
POLITECNICO DI TORINO

Collegio di Ingegneria Informatica,
del Cinema e Meccatronica

Master degree course in Computer Engineering

Master Degree Thesis

Design and programming of a
coprocessor for a RISC-V

architecture
Guidelines for embedding computing cores as RISC-V coprocessors

Supervisor:
prof. Massimo Poncino

Candidate
Davide Pala

Company supervisor
CEA - Grenoble (FR)

dott. ing. Ivan Miro Panades

Academic year 2016-2017

This work is subject to the Creative Commons Licence

Summary

The extraordinary development of the embedded systems market and the ever
increasing interest in the IoT domain, is leading the electronic design towards the
development of ultra-low power and ultra-low energy systems. Aware of this sce-
nario the CEA LETI research center is working on a novel IoT platform with the
objective of achieving efficient computations without sacrificing the performance.
This project called L-IoT platform, realises a flexible fully integrated system, with
the use of a partitioned architecture. The design is divided into an always-on,
ultra-low power and ultra-low energy system for the management of low intensity
activities, and an on-demand part which handles the more computationally inten-
sive applications. In this context the advent of SoCs and dedicated hardware is
playing an important role in achieving a balance between the power consumption
and the performance trade-off. From these premises rises the interest for the study
of coprocessors for the RISC-V core which powers the on-demand section of the
L-IoT architecture. This work is thus inserted in the wider picture of the L-IoT
platform, in particular it focuses on the design and development of coprocessors
for the on-demand part of the system. This thesis presents an investigation on
the coprocessor development, starting from an analysis of the interfaces, with
a latency study. The latency analysis results shows an high latency overhead
for the transfers of data between the coprocessor and the core, wich excluded
the use of this interface for tight coupled coprocessors. Instead the decoupled
protocol of the interfaces and the presence of a direct channel to the L1 data
cache, suggested the use of this interface for decoupled throughput coprocessors.
In particular the analysis of the memory interface shows the availability of a 50%
throughput on the data cache channel. Considering the results of the analysis, a
design for a cryptographic coprocessor is proposed. This design makes use of a
block-cipher IP internaly developed in the CEA LETI laboratory, implementing
both AES and present encryption. This module is used inside the coprocessor,
the proposed design implements an architecture capable of performing both AES
and present encryptions in both ECB and OFB mode of operation. In partic-
ular the OFB mode allows a completely autonomous execution which exploits

iii

the memory link of the coprocessor interface. With this mode the coprocessor
is able to achieve the maximum throughput allowed by the block-cipher core,
with just a small programming overhead to set up the operation. The acceler-
ator is programmed in a peripheral-like fashion, with just the use of read and
write operations on the configuration registers. Combining the case study of the
cryptographic accelerator and the results of the latency study on the interface,
a generic framework for the development of coprocessors is outlined. In partic-
ular this documents tries to reports the common recurring patterns that can be
identified in the development of different types of accelerators. It is presented
the possibility of a universal extensible interface module, implementing the same
read/write programming model, independent on the type of coprocessor and with
a common interface on the register file. Various considerations on different design
aspects are presented, as the general architectural framework, the register bank
organisation and the possible extensions of the coprocessor FSM. The program-
ming aspect is also considered, with an overview of the possible ISA models and
the different addressing modes. In the end some considerations on performances
are presented. The identification of the problems caused by the coprocessor inter-
face latency, lead to the suggestion of avoiding the tight coupled coprocessors, in
favour of the ones based on throughput applications, or performing long latency
operations and not requiring frequent communications with the CPU.

iv

Acknowledgements

This thesis is the result of a complex work, carried out during a six month intern-
ship in the CEA-LETI research center of Grenoble. This internship was a great
experience, it allowed me to live in the lovely city of Grenoble and to work in an
international research center, alongside with researchers and engineers from all
around the world. It was a great opportunity to see and work with the tools and
practices of the silicon industry, and to experience the methods of research and
how its world works.

I would like to thank CEA-LETI, and the LISAN laboratory in particular,
for this opportunity that I was offered.

I would like to tank my internship tutor Ivan for all the support and the
suggestions during the whole stage period and throughout the writing of
this thesis. This work would not be possible without his guidance and his
tips and advice, with which I learned some of the tricks of the trade.

I also thank all the people in the lab which were always ready to help and
share their experience. In particular I’d like to tank Hieu and Thanos for
the help with the block-cipher core, David for his support when I used his
register file generator, Eric, Romain and Cesar for their help in configuring
the software environment.

A special thanks to all the young guys in the lab, I’m hoping and looking
forward for a new lan-party!

v

Ringraziamenti

Questa tesi è il frutto di un lungo lavoro maturato in una lunga eperienza in
Francia, per la quale devo ringraziare tante persone che, in modi diversi, mi
hanno aiutato e sostenuto.

Desidero ringraziare innanzi tutto il professore Massimo Poncino, Relato-
re di questa tesi, senza i cui preziosi consigli non avrei intrapreso questa
esperienza. Ringrazio il professore anche per la disponibilità e per avermi
aiutato, con i suoi suggerimenti, nelle scelte sul mio futuro lavorativo.

Ringrazio Andrea, che mi ha aiutato dapprima a districarmi nella giungla
burocratica e, in seguito, ad ambientarmi a Grenoble e nel laboratorio.

Ringrazio Smeralda che, oltre a sopportare il mio caratteraccio, ha posto
un argine alle mie stravaganti scelte cromatiche nelle figure di questa tesi.

Ringrazio Ronald per avermi aiutato a impostare questo documento, dan-
domi il suo esempio e il suo supporto.

Ringrazio la mia famiglia, soprattutto Fabio, Mamma e Babbo per avermi
sostenuto e consigliato, sopportando, più di tutti, il mio carattere partico-
lare e il mio essere un figlio, un nipote e un fratello difficile e spesso un po’
distante.

Ringrazio il Collegio Einaudi per essere stato la mia Casa in questi anni di
studi e saluto tutti i "coinquilini" passati e presenti, con cui ho condiviso
questa Casa.

Ringrazio e saluto tutti gli amici conterranei a Torino, compagni nel “di-
stérru”, che hanno animato questi anni da fuori sede.

Ringrazio e saluto tutti gli amici di Ozieri che sono sempre un ottimo motivo
per tornare in “bidda”.

vi

Contents

Summary iii

Acknowledgements v

Ringraziamenti vi

Introduction 1
Dedicated hardware: Coprocessors . 1
The context . 2
The work-flow . 3
Thesis objective . 4

1 RISC-V and Rocket-core overview 7
1.1 RISC-V an open ISA . 7

1.1.1 Instruction formats . 8
1.1.2 ISA extensions . 8

1.2 Rocket Chip SoC generator and the Rocket Core 9
1.2.1 Rocketchip SoC generator 10
1.2.2 Rocket core . 10

2 The RoCC coprocessor interface 13
2.1 Rocket Custom Coprocessor Interface (RoCC) interface overview . 13

2.1.1 RoCC command and response interfaces 14
2.1.2 Memory request and response interfaces 17
2.1.3 The extended RoCC interface 19

2.2 Custom instructions . 20
2.2.1 The addressing mode . 20
2.2.2 Instructions . 21

2.3 Read/write operations between the core and RoCC 21
2.3.1 Latency study . 22

vii

2.3.2 Improving latency . 24
2.4 Loads and stores between RoCC and cache memory 27

2.4.1 Latency study . 29

3 Case study: the Blockcipher coprocessor 31
3.1 Overview of the Block-cipher core 31
3.2 Architecture of the Block-cipher coprocessor 33

3.2.1 Interface module . 33
3.2.2 Register bank . 35
3.2.3 OFB mode: enhancing of the Block-cipher core 38
3.2.4 State machine . 41
3.2.5 Memory operation . 42

3.3 Programming model . 45
3.4 Results and performance analysis 49

3.4.1 ECB encryption . 49
3.4.2 OFB encryption . 51

4 General coprocessor framework 53
4.1 Architecture overview . 53

4.1.1 Interfaces . 55
4.1.2 Register bank . 57
4.1.3 State machine . 58

4.2 Available instruction . 59
4.2.1 Addressing modes . 59

4.3 Performance considerations . 60

5 Conclusions 63

A Acronyms 67

B Compiling the tool-chain 69
B.1 Installing the tool-chain . 69

B.1.1 Download the repository . 69
B.1.2 Dependencies . 70
B.1.3 Install the toolchain . 70

B.2 Adding support for custom instructions 71
B.2.1 Definition of the instruction 72
B.2.2 Instruction declaration . 73
B.2.3 Update of the instruction’s table 73

viii

C Generation of the core 75
C.1 Rocketchip configurations . 75

C.1.1 RTL generation . 76
C.1.2 Generating the RoCC interface 76

C.2 Custom configuration for generic coprocessors 77

D Code compilation and simulation 81
D.1 Compilation . 81

D.1.1 Entry code . 81
D.1.2 Linker script . 81
D.1.3 Compile commands . 83

D.2 Simulation . 83

Bibliography 87

ix

List of Tables

1.1 RISC-V base opcode map, inst[1:0]=11, from the RISC-V ISA
maual [1] . 9

2.1 The convention for the use of the xd, xs1 and xs2 bits. 21
2.2 Instructions defined for the RoCC coprocessors. "C[x]" indicates

an access to the x-th integer register, "A[i]" indicates an access to
the i-th register of the accelerator, "M[x]" is used for a memory
access at the address x. 22

4.1 Extended coprocessor ISA. 60
B.1 Caption . 72

x

List of Figures

1 Scheme of the L-IoT architecture 2
2 Work-flow diagram for the development of this thesis. 3
1.1 RISC-V base instruction formats. Each immediate subfield is la-

beled with the bit position (imm[x]) in the immediate value being
produced . [1] . 8

1.2 Scheme and sub components of the Rochet Chip SoC generator,
from [2]. 11

1.3 Rocket core pipeline . 11
2.1 Rocket Core and a coprocessor connected with command and re-

sponse interfaces. 14
2.2 Two cores connected through the Decoupled interface 15
2.3 RoCC instruction format . 15
2.4 The cmd interface signals . 16
2.5 The resp interface signals . 17
2.6 mem_req sub-interface main signals 18
2.7 mem_resp sub-interface main signals 19
2.8 Read/use scenario test code and corresponding execution time in

clock cycles. 23
2.9 Latency penalty with different numbers of consecutive reads. . . . 24
2.10 Test-case example with three consecutive reads. 24
2.11 Position of the RoCC interface in the pipeline 25
2.12 Masking the latency of a read operation by inserting some inde-

pendent instructions with a free cycle for the write-back of the
RoCC interface. 26

2.13 Use of a branch never taken as write cycle for the RoCC interface. 27
2.14 Sequence of rocc_load with address preparation instructions. . . . 28
2.15 Single memory request and response waveform. 29
2.16 Multiple consecutive memory request waveform. 30
3.1 Schematic view of the block-cipher interface. 32

xi

3.2 Time diagram for the block-cipher IP AES-128 input/output pro-
tocol. 33

3.3 High level block diagram of the block-cipher coprocessor. 34
3.4 Pseudo-code for the ready check logic. 35
3.5 Interface module FSM (IM_FSM). 36
3.6 Register bank organisation. 37
3.7 config register fields. 38
3.8 OFB algorithm block scheme. 40
3.9 OFB module implementation. 41
3.10 State transition diagram of the compute core FSM (CM_FSM). . 43
3.11 Pseudo code for the address computing logic. 44
3.12 State diagram of the memory module controller (MM_FSM). The

wait_resp state is indicated as wait_r. 44
3.13 Example of C code for an Electronic Codebook (ECB) encryption. 46
3.14 Definition of rocc_read and rocc_write C functions. 47
3.15 Code sequence for a Output Feedback (OFB) encryption. 48
3.16 Time diagram of the ECB encryption. 49
3.17 Time diagram of the ECB test sequence. 50
3.18 Time diagram of the OFB encryption. 51
3.19 Time diagram of the OFB test sequence. 52
4.1 General coprocessor architecture. 54
4.2 Generic interface state machine with n wait states for n different

functional modules. 59
B.1 Default values for the MATCH and MASK constants. 72
B.2 Default values for the MATCH and MASK constants. 73
B.3 Macro to declare the instruction. 73
B.4 RISC-V instruction data structure vector. 74
C.1 Default configuration for a RV32 core. Specified in src/main/scala/rocketchip/Configs.Scala 75
C.2 Configuration setting the “XLen” size to 32-bit. From src/main/scala/coreplex/Configs.Scala 76
C.3 WithRoccExample configuration from the “src/main/scala/coreplex/Configs.Scala”

file. 77
C.4 Definition of a configuration for a 32-bit core with example RoCC

accelerators. 77
C.5 Definition of the black-box coprocessor. 78
C.6 WithRoccBlackBox configuration. 79
C.7 Global configuration for the use of the black-box coprocessor. . . . 79
D.1 Entry code for initialising the execution environment. 82
D.2 Linker script for the Rocket Core bare metal execution. 82
D.3 Makefile for the compilation and conversion of RISC-V programs. . 84
D.4 Load memory command. 85

xii

Introduction

Coprocessor
In the IT field, the term coprocessor, also called accelerator, is often used to
indicate any kind of special purpose circuit coupled to a processing unit. They
are generally used to help a general purpose processor to deal with a restricted
set of tasks, in which the coprocessor is specialised.

Dedicated processors are generally used to improve the performance of a com-
puting system, by accelerating tasks that are highly computing intensive or too
slow to be performed by software routines running on a general purpose proces-
sor. Implementing in hardware these functions can lead to many benefits beyond
the sheer improvement of performance. For example the reduced power consump-
tion, that usually comes from the use of dedicated circuits, and the possibility of
leaving the main processor free to execute other tasks.

In general the term coprocessor has been used during the years to refer to a
wide variety of digital circuits, ranging from dedicated arithmetic units embedded
in the pipeline of the processor, as in the case of some Floating Point Units
(FPUs), to peripheral cores or external devices such as graphic processors. In
the past some of this devices, like arithmetic cores or even FPUs, used to be
external chips used to expand the capabilities of a system. Nowadays many of
these functions are integrated in the instruction sets and are often embedded
in the pipeline of the processors, moreover in modern System on Chips (SoCs)
some commonly used computing cores are often integrated in the same die of the
processor.

This work takes in consideration a specific Central Processing Unit (CPU)
called Rocket core. This CPU implements the RISC-V Instruction Set Archi-
tecture (ISA)[1] and enables the presence of coprocessors through the use of a
dedicated interface named RoCC.

In the context of this document the therms "coprocessor" and "accelerator"
are used referring to any circuit attached to the Rocket core through the use of
the RoCC coprocessor interface.

1

The context
This thesis is the result of a work conducted in the CEA LETI laboratory
of Grenoble, in the context of a wider project called Low-power Internet of
Things (L-IoT) Platform. The L-IoT project aims at obtaining a system platform
able to cover a wide variety of applications in the field of Internet of Things (IoT).
Therefore this system is designed to target a wide variety of energy/performance
requirements, ranging from ultra low energy and low performance applications,
such as tracking and monitoring, to applications like video surveillance that re-
quires higher performance and have higher power consumption.

This platform has been thought as being fully integrated, and is composed of
two main sub-systems: an always-on part which is meant to handle the normal
operations and a on-demand sub-system that is waken up only for handling the
tasks that requires higher performance. The always-responsive sub-system em-
beds advanced wake-up features and is able to work in the pW to µW range of
power consumption.

Power-Management Unit (PMU) Ba�ery / Energy Harvester

Con�gura�on Management Unit (CMU)

Wake-up

Radio

Wake-up

Sensors
Wake-up

Controller

Always-Responsive Sub-system

Energy
control

AES/

PRESENT
Wake-up

Timers

Radios

Sensors

CPU
(RISC V)

Memory
(SRAM & NVM)

Main Processor

On-Demand Sub-system

Imager

Wake-up

Imager

RF, data
fusion,
imager

Crypto

Coprocessor

Figure 1. Scheme of the L-IoT architecture

On the other hand the on-demand sub-system is thought for the tasks requir-
ing higher performance and is meant to work with a power consumption in the
mW range. In order to answer these strict needs for low power and relatively
high performance the on-demand part will integrate a RISC-V based processor
assisted by some dedicated coprocessors. This architecture takes advantage of
the parallelism between the core that performs a task and the accelerator that
executes another to reduce the compute time and thus the energy.

One of the CPUs taken into account for this sub-system is the Rocket core
processor described in Chapter 1.

2

The work-flow

The work described in this document was carried out within a development frame-
work which resulted from the combination of several tools. In particular this the-
sis focuses on the hardware design aspects of the development of coprocessors.
However in order to develop this work, a whole hardware/software infrastructure
has been organised. The Figure 2 shows the main components that concurred
in the creation of the framework for this work. In particular the vertical sec-
tions regards the hardware design and generation, while the horizontal one shows
the software compilation chain. This work mainly focuses on the green section,

This work

.vhd

Questasim

UCB

Rocket chip

SoC gen

.scala

.v

con�g.

Black-Box coproc.

.c

.h

gcc

RISC-V

objcopy

+

objdump .hex
hexdump

RISC-V toolchain

custom instr.

support

CEA

CFG REG

generator

.sv

cfg

Figure 2. Work-flow diagram for the development of this thesis.

which represents the hardware coprocessor design process. Overall the combina-
tion of the UCB framework for the generation of the core, the GNU tool-chain
for the compilation of the software and the hardware design process for the co-
processor composes the picture in which this work was devised. The appendices
Appendix B, Appendix C and Appendix D reports the steps required to set up
and use this work-flow.

3

Thesis objective
In this picture (the L-IoT platform and the work-flow) this thesis focuses on the
design and programming of coprocessors for the RoCC interface, targeting mod-
ularity and the use of stand-alone cores not specifically designed for being part
of a coprocessor. This work answer the need of studying and understanding the
Rocket core and the RoCC interface and exploring the possibility of enhancing the
core with the use of accelerators. It also tries to cover the lack of documentation
on the subject and presents a new approach for the integration of coprocessors
with this interface.

The objective is to give guidelines for the development of accelerators and
define a design framework generic with respect to the coprocessor function. An
analysis of the performance of the RoCC interface is presented, taking into ac-
count the overhead and the latency introduced by the communication between the
core and the coprocessor. As a case study the implementation of a cryptographic
accelerator is presented, using the block-cipher module described in [3] and [4].
This block-cipher module is used as starting point for an extended architecture
that implements the OFB mode of encryption. This architectural choice enables
the accelerator to perform both encryption and decryption, moreover it allows
the coprocessor to cipher a plain-text of generic length. When running in this
mode of operation the core is left free to run other tasks and the only overhead
is the small time spent for programming the coprocessor before the encryption.

Starting from the analysis of the interface and from the blockcipher design
example a generic design approach is outlined, identifying the common recurrent
elements applicable to different kind of coprocessors, and the one that are specific
to each design.

This thesis is organised in the following chapters:

• Chapter 1 contains the basic background information regarding the RISC-
V ISA, the Rocket chip generator and the Rocket core which are needed
for understanding the platform on top of which this work is developed.

• Chapter 2 explains the RoCC interface and its main signals, providing an
analysis of the latency and some possible improvement.

• Chapter 3 presents an implementation case study of a block-cipher copro-
cessor, starting from an already existing block-cipher core, enhancing it to
support new features and embedding it in a RoCC coprocessor design.

• Chapter 4 outlines the considerations and the architectural choices for a
generic coprocessor development.

• Chapter 5 draws the conclusions on the work.

4

In addition the appendices serves as documentation for setting up the working
environment, whit the aim of easing the integration of the Rocket Core in a
industrial development flow, taking in consideration the tools used in the CEA
LETI laboratory.

5

6

Chapter 1

RISC-V and Rocket-core
overview

This chapter introduces the background information useful for understanding the
context of and the platforms on top of which this work is developed. The first
section presents an overview of the RISC-V ISA, introducing its main design goals
and principles, describing the instruction formats and the extension mechanism.
Then in the second section the Rocket Core processor together with the Rocket
Chip SoC generator are introduced, presenting some of their main features and
describing the design flow.

1.1 RISC-V an open ISA
RISC-V is a new and open ISA, that was initially developed by the University of
California Berkeley (UCB) and it is now managed by the RISC-V Foundation1.
Designed following the Reduced Instruction Set Computer (RISC) principles,
this ISA started as a project for computer architecture research and education,
but is aiming at becoming a standard for industrial implementations [1, cap 1].
RISC-V is now increasingly drawing the attention of both industry and academia,
because it offers the possibility to ease the design of processors from the high costs
of compiler support, without requiring to resort to expensive commercial ISAs.

As stated in the RISC-V Instruction Set Manual one of the objectives of the
RISC-V project is to “be used as stable software development target” [1, cap 9].

1https://riscv.org/

7

1 – RISC-V and Rocket-core overview

For this reason the standard defines fixed base integer (“I”) ISAs in 32 and 64
bits version plus some optional standard general purpose extensions.

The base integer instruction set, in both in its 32 and 64 bits variant, was
devised in order to include a small number of instructions and reduce the com-
plexity of the hardware needed for a minimal implementation. Even if the base
ISA is small, it was also designed to be a reasonable target for compilers and
software development.

The extensions defined by the standard enhance the capabilities provided
by the base ISA with the most commonly used instructions, such as the “F”
extension for single precision floating point instructions or the “A” extension for
the atomic instructions.

1.1.1 Instruction formats
RISC-V base integer ISA defines four basic instruction formats called R-type,
I-type, S-type and U-type [1] that are shown in 1.1.

These instruction format were defined so that the registers fields for both the
sources (rs1 and rs2) and the destination (rd) are kept int the same position for
all the formats, in order to simplify the decoding hardware. For the same reason
the immediates were placed towards the leftmost significant bits and the sign bit
position is always in the bit 31 of the instruction.

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 1.1. RISC-V base instruction formats. Each immediate sub-
field is labeled with the bit position (imm[x]) in the immediate value
being produced . [1]

1.1.2 ISA extensions
One of the design goals of RISC-V is that of providing support for extensions
and customisation [1]. For this purpose the instruction set is organised in a small
integer base ("I") plus the optional extensions, among them some of the most
common and useful are:

8

1.2 – Rocket Chip SoC generator and the Rocket Core

• “M” : standard extension for integer multiplication and division instruc-
tions.

• “A” : standard extension for atomic instructions.

• “F” : standard extension for single-precision floating point instructions.

• “D” : standard extension for double-precision floating point instructions.

• “C” : standard extension for compressed instructions.

The ensemble of “IMAFD” extension is indicated with “G” and the resulting
ISAs are called RV32G for the 32-bit version and RV64G for the 64-bit one.

On top of the extensions defined by the standard, the ISA also enables the
presence of non standard extensions. There are many ways to extend the RISC-V
ISA that are extensively described in [1, cap 10].

Among all the possibilities, one of the simplest and the one of interest for
this work, is the use of four opcodes, in the 32-bit instruction format, that are
reserved for custom extensions. The first two of these custom opcodes, denoted
as custom-0 and custom-1, will not be used by future standard extensions, while
the opcodes marked as custom-2 and custom-3 are reserved for future use by the
128 bit ISA extension.

These four custom opcodes, shown in the table 1.1 are the ones used by the
Rocket core processor in the RoCC interface.

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

Table 1.1. RISC-V base opcode map, inst[1:0]=11, from the RISC-V ISA maual [1]

1.2 Rocket Chip SoC generator and the Rocket
Core

This section introduces the Rocket Chip SoC generator and the Rocket Core, two
of the main design tools and components around which this work was developed.

These two components are inherently linked together, since the Rocket Chip
generator is used to configure and generate the Rocket Core. They are part of
the same framework that allows the designers of SoCs to rapidly come up with
design architectures.

9

1 – RISC-V and Rocket-core overview

1.2.1 Rocketchip SoC generator
Rocket Chip is an open source SoC generator designed by the Berkeley Archi-
tecture Research (BAR) group of the University of California Berkeley (UCB).
It is a tool that emits synthesizable RTL, devised to enable designers to build
and customise their own SoCs based around the RISC-V ISA [2]. This project
is developed in the Chisel language2, a dialect of Scala designed for hardware
construction and generation.

The SoC generator allow the composition of modular designs by using the
parametrisation features of the Chisel language. It offers the possibility of tuning
and personalising a lot of configuration parameters of the design, including the
support for different standard extension of the ISA, in order to generate different
cores able to suit the need of the designer. The project itself can be also viewed
as a collection and a library of configurable components for composing SoCs.

The basic design flow allows the integration of new hardware component de-
scribed in Chisel, the creation of new custom configurations, the compilation
of the Chisel/Scala sources to generate C++ models for cycle accurate simula-
tions and the generation of the synthesizable Verilog RTL sources for pushing the
design in the standard industry CAD tools.

1.2.2 Rocket core
Rocket core is both a processor generator and a library of processor components.
As a generator it is able to produce a family of processor core designs, with
different configuration parameters. The generated processors have the classical
five stage in-order scalar pipeline and can implement the base integer 32-bit
RISC-V ISA as well as the 64-bit one [2].

The cores have a Memory Management Unit (MMU) with optional paged
virtual memory support, a configurable non blocking private data cache and a
front-end with a configurable branch predictor. The generator exposes numerous
parameters for configuring the core, among them there is the possibility to add the
support for some optional standard ISA extensions (M, A, F, D) and determining
the size of the caches [2].

For this study the core was configured implementing the default RV32G in-
struction set configuration, with the addition of the Rocket Custom Coprocessor
Interface (RoCC).

2https:chisel.eecs.berkeley.edu

10

1.2 – Rocket Chip SoC generator and the Rocket Core

Figure 1.2. Scheme and sub components of the Rochet Chip SoC generator, from [2].

Figure 1.3. Rocket core pipeline

11

12

Chapter 2

The RoCC coprocessor
interface

This chapter describes the main details of the RoCC coprocessor interface and
presents an analysis of the latency using the model of read/write operations for
the data exchange between the core and the accelerator. A load/store instruc-
tion model is introduced for the data transfers between the coprocessor and the
memory. The first section presents the main sets of signals and sub-interfaces
composing the RoCC interface, focusing mainly on the ones concerning the com-
munication with the core and the first level data cache. The second section intro-
duces the format of the instructions describing how they are used for the following
analysis. The third section describes the method and the latency study performed
to evaluate the performance and overheads of the data transfers between the core
and the coprocessor. In the end the last section presents a similar kind of analysis
describing the use and the performance of the memory sub-interfaces.

2.1 RoCC interface overview
The Rocket Custom Coprocessor Interface (RoCC) is an interface designed in
order to extend the Rocket Core and allow easy decoupled communications be-
tween the core and the attached coprocessors [2]. The RoCC interface is divided
in sub-interfaces each creating directional links to connect the accelerators with
other parts of the SoC. In particular the cmd sub-interface connects the core with
the accelerator, as shown in Figure 2.1, and is used to send commands. With
these commands the core can also request data to the coprocessor, this data can
be sent by the coprocessor to the core through the resp (response) interface.

13

2 – The RoCC coprocessor interface

Command

Response

RespReq RespReq

L1 D$

Rocket

core

(RISC-V)

RoCC

Accelerator

Figure 2.1. Rocket Core and a coprocessor connected with command
and response interfaces.

In order to allow the coprocessor to access the memory the RoCC interface
also provides the mem_req (request) and mem_resp (response) direct links to
the data cache.

Other than these four channels the RoCC interface provides some more sub-
interfaces to allow advance functionality, in particular it is possible to connect
an accelerator with the FPU, to share the page table walker and to have a direct
link with the outer memory system [2]. These extra sub-interfaces are part of the
so called extended RoCC interface.

The interface also provides some more status signals and an interrupt line
that can be used for syncronising with the core or for signalling errors.

In the context of this document and for the following analysis only the base
RoCC interface composed of cmd, resp, mem_req and mem_resp sub-interfaces
will be considered.

2.1.1 RoCC command and response interfaces
As previously said the RoCC interface defines two sub interfaces for the data
exchange between the accelerator and the core. The command interface is used
to send the instructions and the corresponding data to the coprocessor, while the
response interface is used by the coprocessor to send the results to the integer
register file.

Both the command and the response ports are based on the Decoupled in-
terface available in Chisel. This type of connection is based on a FIFO like
ready/valid protocol in which the sender drives the valid signal and the data and

14

2.1 – RoCC interface overview

waits for the receiver to raise the ready signal, the transfer is considered accepted
if both valid and ready are high on the same clock cycle.

ready

data

valid

core A core B

Figure 2.2. Two cores connected through the Decoupled interface

Based on this type of connection the core can send commands to the acceler-
ator by rising the valid signal whenever there is a legal custom instruction that
reaches the write-back stage. The data bus of the command interface is composed
of the following signals:

• inst the full 32-bit instruction

• rs1 a 32-bit (or 64 depending on the XLen parameter) data bus for the
content of the integer register addressed by the rs1 field of the instruction

• rs2 a 32-bit data bus holding the value of the integer register addressed by
the rs2 field of the instruction

The inst signal is further subdivided in the fields defined by the RoCC custom
instruction. The format of the RoCC instructions follows the R-type format
shown in 1.1, but the opcode section is bound to assume one of the four possible
custom opcodes values, while the funct3 part is divided into three bit fields.

31 25 24 20 19 15 14 13 12 11 7 6 0
funct7 rs2 rs1 xd xs1 xs2 rd opcode

custom-
0/1/2/3

Figure 2.3. RoCC instruction format

These bit fields are quite important for the correct use of the RoCC interface,
they are in fact used as a kind of valid bit for the registers specifiers in the
instructions:

15

2 – The RoCC coprocessor interface

• xd bit is set when inst_rd is a valid destination register: the core wants to
receive data in the destination register pointed by inst_rd.

• xs1 bit is set when inst_rs1 is a valid source register: the core is sending
the content of the first source register (inst_rs1) in the rs1 data bus.

• xs1 bit is set when inst_rs2 is a valid source register: the core is sending
the content of the second source register (inst_rs2) in the rs2 data bus.

The values assumed by these bits heavily influences the behaviour of the pipeline,
in particular it is frequent to cause stalls when these bits are set, this applies in
particular for inst_xd.

Rocket

core

(RISC-V)

ready

inst

rs1

rs2

valid

RoCC

Accelerator

Figure 2.4. The cmd interface signals

When a custom instruction with the inst_xd bit set arrives, the core will
expect to receive, at some point, a result to be stored in the register pointed by
inst_rd. This means that if a successive instruction uses that register before the
value is produced and stored, the core will stall the pipeline to wait the data from
the coprocessor.

In order to serve these requests, the accelerator have to use the resp sub-
interface, which is also a Decoupled (ready/valid) interface. In this case the
coprocessor drives the valid signal and the "data" bus, while the core only drives
the ready signal. The data information includes the following buses:

• rd the five bits field specifying the destination register of the response, must
be the same received with the command.

• data a 32 or 64-bit bus with the data content to be written in the rd
register.

16

2.1 – RoCC interface overview

Rocket

core

(RISC-V)

data

rd

RoCC

Accelerator
ready

valid

Figure 2.5. The resp interface signals

2.1.2 Memory request and response interfaces
In order to allow the accelerator to have direct access to the first level data cache,
the RoCC interface specifies two channels for the memory requests mem_req and
for the responses mem_resp.

mem_req sub-interface

When an accelerator wants to issue a load or store operations to the memory it
can use the mem_req sub-interface. As for cmd or resp also the mem_req link
is based upon the Decoupled interface. Aside from the ready and valid signals
this connection provides in the data section a lot of signals, some of which where
not used for this work, in particular the most important data signals of this
sub-interface are:

• addr a 32 (for RV32) or 40-bit (for RV64) bus carrying the address for the
memory access.

• tag 8-bit bus used to uniquely identify each request.

• cmd 5-bit bus carrying the memory operation code (00002 = load, 00012
= store)

• typ 3-bit bus that specifies the width of the of the transfer operation (0002
= 8-bit, 0012 = 16-bit, 0102 = 32-bit and 011 = 64 bit).

• phys 1 bit signal asserted if a physical address is used or zeroed if the
address is virtual and needs a translation.

• data 32 or 64-bit bus used for sending the data in case of store operations.

17

2 – The RoCC coprocessor interface

valid

D$

RoCC

Accelerator

addr tag cmd typ data ready

Figure 2.6. mem_req sub-interface main signals

mem_resp sub-interface

When the response from the cache is ready it is sent back to the accelerator
through the mem_resp sub-interface. This link present a substantial difference
with respect to the previously discussed ones, in fact it is not based on the De-
coupled interface. This is because the coprocessor cannot keep the cache waiting,
so it must accept the response without the possibility of postponing the trans-
action. In fact the mem_resp sub-interface does not present a ready signal, but
is instead based on a simpler “valid” interface. This means that the coprocessor
must accept every memory response as soon as the valid line is high. With this
interface the sender (the cache) drives the data and the valid signals and the
receiver (the accelerator) just need to check that the valid line is high and accept
the incoming data.

The data content of this interface is also populated with a lot of signals, but
the main ones are mostly the same as the mem_req:

• addr a 32 (for RV32) or 40-bit (for RV64) bus carrying the load/store
address.

• tag 8-bit bus used to distinguish between responses to multiple requests.

• cmd 5-bit bus carrying the memory operation code (00002 = load, 00012
= store)

• typ 3-bit bus that specifies the width of the of the response data (0002 =
8-bit, 0012 = 16-bit, 0102 = 32-bit and 011 = 64 bit).

18

2.1 – RoCC interface overview

• data 32 or 64-bit bus carries the data response for a load operation.

D$

RoCC

Accelerator

valid addr data tag cmd typ

Figure 2.7. mem_resp sub-interface main signals

As it was said earlier the memory response channel does not provides a way
to control the flow of responses, moreover this sub-interface does not guarantee
that the responses will arrive in order. This means that the coprocessor must
deal with the control of the data flow and must adopt some strategy to take care
of possible out-of-order responses.

2.1.3 The extended RoCC interface
The extended RoCC interface includes a set of optional extension channels to
allow the development of coprocessors with more advanced features. In particular
the additional sub-interfaces are:

• aUTL arbitrated Uncached Tile Link used for communications whit the
outer memory system, is divided into an acquire and a grant channels, both
based on the Decoupled interface (ready/valid protocol).

• FPU used for allowing communications with the floating point unit, it is
divided into request and response and both channels are based on Decoupled
links.

• PTW used for coprocessors that need to talk with the Page Table Walker
(PTW), this sub-interface is also based on request and response Decoupled
links, but it also provides additional sets of signals, moreover it is possible
to generate coprocessors with more than one of this sub-interfaces based on
how many PTW channels are needed.

19

2 – The RoCC coprocessor interface

Even if some of these extensions might be of interest for the development of
accelerators, in particular the aUTL, this work only focuses on the use of the
base RoCC interface, that should be able to suit the needs of the majority of the
coprocessors applications.

2.2 Custom instructions
This section briefly introduces the instructions and the programming model used
for the successive analysis of the RoCC interface. As it was described before this
interface make use of the four custom opcodes, available in the base 32-bit length
instruction space. On top of this the format of the instruction is fixed by the
interface and, since the use of some bit fields of the RoCC instruction heavily
impact the behaviour of the pipeline, it was decided to follow this format but
adopting a particular addressing convention. Moreover to simplify the coproces-
sor model for the interactions and data transfer with the core and with the data
cache only four operations are defined: read/write and load/store.

2.2.1 The addressing mode
The three bit fields in the RoCC instructions xd, xs1 and xs2 are used to validate
the source or destination registers on the core side, for this reason it was decided,
as a convention, that when one of these bits is zero the corresponding register
field refers to an internal register of the accelerator. This basically means that
we can have custom instructions with the xs1 and/or xs2 bits sets to read values
form the integer register file of the core and send it to the accelerator, while
an instruction that zeroes those fields is addressing the internal registers of the
accelerator. As it can be seen in the table 2.1, when one of the three bit fields
is set to one, the corresponding register field in the instruction is referring to a
Core register. When a bit is zero, the register field of the instruction is used to
address an internal register of the RoCC accelerator. The configurations using
only inst_rs2 as source (with just xs2 at one) cannot be decoded by the Rocket
Core.

Other than this the interface also allows an additional mode of addressing:
it is possible to use the value of one or both the rs1 and rs2 data bus, of the
cmd sub-interface, as addresses for the internal registers of the accelerator. Note
that inst_rs1 indicates the 5-bit field of the instruction for the register specifier,
while rs1 is used to indicate the 32-bit (or 64-bit) data bus carrying the content
of the register in the cmd sub-interface.

Using the data arriving from the core for the internal registers addressing
grants two main advantages: the first one is the possibility of using register
banks wider than 32 registers, since in principles it is possible to address up to

20

2.3 – Read/write operations between the core and RoCC

xd xs1 xs2 inst_rd inst_rs1 inst_rs2
0 0 0 RoCC RoCC RoCC
0 0 1 not allowed
0 1 0 RoCC Core RoCC
0 1 1 RoCC Core Core
1 0 0 Core RoCC RoCC
1 0 1 not allowed
1 1 0 Core Core RoCC
1 1 1 Core Core Core

Table 2.1. The convention for the use of the xd, xs1 and xs2 bits.

232 registers. The second benefit is that, since the content of the rs1 and rs2
busses comes form the integer registers, it is possible at the code level to address
the internal registers of the accelerator by using normal integer variables.

From this results that two register addressing modes are possible. One using
the registers fields in the instruction, with which only the first 32 registers can
be accessed. The second that uses the rs1 and rs2 data bus content for the
internal addressing, which allows basically an infinite register address space and
the possibility to use variables in the high level code for the addressing. These
two addressing modes will be called respectively instruction based addressing and
data based addressing.

2.2.2 Instructions
Considering the read/write - load/store model and the two addressing modes it is
possible to define our basic instructions. Since each RoCC coprocessor is mapped
to a different custom opcode the opcode field does not carry information about
the instructions. For this reason the funct7 field is used to specify the operation
opcode, while the different configurations of the xd, xs1 and xs2 bits are used to
determine the addressing mode. The instruction defined following this approach
are shown in the table 2.2.

2.3 Read/write operations between the core and
RoCC

This section introduces a latency analysis on the RoCC interface, in particular
the analysis focuses on the latency of the read operations. As discussed in the
previous section the data movements between the core and the coprocessor are
modelled following the read/write model, in particular we consider as if the core

21

2 – The RoCC coprocessor interface

funct7 xd xs1 xs2 inst_rd inst_rs1 inst_rs2 rs1 rs2 operation
read 1 0 0 Core Acc - data1 - C[inst_rd] ← A[inst_rs1]
read 1 1 0 Core Core - data1 - C[inst_rd] ← A[data1]
write 0 1 0 Acc Core - data1 - A[inst_rd] ← data1
write 0 1 1 Acc Core Core data1 data2 A[data2] ← data1
load 0 1 0 Acc Core - data1 - A[inst_rd] ← M[data1]
load 0 1 1 - Core Core data1 data2 A[data2] ← M[data1]
store 0 1 0 - Core Acc data1 - M[data1] ← A[inst_rs2]
store 0 1 1 - Core Core data1 data2 M[data1] ← A[data2]

Table 2.2. Instructions defined for the RoCC coprocessors. "C[x]" indicates an
access to the x-th integer register, "A[i]" indicates an access to the i-th register
of the accelerator, "M[x]" is used for a memory access at the address x.

is performing read or write operations, according to this convention the following
pseudo-instructions are defined:

• rocc_read rd, cps: the core reads the data arriving from the coprocessor
register cpx and write it into the destination register rd.

• rocc_write cpd, rs: the data in the core register rs is written in the accel-
erator register cpd.

The following latency study was performed in absence of cache misses, con-
sidering the updates of the Instruction Register (IR) and of the Program Counter
(PC) in the Write Back (WB) stage for counting the clock cycles for each instruc-
tion.

2.3.1 Latency study

This study was performed using a RoCC coprocessor capable of responding in a
combinational way to the read operations, like in a normal read from a basic reg-
ister file. This means that the coprocessor itself is not introducing any additional
latency, so that the measured latency is only dependent on the interface.

The analysis is focused mainly on the performance of read operations, this
is because the coprocessor and the core are decoupled. After the rocc_write
instruction is sent there is no result to wait, so from the core point of view the
instruction has been executed correctly. Moreover it is reasonable to suppose that
write operations only requires one cycle as in the case of writes into a normal
register.

This analysis covers two main scenarios: the read of a data from the coproces-
sor and its subsequent use by a normal RISC-V instruction and a burst of read
operations followed by the usage of the read values.

22

2.3 – Read/write operations between the core and RoCC

read and use operations

This scenario is meant to cover the cases when, after some computation, a
rocc_read is performed to retrieve some result data that is needed by the succes-
sive instructions. In particular the test used a “rocc_read rd, cpx” instruction,
that read the cpx register of the accelerator and stores the result in the core’s
register rd, and a “use rx, rd” instruction, in particular a “addi rx, rd, 1”, that
exploits the data stored in rd.

The read/use instructions were interleaved by a varying number of indepen-
dent instructions, “nop” were used for this purpose. The idea was to try to hide
the latency of the interface, by performing some useful computation independent
from the result of the rocc_read. This technique is a common optimisation prac-
tice also adopted by many compilers, but, as it can be seen in the Figure 2.8, no
matter how many independent instructions are inserted between the rocc_read
and the use, reading from the RoCC interface always results in a big latency
penalty.

rocc_read rd, cpx ; rd ← RoCC[cpx] 5 cycle
addi rx, rd, 1 ; rx ← rd + 1 1 cycle

rocc_read rd, cpx ; rd ← RoCC[cpx] 1 cycle
nop ; 4 cycle
addi rx, rd, 1 ; rx ← rd + 1 1 cycle

rocc_read rd, cpx ; rd ← RoCC[cpx] 1 cycle
nop ; 1 cycle
...
nop ; 4 cycle
addi rx, rd, 1 ; rx ← rd + 1 1 cycle

Figure 2.8. Read/use scenario test code and corresponding execution
time in clock cycles.

burst of read operations

Another scenario that has been tested is the use of multiple consecutive rocc_read
operations. These tests showed even more the limitations of the RoCC interface,
in fact the read operations not only imposes frequent stall but it also starts to
show throughput limitations when more than four consecutive rocc_read instruc-
tions are issued.

As it is shown in the plot 2.9, in order to minimise the penalty the best number
of consecutive rocc_read instruction must be two or three. As it was said earlier

23

2 – The RoCC coprocessor interface

1 2 3 4 5 6 7 8

4
3 3

6

10 10 10

13

Consecutive read instruction number

Pe
na

lty
(c

lo
ck

cy
cl

es
)

Figure 2.9. Latency penalty
with different numbers of con-
secutive reads.

...
rocc_read rd1, cpx1 ; 1 cycle
rocc_read rd2, cpx2 ; 1 cycle
rocc_read rd3, cpx3 ; 4 cycle
use rd1, rd1, 1 ; 1 cycle
use rd2, rd2, 1 ; 1 cycle
use rd3, rd3, 1 ; 1 cycle
...

Figure 2.10. Test-case example
with three consecutive reads.

more than four reads caused throughput issues, while a single read suffers from
an additional cycle of stall.

2.3.2 Improving latency
This section analyses the main causes for the pour latency results of the RoCC
inteface and tries to provide some workarounds to improve the performance of
the interface.

The main reasons behind the relatively high latency overhead introduced by
the interface are to be researched in the position of the interface in the pipeline.
In fact the Rocket core forwards the custom instructions through all the stages
of the pipeline, down to the WB stage, at this point the instruction is sent to the
RoCC command router. The RoCC command router is a configurable component
component that buffers the custom instructions and forwards them to the right
coprocessor, based on the opcode. The presence of this additional component
introduces an additional time barrier and so an additional clock cycle of latency
before the instruction can reach the coprocessor. This choice can be explained
because it allows simpler accelerators that do not need to deal with exceptions.
In fact when a custom instruction reaches the WB stage it is guaranteed that
the previous instructions were correctly executed and that they did not caused
any exception. With an interface placed in the Execute (EXE) stage, a couple
of clock cycles could have been gained, but the coprocessors would have been
more complex in order to deal with the exceptions. Also it must be remembered
that the RoCC interface was devised for enabling communications with decoupled

24

2.3 – Read/write operations between the core and RoCC

coprocessors [2]. All of these reasons can explain why the interface is in such a
late position in the pipeline.

Figure 2.11. Position of the RoCC interface in the pipeline

The other major cause of penalty, that limits the throughput of rocc_read
operations, can be found in the way the core handles the write-back of data
coming from the interface. In particular the core gives priority for the write in
the Register File (RF) to the instruction that is currently occupying the WB
stage. This means that the data arriving from the RoCC interface is written in
the RF only when the WB stage is occupied by a “non writing” instruction, like
for example branches. This implies that every instruction that writes on the RF
(basically any arithmetic instruction like “add”, “or” etc..) preempts the writing
of data coming from the RoCC resp interface. The pending response is going
to be accepted only when an instruction leaves the WB stage free, or when the
data coming from the coprocessor is needed by an instruction in the EXE stage,
causing a stall. This kind of behaviour also applies to the “nop” instruction,
witch is implemented as an “addi x0, x0, 0”, as defined by the RISC-V standard
[1].

At the µarchitectural level every instruction has a bit in the control-word,
called the wxd bit, that is asserted in any instruction that needs to write in the
RF. In the WB stage a check on the wxd bit is performed and the ready signal
of the RoCC resp interface depends on that bit being at zero. For this reason as
long as there is a valid instruction with the wxd bit at one, in the WB stage the
writing form the resp interface is preempted.

A possible way to avoid paying a stall for every rocc_read consist in masking
the latency of the interface with some useful instructions with an additional
"useless" instruction used as a kind of free write-back slot. In order to apply this
strategy the useless instruction must be one with the wxd bit at zero and must
not alter the internal state of the core. Basically a “nop” instruction that does
not occupy the WB slot is needed.

To provide this capability two possible strategy are presented, one that implies

25

2 – The RoCC coprocessor interface

a slight modification to the core and one that uses a kind of “nop” defined in a
different way.

Modification of the NOP operation

As it was said earlier the ready signal of the RoCC resp interface depends on a
check on the value of the wxd bit, in particular the signal is computed as follows:

wb_wxd = wb_reg_valid && wb_ctrl.wxd

rocc.resp.ready = !wb_wxd

Where the wb_reg_valid is the valid flag for the instruction in the WB stage,
wb_ctrl.wxd is the wxd bit of the control word for the instruction in the WB
stage and wb_wxd is the final wxd bit that is asserted when there is a valid write
in the RF. The symbol “&&” is used to indicate the logical and, while “!” is used
for the logical negation (not). The ready signal for the resp interface is asserted
only when wb_wxd is zero.

By introducing an additional check on the destination register not being zero,
in the computation of wb_wxd it is possible to grant the write back slot to
the RoCC response for all the instructions that, like the “nop”, have zero as
destination register:

wb_wxd = wb_reg_valid && wb_ctrl.wxd && (wb_waddr /= 0)

By introducing this modification in the core it is possible to exploit the fol-
lowing type of strategy for hiding the latency of read operations:

...
rocc_read rd, cpx ; rd ← Coproc[cpx] 1 cycle
instr1 ; usefull computation 1 cycle
instr2 ; 1 cycle
nop ; RoCC write-back slot 1 cycle
instr3 ; 1 cycle
instr4 ; 1 cycle
instr5 ; 1 cycle
addi rx, rd, 1 ; use rd 1 cycle
...

Figure 2.12. Masking the latency of a read operation by inserting some inde-
pendent instructions with a free cycle for the write-back of the RoCC interface.

26

2.4 – Loads and stores between RoCC and cache memory

Using useless branch to mask the latency

By substituting the nop instruction with a useless branch never taken, it is also
possible to avoid any modification of the core. Using this method allows to
exploit the same code sequence, but it uses a non standard definition of the nop
instruction.

...
rocc_read rd, cpx ; rd ← Coproc[cpx] 1 cycle
instr1 ; usefull computation 1 cycle
instr2 ; 1 cycle
bnez zero, addr ; RoCC write-back slot 1 cycle
instr3 ; 1 cycle
instr4 ; 1 cycle
instr5 ; 1 cycle
addi rx, rd, 1 ; use rd 1 cycle
...

Figure 2.13. Use of a branch never taken as write cycle for the RoCC interface.

The approach shown in the figures 2.12 and 2.13, allows to pay a single cy-
cle penalty when reading from the RoCC resp interface. Even if it may give
a good performance improvement, this remains a very situational optimisation,
which would be difficult to apply to a compiler. The exploited sequence must be
respected but in general it may be impossible to find the exact number of inde-
pendent instructions. Moreover the sequence is strictly dependent on the latency
of the coprocessor, so it would be almost impossible to rely on this approach
without a knowing the details of the accelerator.

2.4 Loads and stores between RoCC and cache
memory

This section describes the use of the memory request and response sub-interfaces
to allow a coprocessor to directly fetch data from the L1 data cache. Following the
model used for the communications with the core, for the data transfers between
the coprocessor and the data cache the following pseudo-instructions are defined:

• rocc_load cpd, rs: the coprocessor performs a load operation using the
content of the integer register rs as memory address and puts the result in
its internal register cpd.

• rocc_store cps, rs: the coprocessor performs a store operation of the value
contained in cps using the content of the register rs as memory address.

27

2 – The RoCC coprocessor interface

The presence of single memory operation instructions may seem to give little
advantages because it is almost equivalent to performing a normal RISC-V load
plus a rocc_write on the coprocessor. The use of single transfer instructions
is also limited because, before launching this kind of instructions, the integer
register rs should be initialised with the proper address. This basically results in
a overhead of at least one additional instruction for each rocc_load, for preparing
rs, this usually means moving the address in the register as it is shown in Figure
2.14. Moreover as the RoCC interface is placed after the WB stage the memory
access is delayed by at least two clock cycles (the actual number may depend on
the accelerator).

...
addi a4, sp, 24 ; prepare address #1
addi a5, sp, 16 ; prepare address #2
addi a5, sp, 8 ; prepare address #3
mv a6, sp ; prepare address #4
rocc_load cpd1, a4 ; Coproc[cpx] ← Mem[a4]
rocc_load cpd2, a5 ; Coproc[cpx] ← Mem[a5]
rocc_load cpd3, a6 ; Coproc[cpx] ← Mem[a6]
rocc_load cpd4, a7 ; Coproc[cpx] ← Mem[a7]
...

Figure 2.14. Sequence of rocc_load with address preparation instructions.

However the memory interface is probably the best way to move a big amount
of data in and out of the coprocessor.

Another possibility could be to implement burst transfers, with a single in-
struction or with a sequence of programming instructions. In order to perform
a burst transfer the coprocessor needs to know at least: the base address, the
size of the transfer and the destination/source register (supposing that the size
of the data is fixed). Instructions for fixed size bursts (8 words, 16 words etc..)
can be implemented to be able to send all the required information with a single
instruction. On the other hand a more flexible approach could use fully pro-
grammable burst, this choice would lead to the use of multiple write instructions
to send all the required information. This last option could be effective only for
long transfers, because of the overhead of the programming instructions.

In general the use of burst instructions is heavily application dependent and
not general enough for implementing them in every coprocessor.

28

2.4 – Loads and stores between RoCC and cache memory

2.4.1 Latency study
Independently if the memory interface is used by single or burst load/store in-
structions, or by internal operations of the coprocessor, the behaviour of the
req and resp channel is basically the same. The following analysis considers the
behaviour with a single memory operation and with consecutive memory opera-
tions. The analysis does not consider the presence of cache misses, this is because
it would depend on many factors, for example the memory accesses of the pro-
gram running on the core. Moreover it is difficult to consider cache misses in
the analysis because the caches are completely configurable in size, organisation,
coherency protocol and the data cache can be also substituted by a scratchpad
memory.

As it was said in the description of the interface the req channel is a Decoupled
link. This means that each request is considered accepted when both the ready
signal from the cache and the valid signal from the coprocessor are high in the
same clock cycle.

clock

clock_cnt 0 1 2 3 4

mem_req_ready

mem_req_valid

mem_req_addr addr

mem_req_tag tag

mem_req_data data

mem_resp_valid

mem_resp_addr addr

mem_resp_tag tag

mem_resp_data data

Figure 2.15. Single memory request and response waveform.

The Figure 2.15 shows a timing diagram for the main signals of the request
and response sub-interfaces for a single memory operation. As it can be seen,
the response arrives in the second clock cycle after the request is fired (ready and
valid both high in the same clock cycle).

The Figure 2.16 shows the behaviour of the memory interface when the co-
processor tries to perform multiple consecutive memory access.

As it can be seen the memory is able to accept two consecutive requests,

29

2 – The RoCC coprocessor interface

clock

clock_cnt 0 1 2 3 4 5

mem_req_ready

mem_req_valid

mem_req_addr addr1 addr2 addr3 addr4

mem_req_tag tag1 tag2 tag3 tag4

mem_req_data data1 data2 data3 data4

mem_resp_valid

mem_resp_addr addr1 addr2

mem_resp_tag tag1 tag2

mem_resp_data data1 data2

Figure 2.16. Multiple consecutive memory request waveform.

then it needs a cycle of wait before the next two requests can be accepted. The
resulting maximum throughput of the interface is 50% and the latency is 2 clock
cycles.

30

Chapter 3

Case study: the Blockcipher
coprocessor

This chapter presents the design of a cyptographic accelerator, starting from a
block-cipher module internally developed at CEA. This core is able to perform
both AES and present encryptions and is optimized for low power and low
energy[4] but was not designed to be part of a coprocessor system. The first
section provides an overview of the block-cipher core, describing its interface,
the mode of operation and the input/output protocols and timings. The sec-
ond section describes the architecture of the design, outlining the register file,
the state machines and their interactions. It present an extension of the cryp-
tographic module, that enhance the functionality and improve the coprocessor
performance. The third section discusses the programming model and the in-
struction set defined for this design. The last section presents a performance
analysis that considers the two main mode of operation of the accelerator.

3.1 Overview of the Block-cipher core

This section briefly introduces the concept of block-cipher and the block-cipher
core described in [3] and [4]. A block-cipher is a cipher algorithm that takes a
block of plain-text and use it to produce a block of cipher-text of equal length
[5]. This kind of algorithms are very widely used, and hardware implementations
of these algorithms are often exploited to achieve greater performances and lower
power consumption.

In particular the block-cipher core used for this study implements the Advanced

31

3 – Case study: the Blockcipher coprocessor

Encryption Standard (AES) and present algorithms. AES, also known as Ri-
jndael, is probably the most widespread block-cipher and was published as a
standard by the National Institute of Standards and Technology (NIST) in 2011
[5]. AES uses a block size of 128-bit and supports key sizes of 128-bit, 192-bit
and 256-bit.

present on the other hand is a newer light-weight block-cipher, devised for
being suitable for constrained devices like the ones used in the IoT domain [6].
present algorithm exploit a 64-bit block size and support 80-bit or 128-bit key
sizes.

load_key

load_data

key_in[31:0]

data_in[31:0]

cipher_sel

rounds[5:0]

key_size[1:0]

Blockcipher

AES/PRESENT

rst_n

clock

data_out[31:0]

done_out

Figure 3.1. Schematic view of the block-cipher interface.

The block-cipher core used in this study was also designed having in mind
constrained devices like those of the IoT. The datapath is on 32-bit optimised for
ultra low-power and ultra low-energy consumption. It is capable of performing
both AES and present encryption with all the supported key sizes (128-bit,
192-bit and 256-bit for AES and 80-bit and 128-bit for present).

As it can be seen in the picture 3.1, the block-cipher IP has a common 32-bit
interface, with a 32-bit bus for the key and one for the data, and a pair of load
enable for key and data chunks. It is possible to configure the cipher (AES or
present), the key size and the number of rounds of the algorithms with dedicated
selection signals. The output interface presents a 32-bit bus and a “done” signal
used to signal a valid data.

32

3.2 – Architecture of the Block-cipher coprocessor

The Figure 3.2 shows the main signals involved in the input/output protocol
of an AES 128-bit encryption.

clock

clock_cnt 1 2 3 4 5 6 ... 41 42 43 44 45

load_data_in

data_in[31:0] D0 D1 D2 D3

load_key_in

key_in[31:0] K0 K1 K2 K3

start

done_out

data_out[31:0] C0 C1 C2 C3

Figure 3.2. Time diagram for the block-cipher IP AES-128 input/output protocol.

3.2 Architecture of the Block-cipher coprocessor
This section presents the details of the proposed architecture for embedding the
block-cipher IP in a RoCC coprocessor. Overall the architecture presents three
major components: the interface module, the computing core and the memory
module.

As it can be seen in the Figure 3.3 the interface module is the component in
charge for the communication between the processor core and the register bank.

The computing core is based on the block-cipher IP described in the previous
section, with some additional components used to obtain new functionality. In
particular FIFO queues are used to pipeline the operations and to buffer the
loading of new plain-text data and storing of the resulting cipher-text data.

The last block in the diagram is the memory module which is in charge of
performing load and store operation to fill and spill the computing core queues.
Since both the interface module and the memory module can perform memory
accesses, the RoCC memory sub-interfaces are multiplexed between the two.

3.2.1 Interface module
The interface module is the component that is connected to the processor with
both the cmd and resp interface. It is able to directly communicate with the
L1 data cache by implementing the full RoCC memory sub-interface. Given

33

3 – Case study: the Blockcipher coprocessor

load @ counter

store @ counter

Blockcipher

AES/PRESENT
Register

Bank

Interface Module Compute Module

RoCC Accelerator

R
o
c
k
e
t

c
o
r
e

L1 D$

Memory Module

CM_FSM

IM_FSM

MM_FSM

Figure 3.3. High level block diagram of the block-cipher coprocessor.

the programming model of read/write and load/store, the interface module is
basically a bridge for data transfers between the processor and the register bank
and the memory and the register bank.

The interface module is in charge of receiving and decoding commands from
the processor, and performing flow control by deciding when to accept a new
given instruction. The ready signal of the RoCC interface is used by the interface
module to manage the flow of instructions. To decide whether to rise or keep low
this signal, the interface module performs several checks based on the value of the
funct7 field of the RoCC instruction (Chapter 2). The control logic implements
the following checks:

• when funct7 = READ_OPCODE:

34

3.2 – Architecture of the Block-cipher coprocessor

check if a read operation can be executed.

• when funct7 = WRITE_OPCODE:

check if a write operation can be executed.

• when funct7 = LOAD_OPCODE or funct7 = STORE_OPCODE

check if a memory operation can be executed.

Then depending on the type of instruction decoded, the interface module uses
the result of this checks to determine the value of the ready signals. These checks
depends on several conditions which are reported in the pseudo-code in Figure
3.4.

-- Accept a read only if response interface is ready and RF can reply
-- registers above the 15th are read-only so they can always be read
rd_addr_ok <= (rd_addr > 15) or (mem_mod_ready and encr_ready);
read_ok <= rocc_resp_ready and cfg_rsp and rd_addr_ok and not(enc_start);

-- Accept a write instr. if nobody is reading or writing
write_ok <= encr_ready and mem_mod_ready and cfg_rsp and not(enc_start);

-- Accept a memory instr. if memory is ready and no one is using it
mem_ok <= mem_req_ready and encr_ready and mem_mod_ready and cfg_rsp;

Figure 3.4. Pseudo-code for the ready check logic.

Thanks to these checks whenever an instruction can be computed is imme-
diately accepted, while instructions that requires some busy resource are kept
waiting.

The interface module also implements a Finite State Machine (FSM) for han-
dling the memory operations. In particular the FSM is used to guarantee the
correct order of the memory operations, by implementing a wait state for the
memory response, as it can be seen in Figure 3.5.

During the two wait states the interface module will keep the ready signal of
the command interface low, to avoid accepting instructions that could corrupt
the state of the coprocessor.

3.2.2 Register bank
The register bank was designed with a code-generation tool internally designed
by CEA. This tool allows to generate configuration register banks starting from
a specification file. The register bank support a bus communication interface
on one side and give parallel access on the Intellectual Property (IP) side, so

35

3 – Case study: the Blockcipher coprocessor

idle

storew loadw

store
load

!mem_resp

store_resp

!mem_resp

load_resp

Figure 3.5. Interface module FSM (IM_FSM).

that it can be used to generate configuration registers for peripheral cores. The
generated register bank is able to handle conflicting accesses by givin priority to
the IP core side and not giving a valid response to the interface request. The
tool can be configured to produce an AMBA APB interface or the cfg interface.

The cfg interface has been chosen for this work because it offers a simpler and
faster interface, more suitable for a coprocessor register file. The cfg interface is
composed of the following signals:

• addr : address of the request.

• wdata: write data.

• write: write enable for the request.

• req: request enable.

• rdata: read data.

• rsp: response valid.

• error : error code.

For this design the tool was configured for producing a register bank with a
5-bit address space, the registers were organised as shown in Figure 3.6.

The registers containing the key (from 0x00 to 0x07) and the input data (0x08
to 0x0B) are configured to be readable and writable for both the interface side
and the IP side. The addresses from 0x0C to 0X0F are read-only for the CPU
and are used to store the result of a single block encryption.

The msg size (0x011) is the register used to set up the size of the plain-text
for an OFB encryption. The plain addr regiseter (0x12) holds the source base

36

3.2 – Architecture of the Block-cipher coprocessor

0x1F status
0x1E block count
0x1D

0x15

reserved

0x14 start pulse
0x13 cipher address
0x11 msg size

0x12 plain address
0x10 config register
0x0F

0x0C

out data

0x0B

0x08

in data (IV)

0x07

0x00

key chunks

Figure 3.6. Register bank organisation.

address for the plain-text in memory, while the cipher addr (0x13) is used to
set the cipher-text destination address. These three registers are used by the
memory module during an OFB encryption. The start pulse register is a single
bit pulse-register used to generate the start condition for an encryption. A write
of the value "1" on this register will trigger a pulse of one clock-cycle used as start

37

3 – Case study: the Blockcipher coprocessor

signal for the compute module’s FSM.
The configuration register is used to set up and prepare the parameters of the

computation. In particular, as shown in Figure 3.7, the config reg (0x10) it is
composed of the following fields:

• [31 : 10] reserved

• [9] mode_ofb : set to one for OFB encryption, zero for single block encryp-
tion.

• [8] cipher_sel : zero to select AES, one to select present.

• [7 : 2] rounds: set the number of round for the encryption algorithm.

• [1 : 0] key_size: "00" for 80-bit, "01" for 128-bit, "10" for 192-bit, "11" for
256-bit.

All the configuration registers from 0x10 to 0x14 are read-only on the IP side.
The register space from 0x15 to 0x1D is left empty and the register bank will

not allow accesses in this region.
The block cnt (0x1E) register is read-only for the core and it is constantly

updated by the compute unit and holds the number of encrypted blocks.
The last register (0x1F) called status, is also read-only for the CPU and holds

in the last two bits the status of the compute core and of the memory module
FSMs. Specifically the first bit is set when the compute unit is in the idle state,
ready to start a new encryption, in the same way the second bit is one when the
memory module is ready. If one of this two bits is at zero it means that one of
the two module is busy.

31 10 9 8 7 2 1 0

reserved mode_ofb cipher_sel rounds key_size

Figure 3.7. config register fields.

3.2.3 OFB mode: enhancing of the Block-cipher core
The block-cipher core described in section section 3.1 is by itself capable of per-
forming the encryption of a single block of data at a time.

The simplest approach for embedding the block-cipher in a RoCC coprocessor,
would be to multiplex the data and key registers and just connect the block-
cipher, with the addition of some control logic for correctly timing the input
protocol. This approach would work fine for single block encryptions, but it would

38

3.2 – Architecture of the Block-cipher coprocessor

incur in the read limitation of the interface when performing a more complex
scheme of encryption.

To increase the efficiency of the coprocessor and provide an extra hardware
encryption scheme, the block-cipher core is used to compose a more complex
computing module able to perform OFB encryptions.

OFB mode of operation

When the plain-text is larger than the dimension of a single block, several tech-
niques can be used to perform the encryption. The simplest mode of operation
is to subdivide the plain-text in N blocks (eventually with some padding in the
last block) and perform the simple encryption to each of the blocks. This scheme
is called ECB encryption. To avoid security issues, the use of ECB mode should
be limited to the plain-texts shorter than a block [5].

Among the mode of operation suggested by NIST [7], there is the OFB mode,
which was chosen for being implemented in this design.

The Output Feedback (OFB) is a mode of operation in which the output of
the encryption function is xor-ed with the plain text block to produce the cipher-
text, at the same time the output of the encryption function is also fed back to
become the input for encrypting the next block of plain-text [5]. The algorithm
for OFB encryption can be expressed by the following equations:

O0 = IV

Oi = encK(Oi−1)
Ci = Pi ⊕Oi

Where Ci and Pi are the i-th block of cipher and plain text, encK() is a block-
cipher encryption function applied with a key K, and the Initialisation Vector
(IV) is usually a random nonce (number used only once). A conceptual block
scheme of the OFB mode is shown in Figure 3.8. As it can be seen this mode
of operation basically creates a stream of pseudo-random numbers, transforming
the block-cipher into a stream-cipher.

The OFB mode of operation was chosen because it brings several advantages
in the implementation of the coprocessor. In particular for this algorithm the en-
cryption and decryption operations are identical, this means that the decryption
just requires exchanging the plain-text with the cipher-text. From an hardware
design perspective this means that:

• Only the encryption function is used so there is no need for a decryption
core.

• No additional hardware is required for performing the OFB decryption
scheme.

39

3 – Case study: the Blockcipher coprocessor

Key

IV

Output Feedback

Plain text(i)

Cipher text(i)Blockcipher

AES/PRESENT

Figure 3.8. OFB algorithm block scheme.

Overall there is no hardware overhead for the support of the OFB decryption.
This was ideal since the block-cipher used for this design only implements the
encryption operation.

An additional advantage of the OFB encryption scheme is that it implements
a stream type of operation and so it is particularly suited for an autonomous
implementation.

Architecture

In order to implement the OFB mode of operation the block-cipher IP is used
together with FIFO queues. A FIFO queue is used to implement the feedback
and buffer the output block for the next encryption. Another queue is also needed
to buffer the encryption output, this one is used to allow decoupling between the
stream-generation side and the encryption side. The last FIFO is used to buffer
the plain-text data arriving from memory.

The size of the feedback FIFO is fixed to the size of an AES data block, four
32-bit words. While there is no need for a larger queue, this FIFO must be able
to store at least a full 128-bit block, to guarantee the correct behaviour of the
block-cipher IP and the correct implementation of the input protocol. The output
queue on the other hand should be at least twice as big as the feedback FIFO, to
guarantee that there is always room for another full block before starting a new
encryption. For this reason the size of the output queue was set to be eight 32-bit
words (2 blocks), since having a larger one does not give any advantage. The
memory FIFO size can be selected arbitrarily, although most optimal value is to
have the size of a full 128-bit block. Having a smaller memory queue introduces
the latency of the memory accesses in the computation, while having a larger
FIFO does not bring any benefit, since the throughput is limited by the latency

40

3.2 – Architecture of the Block-cipher coprocessor

of the block-cipher core. In the end the configuration chosen for the FIFOs sizing
was the smallest one guaranteeing the maximum throughput.

The computing core takes its input from the key and data in section of the
register bank. In particular the eight key registers are multiplexed into the key
data input of the block-cipher core. On the other side the four data-in registers
are first multiplexed to select the right data chunk, the result of this selection
is then further multiplexed with the output of the feedback queue. This allows
to select the source of the data input of the block-cipher IP, this selection is
performed by the FSM of the computing core, CC_FSM described hereinafter.
The computing cores state machine drives also the selection signal for the two data
and key multiplexers, controlling the correct sequencing of the input operation.

Key

IV

computing core

Blockcipher

AES/PRESENT

Figure 3.9. OFB module implementation.

The output and memory FIFOs are spilled together to produce the cipher-
text chunks, this operation happens only when the two queues have valid data
and the memory module is ready. By working in a synchronous manner the two
FIFOs are used as a single logical queue.

3.2.4 State machine
Overall the FSM controlling the coprocessor is the result of three main state
machines working in parallel, IM_FSM, CM_FSM and MM_FSM, as shown
in Figure 3.3. The first one, IM_FSM, is the FSM controlling the interface
module, which allows the read/write and load/store instruction management.
On the other side, directly connected to the register bank there is the compute
module, with the main state machine, CM_FSM, implementing the logic for the
encryption operations. This FSM is activated by a write on the start register

41

3 – Case study: the Blockcipher coprocessor

of the coprocessor register bank. The third state machine MM_FSM, is the one
controlling the memory operations during the OFB encryption. This last FSM
is decoupled from the main one thanks to the memory and output FIFOs.

The state machine controlling the encryption operation is composed of eleven
states, among them there is an initial idle state, eight sequencing states for feeding
the key and data chunks to the block-cipher core, a wait state for waiting the
result of the encryption and pushing it to the feedback and output queues, and a
write-back state for saving the last block produced in the register bank and clear
the queues.

As it can be seen in Figure 3.10, the states key2, key3 and key5 perform a
check on the length of the key and interrupt the key/data feeding process when
the correct number of chunks as been feed. The keyi states implements the block-
cipher input protocol, in each of these states the correct key and data registers
are selected and the load_key and load_data signal are correctly driven based on
the selected algorithm.

By selecting the OFB mode the state machine will enter in a loop in which,
from the wait state, when the encryption of a block is finished, it will automat-
ically jump to the key0 state, to immediately start the encryption of a the new
block. This procedure will end when the memory module will signal to the FSM
the completion of the last plain-text block transfer.

At that point the machine will enter in the write-back state (wb) in which
the last cipher-text block will be eventually stored in memory and the feedback
queue data will be pushed in the data in region of the register bank for future
encryptions. In this state the FIFOs are checked to be empty, this is mandatory
because the two algorithms that are supported (AES and present) have a differ-
ent block size, so the coprocessor does not allow to start a new encryption until
the queues have been emptied. In this way the content of the queues is cleaned
for future encryption, moreover it is possible to start a new OFB encryption from
the the last encrypted block, because the feedback is saved in the same registers
of the IV. This effectively allows to split an OFB encryption process in different
runs of the algorithm.

3.2.5 Memory operation
The last main component of the coprocessor is the memory module. This module
is the one in charge of filling the memory queue, in the compute module, with
the plain-text chunks and to get the produced cipher-text words from the logical
output queue and store them in the memory, as shown in Figure 3.3.

This component implements the mem_req and mem_resp interface and ba-
sically performs a round-robin scheme between the load and store requests. To
do so it keeps load and store counters which are used both to keep the count of

42

3.2 – Architecture of the Block-cipher coprocessor

idle

key0

key1

key2

key3

key4

key5

key6

key7

waitwb

enc_start

pres80

aes128 || pres128

aes256

aes192

!done

done & next_block

done & last_block!q_empty

q_empty

Figure 3.10. State transition diagram of the compute core FSM (CM_FSM).

the memory operations and to compute the addresses for the memory requests,
by adding the base address with the counter left shifted by 2, Figure 3.11.

The control logic of this component is mainly implemented by the MM_FSM,
composed of five states: idle, load, store, wait_resp and wait_queues.

When the FSM is in the idle state the RoCC memory interface is left to the
control of the interface module, while the memory module will stay idle until the
rise of the start signal. After an OFB encryption is started the FSM goes to the
load state in which it will wait for the mem_req_ready to be high.

43

3 – Case study: the Blockcipher coprocessor

base <= load_base when (curr_state = s_load) else store_base;
cnt <= load_cnt_r when (curr_state = s_load) else store_cnt_r;
addr <= base + (cnt << 2);

Figure 3.11. Pseudo code for the address computing logic.

idle

load store

waitq

waitr

sta
rt_

en
c

!mem_req_ready

!load_resp

!s_ready & l_ready s_ready

valid_output

end

Figure 3.12. State diagram of the memory module controller (MM_FSM). The
wait_resp state is indicated as wait_r.

Once the request has been accepted the FSM goes to the wait_resp (wait
response) state in which it will wait for the arrival of the memory response for
the previous load operation. When the load data arrives it is immediately written

44

3.3 – Programming model

in the memory queue and the state machine decides the next state transition. In
particular from the wait_resp state the FSM will move to the store state when
the output FIFO has some new valid data. If this is not the case (the output
queue is empty) and the memory queue can receive some data, the FSM will
move to the load state. When the memory queue is full and output queue is
empty, the FSM will go to the wait_q state.

The machine will stay in the wait_q state untill one of the FIFOs is available,
when this condition is satisfied the FSM will jump to either the load or store
state. In case both queues are available at the same time priority is given to the
transition in the store state. The transition to the load state will occur only if
there are still load operation to be performed.

The store state is the one in which the output queue is emptied and the data is
pushed into the memory with a series of store requests. The machine will remain
in this state until the output FIFO is empty, once this occurs the machine will
go in the load state if the memory FIFO is available and there are still loads to
be performed. In case the load operation are finished but there are still stores to
be performed the FSM will jump to the wait_q state. If on the contrary there
are no more stores to be performed, the whole procedure is considered finished
and the FSM will go back to the idle state.

3.3 Programming model
This section presents the programming model for the cryptographic RoCC co-
processor. The coprocessor interface module implements the read/write and
load/store instructions defined in the table 2.2, with these instructions it is pos-
sible to send and receive data to and from the accelerator. As it is shown in
the previous section the register file of the coprocessor is subdivided in different
functional registers, each with its own meaning and function.

For programming the coprocessor a sequence of write operation is needed to
set up the values of this registers, in particular for performing a single block
encryption (ECB mode):

• Write to set-up the config register.

• A sequence of writes for the key and data sections.

• A write to the start register to begin the computation.

The setup of an OFB encryption requires three extra writes to set-up the
plain-text source address, the cipher-text destination address and the size of the
message:

• Write the config register.

45

3 – Case study: the Blockcipher coprocessor

• Write key and IV in the key and data in registers.

• Write the size of the plain-text to the msg size register.

• Write the plain-text source address to the plain addr register.

• Write the cipher-text destination address to the cipher addr register.

• Write to the start register to begin the computation.

These sequences of write instructions can be performed in any order, with the
exception of the write in the start register which must be performed last.

#define ROCC_AES128_ECB_CFG 0b0000100101

int key[] = {...};
int plain[] = {...};
int cipher[4];

void aes128_ecb(int *plain, int *cipher){
// write configuration
rocc_write(ROCC_CFG_REG, ROCC_AES128_ECB_CFG);

rocc_write(ROCC_KEY_REG_BASE + 0, key[0]);
rocc_write(ROCC_KEY_REG_BASE + 1, key[1]);
rocc_write(ROCC_KEY_REG_BASE + 2, key[2]);
rocc_write(ROCC_KEY_REG_BASE + 3, key[3]);

rocc_write(ROCC_DATA_IN_REG_BASE + 0, plain[0]);
rocc_write(ROCC_DATA_IN_REG_BASE + 1, plain[1]);
rocc_write(ROCC_DATA_IN_REG_BASE + 2, plain[2]);
rocc_write(ROCC_DATA_IN_REG_BASE + 3, plain[3]);

// Start the encryption
rocc_write(ROCC_START_REG, 1);

// save the results
cipher[0] = rocc_read(ROCC_CIPHER_BASE + 0);
cipher[1] = rocc_read(ROCC_CIPHER_BASE + 1);
cipher[2] = rocc_read(ROCC_CIPHER_BASE + 2);
cipher[3] = rocc_read(ROCC_CIPHER_BASE + 3);

}

Figure 3.13. Example of C code for an ECB encryption.

46

3.3 – Programming model

The Figure 3.13 shows a possible code sequence for a function performing
the ECB encryption. In the figure the functions rocc_write(reg, value) and
rocc_read(reg) are introduced, these functions can be defined in terms of the
actual assembly instructions with the use of inline assembly as shown in Figure
3.14.

void rocc_write(unsigned int reg, int value){
asm volatile("rocc_read %[rs1], %[rs2]"

:
: [rs1]"r"(reg), [rs1]"r"(value));

}

int rocc_read(unsigned int reg){
int res;
asm volatile("rocc_read %[rd], %[rs1]"

: [rd]"=r"(res)
: [rs1]"r"(op1));

return res;
}

Figure 3.14. Definition of rocc_read and rocc_write C functions.

The same sequence of operation can be directly written in assembly with few
small differences, the main one being the need to manually perform the load and
stores for the key, plain and cipher variables. A similar code sequence can be used
to write a function launching the OFB encryption, as showed in Figure 3.15.

In the code for the OFB encryption a last read operation is performed on
one of the result registers. This read is not really needed since the coprocessor
automatically saves the cipher-text in memory, it is instead used as a blocking
read to stop the core. The interface module in fact will not accept any read
request to the data out registers until the encryption is completed. This could
be an effective way to stall the core in a low-power scenario.

A non blocking version of the same function can be written by just omitting
the last rocc_read. In this way the processor would keep executing the code after
the function call. As opposed to the previous case, this could be a good strategy
for exploiting the parallelism between the CPU and the coprocessor, with the
core running its own thread while the accelerator completes the encryption of a
message.

47

3 – Case study: the Blockcipher coprocessor

#define ROCC_AES128_OFB_CFG 0b1000100101

int iv[] = {...};
int key[] = {...};

int plain[] = {...};
int cipher[MSG_SIZE];

int aes128_ofb(int *plain, int *cipher, unsigned size, int *iv){
// write configuration
rocc_write(ROCC_CFG_REG, ROCC_AES128_OFB_CFG);

rocc_write(ROCC_KEY_REG_BASE + 0, key[0]);
rocc_write(ROCC_KEY_REG_BASE + 1, key[1]);
rocc_write(ROCC_KEY_REG_BASE + 2, key[2]);
rocc_write(ROCC_KEY_REG_BASE + 3, key[3]);

rocc_write(ROCC_DATA_IN_REG_BASE + 0, iv[0]);
rocc_write(ROCC_DATA_IN_REG_BASE + 1, iv[1]);
rocc_write(ROCC_DATA_IN_REG_BASE + 2, iv[2]);
rocc_write(ROCC_DATA_IN_REG_BASE + 3, iv[3]);

rocc_write(ROCC_MSG_SIZE_REG, size);
rocc_write(ROCC_PLAIN_ADDR_REG, plain);
rocc_write(ROCC_CIPHER_ADDR_REG, cipher);

// Start the encryption
rocc_write(ROCC_START_REG, 1);

/** No need to save the result, a blocking read is
* performed to stop the execution until the
* encryption is finished
*/

return rocc_read(ROCC_CIPHER_BASE);
}

Figure 3.15. Code sequence for a OFB encryption.

48

3.4 – Results and performance analysis

3.4 Results and performance analysis
This section reports the results of the simulation of the whole Rocket SoC system,
focusing on the performance of the coprocessor described in the previous sections.
For testing the latency and throughput of the coprocessor a set of test programs
were prepared, in which both the ECB and OFB mode were tested.

The algorithm were tested with all the possible key sizes with the set of test
vector recommended by NIST in [7]. In the following the results for the AES-128
bit encryption are presented. For these analysis it is considered not only the total
number of clock for the operation, but also the total number of instructions. In
particular it is also considered the overhead of the normal RISC-V instructions
compared to the fraction of custom coprocessor instructions.

3.4.1 ECB encryption
The test of the ECB encryption scheme showed all the limitations of the RoCC
interface. The test considered a case of single block encryptions placed inside a
loop, so that a general figure for an n block encryption could be made.

The block-cipher IP is able to perform an AES-128 encryption in 45 clock
cycles. This figure considers the beginning of the encryption from the cycle in
which the first data and key chunks are feed, to the cycle in which the last
word of the cipher-text is produced. Considering this figure, the proposed design
behaves well, taking only 48 clock cycles from the generation of the start pulse
(one cycle after the rocc_write to the start register) to the return in the idle
state. The comparison is showed in Figure 3.16, where the time dime diagram
reports the start pulse, state of the computing core and the data_out signal of
the block-cipher IP.

clock

clock cnt 1 2 3 4 6 7 8 9 ... 43 44 45 46 47 48

start

state idle k0 k1 k2 k3 wait wb idle

done_out

data_out d0 d1 d2 d3

Figure 3.16. Time diagram of the ECB encryption.

The extra 3 clock cycle spent by the coprocessor are due one to the start pulse
delay, the other two are caused by the write back of the queues in the register

49

3 – Case study: the Blockcipher coprocessor

bank, which add 2 extra clock barriers.
Considering the total execution time and the instruction count things get

slightly worse. The test code was compiled in a total of 37 instructions, out of
which 14 are coprocessor operations, in particular:

• 1 rocc_write for the configuration.

• 4 rocc_write for the key.

• 4 rocc_write for the data.

• 1 rocc_write for the start pulse.

• 4 rocc_read for retrieving the cipher-text data.

16 18 52

enc

25

init data+start t (cycles)read

Figure 3.17. Time diagram of the ECB test sequence.

The Figure 3.17 shows a time diagram of the main phases of the program
with the relative length in clock cycles. As it can be seen the total time is
111 clock cycles, out of witch just 52 are spent for the encryption (the actual
encryption time plus the time for the start writing instruction). The init phase
consist of the writing of configuration and key, last for 16 clock cycles but it is
performed only once. The data section last for 18 clock cycles and also accounts
for the loop management. In the successive executions the data section can last
13 cycles, since some of the register values are reused (the one for addressing the
coprocessor). The read section is the one introducing the heaviest overhead with
its 25 clock cycles.

Considering a loop for the encryption of n blocks, the total number of clock
cycles is computed as: Ttot(n) = 21 + 90n. This gives a throughput of about
90 clock cycles per block, which is equivalent to 1.42 bits per clock cycle or
142 Mbit/s with a 100 MHz clock. This means that the maximum throughput
with this configuration is limited to half the maximum throughput allowed by
the block-cipher IP. Being this mode very inefficient, it should not be used if
not to perform occasional single block encryptions, the OFB mode, described in
the next section, is instead better suited for this coprocessor and should be the
preferred mode.

50

3.4 – Results and performance analysis

3.4.2 OFB encryption
The addition of the OFB mode introduced two main advantages to the copro-
cessor: the possibility to leave the processor free to execute another task, and
the ability to compute the encryptions at the maximum throughput allowed by
the block-cipher IP. In particular configuring the coprocessor in the OFB mode
allows the encryption of arbitrarily long messages with just a small sequence of
initialisation instructions. This could allow the CPU to run without having to
continuously exchange data with the accelerator, thus avoiding the overhead in-
troduced by the RoCC interface. Moreover since the coprocessor is not limited
by the interactions with the main core, all the encryptions of subsequent blocks
are pipelined without introducing any additional delay. This behaviour is shown
in Figure 3.18, where it can be seen that the coprocessor can encrypt a n blocks
message in a number of clock cycles which is equal to: Tcoproc(n) = 1 + 45n + 4.
The proposed design is thus able to achieve the maximum throughput allowed by
the block-cipher core, adding only one clock cycle of penalty for the start pulse at
the beginning of the encryption, and four clock cycles that are due to the queue
management and to the limitation imposed by the memory interface during the
store of the last cipher-text block.

t (cycles)st
ar

t

enc 2 enc n-1 enc n...enc 1

45 45 45 45 45 x i1 4

Figure 3.18. Time diagram of the OFB encryption.

When considering the total execution time, the overhead of the instructions
and the one caused by the interface, are greatly reduced with respect to the case
of the ECB encryption.

The OFB test consisted in a program repeatedly performing the encryption
of multi-block messages. This program is meant to test both the case of a normal
OFB encryption and the case of an encryption operation divided in multiple runs
of the algorithm. The executed test sequence consist of two major section: a
set of initialisation instructions to set up the coprocessor configuration, the key
and the IV, and the sequence of instructions for setting up the addresses for the
encryption and to generate the start command. In particular the initialisation
phase consist of 20 instructions, of which 9 are coprocessor instructions, the addr
+ start phase is composed of 7 instructions of which four are RoCC instructions.

51

3 – Case study: the Blockcipher coprocessor

Out of the 27 total instructions the RoCC ones are:

• 9 rocc_write instructions for setting up the configuration, the key and the
IV.

• 3 rocc_write instructions for the plain and cipher-text size and addresses.

• 1 rocc_write instruction for the start pulse.

In Figure 3.19 is reported a time diagram of the different phases, in this case
the length of each encryption phase depends on the number of blocks of the
plain-text. The initialisation phase takes only 27 clock cycles while the address
and start phase cost is eight cycles. This phases might seem to introduce a large
overhead, if compared to the 45 clock cycles needed for the encryption of a block,
but with this mode this price is payed only once at the beginning.

t (cycles)st
ar

t

28 8 5+45 x n

Init addr

1

enc st
ar

t

8

addr

1

Figure 3.19. Time diagram of the OFB test sequence.

As a result the total time for the encryption of an n block plain-text is roughly
computed as Ttotal(n) = 35 + 5 + 45n. This figure is much better than the one
obtained with the ECB encryption, moreover this method allows also a generally
lower instruction count and the possibility to exploit the parallelism with the
main core.

For all of these reasons the OFB mode is considered the best way to exploit
the proposed architecture.

52

Chapter 4

General coprocessor
framework

This chapter outlines some considerations about the design of a coprocessor with
the RoCC interface, taking into account the analysis performed in Chapter 2 and
making use of the experience coming from the case study presented in Chap-
ter 3. The first section discusses the general architectural choices and concept
concerning the development of the accelerators, considering the register file, the
use of the interfaces and the state machines for the control of the operations.
The second section deals with the software side of the accelerator, considering
the possible ways of programming it, the format of the instructions and the ad-
dressing modes. In the end the last section provides some considerations about
the performance aspect of the coprocessors, like latency and the exploitation of
parallelism between the core and the accelerator.

4.1 Architecture overview

In general finding generic patterns for coprocessors design is a difficult task, since
by definition the coprocessor is a custom special-purpose computing core. This
sections tries to generalise the concepts introduced with the design of the block-
cipher accelerator, suggesting some design patterns for easing the integration of
different IPs without the need to re-design from scratch each new accelerator.

The Figure 4.1 shows the general architectural framework proposed for the
design of RoCC coprocessor. As it is shown in the figure, the general copro-
cessor more or less follows the same architectural pattern described with the

53

4 – General coprocessor framework

load @ counter

store @ counter

Register

Bank

Interface Module Compute Module

RoCC Accelerator

R
o
c
k
e
t

c
o
r
e

L1 D$

Memory Module

...
...

...

n

wr_data

mem_req

rd_data

mem_resp

start

core0

core1

coren

Read & Write

Read only

Write

Status

n ready

Figure 4.1. General coprocessor architecture.

block-cipher case study. In particular the architecture presents a generic inter-
face module handling the communications with the core and the data transfers
with the internal register file. The register bank, as in the case of the block-
cipher accelerator, can be spited into sections and will give parallel access to the
computing core’s side.

In a generic coprocessor, there can be more than one computational units,
this units may implement single atomic operations (like a multiply-accumulate)
or can be more complex implementing several different functions. Moreover the
computing cores may be already existing IPs (like in the case of the block-cipher)
or they can be designed on purpose for being part of a RoCC coprocessor. In

54

4.1 – Architecture overview

general for the first case, it can be convenient to adopt the same approach pro-
posed with the block-cipher case study. With some interface modules dealing
with the communication with the core, and some wrapping logic that allows the
computing unit to access the register file and maybe talk with the memory.

In case of an on purpose design, the compute unit can be much more integrated
and a lot more optimisations can be applied. For example a module specifically
designed for being part of a RoCC coprocessor, may directly embed the control
logic for performing memory accesses, without the need of an additional module.
Moreover the input output protocol of the compute core may be designed to take
full advantage of the register bank configuration or of the RoCC cmd channel.

4.1.1 Interfaces
Interface module

As for the block-cipher case study, the proposed architectural framework presents
a generic interface module that handle the instructions and the data exchange
with CPU. In particular an interface module implementing the read/write -
load/store instruction model, with a standard interface towards the register bank,
can be made agnostic with respect to the type of coprocessor. This can be helpful
from a reuse point of view and guarantees the minimal setup for a peripheral-like
coprocessor. On the other hand the decode logic and the FSM of the interface
module could be extended in order to support different special operations. One
example could be the introduction of burst load/store instructions, which can be
useful and more efficient for coprocessors operating on a large amount of data.
In particular fixed size burst transfers can be implemented to efficiently transfer
data with the memory, without suffering from the overhead of programmable
burst (wich would require more than one instruction).

Another possible extension to the interface module could be the support for
direct responses from the computing unit to the CPU. This would allow the
coprocessor to perform a computation and send back the result with just one
instruction, without the need of performing multiple read or writes to the register
bank.

As an example a vector multiply-accumulate accelerator could make use of
both the burst transfer and the bypass of the register file. In particular it would
be possible to write a full vector with one instruction, and perform the multiply-
accumulate on it directly retrieving the result with a second instruction.

Memory interfaces

The direct communications with the L1 data cache are one of the most important
features of the RoCC interface. In order to exploit this capability several design

55

4 – General coprocessor framework

decision can be made. If the target is the use of existing IPs, not specifically
designed for being embedded in a RoCC coprocessor, a good choice could be to
adopt a strategy similar to the one presented with the block-cipher case study.
In particular a coprocessor can make use of a memory module to handle in an
efficient way the memory operations, and serving the compute cores with through
the use of appropriate interfaces, like the FIFOs in the block-cipher coprocessor.
A fixed interface could be adopted, like for example load and store FIFOs and
dedicated configuration registers for programming the source and destination
addresses. This strategy would allow to design a generic memory module that
sequence the load and store operations adopting some kind of scheduling, like for
example round robin.

Although this method may seem reasonable, care must be taken to avoid
deadlocks. Moreover it is often the case that the specific memory operation
performed by a coprocessor follows a regular pattern. In this case it is often
easier and more efficient to implement a dedicated state machine to sequence
the memory operation, avoiding the probably higher cost of a generic memory
module.

Another possible approach could be to devise the computing core embedding
the memory control logic. For example for a stream based coprocessor it could
be more efficient to directly handle the stream of data from the memory.

However in general the use of a dedicated memory module is suggested, since
it makes the overall design more modular and can make easier the design of the
compute core. Moreover care must be taken when the memory operation are
performed, especially with the load operations, because the memory transactions
are not guaranteed to be performed in order. For this reason dividing the duties
between a compute core and the memory module seems to be a good design
decision.

Internal interfaces

Inside the coprocessor the movement of data between the different modules can be
handled in several ways. In the case of the block-cipher coprocessor the choice was
to have the interface module talk with the register bank through the cfg interface,
while the compute unit have parallel access to all the data and configuration
registers. On the memory side the compute unit exchange data through the use
of two FIFO interfaces.

This approach can be generalised and extended to the case of many compute
units that may talk directly or through the use of queues to both the register
bank and the memory. Another possibility could be to have a dual port memory
in place of the register file, and handle writing conflicts between the interface
module and the compute module.

56

4.1 – Architecture overview

In general the recommendation is to exploit the register bank with a standard
channel on the interface module side, and with full parallel access on the compute
IPs side. This allows a basic reuse of modules and it is a reasonably flexible way
to provide the compute units with the data they need.

4.1.2 Register bank
The register bank is basically the main “interface” of the block-cipher coprocessor
at the programming level. Following this principle, the register bank of a generic
coprocessor should be designed in order to expose the configuration and the status
registers to the CPU, to allow a peripheral like programming of the accelerator.
In the proposed architectural framework the register bank is also the main data
bridge between the interface module and the computing core.

The register bank of the cryptographic coprocessor has been designed using a
code generation tool. Trough this tool it was possible to decide the address map,
specify the type of each register (e.g. read-only) and the specific fields for the
configuration registers.

Regardless of the method used to design it, the register bank should in general
provide the following characteristics:

• A read/write port on the interface module side.

• Read/write ports or parallel access on the compute side.

• A protocol to handle conflicting accesses coming from the two sides.

• The possibility of specifying different types of registers.

The read/write port on the interface side is needed to guarantee the reuse
and the independence of the interface module from the specific register bank
configuration. The protocol to handle the access conflicts between the interface
module and the computing core is needed to guarantee data consistency.

The different types of registers are needed to support different configurations,
to organise the register bank and to guarantee different properties to the data. As
an example the key registers of the block-cipher coprocessor are read-only for the
compute module, while they can be both read and written on the interface side.
At the same time registers like the data out ones are read-only on the interface
side and are written by the compute core. Also some special types of registers
may be needed, like the start pulse register which only generate a pulse and does
not hold any value. This types of registers allows to organise and protect the
data and to define the read/write accesses rights.

57

4 – General coprocessor framework

4.1.3 State machine

Specifying a generic framework for the design of coprocessor’s FSMs is in general
very difficult. The state machine model is often used for specifying the control
logic for a sequence of operations, and in general, different coprocessors will
require different state machines to perform their tasks. However some common
considerations can be abstracted from the specific context. In general depending
on the complexity of the project two main approaches can be taken for the designg
of the control logic.

The first one is to have a single FSM controlling all the operations, from
the decode of the commands to the exact sequencing of the compute operations.
This approach is feasible for simpler coprocessor, where the compute module
does not come with complex input protocols or where no parallelism is required.
This method has the advantage of being simple and fast to implement, but often
it does not guarantee the best performances, and does not scale well with the
complexity of the design.

The other possibility is to split the control logic with the interaction of several
state machines. This method may allow higher performance through parallelism,
as in the case of the block-cipher coprocessor in which the compute unit performs
the encryption while the memory module FSM performs the memory accesses.

The interface module FSM may be adapted to accommodate different func-
tions with the use of wait states like the ones used for waiting load or store
memory responses. In this scheme the interface module will enter in one of these
states when the start pulse for the specific compute function is triggered. At this
point the ready signal of the cmd sub-interface can be lowered until the end of
the execution, when the interface FSM will return to the idle state.

An example of generic FSM for the interface module is shown in Figure 4.2.
The different wait states may not be needed if the ready signal of the cmd sub
interface is computed in a combinational way, combining the ready signals coming
from different compute modules.

Another common place were FSMs may appear is in the logic for the memory
transfers. Since the memory responses are not guaranteed to arrive in-order,
a simple strategy may be to enforce the order by imposing waiting states for
the responses. This approach is simple to implement, but does not provides the
maximum performace. However there are many cases, like for the plain-text
loads in the block-cipher coprocessor, in which these wait states does not impose
a penalty since the real latency limitation is imposed by the computational unit
itself.

58

4.2 – Available instruction

idlestorew loadw

func0 funcn

store load

f
u
n 0

f
u
n

n

!mem_resp

store_resp

!mem_resp

load_resp

!fun0_ready

f
u
n 0_

re
ad

y

!funn_ready

f
u
n

n _
ready

. . .

Figure 4.2. Generic interface state machine with n wait states for n
different functional modules.

4.2 Available instruction
In a generic architectural pattern the instructions to the coprocessor may all
be modelled with read/write instructions. A generic coprocessor ISA may also
benefit from the addition of explicit load and store instructions, since the RoCC
interface provides direct access to the data cache.

As the complexity of the accelerator increases the need for more expressive
instructions may arise. In any case the general suggestion is to avoid modifying
the available instruction format, since same of the instruction fields influence the
behaviour of the core’s pipeline. Moreover the 7-bit encoding space should be
more than enough to fit the need of complex accelerators.

4.2.1 Addressing modes
Another way of organising the coprocessor ISA is to divide it based on the source
and destination of each instructions. As in the case of the block-cipher coproces-
sor the register fields in the instruction can be used to address the coprocessor
registers or the CPU registers. Based on this distinctions the instruction set
can be expanded to implement other types of instructions. In table 4.1 some of
the possible generic instructions, based on the type of addressing are listed. In

59

4 – General coprocessor framework

funct7 xd xs1 xs2 inst_rd inst_rs1 inst_rs2 rs1 rs2 operation
read 1 0 0 Core Acc - data1 - C[inst_rd] ← A[inst_rs1]
read 1 1 0 Core Core - data1 - C[inst_rd] ← A[data1]
write 0 1 0 Acc Core - data1 - A[inst_rd] ← data1
write 0 1 1 Acc Core Core data1 data2 A[data2] ← data1
load 0 1 0 Acc Core - data1 - A[inst_rd] ← M[data1]
load 0 1 1 - Core Core data1 data2 A[data2] ← M[data1]
store 0 1 0 - Core Acc data1 - M[data1] ← A[inst_rs2]
store 0 1 1 - Core Core data1 data2 M[data1] ← A[data2]

A_comp 0 0 0 Acc Acc Acc - - A[rd] ← A[inst_rs1] op A[inst_rs2]
C_comp 0 0 0 Core Core Core - - C[rd] ← rs1 op rs2

AxC_comp 0 0 0 Core Acc Acc - - C[rd] ← A[inst_rs1] op A[inst_rs2]
CxA_comp 0 1 1 Acc Core Core - - A[rd] ← rs1 op rs2

M_comp 0 1 1 - Core Core src@ dst@ M[dst@] ← op(M[src@])

Table 4.1. Extended coprocessor ISA.

particular an implementation may want to support instructions able to directly
perform operations entirely on the integer registers, in those cases an instruction
like the C_comp may be implemented. On the other hand some coprocessors
may benefit from having some instructions able to perform computation entirely
inside the accelerator, in those cases the instruction will have the shape of the
A_copm.

The instructions using the AxC_comp or the CxA_comp shapes can be mod-
elled with read or write instructions, but a specific design may want to explicitly
implement different instructions with these models. In particular different in-
structions with these format may not access the register bank.

The last proposed model is thought for operations directly working on memory
data, this instructions are particularly useful if the accelerator uses data of fixed
size, so that another instruction specifying the size of the memory transfer is not
needed.

In general the simple read/write, load/store model should be sufficient to
fit the needs of most accelerators, moreover reducing the instruction set makes
easier to share the compiler support and the software libraries across different
coprocessor. For these reasons the simpler model is considered to be the preferred
one.

4.3 Performance considerations
This section presents some general considerations on performance taking into
account the RoCC interface analysis presented in Chapter 2, and the experience
of the block-cipher coprocessor development described in Chapter chapter 3.

From the RoCC analysis and the ECB performance result, it is clear that the
RoCC interface imposes a big latency overhead on the data exchange with the
CPU.

60

4.3 – Performance considerations

In particular this latency arises from the position of the interface in the
pipeline and from the way the RoCC responses are handled by the core. This
limitation is not critical for those coprocessors performing long latency opera-
tions and not requiring frequent data exchange with the main core. It is however
unadvised to use the RoCC interface to implement tightly coupled coprocessors.
In fact this types of accelerators would incur into drastic speed limitations due to
the frequent stalls caused by the read operations. As an example if a bit manip-
ulation coprocessor takes just two clock cycles to extract a bit, it will then pay
the 5 cycle penalty caused by the stall when the computed value is sent back to
the CPU.

For this reason the RoCC interface is considered not suited for tight coupled
coprocessor, it is instead better used for the development of decoupled coproces-
sors, as it is also suggested in the Rocket Chip technical report [2]. In particular
the type of interface and the presence of a direct link to the data cache suggests
a better use for throughput coprocessors like for cryptography, fir filters or DSP
coprocessors in general.

The recommendation is thus to exploit the memory connection for the data
stream, and use the read and write operations just for configuration or status
information.

61

62

Chapter 5

Conclusions

This chapter draws the conclusion on the study of the RoCC interface and de-
velopment of coprocessors for RISC-V architecture. This work was conducted
in the LISAN laboratory of CEA LETI of Grenoble and is meant to guide the
development of future RoCC coprocessors targeting in particular the L-IoT plat-
form. The objective of this study is to provide an analysis of the RoCC interface
and present the development of a cryptographic coprocessor using an available
block-cipher core.

The analysis of the Rocket Custom Coprocessor Interface (RoCC) interface
is performed with the use of a read/write instruction model for the exchange
of data between the main core and the coprocessor. The result of the latency
study shows that the RoCC interface suffers from big latency overhead mainly
due to its late position on the pipeline. This choice was probably made because it
guarantees that no exception was thrown by the previous instructions when the
RoCC command reaches the coprocessor. Even though dealing with the exception
is avoided, postponing the execution of the custom instructions increases the
latency of the operations. In particular reading back results from the accelerator
imposes a big penalty and often causes stalls on the integer pipeline. In case
of reads the latency is made worse also by the way the processor handles the
data arriving from the RoCC interface. In fact the writing of a data in the
integer register file happens when the write back stage is unoccupied (as in case of
branch instructions) or is delayed until that data is needed by another instruction,
causing a stall. This result in a big 4 clock cycles penalty when one rocc_read is
immediately followed by an instruction using that data. When performing more
than 4 consecutive rocc_read followed by immediate use of the read data the
interface start suffering throughput issues. Considering all of this it emerges that
the RoCC interface is not the best suited for tight coupled coprocessors and that

63

5 – Conclusions

it is better to exploit the memory interface when a lot of data must be exchanged.
Following this consideration the proposed design for the cryptographic copro-

cessor tries to exploit the memory interface to avoid this types of penalties. In
particular the design uses the block-cipher IP to implement the OFB mode of op-
eration. The OFB mode has been chosen because it gives several advantages, the
main one being that encryption and decryption operations are exactly the same.
This means that there is no need for a dedicated decryption module, because only
the encryption operation is used, and that the implementation does not require
extra hardware for performing the decryption operation. Moreover this mode of
operation transforms the block-cipher into a stream-cipher, which is ideal for an
autonomous computation. The proposed architecture exploits the memory inter-
face through the use of FIFO queues, by streaming the plain-text blocks and the
computed cipher-text blocks. The design reaches the maximum throughput al-
lowed by the block-cipher IP, of one block every 45 clock cycle in AES-128 mode.
Moreover once it has been programmed, it is able to autonomously perform a full
encryption without relying on the core.

Starting from this design example the guidelines for a generic coprocessor
design are outlined. Considering the latency limitations of the interface, the
best choice is to exploit the memory channel with coprocessors for throughput
applications. All the accelerators that are able to work with streams of data
may in fact take advantage of the direct connection with the data cache. On
the other hand the applications requiring a tight coupled coprocessor and low
latency responses, such as bit manipulation coprocessors, are unsuitable for this
interface. For this reasons in a generic framework it is better to consider only
throughput applications.

The proposed generic architecture embeds an interface module to handle the
basic data transfer between the main core and the coprocessor register file and can
be extended to support additional instructions. The register bank implements
a common channel on the interface module side, while it can be fully accessed
from the computing IPs side. The register file can be divided into sections (read
only, read/write, IP writable etc.) and is able to solve access conflict giving
the priority to the IP side. A coprocessor can in general embed more than one
computing cores, all of this cores will probably have some dedicated configuration
registers and some status register. The cores may access the data in different
ways, however throughput applications most likely have FIFO like interfaces, and
can thus exploit hardware queues for buffering the memory data or the access to
the register files. The memory accesses can be handled directly by the cores or
can be delegated to a separate module. This memory module can be used to fill
and spill some load and store queues, cycling through load and store operations
in a round-robin fashion or implementing some kind of priority scheme.

In conclusion this work shows that the core and the discussed interface may

64

be of interest for future coprocessor development and that a common path for
guiding this development can be outlined. Future improvements can take in
consideration the other channels of the "extended" RoCC interface, or may try to
explore a common ISA for the coprocessor operations so that a common compiler
and software framework can be devised.

65

66

Appendix A

Acronyms

AES Advanced Encryption Standard

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASIC Application-Specific Integrated Circuit

aUTL arbitrated Uncached Tile Link

BAR Berkeley Architecture Research

CAD Computer-Aided Design

CPU Central Processing Unit

CEA Commissariat à l’énergie atomique et aux énergies alternatives

EXE Execute

ECB Electronic Code-book

FIFO First In First Out

FSM Finite State Machine

FPU Floating Point Unit

IF Instruction Fetch

ID Instruction Decode

67

A – Acronyms

IoT Internet of Things

IR Instruction Register

IT Information Technology

IP Intellectual Property

ISA Instruction Set Architecture

IV Initialisation Vector

ECB Electronic Codebook

GCC Gnu Compiler Collection

LETI Laboratoire d’électronique et des technologies de l’information

L-IoT Low-power Internet of Things

MEM Memory

MMU Memory Management Unit

NIST National Institute of Standards and Technology

OFB Output Feedback

PC Program Counter

PTW Page Table Walker

RF Register File

RISC Reduced Instruction Set Computer

RoCC Rocket Custom Coprocessor Interface

RTL Register-Transfer Level

SoC System on Chip

UCB University of California Berkeley

WB Write Back

68

Appendix B

Compiling the tool-chain

This appendix explains the basic steps for the installation, the compilation and
the extension of the RISC-V GCC1 tool-chain.

B.1 Installing the tool-chain
This section is meant to guide the installation of the RISC-V gnu tool-chain.
Most of the steps of the procedure described in this section are also reported in
the official documentation of the Rocket Chip SoC generator repository2. Some of
the information can instead be found in the repository for the RISC-V tool-chain,
which is embedded in the Rocket Chip repository as a sub-module.

B.1.1 Download the repository
The first step for setting up the environment is to clone the repository from the of-
ficial github page: https://github.com/freechipsproject/rocket-chip, and
to download all the sub-modules.

$ git clone https://github.com/freechipsproject/rocket-chip.git

$ cd rocket-chip

$ git submodule update –init

1Gnu Compiler Collection (GCC), also indicated as "gcc"
2https://github.com/freechipsproject/rocket-chip

69

https://github.com/freechipsproject/rocket-chip

B – Compiling the tool-chain

B.1.2 Dependencies
The official documentation in the RISC-V tool-chain repository 3 reports the
Ubuntu packages needed for compiling the tool-chain:

$ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev
libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf
libtool patchutils bc zlib1g-dev

The Fedora packages are reported as well:

$ sudo dnf install autoconf automake @development-tools curl dtc libmpc-devel
mpfr-devel gmp-devel gawk build-essential bison flex texinfo gperf libtool
patchutils bc zlib-devel

The procedure requires a compiler supporting C++11 so, if for example GCC
is used, a version greater than the 4.8 is needed. It is also possible to use compilers
different from the default ones by setting the environment variables CC for the
C compiler and CXX for the C++ compiler. For this work a machine with Red-
Hat Scientific Linux release 6.9 (Carbon) was used, CSH was used as default
shell and gcc-5.1.0 was set as the default compiler:

$ setenv CC /home/prog/gcc/gcc-5.1.0/bin/gcc

$ setenv CXX /home/prog/gcc/gcc-5.1.0/bin/g++

In order to correctly compile the tool-chain a further step, not explicitly men-
tioned in the official documentation is needed. In particular the compilation
requires the download of some prerequisites. To accomplish this task the “down-
load_prerequisites” script must be executed from the “contrib” folder.

$ cd rocket-chip/riscv-tools/riscv-gnu-toolchain/riscv-gcc/contrib

$./download_prerequisites

B.1.3 Install the toolchain
Before starting the build process for the compilation and installation of the tool-
chain all the sub-modules must be downloaded. To do so in the following com-
mands mus be executed:

$ cd rocket-chip/riscv-tools

3https://github.com/riscv/riscv-tools/blob/master/README.md

70

B.2 – Adding support for custom instructions

$ git submodule update –init –recursive

Before compiling the risc-v toolchain, an environment variable must be de-
fined, in particular this variable should point to the directory in which the tool-
chain will be installed.

$ setenv RISCV /path/to/riscv/toolchain/installation

If a multi-core machine is used the MAKEFLAGS environment variable can
be specified to set the number of cores to be used for the compilation:

$ setenv MAKEFLAGS -jN

Where N is the number of cores to be used in the compilation process, as an
example if four cores are used the command should look like:

$ setenv MAKEFLAGS -j4

After all the previous step the compilation can be launched by running the
“build.sh” script in the riscv-tools directory.

$ cd rocket-chip/riscv-tools/

$./build.sh

If the 32-bit version of the cross-compiler is needed (for the RV32G ISA) the
“build-rv32ima.sh” should be executed:

$ cd rocket-chip/riscv-tools/

$./build-rv32ima.sh

After the compilation, it can be helpful to extend the $PATH variable whit
the directory containing the installed tool-chain, specified by the $RISCV envi-
ronment variable.

$ setenv PATH $PATH:$RISCV/bin

B.2 Adding support for custom instructions
This section explains the basic steps that are needed in order to add the support
for a custom instructions in the RISC-V compiler. Supposing that the instruction
that will be added uses all the three integer register fields, as in the case of an
“add rd, rs1, rs2”, the new instructions will look something like: “custom rd,
rs1, rs2”. In this example the instruction is going to make use of the custom-0
opcode.

71

B – Compiling the tool-chain

B.2.1 Definition of the instruction
The first step to add the instruction is to define the two numeric constants used
for masking and matching the instruction. In particular in the file riscv-binutils-
gdb/include/opcode/riscv-opc.h these couple of constants are defined for every
instruction. If the wanted instruction uses one of the custom opcodes then several
of this constants are already defined in the file, each using the same opcode and a
different configuration for the three bits xd, xs1 and xs2. These constants follow
the naming convention showed in table B.1. As it can be seen the presence of the
suffixes “_RD”, “_RS1” or “_RS2” is conditioned on the value of the respective
bit being at one.

MASK and MATCH xd xs1 xs2
MASK_CUSTOM0
MATCH_CUSTOM0 0 0 0

MASK_CUSTOM0_RD
MATCH_CUSTOM0_RD 1 0 0

MASK_CUSTOM0_RD_RS1
MATCH_CUSTOM0_RD_RS1 1 1 0

MASK_CUSTOM0_RD_RS1_RS2
MATCH_CUSTOM0_RD_RS1_RS2 1 1 1

MASK_CUSTOM0_RS1_RS2
MATCH_CUSTOM0_RS1_RS2 0 1 1

MASK_CUSTOM0_RS1
MATCH_CUSTOM0_RS1 0 1 0

Table B.1. Caption

The “MASK” constant is used to define bits that are fixed in the instruction,
while the “MATCH” constant identifies the bit values for the constant bits in the
instruction.

#define MATCH_CUSTOM0_RD_RS1_RS2 0x700b
#define MASK_CUSTOM0_RD_RS1_RS2 0x707f

Figure B.1. Default values for the MATCH and MASK constants.

The figure B.1 shows the default values for the MASK and MATCH constants
for the custom instruction having all the three registers bits at one. In order to
fix some other part of the instruction, like for example the func7 field, the bits

72

B.2 – Adding support for custom instructions

in position 31 to 25 in the MASK should be at one, while the same bits in the
MATCH should hold the decided value for the specified field.

As an example the constant in figure B.2 are used to define the same custom
instruction but with the last seven bits fixed at zero as part of the encoding.

#define MATCH_CUST 0x700b
#define MASK_CUST 0xfe00707f

Figure B.2. Default values for the MATCH and MASK constants.

B.2.2 Instruction declaration
After the definition of these constants in the same file a macro is used to declare
the instructions as showed in figure B.3.

DECLARE_INSN(add, MATCH_ADD, MASK_ADD)
DECLARE_INSN(custom, MATCH_CUST, MASK_CUST)

Figure B.3. Macro to declare the instruction.

B.2.3 Update of the instruction’s table
Once the previous steps are compleated, the “riscv_opcodes” struct in the file
riscv-tools/riscv-gnu-toolchain/riscv-binutils-gdb/opcodes/riscv-opc.c must be up-
dated with the addition of the new instruction, as shown in figure B.4.

After the opcode data structure has been updated the tool-chain must be
re-compiled to apply all the updates.

73

B – Compiling the tool-chain

const struct riscv_opcode riscv_opcodes[] =
{
/* name, isa, operands, match, mask, match_func, pinfo. */
{"add", "I", "d,s,t", MATCH_ADD, MASK_ADD, match_opcode, 0 },
/* ... */
{"custom", "I", "d,s,t", MATCH_CUST, MASK_CUST, match_opcode, 0 },

/* Terminate the list. */
{0, 0, 0, 0, 0, 0, 0}
};

Figure B.4. RISC-V instruction data structure vector.

74

Appendix C

Generation of the core

This appendix explains the basic steps for configuring the Rocket Core and for
generating the RTL verilog description files. Moreover it also presents the custom
configuration used to allow the use of an external VHDL module for the RoCC
coprocessor.

C.1 Rocketchip configurations
Configurations are Scala classes defining the parameters for the sub-modules
available in the Rocket Chip SoC generator. Through the configurations it is
possible to customise many aspect of the SoC and of each of its components. As
an example it is possible to change the number of sets of the data or instruction
cache by modifying the “nSets” parameter available for both caches.

The configurations can also be combined with the use of the concatenation
operator “++”, chaining them starting from the more specific one, to the more
general one. As an example to generate a RV32G core the “DefaultRV32Config”
configuration is used. As it can be seen in figure C.1 this configuration is com-
posed of two configurations, one setting the size of the ISA to 32-bit, the other
more general setting the default values for the other parameters.

class DefaultRV32Config extends Config(
new WithRV32 ++ new DefaultConfig

)

Figure C.1. Default configuration for a RV32 core. Specified in
src/main/scala/rocketchip/Configs.Scala

75

C – Generation of the core

The figure C.1 shows an exaple of a configuration chainging the “XLen” pa-
rameter that is used for setting the feature size of the ISA. This configuration
also modifies the FPU and the integer multiplier for adapting them to the 32-bit
ISA.

class WithRV32 extends Config((site, here, up) => {
case XLen => 32
case RocketTilesKey => up(RocketTilesKey, site) map { r =>

r.copy(core = r.core.copy(
mulDiv = Some(MulDivParams(mulUnroll = 8)),
fpu = r.core.fpu.map(_.copy(divSqrt = false))))

}
})

Figure C.2. Configuration setting the “XLen” size to 32-bit. From
src/main/scala/coreplex/Configs.Scala

C.1.1 RTL generation
In order to generate the RTL verilog sources the following command must be
executed in the rocket-chip/vsim folder of the repository:

$ cd rocket-chip/vsim

$ make verilog

This will generate the core and the SoC with the default configuration. In order
to use a different configuration, the “CONFIG” variable must be specified in the
command, as an example to generate the verilog for the “DefaultRV32Config”
configuration the command is:

$ cd rocket-chip/vsim

$ make verilog CONFIG=DefaultRV32Config

C.1.2 Generating the RoCC interface
In order to instantiate the RoCC interface with a specified set of accelerators,
the default configuration must be extended.

In the rocket-chip/src/main/scala/coreplex/Configs.Scala file an example con-
figuration instatiating four coprocessor is present. The configuration, shown in

76

C.2 – Custom configuration for generic coprocessors

class WithRoccExample extends Config((site, here, up) => {
case RocketTilesKey => up(RocketTilesKey, site) map { r =>

r.copy(rocc = Seq(
RoCCParams(

opcodes = OpcodeSet.custom0,
generator = (p: Parameters) => Module(new AccumulatorExample()(p))),

RoCCParams(
opcodes = OpcodeSet.custom1,
generator = (p: Parameters) => Module(new TranslatorExample()(p)),
nPTWPorts = 1),

RoCCParams(
opcodes = OpcodeSet.custom2,
generator = (p: Parameters) => Module(new CharacterCountExample()(p)))

))
}
case RoccMaxTaggedMemXacts => 1

})

Figure C.3. WithRoccExample configuration from the
“src/main/scala/coreplex/Configs.Scala” file.

figure C.3, is used to map each coprocessor module to one of the custom opcode.

The figure C.4 shows the definition of a new configuration in the rocketchip/Configs.Scala,
used to apply this configuration in combination with the DefaultRV32Config, to
obtain a 32-bit core with the RoCC interface and the accelerators.

class DefaultRV32Config extends Config(
new WithRV32 ++ new DefaultConfig)

class RoccExampleRV32Config extends Config(
new WithRoccExample ++ new DefaultRV32Config)

Figure C.4. Definition of a configuration for a 32-bit core with example
RoCC accelerators.

C.2 Custom configuration for generic coproces-
sors

This section shows the configuration used for the development of the work de-
scribed in this thesis. In order to connect external modules, not developed in

77

C – Generation of the core

Chisel, the language provides the possibility of defining “BlackBox” modules,
with their own interface. This black-boxes are generated as empty modules only
specifying their interface an their connections with the rest of the circuit. It is
then enough to specify in a different file a module with the same name and ports
and the connection will be recognised by the simulation or synthesis tool.

This feature allows to mix a Chisel design, which is ultimately converted in
verilog, with verilog modules or VHDL entities. In order to exploit this possibility,
a black-box coprocessor, implementing the RoCC interface, was defined in the
file rocket-chip/src/main/scala/tile/LegacyRoCC.Scala. The figure C.5 shows the
implementation of the classes needed for the black-box coprocessor.

abstract class RoCC(implicit p: Parameters) extends CoreModule()(p) {
val io = new RoCCIO

}

// define a black-box module
class Coprocessor(implicit p: Parameters) extends BlackBox {

val io = new Bundle{
val clock = Clock(INPUT)
val reset = Bool(INPUT)
val io = new RoCCIO()(p)

}
def connect(clk : Clock, rst : Bool, rocc : RoCCIO) = {

io.clock := clk
io.reset := rst
rocc <> io.io

}
}

// define a wrapper module that uses the black-box coprocessor
class CoprocessorExample(implicit p: Parameters) extends RoCC()(p){

val box = Module(new Coprocessor()(p)).connect(clock, reset, io)
}

Figure C.5. Definition of the black-box coprocessor.

In order to use the black-box coprocessor, a new configuration is needed in-
stantiating the “CoporcessorExample” class module. To do so two different con-
figuration classes are added, one in /src/main/scala/coreplex/Configs.Scala, used
to define the coprocessor map, the other in /src/main/scala/rocketchip/Configs.Scala
to specify a global configuration of the SoC for the use of the black-box coproces-
sor. The first configuration is shown in figure C.6, while the global configuration

78

C.2 – Custom configuration for generic coprocessors

is reported in figure C.7.

class WithRoccBlackBox extends Config((site, here, up) => {
case RocketTilesKey => up(RocketTilesKey, site) map { r =>

r.copy(rocc = Seq(
RoCCParams(

opcodes = OpcodeSet.custom0,
generator = (p: Parameters) => Module(new CoprocessorExample()(p)))
)

)
}
case RoccMaxTaggedMemXacts => 1

})

Figure C.6. WithRoccBlackBox configuration.

class DefaultRV32Config extends Config(
new WithRV32 ++ new DefaultConfig)

class BlackBoxRoccRV32Config extends Config(
new WithRoccBlackBox ++ new DefaultRV32Config)

Figure C.7. Global configuration for the use of the black-box coprocessor.

After these two configuration are added, a 32-bit Rocket core with an empty
RoCC coprocessor module can be generated. To use the “BlackBoxRoccRV32Config”
configuration it is sufficient to execute the command:

$ cd rocket-chip/vsim

$ make verilog CONFIG=BlackBoxRoccRV32Config

79

80

Appendix D

Code compilation and
simulation

This appendix introduces the work-flow used for the compilation of the test pro-
grams and its simulations using the Questasim simulator.

D.1 Compilation
This section briefly presents the work-flow adopted for the compilation of the
test program for the Rocket Core. In particular the focus is on a bare-metal
execution, without any operating system or any other software layer.

D.1.1 Entry code
In order to define a basic environment before the execution of the main’s program,
a small entry procedure, directly written in assembly, is compiled and linked along
side the main program. As it is shown in the Figure D.1, the assembly code
initialises the machine status register, to enable custom coprocessor instructions,
prepares the stack pointer and then performs a jump to the main section of the
program.

D.1.2 Linker script
The entry code initialises the stack pointer considering that the base address for
the main memory is mapped in the Rocket Core to the address 0x80000000.

In order to correctly map the entry section and the main program’s code in
the main memory, a custom linker script is used. The script, reported in Figure

81

D – Code compilation and simulation

#define STACK_POINTER_BASE 0x81000000
#define MSTATUS_XS_MASK ((1<<15)|(1<<16))

.section ".text.init", "ax",@progbits

.globl _start
_start:

li sp, MSTATUS_XS_MASK
csrs mstatus, sp

li sp, STACK_POINTER_BASE

j main

Figure D.1. Entry code for initialising the execution environment.

D.2, places the entry point at the base address for the main memory, while the
other code section, data and comment sections are placed at a page of distance
(0x1000) from one another.

OUTPUT_ARCH("riscv")
ENTRY(_start)
SECTIONS
{

. = 0x80000000;

.text.init : { *(.text.init) }

.text ALIGN(0x1000) : { *(.text) }

.data ALIGN(0x1000) : { *(.data) }

.comment ALIGN(0x1000) : { *(.comment) }

.bss : { *(.bss) }
_end = .;

}

Figure D.2. Linker script for the Rocket Core bare metal execution.

82

D.2 – Simulation

D.1.3 Compile commands
The RISC-V C compiler is used to compile a program for the Rocket Core, within
the framework specified by the entry code and the linker script.

Supposing that the program is in a file called “main.c”, the entry code is in
“entry.S”, the linker script file is called “link.ld”, and that the target architecture
is the RV32G, the command for generating the executable is:

$ riscv32-unknown-elf-gcc -static -nostdlib -nostartfiles -T link.ld -o prog.elf
main.c entry32.S

This command will generate the “prog.elf” binary file. In order for the pro-
gram to be used in the simulator, the binary code and data sections must be
extracted from the .elf file and converted in a hexadecimal text file. The RISC-V
object copy program is used in order to extract the binary information from the
prog.elf executable file and store them in the prog.bin file.

$ riscv32-unknown-elf-objcopy -j .text -j .text.init -j .eh_frame -j .shbss -j
.rodata -j .data -j .sdata -O binary prog.elf prog.bin

After the extraction of the binary information the prog.bin file must be con-
verted in hexadecimal into a text file. To do so the hexdump program is used:

$ hexdump -v -e ’1/8 "%08x\n"’ prog.bin > prog.txt

In order to better organise and authomatise the compilation process, the
previous commands were organised in a makefile as reported in Figure D.3.

D.2 Simulation
Once the program is compiled and the executable converted in the hexadecimal
text file, the code is ready to be used in the simulator. This section will refer
in particular to the Questasim simulator, however the following steps can be
adapted more or less to any RTL simulator.

In order to execute the simulation the Verilog RTL code of the Rocket core
should be analysed and compiled. In particular after the make verilog command
the Rocket Chip generator creates two main Verilog files corresponding to the
full system on chip and the ram memory behavioral model. These two files will
be generated in the rocket-chip/vsim/generated-src/ folder.

Other than these two main files there are several others Verilog files that
implement modules that are needed by the Rocket chip SoC to properly work.
These files can be found in the rocket-chip/vsrc directory.

To summarise the Verilog files in rocket-chip/vsim/generated-src/, for the
Rocket chip and for the behavioral ram, the ones in rocket-chip/vsrc, plus any

83

D – Code compilation and simulation

BASE = /basedir # base folder of the code
RISCV = /riscv # path of the riscv tool-chain

PROG = prog.elf # name of the executable
BINARY = prog.bin # name of the binary file
MEM = prog.txt # name of the memory (hexadecimal) file
DUMP = prog.dupm # name of the dump file
CSRC = main.c # .c and .h source files

ARCH = 32
ARCH_PREFIX = riscv$(ARCH)-unknown-elf

CC = $(RISCV)/bin/$(ARCH_PREFIX)-gcc # compiler
OBJCP = $(RISCV)/bin/$(ARCH_PREFIX)-objcopy # object copy
OBJDUMP = $(RISCV)/bin/$(ARCH_PREFIX)-objdump # object dump
HEXDUMP = hexdump # hex converter

LINK_FILE = $(BASE)/link.ld
IDIR = $(BASE)/include # directories for .h files

CC_FLAGS += -static -I$(IDIR) -nostdlib -nostartfiles -T $(LINK_FILE)
OBJCP_FLAGS += -j .text -j .text.init -j .eh_frame -j .shbss \

-j .rodata -j .data -j .sdata -O binary
OBJDUMP_FLAGS += -D
HEXDUMP_FLAGS += -v -e '1/8 "%08x\n"'

all: $(PROG) $(BINARY) $(MEM) $(DUMP)
$(PROG) : $(CSRC) $(LINK_FILE)

$(CC) $(CC_FLAGS) -o $(PROG) $(CSRC) $(BASE)/include/entry_$(ARCH).S
$(BINARY) : $(PROG)

$(OBJCP) $(OBJCP_FLAGS) $(PROG) $(BINARY)
$(MEM): $(BINARY)

$(HEXDUMP) $(HEXDUMP_FLAGS) $(BINARY) > $(MEM)
$(DUMP) : $(PROG)

$(OBJDUMP) $(OBJDUMP_FLAGS) $(PROG) > $(DUMP)

.PHONY: clean
clean:

rm $(PROG) $(BINARY) $(MEM) $(DUMP)

Figure D.3. Makefile for the compilation and conversion of RISC-V programs.

other RTL file, like for example the VHDL files for the coprocessor described
in this work, should be imported, analysed and compiled inside the simulator
program.

Once the compilation is done the hexadecimal file obtained by the compilation
of the code should be loaded in the main memory. The memory in wich to load

84

D.2 – Simulation

the program can be identyfied in the memory list view of the simulator, because
it should be largest memory. In order to automatise this process the code in
Figure D.4 can be placed in an load_memory.do script and executed from the
simulator console with the command do load_memory.do.

mem load -i prog.txt -format hex \
/TestDriver/testHarness/SimAXIMem/AXI4RAM/mem/mem_ext/ram

Figure D.4. Load memory command.

85

86

Bibliography

[1] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović.
The risc-v instruction set manual, volume i: User-level isa, version 2.1. Tech-
nical Report UCB/EECS-2016-118, EECS Department, University of Cali-
fornia, Berkeley, May 2016.

[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig,
Yunsup Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel
Moreto, Albert Ou, David A. Patterson, Brian Richards, Colin Schmidt,
Stephen Twigg, Huy Vo, and Andrew Waterman. The rocket chip genera-
tor. Technical Report UCB/EECS-2016-17, EECS Department, University
of California, Berkeley, Apr 2016.

[3] D. H. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X. T. Tran. Ultra low-
power and low-energy 32-bit datapath aes architecture for iot applications.
In 2016 International Conference on IC Design and Technology (ICICDT),
pages 1–4, June 2016.

[4] D. H. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X. T. Tran. Aes
datapath optimization strategies for low-power low-energy multisecurity-level
internet-of-thing applications. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, PP(99):1–10, 2017.

[5] W. Stallings. Cryptography and Network Security: Principles and Practice.
Pearson Education, 2016.

[6] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher, pages 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[7] Morris J. Dworkin. Sp 800-38a 2001 edition. recommendation for block cipher
modes of operation: Methods and techniques. Technical report, National
Institute of Standards & Technology, Gaithersburg, MD, United States, 2001.

87

	Summary
	Acknowledgements
	Ringraziamenti
	Introduction
	Dedicated hardware: Coprocessors
	The context
	The work-flow
	Thesis objective

	RISC-V and Rocket-core overview
	RISC-V an open ISA
	Instruction formats
	ISA extensions

	Rocket Chip SoC generator and the Rocket Core
	Rocketchip SoC generator
	Rocket core

	The RoCC coprocessor interface
	RoCC interface overview
	RoCC command and response interfaces
	Memory request and response interfaces
	The extended RoCC interface

	Custom instructions
	The addressing mode
	Instructions

	Read/write operations between the core and RoCC
	Latency study
	Improving latency

	Loads and stores between RoCC and cache memory
	Latency study

	Case study: the Blockcipher coprocessor
	Overview of the Block-cipher core
	Architecture of the Block-cipher coprocessor
	Interface module
	Register bank
	OFB mode: enhancing of the Block-cipher core
	State machine
	Memory operation

	Programming model
	Results and performance analysis
	ECB encryption
	OFB encryption

	General coprocessor framework
	Architecture overview
	Interfaces
	Register bank
	State machine

	Available instruction
	Addressing modes

	Performance considerations

	Conclusions
	Acronyms
	Compiling the tool-chain
	Installing the tool-chain
	Download the repository
	Dependencies
	Install the toolchain

	Adding support for custom instructions
	Definition of the instruction
	Instruction declaration
	Update of the instruction's table

	Generation of the core
	Rocketchip configurations
	RTL generation
	Generating the RoCC interface

	Custom configuration for generic coprocessors

	Code compilation and simulation
	Compilation
	Entry code
	Linker script
	Compile commands

	Simulation

	Bibliography

		Politecnico di Torino
	2018-02-01T13:45:05+0000
	Politecnico di Torino
	Massimo Poncino
	S

