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Abstract

The thesis aims at developing the calculation kernel for the efficient extrac-
tion of the inductive and capacitive coefficients of the partial element equiv-
alent circuit method.

The method will be then applied to the study of a 12-channel RF coil
array of a MRI scanner.
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Chapter 1

Introduction

In this introductory chapter, some basic EM relationships will be recalled to
be used as starting point for the following PEEC development.

1.1 Maxwell’s equations

Maxwell’s equations, beyond being the fundamental laws of electromagnet-
ics, are the basis of the PEEC method, therefore it is useful to state them
beforehand, all at once.

divD = ρ (1.1)

divB = 0 (1.2)

curlE = −∂B

∂t
(1.3)

curlH =
∂D

∂t
+ J (1.4)

The first two equations are named after Carl Friedrich Gauss. They are
the electric Gauss’s law (1.1) and the magnetic Gauss’s law (1.2). Equation
1.3 bears the name of as many as three physicists Faraday, Neumann and
Lenz that are credited for it. The fathers of equation 1.4 are Ampère and
Maxwell; who contributed each a term of the right-hand side. Maxwell was,
as well, the first to write down all of them in a complete form, thus the name
of the whole set.

The above equations are general in that the media can be non-homogeneous,
non-linear and non-isotropic. They form a set of partial differential equations
relating time and space derivatives to charge and current densities.
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1.2 Constitutive equations

In isotropic and linear media the following identities apply.

D = εrε0 E (1.5)

B = µrµ0 H (1.6)

J = σE (1.7)

Since PEEC method usually deals with non-magnetic material, µr is not
of much interest and is taken to be one both for conducting and isolating
media.

It is worth, instead, spending few more words on equation 1.5. While
permittivity ε for dielectrics is a well known topic, explained in almost ev-
ery physics book, not the same is true when the concept is associated with
conductors.

What’s the electric permittivity of a good conductor? There is no
simple answer. In these media conduction current densities J are so much
larger than displacement current densities ∂D

∂t
, [1].

To show the reason of this, consider a material of conductivity σ and
relative permittivity εr subject to a sinusoidal alternating electric field for
which Ampère-Maxwell’s equation (1.4) can be written in terms of phasors.

curlH = jωD+ J (1.8)

Given equations 1.6 and 1.7, one can compare amplitudes of the two terms
at the right-hand side.

∣

∣

∣

∣

jωD

J

∣

∣

∣

∣

=
ωεrε0

σ
(1.9)

In a good conductor, it may be assumed a conductivity σ ≈ 107 S
m

and a
relative electric permittivity er ≈ 1, as for ordinary dielectrics, meaning the
above ratio is in the order of f

1017
at a frequency f .

In conclusion, the contribution of displacement currents is negligible com-
pared with conduction currents, leaving flexibility in choosing the permittiv-
ity value of conductors that, for convenience, can be taken equal to the one
of the dialectic surrounding them. This assumption shouldn’t imply much
error for the reason previously detailed, however, the consequences have not
been investigated yet.

5



The environment being shaped, with these choices, is such that it allows
the use of the homogeneous space solution for the electric and magnetic
potential, explained in the next section.

1.3 Electric scalar and magnetic vector po-

tential wave equations

Usually Maxwell’s equations are solved by making use of the electric scalar
Φ and magnetic vector potential A. PEEC represents no difference resorting
in its development to the solution of the potentials’ wave equations, which
will be shortly introduced.

Magnetic Gauss’s law (1.2) states that the flux density B is a divergence
free vector field hence there exists a vector potential A such that

B = curlA (1.10)

Replacing 1.10 for B in Faraday’s law (1.3) leads to the following.

curl

(

E+
∂A

∂t

)

= 0 (1.11)

The term between parentheses is curl free therefore can be written as
gradient of a scalar function, the electric scalar potential.

−gradΦ = E+
∂A

∂t
(1.12)

To synthesize, equations 1.10 and 1.12 define respectively the magnetic
A and electric potential Φ.

In linear media Ampère’s law (1.4) can be rewritten to get

curl curlA = µ

(

∂D

∂t
+ J

)

(1.13)

which results in 1.14 if equation 1.12 is employed.

curl curlA+ µε
∂2A

∂t2
= µJ− µεgrad

(

∂Φ

∂t

)

(1.14)

Using the vector identity recalled below,

curlcurl · = grad div · −∆ · (1.15)
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equation 1.14 becomes

∆A− µε
∂2A

∂t2
= −µJ+ µεgrad

(

divA+
∂Φ

∂t

)

(1.16)

which can be further simplified by considering that the magnetic vector po-
tential is defined with some degree of freedom. Specifically, any vector field
whose curl is zero can be added to A leaving the magnetic flux density un-
changed.

Denoting the old magnetic vector potential as A′, the new magnetic vec-
tor potential becomes A = A′ + grad f , where the arbitrary vector field is
expressed as the gradient of a scalar function f , exploiting the fact that it is
conservative.

If f is chosen in such a way that

∆f = −divA′ − ∂Φ

∂t
(1.17)

or equivalently that

divA+
∂Φ

∂t
= 0 (1.18)

which is called the Lorenz condition, then equation 1.16 becomes the mag-
netic vector potential wave equation.

∆A− µε
∂2A

∂t2
= −µJ (1.19)

Similarly for the electric scalar potential, taking the divergence of equa-
tion 1.12 and substituting E in terms of D (1.5) leads to

∆Φ = −divD

ε
− ∂divA

∂t
(1.20)

which can be further simplified by plugging in the electric Gauss’s law (1.1)
and the Lorenz condition (1.18), obtaining the electric scalar potential wave
equation.

∆Φ− ∂2Φ

∂t2
= −ρ

ε
(1.21)

1.3.1 Solution

In an homogeneous unbounded region V ′ the solution to the wave equation
for the electric potential (1.21) is

Φ =

∫

V ′

∫

t′

ρ

ε
g(t− t′, r− r′) dV ′ dt′ (1.22)
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where g is known as the Green’s function, which, in general, is the impulse
response of a linear differential equation.

The Green’s function for the wave operator is

g =
δ(t− t′ − |r−r

′|
ν

)

|r− r′| (1.23)

where ν = 1√
µε

is the finite wave speed in the medium, [2].

The expression for the electric potential used in 1.22 is unusual, 1.24 is
more common. However, 1.22 is the most explicative if the wave equation is
solved through the Green’s function approach.

Φ =

∫

V ′

ρ(t− |r−r
′|

ν
)

4πε|r− r′| dV ′ (1.24)

Finally, the solution for the magnetic vector potential can be found in a
similar way on a component per component basis, obtaining

A =

∫

V ′

µJ(t− |r−r
′|

ν
)

4π|r− r′| dV ′ (1.25)

1.4 Electric field integral equation

Rewriting equation 1.12 for the electric field E results in 1.26.

E = −gradΦ− ∂A

∂t
(1.26)

This equation has so much importance to deserve a name on its own:
Electric Field Integral Equation, EFIE for short. It writes the electric field
E in terms of the scalar and magnetic potential that, as it has been detailed
in the previous section, can be expressed as integrals over all the charge and
current sources.

1.4.1 EFIE for conducting regions

A less general, but more relevant equation for the development of the PEEC
method is the EFIE written for points belonging to a conducting region with
contributions to the electric field originating from sources not in the domain
under study.

The total electric field is the sum of the scattered electric field, the one
generated by the charges and currents defining the scalar and vector poten-
tial, and the incident electric field due to external charges or currents.
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Etot = Esca + Einc (1.27)

Equation 1.27 can be developed further by substituting the scattered elec-
tric field for the right-hand side member of the EFIE (1.26) and by replacing
the total electric field with the constitutive equation 1.7, recalling that 1.28
is being written for a point in a conducting media.

Einc =
J

σ
+

∂A

∂t
+ gradΦ (1.28)

1.5 Continuity equation

∂ρ

∂t
+ divJ = 0 (1.29)

The continuity equation, expressed in 1.29 with its differential form, states
the electric charge conservation. Even though it doesn’t add anything to
Maxwell’s equations, from which could be obtained, it deserves a spot of its
own. In fact, together with the EFIE it makes up the set of partial differential
equations defining the EM problem.
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Chapter 2

Triangular-mesh-based PEEC

PEEC (Partial Element Equivalent Circuit) is a numerical method employed
for the approximation of EM (electromagnetic) problems in such a way that
casts them into circuit solving problems. The method dates back to 1970s
when Albert E. Ruehli working at IBM’s Watson research facility in York-
town Heights, NY, first devised it. His article [3] is widely reported as the
pioneering work that gave birth to the method.

PEEC is so called since it deals with equivalent circuits made of circuit
elements (inductances, capacitances), which are said to be partial in the way
that they are defined for parts (cells) rather than complete conductors.

The first step of the approach is to split the system of conductors into
cells, for which equivalent circuits are derived and then arranged together.

Once the equivalent circuit of the whole system is built, the desired elec-
trical responses are obtained via a network analysis program, usually Spice-
like circuit simulators [4]; Ngspice [5] is one of them. This type of approach
proves effective when the dimension of the problem is small, i.e. there are
few cells and weak mutual couplings between them; in all other situations
the solution has to be carried out through code written for the purpose.

After so many years PEEC is still an active topic of research and much
work needs to be done; proof is that during the writing of this thesis has
been published the first book entirely dedicated to PEEC, [6]. The book,
written among the others by Ruehli, tries to gather all that has been done in
this area and spread across various articles since the early days, helping to
introduce more and more people to this rather difficult subject. Before this,
only sections of books, as [7], were available.

PEEC started as a numerical method for rectangular geometries, [3].
Only later, it was extended to non-orthogonal, [8], and ultimately to tri-
angular meshes, [9] and [10].

This chapter aims at developing the techniques involving triangles, which
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are often preferred because their meshing can be easily automated, i.e. rea-
sonably complicated computer programs can be written to perform the task.

Modelling arbitrarily shaped surfaces with such patches introduces some
degree of approximation, however, most of the time, the geometrical variation
is so small that can be simply neglected. Furthermore, triangles are widely
recognised to conform well to any kind of surface.

2.1 Basis functions

2.1.1 Current basis functions

The current density J is one of the unknowns of the EM problem and belongs
to a space, here referred as V , which collects all the functions v defined on
the conducting structure and satisfying the following boundary condition:

• If n̂ is taken to be the surface normal unit vector then v · n̂ = 0. This
is a direct consequence of the charge continuity equation (1.29).

V is an infinite dimension space, therefore finding a solution in it can
become quite involved if not impossible. For this reason the possibility of an
exact solution is left in favor of an approximate one, sought within a finite
dimension sub-space.

The sub-space has to be chosen in such a way that one of its functions can
retrace the exact solution as closely as possible. As a result, the next step
in the PEEC method is to build an appropriate set of basis functions, whose
linear combination can well represent J. Two possibilities will be explored:
RWG and Mackenzie.

RWG basis

For Rao-Wilton-Glisson (RWG), [11], each basis function fn is associated with
an interior edge and it is null on every triangle except the two neighboring
the nth edge.

A space built with such basis automatically satisfies the boundary con-
dition stated at the beginning of the section. This fact can be evinced from
its analytical formulation given in 2.1.

fn(r) =







ln
2A+

n
ρ+
n when r is in T+

n
ln

2A−

n
ρ−
n when r is in T−

n

0 elsewhere

(2.1)

11



Figure 2.1: Triangle pair and geometrical parameters associated with interior
edge.

where T+
n and T−

n are the two triangular patches, A+
n and A−

n their respective
areas, ln the length of the interior edge and ρ+

n and ρ−
n are vectors originating

or ending in the vertex opposing the common edge, as shown in figure 2.1.
An expression for the current density field can be given as a linear com-

bination of basis functions.

J =
N
∑

n=1

Jnfn (2.2)

Since the normal component of fn is unitary at the nth edge, each Jn
coefficient acquires special meaning, being the uniform current density pass-
ing through the edge. To further clarify this statement, equation 2.2 can be
rewritten as

J =
N
∑

n=1

In
fn

ln t
(2.3)

highlighting In, the current flowing past the nth edge, and t, the thickness
of the conducting surface.

For the model to be valid, the thickness needs to be order of magnitude
smaller than the triangles’ characteristic length.

t has been assumed constant for the whole surface, however nothing pre-
vents from making it a variable of the triangular patch, with the possibility
of analysing more general problems.

The use of this basis leads to some limitations in the structures that can
be treated. An hypothesis has been implicitly made, when defining the RWG
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Figure 2.2: T-like structure.

Figure 2.3: Split and joint by ideal shorts T-like structure.

basis, that every edge is attached to no more than two triangles.
The structure represented in figure 2.2 is one of those the approach de-

scribed so far wouldn’t be able to solve. However, there exits a workaround,
an example of which is reported in figure 2.3. Here, the surface is cut along
the critical edges obtaining two parts that are subsequently connected to-
gether through ideal shorts. For clarity purposes, the gap between the two
surfaces has been exaggerated, however, it could be made extremely small or
even null with proper modelling.

A more general, but surely slower approach is reported in [12], where the
basis functions are identical to those presented here except for the fact that
they only span a triangle. This substantially doubles the current unknowns
but leaves the possibility for properly analysing structures like figure 2.2.
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2.1.2 Charge basis functions

The previous subsection has been dedicated to the first unknown of the EM
problem; it’s time, now, to discuss the second and last one: the charge density
ρ, which, in general, belongs to a space, which will be referred as X, of all the
scalar functions defined on the conducting domain. In a similar way to what
has been done for the current density, a dimension reduction ofX is necessary
for a numerical solution. The basis for ρ is to be chosen in accordance to
the current density in such a way that leaves the possibility to satisfy the
continuity equation anywhere in the conducting domain. Although, this leads
to a much cleaner approach, standard PEEC does satisfy 1.29 only globally
for few determined regions, nevertheless, its effectiveness has been shown
several times.

To obtain the basis for the charge density the finite dimension expression
of the current density (2.2) is being substituted in the continuity equation.

∂ρ

∂t
= −div

N
∑

n=1

Jnfn = −
N
∑

n=1

Jn div fn (2.7)

It can be proved (appendix A) that

div fn =







ln
A+

n
when r is in T+

n

− ln
A−

n
whenr is in T−

n

0 elsewhere

(2.8)

These functions are known as pulse doublets, [14].
By integrating equation 2.7 with respect to time, it will be clear the

appropriate basis for the charge density.

ρ = −
N
∑

n=1

div fn

∫

t

Jn dt+ Z (2.9)

where Z is the constant of integration, a function of the only position.
Selecting div fn as the basis would seem the proper choice, however, by

doing so no changes in the total charge of the conducting surfaces would be
allowed. This is not strange because, in the continuity equation used for the
derivation, the influence of external currents has been totally disregarded.

As a result, since the objective is to model the behaviour of the conducting
structure together with other external components that could bring excessive
charge on it, a different, larger basis that comprises div fn but adds the
possibility of a total charge different from zero is to be adopted. This is
the pulse function basis, which describes the space of the piecewise constant
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functions. The pulse function um is associated with the mth triangle where
it takes unitary value and it is zero on every other.

The following equation reports the finite dimension expression of the
charge density.

ρ =
M
∑

m=1

ρmum (2.10)

where ρm is the value of the uniform electric charge density associated with
the mth triangular patch.

In a similar way to the current density, 2.10 can be rewritten to put in
evidence the total charge Qm.

ρ =
M
∑

m=1

Qm

um

Amt
(2.11)

2.2 Weak formulation of the problem










Einc =
J

σ
+

∂A

∂t
+ gradΦ

0 = divJ+
∂ρ

∂t

(2.12)

The EM problem, represented by 2.12, can be numerically solved by
putting it in its weak formulation (2.13).















∫

S

v · Einc ds =

∫

S

v · J
σ
ds+

∫

S

v · ∂A
∂t

ds+

∫

S

v · gradΦ ds

0 =

∫

S

x
∂ρ

∂t
ds+

∫

s

x divJ ds

(2.13)

2.13 is to be verified for any function v in V , the infinite dimension space
of the current density, and for any x in X, the infinite dimension space of
the charge density.

The procedure linking equation 2.12 to 2.13 is known as testing while v

and x, the kernels of the integrals, are known as test functions.
From now on the focus will be on the weak formulation of the EFIE

that can be further developed using the vector calculus identity div (Φv) =
divvΦ + v · gradΦ, leading to
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∫

S

v · Einc ds =

∫

S

v · J
σ
ds+

∫

S

v · ∂A
∂t

ds−
∫

S

divvΦ ds+

∫

S

div (Φv) ds

(2.14)
Green’s theorem can be applied to the last term obtaining

∫

∂S
Φv · n̂ dl,

that is recognised to be null since v · n̂ = 0 on the boundary, reducing 2.14
to 2.15.

∫

S

v · Einc ds =

∫

S

v · J
σ
ds+

∫

S

v · ∂A
∂t

ds−
∫

S

divvΦ ds (2.15)

The following will be limited to the derivation of the quasi-static PEEC
for the sake of simplicity, although a full-wave formulation could be obtained
in a similar way. Quasi-static PEEC means neglecting the time retardation
in the integral formulation of the potentials, equations 1.24 and 1.25. This
can be done correctly when the wavelength of the highest frequency in the
excitation is much longer than the characteristic dimension of the structure,
[15]. The vector magnetic and scalar electric potentials appearing in 2.15 can
be expressed in terms of current and charge sources, using the non retarded
expressions.

∫

S

v · Einc ds =
1

σ

∫

S

v · J ds+

µ t

4π

∂

∂t

∫

S

v ·
∫

S

J

|r− r′|ds
′ ds−

t

4πε

∫

S

divv

∫

S

ρ

|r− r′| ds
′ ds (2.16)

2.3 Problem discretization

During decades of numerical analysis many discretization approaches have
been devised and proved effective. They translate the solution of a set of
partial differential equations into a system of linear equations. This section
focuses on:

• Galërkin approach

• Collocation approach
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differing for the testing procedure employed. The interested reader can refer
to [16] for a more complete list of techniques.

So far no substantial approximation has been done, in fact, the weak
formulation has just been an analytical elaboration of the starting problem.
However, in order to pursue a numerical solution it becomes necessary to
do a big one, that is reducing the space dimension of the test and solution
functions.

2.3.1 Galërkin approach

In this section, the Galërkin approach will be applied to the EFIE leaving
for the continuity equation only the final result. The first step is reducing
the dimensions of the spaces for the charge and current density, employing
the basis already developed.

∫

S

v · Einc ds =
1

σt

N
∑

k=1

Ik

∫

S

f · fk
lk

ds+

µ

4πt

N
∑

k=1

∂Ik

∂t

∫

S

v ·
∫

S

fk

lk|r− r′|ds
′ ds−

1

4πεt

M
∑

k=1

Qk

∫

S

divv

∫

Tk

1

Ak|r− r′| ds
′ ds (2.17)

The Galërkin method is widely recognized for using as test functions the
same functions for the expansion of the scalar and vector unknowns. This
allows to break down 2.17 in an equivalent set of equations, as many as the
number of interior edges N .

1

ln

∫

S

fn · Einc ds =
1

σlnt

N
∑

k=1

Ik

∫

S

fn · fk
lk

ds+

µ

4πln

N
∑

k=1

∂Ik

∂t

∫

S

fn ·
∫

S

fk

lk|r− r′|ds
′ ds−

1

4πεA+
n

M
∑

k=1

Qk

∫

T+
n

∫

Tk

1

Ak|r− r′| ds
′ ds+

1

4πεA−
n

M
∑

k=1

Qk

∫

T−

n

∫

Tk

1

Ak|r− r′| ds
′ ds

∀n ∈ N

(2.18)
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Each of the equations 2.18 can be rewritten in a more compact form by
lumping the integrals into parameters.

V inc
n =

N
∑

k=1

IkRpnk +
N
∑

k=1

∂Ik

∂t
Lpnk −

M
∑

k=1

QkPpn+k +
M
∑

k=1

QkPpn−k (2.19)

Equation 2.19 is susceptible of a circuit interpretation. The Rp terms are
nothing more than resistances. Lps are one self and several mutual induc-
tances. Pps are known as coefficients of potential (capacitive terms) while
the left-hand side member is a voltage source. It can be proved that only
five out of N resistive terms are non null, they could be even less if some of
the edges belonging to the two triangles with the nth edge in common are of
the boundary kind.

The whole equation 2.19 can be thought as a Kirchhoff’s voltage law for a
network’s branch. As it’s known from basic electrical engineering, in order to
solve a circuit both Kirchhoff’s voltage and current laws need to be written,
therefore one more set of equations is to be obtained. Inside the framework of
the Galërkin approach, this is done by testing the continuity equation (1.29)
against the pulse functions. In practice, it suffices to write the conservation
of the electric charge for every triangular patch.

∂Qm

∂t
=

3
∑

k=1

±Ik ∀m ∈ M (2.20)

where the Ik is to be taken positive or negative depending on the direction
of the conventional current, that could be flowing in or out of the triangle.

Similarly to 2.19, 2.20 can be interpreted as Kirchhoff’s current laws for
network’s nodes.

PEEC implementing Galërkin method is immediately recognizable for
having symmetric mutual couplings between partial elements, Lpkn = Lpnk
and Ppkm = Ppmk, leading to some major results.

Let’s suppose to deal with a problem whose magnetic coupling is described
by an n×n matrix, then only n(n+1)

2
elements need computation with savings

in terms of both time and memory. The same argument can be repeated for
the coefficients of potential.

Another major result regards the equivalent circuit, which could be drawn
out of the parameters using only passives (resistances, capacitances, induc-
tances and transformers), avoiding controlled sources. This is intuitively
satisfying in the possibility of representing a passive physical system with
passive electrical components.
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Figure 2.5: Collocation approach: current test function.

2.3.2 Collocation approach

Standard PEEC has customary been based on the Galërkin approach and
on the symmetry of circuit elements, [6]. The same is true for those based
on triangular meshes, [9] and [10], that, however, have also witnessed other
solutions. For instance, in [17] a different choice for the test functions is
done. In particular for the EFIE, test functions are chosen in a space W , a
sub-space of V , whose basis is formed by the functions wn in 2.21, one for
each interior edge.

wn(r) =











λ̂
+

n when r belongs to λ+
n

λ̂
−
n when r belongs to λ−

n

0 elsewhere

(2.21)

where λ+
n and λ−

n denote the segments connecting the midpoint of the edge
n to the centroids of the two neighboring triangles, T+

n and T−
n respectively,

while λ̂
+

n and λ̂
−
n are unit vectors directed along the λ+

n and λ−
n segments

pointing towards or away from the midpoint as shown in figure 2.5.
The expansion functions for the unknowns remain those developed at the

beginning of the chapter. Therefore, the collocation approach starts differing
from Galërkin only in equation 2.17, when the test function space is reduced
into W , leading to the following:

∫

S

wn · Einc ds =

∫

S

wn ·
J

σ
ds+

∂

∂t

∫

S

wn ·A ds−
∫

S

Φdivwn ds

∀n ∈ N

(2.22)
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The next step is to find an expression for divwn, which is of straightfor-
ward evaluation.

divwn(r) = δ
(

r− b+
n

)

− δ
(

r− b−
n

)

(2.23)

At this point it becomes necessary to plug in the discretized expressions
for the current and charge density. Several choices are available substantially
differing for the current expansion, in the following the development will be
limited to RWG and Mackenzie’s basis.

RWG basis

Introducing the discretized expressions for the sources in the set of equations
2.22 gets

∫

λn

λ̂n · Einc dl =
1

tσ

N
∑

k=1

Ik

∫

λn

λ̂n · fk
lk

dl+

µ

4π

N
∑

k=1

∂Ik

∂t

∫

λn

λ̂n ·
∫

S

fk

lk|r− r′|ds
′ dl−

1

4πε

M
∑

k=1

Qk

∫

Tk

1

Ak|b+
n − r′| ds

′+

1

4πε

M
∑

k=1

Qk

∫

Tk

1

Ak|b−
n − r′| ds

′

∀n ∈ N

(2.24)

Each of the equations 2.24 can be rewritten in a more compact form by
lumping the integrals into parameters.

V inc
n =

N
∑

k=1

IkRpnk +
N
∑

k=1

∂Ik

∂t
Lpnk −

M
∑

k=1

QkPpn+k +
M
∑

k=1

QkPpn−k (2.25)

As can be seen equation 2.25 is formally identical to equation 2.19, the
only difference hides in the expression of the parameters, which result greatly
simplified. The easiness of computation, deriving from it, doesn’t come for
free. In fact, the inductive and capacitive terms are not symmetric anymore,
meaning that in principle all the entries of the coupling matrices need to be
computed.
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As it was for the Galërkin approach, a set of equations is still miss-
ing. However, this time, as opposed to before, it will be derived by passing
through the rigorous testing of the continuity equation (1.29) against the
pulse functions um.

∫

S

um

∂ρ

∂t
ds = −

∫

S

umdivJds ∀m ∈ M (2.26)

Applying Green’s theorem to the second member of equation 2.26 and
plugging in the expression for the charge density at the first member, the
same equation as the Galërkin approach is obtained (2.20).

∂Qm

∂t
=

3
∑

k=1

±Ik ∀m ∈ M (2.27)

Mackenzie’s basis

Introducing the discretized expressions for the sources in the set of equations
2.22 leads to:

∫

λn

λ̂n · Einc dl =
1

wσ

N
∑

k=1

Ik

∫

λn

λ̂n · gk

lk
dl+

µ

4π

N
∑

k=1

∂Ik

∂t

∫

λn

λ̂n ·
∫

S

gk

lk|r− r′|ds
′ dl−

1

4πε

M
∑

k=1

Qk

∫

Tk

1

Ak|b+
n − r′| ds

′+

1

4πε

M
∑

k=1

Qk

∫

Tk

1

Ak|b−
n − r′| ds

′

∀n ∈ N

(2.28)

and by hiding the integrals behind new parameters, equation 2.25 is obtained.
The testing of the electric charge conservation law won’t be detailed,

suffice it to say, it leads to the same equation 2.27, already found for RWG.

2.4 Equivalent circuit

As it has been seen, both the pursued approaches, Galërkin and collocation,
lead to the same branch (2.19, 2.25) and node-like equations (2.20, 2.27)
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1
Pp

n+n+

∑M, 6=n+

k=1 Ik
Pp

n+k

Pp
n+n+

− +

V inc
n

InIn+

Rpnn

+ −

∑N,6=n

k=1 IkRpnk

+ −

∑N, 6=n

k=1
dIk
dt
Lpnk

Lpnn

In−

1
Pp

n−n−
∑M, 6=n−

k=1 Ik
Pp

n−k

Pp
n−n−

Figure 2.6: Elementary cell of PEEC model.

from which an equivalent circuit can be built. In figure 2.6 one of the many
elementary cells that form the equivalent circuit is being presented.
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Chapter 3

Evaluation of circuit elements

This chapter goes through the formulae for the circuit element parameters,
which are almost as-is implemented in the developed PEEC library.

The focus is on the collocation approach. The Galërkin one, of which
basic principles have been previously given, will be left behind.

3.1 Partial resistances

Rpnk =

{

1
tσ

∫

λn

λ̂n·fk

lk
dl for RWG

1
tσ

∫

λn

λ̂n·gk

lk
dl for Mackenzie

(3.1)

These represent general formulations for both current basis functions. For
Mackenzie’s, only self terms are non-null, while for RWG, even mutual terms
are possible. For these latter case, efficient computation can be reached by
developing two formulae, one for each term (self and mutual).

3.1.1 Self term

RWG basis

Rpnn =
1

tσ

∫

λn

λ̂n · fn

ln
dl (3.2)

The nth self partial resistance is computed by splitting the line integral
over the two triangles neighboring the nth edge and by plugging in the ex-
pression for fn.

Rpnn =
1

2tσA+
n

∫

λ+
n

λ̂
+

n · ρ+
n dl +

1

2tσA−
n

∫

λ−

n

λ̂
−
n · ρ−

n dl (3.3)

By noticing that ρ±
n and λ̂

±
n are parallel on the integration domain:
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Rpnn =
1

2tσA+
n

∫

λ+
n

ρ+n dl +
1

2tσA−
n

∫

λ−

n

ρ−n dl (3.4)

ρ+n and ρ−n are linear functions, therefore computing the integrals becomes
a simple matter of taking the product of the line integral length times the
average of the extreme values, leading to:

Rpnn =
1

2tσA+
n

λ+
n

ρ+n (b
+
n ) + ρ+n (cn)

2
+

1

2tσA−
n

λ−
n

ρ−n (b
−
n ) + ρ−n (cn)

2
(3.5)

where cn is the midpoint of the nth edge. See figure 2.5 for details about
notation.

Still, this is susceptible of simplification, in fact, in a triangle the median
crosses the barycenter at exactly two third of its length. Property that can
be leveraged to write 3.6.

Rpnn =
5

4tσ

(

λ+
n
2

A+
n

+
λ−
n
2

A−
n

)

(3.6)

Mackenzie’s basis

Rpnn =
1

tσ

∫

λn

λ̂n · gn

ln
dl (3.7)

The nth self partial resistance is computed by splitting the line integral
over the two triangles neighboring the nth edge and plugging in the expression
for gn.

Rpnn =
1

tσ

∫

λ+
n

λ̂
+

n · d̂+

n

ln
dl +

1

tσ

∫

λ−

n

λ̂
−
n · d̂−

n

ln
dl (3.8)

Simplifying a tad, a formula directly usable in coding is obtained.

Rpnn =
1

tσ

λ+
n · d̂+

n + λ−
n · d̂−

n

ln
=

1

tσ

∣

∣λ+
n × ln

∣

∣+
∣

∣λ−
n × ln

∣

∣

l2n
(3.9)

3.1.2 Mutual term

RWG basis

Each branch identified by an interior edge is subject to at most four mutual
resistive couplings, one for each edge (not the common) of its neighboring
triangles.
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Figure 3.1: Geometry for resistive mutual term evaluation.

Rpnk =
1

tσ

∫

λn

λ̂n · fk

lk
dl (3.10)

nth edge mutual terms involve integration over only one of the two tri-
angles attached to it. In particular, it is the triangle surrounded by edges n
and k, if k labels the edge source of the coupling. Therefore, a first reduction
is easily achieved restricting the domain of integration.

Rpnk =
1

2tσAnk

∫

λk
n

λ̂
k

n · ρn
k dl (3.11)

where λk
n is the part of λn pertaining to the triangular patch surrounded by

edge n and k, see figure 3.1 for the adopted notation.
To carry on the development, it’s necessary a mathematical description

for ρn
k in terms of more manageable functions, found in [17], here below

reported.

ρn
k(r) = ρn

k(rh)Nh(r) + ρn
k(rn)Nn(r) (3.12)

where h denotes the third and last edge forming the interested triangle,
together with n and k, while Ns are nodal functions (also known as tent,
rooftop functions), so called since their value is one in the subscripted node
and zero on every other, linearly varying in between. The nodes are named
according to the edge opposing them, see figure 3.2 for the indexing of the
vertices and an example of nodal function.

The next step is to replace equation 3.12 into Rpnk, obtaining:
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Figure 3.2: Nodal (tent, rooftop) function.

Rpnk =
1

2tσAnk

(

λ̂
k

n · ρn
k(rh)

∫

λk
n

Nh(r) dl + λ̂
k

n · ρn
k(rn)

∫

λk
n

Nn(r) dl

)

(3.13)
Finally, in a similar way as did in the previous subsection 3.1.1, the inte-

grals, being linear, are trivial and can be computed exploiting the properties
for the barycenter of a triangle.

Rpnk =
λk

n

12tσAnk

·
(

5

2
ρn
k(rh) + ρn

k(rn)

)

(3.14)

3.2 Integrals of the Laplace operator Green’s

function times linear functions on polyg-

onal domains

In this section the problem of integrating the Laplace operator Green’s func-
tion times linear functions on a plane triangle is addressed. It should be clear
that the solution of this problem allows one to obtain results also for polyg-
onal domains, which will be briefly addressed at the end of the discussion.
This study results propaedeutic for the successive development of capacitive
and inductive parameters.

Several articles have been written on the topic, for example [18] and [19].
In [19], an integer numbering of the nodes is put in place and the computation
of integrals having as kernel 1

|r0−r′| is performed in a local reference frame

(u, v, w), identified as follows:
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• Node 1 is the origin of the reference frame.

• The u axis passes through node 2.

• The triangle lays in the uv plane

The article reports the following results:

IN (T, r0) =





IN1

IN2

IN3



 =

∫

T





N1

N2

N3





1

|r0 − r′|ds
′ =







1 −1
(

u3

l3
− 1
)

0 1 −u3

l3

0 0 1











I1
Iua
l3
Iva
v3



 (3.15)

I1(T, r0) =

∫

T

1

|r0 − r′| ds
′ = −|w0|β +

3
∑

i=1

t0i f2i (3.16)

where,

[

Iu
Iv

]

=

[

u0

v0

]

I1 +

[

Iua

Iva

]

(3.17)

[

Iua

Iva

]

=
1

2

[

û

v̂

]

·
3
∑

i=1

m̂if3i (3.18)

f3i =
(

s+i R
+
i − s−i R

−
i

)

+
(

R0
i

)2
f2i (3.19)

f2i = ln

(

R+
i + s+i

R−
i + s−i

)

(3.20)

β =
3
∑

i=1

βi (3.21)

with,

βi = tan−1 t0i s
+
i

(R0
i )

2 + |w0|R+
i

− tan−1 t0i s
−
i

(R0
i )

2 + |w0|R−
i

(3.22)

Lots of symbols have been introduced, hence an explanation is required.
u, v and w identify coordinates in the local reference frame. l3 is the length
of the third edge. û, v̂ and m̂i are all unit vectors. While the meaning of
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Figure 3.5: Trapezoidal approximation.

Note that RWG and Mackenzie expressions appearing in 3.26 can be
synthesized as:

Lpnk =

∫

λn

λ̂n ·Ak (r) dl (3.27)

where Ak (r) is the magnetic vector potential at a point r due to a unitary
current passing through the kth edge.

This notation is convenient in the way that peculiarities between the two
approaches are being hidden behind this term, and the issue of numerical
approximation can be dealt with indifferently.

3.4.1 Line integral approximation

Several approaches are available for the approximation of a line integral,
they differ for the amount of error committed but all are valid alternatives.
Typically, a large number of points Gaussian quadrature rule is employed.
This procedure can become computationally expensive, therefore, since this
thesis is all about optimization and speed, a simpler two-point trapezoidal
rule has been preferred.

Lpnk =
(

λ+
n + λ−

n

) λ̂
+

n ·Ak

(

b+n
)

+ λ̂
−
n ·Ak

(

b−n
)

2
(3.28)

An even simpler rectangular approximation is also made available through
the developed library, which has been verified to return a cleaner code flow.

Lpnk = λ+
n ·Ak

(

b+n
)

+ λ−
n ·Ak

(

b−n
)

(3.29)
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Figure 3.6: Rectangular approximation.

3.4.2 Magnetic vector potential due to unitary edge

current

Approximated the line integral, one last thing is left to do, that’s find an
analytical expression for the magnetic vector potential at a point due to a
unitary current flowing past an interior edge.

RWG basis

Ak (r) =
µ

4πlk

∫

S

fk

|r − r′|ds
′ (3.30)

As a starter, the surface integral in 3.30 is reduced and split over the
triangles neighboring the kth edge.

Ak (r) =
µ

8π

(

1

A+
k

∫

T+

k

ρ+
k

|r − r′|ds
′ +

1

A−
k

∫

T−

k

ρ−
k

|r − r′|ds
′

)

(3.31)

3.31 is developed by breaking down ρ+
k and ρ−

k in terms of simpler func-
tions using identity 3.12, already exploited in the section dedicated to partial
resistances.

Ak (r) =
µ

8π

[

1

A+
k

(

ρ+
k (r

+
h )

∫

T+

k

N+
h

|r − r′|ds
′ + ρ+

k (r
+
j )

∫

T+

k

N+
j

|r − r′|ds
′

)

+

1

A−
k

(

ρ−
k (r

+
h )

∫

T−

k

N−
h

|r − r′|ds
′ + ρ−

k (r
+
j )

∫

T−

k

N−
j

|r − r′|ds
′

)]

(3.32)
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Figure 3.7: Geometry for RWG magnetic vector potential evaluation.

Equation 3.32 is full of notation, that although heavy, results necessary,
figure 3.7 is an attempt to be a quick reference for the corresponding geom-
etry.

The solution of integrals appearing 3.32 have been already tackled in the
dedicated section, therefore it’s now just a matter of using those results to
write 3.33, directly computer programmable.

Ak (r) =
µ

8π

[

1

A+
k

(

ρ+
k (r

+
h )INh

(T+
k , r) + ρ+

k (r
+
j )INj

(T+
k , r)

)

+

1

A−
k

(

ρ−
k (r

+
h )INh

(T−
k , r) + ρ−

k (r
+
j )INj

(T−
k , r)

)

]

(3.33)

Mackenzie’s basis

Ak (r) =
µ

4πlk

∫

S

gk

|r − r′|ds
′ (3.34)

Splitting over the two neighboring triangles of edge k:

Ak (r) =
µ

4πlk

(

d̂
+

k

∫

S+

k

1

|r − r′|ds
′ + d̂

−
k

∫

S−

k

1

|r − r′|ds
′

)

(3.35)

The integrals appearing in 3.35 have already been analytically expanded
in the section to them dedicated, therefore:

Ak (r) =
µ

4πlk

[

d̂
+

k I1(S
+
k , r) + d̂

−
k I1(S

−
k , r)

]

(3.36)

Figure 3.8 shows the geometry of the case.
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Chapter 4

Benchmarking

The developed code has been tested against several analytical and numerical
results, obtaining good agreement most of the times. In this chapter the
validation procedure is detailed following problems of increasing complexity,
using the RWG current basis. Key differences with respect to Mackenzie’s
will be highlighted, with a final section about artifacts that have consistently
been found in frequency sweeps.

PEEC is particularly apt at problem complexity reduction. There might
be situations where the resistive nature of the problem of interest is negli-
gible, in this cases it is convenient to exclude resistive parameters from the
final formulation. A concise notation has been devised to address the many
different possible PEEC models. For example, a complete full-wave model
is referred to as (Lp, Pp,Rp, τ)PEEC, while, the notation (Pp,Rp)PEEC
means that it includes partial coefficients of potential Pp and resistances Rp.

4.1 Resistive code

The first test has been run to confirm the correctness of resistive terms. The
theoretical resistance of a conductive slab from Ohm’s law (4.1) has been
compared to the numerical result obtained through a 772 triangle irregular
mesh shown in figure 4.1. The copper slab analysed is 30 cm long, 10 cm
wide and 1µm thick. The resistance obtained through PEEC has a 2% error
from the theoretical 50mΩ, presumably due to the poor modelling of end
connections.

R = ρ
l

w t
(4.1)
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Figure 4.1: Meshed slab’s end connections modelling.
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Figure 4.2: Parallel plate capacitor.

4.2 Capacitive code

The partial coefficients of potential have been tested through the study of
a parallel square plate capacitor, 10 cm sides and 1µm air gap. Figure 4.2
depicts the structure (not to scale).

The evaluation of the capacitance has been performed reducing the in-
verse of the partial coefficient of potential matrix to the short circuit capac-
itance matrix. The size of this short circuit capacitances matrix is given by
the number of physical conductors, quite fewer than the number of partial
conductors. The starting point of the computation is the relationship be-
tween charges and potentials of the subdivided system given by the partial
coefficient of potential matrix.











Pp11 Pp12 · · · Pp1M
Pp21 Pp22 · · · Pp2M
...

...
. . .

...
PpM1 PpM2 · · · PpMM





















Q1

Q2
...

QM











=











Φ1

Φ2
...

ΦM











=⇒ PpQ = Φ (4.2)

Inverting 4.2 and denoting withCsp, the partial short circuit capacitance
matrix, the inverse of Pp, 4.3 can be written.

Q = Pp−1 Φ =⇒ Q = CspΦ (4.3)

Next step is to reduce by column 4.3 noticing that the elements of the
potential vector can assume only two values for the capacitor of figure 4.2:
the potential of the upper plate Φ+ or the potential of the lower plate Φ−.
Columns can be added together transforming the M by M in an M by 2
matrix.

If only the total charges of the plates are of interest, the system of equa-
tions can be further reduced, adding the left-hand side charges together,
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which translates in adding together the rows of Csp. The result is the short
circuit capacitance matrix Cs relating the charges and potentials of physical
conductors.

[

Q+

Q−

]

=

[

Cs++ Cs+−
Cs−+ Cs−−

] [

Φ+

Φ−

]

(4.4)

Solving 4.4 for equal and opposite values of potentials (Φ+ = −Φ−) and
using the capacitance definition C = Q+

Φ+
, the researched value can be easily

found.
For the parallel plate capacitor detailed at the beginning of the section

a numerical result of 88 nF has been obtained which substantially coincides
with the theoretical result computed with the infinite parallel plate approx-
imation (formula 4.5).

C = ε
A

d
(4.5)

4.3 Inductive code

The correctness of partial inductances has been proved simulating the struc-
ture of figure 4.3 (not to scale), which is made up of two conductors: a strip
20 cm long and a square loop of 10mm sides whose center is placed 10mm
away from the axis of the strip. The loop is not completely closed and ex-
hibits a millimeter gap, the voltage across this gap induced by a current
flowing in the strip represents the parameter of comparison. On the other
side, the benchmark is represented by the voltage computed analytically, ap-
proximating the strip as infinitely long and the loop as completely closed.
The formula 4.6 returns 14mV with an excitation of 1A at a frequency of
1MHz. PEEC returns the same with no substantial difference.

Vgap = ωI
µ0l

2π
ln

(

r + l
2

r − l
2

)

(4.6)

4.4 Quasi-static code

The effectiveness of the quasi-static code, that relays on the parameters tested
in the previous sections, has been proved against a consolidated code and
approach. The computed input impedance of a transmission line (figure 4.4)
has been compared to the result reported in [20]. The finite ground plane is
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Figure 4.5: Input impedance for the structure of figure 4.4 with RWG.

ground plane.
Results relative to the input impedance in the range 1 − 10GHz are

available in [20], obtained by the standard PEEC method. The dimensions
and discretization for this geometry are the same as the quasi-static example,
except that the ground plane is now split into two equal halves with 1mm
gap. Figure 4.7 shows the input impedance of the line for this case together
with the referenced result.

−
+

Figure 4.6: Conductive strip above a split ground plane.
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Figure 4.7: Input impedance for the structure of figure 4.6 with RWG.

4.6 Mackenzie’s code

The code employing Mackenzie for the current density basis has shown pretty
consistent with RWG. It was with great surprise to find out good results for
the resistive case, given Mackenzie’s highly distorted representation of the
current density. The other cases followed along, thing that led to exclude
much of this testing from the thesis to avoid dull repetition. The exception
has been the inductive one, which will be briefly addressed.

4.6.1 Inductive code

Triangles are not suited to model structures that extend predominantly in
one direction, for which rectangles should be preferred whenever possible.
The use of Mackenzie’s basis for current density emphasizes the problem
even more. The consequence is that the testing of the inductive parameters
through the structure of figure 4.3 becomes not as straightforward as it was
for RWG. Some considerations regarding the distribution of the current along
the conducting strip need to be done in order to extract useful information
from the PEEC simulation. In this case, the current density is theoretically
constant along and across the strip, a distribution that cannot be correctly
represented by the use of Mackenzie’s basis. These situations are common
in EM problems, therefore the possibility of representing a constant field is
often one of the proprieties required to a basis (for example: RWG).
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Figure 4.8: Meshed rectangle.

For all these reasons, a parameter c that measures how well the Macken-
zie’s basis approximates the constant current density distribution is being
introduced. c will be employed to correct the mutual inductance computed
from the raw output of the simulation, hence it will be referred to as the
correction factor in the following discussion.

c =
|
∫

X
J ds|

|AX Jth|
(4.7)

where X is any triangle or compound thereof over which there should be
a theoretically constant current density Jth, while AX is its area. It can
be noted that 4.7 gives an error in terms of module, however there could
generally even be an error of direction, possibly described defining another
parameter.

The conducting strip of figure 4.3 is regularly meshed stacking up rectan-
gles which are split in triangles as in figure 4.8. In this case, c is computed
over the rectangle considering that the segments connecting the centroid to
the edge midpoints divide a triangle in three equal area quadrangles and that
the current density flowing past the oblique interior edges is w√

w2+l2
the one

passing the interior edges cutting the strip perpendicularly. The correction
factor evaluates as follows.

c =
1

3
+

4

3

w2

w2 + l2
(4.8)

From the formula 4.8, global correspondence between theoretical and dis-
cretized distributions can only be evinced when w = l, with a unitary value
for c.

The mutual inductance for the structure 4.3 is extracted from the numer-
ical results of the PEEC simulation dividing the induced voltage in the loop
by the current in the conducting strip and the angular frequency at which
the simulation is performed. The numerical results are plotted in figure 4.9
against the theoretical value, varying the number of meshing rectangles.

It has been verified that the nature of the loop mesh doesn’t substantially
alter the simulation output. For this reason, it has been chosen once and kept
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Figure 4.9: Mutual inductance of structure 4.3.

constant while varying the mesh of the conducting strip.
From figure 4.9, it emerges that the simulation results are not directly

comparable to the theoretical results, except from the last one. The reason
is to be researched in the misrepresentation of the current density, which
determines the magnetic vector potential hence the voltage induced in the
loop. The factor c, which can be loosely interpreted as the ratio between
the numerical and theoretical current densities, can be directly employed
to correct the mutual inductance. Dividing the “raw simulation” data by
the correction factor, a new series is obtained appearing immediately more
coherent to the theory.

4.7 Frequency sweep artifacts

During testing odd artifacts in frequency sweeps have been verified to ap-
pear for both current density bases. Some attempts to find their cause ended
with no luck. The time at disposal and the available knowledge hasn’t been
enough to find a satisfactory explanation, which would require a more thor-
ough investigation. Other works on standard PEEC have reported similar
anomalies, for instance [21].

To get a better grasp of their nature, consider Pinello’s transmission line
already described in the RWG quasi-static code section. Figure 4.10 shows
an analogous benchmarking but using Mackenzie’s basis, which has been ob-
tained sampling the waveforms with irregularly spaced points. In particular,
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Figure 4.10: Input impedance for Pinello’s transmission line with Mackenzie’s
basis.

around the spotted singularities, a finer frequency step has been employed in
order to catch the sharp variations. Smaller singularities could hide in corre-
spondence of the apparently smoother sections where a coarser sampling has
been adopted. These artifacts alter the waveform only locally which makes
their detection harder, as is the case for figure 4.5. Another feature is that
they seem more pronounced when propagation delays are not included, see
figure 4.11 where the introduction of delays clears the problem.
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Chapter 5

Implementation and

Performance analysis

For this thesis, roughly 4000 lines of code were written, of which 1500 make
up the computational kernel available on GitHub, [22], in the form of C
library.

The PEEC solver has been structured covering the back-end section of
the flow chart in figure 5.1.

The front-end has been left to third-party software. All the examples
in the benchmarking chapter and the still-to-come RF coil study have been
performed using GMSH, [23], for geometry description and meshing, and Par-
aview, [24], for output visualization. Different choices are possible provided
that data is passed to the back-end in the legacy ASCII VTK file format,
which has been chosen for ease of programming.

As now, setting up an EM problem is quite cumbersome, user interface
would greatly benefit from a review.

Now the two more computationally expensive stages in the code will be
discussed.

5.1 Partial element computation

The evaluation of partial elements has noticeable effects on computational
time only at low number of faces. In fact, its algorithm is O (n2), quickly
overshadowed by the solution stage (O (n3)). n could be taken to be the
number of triangular faces or interior edges considering that in well-behaved
structures a ratio of 3

2
exits between them.

As already detailed, two different current density bases have been con-
sidered: RWG and Mackenzie. Before the beginning of the thesis, it was
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Figure 5.1: Flow chart of the developed PEEC code.

thought that a conceptually simpler basis as Mackenzie would have led to
a speed up. As figure 5.2 demonstrates, the assumption has been proven
wrong.

A fair amount of work needs to been done every time the integration
domain is being switched. In the case of RWG, this amount of work is
performed once for each triangular face, while in the case of Mackenzie it has
to be timed by four, with an inevitable increase in number of operations.

In conclusion, unless a completely different approach is devised, the use
of Mackenzie’s basis can be considered no more than an academic exercise.
Practical applications should prefer RWG basis which is faster and better
approximates current density, J.

The core library has been multi-threaded making use of OpenMP, [25],
which has been chosen for its portability and simplicity.

One typically has to call platform-specific routines in order to get multi-
threading. In a POSIX environment, where this PEEC code has been tested,
the alternative would have been pthreads, for example not portable on Win-
dows.

The use of OpenMP is almost as simple as putting

#pragma omp p a r a l l e l f o r

in front of the for loops that are intended to work in parallel.
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Figure 5.2: Times for single-thread computation of partial elements.

The only downside to the use of OpenMP is that the compiler has to
support it.

Figure 5.3 highlights the improvement brought by multi-threading, com-
paring times for the evaluation of partial elements against the library com-
piled as a single-thread. The test was run on a dual core CPU.

5.2 Frequency solution

The frequency solution stage dominates the overall computational time and
is comprised of a for loop over the frequency samples. For each sample the
final linear system is assembled and then solved. The direct method solution
with a time complexity of O (n3) represents the limitation to the PEEC code,
which can be partially soothed exploiting problem symmetries.

The possibility to include rectangular symmetries in the form of a com-
mand line option has been added to the developed code. The following is an
example invocation in which the maximum number of symmetries is spec-
ified: three, one for each plane of the orthogonal 3D space, together with
proper sign (positive or negative).

peec −sx+y+z− i n f i l e . vtk o u t f i l e . vtk

Each symmetry halves the number of unknowns, which means that the
solution time can be reduced by a total top factor of 512, figure 5.4 is proof.
The linear system solution times for a parallel plate capacitor with and with-
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Figure 5.3: Times for single and multi-thread computation of partial ele-
ments.

out symmetries are compared. Despite these promising results, it’s hard to
find problems with more than a symmetry; the parallel plate capacitor should
be regarded as a fortunate case.

Symmetries have effects on memory allocation (64 top reduction factor)
and on partial elements evaluation time (8 top reduction factor) as well.
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Chapter 6

RF coils

In MRI (Magnetic Resonance Imaging), RF coils are any of the radiating
structures for both transmission and reception operating in the radio fre-
quency slice of the spectrum. The explanation of the role they play in the
imaging process will not be detailed, in part, because it would take some
chapters only by itself, but mostly because several good resources already
exist, for example [26], along with a valuable series of Youtube video-lectures.

Said that, a bit of an introduction is still required. The term coil which
will be used throughout the chapter can lead to erroneous interpretations, in
fact, in the field it’s not unusual to see it applied to structures that nothing
have to do with the coils that an electrical engineer is used to. In the early
days of MRI, coils were the only mean to convey RF radiations on a sample
under study, even today they are widely in use, as a consequence the term
has become a synecdoche for any RF structure.

The object of this study is a 12-element microstrip array employed as RF
radiating apparatus in MR head imaging at 7T, corresponding to 300MHz in
precessional frequency of protons. The microstrips making up the array are
ideally laid along and on the exterior of a 300mm diameter cylinder, project-
ing the majority of their magnetic field inside. Each element is 200mm long
and the conducting strip contacting the cylinder is 20mm wide, supported
on a 10mm dielectric substrate of Teflon, with a dielectric constant of 2.1.
This substrate extends 60mm in width and is being backed up on its entire
external surface by a thin layer of copper, working as ground plane. Beside
the essential structure just described, an additional cylindrical conductive
shield 380mm in diameter is employed such that it encloses the RF coils and
separates them from the gradient coils. The complete structure is pictured
in figure 6.1.
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Figure 6.1: 12-channel microstrip RF coil array.

6.1 Microstrip parameters

In the pre-computer era a number of analytical formulae for the analysis and
synthesis of microstrip lines have been proposed. This section focuses on
the characteristic impedance, Z0, and the effective relative permittivity, εe,
which are also the electrical parameters that received the most attention in
scientific literature. εe arises from the modelling of the microstrip as it was
surrounded by an homogeneous dielectric medium.

The arguably most cited set of equations are those reported by Erik O.
Hammerstad in [27], where he revises on the work of H. A. Wheeler, [28],
and M. V. Schneider, [29]. The success of this formulation is probably due to
the conciseness of the expressions reported in 6.1 and 6.2, and the full adher-
ence to the modelling abstraction of the equivalent homogeneous dielectric
medium.

Z0 =







60√
εe
ln
(

8 h
w
+ w

4h

)

, when w
h
≤ 1

120π√
εe[wh +1.393+0.667ln(w

h
+1.444)]

, when w
h
≥ 1

(6.1)

where

εe =
εr + 1

2
+

εr − 1

2





1
√

1 + 12
(

h
w

)



 . (6.2)

These equations are the product of several approximations performed by
different authors and a mixture of analytical and numerical elaborations,
whose detailed explanation is beyond the scope of this thesis. The interested
reader can start by referring to the cited articles.
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6.2 Microstrip coil design

Microstrip coils are designed to be operated at resonant frequencies, which
translates as a constraint on their length. However, this condition can be
easily relaxed through the use of capacitors or inductors at both ends of the
line. Inductors which, indeed, represent a theoretical possibility are not used
in practice. Equal values of capacitance are usually employed as to keep the
magnetic field symmetric and the region of higher intensity in the center of
the line.

With some transmission line theory it is possible to derive equation 6.3 for
the input impedance of a capacitively shunted microstrip, whose equivalent
circuit is shown in figure 6.2.

Zin =
ZCZ0 (ZC + jZ0tan (βl))

2Z0ZC + j (Z2
c + Z2

0) tan (βl)
(6.3)

where β is the phase constant:

β =
ω0

√
εe

c
(6.4)

c is the speed of light in vacuum or air and ω0 = 2πf is the angular Larmor
frequency of protons.

Two types of resonance are possible, one is the series resonance condition
typical of dipole antennae, reached when the reactance component of the
input impedance equals zero. The other, parallel resonance, is practical in
RF coils, where the susceptance part of the input admittance is required to
be zero, [30]. For the case under study, this latter condition is reached, with
reference to equation 6.3, at a particular value of capacitance.

C =
sin (βl)

ω0Z0 (1− cos (βl))
(6.5)
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Figure 6.3: Spice-simulated RF coil Z11(Z22): magnitude and phase.

6.3 Coil characterization

The coil, described in the introductory part of the chapter, shunted with
capacitances, as computed from the formulae of the previous section, has
been simulated through the developed PEEC code.

Before that, a Spice simulation has been run to get a fast approximation.
The results, in the form of impedance matrix, can be found plotted in figure
6.3 and 6.4, together with the used netlist in appendix B.

[

V1

V2

]

=

[

Z11 Z12

Z21 Z22

] [

I1
I2

]

, Z11 = Z22, Z21 = Z12 (6.6)

The resistivity of conductors has not not been taken into account in Spice
as well as in PEEC, in fact, data regarding the thickness of conductors was
missing. The effect of resistive parameters could be negligible, hence their
omission justified, but it should be verified for sure.

6.3.1 PEEC results

PEEC results have been obtained on four different configurations of RF coil.
Longitudinal cuts have been introduced on the ground plane and on the
shield in an attempt to reduce undesired eddy currents generated by gradient
coils (figure 6.5). Two additional configurations with cuts selectively on the
ground or on the shield are also taken into consideration.
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Figure 6.4: Spice-simulated RF coil Z21(Z12): magnitude and phase.

Figure 6.5: RF coil with cuts, external capacitors and ports identified.
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Figure 6.6: Meshed microstrip RF coil without cuts.

Simulating only one twelfth of the complete array has granted the pos-
sibility to employ a sufficiently fine mesh (figure 6.6). This is of course an
approximation but still necessary with the computational resources at dis-
posal. Also, the use of symmetries wouldn’t have helped much, considering
the fact there is only one.

Like Spice, PEEC results are reported in figure 6.7 and 6.8 in a similar
fashion, however, in this case the waveforms are heavily masked by the ar-
tifacts already considered in the benchmarking chapter. Luckily, the lower
part of the spectrum up to around 500MHz, containing the range of frequen-
cies in which the application operates, is free from this problem. A blown-up
of Z11 is provided in figure 6.9, where the resonance shifting effect exerted
by different cuts can be appreciated.

As a final note, it’s interesting to highlight how the capacitances which
have been tuned on the basis of the equations of the previous section bring
the resonance frequency at about 324.9MHz, instead of the desired 298MHz.
This substantial discrepancy is partly due to the analytical approach, which
is based off the two-dimensional approximation of a transmission line, com-
pletely neglecting end effects, and partly due to the difficulties of modelling
end connections inherent to the PEEC method.
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Figure 6.7: PEEC-simulated RF coil Z11(Z22): magnitude and phase.
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Figure 6.8: PEEC-simulated RF coil Z21(Z12): magnitude and phase.
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Chapter 7

Conclusion

A full-fledged PEEC code has been written and applied to the study of a
12-channel RF coil array of a MRI scanner. The computational kernel, in
the form of a C library, has been shared on GitHub, [22], and the related
documentation made available through Doxygen, [31].

7.1 Further development

The developed code is surface-based, which has been good enough for the
study of the application at hand. It would be interesting to see how the
PEEC method behaves with solid structures, in fact, in its simpler form there
is the subtle assumption of a dielectric constant homogeneous throughout the
space, that is even conductors. This is not a problem with triangles since
they do not have a physical volume but could become one with tetrahedra,
for example.

For Mackenzie’s basis, a new approach for calculating resistive coefficients
has been benchmarked with success on different problems, however it lacks
some theoretical background, which should be (have been) provided.

Finally, an investigation of the causes leading to the frequency sweep
artifacts found in PEEC, could reveal extremely interesting.
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Appendix A

Divergence of RWG basis

functions

In this appendix will be proved the divergence of the RWG basis function fn.
Let’s begin by writing the divergence in terms of rectangular coordinates.

div fn =
∂fn

∂x
· î+ ∂fn

∂y
· ĵ+ ∂fn

∂z
· k̂ (A.1)

Note that fn is a piecewise linear function, which means the derivatives with
respect to any of its independent variables (x, y, z) as well as div fn will
be piecewise constant. The value of div fn on the triangle T+

n can be found
exploiting Green’s theorem.

∫

T+
n

div fn dv =

∫

∂T+
n

fn · n̂ ds (A.2)

div fn A
+
n dt = ln dt (A.3)

where dt denotes the infinitesimal thickness of the triangle T+
n . In the last

member the fact that fn · n̂ is non null only on the common edge and there
assumes unitary value has been leveraged, reducing the integral to the com-
putation of an area, although infinitesimal. The expression for div fn can be
finally written.

div fn = ln
A+

n
on T+

n (A.4)

Analogously for T−
n :

div fn = − ln
A−

n
on T−

n (A.5)
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Appendix B

Spice netlist for RF coil

simulation

1 Micro s t r ip RF c o i l
2 Tmicro 1 0 2 0 Td=966p Z0=84
3 C1 1 0 5p
4 C2 2 0 5p
5 Vin 1 0 ac 1 0
6 . ac dec 300 30meg 3g
7 ∗ pr i n t v a r i a b l e s f o r post−pro c e s s i ng Z 11 ( Z 22 ) and Z 21 ( Z 12 )
8 . p r i n t ac i (Vin ) v (2 )
9 . end
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