
1

POLITECNICO DI TORINO

Corso di Laurea magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

 A classification algorithm based on Spark

 Relatore

Prof Baralis Elena Maria

Prof Paolo Garza

Prof Cagliero Luca

 Candidato

 Abegaz Michael Wondimu

DEC 2017

2

ABSTRACT

With the development of the information technology, big data becomes a very popular
word everywhere. Many companies have already captured value from big data and profit
from it because of its advancement in its analytical technology.

The goal of this dissertation is to implement and analyze a classification algorithm called
WAODE prediction algorithm by using spark on a distributed platform.

Application of machine learning algorithms like WAODE on big data sets often requires
high amount of processing power and memory. Including such resources on single
computer is usually a headache. Scientists come up with a new Idea called distributed
computing which uses the computing power of many computers to alleviate this problem.

In this project a library is implemented that applies the WAODE algorithm, it accepts a
training dataset and predict the class label of new unlabeled data. 10-fold cross validation
is also implemented so that we can find which algorithm offers the best result.

3

ACKNOWLEDGEMENTS

My special gratitude goes to Prof. Paolo Garza, for the remarks and engagement through
the making of my thesis, for making sure that I was provided with all the necessary
material and equipment, for granting me to have the access to the Big Data server. I am
also very thankful to my supervisor Cagliero Luca, whose professional guidance and
follow-up during my project makes me understand and acquire a lot of knowledge in the
subject. Finally I would like to thank all of those who has been with me and made this to
happen.

4

Table of Contents
ABSTRACT .. 2

ACKNOWLEDGEMENTS .. 3

1. INTRODUCTION ... 8

2. BACKGROUND OF BIG DATA ANALYSIS ... 10

2.3. How Big Data Analysis Helps Companies (Placeholder1) ... 13

2.4. What makes analyzing Big Data difficult ... 14

2.5. Usage of Big Data Analytics ... 14

2.6. Advantages Big Data Analytics .. 15

2.7. Overview of Big Data Techniques .. 15

2.7.1 Classification ... 16

2.7.2 Clustering.. 16

2.7.3 Collaborative Filtering ... 17

3. CLASSSIFICATION ... 18

3. 1 Naive Bayes (NB) ... 18

3.2.5. Weighted Averaged N Dependence Estimators (WAnDE) ... 19

4. DISTRIBUTED SYSTEMS .. 20

4.1. Hadoop ... 20

4.2. Apache Spark ... 21

5. WAODE, AnDE and WAnDE IMPLEMENTATION .. 23

5.1. Preprocessing... 23

5.2. Interface .. 24

5.3. WOADE Implementation Process ... 24

5.4. AnDE Implementation Process ... 32

5.5. WAnDE Implementation Process .. 39

6. EVALUATION AND RESULTS .. 46

A. Experiment Dataset ... 46

B. Test Environment ... 47

C. Evaluation methodology .. 48

D Experimental Results .. 51

6.2. Conclusions and Future work ... 58

Bibliography .. 59

5

List of Tables
Table 1 UCI Datasets used for the testing the accuracy of the algorithms 46
Table 2 Polito Data Mining Cluster Environment .. 47
Table 3 . Measuring the accuracy of WAODE, AnDE, WAnDE estimators by using 10-
fold cross validation methodology on selected UCIDatasets .. 51
Table 4 Average accuracy results of the (WAODE, A2de, WAnDE) versus WAODE
centralized version (Rapid Miner) on selected UCIDatasets... 52
Table 5 Average accuracy comparison of WOADE Distributed implementation vs
WOADE centralized (Rapid Miner version). ... 53
Table 6 Average accuracy comparison of WAnDE with respect to 3 different M-
estimator Implementations. .. 54
Table 7 Average accuracy comparison of WAnDE with respect to 3 different Laplace
Estimator Implementations .. 55
Table 8 Summery of experimental results of WAODE Implementations 56
Table 9 Summery of Experimental results for AnDE and WAODE 57
Table 10 Summery of experimental results for WAnDE implementation 57

6

List of Figures

Figure 1 Big data and analysis tools ..10
Figure 2 Importance of Big Data analysis ...14
Figure 4 Classification Example ...16
Figure 5 Clustering Algorithm Example ...16
Figure 6 Collaborative Filtering Example ...17
Figure 9 Map Reduce Steps ..21
Figure 10 Machine learning algorithms ...22
Figure 11 7 Sample Log file showing 10-fold cross validation accuracy result for a
dataset ...50

7

Acronyms

AODE Averaged One Dependence Estimator
WAODE Weightedly Averaged One Dependence Estimator
AnDE Averaged N Dependence Estimator
A2DE Averaged 2 Dependence Estimator
WAnDE Weighted Averaged One Dependence Estimator
GPS Geographical Positioning System
NB Naïve Bayes
RDD Resilient Distributed Dataset
IP Mutual Information
HDFS Hadoop Distributed File System
ME M Estimation
LE Laplace Estimation

8

Chapter 1

1. INTRODUCTION

Big data is an Information Technology term which refers to high volume, velocity,
variety. That means big data is a huge dataset with fast generated data and different types
of data. Many companies like IBM and Google have already realized that there is huge
potential value in big data. They all profit by advanced analyzing tools or innovating new
business model to capture value from big data.

Big data analytics helps companies to make more informed business decisions by
enabling Data Scientist, predictive modelers and other analytics professionals to analyze
large volumes of transaction data.

Common datamining tools like Rapid Miner, Weka and other text analysis tools can
analyze Big Data. We can also use visualization tools like “I2” to analyze and benefit
from it. But the major drawback of this kinds of tools is that they are incapable of
analyzing unstructured data or semi structured data. In addition, most current systems are
Realtime which process continuous arrival of data F.eg social network websites and
online Banking transactions. As a result, they need big processing power and resources.

Due to this challenges Hadoop related tools started to emerge in to the market of Big
Data analysis. Big companies start to shift to such kind of Tools like Spark to process
their big chunk of data. Today spark related tools became the main part of data analysis
framework that can be used by developers and analysts. (bigdataanalytic, n.d.)

The Main purpose of this thesis is to implement a predictive analysis technique which is
called WAODE on the distributed environment by using Spark and Hadoop. WAODE is
a probabilistic classification model which is made to improve the accuracy of its
predecessor algorithms like Naïve Bayes and AODE by weakening their attribute
independence assumption and similar attribute weight assumption.

Today as we are in the information age Big Data is produced in vast quantity, speed and
type from many things around us which we use for our day to day life F.eg Social media,
our Smart phones, GPS sensors as well as Industrial productions. To process this vast
amount of data we need very good analysis technology with high processing speed.

Thus, it is important to use Distributed computing which is the simultaneous use of
multiple computing resources to solve a computational problem. Specially this is
advantageous in machine learning and data analysis which uses repeated application of an
algorithm to le8arn the data and give a precise prediction. (bigdataanalytic, n.d.)

9

The previous implementation of this algorithm was made using sequential programming
which makes it insufficient when dealing with Big Data. As a result, the main objective
of this Thesis is to implement WAODE algorithm by using Spark technology which will
make it suitable for analyzing Big Data by increasing parallelism and efficiency. Since
Efficient parallel and concurrent implementation techniques are needed to meet the
scalability and performance requirements entailed by scientific data analyses. Challenges
such as scalability and resilience to failure are already being addressed at the lower layer.

One type of distributed computing application is predictive analysis. Predictive analytics
brings together advanced analytics capabilities spanning ad-hoc statistical analysis,
predictive modeling, data mining, text analytics, entity analytics, optimization, real-time
scoring, machine learning and more. (bigdataanalytic, n.d.)

Apache Hadoop is the pioneer in Big Data technology and it is the base framework for
many Big Data technologies. As of today, it covers huge percentage of Big Data market.
However, the need for faster processing and result requires in memory processing and
data storage capabilities. Apache spark comes with new technology which allows it to
process and store intermediate data in memory. Due to this in memory capability spark
could process data up to 100 percent faster than apache Hadoop. as a result, spark
becomes the favorable technology for faster processing requirements. (technopedia, n.d.)

Thus, the main contribution of this Thesis is to implement a predictive algorithm which is
WAODE by using Spark to make it suitable for analyzing Big Data by increasing
parallelism and efficiency. (scholar)

10

Chapter 2

2. BACKGROUND OF BIG DATA ANALYSIS

Big data refers to very complex, huge, unstructured, geographical dispersed data
produced by digital equipment’s like Biometrical sensors, Traffic data, stoke exchanges
and from online activities which we use in our daily life such as online shopping, social
network activities etc. This data is often beyond the capabilities of traditionally used
systems to collect, store and process them with in an optimal amount of time. some
scholars coined Big Data as a data that is too large and to diversified to be processed by
commonly used IT infrastructure. for example, graph data generated by tweeter and
Facebook every hour which is greater than 1 petabyte is difficult to be contained in
memory of most servers for Realtime processing. (Heidelberg)

 Figure 1 Big data and analysis tools

11

Any new Big Data technology usually must address two big issues in Big Data world.

The first challenge is Diversity.

●Most Internet companies generate petabytes of data daily which was in terabytes
few years ago.

Besides textual data audio and Video streaming data comprises most part of the data
acquired by internet companies. This includes video and audio with different formats,
images, longitudinal information acquired by sensors and from our mobile phone. Among
this only 20 % is a relational data. Big Data usually have 3 characters namely “volume”,
“velocity” and “variety”.

 Volume describes the relative size of data to the processing capability. According to
Moors law today a large number may be 20 terabytes, but in 12 months 100 terabytes
may constitute big data. To solve the volume problem, we need a technology that could
store huge amount of data in elastic fashion as well as technologies with distributed
querying capability that can generate Intime and meaningful information from our Big
Data.

 Velocity is the frequency at which data is produced, collected and shared. The ability to
analyze, detect patterns, to identify relationships between different data’s generally any
real-time analysis should be tuned with fast emerging data from sensors and click
systems. It also creates diversified real-time analysis to engage users based on location,
activity, profile etc.

 Variety refers to the production of different types of data from Devices, sensors etc. in
addition to relational data. This unstructured data such as videos, speech and language etc.
make it more difficult to store and process by using relational storage systems. This kind
of diversified data requires a new type analysis methods besides distributed storage and
access mechanisms. (Heidelberg)

The second challenge is the Richness of analytics.

Big Data technologies require a new kind of techniques and combination to produce
a valuable information form data stored in our servers which is very huge and
diverse.

since we are in the information age, the range of tools we have for big data analysis today
are too few to make a good analysis. we are obliged to make deep analysis relative to the
amount of data we have. commonly used techniques like statistical analysis, geographical
analysis, time line analysis etc. are not enough to make good decision making with our
current business needs and engaging customers.

12

the emergence Big Data in varied and vast quantity lets companies and researchers to
analyze their big data just like Big companies do. Furthermore, the strain that Big Data
places on our network, infrastructure and server make it inevitable to outsource our Big
Data analysis on the cloud.

By using cloud distributing computing we could possibly make real time analysis,
sentiment analysis, entity extraction as well as other complex analysis to get intelligence
and knowledge without any cost or hustle for the infrastructure or big clusters needed. In
fact, we are also free from worrying about the administration and management costs for
this clusters. This and other new approaches let researcher and companies in the domain
to mine through huge dataset in much faster and efficient way. (Heidelberg)

2.2 What is Big Data Analysis

 It is the method of discovering hidden knowledge and pattern by collecting and
processing large dataset commonly known as Big Data. It helps companies and analysts
to better understand the hidden knowledge with in the large amount of data as it also
helps decision making process by identifying key data in the business and forecasting
future outcomes.

The intent of big data analysis is knowledge which is found by analyzing the data. It has
the goal of making organizations excel in their decision making by untapping unforeseen
information. The primary source of input for the data analysis is data from enterprise
programs and systems like business reports, log files, email exchanges, customer research
data, call detail records etc. this and other sets of data’s can be examined by professionals
to make predictions, forecasting, classifying and in other decision-making areas in the
business world.

The explosion of data in recent years makes relational databases less usable since Big
Data requires a lot of features which cannot be fulfilled by this traditional system for
example continuous arrival of data from sensors and internet of things may require large
storage facility and variation of Big Data which can consist different formats, language
may not fit well with the existing data types and formats. (webopedia, n.d.)

As a result, many big companies turned their face to Hadoop based systems which can
analyze data across many clusters. Hadoop ecosystem including many technologies such

13

as yarn, spark, hive, pig became the preferred tools by most analysts for analyzing Big
Data of varied types. (prabatech, n.d.)

2.3. How Big Data Analysis Helps Companies (Placeholder1)

 Tom Davenport a lead researcher at UC Berkley made a research to understand how
Big Data analysis helps companies. According to the study big data analysis integrates
organizations data and helps to identify hidden opportunities that will result in good
business decisions and prediction as well as high profit, Increased efficiency and
minimized wastage of resources. According to the companies which participated in the
research, they got benefits in the following 3 aspects. (prabatech, n.d.)

 Cost reduction: The emergence of cloud based distributed analytics minimized the huge
costs of memory and management. The need for large storage facility and software
systems can be easily outsourced to cloud based systems.

Faster decision making: Sparks In-memory processing capability and additional
features like supporting various data sources helps companies to analyze information
quickly and make a faster decision on business problems.

 New products and services: According to Davenport’s research Big Data analysis
techniques like Association matrix helped companies measure customer satisfaction
level and identify customer expectations easily. hence, providing newer products and
services.

14

 Figure 2 Importance of Big Data analysis

2.4. What makes analyzing Big Data difficult

 The primary challenge of Big Data analysis is the volume and variety of the collected
data by different units in the organization. Different units in the company could have
different formats or types of data according to their business functionality. This challenge
requires dividing data into different domains to understand the collected data from
different places and different sub systems. (researchIjcaOnline)
Another big data challenge is the mechanism of processing this unstructured data to make
it more structured and responsive for data analysis algorithms. often this involves several
stages into which the data can be cleaned, transformed and analyzed to give useful
information. This large volume of data is typically difficult to process using
traditional data storage and analysis tools. (SasInsights, n.d.)

2.5. Usage of Big Data Analytics

 Studies by DataMation shows that recent advancement of Big Data analysis and its
application in organizational data allows huge transformation and breakthrough in

http://www.webopedia.com/TERM/I/information_silo.html

15

today’s modern world. Big Data analysis helped scientists to identify human genes which
are related with certain diseases easily. Predict criminal activities and vulnerable areas,
Redirect advertisements based on user’s activity and tendency etc.

 Another good application of Big Data comes from research made by orange mobile
which is a leading mobile network provider in France. The analysis involves 2 billion
records of customer data belonging to 2.5 million subscribers. The customer data contains
all exchanged text and voice messages except the subscriber information. The research
result shows very good information on how to contain disease by using cellular data and
identifies where peoples will go after emergencies. this and other information gathered
from deep analysis of the research helped to shape the health infrastructures and
development projects according to the research outcome. (webopedia, n.d.)

2.6. Advantages Big Data Analytics

The main purpose of Big Data projects arises from the need to address biggest questions
in day today business environment. The adoption of Big Data analysis systems enables
enterprises to boost profit, improve efficiency, enhance operations and provide good
customer services and avoid risk.
 Online survey from different organizations in the Big Data industry shows that they
make use of Big Data analytics to target customer, improve production quality and helps
them compete with other companies on similar sector. Obviously, the application of data
analytics on certain areas made great difference regarding efficiency and minimizing cost.
The research showed that most of the organizations will use data analytics to speed up
production and reduce complexity. (webopedia, n.d.)

2.7. Overview of Big Data Techniques

 Machine learning is a technique of data analysis which uses algorithms that
iteratively learn from data to generate analytical model of the problem. machine learning
has the power to identify hidden knowledge without being explicitly programmed where
to look. In general, there are two broad categories of machine learning: supervised and
unsupervised

Supervised algorithms need both input and output data provided in advance to make the
analytical model of the problem. While Unsupervised algorithms do not have the outputs
of the data in advance as a result Unsupervised algorithm work by making good analysis
of the input data to provide output of their own.

16

The Three main categories of machine learning are Clustering, Classification, and
Collaborative Filtering.

2.7.1 Classification

Classification machine learning algorithms belong to a class of supervised learning. This
algorithm can label an input data which was not previously labeled. Some applications of
classification are categorization of input emails as social, important and advertisement on
Gmail application is one of the popular example of classification

 Figure 3 Classification Example

2.7.2 Clustering

Clustering algorithms group inputs in to set of categories based on their similarities.
Clustering groups inputs with similar characters together and dissimilar inputs will have
different groups. Clustering is widely used in technology and different science areas f.eg
Text categorization, Fraud detection, grouping of users based on their activities,
categorizing search results on popular search engines etc.

clustering algorithms do not know the output in advance nor they have input labels in
advance

 Figure 4 Clustering Algorithm Example

17

2.7.3 Collaborative Filtering

Also known as recommender systems. This set of algorithms use association learning to
recommend specific items usually based on past preferences from similar customers.
Collaborative filtering algorithms take preference data from customers and create
analytical model that will be used to recommend future users. This set of techniques are
mostly used on online shopping websites like amazon. For example, previous shopping
data may show an association between purchase of suits and purchase of ties, based on
this result amazon could recommend an incoming user to purchase ties if he is already
purchasing suit. It is also widely used on google advertisements to show targeted ads.

 Figure 5 Collaborative Filtering Example

18

Chapter 3

3. CLASSSIFICATION

 We make prediction throughout our life from weather forecasting to crop
production, money exchange and so many others with different accuracy. Thus,
prediction helps to conclude what will happen in the future starting from current
situations or past events. There are various things which should be predicted
professionally to avoid risk or to increase profit for example stoke exchanges,
natural disasters etc. The following are popular classification algorithms which the
thesis paper concerns

3. 1 Naive Bayes (NB)

 Naïve Bayes is a classification method which is based on the Bayesian theorem
is simple and very efficient which also helped it to be widely applied in bigdata
technology. This classification technique analyses the relationship between each attribute
and the class for each instance to derive a conditional probability for the relationship
between the attribute values and the class. The opinion behind Naïve Bayes for
classification is a simple.

In training stage, the probability table for each class is computed firstly by counting the
frequency of the class (how frequently it occurs in the dataset). This is called the prior
probability P (c). (springer)

Assuming Ai, I = 1, 2, …. n, which are n attributes with values ai, I = 1 up to n
respectively. These attributes will be used together to predict the class label c of the class
attribute C. Hence, the NB classifier can be formed as:

 𝐴𝑟𝑔𝑚𝑎𝑥 𝑃(𝑐) 𝑃 (𝑎1 , 𝑎2, … … … , 𝑎𝑛|𝑐)

Secondly, Attribute probability table will be created, the algorithm computes the
probability for the instance a given a and class c, P (ai, c). With the assumption that all
attributes are independent the probability will be the product of the probabilities of each
single attribute. The probabilities are estimated from the frequencies of the instances in
the training set.

Thus, Naïve Bayes classifier will be formed according to the following formula

 argmax
𝑐∈𝐶

 𝑃(𝑐) ∏ 𝑃(𝑎𝑖 | 𝑐)𝑛
𝑖=1

19

Naïve Bayes is known to be extremely efficient. However, the assumption that all
attributed are independent with each other makes it less usable since in most real-life
scenarios attributes could be dependent on each other.

3.2.5. Weighted Averaged N Dependence Estimators (WAnDE)

It has been proven that the predictive accuracy of AnDE can be improved with the introduction
Weight on the AnDE (Averaged n Dependence estimators) estimators. WAnDE retains most of
the characteristics like computational complexity. It shows that similar approaches could be
applied on to improve the performance.

For notational convenience, we define

 X {i, j, . . . q} = (xi, xj, xq)

For example, x {2,3,5} = (x2, x3, x5)

 WAnDE aims to use

𝑊𝐴𝑛𝐷𝐸(𝑌, 𝑋) = ∑ 𝑊𝑠𝑃(𝑌, 𝑋𝑠)𝑃(𝑋|𝑌, 𝑋𝑠)/𝑊𝑡𝑜𝑡

𝑆𝑛

where S n indicates all subsets of size n of the set {1, . . . a}.

20

Chapter 4

4. DISTRIBUTED SYSTEMS

4.1. Hadoop

It’s a “software library” that gives users the ability to process “large data sets across

clusters of computers using simple programming models.” In other words, it gives

companies the capability to gather, store and analyze huge sets of data. (Hadoop, n.d.)

Advantages of using Hadoop

 Hadoop is a pioneer in distributed systems which makes it more stable than other
newer systems.

 It is opensource and platform independent since it is made in java.
 Hadoop is hardware independent and it detects errors at application level rather

than on lower levels.
 It has many functionalities which helps to perform Distributed tasks easily.
 It manages to distribute data across clusters while also using CPU parallelism

offered by the underlying hardware.

By implementing Hadoop, users gain access to an amazing number of tools and resources
that allow them to truly personalize their big data experience to fit whatever their
business needs may be. (Hadoop, n.d.)

The project includes these modules:

Hadoop Common: The core Hadoop utilities that help users to perform many
functionalities
YARN: The main module that integrates and manages the clusters. It also schedules tasks.
HDFS: The file system behind the Hadoop which manages access to Distributed data
Hadoop MapReduce: Yarn based functionalities that help to process huge datasets in
parallel. HDFS (Hadoop Distributed File System) which is based on GFS (Google File
System) helps to transfer data in a faster way between nodes in the cluster in a fault
tolerant manner. As a result, it does not stop functioning even if one node fails. HDFS
allows parallel processing by partitioning data in small chunks across the cluster. It
duplicates the same data on multiple computers which enables it to continue working
even if some data is corrupted or damaged in case of failure
It can accommodate very large datasets up to petabytes which makes it ideal for Big-data
applications. (apache, n.d.)

21

4.2. Apache Spark

Apache Spark is a general compute engine that offers fast data analysis on a large-scale
dataset. Spark is built on HDFS but bypasses MapReduce and instead uses its own data
processing framework. Common uses cases for Apache Spark include real-time queries,
event stream processing, iterative algorithms, complex operations and machine learning.

Spark MapReduce Framework

MapReduce which is the most widely used technique to process data in parallel is born
because of a research at Google back in the early 2000's. According to the research paper
it is concluded that most parallel tasks for a distributed computing can be compiled as a
Map and Reduce actions. Map actions usually apply same operation on each record of a
dataset like filtering while the Reduce actions summarize the results which are computed
in the early stages of Map. In fig 1 Input data is partitioned in to multiple parts and
distributed across clusters. The Map stage begins parallel processing of the data by
applying same tasks in each partition. The 2nd phase which is the reduce stage merges
each part of the data across the cluster to give a single output. (mdpi, n.d.)

 Figure 6 Map Reduce Steps

Map reduce is a very powerful platform in a way that programs based on it can run
parallelly on thousands of computers. Programmers can use the advantage of MapReduce
to run tasks parallelly on multiple nodes even if they don’t have any knowledge of the

underlying distributed system infrastructure.

http://www.qubole.com/hadoop-spark/

22

 Spark Platform

Spark is another kind of distributed programming platform developed at DataBricks.It
processes most of Map Reduce tasks in memory as a result it is faster than Hadoop
MapReduce which is disk based. Sparks core logical unit is called RDD (Resilient
Distributed Datasets) which is parallelized across clusters to perform distributed tasks.
Spark can be developed by using java, python or Scala programming languages. Sparks
in memory computation capability makes it ideal for processing iterative algorithms like
WAODE, which would take large computational time if processed on Disk. Spark cluster
works as a Master and Slave (Worker nodes). The worker nodes perform the Map reduce
tasks parallelly while the Master node coordinates the tasks and allocate resource to the
worker nodes. The master also performs error Management, scheduling and other tasks.
(mdpi, n.d.)

Machine Learning with Spark

Machine learning is a method of data analysis that enables computers to get hidden
information without being explicitly instructed. It learns incrementally to build analytical
model of the data. (mdpi, n.d.)

MLLIB

It is a set of readymade machine learning algorithms that perform classification,
clustering as well as other important tasks. MLlib provides programming interfaces that
helps to use these algorithms easily.

 Figure 7 Machine learning algorithms

23

Chapter 5

5. WAODE, AnDE and WAnDE IMPLEMENTATION

 WAODE (Weightedly averaged one dependence estimators) is experimentally
tested to show high predictive accuracy on large datasets. However, implementing
WAODE with common procedural programming makes it time consuming and
impractical for very large datasets. overcoming this problem requires implementing the
parallel version of the algorithm with technologies like Spark.

 Historically, the possible ways to implement parallel programming was by using
multiple core CPUs, however this kind technique is very complex programmatically and
it is dependent of the number of CPUs on the computer. Another possible way of parallel
implementation is by using Hadoop MapReduce platform which a pioneer in this kind of
computing. Hadoop MapReduce can solve many of computational problems like
partitioning, scheduling tasks and distributing parallel jobs across cluster etc. However,
Hadoop MapReduce also have a major drawback of storing intermediate results and
stages on disk. This makes the read write tasks to take large amount of time specially for
Iterative algorithms like WAODE. (mdppi, n.d.)

 Sparks parallel programming architecture which uses RDD is suitable for iterative
algorithms in such a way that computation and intermediate results are stored in memory
and we can obtain both good performance and high predictive accuracy. In this chapter
we focus on the implementation of WAODE, AnDE and WAnDE by using spark.

5.1. Preprocessing

 The Main method of the System first parallelizes the Input File by using
sparkContext. Textfile method which will convert it into RDD format as a result it
enables spark to process the data parallelly across clusters. Furthermore, this step
splits the Input-RDD in to tokens by based on the coma separator.
Finally, this RDD will be passed to the algorithm as a Training Data Set. Caching
helps to store the generated RDD on memory so that it does not process the input file
for every classification step.

Pseudocode for processing input dataset

1. filePath = Location of the training data on disc
2. Input_RDD = sc. Textfile (filePath);
3. Trainning_RDD = RDD_input. Map (x x. split (","))

24

4. Trainning_RDD. Cache ();

5.2. Interface

 The WAODE, AnDE and WAODE libraries generally implement the Estimator
Interface. As a result, they all inherit CreateModel and Predict Method which could
perform the Trainning and Classifications stage accordingly.

These functions have public modifier which allows them to be accessed from outside
objects.

WAODE_Estimator estimator = new WAODE_Estimator(sc)
estimator. CreateModel ("/home/mike/AdultDataset.csv")

 String class = estimator. Predict ("Private, ignore, HS-grad, Divorced
 Handlers-cleaners Not-in-family White Male -57")

AnDE _Estimator estimator = new AnDE _Estimator(sc)
estimator. CreateModel ("/home/mike/nurseryDataset.csv")

String class = estimator. Predict ("usual, proper, complete,1, convenient, ")

WAnDE _Estimator estimator = new WAnDE _Estimator(sc)
estimator. Train("/home/mike/germanDataset.csv")

String class = estimator. Predict ("no-account, radio-tv, unknown, married-male, none,
ignore, building-society")

5.3. WOADE Implementation Process

 The WOADE algorithm is essentially a parallel algorithm like many machine
learning algorithms, The WOADE algorithm can be divided into two stages which are
namely Trainning and classification. At the first stage it iterates through all Attribute
columns to calculate constants, weight values, frequency and probability estimates.

Finally, it saves the results as a model to use it for the 2nd stage of the algorithm.

 In the second stage, which is the Classification stage WOADE predicts the class by
averaging the aggregate of weighted one dependence classifiers to the Total weight value.
These two stages clearly show that they can be implemented using Spark MapReduce
platform.

25

The implementation of WAODE based on Spark map reduce platform is as follows

Constructor

The constructor of the WOADE library accepts the spark context as input parameter. It
initializes the sparkContext, Hash Tables and Lists which will used for storing
intermediate data.
 List for variables and HashTable to initialize

1. Initialize memory for clsList
2. Initialize memory for WMap
3. Initialize memory for distItemsMap
4. Initialize memory for itemFrqMap
5. Initialize memory for jointProbMap
6. Initialize memory for tripleProbMap

finally, it calls the CreateModel Method which uses to train the dataset accordingly

CreateModel

 The CreateModel method of WAODE algorithm creates the classification model by
accepting Trainning Dataset as an argument.

Pseudocode for Training Phase of WAODE Algorithm

1. function CreateModel (Trainning RDD)
2. Input: Trainning RDD
3. Output: joint frequency and joint Probability of each attribute with class
4. N = Trainning_RDD. Count
5. NBroadcast = sc. broadcast(N);
6. DistinctItems_RDD [i, val] = Trainning_RDD. FlatMapToPair (funcPairDist).

 distinct (). catche ()

7. V_Map (“i”, v) = DistinctItems_RDD. countByKey ()
8. K = VMap.get(“iclass”)
9. vMapBroadcast = sc. Broadcast(V_Map)
10. kMapBroadcast = sc. Broadcast(K)
11. DistinctItems_Map = DistinctItems_RDD [i, val]. groupByKey (). collectAsMap ()
12. cls-List = DistinctItems_Map. get(i-class)
13. DistinctItems_RDD.unpersist()

 // Calculating Item Frequency and Probability

26

14. itemFrequencyRDD=Trainning_RDD. FlatMapToPair (funcPairSingle).
reduceByKey(funcSumm)

15. jointFrequencyRDD = Trainning_RDD.flatMapToPair(funcPairJoint).
reduceByKey(funcSumm)

16. tripleFrequencyRDD = Trainning_RDD.flatMapToPair(funcPairTriple).
reduceByKey(funcSumm)

17. jointProbRDD = jointFrequencyRDD. MapToPair(funcJointProbablity)
18. tripleProbRDD = jointFrequencyRDD. MapToPair(funcTripleProbablity)

 // Collection of Results into HashMap

19. itemFrqMap = itemFrquencyRDD.collectAsMap()
20. jointFrqMap = jointFrqquencyRDD.collectAsMap()
21. jointFrqMapBroadcast = sc. Broadcast(jointFrqMap)
22. jointProbMap = jointProbRDD.collectAsMap()
23. tripleProbMap = tripleProbRDD.collectAsMap()
24. jointProbMap = jointProbRDDNew.collectAsMap()
25. FOR I ← 1 TO m

 weightI ← calculateWeight(I)

 WeightMap.put (I, weightI)

 END FOR

26. Trainning_RDD.unpersist();
27. End // Trainning completed

Description for WAODE CreateModel procedure

Line 1-3 CreateModel function accepts Trainning RDD as parameter and saves output in
to HashMap.

Line 4 - 5: It calculates N which is the number of records in the dataset and saves it

 in to a broadcast variable so that it can be accessible from all nodes in the cluster.

Line 6: finds distinct items in every attribute node and maps it with its attribute index
(since same items could exist in another attribute node)

Line 7: calculates Vi which is the number of distinct items in each attribute nodes

Line 8: calculates K which is the number of distinct classes in the class node.

Line 9: saves Vi in to broadcast variable so that it can be accessible form other nodes in
the cluster.

27

Line 10: saves K in to broadcast variable so that it can be accessible form other nodes in
the cluster.

Line 11: groups items with similar key to find distinct items with in the same attribute
node and finally it collects them in to HashMap

Line 12: gets distinct classes from class attribute

Line 13: unloads the DistinctItems_RDD from memory since we don’t need it anymore.

Line 14: Maps each item with 1 and finally adds them together to calculate Item
frequency (the number of times an item appears in the dataset).

Line 15: Maps each combination of attribute and class with 1 and finally adds them
together to calculate Joint frequency of Attribute and Class (The number of times an item
and class combination appears in the dataset)

Line 16: Maps combination of 2 attributes I and J and class with 1 and finally adds them
together to calculate Triple frequency which is the frequency of Two Attributes and Class
(The number of times the combination of attribute item 1, attribute item 2 and class
appears in the dataset)

Line 17: Calculates Joint probability from JointFrequency (ai, class) by using
implemented Probability functions (The probability functions could be M-Estimation or
Laplace estimate).

Line 18: Calculates Triple probability (ai, aj, class) from Triple Frequency by using
implemented Probability functions (The probability functions could be M-Estimation or
Laplace estimate).

Line 19-24: Collects the calculated frequency and probability values in to HashMap. This
helps to avoid calculating the values again for every prediction.

Line 25: Calculates the weight of each attribute node by using the implemented
Weighting function. It finally saves the weight of each attribute node in a HashMap.

Line 26: Un Persists the Trainning dataset RDD to free up memory.

Line 27: End of procedure

28

Methods (Closures) used at the Trainning phase of WAODE

 // Maps each attribute value with the index of attribute

1. function funcPairDist (String x)

 FOR I ← 1 TO m

 New Tuple2 <” i”, val>

 END FOR

 end

 //Maps each attribute value and Index with One

2. function funcPairSingle (String x)

 FOR I ← 1 TO m

 New Tuple2 <” i, val”, 1>
 END FOR
 end

 //Maps each attribute value, index and class with one

3. function funcPairJoint (String x)
 FOR I ← 1 TO m
 New Tuple2 <” i, val, class”, 1>

 END FOR

 end

 //Maps the combination of 2 attribute values with class

4. function funcPairTriple (String x)
 FOR I ← 1 TO m-1
 FOR I ← 1 TO m
 New Tuple2 <” i, val1, j, val2, class”, 1>

 END FOR

 END FOR

 End

29

 //Adds the 2 occurrences for attribute values

5. function funcSumm (Long val1, Long val2)

 return val1+ val2

 end

 //Joint probability for two attributes based on M-estimation

6. function funcJointProbablity (ai, c) M-estimation

 jointFrqMap (ai, c) + (1.0 / (Vi * K))) / (N +1)

 Return P

 end

 //Triple probability of 2 attributes and class based on M-estimation

7. function funcTripleProbablity (ai, aj, c)

 tripleFreqMap (ai, c) + (1.0 / Vj) / (jointFrqMap (ai, c) +1)

 Return P

 end

 //Calculates the weight of an attribute

8. function funcWeightI (i)

 FOR EACH attribValue ai, classValue c ∈ AI∗, C∗

 fai  itemFrequency_Map(“a”)

fc  itemFrequency_Map (“c”);

pa  fa / N

pc  fc / N

Nom jointProbMap (“a, c”)

Den pa x pc

Wi  Wi + jointProbMap (“a, c”) x (Log Nom- Log Den)

Weight_Map (i, Wi)

End FOR

end

30

Predict Method

The predict method of the class accepts a vector data (which is the list of attribute values
without a class label). The predict method returns the predicted class label for the given
vector.

 Pseudo code for Prediction Phase of WAODE algorithm.

1. function CalculateArgMax ()
2. Input: list of attribute tokens and class label
3. Output: Estimation result
4. Est  0
5. FOR I 1 TO m
6. Pmul  1
7. key  “ai, c”
8. P (ai, c)  jointProbMap. Get(key)
9. For J  1 To n
10. If j Not Equals i
11. key  “ai, aj, c”
12. P (ai, aj, c)  tripleProbMap. Get(key);
13. Pmul  Pmul x P (ai, aj, c)
14. End FOR
15. Est  Est + Wi x P (ai, c) x Pmul
16. END FOR
17. Est Est / Wsum
18. Return Est
19. end

Description of the WAODE Argmax procedure

Line 1-3: Argmax method accepts the attribute vector and class label as an input

Line 4: Initializes Est variable to 0

Line 5: Loops through all attribute values in the input vector

Line 8: lookup for the joint probability of attribute ai and class c from HashMap

Line 9-12: loops through all attribute values except the parent attribute and lookup for
the joint probability of attribute ai, aj and class termed as triple probability (ai, aj, class).

31

Line 13: aggregates the triple probabilities calculated in the previous steps for each
attribute value combinations.

Line 15: multiplies the aggregate of triple probabilities with the Joint probability of the
parent attribute and the Weight of the Parent Attribute (looks up from HashMap). This
Estimate value will be summed up for each parent attribute.

Line 17-18: The Total estimate value will be averaged with the Total weight value to
return the estimation for the given class label.

Line 19: This procedure will be repeated for each class label. The class label with the
maximum estimation will be predicted for the given input vector

Line 20: end of procedure

32

5.4. AnDE Implementation Process

 In this thesis project only one version of AnDE which is A2DE is implemented.
where N refers to the number of dependent attributes with the class. Unlike WAODE
which assumes 1 dependent attribute with the class the A2DE algorithm uses 2 dependent
attributes. As a result, it is expected to increase the accuracy of the prediction.

 The main purpose of implementing A2DE is to understand the characteristics of the
algorithm with respect to the number of dependent attributes. The AnDE like other
machine learning algorithms can be divided into two stages. In the first stage, which is
the Training stage it calculates the constants, joint frequency values and base probability
estimates. Finally, this data will be saved to be used as a classifier for the 2nd stage of the
algorithm.

 At the second stage, which is the Prediction AnDE predicts the class by averaging the
aggregate of one dependence classifiers to the Total number of records which is N. AnDE
compares the estimation for each class and takes the maximum to give the output. The
following subtopics discuss how to implement these two stages by using spark.

 The implementation of AnDE based on Spark map reduce platform is as follows.

 Constructor

The constructor of the WOADE library accepts the spark context as a parameter. It
initializes the sparkContext, Hash Tables and Lists which are used for storing data.
which are namely.

 Initialize clsList variable
 Initialize HashMap WMap
 Initialize HashMap distItemsMap
 Initialize HashMap itemFrqMap
 Initialize HashMap jointProbMap
 Initialize HashMap tripleProbMap

finally, it calls the CreateModel Method which uses to train the dataset accordingly

 CreateModel

 The CreateModel method of AnDE algorithm creates the classification model and by
accepting InputRDD as an argument.

33

Pseudo Code for Training Phase of AnDE Algorithm

1. function CreateModel (Trainning RDD)
2. Input: Trainning RDD
3. Output: joint frequency and joint probability values
4. N = Trainning_RDD. Count
5. NBroadcast = sc. broadcast(N);
6. DistinctItems_RDD (I, distValsList) = Trainning_RDD. FlatMapToPair

(funcPairDist). distinct (). catche ().
7. V_Map (“i”, v) = DistinctItems_RDD. countByKey ()
8. K = VMap.get(“iclass”)
9. vMapBroadcast= sc. Broadcast(V_Map)
10. kMapBroadcast = sc. Broadcast(K)
11. DistinctItems_Map = DistinctItems_RDD. (). reduceByKey (funcCollect).
12. cls-List = DistinctItems_Map. get(i-class).
13. DistinctItems_RDD.unpersist()
14. itemFrequencyRDD = Trainning_RDD. FlatMapToPair (funcPairSingle).

reduceByKey(funcSumm)
15. jointFrequencyRDD = Trainning_RDD.flatMapToPair(funcPairJoint).

reduceByKey(funcSumm)
16. jointFrequencyRDDNew =Trainning_RDD.flatMapToPair(funcPairJointNew).

reduceByKey(funcSumm)
17. tripleFrequencyRDD=Trainning_RDD.flatMapToPair(funcPairTriple).

reduceByKey(funcSumm)
18. jointProbRDD = jointFrequencyRDD. MapToPair(funcJointProbablity)
19. tripleProbRDD = jointFrequencyRDD. MapToPair(funcTripleProbablity)
20. jointProbRDDNew = jointFrequencyRDD. MapToPair(funcJointProbablityNew)
21. //Collect Results into Map
22. itemFrqMap = itemFrquencyRDD.collectAsMap()
23. jointFrqMap = jointFrqquencyRDD.collectAsMap()
24. jointFrqMapBroadcast = sc. Broadcast(jointFrqMap)
25. jointProbMap = jointProbRDD.collectAsMap()
26. tripleProbMap = tripleProbRDD.collectAsMap()
27. jointProbMapNew = jointProbRDDNew.collectAsMap()
28. end

34

 Description of AnDE CreateModel procedure

Line 1-3 CreateModel function accepts Trainning RDD as parameter and saves output in
to HashMap.

Line 4 - 5: It calculates N which is the number of records in the dataset and saves it

 in to a broadcast variable so that it can be accessible from all nodes in the cluster.

Line 6: finds distinct items in every attribute node and maps it with its attribute index
(since same items could exist in another attribute node)

Line 7: calculates Vi which is the number of distinct items in each attribute nodes

Line 8: calculates K which is the number of distinct classes in the class node.

Line 9: saves Vi in to broadcast variable so that it can be accessible form other nodes in
the cluster.

Line 10: saves K in to broadcast variable so that it can be accessible form other nodes in
the cluster.

Line 11: groups items with similar key to find distinct items with in the same attribute
node and finally it collects them in to HashMap

Line 12: gets distinct classes from class attribute

Line 13: unloads the DistinctItems_RDD from memory since we don’t need it anymore.

Line 14: pairs each item with 1 and finally adds them together to calculate Item
frequency (the number of times an item appears in the dataset).

Line 15: pairs each combination of 2 attribute values and class with 1 (ai, aj, class). finally
adds them together to calculate Joint frequency of Attributes (i, j) and class (The number
of times the items and class combination appears in the dataset)

Line 16: pairs combination of 2 attributes (ai, aj) with 1 and finally adds them together to
calculate JointFrequency of two Attributes values (The number of times the combination
of attribute item 1, attribute item 2 appears in the dataset)

Line 17: pairs combination of 3 attribute values ai, aj and az with class. finally adds them
together to calculate the triple frequency of Attributes (i, j, z) and class (The number of
times the items and class combination appears in the dataset)

Line 18: Calculates Joint probability (ai, aj, class) from JointFrequency of (ai, aj, class) by
using implemented Probability functions (The probability functions could be M-
Estimation or Laplace estimate).

35

Line 19: Calculates Triple probability (ai, aj, az, class) from Triple Frequency (ai, aj, az,
class) by using implemented Probability functions (The probability functions could be M-
Estimation or Laplace estimate).

Line 20: Calculates the Joint probability (ai, aj) from JointFrequency of (ai, aj) by using
implemented Probability functions (The probability functions could be M-Estimation or
Laplace estimate)

Line 22-27: Collects the calculated frequency and probability values in to HashMap. This
helps to avoid calculating the values again for every prediction.

Line 28: end of procedure

Methods (Closures) used in the algorithm

 // Maps each attribute value with the index

1. function funcPairDist (String x)

 FOR I ← 1 TO m

 New Tuple2 <” i”, val>

 END FOR

 end

 // Maps each attribute value and Index with One

2. function funcPairSingle (String x)

 FOR I ← 1 TO m

 New Tuple2 <” i, val”, 1>
 END FOR
 end

 // Maps each attribute value, index and class with one

3. function funcPairJoint (String x)
 FOR I ← 1 TO m-1
 FOR J ← 1 TO m
 New Tuple2 <” i, val, j, valJ, class”, 1>
 END FOR

 END FOR

36

 END

 // Maps the combination of attribute values with one

4. function funcPairJointNew (String x)
 FOR I ← 1 TO m-1
 FOR J ← 1 TO m
 New Tuple2 <” i, val, j, valJ”, 1>
 END FOR

 END FOR

 End

 // Maps combination of attribute values and class with 1

5. function funcPairTriple (String x)
 FOR I ← 1 TO m-2
 FOR J ← 1 TO m-1
 FOR J ← 1 TO m
 New Tuple2 <” i, vali, j, valj, z, valz, class”, 1>

 END FOR

 END FOR

 END FOR

 // Adds 2 occurrences of an attribute value

6. function funcSumm (Long val1, Long val2)

 return val1+ val2

 end

 //Calculates joint probability based on M-estimation

7. function funcJointProbablity (ai, c)

 jointFrqMap (ai, c) + (1.0 / (Vi *Vj* K))) / (N +1);

 Return P

 // Calculates joint probability of 3 attributes based on M-estimation

8. function funcTripleProbablity (ai, c)

 tripleFreqMap (ai, aj, az, c) + (1.0 / Vz) / (jointFrqMap (ai, aj, c) +1);

37

 Return P

 end

 //Calculates joint probability based on M-estimation

9. function funcJointProbablityNew (ai, c)

 jointFrqMap (ai, c) + (1.0 / (Vi *Vj))) / (N +1);

 Return P

 end

Predict Method

The predict method of the object accepts an input vector (which is the list of attribute
values without a class label). Estimates the class for the given predicate value based on
the results from the Trainning phase.

Pseudo Code for Prediction phase of A2DE Algorithm

1. function CalculateArgMax (att List, class)
2. Input: list of attribute tokens and class label
3. Output: Probability Estimation for the given class label
4. Est  0
5. Pmul  1
6. FOR I  1 TO m
7. FOR J  I+1 TO m
8. key  “ai, aj, c”
9. P (ai, aj, c)  jointProbMap. Get(key)
10. For z 1 To m
11. If z! = I or z! = j then
12. key  “ai, aj, az, c”
13. P (ai, aj, c)  tripleProbMap. Get(key);
14. Pmul  Pmul x P (ai, aj, az, c)
15. End FOR
16. END FOR
17. END FOR
18. Est  Est + (P (ai, aj, c) x Pmul)
19. Est  Est / N
20. Return Est

38

Description of AnDE Argmax Method

Line 1-3: Argmax method accepts attribute vector and class label as an input

Line 4-5: Initializes Est and Pmul variable

Line 6: Loops through all attribute values in the input vector

Line 7: For each parent attribute it loops through all other attribute values.

Line 9: It retrieves the joint probability of ai, aj and class from HashMap.

Line 11: Loops through all attributes for each combination of the parent attributes I and j.

Line 13: It calculates the triple probability for ai, aj and az with class label termed as

Line 14: aggregates the triple probabilities calculated in the previous steps.

Line 18: multiplies the aggregate of triple probabilities with the Joint probability of the
parent attributes and. This Estimate value will be summed up for each parent attribute.

Line 19: The Total estimate value will be averaged with N value to return the estimation
for the given class label.

Line 20: This procedure will be repeated for each class label. The class label with the
maximum estimation will be predicted for the given input vector according to AnDE
algorithm.

Line 21: End of procedure

39

5.5. WAnDE Implementation Process

Generally, WAnDE is a modification of AnDE by addition of Weighting function. The
AnDE algorithm like WOADE is essentially a parallel algorithm. The AnDE algorithm
can be divided into two stages. In the first stage, which is the Training stage it calculates
the N, V and other constant values. In addition, it calculates joint frequency, triple
frequency, joint probability, triple Probability and other constants. Finally, it saves the
results to use it on the 2nd stage of the algorithm.

The implementation of AnDE based on Spark map reduce platform is as follows.

Constructor

The constructor of the WAnDE library accepts the spark context as a parameter. It
initializes the sparkContext, Hash Tables and Lists which are used for storing data.
which are namely.

 Initialization of list clsList
 Initialization of HashMap WMap
 Initialization of HashMap distItemsMap
 Initialization of HashMap itemFrqMap
 Initialization of jointProbMap
 Initialization of tripleProbMap

finally, it calls the CreateModel Method which uses to train the dataset accordingly

CreateModel

 The CreateModel method of WAnDE algorithm creates the classification model by
accepting InputRDD as an argument.

Pseudo Code for Training Phase of WAnDE Algorithm

1. N = Trainning_RDD. Count
2. DistinctItems_RDD (I, distValsList) = Trainning_RDD. FlatMapToPair

(funcPairDist). distinct (). catche ().
3. V_Map (“i”, v) = DistinctItems_RDD. countByKey ()
4. K = VMap.get(“iclass”)
5. vMapBroadcast= sc. Broadcast(V_Map)
6. kMapBroadcast = sc. Broadcast(K)
7. DistinctItems_Map = DistinctItems_RDD. (). reduceByKey (funcCollect).
8. cls-List = DistinctItems_Map. get(i-class).
9. DistinctItems_RDD.unpersist()

40

// Calculate Item Frequency and Probability

13. itemFrequencyRDD = Trainning_RDD. FlatMapToPair (funcPairSingle).
reduceByKey(funcSumm)

14. jointFrequencyRDD = Trainning_RDD.flatMapToPair(funcPairJoint).
reduceByKey(funcSumm)

15. jointFrequencyRDDNew =Trainning_RDD.flatMapToPair(funcPairJointNew).
reduceByKey(funcSumm)

16. tripleFrequencyRDD =Trainning_RDD.flatMapToPair(funcPairTriple).
reduceByKey(funcSumm)

17. jointProbRDD = jointFrequencyRDD. MapToPair(funcJointProbablity)

18. tripleProbRDD = jointFrequencyRDD. MapToPair(funcTripleProbablity)

19. jointProbRDDNew = jointFrequencyRDD. MapToPair(funcJointProbablityNew)

// Collect Results into Map

20. itemFrqMap = itemFrquencyRDD.collectAsMap()

22. jointFrqMap = jointFrqquencyRDD.collectAsMap()

23. jointFrqMapBroadcast = sc. Broadcast(jointFrqMap)

24. jointProbMap = jointProbRDD.collectAsMap()

25. tripleProbMap = tripleProbRDD.collectAsMap()

26. jointProbMapNew = jointProbRDDNew.collectAsMap()

 // Trainning Completed

41

 Methods (closures) used in the WAnDE algorithm

 // Maps each attribute value with the index

1. function funcPairDist (String x)

 FOR I ← 1 TO m

 New Tuple2 <” i”, val>

 END FOR

 END

 // Maps each attribute value and Index with One

2. function funcPairSingle (String x)

 FOR I ← 1 TO m

New Tuple2 <” i, val”, 1>

 END FOR

 END

 // Maps each attribute value, index and class with one

3. function funcPairJoint (String x)

 FOR I ← 1 TO m-1

 FOR J ← 1 TO m

New Tuple2 <” i, val, j, valJ, class”, 1>

 END FOR

 END FOR

 END

 // Maps the combination of attribute values with one

4. function funcPairJointNew (String x)

 FOR I ← 1 TO m-1

 FOR J ← 1 TO m

 New Tuple2 <” i, val, j, valJ”, 1>

 END FOR

42

 END FOR

 END

 // Maps combination of attribute values and class with 1

5. function funcPairTriple (String x)

 FOR I ← 1 TO m-2

 FOR J ← 1 TO m-1

 FOR J ← 1 TO m

New Tuple2 <” i, val1, j, val2, z, val3, class”, 1>

 END FOR

 END FOR

 END FOR

 END

 // Adds 2 occurrences of an attribute value

6. function funcSumm (Long val1, Long val2)

 return val1+ val2

 END

 // Calculates joint probability based on M-estimation

7. function funcJointProbablity (ai, c)

 jointFrqMap (ai, c) + (1.0 / (Vi *Vj* K))) / (N +1);

 Return P

 END

 // Calculates joint probability of 3 attributes based on M-estimation

8. funcTripleProbablity (ai, c)

 tripleFreqMap (ai, aj, az, c) + (1.0 / Vz) / (jointFrqMap (ai, aj, c) +1);

 Return P

 END

43

 // Calculates joint probability based on M-estimation

9. funcJointProbablityNew (ai, c)

 jointFrqMap (ai, c) + (1.0 / (Vi *Vj))) / (N +1);

 Return P

 END

Algorithm for Three types of Weighting Function Used in WAnDE

1. function FuncWeight1(i, j)
2. Input: index of two attributes
3. Output: The amount of information that is passing from I to j (weight of Att)
4. FOR EACH attribValue ai, attribValue aj, classValue c ∈ AI∗, C∗
5. Fai  itemFrequency_Map(“ai”) // frequency of attribute i
6. Faj  itemFrequency_Map(“aj”) // frequency of attribute j
7. fc  itemFrequency_Map (“c”) // frequency of class
8. pai  faj / N // probability of attribute
9. paj  faj / N // probability of attribute
10. pc  fc / N // probability of class
11. Nom jointProbMap (“ai, aj, c”) // joint prob attributes and class
12. Den pa1 x pa2 x Pc // multiple of attribute probability and class
13. W  W + jointProbMap (“ai, aj, c”) x (Log Nom- Log Den)
14. Weight_Map (i, Wi)
15. End FOR
16. End

44

1. function FuncWeight2 (I, j)
2. Input: index of two attributes
3. Output: The amount of information that is passing from I to j (weight of Att)
4. FOR EACH attribValue ai, attribValue aj, classValue c ∈ AI∗, C∗
5. Fai  itemFrequency_Map(“ai”) // frequency of attribute
6. Faj  itemFrequency_Map(“aj”) // frequency of attribute
7. fc  itemFrequency_Map (“c”); // frequency of class
8. pai  fai / N // probability of attribute
9. paj  faj / N // probability of attribute
10. pc  fc / N // probability of class
11. Nom jointProbMap (“ai, aj, c”) // joint prob attributes and class
12. Den  jointProbMap (“ai, aj”) x Pc // mul joint probability and class
13. W  W + jointProbMap (“ai, aj, c”) x (Log Nom- Log Den)
14. Weight_Map (i, Wi)
15. End FOR
16. End

28. function FuncWeight3 (I, j)
29. Input: index of 2 Attributes
30. Output: The amount of information that is passing from I to j (weight of Att)
31. FOR EACH attribValue ai, attribValue aj, classValue c ∈ AI∗, C∗
32. Fai  itemFrequency_Map(“ai”) // frequency of attribute
33. Faj  itemFrequency_Map(“aj”) // frequency of attribute
34. fc  itemFrequency_Map (“c”); // frequency of class
35. pai  fai / N // probability of attribute
36. paj  faj / N // probability of attribute
37. pc  fc / N // probability of class
38. Nom jointProbMap (“ai, aj, c”) // joint prob attributes and class
39. Den  jointProbMap (“ai, c”) x jointProbMap (“aj, c”)
40. W  W + jointProbMap (“a1, a2, c”) x (Log Nom- Log Den)
41. Weight_Map (i, Wi)
42. End FOR
43. end

45

Description of the WAnDE CreateModel Procedure

The Trainning phase of WAnDE resembles AnDE except that it calculates the Weight
function for each attribute. The implementation of the WAnDE consists of three types of
weight functions.

 Predict Method

The predict method of the object accepts an input vector (which is the list of attribute
values without a class label). Estimates the class for the given predicate value based on
the results from the Trainning phase.

Pseudo Code for Prediction Phase of WAnDE Algorithm

1. function CalculateArgMax (att List, class)
2. Input: attribute values and class label
3. Output: Probability Estimate for the class label
4. Est  0
5. Pmul  1
6. FOR I  1 TO m
7. FOR J  I+1 TO m
8. key  “ai, aj, c”
9. P (ai, aj, c)  jointProbMap. Get(key)
10. For z 1 To m
11. If z! = I or z! = j then
12. key  “ai, aj, az, c”
13. P (ai, aj, c)  tripleProbMap. Get(key);
14. Pmul  Pmul x P (ai, aj, az, c)
15. End FOR
16. END FOR
17. END FOR
18. Est  Est + (Wij * P (ai, aj, az, c) x Pmul)
19. Est  Est / Wsum
20. End

Description of WAnDE Argmax Procedure

The implementation of WAnDE prediction phase resembles AnDE except that it
multiplies the aggregate of the probability estimate with Weight value of Parent
Attributes. Furthermore, it averages the total probability estimate with Total weight value
to give final estimate.

46

Chapter 6

6. EVALUATION AND RESULTS

This chapter applies the approach introduced in chapter 6 to the realistic datasets found
from UCI website. It begins by describing the experiment dataset followed by setup
environment. Then presents evaluation of the accuracy by which the approach can
estimate the classes of the input data attributes.

A. Experiment Dataset

 25 UCI datasets were chosen to support the claim that the proposed approach performs
as expected. UCI dataset is chosen as reference because the data were recorded for
several real-life appliances and of its wide application as a standard test set by machine
learning community for the empirical analysis of machine learning algorithms.

Dataset N A K
Austral 690 14 2
Breast 699 10 2
Cleved 303 13 2
Crex 690 15 2
Diabetes 768 8 2
Glass 214 9 4
heart 270 13 2
hepati 155 19 2
horse 368 22 2
labor 57 16 2
mushroom 8124 22 2
nursary 12960 8 5
pima 768 8 2
segmentation 2310 19 7
sick 2801 29 3
sonar 209 60 3
soyabin-s.csv 47 35 4
hypo 3163 25 2
tic-tac 958 9 2
voting 435 16 2
wine 178 13 3
yeast 1484 8 10
zood 101 16 7
german 1001 20 3
ionod 352 34 3

 Table 1 UCI Datasets used for the testing the accuracy of the algorithms

47

 N: Number of records in the dataset, A: Number of attributes in the dataset

 K: Number of distinct class values in the dataset

B. Test Environment

 The presented accuracy tests and evaluations were done on Polito Datamining
Cluster(dbdmgmtr.polito.it) which is a small cluster usually used for testing purpose, it
contains 2 worker nodes and 1 master node. The server is running java version 1.6.0.3
and cloudera CDH 5.4.7 with spark version 1.3.0

The scalability testing is performed on the cluster of Big Data laboratory (Big
Data.polito.it). It consists of a group of worker nodes and a Master node used for running
Big Data jobs. below is the specification of the Big Data cluster.

Hardware Architecture

30 worker nodes – With storage capacity 768 TB and 2TB Memory (8GB per computing
core)

 18 nodes Dell – With each node having maximum storage capacity 36 TB
 12 nodes - With each node having maximum storage capacity 10 TB

3 Master nodes with the following characteristics

 1 Master node DELL PowerEdge R620

Processor type Intel processor E5-2630v2 6 cores, 2.6GHz

 RAM 128 GB DDR3 with processor speed of 1600Mhz

2 Worker nodes DELL PowerEdge R720XD

Processor type Intel processor E5-2620v2 6 cores, 2.6GHz

RAM 96 GB DDR3 with processor speed of 1600Mhz

 Table 2 Polito Data Mining Cluster Environment

48

 Software architecture

Each node of the dbdmgmtr@polito.it and Big Data@Polito.it cluster runs
a cloudera distribution on Linux Ubuntu (14.04.02 LTS). The cloudera distribution is
based on the open source Apache Hadoop framework for Big Data distributed
applications. The Apache Hadoop ecosystem data management like YARN, SPARK
and HDFS (Hadoop Distributed File System).

C. Evaluation methodology

10-Fold cross validation is used for evaluating the accuracy of the algorithms. The
CrossValidator module which is implemented in the project as described in chapter 6
validates a given algorithm and gives the average accuracy on a specified dataset.

 CrossValidator cv = new CrossValidator (sc, inputfileRDD);

 Double avg = cv. kFold (10);

 K -fold Cross Validation Implementation

The K-Fold cross validation methodology is the evaluation method we used to test our
algorithms accuracy in the project. The method divides the data in to 10 partitions and

uses each partition as a test set and the rest of the dataset is used as a training set. This

process continues 10 times for each partition. Finally, the average of the 10 results will

be taken as an accuracy for the dataset.

 The constructor of Cross Validator class accepts 2 arguments. namely the spark context
and an Input-RDD.

 Interface

1. Cross Validator Constructor: accepts 2 arguments as an input the spark context an
input RDD. it sets the input arguments to the cross-Validator object so that it will
be used in the future.

2. K fold method: accepts 2 arguments the K value which in our case is 10 and the
output -Path where it will store the results of the test. It returns the result

 CrossValidator cv = new CrossValidator (sc, inputfileRDD);
 Double avg = cv. kFold (10);

49

 Implementation

 Pseudo Code for 10-fold Cross Validation Implementation

1. RDD trainset  null
2. List<String> [] partition  input_RDD.collectPartitions(10);
3. For I  0 To 10
4. If I not equal testSet
5. trainset  trainset. Union (sc. parallelizes(partition[i]));

 // collects all data except the test partition

6. End If
7. End For
8. Foreach partition P
9. WAODE_Estimator myestimator  new WAODE_Estimator(sc);
10. Myestimator.train()
11. For each I  1 to N
12. class  myestimator. Predict(Vector(i))
13. IF class equals old class
14. count  count + 1
15. End For each
16. accuracy  count / testset size
17. sum  sum + accuracy
18. End for each partition
19. average  sum / number of partitions
20. Return average

50

 Logging

 It is a utility class made in the application that uses the java logging service? The
logging module helps to write the intermediate results and finale outcome of the testing
process which is the 10-fold cross validation. Since the processing time for the algorithm
takes a longer time. T

The system uses this logger module to save the results on file.

java. util. logging. Logger logger = java.util.logging.Logger.getLogger("MyLog");

logger.info(text);

MyLogger.log ("Average Value =======: " + result);

 Figure 8 7 Sample Log file showing 10-fold cross validation accuracy result for a dataset

51

D Experimental Results

i. Average Accuracy and Execution Time of the implemented prediction algorithms

(WAODE, AnDE, WAnDE) on selected UCIDatasets.

Dataset WOADE ET WOADE ET WANde ET waNde ET aNde

aNde ET

M-E Laplace

M-E Laplace

M-E

Laplace

Austral 0.8494818 98s 0.85152431 97s 0.85147591 164s 0.85731445 169s 0.853837787 150s 0.8603421 141s

Breast 0.9683942 87s 0.96685577 86s 0.96839424 135s 0.96536324 139s 0.969886773 123s 0.9668558 118s

Cleved 0.8295854 82s 0.82958539 81s 0.81939491 135s 0.82045552 138s 0.822728243 119s 0.8227282 117s

crex 0.8580923 103s 0.86263112 104s 0.86294112 177s 0.87131172 174s 0.860727756 154s 0.8681243 147s

diabets 0.7804979 80s 0.77770662 80s 0.78110266 122s 0.77836294 126s 0.780416748 110s 0.7793298 107s

glass 0.7793352 66s 0.75377605 69s 0.76090382 105s 0.75423715 106s 0.77678617 92s 0.7601195 92s

heart 0.8287757 82s 0.82877567 81s 0.82813155 126s 0.82813155 130s 0.828131549 114s 0.8281315 115s

hepati 0.8790759 77s 0.85870551 79s 0.87282588 131s 0.87907588 131s 0.879075878 119s 0.8790759 116s

horse 0.8162924 110s 0.81198836 113s 0.81684558 470s 0.83092075 200s 0.821157241 187s 0.8255095 184s

labor 0.9542424 49s 0.95424242 51s 0.97424242 78s 0.97424242 84s 0.974242424 71s 0.9742424 72s

mushroom 1 143s 0.99987179 148s 1 424s 1 457s 1 417s 1 400s

nursary 0.9271733 109s 0.92693599 119s 0.94921758 181s 0.94859827 189s 0.946484002 166s 0.9454229 168s

pima 0.7838758 82s 0.7838758 87s 0.79285323 123s 0.79411906 125s 0.795798705 111s 0.7957987 110s

segmentation 0.9662024 159s 0.95760634 166s 0.96798749 428s 0.95794958 445s 0.968332049 441s 0.958766 433s

sick 0.9757968 133s 0.97509552 136s 0.9746876 453s 0.97403006 466s 0.974691351 449s 0.9736928 445s

sonar 0.8456517 120s 0.83660146 122s 0.85190166 603s 0.84094928 624s 0.845651664 909s 0.8366015 896s
soyabin-
s.csv 1 58s 1 59s 1 111s 1 108s 1 103s 1 101s

hypo 0.9787536 180s 0.96631571 179s 0.98066328 869s 0.96787898 727s 0.981947428 652s 0.9757705 659s

tic-tac 0.7269482 97s 0.7266693 98s 0.8859782 410s 0.88574327 145s 0.905983306 135s 0.9071881 131s

voting 0.9512139 99s 0.94410926 103s 0.95127516 156s 0.95035529 158s 0.954737574 147s 0.947482 145s

wine 0.9891813 74s 0.98362573 75s 0.98362573 119s 0.98362573 117s 0.983625731 109s 0.9836257 107s

yeast 0.5973158 96s 0.59475364 99s 0.60529614 142s 0.60006873 141s 0.599729112 128s 0.5957406 123s

zood 0.9777778 66s 0.92209596 67s 0.96868687 102s 0.93118687 102s 0.968686869 94s 0.922096 94s

german 0.7579323 118s 0.75928417 130s 0.75351115 227s 0.75551294 236s 0.749705136 210s 0.7606239 204s

ionod 0.9394478 122s 0.93087637 128s 0.93613898 377s 0.93206274 395s 0.936138977 429s 0.9320627 417s

Table 3 . Measuring the accuracy of WAODE, AnDE, WAnDE estimators by using 10-fold cross
validation methodology on selected UCIDatasets

52

ii. Average Accuracy results of WAODE, AnDE, WAnDE distributed versions with
respect to WAODE centralized version (Rapid Miner version).

Dataset WOADE WOADE waNde waNde aNde aNde WAODE Average accuracy

M-Estimator Laplace M-Estimator Laplace M-Estimator Laplace RapidMiner version (%)

austra 0.849481805 0.851524314 0.851475912 0.857314453 0.853837787 0.860342085
84.64% +/- 4.21% (mikro:
84.64%)

breast 0.968394235 0.966855774 0.968394235 0.965363236 0.969886773 0.966855774
97.13% +/- 1.82% (mikro:
97.14%)

cleved 0.829585385 0.829585385 0.819394909 0.820455515 0.822728243 0.822728243
82.17% +/- 3.07% (mikro:
82.18%)

Crex 0.858092321 0.862631125 0.862941116 0.871311719 0.860727756 0.868124266
86.67% +/- 2.73% (mikro:
86.67%)

diabets 0.780497855 0.777706617 0.781102663 0.778362937 0.780416748 0.779329791
77.85% +/- 4.23% (mikro:
77.86%)

Glass 0.77933519 0.75377605 0.760903817 0.754237151 0.77678617 0.760119504
76.67% +/- 7.99% (mikro:
76.64%)

Heart 0.828775672 0.828775672 0.828131549 0.828131549 0.828131549 0.828131549
82.59% +/- 5.25% (mikro:
82.59%)

hepati 0.879075878 0.858705507 0.872825878 0.879075878 0.879075878 0.879075878
83.88% +/- 5.17% (mikro:
83.87%)

horse 0.816292393 0.811988364 0.816845576 0.830920751 0.821157241 0.825509496
82.03% +/- 5.36% (mikro:
82.07%)

Labor 0.954242424 0.954242424 0.974242424 0.974242424 0.974242424 0.974242424
95.00% +/- 7.64% (mikro:
94.74%)

mushroom 1 0.999871795 1 1 1 1
100.00% +/- 0.00% (mikro:
100.00%)

nursary 0.92717333 0.926935993 0.949217584 0.948598268 0.946484002 0.945422861
92.91% +/- 0.59% (mikro:
92.91%)

Pima 0.783875804 0.783875804 0.792853234 0.794119057 0.795798705 0.795798705
78.64% +/- 4.89% (mikro:
78.65%)

segmentation 0.96620244 0.957606344 0.967987489 0.957949581 0.968332049 0.95876603
96.93% +/- 1.33% (mikro:
96.93%)

Sick 0.975796845 0.975095516 0.974687603 0.974030062 0.974691351 0.97369276
97.61% +/- 0.72% (mikro:
97.61%)

sonar 0.845651664 0.836601457 0.851901664 0.840949283 0.845651664 0.836601457
86.48% +/- 8.36% (mikro:
86.54%)

soyabin-
s.csv 1 1 1 1 1 1

100.00% +/- 0.00% (mikro:
100.00%)

Hypo 0.978753553 0.966315715 0.980663279 0.967878982 0.981947428 0.975770468
98.13% +/- 0.66% (mikro:
98.13%)

tic-tac 0.72694819 0.726669296 0.8859782 0.885743268 0.905983306 0.907188125
71.72% +/- 4.17% (mikro:
71.71%)

voting 0.951213875 0.944109263 0.951275158 0.950355289 0.954737574 0.947482016
94.27% +/- 2.92% (mikro:
94.25%)

Wine 0.989181287 0.983625731 0.983625731 0.983625731 0.983625731 0.983625731
98.89% +/- 2.22% (mikro:
98.88%)

yeast 0.597315818 0.594753641 0.605296141 0.600068725 0.599729112 0.595740647
59.23% +/- 2.94% (mikro:
59.23%)

Zood 0.977777778 0.92209596 0.968686869 0.931186869 0.968686869 0.92209596
97.09% +/- 4.45% (mikro:
97.03%)

german 0.757932333 0.75928417 0.753511147 0.755512936 0.749705136 0.76062388
75.40% +/- 4.32% (mikro:
75.40%)

Ionod 0.939447801 0.930876372 0.936138977 0.932062743 0.936138977 0.932062743
93.16% +/- 3.66% (mikro:
93.16%)

Table 4 Average accuracy results of the (WAODE, A2de, WAnDE) versus WAODE centralized version
(Rapid Miner) on selected UCIDatasets

53

iii. Accuracy results of WAODE distributed versions with respect to WAODE
centralized version (Rapid Miner version).

Dataset WOADE M-Estimator ET WAODE Average accuracy

Distributed version RapidMiner version (%)

 austra 0.849482 98s 84.64% +/- 4.21% (mikro: 84.64%)
breast 0.968394 87s 97.13% +/- 1.82% (mikro: 97.14%)
cleved 0.829585 82s 82.17% +/- 3.07% (mikro: 82.18%)
crex 0.858092 103s 86.67% +/- 2.73% (mikro: 86.67%)
diabets 0.780498 80s 77.85% +/- 4.23% (mikro: 77.86%)
glass 0.779335 66s 76.67% +/- 7.99% (mikro: 76.64%)
heart 0.828776 82s 82.59% +/- 5.25% (mikro: 82.59%)
hepati 0.879076 77s 83.88% +/- 5.17% (mikro: 83.87%)
horse 0.816292 110s 82.03% +/- 5.36% (mikro: 82.07%)
labor 0.954242 49s 95.00% +/- 7.64% (mikro: 94.74%)
mushroom 1 143s 100.00% +/- 0.00% (mikro: 100.00%)
nursary 0.927173 109s 92.91% +/- 0.59% (mikro: 92.91%)
pima 0.783876 82s 78.64% +/- 4.89% (mikro: 78.65%)
segmentation 0.966202 159s 96.93% +/- 1.33% (mikro: 96.93%)
sick 0.975797 133s 97.61% +/- 0.72% (mikro: 97.61%)
sonar 0.845652 120s 86.48% +/- 8.36% (mikro: 86.54%)
soyabin-s.csv 1 58s 100.00% +/- 0.00% (mikro: 100.00%)
hypo 0.978754 180s 98.13% +/- 0.66% (mikro: 98.13%)
tic-tac 0.726948 97s 71.72% +/- 4.17% (mikro: 71.71%)
voting 0.951214 99s 94.27% +/- 2.92% (mikro: 94.25%)
wine 0.989181 74s 98.89% +/- 2.22% (mikro: 98.88%)
yeast 0.597316 96s 59.23% +/- 2.94% (mikro: 59.23%)
zood 0.977778 66s 97.09% +/- 4.45% (mikro: 97.03%)
german 0.757932 118s 75.40% +/- 4.32% (mikro: 75.40%)
ionod 0.939448 122s 93.16% +/- 3.66% (mikro: 93.16%)

Table 5 Average accuracy comparison of WOADE Distributed implementation vs WOADE centralized
(Rapid Miner version).

54

iv. Accuracy results of WAnDE distributed version with respect different M-
Estimator functions

Dataset WaNde WAnDE WAnDE

ME ME2 ME3

austra 0.851023545 0.853115649 0.856080855
breast 0.970377565 0.96868265 0.970336741
cleved 0.815285455 0.818142598 0.82785868
crex 0.859936733 0.857188756 0.853806815
diabets 0.787336927 0.789815507 0.771418053
glass 0.769705969 0.774969127 0.789539645
heart 0.830455867 0.830455867 0.831271718
hepati 0.843366007 0.843366007 0.83669934
horse 0.816764192 0.829867551 0.81494931
labor 0.943333333 0.943333333 0.963333333
mushroom 1 1 1
nursary 0.948315484 0.948315484 0.940300611
pima 0.788263122 0.78704361 0.768990403
segmentation 0.966159794 0.966159794 0.967033573
sick 0.974435475 0.975180777 0.974043318
sonar 0.854598314 0.863487203 0.857931647
soyabin-s.csv 1 1 1
hypo 0.980824023 0.988112241 0.980202306
tic-tac 0.891363084 0.898863615 0.836160513
voting 0.956221229 0.958923931 0.958493956
wine 0.991608392 0.991608392 0.996153846
yeast 0.60013184 0.60913184 0.596632452
zood 0.953012266 0.959012266 0.978409091
german 0.758002363 0.755806959 0.759540428
ionod 0.936764671 0.936764671 0.939264671

Table 6 Average accuracy comparison of WAnDE with respect to 3 different M-estimator
Implementations.

55

v. Accuracy results of WAnDE distributed version with respect to Different
Laplace Estimator functions.

Dataset Wande Wande Wande

Laplace Laplace 2 Laplace3

austra 0.864535483 0.863330664 0.861779102
breast 0.967416827 0.967416827 0.969111743
cleved 0.815285455 0.815285455 0.818142598
crex 0.865565459 0.868198862 0.860516551
diabets 0.789968506 0.791131297 0.771418053
glass 0.761332764 0.761332764 0.769705969
heart 0.830455867 0.830455867 0.831271718
hepati 0.843366007 0.843366007 0.843366007
horse 0.832897634 0.835529213 0.833404734
labor 0.963333333 0.963333333 0.963333333
mushroom 1 1 1
nursary 0.947769336 0.947769336 0.94023249
pima 0.788263122 0.78704361 0.770209915
segmentation 0.954515602 0.954970147 0.955384153
sick 0.973018477 0.973354048 0.973018477
sonar 0.856217362 0.856217362 0.856217362
soyabin-s.csv 1 1 1
hypo 0.968769239 0.964653731 0.96973356
tic-tac 0.890352983 0.896830928 0.83963705
voting 0.949883497 0.949883497 0.94919842
wine 0.986345234 0.986345234 0.986345234
yeast 0.595522933 0.595522933 0.598401874
zood 0.940512266 0.946512266 0.929401154
german 0.757707947 0.760900151 0.759623972
ionod 0.922902237 0.920680014 0.922902237

Table 7 Average accuracy comparison of WAnDE with respect to 3 different Laplace Estimator
Implementations

56

vi. Summary of Experimental results

Algorithm Average accuracy results for WAODE Centralized version (Rapid Miner) vs
WAODE Distributed Implementation for 25 UCI Datasets.

Average
Accuracy

Time(seconds)

WAODE
Centralized

0.8755 77.6

WAODE
Distributed

0.874906848 69.6

Table 8 Summery of experimental results of WAODE Implementations

According to the Experimental results the distributed implementation of WAODE have equal
accuracy with respect to the centralized version (Rapid Miner). The similarity shows that our
implementation of the distributed version is correct. In addition, the distributed versions
performs greater efficiency with respect to the centralized one.

Algorithm Average accuracy results for WAODE vs AnDE Distributed Implementation
on 25 UCI Datasets.

Average
Accuracy

Time(seconds)

WAODE ME 0.874906848 69.6

WAODE
LAPLACE

0.87287444 72.6

AnDE ME 0.885575541 149.56

AnDE
LAPLACE

0.883096376 165.68

57

Table 9 Summery of Experimental results for AnDE and WAODE

According to the Experimental results A2DE performs better accuracy with respect to WAODE.
while taking double the time needed for same dataset. However, Since the accuracy difference is
little WAODE can be more usable than AnDE.

Algorithm Average accuracy results for different WAnDE implementations tested on 25
UCI Datasets.

WAnDE
ME1

WAnDE
ME2

WAnDE
ME3

WAnDE
LA 1

WAnDE
LA 2

WAnDE
LA 3

Average
Accuracy

0.8834914
26

0.8858939
13

0.8827380
52

0.8826375
03

0.8832025
42

0.8788942
28

Time(second
s)

254.72 242.62 258.44 233.28 230.74 245.55

Table 10 Summery of experimental results for WAnDE implementation

Comparison of 3 different WAnDE implementations shows that M-Estimation together with
Weight function 2 perform better accuracy than the rest of implementations.

According to the Experimental results, WAnDE implementation performed similar accuracy
with AnDE, this shows that adding Weight function on AnDE doesn’t increase the accuracy as
expected.

However, the experiment shows that WeightFunction2 performed better than the other weight
functions, as a result it can be used in the implementation of WAODE and AnDE algorithms to
further improve the prediction performance.

58

6.2. Conclusions and Future work

This paper presents the implementation scheme of Distributed WAODE algorithm based
on Spark. It is experimentally proven that implementing WAODE by using spark
improves its efficiency. It is also experimentally tested to prove that adding weight on the
AODE algorithm can improve the accuracy without increasing computational complexity.
Other parallel implementations like A2DE show that increasing the attribute dependency
with respect to the class can also improve the predictive accuracy. According to the
results from this thesis paper it can be concluded that not only the WOADE algorithm but
also other classification algorithms, such as AWAODE-GW, DTWAODE etc. can also be
speed up by using the Spark platform.

59

Bibliography
(n.d.).

1. apache. (n.d.). Retrieved from http://hadoop.apache.org/

2. bigdataanalytic. (n.d.). Retrieved from aleprabatech.com/.../big-data-analytic

3. Hadoop. (n.d.). Retrieved from bigdatahadooppro.com/.../hadoop-tutorial-for-begineers

4. Heidelberg, B. (n.d.). Computing Infrastructure for Big Data Processing . Retrieved from

http://www.istc-cc.cmu.edu/publications/papers/2013/LingLiu-FCS.pdf

5. mdpi. (n.d.). Retrieved from www.mdpi.com/.../407/htm

6. mdppi. (n.d.). Retrieved from http://www.mdpi.com/.../407/htm

7. prabatech. (n.d.). Retrieved from http://prabatech.com/big-data-analytic

8. researchIjcaOnline. (n.d.). Retrieved from research.ijcaonline.org/.../number2/pxc3902356.pdf

9. SasInsights. (n.d.). Retrieved from https://www.sas.com/en_us/insights/analytics/big-data-

analytics.html

10. scholar, S. (n.d.). Semantic scholar pdf. Retrieved from

pdfs.semanticscholar.org/.../98602c43c3fb6aee8b...05ed9ded0bccbc.pdf

11. SemanticScholar. (n.d.). Retrieved from

pdfs.semanticscholar.org/.../5cb86900e16ae7af39...a525569e8d4df2.pdf

12. springer, l. (n.d.). link springer pdf. Retrieved from link.springer.com/.../10.1007/978-3-540-36668-

3_116.pdf

13. technopedia. (n.d.). Retrieved from https://www.techopedia.com/2/31773/technology-

trends/open-source/why-spark-is-the-future-big-data-platform

14. webopedia. (n.d.). Retrieved from https://www.webopedia.com/.../B/big_data_analytics.html

15. webopedia. (n.d.). Retrieved from https://www.webopedia.com/TERM/B/big_data_analytics.html

16. Wikipedia. (n.d.). Retrieved from en.wikipedia.org/.../wiki/Distributed_computing

	ABSTRACT
	ACKNOWLEDGEMENTS
	1. INTRODUCTION
	2. BACKGROUND OF BIG DATA ANALYSIS
	2.3. How Big Data Analysis Helps Companies (Placeholder1)
	2.4. What makes analyzing Big Data difficult
	2.5. Usage of Big Data Analytics
	2.6. Advantages Big Data Analytics
	2.7. Overview of Big Data Techniques
	2.7.1 Classification
	2.7.2 Clustering
	2.7.3 Collaborative Filtering
	3. CLASSSIFICATION
	3. 1 Naive Bayes (NB)
	3.2.5. Weighted Averaged N Dependence Estimators (WAnDE)
	4. DISTRIBUTED SYSTEMS
	4.1. Hadoop
	4.2. Apache Spark
	5. WAODE, AnDE and WAnDE IMPLEMENTATION
	5.1. Preprocessing
	5.2. Interface
	5.3. WOADE Implementation Process
	5.4. AnDE Implementation Process
	5.5. WAnDE Implementation Process
	6. EVALUATION AND RESULTS
	A. Experiment Dataset
	B. Test Environment
	C. Evaluation methodology
	D Experimental Results
	6.2. Conclusions and Future work
	Bibliography

		Politecnico di Torino
	2017-12-05T17:49:59+0000
	Politecnico di Torino
	Elena Maria Baralis
	Tesi 202730

