubic refinement of size 1

• case 2: domain size L = 4, single cubic refinement of size 2

• case 3: domain size L = 2, multiple "random" refinements

Let ε be the absolute error: ε = |Φ − Φexact|, it is possible to evaluate the three
norms of ε:
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(a) Single cubic refinement (b) Multiple random refinements

Figure 3.8: Comparison of refinements

ëεëL1 = 1
Ω

ˆ
Ω
εdΩ ≈ 1

Ω
Ø
i

εi∆Ωi (3.18)

ëεëL2 = 1
Ω

óˆ
Ω
ε2dΩ ≈ 1

Ω

óØ
i

ε2
i∆Ωi (3.19)

ëεëL∞ = max
i
εi (3.20)

Defining ∆lmin = mini ∆li and considering a 1n-grid and a 2n-grid such that
∆lmin,2n = 2∆lmin,1n, the order of convergence ν is defined as:

νLi
= log2

5!
ëεëLi

"
2n!

ëεëLi

"
1n

6
(3.21)

∆lmin ëεëL1 νL1 ëεëL2 νL2 ëεëL∞ νL∞

1,25E-01 4,43E-04 - 1,25E-03 - 3,80E-03 -
6,25E-02 1,50E-04 1,56 2,68E-04 2,23 7,88E-04 2,27
3,13E-02 5,35E-05 1,49 7,05E-05 1,93 1,73E-04 2,18
1,56E-02 1,61E-05 1,73 1,92E-05 1,87 4,10E-05 2,08
7,81E-03 4,42E-06 1,87 5,09E-06 1,92 1,01E-05 2,02
3,91E-03 1,16E-06 1,93 1,32E-06 1,94 2,49E-06 2,02

Table 3.1: Convergence analysis, case 1
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Figure 3.9: Convergence Analysis, case 1

∆lmin ëεëL1 νL1 ëεëL2 νL2 ëεëL∞ νL∞

1,25E-01 3,76E-02 - 6,33E-03 - 1,09E-01 -
6,25E-02 1,04E-02 1,85 1,63E-03 1,96 2,46E-02 2,14
3,13E-02 2,70E-03 1,95 4,10E-04 1,99 6,24E-03 1,98
1,56E-02 6,86E-04 1,98 1,03E-04 2,00 1,59E-03 1,97
7,81E-03 1,73E-04 1,99 2,56E-05 2,00 4,08E-04 1,97
3,91E-03 4,28E-05 2,01 6,32E-06 2,02 1,04E-04 1,98

Table 3.2: Convergence analysis, case 2

Figure 3.10: Convergence Analysis, case 2
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∆lmin ëεëL1 νL1 ëεëL2 νL2 ëεëL∞ νL∞

1,56E-02 8,56E-05 - 1,03E-04 - 4,25E-04 -
7,81E-03 2,36E-05 1,86 2,70E-05 1,94 1,15E-04 1,89
3,91E-03 6,26E-06 1,92 7,10E-06 1,93 3,15E-05 1,87
1,95E-03 1,61E-06 1,95 1,87E-06 1,92 8,59E-06 1,88
9,77E-04 4,99E-07 1,69 6,41E-07 1,55 2,31E-06 1,89

Table 3.3: Convergence analysis, case 3

Figure 3.11: Convergence Analysis, case 3

Surprisingly, the order of convergence is superior than 1 in all of the test cases,
for the first two a second order of convergence is achieved, whereas for the third
ν suddenly falls once ∆lmin becomes smaller than 0,001. The developed level-
jump operator performs better than expected when the number of refinements
is small when compared to the total number of cells, when the number of level-
jumps becomes comparable with the total amount of grid points, such as the
case of the randomly refined mesh, a loss of accuracy is registered.

3.4 Analysis of the 3D advection equation
While performing a low Reynolds simulation of the flow past a sphere on a
hemispherically refined mesh, some numerical instabilities were detected in the
proximity of the spherical level-jump, making the simulation diverge in few
seconds. The numerical noise is clearly visible in figure 3.12, and it is located
just outside the outer spherical refinement. The same result was obtained with
both the diamond’s method and the stabilized operators, furthermore, since the
Poisson’s equation is an elliptic problem, a perturbation is immediately felt in
the whole domain, which means that, if there is a strong instability in one region,
in another region there is a second instability that compensates for the first. In
figure 3.12 there is no evidence of such a behaviour, therefore the focus has been
directed on the analysis of the convective term of the discretized Navier-Stokes
equations.
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(a) Contour plot of the pressure (b) Slice of the pressure pseudocolor plot

Figure 3.12: Numerical instability, low Reynolds flow past a sphere

In order to better understand the behaviour of the semi-Lagrangian scheme, a
simple test case was made on the 3D transport equation:

Dϕ

Dt
= ∂ϕ

∂t
+ V · ∇ϕ = 0

ϕ0 = sin x
ϕinlet = sin

!
xinlet − 2t

" (3.22)

where x = (x, y, z) and V = (2, 0, 0). The exact solution of the problem is:

Φ(x, t) = sin(x− 2t) (3.23)

From a numerical viewpoint, equation 3.22 discretized with a first order semi-
Lagrangian schemes becomes:

ϕn+1
i = ϕnλ = ϕn

!
xi − ∆tVn

i

"
(3.24)

which can be seen as a discrete method of characteristics. Since the root of the
characteristic does not forcibly coincide with the center of a cell, its value has to
be obtained by interpolation. It has been proved by Falcone et al. [32] that the
L∞ norm of the error of a semi-Lagrangian scheme has the following property:

ëεëL∞ ≤ C

3
∆tp + ∆lr

∆t

4
(3.25)

where p is the order of convergence of the time semi-discretization and r is the
order of convergence of the interpolation. Since the CFL condition imposes that
∆t ∼ ∆l, the interpolation must be one order more precise than the scheme in
order to be consistent, which means that a first order semi-Lagrangian scheme
requires a second order interpolation. Using polynomial in 3D can be painstak-
ing because of the high number of neighbours that need to be considered for the
stencil and also because of the large amount of possible configurations that can
be created using adaptive mesh refinement techniques, in each of these cases the
extension of the stencil is different, meaning that the polynomial basis has to
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be adapted case-by-case. Due to these issues, Gaussian Radial Basis Function
(RBF) interpolation is chosen:

ϕ(x) =
Ø
i

wie
εr2

i (3.26)

where wi are the weights of the interpolation and ri = ëx−xië and ε is a scaling
parameter proportional to 1/∆li. This method is second-order accurate, does
not require adaptation of the basis and relies only on the distance between the
desired point and the interpolation points.
The test case 3.22 is investigated using two different meshes:

• Case 1: only cartesian patch refinements are used

• Case 2: mesh with hemispherical refinements, such as the one used in
figure 3.12

(a) Slice of the grid, z=0 (b) Slice of the grid, x=0

Figure 3.13: Mesh for case 1

(a) Slice of the grid, z=0 (b) Slice of the grid, x=0

Figure 3.14: Mesh for case 2
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For each of the simulation the evolution of the L1, L2 and L∞ norm of the
error and the L∞ norm of the solution are tracked. Figure 3.15 reports the
time history of the L∞ norm of ϕ for the two test cases, it is clear that both
simulations diverge. The first test case remains stable for nearly a period of 0.2,
then the maximum of the solution starts to increase. On the other hand, Case
2 is highly unstable, the solution starts diverging after less than 0.05 seconds,
after then the L∞ norm rises abruptly.

Figure 3.15: Evolution of L∞ norm of the solution for the two test cases

(a) 3D view of the error, zoom on the
inner spherical level-jump

(b) Slice of the error plot, x=-0.7

Figure 3.16: Case 2, error plot

In figure 3.16 it is represented the local error for case 2, on the left, in red,
the regions where the error is more than 1 are shown, whereas on the right the
pseudocolor plot at x = 0.7 is reported. It is clearly visible that the error is
concentrated in the proximity of the spherical level-jump, exactly as figure 3.12,
which means that the cause of the instability of the Navier-Stokes algorithm
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lies in the convection term. The result obtained on the cartesian-patch grid
is actually quite surprising, since simulations on the low Reynolds flow past
a sphere on those meshes did not present any sort of instability. Figure 3.16
although, might provide an explanation for this contradiction: the instability
observed on the cartesian-patch grid is more gradual than the one occurring
in case 2, it is thus possible that the viscous term in the prediction step is
sufficiently strong to stabilize the scheme at low Reynolds numbers on cartesian-
patch grids, whereas the error on the hemispherically refined mesh might grow
too rapidly to be regularized by the diffusive term.
In order to better understand the instability mechanism and to find an appropri-
ate fix, a convergence test of Gaussian RBF interpolations has been performed
on the case 2 grid. In each cell a point is chosen by shifting along the x-
direction using a random distance between 0 and ∆li/2, the reference function
is ϕ = sin(x). The results are reported in table 3.4, where the relationship with
the maximum size of the grid, ∆lmax = maxi ∆li, is summarized.

∆lmax ëεëL1 νL1 ëεëL2 νL2 ëεëL∞ νL∞ ëϕintëL∞

6,25E-01 1,58E-03 - 2,39E-05 - 5,80E-03 - 1,00208
3,13E-01 4,15E-04 1,93 6,21E-06 1,95 1,47E-03 1,98 1,00005
1,56E-01 1,06E-04 1,97 1,57E-06 1,98 3,71E-04 1,99 1,00005
7,81E-02 2,87E-05 1,88 3,99E-07 1,98 1,12E-04 1,73 1,00003

Table 3.4: RBF convergence analysis

The convergence characteristics show that the interpolation is working properly,
the error decreases with an almost second order slope, but the L∞ norm of
ϕ is higher than the unity in every case, this means that the Gaussian RBF
interpolation does not conserve the maximum and the minimum of a discrete
function, hence the semi-Lagrangian scheme employed does not result to be
Total Variation Diminishing (TVD). In computational fluid dynamics, using
flux limiters is a common practice that enables the formulation of high-order
TVD schemes [33]; a similar fix is proposed in order to force the solution of
the transport equation to be limited. Let a and b be the maximum and the
minimum values of the transported variable among the interpolation points of
the stencil:

a = max
i
ϕi (3.27)

b = min
i
ϕi (3.28)

The proposed limiter function is:

F = max
!

min
!
a, ϕint

"
, b

"
(3.29)

where ϕint is the result of the Gaussian RBF interpolation. F enables the
conservation of the L∞ norm of the solution and, as a natural consequence, it
prevents the instability of the semi-Lagrangian scheme.
In figure 3.17 the results for the TVD semi-Lagrangian scheme on the case 2
grids are summarized, the L∞ norm of the solution is stable thanks to the
limiter function, whereas the L∞ norm of the error increases until reaching a
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(a) Error and solution L∞ norms

(b) Error L1 and L2 norms

Figure 3.17: Results, Case 2, TVD semi-Lagrangian scheme

stationary value of 2, which means that the phase of the sinusoidal solution
gradually shifted. The same behaviour is found for the L1 and L2 norms of the
error.
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3.5 Flow past a sphere
In order to assess the performance of the Navier-Stokes Octree solver two pop-
ular benchmarks have been used:

• flow past a sphere at Re = 500

• flow past a circular cylinder

Firstly, the sphere flow at a very low Reynolds number has been investigated
using three different test cases, in this way all the features proposed in this
chapter have been tested and validated within the fractional step projection al-
gorithm. These simulations were performed using the PLAFRIM cluster, whose
nodes are composed by a couple of 12-core Intel Haswell CPUs with a clock
speed of 2.5GHz and a shared memory of 128GB. The set-up of first test case
is the following:

• origin of the domain: (-5,-10,-10)

• length of the domain: 20

• 2.57 million cells

• cartesian-patch mesh

• non-TVD convection scheme

• diamond’s method based differential operators

• number of cores: 24

• wall clock hours of simulation: 72

Figure 3.18: X Velocity plot at t = 62, test case 1
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The set-up of the second test case is quite similar to the first one:

• origin of the domain: (-5,-10,-10)

• length of the domain: 20

• 2.57 million cells

• cartesian-patch mesh

• non-TVD convection scheme

• stabilized differential operators

• number of cores: 24

• wall clock hours of simulation: 72

Figure 3.19: X Velocity plot at t = 73, test case 2

The only difference between the first two test cases is the use of the stabilized op-
erators described in this chapter, allowing a fair comparison of the performance
of the two different level-jump discretizations. The third test case differs from
the first two, the mesh is more refined, spherical level-jumps are introduced, in
order to validate the limiter function for the convective term. The set-up is:

• origin of the domain: (-7,-10,-10)

• length of the domain: 20

• 4.98 million cells

• hemispherically refined mesh

• TVD convection scheme
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• stabilized differential operators

• number of cores: 72

• wall clock hours of simulation: 72

Figure 3.20: X Velocity plot at t = 46, test case 3

Figure 3.18, 3.19 and 3.20 show that the structure of the wake is similar for all
the test cases. For the test case 3, it is possible to see that the wake is not fully
developed yet. A comparison of the values of the drag coefficient CD has been
made too, both in term of time evolution and mean values.

Figure 3.21: Evolution of the drag coefficient
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Figure 3.21 reports the time evolution of the drag coefficient for the three test
cases, it is possible to observe that the three CD curves are identical until 15
seconds of simulations, after that some differences are noticeable in the time
history, but overall the behaviour of the three simulations is comparable. After
40 seconds, the numerical transitory phase ends, and the shedding phenomenon
starts to develop, curves stabilize and start oscillating around their mean values
with a definite frequency. The average CD obtained are in line with results
found in literature, as remarked in table 3.5.

Case CD
Present work, case 1 0.5125
Present work, case 2 0.5203
Present work, case 3 0.5138
Campregher et al. [34] 0.520

Fornberg [35] 0.4818
Fadlun et al. [36] 0.4758

Table 3.5: Comparison of drag coefficient values

3.6 Flow past a cylinder
The flow past a cylinder benchmark has been used to test the high Reynolds
behaviour of the Octree Navier-Stokes solver, coupled with the Wall Modelled
Large Eddy Simulation approximation. The Vreman model [7] has been intro-
duced in the Octree solver as an additional prediction step:

V∗∗
i = V∗

i + ∆t
∆Ωi

νe
LU∞

Ø
j

3
δV∗

δn j

4
∆Sj (3.30)

where L is the reference length of the problem. The wall function adjusts the
velocity field after the penalization step.
The Reynolds number for the test case is:

Re = U∞D

ν
= 140000 (3.31)

The following set up has been employed:

• Domain: [-8,16]x[-12,12]x[-12,12],

• Grid size: 76 millions of cells,

• 85 points on the diameter of the Cylinder,

• streamwise direction: X-axis,

• Cylinder axis parallel to the Z-axis,

• Smagorinksy Constant: 0.17,

• CFL constant: 0.7,

• viscous wall function.
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The biggest downside of using the PABLO Octree library is being limited to
square domains in 2D and cubic domains in 3D, therefore a cylinder of length
24 has been simulated. The consequence of this limitation is that, even though
it is possible to employ local grid refinements, these advantage cannot be fully
exploited, since the length of the cylinder impose a very refined grid along
the whole Z-axis, therefore, there is not a big decrease in the number of cells
compared to the Cartesian code.
The simulation has been performed on the OCCIGEN machine, using 60 nodes
composed by two 12-core Intel Haswell CPUs @2.6 GHz, for a total of 1440
cores. In this configuration for each 30 convective times of simulations, 24
hours of wall clock time are required. Six day-long runs were carried out, for a
total of roughly 200000 computation hours, in which 166 convective times were
simulated.

Figure 3.22: Evolution of the aerodynamic coefficients

Figure 3.22 reports the evolution of the lift coefficient CL and the drag coefficient
CD as a function of the adimensional time. A numerical transient is observed in
the first 20 convective times, then the shedding phenomenon starts to develop
and periodic fluctuations in forces are visible. Short period oscillations start to
stabilize after 40 convective times and start to assume a regular pattern. Some
long period amplitude oscillation are present, they are clearly visible in the
evolution of the lift coefficient. Overall, the fluctuation of CL is smoother than
the evolution of CD, that presents a more random character, as it is observable
in figure 3.23.
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(a) Oscillation of CL

(b) Oscillation of CD

Figure 3.23: Detail of an oscillation of the aerodynamic coefficients

Case CD
Octree code, WMLES 1.182

NASCAR3D code, WMLES 1.084
Luo et al. [25], PANS 0.82 − 1.28
Luo et al. [25], DES 0.84

Kim [23], LES 1.21
Breuer [22], LES 0.971 − 1.454

Travin et al. [24], DES 1.08
Cantwell et al. [18], exp. 1.237

Table 3.6: Comparison of drag coefficient values

An average value of the drag coefficient has been evaluated over the last 120
convective times. Table 3.6, reports the comparison between the results obtained
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with the Octree code, the NASCAR3D code and the one found in scientific
literature. The value obtained with the Octree solver is slightly higher than the
one discussed in chapter 2, but they are both in line with the ones from other
authors.

(a) Contour surfaces of the x velocity, 10 levels

(b) Contour surfaces of the norm of vorticity, 20 levels

Figure 3.24: Flow past a cylinder at Re = 140000, Octree solver

In figure 3.24 are represented the contour surfaces of the x velocity and of
the norm of the vorticity, comparing the images with the one obtained with the
NASCAR3D code, it is possible to notice that there are very few small turbulent
structures in the wake.
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(a) Plot of x velocity, z = 0

(b) Plot of x velocity, y = 0

Figure 3.25: Flow past a cylinder at Re = 140000, Octree solver
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(a) Plot of the norm of vorticity, z = 0

(b) Plot of the norm of vorticity, y = 0.5

Figure 3.26: Flow past a cylinder at Re = 140000, Octree solver
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Figures 3.25 and 3.26 report the plots of the x velocity and the norm of the
vorticity for x = 0 and y = 0, the first impression, given by the contour plots,
is confirmed, the number of small eddies in the wake is much inferior when the
Octree code is used, this can be explained considering that the NASCAR3D code
is second order accurate in time and space, whereas the Octree solver is only
first order in time and also in space, because of the presence of level jumps. The
numerical dissipation of the first order approximation kills the small turbulent
structures, thus the simulation is dominated by large eddies. Another factor
that contributes to this lack is the resolution of the grid, which is comparable
to the coarse one used in chapter 2 only in proximity of the cylinder, in the far
wake the mesh is coarser, therefore the simulation is a bit underresolved far away
from the cylinder. Although the worse resolution, the overall structure of the
flow is well described, the separation is laminar and the transition occurs in the
wake where large eddies are clearly visible and the evolution of the turbulence
is proper, transition, stretching and dissipation can be identified in figure 3.26.

(a) Average streamwise velocity profile

(b) Average normal velocity profile

Figure 3.27: Comparison of numerical results with experimental values
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In an effort to reproduce the good results obtained with the cartesian solver, av-
erage velocity profiles have been evaluated and compared with the experimental
results of Cantwell et al. [18]. The profiles are reported in figure 3.27, while the
streamwise velocity might be not too far from the reference data, the normal
velocity is totally off, exactly as it happened with the coarse mesh simulation
examined in chapter 2. It is therefore clear that the simulation is not resolved
enough to evaluate the mean flow field with accuracy, even though no spurious
oscillation is observed and aerodynamic coefficient are in line with those found
in literature.
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Chapter 4

Wind turbine blade
modelling

This chapter deals with the creation of a virtual model of the turbine blade in
order to perform fluid dynamics, structural and coupled simulations. The first
major difficulty is the conversion of the geometry of the blade from a standard-
ized CAD format into an array of properly organized Lagrangian markers that
will be the input for both the Octree Navier-Stokes solver discussed in chapter
3 and the finite element code presented in chapter 1. The other significant issue
is dealing with the movement of the blade, that rotates around the hub at a
known rotational speed.

Figure 4.1: Norm of vorticity plot, wind turbine wake (Chatelain et al. [37])

There are two different ways to simulate a rotating object:

• using a fixed reference frame and update the position of the blade at each
time step in order to take into account the body motion;

• considering a rotating reference frame in which the body is fixed.
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Thanks to the immersed boundary method both the approaches are feasible,
but the second one remains more affordable, since there is no need to constantly
update the level-set function, which is a time consuming operation, especially
for a complex geometry such as the one that will be considered. Furthermore,
since the blade is fixed, an optimized mesh can be built around it with no needs
of dynamic AMR techniques.
In order to operate in a non-inertial reference frame, the equations of motion
for both the structure and the fluid needs to be modified due to the presence of
two apparent forces: Coriolis and centrifugal force. In this chapter the inclusion
of these two effects in the finite element model and in the Navier-Stokes code
will be discussed, then some preliminary results will be presented.

4.1 Geometric model
One of the most time consuming operations in modern computational fluid dy-
namics is the pre-processing of complex CAD models in order to generate a
proper unstructured mesh that preserves the geometry. The quality of the grid
has a strong influence on the fidelity of the simulation, therefore, meshing is it-
eratively optimized and this process still heavily relies on human expertise. The
immersed boundary method, coupled with Octrees, aims to automatize this op-
eration, using mesh that are not body fitted and cubic cells, whose isotropy
represents the best option for highly accurate simulations. On the other hand,
thanks to years of experience in the use of unstructured mesh generators, stan-
dard CAD formats can be easily imported and used to generate grids, without
any sort of conversion. The same cannot be said for the present approach,
where the surface of the object needs to be described by a structured lattice of
Lagrangian markers.

Figure 4.2: 3D rendering of the blade

CAD models are described thanks to non-uniform rational b-splines (NURBS).
STEP-files contain all the necessary information to generate the NURBS repre-
sentation of an object, stored in a standardized format. Creating a structured
array of Lagrangian markers starting from a STEP-file is not straightforward,
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first, the CAD surface needs to be cut into equally spaced sections, as repre-
sented in 4.3.

Figure 4.3: Sections of the blade, NS = 100

Then using Gmsh1, each section is be meshed using a large amount 1D rectilinear
elements in order to generate an unstructured array of points.

(a) Unordered set of airfoil points

(b) Reordered set of airfoil points

Figure 4.4: Airfoil discretization
1http://gmsh.info/
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The array obtained thanks to Gmsh is not properly ordered, as it is possible
to observe in figure 4.4a, thus it is not directly usable to generate Lagrangian
markers, the points need to be clockwise reordered. Moreover, some profiles
present a very sharp trailing edge, where b-splines fail to accurately represent
the geometry, as it is possible to observe in figure 4.5, therefore these sections
need to be cropped.

Figure 4.5: Detail of the trailing edge

Points generated by Gmsh are not equally spaced, so the one last step is needed
to generate the structured grid of markers. Thanks to the reordering it is simple
to define the curvilinear coordinate of each point, defined as:

si = si−1 +
ˆ i

i−1
dl ≈ si−1 +

ñ!
xi − xi−1

"2 +
!
yi − yi−1

"2 +
!
zi − zi−1

"2

s0 = 0

using a linear approximation. The initial point is the trailing edge of each profile.
All sections are discretized with the same number of Lagrangian markers, once
the amount is defined it is possible to evaluate the spacing:

∆L = stot
NLM

= 1
NLM

˛
l

dl

which is different for each profile. Thanks to the curvilinear coordinate each
Lagrangian marker is defined as:

si = si−1 + ∆L

therefore it is possible to obtain the coordinate of the i-th marker by linearly
interpolating between two points of the original set generated thanks to Gmsh.
Within the Navier-Stokes solver the geometry is described thanks to the level
set function ϕ which is evaluated using the Lagrangian markers, basically for
each point in the domain the closest couple of markers is researched in order
to determine the distance from the surface. The sign of ϕ is equal to the sign
of the scalar product between the outward surface normal and the vector that
links the surface and the point in the domain.
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(a) First point of view

(b) Second point of view

Figure 4.6: Marker-based geometry of the blade

In figure 4.6 is reported the reconstruction of the surface of the blade using
the array of Lagrangian markers created thanks to the implementation of the
described procedure. It is possible to observe that there is a loss of accuracy in
the proximity of the trailing edge, where the details of the geometry tend to be
very small, therefore a very fine mesh is needed in order to capture them.
In figure 4.7 are represented four profiles in different position along the blade
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(a) Profile A (b) Profile B

(c) Profile C (d) Profile D

Figure 4.7: Example of discretized blade profiles

span, from A to D the spanwise position increases. The reconstruction becomes
more accurate as the profile is closer to the hub, since the chord becomes shorter
in the proximity of the tip, and consequently the airfoils become less and less
thick, which means that, in order to describe the geometry the grid needs to be
refined.

4.2 Rotating frame structure model
The finite element model needs to be updated with the inclusion of the Coriolis
and the centrifugal force. The rotation is assumed to be only with respect
to the z-axis, which means that tilting and rotation movement of the hub are
neglected. In other words, the axis of rotation is fixed. Moreover, the dynamic
effects caused by other rotational deformation speeds are neglected, gyroscopic
torques are not considered, in order to keep the structure model as simple as
possible.
The finite element describer in chapter 1 can be described as a combination of:

• rod element for axial deformations;

• beam element for bending;

• bar element for torsion.

The centrifugal force can thus be modelled considering a simple rod element
with shape functions:
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#
N

$
=

#
1 − x

L
x
L

$
(4.1)

Figure 4.8: Schematization of a rod element

The work of the centrifugal force can be expressed as:

Wcf =
ˆ
V

uρΩ2(x+ u)dV =
ˆ
x

ˆ
A

uρΩ2(x+ u)dAdx (4.2)

introducing ρm, defined as:

ρm =
ˆ
A

ρdA (4.3)

expression 4.2 becomes:

Wcf =
ˆ
x

uρmΩ2(x+ u)dx =
ˆ
x

uρmΩ2udx+
ˆ
x

uρmΩ2xdx (4.4)

Expressing u as a function of the vector of nodal degrees of freedom:

Wcf =
)
U

*T 53ˆ
x

#
N

$T
ρmΩ2 #

N
$
dx

4 )
U

*
+
ˆ
x

#
N

$T
ρmΩ2xdx

6
(4.5)

The centrifugal force generates two contributions, the second term, which is
the more relevant, is the external load that would be applied to a infinitely
stiff object, whereas the first term, also known as spin softening, is due to
the elasticity of the rod: the tip of a rotating blade is pushed outwards by
the centrifugal force, thus it is subject to a bigger load, compared to a non
deformable object. In this sense the rotation makes apparently decreases the
stiffness of the rod. The spin softening term can be combined with the stiffness
matrix: #

K
$

=
#
K

$
−
ˆ
x

#
N

$T
ρmΩ2 #

N
$
dx (4.6)
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considering ρm constant within each element:
ˆ
x

#
N

$T
ρmΩ2 #

N
$
dx = ρmΩ2

ˆ L

0

5
1 − x

L
x
L

6 #
1 − x

L
x
L

$
dx (4.7)

hence, integrating:

ˆ
x

#
N

$T
ρmΩ2 #

N
$
dx = ρmΩ2

L
3

L
6

L
6

L
3

 (4.8)

Reassembling the matrix for the complete element, the second row and corre-
sponds to the sixth one and so for the column. Therefore:

K1,1 = K1,1 − ρmΩ2L

3

K1,6 = K1,6 − ρmΩ2L

6

K6,1 = K6,1 − ρmΩ2L

6

K6,6 = K6,6 − ρmΩ2L

3

(4.9)

elsewhere:

Ki,j = Ki,j (4.10)
The right hand side contribution of the centrifugal force is:

)
Fcf

*
= LρmΩ2

ˆ L

0

5
1 − x

L
x
L

6
(x+ x0)dx (4.11)

where x0 is the coordinate of the first node of the element. Thus, integrating:

)
Fcf

*
= ρmΩ2x0

L
2

L
2

 + ρmΩ2

L2

6

L2

3

 (4.12)

The work of the Coriolis force can be written as:

Wcor = −2
ˆ
V

)
u

*T
ρ
! )

Ω
*

∧
)
u̇

* "
dV = −2

ˆ
x

)
u

*T
ρm

! )
Ω

*
∧

)
u̇

* "
dx (4.13)

The external product between the rotational speed and the velocity vector is:

)
Ω

*
∧

)
u̇

*
=

0
0
Ω

 ∧

u̇
v̇
ẇ

 = Ω

 v̇
−u̇
0

 (4.14)

The speed of the tension centre can be evaluated deriving the expression of the
kinematics: 

u̇ = ∂ut
∂t

v̇ = ∂vc
∂t

− (zt − zc)
∂θx
∂t

(4.15)
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which can be expressed in matrix form:

 v̇
−u̇
0

 = ∂

∂t


0 1 0 −h 0 0

−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





u
v
w
θx
θy
θz


(4.16)

with h = zt − zc. Naming the 6x6 matrix
#
B

$
, and expressing the displacement

as a function of the nodal degrees of freedom: v̇
−u̇
0

 =
#
B

$ #
N

$ )
ṡ
*

(4.17)

where
#
N

$
is the matrix of the shape functions of the complete beam element:

[N ] =


L1 0 0 0 0 0 L2 0 0 0 0 0
0 H1 0 0 0 H3 0 H2 0 0 0 H4
0 0 H1 0 −H3 0 0 0 H2 0 −H4 0
0 0 0 L1 0 0 0 0 0 L2 0 0
0 0 −H1,x 0 H3,x 0 0 0 −H2,x 0 H4,x 0
0 H1,x 0 0 0 H3,x 0 H2,x 0 0 0 H4,x


with L1 and L2 being the first order Lagrange polynomials:I

L1 = 1 − ξ

L2 = ξ
(4.18)

and Hi are the third order Hermite polynomials:
H1 = 1 − 3ξ2 + 2ξ3

H2 = 3ξ2 − 2ξ3

H3 = L(ξ − 2ξ2 + ξ3)
H4 = L(−ξ2 + ξ3)

(4.19)

with ξ = x/L. The nodal Coriolis Force vector can be therefore expressed as:)
Fcor

*
=

î
−2ρmΩ

ˆ
x

#
N

$T #
B

$ #
N

$
dx

ï )
ṡ
*

=
#
C

$ )
ṡ
*

(4.20)

where
#
C

$
is the Coriolis matrix.
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Simplifying the matrix-matrix products and integrating, the Coriolis matrix is:

#
C

$
= −2ρmΩ



0 − 7L
20 0 hL

3 0 − 3L2

20 0 − 3L
20 0 hL

6 0 L2

30
7L
20 0 0 0 0 0 3L

20 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3L2

20 0 0 0 0 0 13L2

30 0 0 0 0 0
0 − 3L

20 0 hL
6 0 − 13L2

30 0 − 7L
20 0 hL

3 0 L2

20
3L
20 0 0 0 0 0 7L

20 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−L2

20 0 0 0 0 0 −L2

30 0 0 0 0 0


Taking into account the newly added contributions, the space discretized equa-
tions of the elasticity becomes:#

M
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ḋ
*

+
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$ )
d
*

=
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*
(4.21)

Applying the Newmark method with γ = β = 1/2, the linear system for the
solution of the dynamic structural problem is obtained:
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4.3 Rotating frame fluid model
Considering the low rotational speed of a wind turbine blade, it is possible that
the structural effects of the rotation might be negligible, although it is certain
that the effects on the fluid will be very important. It is therefore essential
the development of an accurate model capable of dealing with non-inertial co-
ordinate systems. Considering an inertial frame (X,Y, Z) and a rotating one
(X Í, Y Í, Z Í), the relationship between the acceleration of a point expressed in
the two references is:

a = ani + aÍ + ω ∧
!
ω ∧ rÍ" + dω

dt
∧ rÍ + 2ω ∧ VÍ (4.22)

where rÍ, VÍ, aÍ are respectively the position, velocity and acceleration in the
rotating frame, ω is the angular velocity vector, ani is the linear acceleration of
the non inertial frame and a is the acceleration in the inertial coordinate system.
Considering a purely rotating frame with constant revolution rate, equation 4.22
becomes:

a = aÍ + ω ∧
!
ω ∧ rÍ" + 2ω ∧ VÍ (4.23)
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In the case of a fluid system, the acceleration is equal to the Lagrangian deriva-
tive:

a = DV
Dt

(4.24)

hence,

DV
Dt

= DVÍ

Dt
+ ω ∧

!
ω ∧ rÍ" + 2ω ∧ VÍ (4.25)

The momentum equation in the Lagrangian form is:

DV
Dt

= −∇p
ρ

+ ν∇2V (4.26)

The relationship between V and VÍ is:

V = VÍ + ω ∧ rÍ, (4.27)

it is simple to demonstrate that the velocity inducted by the rotation is divergence-
free, therefore: I

∇ · V = ∇ · VÍ

∇2V = ∇2VÍ (4.28)

Substituting expressions 4.28 and 4.26 into 4.25 and considering the continuity
equation, the incompressible Navier-Stokes equations for a rotating reference
frame are obtained:

∇ · VÍ = 0
DVÍ

Dt
= −∇p

ρ
+ ν∇2VÍ − ω ∧

!
ω ∧ rÍ" − 2ω ∧ VÍ (4.29)

The two non inertial terms act as volume forces and they can be accounted in
the prediction step of the Chorin algorithm:

V∗
i − ∆t

∆Ωi
1
Re

Ø
j

3
δV∗

δn

4
j

∆Sj = Vn
λi − ω ∧

!
ω ∧ ri

"
− 2ω ∧ Vn

i (4.30)

all the vectors are referred to the rotating reference frame, apices are omitted
for the sake of clarity. For the present work the y-axis of the domain is taken
as the rotation axis of the wind turbine, therefore:

ω =

0
Ω
0

 (4.31)

hence, the centrifugal and Coriolis acceleration are:

ω ∧
!
ω ∧ rÍ

i

"
= ω ∧

 ΩzÍ

0
−ΩxÍ

 = −Ω2

xÍ

0
zÍ

 (4.32)
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ω ∧ VÍ = −2Ω

 wÍ

0
−uÍ

 (4.33)

In order to assess the scheme, a simple test case is investigated, assuming that
the velocity in the fixed reference is uniform and parallel to the rotational axis
of the turbine:

V =

 0
U∞
0

 ⇒ VÍ = V − ω ∧ rÍ =

−Ωz
U∞
Ωx

 (4.34)

For this field of relative velocity, the Lagrangian derivative is:

DVÍ

Dt
= ∂VÍ

∂t
+

!
VÍ · ∇

"
VÍ =



uÍ ∂uÍ

∂x + vÍ ∂uÍ

∂y + wÍ ∂uÍ

∂z

uÍ ∂vÍ

∂x + vÍ ∂vÍ

∂y + wÍ ∂vÍ

∂z

uÍ ∂wÍ

∂x + vÍ ∂wÍ

∂y + wÍ ∂wÍ

∂z


(4.35)

Manipulating expression 4.35, the following relationship is obtained:

DVÍ

Dt
=

−ΩwÍ

0
ΩuÍ

 =

−Ω2x
0

−Ω2z

 (4.36)

Since the relative velocity is linear, the viscous term is zero. It it thus found
that the Coriolis acceleration and the convective term balance the centrifugal
acceleration. Hence:

∇p = 0 (4.37)

The rotating frame Navier-Stokes solver must be able to reproduce a uniform
pressure and a stationary velocity field.

Figure 4.9: Pressure field, rotating frame test case
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The test case has been carried out using a 323 uniform mesh on a domain of
size 100, the rotational speed is Ω = 0.595 and U∞ = 1. Dirichlet conditions are
imposed on every boundary except for the outlet, where a uniform Neumann
condition is employed. In figure 4.9 the pressure field after one iteration is
represented, whereas in figure 4.10 is plotted the norm of the pressure gradient.

Figure 4.10: Norm of the pressure gradient, rotating frame test case

Even though the norm of the pressure gradient is of the order of 10−3, a smaller
value should be obtained, since only one iteration has been performed. In order
to understand the origin of the spurious pressure gradient, the divergence of the
virtual velocity V∗ has been analyzed, the plot is reported in figure 4.11.

Figure 4.11: Virtual velocity divergence, rotating frame test case
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It is possible to observe that there is a relevant numerical noise in the divergence,
which means that the cause of the pressure gradient has to be searched in the
prediction step. For this test case it is possible to analytically evaluate the
velocity at the root of the characteristic:

Vn
λ = Vn

!
x − ∆tVn(x)

"
(4.38)

hence,

x − ∆tVn(x) =

x
y
z

 − ∆t

−Ωz
U∞
Ωx

 =

x+ ∆tΩz
y − ∆tU∞
z − ∆tΩx

 (4.39)

thus,

Vn
λ = Vn

x+ ∆tΩz
y − ∆tU∞
z − ∆tΩx


 =

−Ωz + ∆tΩ2x
U∞

Ωx+ ∆tΩ2z

 (4.40)

The analytic velocity can be forced into the prediction step, in order to compare
the results obtained using the interpolated field at the root of the characteristics
and the exact one. The divergence field, reported in figure 4.12, is uniform
and equal to 0, the predicted velocity is already divergence-free, therefore no
correction is required, which means that the responsible of the numerical noise
in the rotating frame test case is the evaluation of the velocity at the root of
the characteristics.

Figure 4.12: Virtual velocity divergence, rotating frame test case, analytic Vn
λ

In figure 4.13 the pressure field and the norm of the pressure gradient are shown,
there is not a perfect uniformity, but the noise is much smaller than the previ-
ously considered test and it is uniquely generated by the Poisson solver. Looking
at the values of the pressure gradient norm it is possible to notice that they are
close to the machine epsilon, which means that they are totally negligible.
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(a) Pressure field

(b) Norm of the pressure gradient

Figure 4.13: Rotating frame test case, analytic Vn
λ

In a real world problem it is not possible to recover the analytic velocity at the
root of the characteristics, because the presence of the body in the domain dis-
turbs the flow field, although part of the methodology can be used to enhance
the semi-Lagrangian reconstruction.
The velocity field can be split into an undisturbed component and a perturba-
tion:

V = Vuf + Vp =

−Ωz
U∞
Ωx

 +

up
vp
wp

 (4.41)

the perturbation Vp is caused by the presence of the body and it is negligible
in the far field, where the undisturbed velocity Vuf is dominant.
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Let x∗ be the root of the characteristic:

x∗ = x − ∆tVn(x) (4.42)

then:

Vn
λ = Vn

!
x∗"

= Vn
uf

!
x∗"

+ Vn
p

!
x∗"

(4.43)

Splitting Vn
λ into the undisturbed field and the perturbation allows to analyti-

cally recover part of the information:

Vn
uf

!
x∗"

=

−Ωz∗

U∞
Ωx∗

 (4.44)

whereas the perturbation field is evaluated interpolating the information from
neighbour cells:

Vn
p

!
x∗"

=
Ø
i

wiVp,

!
xi

"
(4.45)

This procedure corresponds, from a physical point of view, to interpolate the
velocity field in a non-rotating reference frame that moves along the y-direction
with velocity U∞.
In the considered test case the perturbation field is not present since there is
not an obstacle inside the domain, therefore the proposed method is equivalent
to the imposition of an analytic semi-Lagrangian reconstruction. A comparison
of the original method and the enhanced one has been performed over 100
iterations, the results are summarized in figure 4.14 and in tables 4.1 and 4.2.

Figure 4.14: Time evolution of the L∞ norm of error for the two methods
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Original method Enhanced method
ëεuë∞ 1.6E-4 1.45E-5
ëεvë∞ 4.29E-5 4.66E-15
ëεwë∞ 1.58E-4 1.45E-5
ëεpë∞ 6.66E-2 3.05E-12

ëε∇pë∞ 1.99E-3 9.74E-14

Table 4.1: Comparison of the two methods after one iteration

Original method Enhanced method
ëεuë∞ 2.00E-3 1.80E-4
ëεvë∞ 1.66E-3 1.36E-6
ëεwë∞ 2.69E-3 1.80E-4
ëεpë∞ 7.89E-2 4.09E-4

ëε∇pë∞ 2.01E-3 4.09E-5

Table 4.2: Comparison of the two methods after 100 iterations

After the first iteration the pressure error of the two methods increases steeply,
then the growth slows up. A similar behaviour is found for the velocity error.
It is possible to observe that the error with the enhanced method is roughly
reduced of a factor 100 with respect to the standard interpolation scheme.

Figure 4.15: Pressure field after 100 iteration, enhanced method

In figure 4.15 and 4.16 the pressure and the norm of the pressure gradient after
100 iterations are represented, it is possible to notice that the error has assumed
a less random pattern compared to the first iteration, the pressure perturbations
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are propagating from the boundaries towards the centre of the domain, but
overall the norm of the error remains acceptable for both the variables.

Figure 4.16: Norm of the pressure gradient after 100 iteration, enhanced method

4.4 Preliminary structure simulations
Some preliminary simulations are performed to understand the behaviour of the
model in a rotating frame of reference. Firstly, a static test of the structural
code is run in order to validate the effect of the centrifugal force. For this
simulation it is possible to compare the numerical solution with the analytic
one, which can be obtained solving the following equilibrium equation:

d2u

dx2 = −ρΩ2

E
x (4.46)

where u is the axial displacement and Ω is the rotational speed, the spin soften-
ing term has been neglected. The structural parameters are the same fictitious
values used in chapter 2:

EIyy = EIzz = 106 Nm2, L = 22.25 m,EA = 109 N, ρA = 1 Kg/m

The clamped-free constraints are:
u(0) = 0
du

dx
(L) = 0
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hence:

u = ρΩ2L3

E

3
ξ

2 − ξ3

6

4
(4.47)

where ξ = x/L. The rotational speed Ω has been chosen in order to obtain:

u(L) = ρΩ2L3

3E = 1 (4.48)

therefore, Ω = 521.9 rad/s.

Figure 4.17: Comparison of FEM and analytic results

The number of beam elements employed is 200. In figure 4.17 the comparison
between the exact solution and the one obtained with the FEM code is reported,
it is possible to observe that the numerical results lie on the analytic curve, thus
the method predicts correctly the centrifugal effect. A second static test case
has been performed to verify the effect of the spin softening term.

Figure 4.18: Displacements for the two test cases
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Figure 4.18 reports the results obtained in the first test case, where the spin
softening is neglected, and the second one, where the complete model has been
employed. As expected the displacements is slightly higher when the spin soft-
ening is considered, it is also possible to observe that the contribution of this
term becomes bigger as the distance from the clamped end, which corresponds
to the axis of rotation, increases, this is also expected, since the spin softening
is proportional to the displacement.
In order to evaluate the effect of the Coriolis force, two dynamic bending tests
have been carried on, a constant transverse load has been employed for both of
them, p = 32.64 N/m.
Since wind turbines turn at relatively low speeds, a small influence of the Coriolis
and centrifugal term is expected. In order to verify this thesis, in the first test
case the blade does not rotate, whereas in the second one, a realistic angular
velocity is adopted, Ω = 2 rad/s.

Figure 4.19: y-axis displacement comparison

Figure 4.20: z-axis displacement comparison
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In figure 4.19 and 4.20 the comparison of the two test cases is shown, it is
impossible to distinguish the two curves in figure 4.20, whereas the y-axis dis-
placement presents a sinusoidal response when Ω Ó= 0, but for low rotational
speeds the contribution of the Coriolis force is quite small, as remarked in figure
4.19.

Figure 4.21: Deformed blade structure

4.5 Preliminary Navier-Stokes simulations
A qualitative simulation has been run using the incompressible Octree Navier-
Stokes solver and the blade geometry. The incompressible flow induced by a
rotating object can be described by means of two non-dimensional parameters:

• Reynolds number: Re = U∞L
ν

• Rossby number: Ro = U∞
ΩL

where L is, in the case of a turbine blade, the maximum value of the chord. In
order to avoid spurious edge effects, the domain needs to be sufficiently large,
enough tip clearance has to be taken into account. The radius of the turbine,
which is approximately 23 metres and is the dominant size, imposes a domain
which is at least twice as long, but, being limited to a cubic domain, enough
space must be considered for the development of the wake, so that the resulting
length is roughly four times the blade span. This size should ensure that the
influence of the edge effects will be negligible.
A [-50,50]x[-25,75]x[-50,50] domain is employed, the y-axis corresponds to the
streamwise direction and also to the axis of rotation, the z-axis is the spanwise
direction and the x-axis is roughly parallel to the chord of the blade.
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(a) Domain, view 1

(b) Domain, view 2

Figure 4.22: Blade simulation, domain

In order to keep the test as simple as possible, a cartesian-patch mesh is used,
the smallest grid size is slightly less than 5 centimetres, and the total number
of cells is 20 millions. The mesh has been constructed in order to have the
highest possible resolution on the blade and the near wake, taking into account
the rotation of the fluid. The huge size of the domain allow to take full advan-
tage of local refinement, having a sufficient spacing between two level-jumps is
fundamental in order to preserve the accuracy of the solution.
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(a) Mesh, x = 0

(b) Mesh, y = 0

Figure 4.23: Blade simulation, mesh
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The adimensional parameters for the preliminary simulation are:

• Reynolds number: Re = 1000

• Rossby number: Ro = 3.33

A normal in service value of the Reynolds number is of the order of 106, but the
aim of the considered simulation is not the reproduction of the real working con-
dition of the blade, indeed a very low Reynolds number allows to rapidly assess
the quality of the rotating frame model without using an exaggerate amount of
computational resources, since there is no need for an extremely refined grid.
A short run of 5 non-dimensional times has been performed, using 16 nodes
of the PlaFRIM cluster2, each composed by two 12-cores Intel Haswell CPUs
@2.5GHz. This kind of computational nodes are very similar to the one of
the more powerful OCCIGEN machine, therefore they allow a straightforward
portability of the code from the test cluster to the production one. The com-
putational time of a short run is 4 wall clock hours.

Figure 4.24: Contour surfaces of the y-velocity, 9 levels

In figure 4.24 the 3D contour plot is reported, the wake of the body can be
observed, it is clearly visible the rotational effect imposed by the blade. Due to
the low Reynolds and the low resolution of the geometry, the flow is severely
separated, at higher Reynolds numbers and with a sufficiently fine mesh, the
wake should become a thin layer and the turbulent structure should be concen-
trated in the tip region, where a tip vortex forms due to the pressure differential
between the upside and the downside of the blade. The described phenomenon
is well represented in figure 4.1.

2https://www.plafrim.fr/
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(a) Relative velocity magnitude

(b) y-velocity

Figure 4.25: 2D plot of velocities, y = 0
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Since the flow is characterized by a strong three-dimensional character, inter-
preting the qualitative results of this preliminary simulation is not an easy task.
It is useful to plot the velocity field in some planes, such as in figure 4.25, 4.26
and 4.27. Figure 4.25 reports the plots of the relative velocity magnitude and
the y-velocity at y = 0. Since the y-axis is the direction of rotation, the first
plot is dominated by the effect of the rotational speed, the contour lines are
almost circular, but they are disturbed by the blade. The y-velocity field is
characterized by the wake, observed also with the contour plot in figure 4.24,
some inaccurate spots can be observed in correspondence of two level-jumps,
which are placed too close to be blade.

(a) z = -5 m (b) z = -10 m

(c) z = -15 m (d) z = -20 m

Figure 4.26: 2D plots, magnitude of relative velocity

Figure 4.26 reports the plots of the magnitude of the relative velocity for different
position along the blade span; the most important effect of the rotation of the
blade is visible: the tangential speed increases with the distance from the hub
and the angle of attack decreases, therefore the fluid remains attached for longer
near the tip, whereas the airfoils that are operating close to the hub present a
massively separated flow, this is generally true in real world conditions too,
even though the effect partially mitigated thanks to the negative twisting of the
airfoil.
In figure 4.27 the y-velocity is represented in the same sections of image 4.26
and the same phenomenon can be observed. In this figure the recirculation
regions behind the trailing edges of the airfoils are visible, the thickness of the
wake decreases significantly as the distance from the hub increases, thus the
resolution of the grid becomes less and less satisfying closer to the tip. In order
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to capture all the small details a progressive refinement should be employed,
but at the same time, introducing level-jumps across the surface of the body
might lead to other kind of spurious results.
Overall, the preliminary simulation provided a flow field which is in line with
the physics of the problem, the rotational effect is correctly represented. The
numerical method needs to be furtherly improved across the level-jumps, and
a globally finer mesh has to be employed in order to simulate the turbine real
operative conditions, but the results presented in this chapter represents a good
starting point.

(a) z = -5 m (b) z = -10 m

(c) z = -15 m (d) z = -20 m

Figure 4.27: 2D plots, y-velocity
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Conclusion

In this thesis a innovative mathematical model has been proposed to deal
with fluid-structure interaction problems. The penalized incompressible Navier-
Stokes equations are solved using a predictor-corrector scheme, a Wall Modelled
Large Eddy Simulation model has been introduced in order to simulate high
Reynolds turbulent flows and a classic Euler-Bernoulli finite element formula-
tion has been employed for the structure.
The fluid model has been tested to its limits, thanks to an in-house developed
and stable second order cartesian code. Some spurious oscillation have been
found when high Reynolds flows are not enough resolved, but it has been shown
that refining the mesh these phenomena tend to disappear. The flow past a
cylinder test case has been used as a benchmark to evaluate the performance of
the model, experimental data found in literature have been compared to the re-
sults obtained in the present work, and a generally good accordance was found.
The structural model has been validated comparing numerical results with the
analytic theory of beams, no issues at all were encountered with the finite ele-
ment solver, results were perfectly aligned with analytic formulae.
Once the fluid model was validated, its extension to Octree grid has been deeply
investigated, in particular, the treatment of level-jumps required special atten-
tions. The possibility of introducing local mesh refinements while keeping a
cartesian frame is an attractive feature of Octrees, but on the other hand, level-
jumps have revealed to be main sources of instabilities and numerical errors, an
accurate and robust discretization at level-jumps is the key of a valid Octree
solver. An alternative stencil has been proposed in order to deal with local re-
finements, the validation has shown that in some special cases the second order
can be achieved, but in general, the order of convergence lies between 1 and 2,
depending on the number of refinements and their configuration.
Another criticality has been found in the first order semi-Lagrangian scheme:
the discretization of the advection equation with this approach is unstable, the
method is not Total Variation Diminishing, and the reason has been found in
the Radial Basis Function interpolation which does not preserve the maximum
and the minimum of the interpolating data. A limiter function has been em-
ployed as a stabilization of the numerical scheme. The methodology has been
tested on a low Reynolds flow past a sphere, and the results where similar for all
the test cases performed. Moreover, the high Reynolds flow past a cylinder has
been retested using the Octree solver, the simulation was slightly underresolved,
but overall results were in line with results found in the scientific literature.
In the last chapter the modelling of a wind turbine blade has been discussed, the
geometry has been discretized using a structured grid of Lagrangian markers,
in order to make it compatible with the Octree solver. A non-inertial coordi-
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nate system has been employed, thus the centrifugal and Coriolis effect had to
be added to both the Navier-Stokes solver and the FEM model. The rotating
frame of reference has been tested on both the structure of the blade and the
fluid simulation, the results obtained in the preliminary simulations are in line
with the physics of the problem.
There are still some minor adjustment to be done, but the present work helped
in the detection of some critical aspects related to the model that has been
proposed, in particular with the implementation of the method itself on Octree
grids. Future developments will start from the solid basis estabilished during
the validation phase, which certified that the proposed model is able to predict
with accuracy challenging high Reynolds flows, which is an excellent result for
the immersed boundary method.
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