
1

POLITECNICO DI TORINO

Department of Control and Computer Engineering (DAUIN)

Master Thesis

Quality Assurance of Software Products

Supervisor: Author:

Prof. G. Claudio Demartini Ebrahim Kargar Nasrabadi

December, 2017

2

Abstract
The last twenty years has seen major changes in the methodologies, tools and technologies we

use to build software, but most significantly, the way we build software has fundamentally

evolved in order to improve the quality, accuracy, and speed of delivering software. By all these

regular technological disruptions, growing fast has become essential to survival for software

companies.

Quality Assurance, methodologies and techniques have been accordingly evolved in software

industry. Software quality is one critical component of the criteria used to measure success of a

software development project.

The goal of this master thesis is to describe software quality assurance principals. This work

mainly focused on critical quality metrics of software products and some of the best practices on

software development lifecycle to help organization and teams launching successful software

product.

3

Acknowledgements
First of all, I would like to thanks Prof.Demartini, undoubtedly without his patience and advice

would have been difficult to make this work, second of all I would like to give a big thanks to my

company supervisor Ing.Antonio Gaspari who trusted me to get enter in a new area of my

profession. Finally, I must express my very profound gratitude to my parents for supporting my

university studies.

4

Contents
Table of Contents .. 4

List of figures .. 6

Chapter 1: Introduction .. 7

1.1 New paradigms in Software development process ... 8

 1.1.1 Agile Software Development Methodologies .. 9

 1.1.1.1 Extreme Programming (XP) ..10

 1.1.1.2 Scrum .. 11

 1.1.1.3 Kanban .. 16

 1.1.1.1 Other Agile Methods ... 18

1.1.2 Code Refactoring & Code Review ...18

1.1.3 Pair Programming ..19

1.1.4 Continuous Integration and Continuous Delivery (CI/CD) 20

1.1.5 Microservices and Distributed Software Architecture pattern22

1.1.6 Other trends ..22

Chapter 2: Agile Software Quality Assurance ..24

2.1 Software Quality Metrics ..25

2.2 Agile Quality Assurance Techniques ...29

2.2.1 Test-Driven Development techniques (TDD) ...29

2.2.1.1 Unit testing ...30

2.2.1.2 Integration testing ..30

2.2.2 Behavior-Driven Development techniques (BDD) ...31

2.2.2.1 Acceptance testing ...31

2.2.2.2 Regression testing ...32

2.2.2.3 System testing ...32

2.2.2.4 Usability testing ..32

5

Chapter3: Performance Testing ...34

3.1 Software Performance Metrics ..35

3.2 Software Performance testing types ..38

3.3 Software Performance testing tools ...42

Chapter4: Software Automation Testing ...45

4.1 Why automation? ..45

4.2 Software Automation Testing Process and plan ..46

4.3 Software Automation Testing tools ...47

4.4 Automation Testing with Selenium ...48

4.5 API Test Automation Using SoapUI ...51

Chapter5: Conclusion ..54

References ...55

Appendix ..57

6

List of Figures

1.1 Extreme Programming lifecycle 11
1.2 Scrum lifecycle 12
1.3 Kanban Board Example 17
2.1 Test-Driven Development Lifecycle 29
2.2 Behavior-Driven lifecycle 31
4.1 Selenium Suite Components 49
4.2 Sample implementation of automated UI test I 50
4.3 Sample implementation of automated UI test II 51
4.4 An Example of API Automation test 52
4.5 An example of automation script written in Groovy 52

7

Chapter 1: Introduction

The last twenty years has seen major changes in the methodologies, tools and technologies we

use to build software, but most significantly, the way we build software has fundamentally

evolved in order to improve the quality, accuracy, and speed of delivering software projects. By

all these regular technological disruptions, growing fast has become essential for the survival of

software companies.

Emergence of new paradigms in software developments not only effected methodologies and the

process of developing software but also tools and technologies has been subject to massive

changes in past few decades.

While some of these new paradigms are concerned with new methodologies and techniques on

developing software the others are emerging tools, platforms and framework in software

industry.

In first part of this work, we are examining some of these emerging paradigms including: agile

software development methodologies, pair programming, code refactoring & code review ,

continuous integration and continuous delivery (CI/CD), Microservices, software version

control systems, etc. In following we are focusing on software quality assurance principles,

techniques and tools to demonstrate how quality assurance is related to iterative software

development process.

Although a good quality process most often leads to a better quality, it does not mean that one

can forget the quality of the software product itself. Instead of the quality processes or the

quality of the processes, the goal of this work is to give you a better understanding on the critical

metrics need to be consider in order to assure the quality of a software product itself.

As software becomes larger and more sophisticated, the challenge is to develop more

complicated software products within the constraints of time and resources without the sacrifice

of quality.

8

1.1 New paradigms in Software development process

The globalization of companies operations and competition between software vendors demand

improving quality of delivered software and decreasing the overall cost. The same in fact

introduce a lot of problem into software development process as produce distributed

organization breaking the co-location rule of modern software development methodologies. [1]

Unlike most manufactured goods, software undergoes continual redesign and upgrading in

practice because the system component adapts the general-purpose computer to its varied and

often-changing, special-purpose applications. As needs change, the software programs that were

designed to meet them must change. A large body of technology has developed over the past 50

years to make software more reliable and hence trustworthy. [2]

Since 2004 a virtual revolution in software development technology has taken place. Every

aspect of software development has been affected from the tools, the languages to

methodologies and principles. The way we compose functionality from components and

services to build applications and the way we deliver the applications has all changed.

Many aspect of the development and delivery process has undergone massive automation or

improvements that have all made the process of developing software more continuous.

More productive languages with many built in features, libraries of open source components to

leverage, fast iteration and testing helped by high degrees of automation and the use of APIs as a

way to leverage other functionality has made the front end process of software development

much more productive.

The deployment process has typically been ½ of the entire process of software

development. With new tools that integrate the cycle between development, test and production

it is possible to reduce the time to deployment to less than a day and in many cases minutes. The

combination of these improvements has literally improved productivity and the ability to

generate functionality by at least a factor of 10 and sometimes 100 to 1 from older technologies.

[3]

In following sections we are going through some of these major changes in software lifecycle

managements and the effect of them on the delivery of any software product.

9

1.1.1 Agile Software Development Methodologies

The field of software development has been never shy of introducing new methodologies.

Indeed, in the last 25 years, a large number of different approaches to software development

have been introduced, of which only few have survived to be used today.

While no agreement on what the concept of “agile” actually refers to exists, it has generated a lot

of interest among practitioners and lately also in the academia. [4]

The “Agile Movement” in software industry saw the light of day with the Agile Software

Development Manifesto published by a group of software practitioners and consultants in 2001.

The focal values honored by the Agilists are presented in the following subjects:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The central values that agile methodologies adhered to software development lifecycle are:

First, the agile movement emphasizes the relationship and communality of software developers

and the human role reflected in the contracts, as opposed to institutionalized processes and

development tools. In the existing agile practices, this manifests itself in close team

relationships, close working environment arrangements, and other procedures boosting team

work spirit.

Second, the vital objective of the software team is to continuously turn out tested working

software. New releases are produced at frequent intervals, in some approaches even hourly or

daily, but more usually bi-monthly or monthly. The developers are urged to keep the code

simple, straightforward, and technically as advanced as possible, thus lessening the

documentation burden to an appropriate level.

Third, the relationship and cooperation between the developers and the clients is given the

preference over strict contracts, although the importance of well drafted contracts does grow at

the same pace as the size of the software project. The negotiation process itself should be seen as

a means of achieving and maintaining a viable relationship. From a business point of view, agile

development is focused on delivering business value immediately as the project starts, thus

reducing the risks of non-fulfillment regarding the contract.

Fourth, the development group, comprising both software developers and customer’s

representatives, should be well-informed, competent and authorized to consider possible

adjustment needs emerging during the development process life-cycle. This means that the

participants are prepared to make changes and that also the existing contracts are formed with

tools that support and allow these enhancements to be made.

10

Hence agile software development processes has following characteristics:

1. Modularity on development process level

2. Iterative with short cycles enabling fast verifications and corrections

3. Time-bound with iteration cycles from one to six weeks

4. Parsimony in development process removes all unnecessary activities

5. Adaptive with possible emergent new risks

6. Incremental process approach that allows functioning application building in small steps

7. Convergent (and incremental) approach minimizes the risks

8. People-oriented, i.e. agile processes favor people over processes and technology

9. Collaborative and communicative working style [4]

Here we are addressing some of the most applicable agile software development techniques that

have gained considerable attention in the software industry, in addition we will observe how

each of these techniques impacted quality of software products.

1.1.1.1 Extreme Programming

Extreme Programming (XP) has evolved from the problems caused by the long development

cycles of traditional development models. It first started as 'simply an opportunity to get the job

done with practices that had been found effective in software development processes during the

preceding decades.

Figure 1 depicts a high-level view of the XP project lifecycle, although the term phase may bring

connotations of waterfall development the fact is that phases can occur iteratively, something

that is apparent in Figure 1 by the fact that it is possible to move back and forth between the

Planning, Iterate to Release, and Productionizing phases. Phases aren't necessarily long - the

Planning phase may only take several hours for example. Furthermore, XP teams typically don't

think of themselves as working in phases, they just think of themselves as working.

Having said this it makes it easier to think about the development effort one phase at a time so

let's examine each one in turn: Exploration Phase, Planning Phase , Iterations to Release Phase,

Productionizing Phase , Maintenance Phase .[5]

11

Figure 1.1 Extreme Programming lifecycle

1.1.1.2 Scrum

Scrum is a process framework that has been used to manage complex product development

since the early 1990s. Scrum is not a process or a technique for building products; rather, it is a

framework within which you can employ various processes and techniques. Scrum makes clear

the relative efficacy of your product management and development practices so that you can

improve.

The Scrum framework consists of Scrum Teams and their associated roles, events, artifacts, and

rules. Each component within the framework serves a specific purpose and is essential to

Scrum’s success and usage. The rules of Scrum bind together the events, roles, and artifacts,

governing the relationships and interaction between them.

The main idea of Scrum is that systems development involves several environmental and

technical variables (e.g. requirements, time frame, resources, and technology) that are likely to

change during the process. This makes the development process unpredictable and complex,

requiring flexibility of the systems development process for it to be able to respond to the

changes. [6]

Scrum is founded on empirical process control theory, or empiricism. Empiricism asserts that

knowledge comes from experience and making decisions based on what is known. Scrum

employs an iterative, incremental approach to optimize predictability and control risk. Three

pillars uphold every implementation of empirical process control: transparency, inspection, and

adaptation. [6] [7]

Prescribed events are used in Scrum to create regularity and to minimize the need for meetings

not defined in Scrum. All events are time-boxed. Once a Sprint begins, its duration is fixed and

cannot be shortened or lengthened. The remaining events may end whenever the purpose of the

event is achieved; ensuring an appropriate amount of time is spent without allowing waste in the

12

process. The Scrum Events are: Sprint, Sprint Planning, Daily Scrum, Sprint Review, and Sprint

Retrospective.

Figure 1.2 Scrum lifecycle

The Sprint

The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable,

and potentially releasable product Increment is created. Sprints best have consistent durations

throughout a development effort. A new Sprint starts immediately after the conclusion of the

previous Sprint.

Sprints contain and consist of the Sprint Planning, Daily Scrums, the development work, the

Sprint Review, and the Sprint Retrospective.

During the Sprint:

 No changes are made that would endanger the Sprint Goal.

 Quality goals do not decrease.

 Scope may be clarified and re-negotiated between the Product Owner and Development

Team as more is learned.

Each Sprint may be considered a project with no more than a one-month horizon. Like projects,

Sprints are used to accomplish something. Each Sprint has a definition of what is to be built, a

design and flexible plan that will guide building it, the work, and the resultant product.

Sprints are limited to one calendar month. When a Sprint’s horizon is too long the definition of

what is being built may change, complexity may rise, and risk may increase. Sprints enable

predictability by ensuring inspection and adaptation of progress toward a Sprint Goal at least

every calendar month. Sprints also limit risk to one calendar month of cost.

13

Cancelling a Sprint

A Sprint can be cancelled before the Sprint time-box is over. Only the Product Owner has the

authority to cancel the Sprint, although he or she may do so under influence from the

stakeholders, the Development Team, or the Scrum Master.

A Sprint would be cancelled if the Sprint Goal becomes obsolete. This might occur if the

company changes direction or if market or technology conditions change. In general, a Sprint

should be cancelled if it no longer makes sense given the circumstances. But, due to the short

duration of Sprints, cancellation rarely makes sense.

When a Sprint is cancelled, any completed and “Done” Product Backlog items are reviewed. If

part of the work is potentially releasable, the Product Owner typically accepts it. All incomplete

Product Backlog Items are re-estimated and put back on the Product Backlog. The work done on

them depreciates quickly and must be frequently re-estimated.

Sprint cancellations consume resources, since everyone has to regroup in another Sprint

Planning to start another Sprint. Sprint cancellations are often traumatic to the Scrum Team,

and are very uncommon.

Sprint Planning

The work to be performed in the Sprint is planned at the Sprint Planning. This plan is created by

the collaborative work of the entire Scrum Team.

Sprint Planning is time-boxed to a maximum of eight hours for a one-month Sprint. For shorter

Sprints, the event is usually shorter. The Scrum Master ensures that the event takes place and

that attendants understand its purpose. The Scrum Master teaches the Scrum Team to keep it

within the time-box.

Sprint Planning answers the following:

 What can be delivered in the Increment resulting from the upcoming Sprint?

 How will the work needed to deliver the Increment be achieved?

Sprint Goal

The Sprint Goal is an objective set for the Sprint that can be met through the implementation of

Product Backlog. It provides guidance to the Development Team on why it is building the

Increment. It is created during the Sprint Planning meeting. The Sprint Goal gives the

Development Team some flexibility regarding the functionality implemented within the Sprint.

The selected Product Backlog items deliver one coherent function, which can be the Sprint Goal.

The Sprint Goal can be any other coherence that causes the Development Team to work together

rather than on separate initiatives.

As the Development Team works, it keeps the Sprint Goal in mind. In order to satisfy the Sprint

Goal, it implements the functionality and technology. If the work turns out to be different than

14

the Development Team expected, they collaborate with the Product Owner to negotiate the

scope of Sprint Backlog within the Sprint.

Daily Scrum

The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize

activities and create a plan for the next 24 hours. This is done by inspecting the work since the

last Daily Scrum and forecasting the work that could be done before the next one. The Daily

Scrum is held at the same time and places each day to reduce complexity. During the meeting,

the Development Team members explain:

 What did I do yesterday that helped the Development Team meet the Sprint Goal?

 What will I do today to help the Development Team meet the Sprint Goal?

 Do I see any impediment that prevents me or the Development Team from meeting the

Sprint Goal?

The Development Team uses the Daily Scrum to inspect progress toward the Sprint Goal and to

inspect how progress is trending toward completing the work in the Sprint Backlog. The Daily

Scrum optimizes the probability that the Development Team will meet the Sprint Goal. Every

day, the Development Team should understand how it intends to work together as a self-

organizing team to accomplish the Sprint Goal and create the anticipated Increment by the end

of the Sprint. The Development Team or team members often meet immediately after the Daily

Scrum for detailed discussions, or to adapt, or replan, the rest of the Sprint’s work.

The Scrum Master ensures that the Development Team has the meeting, but the Development

Team is responsible for conducting the Daily Scrum. The Scrum Master teaches the

Development Team to keep the Daily Scrum within the 15-minute time-box.

The Scrum Master enforces the rule that only Development Team members participate in the

Daily Scrum.

Daily Scrums improve communications, eliminate other meetings, identify impediments to

development for removal, highlight and promote quick decision-making, and improve the

Development Team’s level of knowledge. This is a key inspect and adapt meeting.

Sprint Review

A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product

Backlog if needed. During the Sprint Review, the Scrum Team and stakeholders collaborate

about what was done in the Sprint. Based on that and any changes to the Product Backlog

during the Sprint, attendees collaborate on the next things that could be done to optimize value.

This is an informal meeting, not a status meeting, and the presentation of the Increment is

intended to elicit feedback and foster collaboration.

This is a four-hour time-boxed meeting for one-month Sprints. For shorter Sprints, the event is

usually shorter. The Scrum Master ensures that the event takes place and that attendants

understand its purpose. The Scrum Master teaches all to keep it within the time-box.

15

The Sprint Review includes the following elements:

 Attendees include the Scrum Team and key stakeholders invited by the Product Owner;

 The Product Owner explains what Product Backlog items have been “Done” and what has

not been “Done”;

 The Development Team discusses what went well during the Sprint, what problems it

ran into, and how those problems were solved;

 The Development Team demonstrates the work that it has “Done” and answers questions

about the Increment;

 The Product Owner discusses the Product Backlog as it stands. He or she projects likely

completion dates based on progress to date (if needed);

 The entire group collaborates on what to do next, so that the Sprint Review provides

valuable input to subsequent Sprint Planning;

 Review of how the marketplace or potential use of the product might have changed what

is the most valuable thing to do next; and,

 Review of the timeline, budget, potential capabilities, and marketplace for the next

anticipated release of the product.

The result of the Sprint Review is a revised Product Backlog that defines the probable

Product Backlog items for the next Sprint. The Product Backlog may also be adjusted overall

to meet new opportunities.

Sprint Retrospective

The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan

for improvements to be enacted during the next Sprint.

The Sprint Retrospective occurs after the Sprint Review and prior to the next Sprint Planning.

This is a three-hour time-boxed meeting for one-month Sprints. For shorter Sprints, the event is

usually shorter. The Scrum Master ensures that the event takes place and that attendants

understand its purpose. The Scrum Master teaches all to keep it within the time-box. The Scrum

Master participates as a peer team member in the meeting from the accountability over the

Scrum process.

The purpose of the Sprint Retrospective is to:

 Inspect how the last Sprint went with regards to people, relationships, process, and

tools;

 Identify and order the major items that went well and potential improvements; and,

 Create a plan for implementing improvements to the way the Scrum Team does its work.

The Scrum Master encourages the Scrum Team to improve, within the Scrum process

framework, its development process and practices to make it more effective and enjoyable for

the next Sprint. During each Sprint Retrospective, the Scrum Team plans ways to increase

product quality by adapting the definition of “Done” as appropriate.

16

By the end of the Sprint Retrospective, the Scrum Team should have identified improvements

that it will implement in the next Sprint. Implementing these improvements in the next Sprint is

the adaptation to the inspection of the Scrum Team itself. Although improvements may be

implemented at any time, the Sprint Retrospective provides a formal opportunity to focus on

inspection and adaptation. [6]

1.1.1.3 Kanban

Kanban is a method for managing knowledge work with an emphasis on just in time delivery

while not overloading the team members. Development process is transparent in this

methodology from definition of a task to its delivery to the customer, is displayed for

participants to see. The Kanban Method is as an approach to incremental, evolutionary process

and systems change for organizations. It uses a work-in-progress limited pull system as the core

mechanism to expose system operation (or process) problems and stimulate collaboration to

continuously improve the system. Visualization is an important aspect of Kanban as it allows

understanding the work and the workflow. Kanban method consists of four basic principles:

0-Start with existing process: the Kanban method does not prescribe a specific set of roles or

process steps. The Kanban method starts with existing roles and processes and stimulates

continuous, incremental and evolutionary changes to the system. The Kanban method is a

change management method.

 1. Agree to pursue incremental, evolutionary change: the organization (or team) must agree that

continuous, incremental and evolutionary change is the way to make system improvements and

make them stick.

2. Respect the current process, roles, responsibilities and titles: it is likely that the organization

currently has some elements that work acceptably and are worth preserving. The Kanban

method seeks to drive out fear in order to facilitate future change. It attempts to eliminate initial

fears by agreeing to respect current roles, responsibilities and job titles with the goal of gaining

broader support.

3. Leadership at all levels: acts of leadership at all levels in the organization, from individual
contributors to senior management, are encouraged. [7]

Traditionally, Kanban has been a physical board, with magnets, plastic chips, or sticky notes on

a whiteboard to represent work items. However, in recent years, more and more project

management software tools have created online Kanban boards.

A Kanban board, whether it is physical or online, is made up of different swim lanes or columns.

The simplest boards have three columns: to do, in progress, and done. The columns for a

software development project may consist of analysis, development, testing, approval, and

deployment columns.

17

Kanban cards (like sticky notes) represent the work and each card is placed on the board in the

lane that represents the status of that work. These cards communicate status at a glance. You

could also use different color cards to represent different details.

Figure 1.3 Kanban Board Example
Kanban Method enables incremental process improvement through repeated discovery of issues

affecting process performance. It supports gradual, continual improvement toward higher

performance and greater quality. It drives process evolution, rather than a revolution. Here is

how Kanban principles help software development team to deliver a product with a better

quality:

I. Optimize Existing Processes – Introduction of visualization and the limiting of work-in-

progress (WIP) will catalyze change with minimal disruption.

II. Deliver with Higher Quality – Limiting work-in-progress and defining policies for work

prioritization will bring greater focus on quality. Policies can also address quality criteria

directly.

III. Improve Lead Time Predictability – There is a correlation between the amount of work-

in-progress, lead time and defect rates. Limiting WIP makes lead times dependable and

keeps defect rates low.

IV. Improve Employee Satisfaction – Kanban reduces context switching and pulls work at

the rate the team can complete it. Working at a more even, predictable pace, means

employees are never overloaded.

V. Provide Slack to Enable Improvement – Creating slack in the value chain improves

responsiveness to urgent requests and bandwidth to enable process improvement and

quality improvement.

VI. Simplify Prioritization – Kanban enables fast reprioritization to accommodate changes

in the market.

VII. Provide a Transparency on the System Design and Operation – Improved visibility

builds trust with customers and managers. It also shows the effects of actions or

inactions. As a result, collaboration improves.

18

VIII. Enables Emergence of a “High-Maturity” Organization – As improvements are

implemented, organizational maturity improves leading to better decision making and

improved risk management. Risk, managed appropriately, brings predictable results. [8]

1.1.1.4 Other Agile Methods

In the previous subsections, several methods for producing software in an agile manner and

their potential impact on the quality of software have been introduced. The focus has been on

methods that provide comprehensive frameworks with more or less tangible processes and

practices that cover as much of the software development process as possible.

The agile approach has, however, recently brought a great deal of research and lots of interesting

new ideas, which either have not been documented thoroughly (e.g., Lean Software

Development ,Feature-Driven development, Open Source Software development, Adaptive

Software development) or have been published just very recently. [7]

1.1.2 Code Refactoring & Code Review

Code Refactoring is a maintenance task in which source code is restructured to enhance its

quality while the external behavior of the system is preserved. The term “code review” can refer

to a range of activities, from simply reading some code over your teammate’s shoulder to a 20-

person meeting where you dissect code line by line.

Refactoring process is often referred as a reconstruction process of the source code to minimize

fault or defect, either as an act of correction or prevention. For example, code clones and other

redundancy in a code are considered as threat for future development of the software. These

faults in source code are known as “bad smells” in code. Other benefit of refactoring apart from

improving the code quality is to improve the structure of the software so that it becomes easier

to understand. [9]

There are few benefits from software refactoring. The benefits are as follows.

a. To remove duplicated code and other bad smells.

b. To improve software design quality.

c. To increase understandability of the code.

d. To reduce project evolution time, especially in source code management activities.

The participants in a code review are the author, who writes the code and sends it for review,

and the reviewer, who reads the code and decides when it’s ready to be merged in to the team’s

codebase. A review can have multiple reviewers.

Before the code review begins, the author must create a changelist. This is a set of changes to

source code that the author wants to merge in to the team’s codebase.

19

A review begins when the author sends their changelist to the reviewer. Code reviews happen

in rounds. Each round is one complete round-trip between the author and reviewer: the author

sends changes, and the reviewer responds with written feedback on those changes. Every code

review has one or more rounds.The review ends when the reviewer approves the changes.

It’s easy for an author to interpret criticism of their code as an implication that they are an

incompetent programmer. Code reviews are an opportunity to share knowledge and make

informed engineering decisions. But that can’t happen if the author perceives the discussion as a

personal attack. [10]

Some refactoring scenarios are found to improve some quality aspects of software and weaken

others. These findings lead to a conclusion that refactoring does not always improve all software

quality aspects.

Developers stated that refactoring is "code transformation that improves some aspects of

program behavior such as readability, maintainability, or performance". [11]

Refactoring requires multi-dimensional assessment. Therefore, we believe that it is incorrect to

limit the study of the impact of a certain refactoring scenario on quality to a certain quality

attribute, obtain some negative results, and state a general conclusion that the considered

refactoring scenario causes the software quality to weaken. [12]

1.1.3 Pair Programming

Pair-programming is a technique in Agile Software Development where two engineers share a

single workstation. In this technique, one engineer is the driver, whom has control of the mouse

and keyboard to write the code, while the other serves as the navigator, reviewing the code that

the other is writing while providing tactical and analytical feedback. This pair will trade-off on

these roles at regular intervals, giving each other equal chance to both execute on the work or

direct it.

The ultimate goal of pair-programming is to provide a means to achieve better quality in

software, while providing many secondary benefits that improve the ability of a team to continue

delivering useful features to customers.

Although Code reviews often find typos and simple mistakes, but they do not provide the same

level of insight into questions about the quality of software architecture and design. [13]

These are significant benefits of pair programming:

 Many mistakes get caught as they are being typed in rather than in QA test or in the field

(Continuous code reviews)

 The end defect content is statistically lower (continuous code reviews)

 The designs are better and code length shorter (ongoing brainstorming and pair

relaying)

 The team solves problems faster (pair relaying)

20

 People learn significantly more, about the system and about software development (line-

of-sight learning)

 The project ends up with multiple people understanding each piece of the system

 People learn to work together and talk more often together, giving better information

flow and team dynamics

 People enjoy their work more.

The development cost for these benefits is not 100% that might be expected, but is

approximately 15%. This is repaid in shorter and less expensive testing, quality assurance,

and field support. [14]

1.1.4 Continuous Integration and Continuous Delivery (CI/CD)

Software integration is the practice of linking together subsystems or components of software to

produce a single unified system. It is a part of any software development lifecycle as software is

usually developed through different phases and by a team of engineers. Software integration is

done in traditional software development lifecycle as an independent step in a later phase, after

the implementation of software is completed.

It means basically that each developer integrates his/her work continuously (at least once a

day). This practice assures that small parts are added immediately once they are implemented

and are ready to be a part of the system, before they become complicated. Applying the practice

of Continuous Integration requires that each time a new part is added to the system, automatic

test cases are created and added to cover the whole system including the newly added parts. It

also requires that the software gets tested and built automatically and the developer whose

codes are added receives an immediate feedback about the newly integrated codes.

Any feedback at this stage will be considered by the developer as soon as possible. This helps in

identifying bugs and issues while the developer’s knowledge about his/her codes are still fresh.

In order for developers to benefit from implementing the practice of CI, they should change

their typical day-today software development habits. CI requires each individual to commit code

frequently, no to commit broken code, fix broken builds immediately, and write automated

tests, all written tests and inspections must pass, run private builds and avoid getting broken

code.

21

The table below contains each one of the framework quality attributes and how it differs when

the software is integrated traditionally and when integrated continuously.

criteria Before continuous integration After continuous integration

Time to develop Developers work on the whole

release requirements

Developers work on a single

requirement

Introduced bugs

As testing is done only after finishing

a large part of code, the number of

bugs is greater than when testing is

done after implementing only small

parts of code

Every feature is tested and fixed

after it is completed and it doesn’t

have to wait until the whole

release is finished

Time to deliver After finishing the release and testing

it

After finishing a single

requirement and testing it

Test quality

Testing is done to the releases as a

whole Testing environment is not the

same as the production environment

Testing a feature is done once it is

integrated Small parts are tested

individually and testing results

are sent immediately back to the

developers Testing environment

is almost exactly the same as the

production environment

Documentation

The release is documented properly

The release specification is

documented before starting the work

And the development work is

documented in detail after finishing

The requirements are

documented But there is a

minimal amount of documents by

the developers The automatic

tools generate statistics and data

about the developed features

based on the requirements, the

testing results and the generated

bugs etc.

Change

management

Change is only accepted after a long

process and approvals Changes are

introduced through a whole new

patch or release

Change is accepted at any time

only by adding new requirements

by the owner to the business

analysis and software

development teams

Cost model

The time and effort of manually

doing the software build and

integration

The cost of getting continuous

integration server and tools

Table 1.1 Impact of CI/CD in Software Quality

22

Software producers are shifting their development practices towards continuous integration as it

showed a significant improvement to the overall software quality. Many of the risks involved in

the software integration process were mitigated as a result of integrating parts of the developed

software continuously once it is ready. [15]

1.1.5 Microservices and Distributed Software Architecture pattern

In recent years, a shift of focus in developer communities and publications could be observed:

from people and processes (e.g., agile practices such as user storytelling and test automation) to

integration technology and application hosting (e.g., RESTful HTTP, cloud computing, DevOps).

Under the umbrella term Microservices, new interest in software architecture and design can be

observed at present (similar in intensity to the early days of the patterns movement.

Project team members are no longer considered to be “architecture astronauts” when

considering and arguing about Microservices architectures. Agile architecture represents a

consensus position between process and structure. Successful Microservices architecture

designs and Microservices deployments are made possible by modern software engineering

paradigms and recent advances in Web application development – for instance:

a. Domain-driven design and test-driven development

b. IDEAL pipesand-filters chaining of fine-grained processing logic

c. Polyglot programming and persistence

d. Build and test process automation and continuous deployment, e.g., into

lightweight containers and cloud computing environments and

e. Lean approaches to systems management closely intertwined with software

construction.

Team organization is vital for success. Microservice architectures allow to assign the

responsibility for all concerns of certain business capabilities – from requirements to operations

and from individual to teams. [16]

In addition to that full automation of quality assurance and software deployment allows for

early fault and error detection, thus reducing repair times both during development and during

operations. Microservice architectures enable scalability, agility and reliability, although

monitoring and fault tolerance are difficult for a distributed system. [17]

1.1.6 Other trends

Software development is going through more changes than ever. Among them some of the most

impactful changes are Distributed version control systems (DVCS) and containers. Distributed

version control systems (DVCS) allow team members to review each other’s code, work from any

location, and easily branch and merge their work. Further, with each developer working in a

local repo, their changes—and, more importantly, their missteps—are isolated. Although a

23

number of these systems exist, Git is the most widely used and takes the pain out of

collaborating on code.

Containers are among the newest trends in software development, allowing engineers to move

programs more easily between different computing environments. Despite being relatively new,

just over a third of companies responding said they were already using

24

Chapter 2 Agile Software Quality Assurance

Quality Assurance, methodologies and techniques have been accordingly evolved in software
industry. Software quality is one critical component of the criteria used to measure success of a
software development project.

IEEE Standard for Software Quality Assurance Processes defines Software Quality Assurance:

“A set of activities that define and assess the adequacy of software processes to provide evidence

that establishes confidence that the software processes are appropriate for and produce software

products of suitable quality for their intended purposes. A key attribute of SQA is the objectivity

of the SQA function with respect to the project. The SQA function may also be organizationally

independent of the project; that is, free from technical, managerial, and financial pressures from

the project.” [18]

The International Standards Organization ISO 9000 defines quality as the totality of

characteristics of an entity that bear on its ability to satisfy stated or implied needs. Where

‘stated needs’ means those needs that are specified as requirements by the customer in a

contract, and ‘implied needs’ are those needs that are identified and defined by the company

providing the product.[19]

Agile software development methodologies have since their inception claimed to improve the

quality of the software product. The agile practitioners have also claimed that use of the agile

approach has greatly improved the quality of their products. However, software quality is a

rather complex concept; in fact some have defined the entire discipline of software engineering

as the production of quality software.

From an agile perspective quality has been defined by some practitioners as follows:

McBreen defines agile quality assurance as the development of software that can respond to

change as the customer requires it to change. This implies that the frequent delivery of tested,

working, and customer-approved software at the end of each iteration is an important aspect of

agile quality assurance. [20]

Ambler considers agile quality to be a result of practices such as effective collaborative work,

incremental development, and iterative development as implemented through techniques such

as refactoring, test-driven development, modelling, and effective communication techniques.

[21]

In this chapter, the agile methodology analyzed from the good enough quality viewpoints,

accordingly we are examining some of these existed techniques in agile support achieving

quality.

25

2.1 Software Quality Metrics

Before diving into the fact that how these agile techniques affect quality of software lets discuss

what are the most important quality metrics in a software product. Table 2.1 is given a summary

of the quality metrics that define agile quality.

Parameter Description

Functionality The ability of a system to perform according to

defined specification.

Performance Appropriate performance of a system under cases not

covered by the specification. This is complementary

to correctness.

Extendibility A system that is easy to adapt to new specification.

Reusability Software that is composed of elements that can be

used to construct different applications.

Compatibility Software that is composed of elements that can easily

combine with other elements.

Efficiency

The ability of a system to place as few demands as

possible to hardware resources, such as memory,

bandwidth used in communication and processor

time.

Portability The ease of installing the software product on

different hardware and software platforms.

Timeliness Releasing the software before or exactly when it is

needed by the users.

Integrity How well the software protects its programs and data

against unauthorized access.

Verifiability and Validation How easy it is to test the system.

Usability The ease with which people of various backgrounds

can learn and use the software.

Maintainability The ease of changing the software to correct defects

or meet new requirements [20].

Cost-effectiveness

The ability of a system to be completed within a given

budget.

Table 2.1 DESCRIPTION OF SOFTWARE QUALITY ASSURANCE Metrics

26

In order to give a better understanding of the information in Table2.1 the impact of agile

methodologies on each of these factors will now be discussed. For each parameter we have listed

some practices that we believe will improve on the way agile development implements software

quality assurance.

Functionality

Functionality is a metric to verify that a software application performs and functions correctly

according to design specifications. Functionality metrics check if the core application functions,

text input, menu functions and installation and setup on localized machines, etc. working as

expected.

Performance

Performance is a pervasive metric of quality of software systems; everything affects it, from the

software itself to all underlying layers, such as operating system, middleware, hardware,

communication networks, etc.

Extendibility

Extendibility of a system is a general feature of all developed software applications; however

emphasis should be on technical excellence and good design. To improve on these techniques

use of modeling techniques for software architecture should be in agile development.

Reusability

This quality factor is generally implemented through the concepts of Object-Oriented

technology. More work on agility and software architecture, and patterns can improve the

reusability of agile products.

Compatibility

Agile techniques that ensure correctness of a system include the following: A general feature of

all Object-Oriented (OO) developed softwares. Possible improvement on the agile approach

includes design and architectural considerations that aim for platform independence.

Efficiency

Agile techniques that ensure efficiency of a system include the following: application of good

coding standards. To improve on the techniques designs based on the most efficient algorithms

are encouraged.

Robustness

Agile techniques that ensure robustness of a system originally defined as a major part of Object-

Oriented design which agile development follows.This is case dependent; however agile

development ensures robustness in the general sense through the development standards that

are inherent to particular development platform in use.

27

Portability

Originally defined as a major part of Object-Oriented design and now further enhanced by the

concepts of distributed computing and web services, this quality factor is generally implemented

through the concepts of Object-Oriented design.

Timeliness

Agile techniques that ensure timeliness of a system include the following: iterative development,

quick delivery, and short cycles. This can be improved upon by reducing the time for the

deployment process.

Integrity

Integrity of a system is ensured at operating system level and also at the development platform

level. Improving the integrity of the techniques that define the product would improve system

integrity.

Verifiability and Validation

Agile techniques that ensure verification and validation of a system include the following: test-

driven-development, unit tests and frequent integration.

To improve on these techniques more tools could be developed to link the existing testing

approaches the concepts of test-driven-development.

Usability

Agile techniques that ensure ease of use of a system include the following: since the customer is

part of the team, and customers give feedback frequently, they will likely recommend a system

that is easy to use. The frequent visual feedback that customers get during the delivery of

iteration allows them to provide useful feedback to improve the usability of the system. These

can be improved upon by designing for the least qualified user in the organization.

Maintainability

The application of Object-Oriented design principles leads to maintainable systems.

Development technologies that improve the interfaces between different object modules can

have a positive impact on maintainability.

Correctness

Agile techniques that ensure correctness of a system include the following as elicited from the

generic principles that guide agile development: writing code from minimal requirements,

specification, which is obtained by direct communication with the customer, allowing the

customer to change requirements, user stories, and test-first development. Since all the

development in agile processes is done iteratively these techniques ensure the correctness at

iteration level before making the decision to continue or cancel the project.

28

These agile techniques can be improved by implementing the following: Consider the possibility

of using formal specification in agile development (which some developers are already using),

possible use of general scenarios to define requirements. [22] [23]

Cost-effectiveness

Agile techniques that ensure cost-effectiveness of a system include the following: controlling the

scope creep, for example in the Scrum methodology the Sprint technique is used which prevents

introduction of requirement changes until the end of the iteration (Sprint).

Possible improvements include avoiding scope creep without locking requirement changes. It is

generally difficulty to convince a customer to sign a contract for a project whose cost is based on

the cost of each iteration. The advantage of costing based on iterations however is that since

iterations are short (one to four weeks) the customer gets frequent feedback on the project costs.

29

2.2 Agile Quality Assurance Techniques

In trying to have better understanding of start-of-art agile techniques defined for the quality of a

software product, here we would introduce some these techniques and we will see how applying

each of these methods in software development lifecycle could improve quality of software in its

entire lifecycle.

2.2.1 Test-Driven Development techniques (TDD)

One of the primary techniques in agile quality assurance is Test-Driven Development. TDD also

known as test-first programming or test-first development, is an evolutionary (iterative and

incremental) approach to programming where agile software developers must first write a test

that fails before they write new functional code.

The steps of TDD in detail, as shown in are:

i. Quickly add a test, basically just enough code so that the tests now fail.

ii. Run the tests, often the complete test suite, although for sake of speed

they may run only a subset to ensure that the new test does in fact fail.

iii. Update the functional code so it passes the new test.

iv. Run the tests again.

v. If the tests fail return to step 3.

vi. Once the tests pass the next step is to start over (Agilists may also want to

refactor any duplication out of their design as needed).

Figure 2.4 Test-Driven Development Lifecycle

30

There are several advantages of TDD for agile software development. First, TDD forces

developers to think about what new functional code should do before they write it—in other

words, to do detailed design just in time (JIT) before writing the code.

Second, it ensures that agile developers have testing code available to validate their work,

ensuring that they test as often and early as possible. Third, it gives them the courage to refactor

their code to keep it the highest quality possible, because they know there is a test suite in place

that will detect if they have “broken” anything as the result of refactoring.

When agile developers become “test infected” they start to realize that tests are truly first-class
artifacts that need to be developed and maintained throughout a project. They also realize that
tests, when created properly, are more than just tests. For example, agilists consider acceptance
tests to be first-class requirement artifacts—if an acceptance test defines criteria that the system
must exhibit then clearly it is a requirement. Another common philosophy is that unit tests are
detailed design artifacts. With a TDD based approach agilists write their unit test before writing
their source code; in other words, they think through what the source code must do before they
write it. The implication is that a unit test, when written before the domain code, effectively
becomes a design specification for that portion of code. These philosophies can dramatically
reduce the amount of work agilists need to do. [21]

2.2.1.1 Unit Testing

Unit tests are written before the source code and ran directly after the implementation is
complete. Test-driven development forces the source code to be testable and guarantees that
unit tests are written.
When user stories are combined with the technique of unit testing then each implementation of
the user stories is tested as the system is developed ensuring correctness. This approach is
followed for each software quality assurance parameter.
The information from the unit test results is used to determine whether the implemented code is
good enough to be integrated which requires that the implemented code passes all unit tests.

Today, almost every programming language has its own unit testing framework (e.g., JUnit for
Java, NUnit for C#), which enables the use of small, automatically executable unit tests. Unit
testing has become an accepted practice, often even mandated by development processes (e.g.,
test-driven development). Nevertheless, software quality remains an issue. [24]
Furthermore Software engineering researchers therefore argue that there is a need to push
automation in testing further — to even automatically generate unit tests.

2.2.1.2 Integration testing

Integration testing tests interfaces between components, interactions with different parts of a
system, such as the operating system, file system, hardware, or interfaces between systems.
The greater the scope of integration, the more difficult it becomes for testers to isolate failures to
a specific component or system, which may lead to increased risk. At each stage of integration,
testers concentrate solely on the integration itself. For example, if they are integrating module A
with module B they are interested in testing the communication between the modules, not the
functionality of either module. Both functional and structural approaches may be used. [25]

31

2.2.2 Behavior-Driven Development techniques (BDD)

Behavior-Driven Development was originally invented by Dan North in the early to mid-2000s
as an easier way to teach and practice Test-Driven Development. BDD adds a cycle around the
TDD cycle, so that you start with a behavior and let that drive your tests, and then let the tests
drive the development. Ideally, BDD is driven by some kind of acceptance test, but that's not
100% necessary. As long as you have the expected behavior defined, you're ok.

Figure 2.2: Behavior-Driven lifecycle

In following we are examining some of these behavior-driven testing techniques. [25]

2.2.2.1 Acceptance Testing

Acceptance testing is often the responsibility of customers or users of a system; other
stakeholders may be involved as well. The goal in acceptance testing is to establish confidence in
the system, parts of the system or specific non-functional characteristics of the system. Finding
defects is not the main focus in acceptance testing.
Typical forms of acceptance testing include the following:

 User acceptance testing - Typically verifies the fitness for use of the system by business
users.

 Operational (acceptance) testing- The acceptance of the system by the system
administrators.

 Contract and regulation acceptance testing - Contract acceptance testing is performed
against a contract’s acceptance criteria for producing custom-developed software.

 Alpha and beta (or field) testing - Developers of market, or COTS, software often want to
get feedback from potential or existing customers in their market before the software
product is put up for sale commercially.

From descriptions of basic testing levels we can see that not only testers are involved in testing
process but also developers, system administrators and last, but not least, users and customers.

32

It shows us the necessity of understanding what is the particular mission for each of involved
stakeholders.
More information about software testing can be found in ISTQB’s (International Software
Testing Qualification Board) materials accessible from its Web pages. There can be found
information about test levels, test types, test techniques and much more information about
software testing. One particular type of testing is important for this thesis - Testing related to
changes (confirmation testing (re-testing) and regression testing). [26]

2.2.2.2 Regression testing

Regression testing is the testing process of a previously tested program following modification to
ensure that defects have not been introduced or uncovered in unchanged areas of the software,
as a result of the changes made. It is performed when the software or its environment is
changed.
Regression testing is the repeated testing of an already tested program, after modification, to
discover any defects introduced or uncovered as a result of the changes. These defects may be
either in the software being tested, or in another related software component.
It is performed when the software or its environment is changed. The extent of regression
testing is based on the risk of not finding defects in software that was working previously.
Regression testing should cover not only area in program that is directly related to the changes
but should cover whole functionality of software.
Important thing that should be introduced is that regression testing should be performed at all
test levels and should affect not only program code but also other components of software. [26]

2.2.2.3 System testing

System testing is concerned with the behavior of a whole system/product as defined by the scope
of a development project or program.
In system testing, the test environment should correspond to the final target or production
environment as much as possible in order to minimize the risk of environment-specific failures
not being found in testing. System testing may include tests based on risks and/or on
requirements specifications, business processes, use cases, or other high level descriptions of
system behavior, interactions with the operating system, and system resources. An independent
test team often carries out system testing.

2.2.2.4 Usability Testing

The Usability Professionals Association (UPA) definition focuses more on the product
development process: ‘‘Usability is an approach to product development that incorporates direct
user feedback throughout the development cycle in order to reduce costs and create products
and tools that meet user needs.’’ [27]

Usability testing refers to evaluating a product or service by testing it with representative users.
Typically, during a test, participants will try to complete typical tasks while observers watch,
listen and takes notes. The goal is to identify any usability problems, collect qualitative and
quantitative data and determine the participant's satisfaction with the product.

33

Usability testing lets the design and development teams identify problems before they are coded.
The earlier issues are identified and fixed, the less expensive the fixes will be in terms of both
staff time and possible impact to the schedule.

During a usability test, you will:

i. Learn if participants are able to complete specified tasks successfully and identify how
long it takes to complete specified tasks.

ii. Find out how satisfied participants are with your software or other product
iii. Identify changes required to improve user performance and satisfaction

In a usability test, there are two groups: users and observers. Ideally, the two groups do not
know one another, so the observers can gather more objective data. If you are setting up a
usability test, you construct a scenario for users to accomplish a set of tasks – ones that a new
visitor to your website would need to accomplish – like signing up or inviting a friend or making
a purchase. The users try to accomplish this set of tasks under controlled conditions.

While the users try to accomplish those tasks, the observers watch and/or measure their overall
success in accomplishing those goals. They can either take notes while observing or record the
session with audio or video for convenient recall. The observers take note of where the users
succeed and where they have trouble, so they can revisit their designs at a later date and make
improvements.
Some of the most applicable usability testing methods are:

Card Sorting:
Often used for testing a taxonomy or navigation structure, users organize sets of items into
groups and give names or labels to them. This type of testing is informative for determining
what to call various screens, pages or functions and how to group them.

In-person Testing:
This type of test is run by one or more observers in a fixed environment such as a conference
room, either with small groups or individuals. Users are asked to accomplish a set of tasks and
the observer can interact with them at any point to ask questions or to probe further.

Remote Testing:
In remote testing, users conduct a series of tasks in their own environment – and their attempts
to accomplish tasks are often recorded via a browser webcam. This type of testing can be done
either with a moderator (using webinar or conference call technology) or as a self-guided test.

A/B Testing:
A/B testing is a type of test that doesn’t involve simulated experiences or observation; it puts
two live variations of a website or app to the test and sends half of the traffic to one and half to
the other, tallying the data for which variation had a higher conversion rate. [27]

34

Chapter 3 Performance Testing

Performance testing is a type of testing intended to determine the responsiveness, throughput,

reliability, and/or scalability of a system under a given workload. Performance testing ensures

software applications will perform well under their expected workload.

Performance testing is commonly conducted to accomplish the following goals:

 Assess production readiness

 Evaluate against performance criteria

 Compare performance characteristics of multiple systems or system configurations

 Find the source of performance problems

 Support system tuning

 Find throughput levels

Performance Testing is done to provide stakeholders with information about their application

regarding speed, stability and scalability. More importantly, Performance Testing uncovers what

needs to be improved before the product goes to market. Without Performance Testing, software

is likely to suffer from issues such as:

 Running slow while several users use it simultaneously

 Inconsistencies across different operating systems and poor usability.

 User dissatisfaction with the performance characteristics of the system.

 Revenue losses or damaged brand credibility due to scalability or stability issues

Performance testing will determine whether or not their software meets speed, scalability and

stability requirements under expected workloads. Applications sent to market with poor

performance metrics due to non-existent or poor performance testing are likely to gain a bad

reputation and fail to meet expected sales goals. [28]

This chapter provides a set of foundational building blocks on which to base your understanding

of performance testing principles, ultimately leading to successful performance-testing projects.

35

3.1 Software Performance Metrics

Metric is a standard unit of measurement which calculates the results. Software Metrics are used

for the evaluation of software product and its services.

Accordingly performance testing metrics are used to evaluate the application performance

parameters and to identify which areas of the application are creating performance bottlenecks.

Quantitative results always provide the best outcome of an activity and metrics help in getting

these quantitative results.

Following points also highlight the importance of performance testing metrics:

 Metrics are used to improve the product quality to achieve better customer satisfaction

 Metrics provide easy and clear output of the activity and identify areas which need more

attention

 Metrics help in comparing the results of different test to find out the impact of any

change in application

 Metrics are monitors which provide the exact cause of problem

 Metrics establish baseline for all tests

 Metrics track project progress

There are dozens of metrics generated in performance test but it’s not possible to evaluate all of

them. Here we are evaluating some of the specific performance metrics of a software product.

Total Page Views per Week

Page view is the request on server for that specific page with all its embedded objects. This

metric provide the information about the weekly traffic on AUT. Choosing the page views metric

over page hits or byte transferred is preferred because it’s commonly used as an indicator for

website traffic. Moreover, choosing the weekly limit also provides more realistic application

traffic analysis over choosing the specific hours and day traffic.

Total Hits per Week

A hit is any resource (web page, image, files etc.) request received by the web server from the

client. Several hits are made on server when client request for a web page. Web pages normally

made of number of images and files and number of hits to web server for a specific web page will

be equal to the number of resources it contains.

Total User Sessions per Week

A user session is a unique user visit on the website. This user uniqueness is maintained with

many different approaches like with username and its password, browser cookies and the user

machine IP address. Tracking user session is very handy in load testing because it’s not only

provide the information of number of users accessing the application but also provide the user

36

navigation trends on the application which is very important to simulate real user load during

testing.

Average Hit Size

This is the average amount of data user received from the web server against a particular hit.

Average hit size is measured in Kbytes.

Page Request Distribution

Page request distribution metric represent the user request distribution in percentage across all

the website pages. This metric provides useful information on user trends and help out in

deciding the user distribution on performance schedule.

User Abandonment

This metric provides the information on amount of time an average user waits for a page load

before exiting from the application in dissatisfied manner. This value helps in deciding about the

user acceptable response time limit.

Interaction Speed

Interaction speed represents the user interaction speed with the applications. This variable

represents the how fast a user perform business actions on a web page and navigates between

different web pages.

Latency Tolerance

This variable provide the information of how much a user waits for page response before taking

next action which could be application abandonment, page reload etc. Today on average a user

waits for 3 seconds for a webpage to load before taking any action.

Connection speed

It’s important to know what percentage of users is using which internet connection. Software

application response time will be much lower on fast internet connection as compared to lower

connection. Moreover for realistic performance test, this internet connection bandwidth should

be considered for virtual users as well.

User Geographical Location

User geographical location also greatly affects the user experience on the application.

Application response time will be less for lesser number of hops between the client and the

server.

Average Response Time

There is no doubt that response time is the most user concerned performance parameter. A

software application or transaction with slow response time will never be accepted to users. So

each executed transaction response time is monitored during every second of the scenario run to

37

evaluate the running users’ impact on performance. These days average transaction response

should not be more 3 seconds otherwise user abandonment started.

Throughput

Throughput graph provide the information on server response during specific time period of the

performance test. This is also extremely important metric as it provides the information of web

server response against the user requests. Throughput value is also directly proportional to user

load unless web server is successfully able to handle that specific user load under those

conditions.

Resource Usage

This metric provides information on machine resource usage including: CPU utilization,

Memory Usage, Disk Space. [29]

38

3.2 Software Performance testing types

The following table declared the most common types of performance testing for Web

applications.

Type Purpose Notes

Performance test

To determine or validate speed,

scalability, and/or stability.

A performance test is a technical

investigation done to determine

or validate the responsiveness,

speed, scalability, and/or stability

characteristics of the product

under test.

Load test

To verify application behavior

under normal and peak load

conditions.

Load testing is conducted to

verify that your application can

meet your desired performance

objectives; these performance

objectives are often specified in a

service level agreement (SLA). A

load test enables you to measure

response times, throughput rates,

and resource-utilization levels,

and to identify your application’s

breaking point, assuming that the

breaking point occurs below the

peak load condition.

Stress test

To determine or validate an

application’s behavior when it is

pushed beyond normal or peak

load conditions.

The goal of stress testing is to

reveal application bugs that

surface only under high load

conditions. These bugs can

include such things as

synchronization issues, race

conditions, and memory leaks.

Table 3.1 Types of Performance Testing

39

Performance testing:

This type of testing determines or validates the speed, scalability, and/or stability characteristics

of the system or application under test. Performance is concerned with achieving response

times, throughput, and resource utilization levels that meet the performance objectives for the

project or product. In this guide, performance testing represents the superset of all of the other

subcategories of performance-related testing.

Load testing:

 This subcategory of performance testing is focused on determining or validating performance

characteristics of the system or application under test when subjected to workloads and load

volumes anticipated during production operations.

Stress testing:

This subcategory of performance testing is focused on determining or validating performance

characteristics of the system or application under test when subjected to conditions beyond

those anticipated during production operations. Stress tests may also include tests focused on

determining or validating performance characteristics of the system or application under test

when subjected to other stressful conditions, such as limited memory, insufficient disk space, or

server failure.

These tests are designed to determine under what conditions an application will fail, how it will

fail, and what indicators can be monitored to warn of an impending failure. [30]

Any of these software performance test subsets has its impact on the quality of software

products and accordingly generated value and emerging challenges on quality under each of

performance tests is different from the others.

40

In the following table we described potential benefit of each of these performance testing types

on the quality of software product.

Type Benefits Challenges

Performance test

-Determines the speed, scalability

and stability characteristics of an

application

-Identifies mismatches between

performance related expectations

and reality.

-Supports tuning, capacity

planning, and optimization efforts.

-May not detect some functional

defects that only appear under

load.

-If not carefully designed and

validated, may only be indicative

of performance characteristics in

a very small number of

production scenarios.

-Unless tests are conducted on

the production hardware, from

the same machines the users will

be using, there will always be a

degree of uncertainty in the

results.

Load test

-Determines the throughput

required to support the anticipated

peak production load.

-Determines the adequacy of a

hardware environment.

-Detects concurrency issues.

-Detects functionality errors under

load.

-Collects data for scalability and

capacity-planning purposes.

-Helps to determine how many

users the application can handle

before performance is

compromised.

-Helps to determine how much

load the hardware can handle

before resource utilization limits

are exceeded.

-Is not designed to primarily

focus on speed of response.

-Results should only be used for

comparison with other related

load tests.

41

Stress test

-Determines if data can be

corrupted by overstressing the

system.

-Provides an estimate of how far

beyond the target load an

application can go before causing

failures and errors in addition to

slowness.

-Allows you to establish

application-monitoring triggers to

warn of impending failures.

-Ensures that security

vulnerabilities are not opened up

by stressful conditions.

-Determines the side effects of

common hardware or supporting

application failures.

• Helps to determine what kinds of

failures are most valuable to plan

for.

-Because stress tests are

unrealistic by design, some

stakeholders may dismiss test

results.

-It is often difficult to know how

much stress is worth applying.

-It is possible to cause

application and/or network

failures that may result in

significant disruption if not

isolated to the test environment.

Table 3.2 Benefits of Performance Testing Types on the quality of software products

42

3.3 Software performance testing tools

There are a wide variety of performance testing tools available in market, they are either

commercial or open-source.

Choosing the right performance testing tools depend on many factors including:

 Project requirements (pre-considerations)

 Availability of skilled resources

 Hardware requirements

 Protocol/technology/platform support

 Licensing model

 Scripting effort

 Solution for integration with test automation tool/existed platforms

 Desired Reporting & Monitoring features

 In-house versus Outsourced

 Budget $$$$$$ [30]

Here we overview some of most well-known performance testing tools.

IBM Rational Performance Tester:

IBM Rational Performance Tester helps you test earlier and more frequently as part of a DevOps

approach. It validates the scalability of web and server applications, identifies the presence and

cause of system performance bottlenecks and reduces load testing.

Key features:

Create test scripts without programming, saving time and reducing test complexity.

 Offers flexible modeling and emulation of diverse user populations while minimizing the

memory and processor footprint.

 Supports load testing against a broad base of applications such as HTTP, SAP, Siebel,

SIP, TCP Socket and Citrix.

 Use the cloud to enable large-scale and globally distributed performance testing.

 Generates performance and throughput reports in real time, offering immediate

awareness of performance problems at any time during a test.

HP LoadRunner

This is an HP product which can be used as a performance testing tool. This can be bought as an
HP product from its HP software division. Also, it is very much useful in understanding and
determining the performance and outcome of the system when there is an actual load. One of
the key attractive features of this testing tool is that it can create and handle thousands of users
at the same time.

43

This tool enables you to gather all the required information with respect to the performance and
also based on the infrastructure. The LoadRunner comprises of different tools; namely, Virtual
User Generator, Controller, Load Generator and Analysis.

WebLOAD:

WebLOAD is a load testing tool from Radview is a performance testing software that used for

performance and scalability but also for verifiability (validating the correctness of return

results). Test scripts are written in Javascript (with COM/Java object integration), and the tool

supports multiple protocols for testing all tiers of an app such as web (REST/HTTP with Ajax

support), SOAP/XML, and other protocols callable from within scripts such as FTP, SMTP, etc.

LoadUI NG Pro:

LoadUI NG Pro makes it easy to model real-world loads on your API. LoadUI supports REST,

SOAP, JMS, MQTT and many other API formats. LoadUI’s easy-to-use graphical interface

makes it simple for new users to setup load scenarios, and also provides advanced scripting

features for those with more experience.

This tool allows you to spend more time on analyzing the results than on configuring and

building tests by hand. You can learn even more about your application by making use of

LoadUI’s ability to report on server performance data. You can set up local or globally

distributed load agents for your load testing scenarios

Apache JMeter

It is a Java platform application. It is mainly considered as a performance testing tool and it can

also be integrated with the test plan. In addition to the load test plan, you can also create a

functional test plan. This tool has the capacity to be loaded into a server or network so as to

check on its performance and analyze its working under different conditions.

Initially, it was introduced for testing the web applications, but later its scope had widened. It is

of a great use in testing the functional performance of the resources such as Servlets, Perl Scripts

and JAVA objects.

http://www.softwaretestinghelp.com/test-plan-sample-softwaretesting-and-quality-assurance-templates/

44

BlazeMeter:

A performance engineering platform for DevOps, BlazeMeter enables you to run and analyze
JMeter and other open-source load tests from anywhere. Check out the documentation here.Key
Features:

 Quickly pinpoints defects using inbuilt error report function

 Detailed and interactive report timeline graph to make the report clearer

 Thorough testing using both, API backend and frontend

 Uses YAML and JSON syntax for developers using these languages [31]

Conclusion:

Quantitative results always provide a clear picture of the situation and keep track of changes.

Performance testing metrics provides quantitative results which helps performance analysis of a

software. Usage of these metrics always depends on the scope of the software product and its

requirements. Having crystal clear requirements before starting the performance testing activity

is a fundamental step. A test with vague requirements can never achieve its desired results. So in

first phase of a software performance test, there is need to identify the set of metrics required for

gathering complete list of performance requirements. Different stakeholders can be contacted to

collect performance requirements. [29]

45

Chapter 4 Software Automation Testing

4.1 Why Automation?

Software Testing is the process of bringing the latent defects into the identifiable ones. This

crucial phase of the software development lifecycle uncovers the potential defects in a software

product. Regardless of time-consuming and resource-hungry nature of testing, we can never

ignore it. Every newly developed or modified engineering product is required to pass rigorous

tests so as to ensure the quality of the developed product.

Testing phase, being a major challenge in software development, it can be considered as a fair

opportunity that can considerably help to improve and optimize software’s cost, quality and

time to market. This improvement is much desired in the present scenario when software

industries are facing tough international competition and trying to shrivel their budgets and

schedules.

We could classify the Software testing into two basic categories: a) Manual Testing and b)

Automated Testing. Since long and now also, we are conducting manual testing of software

products; in this type of testing a human tester executes the application and initiates various

tests over it by interpreting and analyzing the behavior of the product on various input

conditions. The human tester later prepares the reports and provides comments on the quality-

state of the product by comparing the actual results against the expected results.

On the other hand an Automated Testing (AT) refers to the use of some standard software

solutions to control the execution of test-cases on the Software Under Test (SUT). This process

also involves setting up the preconditions, matching the actual results against the predicted ones

and then documenting the observations according to some standard protocol.

Automated testing requires writing up some special computer programs to find bugs or defects

in SUT. It is an excellent approach to replace the laborious and time consuming manual testing.

Automated testing has various advantages and it is always suggested for the quality

improvements of the application as it provides formal test coverage, avoid human errors and

speed up the test execution process. Also, as it speeds up the execution process, it is most

effective solution for meeting the strict deadlines.

The effect of test automation is measured along the software development lifecycle. It is a

common observation in all the software projects that there is a positive cost and time impacts of

test automation and quality is also improved in most of the cases as program is found incorrect

fewer numbers of times with automated test cases than with manual testing. The availability

increases in all the cases and relative time in testing is also fairly decreased because of test

automation. [32]

46

4.2 Software Automation Testing Process and Planning

In any type of design in software test automation frameworks, in order to test a software

application, the following steps are required:

1. Studying and choosing the right framework/tool

To be able to choose an appropriate framework/tool for automated testing, a pre-study must be

conducted. This pre-study entailed reading about a selection of frameworks/tool existing at the

time. To facilitate the decision, a number of requirements like cost of license, ability to develop

different test cases, ease of implementation, etc. might be decided upon.

2. Designing the test cases

To design robust set of test cases, each of test cases should be as atomic as possible and mainly

tested one element, the reason being that is that if one test case failed, no other test cases would

be affected. The majority of the testing procedures consisted of verifying that a link was not

broken or that a button worked as expected.

3. Writing the test cases

Since the testing script might be developed by programming of each test case from scratch, a

substantial amount of code is going to be written. More importantly if the purpose of the writing

test cases is for commercial software of a company, in order to continue using the test cases and

develop them further, the code need to be clear and have a good structure.

4. Execution and results evaluation

After executing the test suites, assertions can be used to conform that the function worked as

expected, by checking that software observed behavior in practice is as the expected logic.

5. Possible improvements on Software

Evaluating the results, you may find failure in some tests scenario lead to the possible changes

or improvements into the structure of software, hence in order to fix potential bugs or improve

some features you may continuously work to improve your product quality.

6. Iterate on running the test cases

To make sure that the test cases do not fail after any modifications without reason and that there

were no bugs in the code, the tests need to be run repeatedly. During development the tests case

runs continuously to make sure that any changes worked as expected. When the implementation

is almost finished, you should execute a more extensive run of the tests to try and catch any

problems that would only manifest sporadically. For this purpose the whole set of test on test

suite could be run based on a regular job each day with the results of each run documented and

evaluated.

47

4.3 Software automation Testing tools

We see a lot of improvements in software test automation in the past five years. As it happens in

any sector of software industry, there were set a lot of trends. It usually starts with record and

play approach and evolved to a modular approach and moving towards the data driven and

keyword driven approach. Of course, these trends started a lot of debates on which design is

better or more suitable for your team, your business and your needs.

Finding the right testing automation tool for a given context and to a given purpose is a difficult

practical problem. There is a vast number of software testing and test automation tools

available, both commercial and open source. The process of choosing the right tool requires, at

least in theory, finding of a set of suitable candidate tools, comparison of those candidate tools

and finally, selection of the most appropriate, efficient and effective one for the testing needs

and tasks in the context in question.

In the following sections a few of testing automation tools that have been introduced.

Selenium

Selenium is an open source suite of testing tools which is one of the most established

frameworks regarding test automation of web applications. Selenium has an IDE that can be

used for test generation as well as the WebDriver that can be used for browser automation and

programming test cases. The browser automation used by WebDriver works with most common

browsers, such as Chrome, Firefox and Safari. The WebDriver framework supports test cases

written in several different scripting languages, including Python, Java, JavaScript and C# .

Sahi

Sahi is a tool that's available in a free open source version as well as a Pro version at a monthly

cost. The basis for test automation with Sahi is that test cases can be generated using Click &

Record (C&R) and then the generated test cases can be built upon using the "Sahi Script"

language (which is an extension of JavaScript). Regarding the web browser control there are

Java and Ruby drivers available that works with most popular browsers. Additionally the Pro

version includes built-in features for generating reports, storing reports in database, taking

snapshots and more.

Since Sahi is based on generating scripts automatically using the C&R feature, theoretically the

required programming skills are basic.

DalekJS
DalekJS is a UI testing tool that uses a browser automation technique, with which the Web-
Driver JSON-Wire protocol is used to communicate with the browsers. Tests are written in
JavaScript. DalekJS is still under development and is not recommended for production use by
its creators.

48

Jasmine
Jasmine is a framework for testing JavaScript code. It is behavior-driven, not dependent on
other JavaScript frameworks and does not rely on DOM or on browsers which makes it useful
for different kinds of testing. Jasmine uses a syntax that is created with the purpose to be easily
read and understood, so tests are written in such a way that they can be read as sentences. [33]

4.4 Automation Testing with Selenium

In the finishing part of this work we are discussing two example of test automation, first of all
we overview Selenium as one of the widely used open source automation testing tools for
regression and front-end testing in following we are discuss on SoapUI and its feature to
implement a API automation test.

Selenium was created by Jason Huggins working in Thought Works in 2004. He was working on
a web application that required regular testing. He realized that manual testing replication was
becoming more and more inefficient; he created a JavaScript program that would automatically
control the browser’s action. He named this program JavaScript Test Runner. Afterward he
completed this JavaScript Runner open source which was later re-named as Selenium Core.
Selenium is a set of different software tools each with a different approach to supporting test
automation. The entire suite of tools results in a rich set of testing functions specifically geared
to the needs of testing of web applications of all types. [34]

Selenium operations are extremely flexible, it allows you to locate on every element of your page
using different set of properties including element ID, CSS, XPath .Selenium is open source,
with robust set of tools that supports rapid development of test automation specifically for web-
based applications. Selenium provides a record tool for authoring tests even without learning
too much about test scripting languages. Selenium is also a portable software testing framework
for web applications. Some of its key features are:

 Compatible to runs in many browsers and operating systems

 Extendible by using many programming languages and testing frameworks.

 Providing a set of different tools each with a different approach for supporting test
automation.

The entire suite of tools results in a rich set of testing functions specifically geared to the needs
of testing of web applications of all types.

Basic Selenium Components
There are three versions of Selenium, which can be used in combination or isolation to create
complete automation suite for the web applications. Each one has a specific role in aiding the
development of web application test automation.

1) Selenium IDE
2) Selenium Core
3) Selenium RC

49

Figure 4.1 Selenium Suite Components

1. Selenium IDE

 Selenium IDE is an integrated development environment for Selenium tests. Selenium IDE was
originally created by Shinya Kasatani and donated to Selenium project in 2006. It is
implemented as a Firefox extension, and has a recording feature.
Selenium-IDE also offers full editing of test cases for more precision and control.

2. Selenium Core

Selenium Core is a test tool for web applications. It is a simpler form of Selenium, and suitable
for non-developers. Browser compatibility testing: To test the application if it works correctly on
different browsers and operating systems. The same script can run on any Selenium platform.
Selenium Core tests run directly in a browser, just as real users do. They run in Internet
Explorer, Mozilla and Firefox on Windows, Linux and Macintosh.

Some disadvantages:

 It cannot handle file upload.

 It cannot switch between http and https protocols.

 It is a bit complicated for first time users to setup and start to use it.

3. Selenium Remote Control

Selenium Remote Control (RC) is the solution for tests that need more than simple browser
actions and linear execution. We can use Selenium-RC whenever our test requires logic which is
not supported by Selenium-IDE. Selenium-RC uses the full power of programming languages to
create more complex tests like reading and writing files, querying a database, and emailing test
results.

Features:

a) We can use Java syntax to write test script
b) Easy to conduct Data-Driven testing by reading test data from files
c) We can store test results into a file or generate graphical reports in HTML, PDF format.

[35]

50

An example of automated UI test using Selenium

To give an insight in the possible applications of automated testing, in this part of the work we
are providing an example of automated UI test using Selenium.
Every test case composed of a test scenario was made for declaring test purpose. A code example
for one of the test scenario can be seen in figure 4.2.

Figure 4.2 Sample implementation of automated UI test I

Test cases work independently of each other and are made as atomic as possible. This strategy
was used to ensure that test cases would not fail because of the influence of each other.
The main part in making the tests atomic was using a new driver for each test case, meaning
opening and closing a new window of the browser before and after each test. This made the tests
slower, but ensured that the test cases would not cause each other to crash because they were
using the same driver. Initially the same driver was used for each suite of tests, this made the
tests faster but also meant that a domino effect would arise if one of the tests failed and the
driver ended up at the wrong place in the browser automation.

One of the best practices to write the test cases from scratch is page object model (POM) ,using
this methods could take the advantage of developing stable test cases and to have as much
control as possible during the development since it is a possible foundation for future
development of tests for the UI.
According to Selenium documentation during the implementation of the test cases the most
efficient attributes on HTML elements is ID of element. If implementation of your UI doesn’t
provide you the feature to have a unique ID for all the elements on a page, you could use
attributes like XPath and CSS selector attributes. A code example for locating an element using
an XPath can be seen in figure 4.3. You could see a more detailed code by going through the
appendix.

51

Figure 4.3 Sample implementation of automated UI test II

4.5 API Test Automation Using SoapUI

API test automation ensures consistency in testing and enables continuous improvement in the
software quality. In addition API test automation has the potential of significantly
accelerating the testing and development process. Automation enables API tests to be executed
either at pre-determined intervals or to be triggered by an event, like code commit. Increasingly
testing and development teams are moving towards API test automation and integrating their
testing tools with continuous integration (CI) frameworks like Jenkins, Travis CI.
Hence there are a various set of tools with remarkable features for API test automation, between
them SoapUI from SMARTBEAR provides an easy to use 'point and click' capability that
lets teams to bring REST and SOAP tests into automation platforms easily and without writing
complicated scripts. SoapUI Pro includes a configurable command-line interface tool, this
enables you to run your tests from any task scheduler or as an integrated part of your build
process. [36]

Here we provide an example of creating test automation over a REST API using SOAPUI and
Jenkins. Below are the required steps to set up a test suite and integrate it with automation
frameworks.

Step 1: Create a new project in the SoapUI dashboard and add you REST data Model
Step 2: Once you’ve added your Rest data model, SoapUI will check the web service and return
all the operations/methods you can call on that service, now you could generate your test suite,
when we make sure that SoapUI can send requests to our web service and return a response, we
could set up test steps and write test script, finally when you have created the API test suite, run
it to ensure that the test is configured correctly.

52

Figure 4.4 An Example of API Automation test

Here is an example of script has been written in Groovy as one of the most used scripting
language for writing test scripts.

Figure 4.5 an example of automation script written in Groovy

Step 3: In order to make the process of testing API automated, we need to integrate our project
with Jenkins, to do this download the pre-built API automation script from SoapUI Interface,
create a job in Jenkins by setting up a name and downloaded build parameters. Furthermore at
this stage you could automate the job in Jenkins to be executed periodically, you might set up
the result of every execution to be delivered as a HTML and graphical report.

53

Conclusion:

Software automation testing has a prime importance in software’s verification and validation. It
is important because of two main reasons, first, it assures software quality, and second, nearly
60% of the total software’s cost is spend over different types of testing.
Although automation of test cases have a high implementation and maintenance costs, from our
experiments we have found that, automation of test cases can give remarkable returns in the
long runs where we run and rerun the automated-tests, multiple times. We have also found that
test automation has positive effects on software quality. Hence we can claim that test
automation increases the overall effectiveness of the testing process when we have repetitive
testing tasks which are similar. This work can be extended in future by adding more variable
automation cost factors in the analysis to make it more precise and accurate.

54

Chapter 5 Conclusion

Software industry is extremely disruptive, during working on this thesis we have recognized that

how some of the new methodologies and tools in software industry could have a massive impact

on software development lifecycle.

Furthermore, we have learned how considering quality as a critical factor in software product

lifecycle could enable teams to leverage the risk and increase the chance of launching a

successful software product. To have a clear understanding of how we could measure quality of a

product, we overviewed some of the most critical metrics and their impact on the software

development process of an organization.

We saw how agile manifestation and its technique including scrum, Kanban, extreme

programming, Test-Driven development, Behavior-Driven Development etc. could affect the

process of developing a software product mostly in quality perspective.

In the third chapter, we have discussed the most relevant performance principals in software

development lifecycle. Based on these observations and practices we figure out the list of the

critical software performance metrics and their impact on software quality ,particularity we saw

how considering these set of metrics in software development process in advance could help us

to identify root cause of the problems and leverage the risk of launching a successful product.

Test automation, beyond a shadow of doubt are superior to manual testing, thus in chapter 4 we

analyzed how automated testing process could result in continuous quality improvement of a

software product. Despite the fact that a wide range of quality assurance process including

documentation, frontend or backend testing could be automated, in this chapter we provide two

examples on automated user interface and API testing.

This study was the result of practicing some of the software quality techniques during my

internship by working on Microservice as product, it covered a broad range of aspects in

software quality domain. Although finding an applicable technique ensured launching successful

software relies on many factors including organization process, size of the project, customer

needs etc., a possible future work in this regard could be an examination on each of above-

mentioned agile techniques in a comparative framework in order to find deploying which

methods may help us to launch software product in agile environment. Other studies can be

conducted to find a comprehensive agile quality model considering critical software quality

metrics.

55

References

1- Kumlander, D. (2010). Towards a New Paradigm of Software Development: an Ambassador
Driven Process in Distributed Software Companies. Advanced Techniques in Computing
Sciences and Software Engineering, 487-490.

2- By Bijay K. Jayaswal and Peter C. Patton, Software Development Methodology Today. Available
from World Wide Web: http://www.informit.com/articles/article.aspx?p=605374

3- CLOUDRAMBLINGS , SOFTWARE DEVELOPMENT IN DISRUPTION – THE NEW PARADIGM
OF SOFTWARE. Available from World Wide Web:
https://cloudramblings.me/2015/09/30/software-development-in-disruption-the-new-paradigm-of-
software/

4- Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development
methods: Review and analysis. arXiv preprint arXiv:1709.08439.

5- Agile Modeling, AM Throughout the XP Lifecycle. Available from World Wide Web:
http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm

6- Scrumguides, The Scrum Guide. Available from World Wide Web:
http://www.scrumguides.org/scrum-guide.html#definition

7- Anand, R. V., & Dinakaran, M. (2016). Popular Agile Methods in Software Development: Review
and Analysis. International Journal of Applied Engineering Research, 11(5), 3433-3437.

8- David Anderson,Getting Started with Kanban for Software Development, Available from World
Wide Web: https://dzone.com/refcardz/getting-started-kanban

9- Rochimah, S., Arifiani, S., & Insanittaqwa, V. F. (2015). Non-Source Code Refactoring: A
Systematic Literature Review. International Journal of Software Engineering and Its Applications,
9(6), 197-214.

10- Michael Lynch, How to Do Code Reviews Like a Human . Available from World Wide Web:
https://mtlynch.io/human-code-reviews-1/

11- Kim, M., Zimmermann, T., & Nagappan, N. (2014). An empirical study of refactoringchallenges
and benefits at microsoft. IEEE Transactions on Software Engineering, 40(7), 633-649.

12- Al Dallal, J., & Abdin, A. (2017). Empirical Evaluation of the Impact of Object-Oriented Code
Refactoring on Quality Attributes: A Systematic Literature Review. IEEE Transactions on
Software Engineering.

13- Jameson Nyeholt , What is Pair-Programming and why do we do it?. Available from World Wide
Web: https://www.jamasoftware.com/blog/pair-programming-why-we-do-it/

14- Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming. Extreme
programming examined, 223-247.

15- Hamdan, S., & Alramouni, S. (2015). A quality framework for software continuous integration.
Procedia Manufacturing, 3, 2019-2025.

16- Zimmermann, O. (2016). Microservices tenets: agile approach to service development and
deployment. Computer Science-Research and Development, 32(3), 301-310.

17- Hasselbring, W., & Steinacker, G. (2017, April). Microservice Architectures for Scalability, Agility
and Reliability in E-Commerce. In Software Architecture Workshops (ICSAW), 2017 IEEE
International Conference on (pp. 243-246). IEEE.

18- 730-2014 - IEEE Standard for Software Quality Assurance Processes,Revision of IEEE Std 730-
2002 (Revision of IEEE Std 730-1998)

19- 26- International Organization for Standardization, Quality management principles, 2015 |
Edition: 2 .Available from World Wide Web:
https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/qmp_2012.pdf

20- McBreen, P., Quality Assurance and Testing in Agile Projects, McBreen Consulting, [online].
Available from World Wide Web: http://www.mcbreen.ab.ca/talks/CAMUG.pdf

21- Ambler, S. (2005). Quality in an agile world. Software Quality Professional, 7(4), 34.
22- Gaffney Jr, J. E. (1981, January). Metrics in software quality assurance. In Proceedings of the

ACM'81 conference (pp. 126-130). ACM.
23- Defining Agile Software Quality Assurance, E. Mnkandla, Member, IEEE, Proceedings of the

International Conference on Software Engineering Advances (ICSEA'06)

56

24- Daka, E., & Fraser, G. (2014, November). A survey on unit testing practices and problems. In
Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium on (pp. 201-
211). IEEE.

25- Gáspár Nagy and Seb Rose,The BDD Books - Discovery ,Explore behaviour using examples.
26- Ivanko, J. (2011). A proposal of regression testing process for a small organization developing

COST software (Doctoral dissertation, Masarykova univerzita, Fakulta informatiky)
27- Usability Testing. Available from World Wide Web: https://www.usability.gov/how-to-and-

tools/methods/usability-testing.html
28- Performance Testing Tutorial: Types, Process & Important Metrics. Available from World Wide

Web: https://www.guru99.com/performance-testing.html
29- Sajid Manzor ,Web applications Performance Testing Metrics. Available from World Wide Web:

http://www.agileload.com/agileload/blog/2013/02/18/web-applications-performance-testing-
metrics

30- Meier, J., Farre, C., Bansode, P., Barber, S., & Rea, D. (2007). Performance testing guidance for
web applications: patterns & practices. Microsoft press.

31- STACKIFY,Top Load Testing Tools: 50 Useful Tools for Load Testing Websites, Apps, and More.
Available from World Wide Web: https://stackify.com/top-load-testing-tools/

32- Kumar, D., & Mishra, K. K. (2016). The Impacts of Test Automation on Software's Cost, Quality
and Time to Market. Procedia Computer Science, 79, 8-15.

33- Premal Dave,Top 10 Automated Software Testing Tools. Available from World Wide Web:
https://dzone.com/articles/top-10-automated-software-testing-tools

34- Yadav, A. P., & Kumar, A. (2015). AN AUTOMATION TESTING USING SELENIUM
TOOL.Chicago

35- Selenium Documentation, Test Automation for Web Applications. Available from World Wide
Web: http://www.seleniumhq.org/docs/01_introducing_selenium.jsp

36- SMARTBEAR,Automated testing for REST and SOAP API. Available from World Wide Web:
https://smartbear.com/product/ready-api/soapui/features/automated-api-testing/

57

Appendix

This section includes some coding examples, reports and in-place tools I’ve experienced during

my work.

Figure 5 an Example of a project Kanban board

58

Figure 6 Microservice Monitoring Dashboard using Grafana

Figure 7 Kibana - a data visualization and log exploration tool

59

Figure 8 Jenkins - Continuous Integration tool in-place

import org.mockito.ArgumentCaptor;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.runners.MockitoJUnitRunner;

import static org.junit.Assert.*;

import static org.mockito.Matchers.any;

import static org.mockito.Mockito.*;

/**

 * Created on 18/10/17.

 */

@RunWith(MockitoJUnitRunner.class)

public class AssignmentManagerTest {

 @InjectMocks

 private AssignmentManager mUnit;

 @Mock

 private AssignmentsRepository mAssignmentsRepository;

 @Mock

 private AwardsRepository mAwardsRepository;

 @Mock

 private WorkItemsRepository mWorkItemsRepository;

 @Mock

 private RabbitLifeCycleDelayPublisher mRabbitLifeCycleDelayPublisher;

 //----------------------------- createAssignment -----------------------------

 @Test

 public void testCreateAssignment() {

 int expectedResult = 1;

 int awardResult1 = 2;

 int awardResult2 = 3;

 CouponAssignment couponAssignment = CouponAssignment.builder()

 .invited("invited")

 .inviting("inviting")

 .tokenId("tokenId")

60

 .build();

 ArgumentCaptor<Assignment> assignmentCaptor = ArgumentCaptor.forClass(Assignment.class);

 when(mAssignmentsRepository.save(assignmentCaptor.capture())).thenReturn(expectedResult);

 ArgumentCaptor<Award> awardCaptor = ArgumentCaptor.forClass(Award.class);

 when(mAwardsRepository.save(awardCaptor.capture()))

 .thenReturn(awardResult1)

 .thenReturn(awardResult2);

 ArgumentCaptor<WorkItem> workItemCaptor = ArgumentCaptor.forClass(WorkItem.class);

 when(mWorkItemsRepository.save(workItemCaptor.capture())).thenReturn(0);

 Integer result = mUnit.assignmentOperation(couponAssignment);

 verify(mAssignmentsRepository, times(1)).save(any(Assignment.class));

 assertNotNull(assignmentCaptor.getValue());

 assertEquals(assignmentCaptor.getValue().getExternalId(), couponAssignment.getTokenId());

 verify(mAwardsRepository, times(2)).save(any(Award.class));

 assertNotNull(awardCaptor.getAllValues());

 assertNotNull(awardCaptor.getAllValues().get(0));

 checkAwardSave(awardCaptor.getAllValues().get(0), expectedResult, couponAssignment);

 assertNotNull(awardCaptor.getAllValues().get(1));

 checkAwardSave(awardCaptor.getAllValues().get(1), expectedResult, couponAssignment);

 verify(mWorkItemsRepository, times(2)).save(any(WorkItem.class));

 assertNotNull(workItemCaptor.getAllValues());

 assertNotNull(workItemCaptor.getAllValues().get(0));

 checkWorkItemSave(workItemCaptor.getAllValues().get(0), awardResult1, awardResult2);

 assertNotNull(workItemCaptor.getAllValues().get(1));

 checkWorkItemSave (workItemCaptor.getAllValues().get(1), awardResult1, awardResult2);

 assertTrue(result == expectedResult);

 }

 private void checkAwardSave(Award award, Integer expectedAssignUid, CouponAssignment

couponAssignment) {

 assertNull(award.getCouponUid());

 assertEquals(award.getAssignUid(), expectedAssignUid);

 PartId partId = PartId.valueOf(award.getPartId());

 switch (partId) {

 case INVITED:

 assertEquals(award.getDestination(), couponAssignment.getInvited());

 break;

 case INVITING:

 assertEquals(award.getDestination(), couponAssignment.getInviting());

 break;

 default:

 assertTrue(false);

 }

 }

 private void checkWorkItemSave(WorkItem workItem, Integer awardUid1, Integer awardUid2) {

 assertTrue(workItem.getAwardUid().equals(awardUid1) ||

workItem.getAwardUid().equals(awardUid2));

 assertNotNull(workItem.getItemType());

 assertEquals(workItem.getItemType(), WorkItemType.ASSIGNMENT.getCode());

 assertNotNull(workItem.getResultSuccess());

 assertTrue(workItem.getResultSuccess());

 }

}

An example of Unit Test

61

Figure 9 Apache Jmeter -An open source tool for software performance testing

Figure 10 an example of performance test case in Jmeter

62

Figure 11 Usability Test using Google Analytics

Feature: Testing Wind on Amazon - listamagazzino page

 Background:

 Given I have this users data for listamagazzino page:

 | USERNAME | PASSWORD |

 | wona_abox_root | Wroot1! |

 When I land on listamagazzino page and title is as expected

 @listamagazzino_page

 Scenario: I click on Aggiorna inventario button and Annulla in lista maggazino page

 And I click on Aggiorna inventario button

 And I check elements on inventario alert

 And I check Aggiorna inventario button

 And I click Annulla button on alert

 @listamagazzino_page

 Scenario: I click on Aggiorna inventario button and Aggiorna in lista magazzino page

 And I click on Aggiorna inventario button

 And I check elements on inventario alert

 And I check Annulla button

 And I click Aggiorna button on inventario alert

 Then I click ok button on Aggiornamento completato alert

 @listamagazzino_page

 Scenario: I sign out from lista magazzino page

 And I click on name-image from catalogue page

 And I click on sign-out button from catalogue page

 Then I check login page from catalogue page

 @listamagazzino_page

 Scenario: I land on listamaggazino page and buttons are enabled

 And I check Aggiorna inventario button is enabled

 And I check Esporta csv button is enabled

An example of Scenario file in Gherkins used for UI automation test by Selenium

63

import cucumber.api.DataTable;

import cucumber.api.PendingException;

import cucumber.api.java.After;

import cucumber.api.java.Before;

import cucumber.api.java.en.And;

import cucumber.api.java.en.Given;

import cucumber.api.java.en.Then;

import java.util.List;

/**

 * Created by ekargar on 24/05/17.

 */

public class ListaMagazzinoPageStepDefs {

 public TestBaseClass script;

 String url = TestBaseClass.baseUrl;

 @Before("@listamagazzino_page")

 public void setup() { script = new TestBaseClass(); }

 @After("@listamagazzino_page")

 public void tearDown() {

 script.tearDown();

 }

 @Given("^I have this users data for listamagazzino page:$")

 public void lista_magazzino_page(DataTable dataUser) throws Throwable {

 List<List<String>> data = dataUser.raw();

 script.goToHomePage(url);

 script.testPausePageUntilDocumentIsReady();

 script.testParamPausePage(5000);

 script.testSendKeyId("username", data.get(1).get(0));

 script.testSendKeyId("password", data.get(1).get(1));

 script.testClickButtonLinkId("signIn");

 script.testPausePage();

 }

 @And("^I click on Aggiorna inventario button$")

 public void i_Click_On_Aggiorna_Inventario_Button() throws Throwable {

 script.testPausePage();

 script.testClickButtonLinkId("inventoryUpdate");

 }

 @And("^I check elements on inventario alert$")

 public void i_check_elements_on_inventario_alert() throws Throwable {

 script.testPausePage();

 script.assertElementTextEqualsXpath(".//*[@id='gwt-uid-11']", "Aggiornamento

inventario");

 script.assertElementTextEqualsXpath("//div[3]/div/div/div[3]/div/div/div[1]/div",

"L'operazione di aggiornamento dell'inventario non è reversibile.");

 script.assertElementTextEqualsXpath("//div[3]/div/div/div[3]/div/div/div[3]/div", "Sei

sicuro di volerla eseguire?");

 }

 @And("^I check Aggiorna inventario button$")

 public void i_Check_Aggiorna_Inventario_Button() throws Throwable {

 script.testPausePage();

 script.assertElementTextEqualsId("updateInventory", "Aggiorna");

 }

 @And("^I check Annulla button$")

 public void i_Check_Annulla_Button() throws Throwable {

 script.testPausePage();

 script.assertElementTextEqualsId("cancel", "Annulla");

 }

64

 @And("^I check elements on Aggiornamento completato alert$")

 public void i_Check_elements_On_Aggiornamento_Completato_Alert() throws Throwable {

script.assertElementTextEqualsXpath("//div[3]/div/div/div[3]/div/div/div[1]/div","Aggiornamento

completato");

 script.testPausePage();

 }

 @And("^I click ok button on Aggiornamento completato alert$")

 public void i_click_ok_button_on_Aggiornamento_completato_alert() throws Throwable {

 script.testPausePage();

 script.testClickButtonLinkId("updateInventory");

 }

 @And("^I click Aggiorna button on inventario alert$")

 public void i_Click_Aggiorna_Button_On_Inventario_Alert() throws Throwable {

 script.testPausePage();

 script.testClickButtonLinkId("updateInventory");

 }

 @And("^I check Esporta csv button is enabled$")

 public void i_Check_EsportaCsv_Button_enabled() throws Throwable {

 script.testPausePage();

 script.testIsButtonEnabledXpath(".//*[@id='wona-

3655307']/div/div[2]/div/div/div/div[3]/div/div[2]/div/div/div[1]/div/div[2]/div/div/div/div/div[

1]/div");

 }

 @And("^I check Aggiorna inventario button is enabled$")

 public void i_Check_Aggiorna_inventario_Button_enabled() throws Throwable {

 script.testPausePage();

 script.testIsButtonEnabledId("inventoryUpdate");

 }

}

An example of UI automation test using Selenium & Java

Figure 12 Automated regression Test results

