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Chapter 1

Introduction

Energy is the base for social and economic development. Over the last 50

years, the demand for energy has increased to support the agricultural, in-

dustrial and domestic activities. This has meant rapid grower in the level of

greenhouse gas emissions and the increase in fuel prices, which are the main

driving forces behind efforts to utilize renewable energy sources more effect-

ively.

Although the advantages of renewable energy, it is often characterized by

discontinuity of generation, since most of the renewable resources energy re-

sources depend on the climate.

A way to face the discontinuity of renewable resources is to integrate a storage

system, in order to ensure continuity of service when the renewable resource

can not supply energy. Furthermore, predictive control strategies coupled

with forecasts of stochastic consumption and generation applied to distrib-

uted energy resources is considered with increased interest to tackle the chal-

lenges related to power systems operation with high proportion of production

from renewable sources.

In this thesis, we focus our attention on energy management of a battery

cell, which receive different power set-points depending on which the battery

cell operation changes. In particular, the cell operation depends on sign of
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set-point, i.e. when it is positive the battery is charged by power source,

instead if it is negative the battery is discharged and it provides energy to the

load.

The goal of this work is to compare two energy management strategies,

that have to ensure the respect of voltage and current bounds during battery

cell operation in order to adjust the battery cell power injection such that

the average power consumption at the end of a 5-minutes period matches

the received set-point. The two control strategy, model predictive control

and feedback control, are compared in terms of tracking error, namely the

difference, at end of 5-minutes interval, between the power set-point received

and the realization of battery cell. Furthermore, we also observe which of two

strategy is more suitable to guarantee respect of voltage and current bounds.

Firstly, we improve the measurement set-up in order to obtain a more ac-

curate current measure.

Secondly, we perform an identification of battery cell dynamic equivalent cir-

cuit models through grey-box modelling, which combines a partial theoretical

structure with measured data to complete the model. It leads to parameters

estimation of equivalent circuit for different ranges of state of charge. The

equivalent circuit adopted is a TTC (Two Time Constant), that consist is

two branches made of a parallel between resistor and a capacitor, one series

resistor and a controlled voltage source.

The models, are necessary to develop the model predictive control which relies

on dynamic model of the system thank to it is able to optimise the current

time slot keeping future time slot into account. We describe in detail the im-

plementation of the real-time operation, the control objective and the control

actions for both control type, with particular emphasis on model predictive

control case. Finally, we perform some experiment to show which of two

strategy is more suitable for energy management of battery cell.
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Chapter 2

Experimental Setup

In this section we present the experimental set-up describing how it is com-

posed and how it works. Furthermore, in the second part of this section we

describe the improvement of measurement set-up introducing a shunt resistor

with the relative circuit of data acquisition.

2.1 Test bench features

The test bench is composed by the following elements:

� a climatic chamber hosting the targeted cells and keeping a constant

temperature at 25°C, in steady state conditions the temperature ripple

is of 0.2°C;

� a power source working in the following V/I ranges 0− 80 V, 0− 120 A;

� an electronic load working in the following V/I ranges 0− 80 V, 0− 200

A;

� control PC where a suitable realized software developed using the Lab-

VIEW programming environment is able to perform the monitoring and

control of the whole system (shown in figure 2.1).
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Figure 2.1: Front panel that controls the test bench.

The cell voltage is directly sampled using an analog-to-digital converter

operating a 16 bits with a maximum sampling frequency of 100kHz and

characterized by a bandwidth from DC to 100 kHz (3 dB) with an overall

accuracy of 1, 5 mV.

The cell current is measured using a dedicated hall-effect sensor characterized

by a bandwidth from DC to 100 kHz (3 dB) and an overall accuracy of less

than ±0.5% of the measured current.

Our goal is to improve the current measurement when the current setted

by control panel is near to zero or zero, because the hall-effect sensor used

presents an offset for that value of current, represented in figure 2.2.
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Figure 2.2: Comparison between the measured current by hall-effect sensor (in orange) and

the current setted by control panel (in blue).
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2.2 New measurement setup

We add to measurement setup a shunt resistor and an analog circuit to amplify

and to filter the signal from shunt in order to obtain a better accuracy of

measurement.

The development of filter starts with computation of the cut-off frequency.

These parameters are fixed by the NI 9215, which is an analog input module

that we use with NI CompactDAQ, through a LabVIEW VI for the acquisition

of data. The NI 9215 includes four simultaneously sampled analog input

channels and successive approximation register (SAR) 16-bit analog-to-digital

converters (ADCs) [1].

We have to consider the Nyquist sampling theorem to set the maximum

value of cut-off frequency at 5 Hz, because the sampling frequency setted

on NI 9215 is 10 Hz. Instead, to set the desired gain we have to rate the

resolution of NI 9215 that is 16 bit and the shunt resistor’s features (60 mV

@60 A) . Exploiting the mentioned parameter, and considering that we want a

step of at least 50 mA we compute the minimum gain which is 6.1 V/V=7.853

dB. But we decide to used a bigger gain in order to obtain a better accuracy

of measurement.

To amplify and filter the signal we use two different operational amplifiers,

namely we use AD620 to amplify the signal and the LTC 1050 to filter it.

The circuit implemented is shown in figure 2.3 and it has the following features

fcut−off =
1

2πC3R2
= 4.7747Hz (2.1)

Gain = G = 1 +
49.4kΩ

R1
= 198.6 (2.2)
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Figure 2.3: Implemented circuit.

Hence, we test the new measurement setup for different values of current

in order to compare the performance of shunt current monitoring system with

that of hall-effect sensor. The comparison of results is shown in figure 2.4,

where it emerges that the hall-effect sensor has better measurement capability

for current of value far from 0 A respect to shunt resistor.

Figure 2.4: Current measurement with hall-effect sensor and shunt resistor.
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Instead, when the setted current is near to zero, the shunt resistor gives

us a better measurement of the current, as reported in figure 2.5.

Figure 2.5: Comparison of measurement between hall-effect sensor and shunt resistor when

the current is setted to 0.078 A.

It is important to note that the current is assumed positive when the

battery is charging and negative when it is discharging.

Furthermore, in figure 2.4, it is possible to note that the trend of current

measured by shunt resistor does not follow with constant difference the current

setted, but its trend changes. We observed with other experiments, that this

phenomenon is due to non-linearity of op-amp’s gain for small signal(few mV).

For this reason we decide to use a “ hybrid” system to measure the current.

We configure the acquisition of data in the following way:

� when the setted current is near to zero (i ∈ [−0.3, 0.3] A) the current

measurement comes from the shunt resistor;

� when the setted current is not included in the range [−0.3, 0.3] A the

current measurement comes from hall-effect sensor.

Then, we configure the DAQ (data acquisition system) in order to perform
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the current measure. It is worth noting that it could be possible to obtain an

accurate measurement with shunt resistor for all value of current but this is

out of our purpose.
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Chapter 3

Identification of a battery cell

dynamic equivalent circuit models

The main topic of this section is identification of the system by grey-box

modelling. The aim of identification of models is to obtain circuit models

which are able to describe in the best way the system dynamics in order to

use these models in the MPC formulation.

Furthermore, we illustrate the procedure to obtain the discharge characteristic

of battery cell, which is necessary to study the dynamics of state of charge

Dynamic model identification is carried out by applying grey-box modelling

which is a framework to identify and validate a mathematical model of a

system incorporating its physical knowledge together with measurements from

a real device. Since the values of model parameters strongly depend on the

cell state of charge (SOC), we perform a number of PRBS sessions where

the cell is kept in a specific SOC interval (0-20%, 20-40%, 40-60%, 60-80%,

80-100%), and, for each interval, a model is estimated.

Measurements of current and voltage at cell terminals are acquired through

the LabVIEW VI presented in previous section, and they were acquired at

0.1 s.
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3.1 State of charge estimation

Since we need to capture the dynamics of the battery cell for different value

of state of charge, we have to know which is the level of SOC at the begging

of experiment and how it evolves while the battery cell receives a power set-

point. Since in the VI of acquisition data there is not the SOC computation we

can estimate the state of charge exploiting current and voltage measurements

of the battery cell.

What we want to obtain is the so-called “ discharge characteristic”, which

allows to associate a voltage value to a specific value of state of charge.

The battery cell adopted is a Li-ion cell with the following features:

Parameter Unit Value

Cell minimum voltage V 1.7

Cell nominal voltage V 2.3

Cell maximum voltage V 2.7

Cell nominal capacity Ah 30

Table 3.1: Cell features.

To obtain the discharge characteristic of cell we follow the next steps:

� First of all we discharge completely the cell and after we have to wait

enough time to allow the cell to reach the open circuit voltage.

� Once the cell is completely discharged and the open circuit voltage is

approximately constant we charge the cell employing a square wave of

current that assumes values 0 and 10 A, as shown in figure 3.1.

We use the square wave because in this way we can can alternate a

charge period with a steady state period (both period are long 3 minutes).

During the charge period the cell is charged with constant current of 10

A, instead the steady state (current equal to zero) period is necessary to

allow the cell to reach the open circuit voltage.
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� At the end of cycle the cell is fully charged, and we exploit the current

and voltage measurements to estimate the relationship between the open

circuit voltage (Voc) and the state of charge (SOC).

Figure 3.1: First 60 minutes of waveform of current setted used to charge the cell.

� Therefore, we take as Voc all the value of measured voltage at the end

of all steady state period, just an instant before of the beginning of

charge period. Instead, we compute the charge of cell from the current

measurement according to the Eq. 3.1

Q =

∫ t

0

i(t)dt (3.1)

and the state of charge in accordance with Eq.3.2

SOC =
Q(t)

Qn
(3.2)

where Qn is the cell nominal capacity.
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From the described operation we obtain the discharge characteristic repor-

ted in figure 3.2.

As shown in figure 3.2, the minimum open circuit voltage measured is differ-

ent from the minimum voltage reported in table 3.1 because the latter is a

value that can only be reached during a transitory period. Furthermore, it is

interesting to note that the value of SOC exceeds 100%, that because the bat-

tery is charge with a current smaller than 30 A and it makes possible to store

more than the nominal charge, in this case 2.8322 Ah more that corresponds

to 9.44% of nominal capacity.

Figure 3.2: Computed discharge characteristic.

It is worth noting that the discharge characteristic is strictly dependent

on temperature but in this case, as mentioned before, the temperature effect

is negligible because the battery cell is installed in a climatic chamber which

keeps the temperature constant at 25° C.
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3.2 Grey-box model

Grey-box methodology is a modelling technique which models a dynamic

system by incorporating the physical knowledge of the process with evidence

obtained from experimental data.

The grey-box procedure consist in the following steps [2]:

1. Experiments design Given a device to model, suitable physical quant-

ities should be selected for measurements. The process should be excited

in all the frequency operation range in order to explore all the dynam-

ics of the system. The signal used to excite the system is the PRBS

(Pseudo Binary Random Signal), that is a signal that assumes two states

and whose duty cycle is randomly chosen from a uniform distribution.

Ideally, two datasets should be available, one for parameters estimation

and a second one for validation of the model.

2. Data acquisition and measurements post-processing The physical

quantities of interest have to be measured using appropriate sensors, dis-

cretized with convenient sampling time, sampled at opportune resolution

and stored. Then, we should perform a data post-processing to remove

from the measurements information not inherent to the physical process

to model.

3. Model formulation This phase consists in identifying a set of suitable

physical relationships that describes the nature and the working prin-

ciples of the process to model.

4. Parameters estimation The aim of this phase is to find the most suit-

able set of values for the model’s parameters. It is based on maximizing

the likelihood function of the observation (MLE, Maximum Likelihood

Estimation), i.e. determining the set of parameters that maximizes the

probability of observing the events described by the measurements.
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5. Model validation This phase consists in verifying that the model with

the freshly identified parameters is actually able to describe the physical

phenomena it was intended for. For example, by evaluating any cor-

relations in the model 1-step ahead prediction errors (or residuals) it is

possible to infer if the model can capture all system dynamics or not.

6. Model expansion If the validation process is not satisfactory, an ex-

pansion of the model should be considered, for example by adding a new

state, new parameters or an alternative representation of the physical

process. Each time a new model is defined, the parameters identifica-

tion and validation procedures should be repeated (as discussed in the

previous two paragraphs). Once the new model and the values of its para-

meters are available, statistical tests (e.g. likelihood ratio test) should be

performed in order to verify if the model extension that has been intro-

duced is meaningful. This allows to avoid over-fitting due to an excess

of parameters.

As cited before, we want to estimate one model for each of following interval

of SOC (0-20%, 20-40%, 40-60%, 60-80%, 80-100%), thus we have to apply a

PRBS at each of these intervals.

Starting with the battery completely discharged we charge it until to reach

the Voc that corresponds to 10% of SOC and then we apply it the PRBS.

The PRBS applied is a current signal with mean value approximately near to

zero in order to have at the end of cycle roughly the same value of SOC of the

beginning of experiment. We repeat the same process for the other ranges,

considering as starting point of PRBS the middle value of each interval (i.e.

30%, 50%, 70%, 90%).

A set of mathematical relationships to describe the physical process to

model is used.

Battery voltage models normally adopted for control application consists in
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electric equivalent circuits, which models the electrochemical reactions for in-

creased tractability. In this case, we adopt the so-called two time constant

(TTC), that is an equivalent circuit model for batteries often adopted in

which consists in two series RC branches, where the values of model paramet-

ers normally depend on the battery SOC, cells temperature, and C-rate. The

dependency between parameters and SOC is captured by performing para-

meters estimation for different SOC ranges [3]. Temperature is not considered

since the system is installed in a climatic chamber and the third is neglected

because the cell is operated with a C-rate very close to nominal one.

Figure 3.3: Structure of the equivalent circuit model [3].

The TTC model structure is shown in figure 3.3, where

E = α + βSOC (3.3)

(α and β are parameters to identify) is a controlled voltage source which

describes the open circuit voltage as an affine function of the cell SOC. Model

parameters R1, C1, R2, C2, Rs are normally a function of the cell SOC. In

order to capture this relationship, they are estimated for different SOC ranges

(0-20%, 20-40%, 40-60%, 60-80%, 80-100%).
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3.2.1 Models formulation

Models are formulated by adopting the stochastic continuous-time state-space

representation:

dx = A(θ)xdt+ B(θ)u(t)dt+Kc(θ)dω (3.4)

vk = Cxk +D(θ)uk (3.5)

where vk is the model output and cell terminal voltage, x ∈ Rn system state

vector, n model order, A system matrix, B input matrix, Kc input disturb-

ance matrix, C output matrix, D feedforward matrix, u input vector, ω a

n-dimension standard Wiener process, and θ is the set of model parameters

to estimate.

The model matrices are composed as shown below:

A =

[
− 1
τ1

0

0 − 1
τ2

]
B =

[
1
C1

0 0
1
C2

0 0

]
C =

[
−1 −1

]

D =
[
Rs α β

]
Kc =

[
k1

k2

]

where R1, C1, R2, C2, Rs,τ1 = R1C1, τ2 = R2C2, α, β (values of the cir-

cuit components), k1, k2 (components of the system noise matrix) are the

parameters to be estimated.

Instead, the state vector and system input matrix are:

x =
[
vC1

vC2

]
utk =

 itk
1

SOCk


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3.2.2 Identification of models

Once the model is formulated, specifying the characteristic parameters, and

data have been collected, we have to evaluate its goodness of fit, i.e. how

good it is able to fit the observed data. Goodness of fit is assessed by finding

parameter values of a model that best fits the data procedure called parameter

estimation. Parameters of the model are estimated by applying maximum

likelihood estimation (MLE) on the model one-step-ahead prediction error.

MLE is one of the most widely used method for estimating the parameters.

The MLE selects the set of values of the model parameters which maximizes

the likelihood function. Practically, this maximizes the “ correspondence” of

the selected model with the observed data [4].

When data have been collected and the likelihood function of a model given

the data is determined, it is possible to carry out statistical inferences about

the population, which is, the probability distribution that underlies the data.

Given that different parameter values indicates different probability distribu-

tions, we are interested in finding the parameter value that corresponds to

the desired probability distribution.

MLE affirms that the desired probability distribution is the one that makes

the observed data “most likely”, namely that one must look for the value of

the parameter vector what maximizes the likelihood function L(w|y).

The resulting parameter vector, which is sought by searching the multi-

dimensional parameter space, is called the MLE estimate, and is denoted

by wMLE = (w1MLE
, w2MLE

, . . . wkMLE
) [5].

In short, MLE is one of most adopted method to seek the probability

distribution which makes the observed data most likely.

We apply the principle of maximum likelihood estimation through the

MATLAB function greyest setting the appropriate options. It is worth noting

that it is necessary to set a bound for the estimation of parameters, namely

18



the estimated parameters can not be negative because they represent resistors

and capacitors.

The estimated values of the model parameters are reported in the table

3.2.

SOC 0−20% 20−40% 40−60% 60−80% 80−100%

R1 9.2398e− 04 5.1545e− 04 5.0961e− 04 4.4545e− 04 6.0889e− 04

C1 5.2442e+ 04 1.0896e+ 05 9.6127e+ 04 3.5281e+ 04 9.2099e+ 04

R2 2.4515e− 04 2.4773e− 04 2.0527e− 04 0.0022 2.3196e− 04

C2 284.220 3.4592e+ 04 3.4701e+ 04 2.5077e+ 05 2.2895e+ 04

Rs 0.0053 0.0030 0.0027 0.0027 0.0027

α 1.915 1.9699 1.9299 1.8147 1.7310

β 0.00952 0.0045 0.0050 0.0067 0.0074

k1 −0.1252 −0.1379 −0.1351 0.08819 −0.1878

k2 1.429 0.0416 0.08801 −0.1597 0.1421

Table 3.2: Estimated parameters as a function of the cell SOC.

The following figures show the comparison of the system response with the

measured data for each interval of state of charge.
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Figure 3.4: Comparison of the system response with the measured data at 10% SOC.
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Figure 3.5: Comparison of the system response with the measured data at 30% SOC.

Figure 3.6: Comparison of the system response with the measured data at 50% SOC.
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Figure 3.7: Comparison of the system response with the measured data at 70% SOC

Figure 3.8: Comparison of the system response with the measured data at 90% SOC.

The shown results are obtained using the MATLAB function compare
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which plots the simulated response of a dynamic system model, superimposed

over validation data, for comparison. Furthermore, the plots also displays the

normalized root-mean-square (NRMSE) measure of the goodness of the fit.

It is to note that the result obtained are satisfactory, especially for the ranges

20-40%, 40-60%, 80-90% of SOC (figure 3.5, 3.6, 3.8) where the NRMSE has

respectively the following values 94, 68%, 97.37% and 95.01%. Instead, in the

other two cases, the NRMSE is slightly lower with values of 85.77% for 0-20%

SOC and 87.24% for 60-80% SOC (figure 3.4, 3.7).

We test the prediction performance of the identified models on different

forecasting horizons (1-3600 seconds) and we compare it against a persistent

predictor, namely where the point prediction for a certain time step is the

last available observation. The benchmarking metric is the percentage root-

mean-square of the voltage prediction error:

percentageRMSE(%) =

√√√√ 1

N

N∑
i=1

(Vi − V̂i)2 (3.6)

where Vi is the voltage measurements at time step i = 1; . . . ;N , and V̂i

the voltage prediction. The percentage RMSE is evaluated for both the two-

time-constant and persistent models. At each time step, the correct set of

parameters is chosen according to the level of SOC. The model is discretized

and used to calculate the prediction as a function of the previous conditions

and current value. The predictions of the TTC and persistent models are

shown in the next figures.
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Figure 3.9: RMSE of TTC and persistent models for 10% SOC.

Figure 3.10: RMSE of TTC and persistent models for 30% SOC.
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Figure 3.11: RMSE of TTC and persistent models for 50% SOC.

Figure 3.12: RMSE of TTC and persistent models for 70% SOC.
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Figure 3.13: RMSE of TTC and persistent models for 90% SOC.

It can be noted that the percentage RMS error of the TTC model is sharply

smaller than the one of persistent model. As it emerges from the results, the

percentage RMS error has a kind of periodicity due to the PRBS application.
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3.2.3 Model validation

The model validation consists in evaluating if the models found are able to

capture all time dynamics contained in the training data set.

This is thanks to evaluating residual autocorrelation in time of the model one-

step-ahead prediction errors, which in the ideal case should not contain any

predictable structure and behave as an independent identically distributed

(iid) random process. That means, we have to analyse the autocorrelation of

prediction error for identified model. The prediction error is determined by

subtracting the K-step ahead predicted response from the measured output

and it is computed exploiting the MATLAB function pe, instead we used

the function autocorr for the autocorrelation. The next figures represent the

result of autocorrelation for each model identified.

Figure 3.14: Residual autocorrelation function of predicted error for model at 10% SOC.
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Figure 3.15: Residual autocorrelation function of predicted error for model at 30% SOC.

Figure 3.16: Residual autocorrelation function of predicted error for model at 50% SOC.
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Figure 3.17: Residual autocorrelation function of predicted error for model at 70% SOC.

Figure 3.18: Residual autocorrelation function of predicted error for model at 90% SOC.
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From the results of autocorrelation function it is possible to observe that

the model for each range of SOC is adequate because it is able to absorb all

the possible dynamics of system.

The results shown are relative to training data, namely the data used to

identify the model.

Once identified models, we do some experiments to check the performance

models. For example, we charge the battery from empty to full charge. Then,

we divided the measurement data depending on SOC level and for each range

of level we associate the relative found model. After that, we compare the

system response with the measured data, the persistent model with the TTC

model.

Figure 3.19: Comparison of the system response with the measured data at 10% SOC for

validation data.
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Figure 3.20: Comparison of the system response with the measured data at 30% SOC for

validation data.

Figure 3.21: Comparison of the system response with the measured data at 50% SOC for

validation data.
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Figure 3.22: Comparison of the system response with the measured data at 70% SOC for

validation data.

Figure 3.23: Comparison of the system response with the measured data at 90% SOC for

validation data.
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Comparing the results obtained using training data with the results shown

in the previous figures, it emerges that the system response has worsened, but

at the same time we can observe in the following figures how the TTC models

still has better performance than persistent model for all ranges of SOC.

Figure 3.24: MSE of TTC and persistent models for 10% SOC for validation data.
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Figure 3.25: MSE of TTC and persistent models for 30% SOC for validation data.

Figure 3.26: MSE of TTC and persistent models for 50% SOC for validation data.

34



Figure 3.27: MSE of TTC and persistent models for 70% SOC for validation data.

Figure 3.28: MSE of TTC and persistent models for 70% SOC for validation data.

It is also important to note that in this case models found are not able to
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absorb the complete dynamics of systems, as it is possible to observe from

the plots of autocorrelation function reported in the next figures.

Figure 3.29: Residual autocorrelation function of predicted error for validation data at 10%

SOC.
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Figure 3.30: Residual autocorrelation function of predicted error for validation data at 30%

SOC.

Figure 3.31: Residual autocorrelation function of predicted error for validation data at 50%

SOC.
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Figure 3.32: Residual autocorrelation function of predicted error for validation data at 70%

SOC.

Figure 3.33: Residual autocorrelation function of predicted error for validation data at 90%

SOC.
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It is worth noting that, performing others experiments using a different

value of C-rate respect to the one used during identification of model we

found that performances of models found worse further. This means that to

obtain a more accurate representation of dynamic of system it is necessary

to consider the variation of C-rate in the model identification. However, for

our application we can still consider valid the hypothesis done (i.e. the cell is

operated with a similar C-rate as used in the real operation).
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Chapter 4

An Energy management strategy for

the battery cell

In this section, first, we provide a detail description of real time operation

describing the variables involved for the control strategy. Secondly, the con-

trol objective is carefully presented, highlighting the difference for MPC and

feedback control. Then, we give a detailed account of model predictive control

illustrating its formulation and implementation.

Subsequently, the Kalman filtering is introduced to estimate the states and

the state of charge.

Lastly, we describe the control operation and the difference between feedback

control and MPC.

4.1 Real-time operation

The target of the real-time operation is to adjust the cell power injection

such that the average power consumption at the end of each 5-minute period

matches the respective set-point from the scenario.

The scenario consists in a set of positive and negative value of power, in

particular a positive value of power corresponds to charge the cell, instead a

negative one to discharge.
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Prior to describe the control strategy, it is necessary to introduce the fol-

lowing notations which are valid both for MPC and for feedback control [6]:

� the control strategy is actuated with a sample time of 10 seconds in

order to capture early time dynamics of cell and assure good control

performance taking into account the computing times.

� The index k indicates the rolling 10 seconds time interval of operation.

� At the beginning of each interval k, the real power flow, the cell flow and

the disturb for the previous interval (k − 1) become known thanks to

measurements. They are respectively denoted by Pk−1, Bk−1 and Lk−1.

Where

Pk = Bk + Lk (4.1)

The disturb L is represented as an autoregressive model of third order

(AR(3)) which is a representation of a random process; as such, it is used

to describe certain time-varying processes that in our case could consist

of both demand and generation of power.

The autoregressive model specifies that the output variable depends lin-

early on its own previous values and on a stochastic term (an imperfectly

predictable term); thus the model is in the form of a stochastic difference

equation.

The general form of AR(3) model is:

yt = c+ δ1yt−1 + δ2yt−2 + δ3yt−3 + εt (4.2)

where δ1, δ2, δ3 are the parameters of the model, c is a constant, and εt

is white noise [7].

� The value of the set-point to match, denoted by P ∗k , is retrieved from the

scenario P̂0, P̂1, P̂2, . . . , P̂N−1 as:

P ? = P̂b k
30c

(4.3)
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where b·c indicates the nearest lower integer of the argument and 30 is

the number of 10-seconds intervals in a 5-minutes slot [6].

� The k -index of the first 10-seconds interval is named k and is defined as:

k =
⌊ k

30

⌋
× 30 (4.4)

Instead, the k -index of the last 10-seconds interval for the current 5-

minute slot is [6]:

k̄ = k + 30− 1 (4.5)

Figure 4.1 illustrates in a clearer way the nomenclature, it shows the situ-

ation at the begging of the time interval k = 2, that means the second 10-

seconds period of 5-minutes slot, where the cell power set-points B0
0 and B0

1

were actuated already in the previous two intervals, B0
2 has been just de-

termined using recent information and the average prosumption set-point to

achieve in the 5-minutes interval is given by the first value of scenario P̂0 [6].

Figure 4.1: Representation of first 31 10-seconds period of operation, it is sketched the

situation at the begging of time interval corresponding to k = 2 [6].
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4.2 Control objective formulation

The control objective that we are going to describe in this paragraph is valid

for both MPC and feedback control, with some differences described in detail

later.

At the beginning of each time interval k, the average composite power flow

for the current 5-minutes slot is given by averaging the available information

until k. If k corresponds to the beginning of a 5-minute period, no information

is available yet, and we say that the average composite consumption is zero

[6]. Namely, we define

Pk =

0 k = k

1
k−k
∑k−1

j=k(Lj +Bj) k > k
(4.6)

In model predictive control implementation we introduce two kinds of pre-

diction of disturb L̂k|k, L̂k+1|k, L̂k+2|k, . . . , L̂k̄|k that allow to calculate the

expected average composite consumption for whole duration of the current

5-minutes slot.

In particular, we use:

1. a persistent predictor

L̂j|k = Lk−1 (4.7)

with j = k, . . . , k̄;

2. a predictor defined according to the definition of AR(3) in Eq. 4.2

without the stochastic term ε, namely

L̂k = c+ δ1Lk−1 + δ2Lk−2 + δ3Lk−3 (4.8)

Hence, the expected average consumption accounting for the short-term

prediction is
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P+
k =

1

30
·

(k − k)Pk +
k̄∑
j=k

L̂j|k

 (4.9)

We define also the energy error, expressed in Wh, that is the difference

between the set-point and the realizations in the current 5-minute slot:

ek =
300

3600
· (P ∗k − P+

k ) (4.10)

where 300 is the number of seconds in a 5 minutes interval, while 3600 are

the seconds in an hour interval.
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4.3 Model predictive control

In this paragraph we describe the MPC (Model Predictive Control) imple-

mentation, which cares to adjust the power injections of the cell to com-

pensate the mismatch between the power set-point (scenario) and real-time

realization.

MPC is an advanced method of process control consists in determining the

control action for a given system by solving at each time step an optimization

problem with updated information, where the system constraints are enforced

by implementing prediction models in the optimization problem [6].

MPC rely on dynamic models of the process, obtained according the process

described in the previous chapter. The strength of MPC is that it allows

to optimize the current timeslot keeping future timeslots in account. This

is achieved by optimizing a finite time-horizon, but only implementing the

current timeslot. This means that MPC is able to anticipate future events

and can take control actions accordingly [8].

Therefore, MPC is more suitable to solve an energy management problem.

For example, considering that the short-term predictions indicate that there

will be a mismatch between realization and scenario in the second half of a 5-

minute time slot, the MPC could react in advance while respecting battery cell

operational constraints thanks to enforcing them explicitly in the formulation.

With MPC algorithms it is possible to control large scale systems with many

control variables, and, most importantly, MPC provides a systematic method

of dealing with constraints on inputs and states, even though it is simple to

design and implement [9].

In our case MPC determines the current in order to determine the cell

battery power injection to achieve zero tracking error by the end of each 5-

minutes slot while respecting the DC voltage and current operational limits.

In the MPC optimization problem we adopt as decision variable the DC
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current of battery cell which assumes positive values when the battery is

charging and negative when it is discharging.

We use the current because it admits a convex equivalent formulation of the

optimization problem [6].
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4.3.1 Derivation of the transition matrices for MPC

The voltage of battery cell is modelled by using a linear electrical circuit, as

shown in figure 3.3, its dynamic evolution can be expressed as a linear func-

tion of the battery current and SOC. By applying the transition matrices,

which are developed starting from the voltage discrete state-space model rep-

resentation, the battery voltage can be expressed by:

v k̄|k = φvxk + ψvi i k̄|k + ψv11 + ψvSOCSOCk̄|k (4.11)

where xk is the state vector of the voltage model and it is known thanks to

Kalman filtering (better described later).

In general, the transition matrices are computed considering the following

discrete state-space representation:

xk+1 = Axk +Buk (4.12)

yk = Cxk +Duk (4.13)

where xk ∈ Rn is the state vector at discrete time interval k, uk ∈ R is the

input, y ∈ R is the system output, A is the n × n system matrix, B is the

n × 1 input matrix, C is the 1 × n output matrix, and the scalar D is the

feed-forward matrix [6].

For simplicity, we take in consideration the case with only one input signal,

and we will complete after for the case with multiple inputs.

According to Eq. 4.12, the evolution of the state vector x from a known initial

state x0 as a function of a given input sequence u0, u1, . . . , uN is:

x1 = Ax0 +Bu0 (4.14)

x2 = Ax1 +Bu1 = A(Ax0 +Bu0) +Bu1 = A2x0 + ABu0 +Bu1 (4.15)

iterating until k = N

xN = ANx0 + AN−1Bu0 + · · ·+ A0BuN−1 (4.16)
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Then, we apply the output equation in order to find:
y0

y1

y2
...

yN

 =


C

CA

CA2

...

CAN

x0 +


D 0 · · · 0 0

CA0B D · · · 0 0

CA1B CA0B · · · 0 0
...

... . . . ...
...

CAN−1B CAN−2B · · · CA0B D




u0

u1
...

uN−1

uN


(4.17)

which can be written in compact form as:

y = φx0 + ψuu (4.18)

where y = y0, y1, · · · , yN and u = u0, u1, · · · , uN .

In the case there are multiple inputs, we add an input p = p0, · · · , pN to the

space model:

xk+1 = Axk +Buuk +Bppk (4.19)

yk = Cxk +Duuk +Dppk (4.20)

Then, the system output is written by applying the transformation ψp to p:

y = φx0 + ψuu + ψpp (4.21)

For our system we have four transition matrices, namely φv, ψvi , ψ
v
1 and ψvSOC .
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4.3.2 Formulation and implementation

Before to introduce the formulation of the MPC, it is necessary define the

battery cell energy throughput (in Wh) in the discretized time period from k

to k̄:

Ek̄|k(vk, . . . , vk̄, ik, . . . , ık̄) = α
k̄∑
j=k

vjij (4.22)

where vk and ik are the battery voltage and current (positive when charging

and vice-versa), respectively, and the scale factor α = 10/3600 is to convert

from power (in W) in the discretized 10 seconds time interval to energy (in

Wh).

The equation 4.22 can be expressed as a matrix product:

Ek̄|k(·) = αvT
k̄|ki k̄|k (4.23)

where the bold notation denotes sequences obtained by stacking in column

vectors the realizations in time of the referenced variables.

Replacing Eq. 4.11 into Eq. 4.23 we find:

Ek̄|k(i k̄|k) = α ·
(
φvxk + ψvi i k̄|k + ψv11 + ψvSOCSOC k̄|k

)T
ik̄|k =

α ·
(
xTk φ

vT i k̄|k + iTk̄|kψ
v
i
T i k̄|k + 1ψv1

T i k̄|k + ψvSOCSOC k̄|ki k̄|k

)
(4.24)

where 1 indicates the all ones vector.

We want that Ek̄|k is a convex function of i k̄|k, then we have to check if it

satisfies the proprieties of convex function.

Since the non-negative sum between functions preserves convexity, to ensure

the convexity of Eq. 4.24 we need that all its four addends are convex. In

particular, we have that the first, the third and the fourth addend are linear

in i k̄|k, therefore convex. Instead, the second term is a quadratic form of i k̄|k,

the necessary and sufficient condition for its convexity is given by ψvi being
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semi-definite positive. This hypothesis has been verified numerically for all

the battery cell identified voltage models, consequently, Ek̄|k is convex in i k̄|k.

4.3.3 Optimization problem

As mentioned so far, the energy tracking problem consist in achieving a zero

tracking error at the end of each 5-minutes slot. It is formulated by minimizing

the squared deviation between Ek̄|k(i k̄|k) and ek, namely(
Ek̄|k(i k̄|k)− ek

)2
(4.25)

The energy tracking problem can be formulated as convex optimization

problem, which is the combination of a linear cost function with an inequality

constraint in the form f(x) ≤ 0, where f is convex in x.

As known from the function’s composition rules Eq. 4.23, the convexity of

p(x) = q(r(x)) when r(x) is convex requires q convex non decreasing, which is

not this case because the squared function of the difference is convex but not

non-decreasing on all its domain. Therefore, we reformulate the objective and

achieve a convex equivalent formulation of the original problem: it consists

in maximizing the cell DC current while imposing that the convex cell energy

throughput Eq. 4.24 is smaller than or equal to the energy target Eq. 4.10;

this achieves the energy throughput to hit the upper bound of the inequality,

thus achieving the same value as the target energy.

In order this equivalent formulation to hold, the cell energy throughput must

be a monotonically increasing function of the current [6].

We formulate the MPC optimization problem by augmenting the just de-

scribed formulation with:

� constraints on the cell current;

� open open-loop predictive constraints on cell voltage.
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It is worth noting that the main goal of control problem is determining

a control decision which is respectful of cell operation constraints. Precisely,

the decision problem is

i 0
k̄|k = arg max

i∈R(k−k̄+1)
{1T i k̄|k} (4.26)

subject to

α
(
xTk φ

vT i k̄|k + iTN |tψ
v
r
T i k̄|k + 1Tψvr

T i k̄|k + ψvSOCSOC k̄|ki k̄|k

)
≤ ek (4.27)

1 · imin � i k̄|k � 1 · imax (4.28)

v k̄|k = φvvk + ψvi i k̄|k + ψv11 + ψvSOCSOCk̄|k (4.29)

1 · vmin � v k̄|k � 1 · vmax (4.30)

where i 0
k̄|k ∈ R(k−k̄+1) is the computed control action trajectory, 1 denotes

the all-ones column vector, the multiplication 1 · γ denotes the all-γ column

vector, and the symbol � is the component-wise inequality.

The cost function in Eq. 4.26 consists in maximizing the sum of the equally

weighted current values over the shrinking horizon from k to k̄. This, in com-

bination with the inequality of Eq. 4.27, achieves the cell energy throughput

to be as close as possible to ek [6].

The inequalities of Eq. 4.28 enforces minimum and maximum magnitude for

cell current, where imin and imax) are respectively the lower and the upper

limits. Instead, the equality of Eq. 4.29 is the electrical equivalent circuit

model of the cell according to the notation previously discusses for Eq. 4.11,

while Eq. 4.30 imposes cell voltage limits, which are denoted by the couple

vmin and vmax.

The optimization problem, adopted for the formulation of MPC, is convex

since the cost function is linear and all the inequality constraints are convex

in i k̄|k.

Worthy of note is that we should adopt the real power injection as the op-

timization variable, but in this case the problem would not have been convex
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because the cell voltage evolution is non-linear in the power and thus the

constraints in Eq. 4.11 would have been nonconvex [6].

The optimization problem is solved at each time step k (with updated inform-

ation) on a shrinking horizon from the index k to k̄, namely from current time

until the end of the current 5-minute slot. At each k, the control trajectory

for the whole residual horizon is available, however only the first component

of the current control law is considered for actuation, which we indicate by

i0k [6]. Since the cell power flow is controlled by using a real power reference

signal, it is required to transform from i0k to the power set-point B0
k. By using

the same model applied in Eq. 4.22, it is:

B0
k = vk · i0k (4.31)
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4.4 State estimation

As shown in section 3.2.1 the system states are the voltage drops on capacitors

C1 and C2, i.e. the voltage drops on two RC parallel branches of next figure.

Figure 4.2: Equivalent circuit of battery cell [3].

Since the circuit is an abstract model, the states cannot measured, and

we have to estimate them in order to compute the cell voltage predictions.

Therefore, the states are estimated from measurements of the battery DC

voltage by applying Kalman filtering.

The estimation consists in a two-stage procedure, repeated at each discrete

time interval: a prediction step to determine the system evolution (state

expected value and covariance matrix P) solely on the basis of the knowledge

on the system [10]

xk|k−1 = Axk−1|k−1 + Buk−1 (4.32)

Pk|k−1 = APk−1|k−1AT +KKT (4.33)

and an update stage, where the predicted state is corrected accounting for

the last measurement vk

xk|k = xk|k−1 +G(yk − Cxk|k−1) (4.34)

Pk|k = (P−1
k|k−1 + CTσ−1

g C)−1 (4.35)

where G is the Kalman gain:

G = PK|k−1CT (CPK|k−1CT + σ2
g)
−1 (4.36)
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and σ is the measurement noise (known from the parameters’ estimation).

Kalman filtering requires full system observability, that in our case is enforced

by construction since the model is estimated from measurements [6].

Besides, we exploit the estimate states to estimated the state of charge of

battery cell, exploiting the discharge characteristic in figure 3.2 in section 3.1.

Considering the circuit in figure 4.2, we can estimate the open-circuit voltage

voc in order to obtain the value of SOC through the voc-SOC curve. In partic-

ular, once are known the states (i.e. the voltages vC1 and vC1), the measured

current i and voltage v, and the value of Rs we can estimate E (i.e. voc) ac-

cording to Kirchhoff’s voltage law. To estimate the state of charge, we create

a Matlab function which takes as input the measured voltage and current, the

state of charge at previous step, the different values of Rs and the discharge

characteristic and it gives as output the estimated SOC. It worth noting that,

at the first step the open circuit voltage is measured since the system is in

steady state condition.
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4.5 Feedback control and control actions

Another control strategy for energy management is implemented, namely a

feedback control loop strategy for which the control action depends only on

current and past values and it does not allow to schedule the whole power

trajectory withing the targeted time horizon as for MPC [6].

The real time operation and the control objective in detail described respect-

ively in section 4.1 and 4.2, are also valid for feedback control loop with the

difference that for feedback control it is not used a prediction of disturb.

Moreover, feedback control does not need a model identification and it com-

puted the value of current in a simpler way without solve an optimization

problem.

Below, the control action are reported, specifying the difference between

MPC and feedback control. The control strategy consists in the following

action:

1. at the beginning of experiment the battery cell is in steady state, namely

the DC current is zero and the measured voltage vm correspond to the

open circuit voltage voc;

2. once measured voc, the SOC in estimated by means of discharge charac-

teristic;

3. known the initial condition, P ? is computed according Eq. 4.3 from the

scenario P̂ , then the values of k̄ and k become known;

4. thus, P+
k and ek are computed according respectively to Eq. 4.9 and Eq.

4.10;

5. hence, the current set-point to send is computed and it is sent to the bat-

tery cell. For the MPC, the current is computed solving the optimization

problem presented before, instead for the feedback control we compute,
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first the error Bi

Bi = P ?(k − k)−
k∑
j=k

Pj (4.37)

where Bi is the difference between the set-point and the realization, then

we compute the current as i = Bi/vm. The computed current enters in a

saturation block with bounds setted at ±30A, then the measured voltage

vm is compared with the imposed voltage bounds and if it is bigger than

one of this the current is forced to zero to avoid burning the battery cell.

6. the current computed is sent to battery cell;

7. the SOC value is updated thanks to voltage and current information

from battery cell;

8. finally, the value of Pk (Eq. 4.1) is updated considering the value of

Bm = im×vm, where im and vm are the voltage and the current measured

after the application of set point, and the disturb Li.

Since the control decision is re-evaluated every 10 seconds, errors on the

voltage predictions which arise in the current actuation period are absorbed

in the next cycle, where updated measurements are used [6]. As mentioned

above, the battery cell is commanded through the LabVIEW VI shown in

figure 2.1, while the code of control strategy was written using Matlab.

To create a communication between the two software we exploited a TCP

connection allowing Matlab to receive the measurements from the data ac-

quisition system, to execute the control strategy and to send to LabVIEW

the computed current set-point.
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Chapter 5

Experimental results

The main reason whereby we implemented two kinds of control is to point out

that MPC is more suitable for energy management than feedback control.

To compare the performance of two control strategy we analyse the following

cases:

1. as mentioned previously, one of the goals of the control is to assure

that voltage and current bounds are not violated. For this reason we

created a scenario with only positive value of power, that means to charge

constantly the battery cell till to the cell is charged and the control should

limit the current in order to respect the bounds imposed, namely

(a) maximum current: imax = ±30 A

(b) maximum voltage: vmax = 2.55 V

(c) minimum voltage: vmin = 1.80 V

It is worth noting that the maximum voltage for the battery cell is 2.7 V

according to data sheet, but we choose a value a little lower for security

reason, in order to not ruin the cell battery in the event that control ac-

tion fails. The same is done for the lower bound. Instead, the maximum

current is chosen equal to 30 A in order to work with a C-rate equal to

or lower than 1.
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2. we compare the performance of two control in terms of tracking error,

namely comparing power set-point with the value of power reach at the

end of 5-minutes slot.

To perform the experiment it is necessary to establish the initial condition,

which must be the same for both cases. Furthermore, the scenario must also

be the same in order that the two controls work under the same conditions.

58



5.1 Experiment 1

The first experiment starts with the battery cell in steady-state and with a

SOC equal to 81%. We apply to the cell a constant positive set-points, namely

we want to charge the cell in order to force the MPC to work near the upper

voltage bound.

In figure 5.1 there are four charts reporting the results experiment. In the

first and in the second chart, the dotted red lines represent respectively the

upper voltage bound (2.55V ) and the current bounds (±30A). For the same

charts, the blue line represents the voltage trend while the green one is the

current trend during the experiment.

In the same figure, the third chart is the evolution of error, namely the differ-

ence between the set-point imposed and the realization, and the fourth chart

report the set-point(blue) and the realization (red).

As we can see from results, the MPC is able to follow the trajectory of

power setted until the cell voltage reaches the value of imposed bound. Once

the bound is reached, the tracking error starts to increase because the MPC

limits the value of output current in order to respect the imposed voltage

bound.
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Figure 5.1: Experiment 1 - MPC results.
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The same experiment, with the same initial condition and the same set-

points, was done using a feedback control instead of MPC.

As the next and the figures above show, the feedback control is not able

to respect the imposed voltage bound, overcoming it for a few moments.

Moreover, it worth to note that the tracking error starts to increase earlier

and it reaches higher values compared to the MPC case.
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Figure 5.2: Experiment 1 - Feedback results.

This two experiments demonstrate that model predictive control has better

performance, in terms of tracking error and respectability of bounds, than the

feedback control loop when we force the control to work near the bounds.
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5.2 Experiment 2

We did other experiments to compare the performance of two kinds of control

in terms of tracking error at the end of each 5 minute interval.

The experiment starts with the battery in a steady state with a SOC of 51%.

We applied at the battery a scenario composed by positive and negative val-

ues of power.

The experiment was done once using once the feedback control and once using

MPC. In this case, for the MPC we show two cases: one using a persistent

predictor and one using the predictor based on AR(3) process framework.

Figure 5.3: Experiment 2- MPC with AR(3) predictor, voltage and current trends.

Figure 5.3 shows the voltage and current trend during the experiment. As

it is possible to see, both the voltage and current limits are respected for the

duration of experiment. Whilst, what is most significant for this experiment
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is the value of tracking error.

Figure 5.4: Experiment 2- MPC with AR(3) predictor, error and power trends.

In particular, as figure 5.4 shows, the error value is included between

9, 777× 10−4 W and 0.036 W with a mean value equal to 0.023 W.

At the end of experiment described, the battery cell was discharge until

to reach again a SOC value equal to 51. Then, we wait until it reaches the

steady state and the experiment start again with feedback control strategy.

Figure 5.5 reports the results obtained by feedback control. It is worth noting

that in this case the error is higher than former, indeed the error is included

in the range [−3.279, 4.0262] W, with a mean value of 0.499 W
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Figure 5.5: Experiment 2- Feedback results.
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Finally, we repeat the experiment (same initial condition and same scen-

ario) using MPC with persistent predictor.
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Figure 5.6: Experiment 2- MPC with persistent predictor results.

In this case, the current and voltage bounds are still respected, but figure

5.6 shows the performance of control decrease using the persistent predictor

instead of AR(3) one.

We can summarize the results found in terms of tracking error in the

following table.

Error MPC persistent predictor MPC AR(3) predictor Feedback Unit of measure

MAX 5, 05× 10−1 3.67× 10−2 4.0262 [W]

MIN −1.402× 10−1 9.77× 10−4 −3.279 [W]

MEAN 2, 3× 10−2 2.12× 10−2 4.99× 10−1 [W]

Table 5.1: Experiment 2 - results.

Comparing the results of the first and second column, it emerges that the

MPC with AR(3) predictor has a better performance that the MPC with

persistent predictor, namely the max value of error is smaller of an order of

magnitude, while the min value is smaller of three order of magnitude. This
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means that the performance of control depend on accuracy of prediction of

disturb, i.e. a better prediction model of disturb gives better performance.

Besides, feedback control has significantly worse performance, in fact the error

assumes a max value around 4 W and a minimum around 3 W, respectively

two and four order of magnitude higher than the MPC case with AR(3)

predictor.

Moreover, as table reports, MPC with persistent predictor has also better

performance of feedback control.
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Chapter 6

Conclusion

We have discussed two control frameworks for the energy management of a

battery cell, in particular we adopted a Li-ion cell with a nominal capacity of

30 Ah.

The control strategy is used to compensate the mismatch between a dis-

patched power trajectory based on forecast and a stochastic realization and

scenario. We implemented a feedback control and a model predictive control

to solve the energy management decision problem, comparing the perform-

ance of two kinds of control.

We improved the measurement set-up in order to have a more accurate

current measure introducing a shunt resistor, since the previous set-up had

an offset problem. Prediction models that are applied in the problem are

identified from measurements applying grey-box modelling; we obtained five

models, one for each range of state of charge, i.e. 0−20%, 20−40%, 40−60%,

60− 80%, 80− 100%.

Then, we adapted from the existing literature the convex optimization prob-

lems which were developed as a part of the MPC control framework. In

particular, the MPC allows formulating the battery cell energy throughput in

the objective function while retaining the linearity of the expressions of the

DC voltage and current constraints.
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Hence, we developed the feedback control loop with the same control ob-

jective as the MPC, but without implementing the predictive layer in the cost

function and constraints.

The two control frameworks are validated through various experiments,

that are repeated both for MPC and for feedback control, applying the same

scenario and starting the experiment under the same initial conditions.

Through the experiments, we demonstrate that MPC is more suitable for

energy management than feedback control since MPC is enable to optimize

the current timeslot, while keeping future timeslots in account. This allows

for energy management to follow the scenario respecting voltage and current

bounds with a good tracking performance.

Future works concern the improvement of predictive models, considering

the effect of temperature and of C-rate. Moreover, it could be possible to

implement the control strategy on LabVIEW or with some other tool in order

to not use the TCP connection to exchange the data allowing to reduce the

computation time therefore the control performance.
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