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Abstract

The development of a reliable Optical Character Recognition (OCR) software specif-
ically tailored for scientific texts has been long required from the community of blind
and visually impaired people, since only very few scientific texts are accessible. This
thesis deals with a recognition core of OCR leveraging on the artificial neural net-
works (ANN) for recognizing both normal and scientific text (i.e. Latin characters,
Greek characters and mathematical symbols). We present the procedures for train-
ing each neural network with the back propagation method, and then develop three
voting strategies in order to make these neural networks work in parallel. The over-
all architecture of our OCR is based on the parallel neural networks (PNN). The
outcome of experimental validation demonstrates that the voting strategy based on
the mean Euclidean norm has the best and steadiest behaviors with accuracy 94.9%.

Keywords: Optical Character Recognition, Artificial Neural Network, Parallel
Neural Network
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Chapter 1

Introduction

Optical Character Recognition (OCR) software is an application of pattern recog-
nition, which converts a scanned image of typewritten, handwritten, or printed text
into a machine editable format. Assistive technology including the assistive devices
for the blind and visually impaired people performs satisfactorily with respect to
screen reader software and screen display software based on the machine-editable
format, which is generated from the machine or converted from the uneditable for-
mat. There exists OCR software, which mainly focus on the characters (Latin).
However, they still have a long way to go as far as more scientific text is concerned.
Currently, InftyReader is the unique OCR application that recognizes and translate
the scientific documents into several machine-editable formats (e.g. LaTeX). The
development of a reliable OCR software specifically tailored for scientific texts has
been long required from the community of blind and visually impaired people.

In this thesis, we develop the recognition core of OCR based on the artificial
neural network. This thesis and relative research activities are carried in coopera-
tion with Università degli Studi di Torino, Department of Mathematics and CINi
National Lab on Assistive Technologies.
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1 – Introduction

In our study, we aim at pattern recognition of the Latin characters, Greek char-
acters, and mathematical symbols in different font sizes. However, it’s very difficult
to put all characters and symbols into one neural network. In fact, a single ANN
can not discriminate properly among hundreds of different patterns. So we decide
to train six feed-forward neural networks, each of which is in charge of different type
of characters and font sizes, and then make these trained neural networks work in
parallel with the voting algorithm.

We create the image files as the raw materials for training and testing the neural
networks. As we only focus on the pattern recognition without segmentation, each
image only includes one character. The image files are generated automatically by
the Matplotlib, which is a Python library. Then we train each neural networks with
the back-propagation method separately and adjust their structure (i.e. the number
of neurons in the hidden layer) and parameters (i.e. learning rate and the initial
range of weights ) for the optimal performance evaluated by the elapsed time and
training step. Next, we test the neural networks and readjust the structure and
parameters to improve their study abilities (i.e. testing accuracy). After testing, we
get neural networks, each of which can recognize a certain number of characters or
symbols with high accuracy, and then make them working in parallel. The overall
system uses a voting algorithm for selecting the most proper output among outputs
from the paralleled-working neural networks as the final result. We develop the
strategies for the voting algorithm, evaluate their accuracies against our data set
and then analyze their behaviors.

This thesis is divided into four sections.

Section one is the introduction. The chapter is subdivided into three parts. Part
one describes the OCR software development nowadays, part two describes our goal,
and part three is the outline of the order of information in this thesis.

Section two is the overview of the artificial neuron network. The chapter consists
of four parts. Part 1 focuses on how single neuron works and part 2 introduces

2



how a neuron network works. Part 3 describes the learning paradigms, especially
the supervised learning, for the artificial neuron network. Part 4 is about the back-
propagation method used in this thesis for training the neuron networks.

Section three describes the procedures of experimental tests including the creation
of images, image preprocessing, training and testing each neural network separately
and developing the strategies for the parallel neural network.

Section four summarizes the general procedures and their corresponding results.

3



4



Chapter 2

Backgrounds

2.1 Neuron

2.1.1 The Biological Neuron

The artificial neuron network is inspired by the human brain. It’s a simulation of
the real nervous system. At the beginning of this chapter, let’s have a general view
of how a biological neuron works. The sketch is shown in Figure 2.1.1. [1].

There are several main components of a neuron which are dendrites, cell body,
and axons. The dendrites are the terminal for receiving the signal, i.e. electronic
stimulation, from the other neurons or from the outside of the world. The cell body
contains the mechanisms, especially nucleus, which keeps the cell alive. The axon is
the terminal for sending the electronic stimulation to other neurons.

Generally, all neurons have three basic functions, which is receiving signals, inte-
grating incoming signals, and sending signals to target neurons.

Dendrites Most neurons receive the input signals from their dendrite trees. A
neuron usually has a brunch of dendrites, each of which could receive many input

5



2 – Backgrounds

Figure 2.1.1: The structure of a neuron

signals. Whether a neuron is stimulated to firing an impulse depends on the sum
of all the signals (positive and negative), which it receives. If the sum is over a
certain threshold, the nerve impulse is conducted down the axon, which is in charge
of sending the signals [2].

Axon Compared with dendrites, the axon is different. Many axons are covered
with myelin, which is an insulating substance, that helps axons to convey nerve
impulse rapidly. When an axon receives the signals conducted from the dendrites,
it distributes the signals into its branches, which are also known as never terminals.
These terminal make the connections to the target neurons.

6



2.1 – Neuron

Synapses The connections between neurons are made onto the dendrites and so-
mas of other neurons, These connections known as synapses, carries information or
signals from the pre-synaptic neuron (sender) to post-synaptic neuron (receiver or
target). In most synapses, a signal is transmitted in neurotransmitters which are
the forms of chemical messengers. When an action potential is conducted into an
axon terminal, the release of neurotransmitter is triggered. It released from the
pre-synaptic cell to post-synaptic cell for conveying a positive or negative signal.

Action potentials In the human body, there are many sensors with respect to
the different functions. For example, in the eye, there are rods and cones, which are
neurons that can be stimulated by the light, and then produce pulses called action
potentials.

The action potential is a temporary shift in the neuron’s potential, which is cause
ions suddenly flowing in and out of the neuron. We only mention about the three
states rather than too many details about how the ions flow. These three states are
deactivated (i.e. at rest), activated and inactive (i.e. after the depolarizes).[2]

Figure 2.1.2: The action potential generated when a neuron is stimulated
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2 – Backgrounds

The general procedure is shown in Figure 2.1.2[3], before stimulation, the neuron
is at rest, which means the neuron is charged up and ready to produce a pulse.
While the stimulation applied, the neuron initializes an action potential, which
is the depolarized of a neuron. After reaching the peak value, the voltage drops
down rapidly and then re-balance to the rest state (below the threshold voltage).
Additionally, if the dendrites of a neuron receive many simulations from another, it
produces more action potentials, and vice verse, which is also shown in Figure 2.1.3.
The whole process shows how the signal transmits inside a single neural.

Figure 2.1.3: The value of action potential is related with stimulation level

2.1.2 The Artificial Neuron

After the introduction of the biological neuron. We can begin to study artificial
neuron.

The concept of the artificial neuron is nearly started with Warren McCulloch and
Walter Pitts who proposed a simple artificial model called Perceptron in 1943. Then
in the 1950s, it’s developed by Frank Rosenbaltt[4], who is inspired by the previous
work.

The sketch is shown in the Figure 2.1.4. There are three inputs, and each of
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2.1 – Neuron

them is equipped with the corresponding weights, which represents the strength
of the synaptic connection of its dendrite in the biological neuron. Generally, the
perceptron could have more or fewer inputs.

Figure 2.1.4: The basic structure of Perceptron

A perceptron takes these binary inputs and produces a binary output. The output
is zero or one, which depends on whether the weighted sum of input is less or greater
than a certain value of the threshold. The formulas are shown as following.

In this basic mathematical model, the perceptron is able to solve some simple
decision problems. In a practical way, we could set some factors as the input and put
the weights, then we sum up with weights to get the final yes or no binary output.

After the introduction about perceptron, it’s time to talk about the type of the
neuron. In the previous formula (1), the threshold value is a step function, It’s easy
to calculate. However, as there are more and more complicated problems applied, it’s
found that the continuous one is more flexible for the real application, for example,
the sigmoid and tanh function. The explanation is shown in the next section, when
we discuss the artificial neural network.

The development of the perceptron is based on the single neuron and the linear
system. However, it’s very limited for analyzing the real-life problem. The most
famous problem is Exclusive-Or problem. In this case, no matter how you change
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2 – Backgrounds

the weigh of each input, it’s not possible to get the expected output. So In 1969,
Marvins Minsky and Semour Papert published a book ’Perceptrons’.[5] In this book,
they proposed a new model of the neural net where a collection of connected neurons
rather than a single neuron, and it’s the fundamental model of the neural network
nowadays, which is able to recognize the complex patterns.

Figure 2.1.5: The history of neural network

Generally, as shown in Figure 2.1.5, the whole history of the neural network began
with the computational model of neuron in the early 1940s. Later, Hebbian learning
observed from the behavior of synapse was created. In 1958, perceptron, which is a
simple neural model that could classify the data into two sets. However, as the study
went further, it’s found that this model can not deal with the complicated problems,
one of which is the XOR. Then in 1969, this model was purposed with its limitation,
and the researchers’ attention turned back to the development of symbolic method.
In 1975, the backpropagation method was created, which could train the multi-layer
perceptrons successfully. This method is used in our study, and it is introduced in
section 2.4.
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2.2 – The Artificial Neural Network

2.2 The Artificial Neural Network

The artificial neural network is inspired by the nervous system introduced before,
as the Figure 2.2.1[6] shows. In this part, we introduce the feed-forward artificial
neural network used in our study.

Figure 2.2.1: Analogy of Artificial Neural Network With Biological Neural Network

2.2.1 Structure

A neural network is composed of the neurons and their connections.

The neurons inside the network are divided into three main layers, which are the
input layer, the hidden layer, and the output layer. The number of hidden layers
could be more than one, so that kind of neural network is also called Multiple-Layer
Neural Network.

Each layer includes a number of neurons, which depends on the practical case.
The basic structure is shown in Figure 2.2.2.
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Figure 2.2.2: The simple structure of artificial neural network

Input Layer Each neuron in this layer represents a feature unit to be analyzed
later. For example, we want to recognize a scanned image with feature pixels 10∗10.
In this case, 100=10*10 neurons are assigned to the input layer of the neural network.
Each neuron is scaled between zero and one (since we remove the irrelevant color
information in this study). As there are 100 valid units to be analyzed, each neuron
in the input layer is in charge of a pixel and processes the info of this pixel to the
neurons in next layer.

Output Layer Each neuron in this layer represents a recognized element. There
is a certain threshold set manually to evaluate whether each neuron is active or
not. Usually, this threshold is 0.5 as default. For example, if an ANN focuses
on recognizing the 26 Latin characters, then usually the number of neurons in the
output layer is fixed in 26, each neuron is in charge of a corresponding result. If this
ANN gets the output result which is a vector with the first element active and the
rest of the elements inactive, it recognizes this image as character assigned in the
first position.

12



2.2 – The Artificial Neural Network

Hidden Layer The neurons in this layer make the connections between neurons
input layer and neurons in output layer. It’s important for the artificial neural
network to learn the complicated staff (e.g. XOR problem). Different with the
input and output layer, the number of neurons in the hidden layer is not fixed with
a certain value. So assigning the number of neurons in the hidden layer becomes
an essential step in the construction of the artificial neural network. In Section 3,
we do the repetition test with different values of the number of neurons in hidden
layer, in order to find the optimal structure for each neural network. Referring to
Jeff Heaton’s idea, "the optimal number of neurons in the hidden layer is between
the number of neurons in the input and output layer"[7]. If it’s too many, overfitting
might occur, as there is only a limited number of images (limited dataset) to be
processed, which is not enough to train all the hidden neurons. If it’s too few,
underfitting may occur, as the limited number of the hidden neurons is not enough
to process so much information. According to his idea, the neural networks in this
study should have the number of neurons in the hidden layer between [24, 18200=
130*140]. 24 is the smallest number of neurons in the output layer, which is from
the Greek neural networks, and 18200 is the largest number of the input layer which
is from the mathematical neural networks. However, with the consideration of the
elapsed time, we decide to limit this value within [100, 800]. As for the number of
hidden layer in our study, we only use the single hidden layer to build the neural
networks.

Connections The connections are used for the neurons in the different layers. Any
two neurons in the adjoining layers have a connection. Each connection is equipped
with a corresponding weight, which processes the value from the predecessor to the
successor. For the initial weights, we generate them randomly within the range of
[-kk/2, kk/2]. In Section 3, we do the repetition test with the different values of
kk for exploiting the optimal performance of the neural network. The kk is also an
important parameter of the back-propagation method mentioned in Section 2.4.

13
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Neuron In the last subsection, we introduce the perceptron neuron with the step
function, and also mention that as the problems become more and more compli-
cated, this kind of the discontinuous function is no more suitable to be applied.
Suppose we have a neuron network that learns to recognize a character from an
image. This neuron network faces a sequence of the pixels that include the features
of this character. We need to train it over and over again to reduce the difference
between the real learning outcome and the expected one by adjusting the internal
structure which is the weight. Usually, this adjustment is very small, and the re-
sult is composed of even thousands of these small changes. In this case, if we use
the discontinuous function in each neuron, like perceptron, sometimes even a small
change in the weight may then cause the output of this neuron to completely flip
(e.g. from zero to one), and this filp might cause the result of the rest of the network
to completely change into more complicated condition. So we introduce the contin-
uous activation function used in our study. Figure 2.2.3 shows the plot and formula
of the Hyperbolic Tangent. It’s obvious that the output of tanh is not just zero and
one, but is a smooth result range from -1 to 1. It’s so useful in the study, and we
could explain it in a simple example. A neuron wants to recognize the character "A".
If it’s a perceptron, then there are only two results, which are yes or no. However,
a tanh neuron could give a certain result, which is that we think it is character A
with 80% of possibility but it might be not A with 20% possibility. So we could set
a threshold that if the possibility is over 75%, then the tanh neuron would make a
positive decision. [8]

Feed-forward network "A feedforward neural network is an ANN, in which the
connections between the neurons do not form a loop", i.e. acylic[9]. In this neural
network, all the transmission is one direction. In our study, we use three-layer neural
networks which means the output neurons only receive signals from the neurons in
hidden layer, and the hidden layer neurons only receive signals from the neurons
in input layer. In Section 2.4, we talk about the back propagation method which

14



2.2 – The Artificial Neural Network

Figure 2.2.3: The activation function (Hyperbolic Tangent)

calculates the error contribution for each neuron after the data is processed and then
adjusts the corresponding weights in order to reduce the error contribution between
the real output and the expected one. It’s a method for training the artificial neural
network rather than the direction of information propagation.

2.2.2 Overfitting

In this part, we use an example to explain the typical problem of the neural network.
The first time when we trained the neural network of the Greek symbols we met
the problem that it can not stop until the maximum time is reached. we tried to
use many approaches to test it over and over again, until we found that we met
the overfitting. Overfitting is a main problem for predictive analytics. Especially
in the artificial neural network, there are complicated models. Within a number of
images, the neural network needs to analyze all the features and get the ability to
predict based on their previous training. If the number of the image is not enough
or their features are completely different, the neural network would be confused,
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Figure 2.2.4: An example of overfitting

and keep training for getting a better result. That’s why in neural network field,
the overfitting is also known as the overtraining. The result for the overfitting, in
most cases, leads to the worse result.

In the following, there is a typical solution to solve the overfitting by using the
training, testing and validation sets for building a neural network. The training set
is for training the neural network with the backpropagation method for decreasing
the error distributions for a certain number of the inputs. The testing set is for
testing the previous trained neural network based on its structure and the weights,
in order to test the recognition ability. As for the validation set, which could be
regarded as a part of the training set, it’s used for early stop the training procedure
even without reaching the expected result. It could avoid the overfitting by detecting
whether the accuracy of recognizing its dataset keeps improving. Once the accuracy
gets worse, the validation set will force the training to stop.
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2.3 – Supervised Learning

2.3 Supervised Learning

In the machine learning algorithm, there are three main learning paradigms based
on their different functions. These are supervised learning based on the labeled
dataset, unsupervised learning based on the descriptive model, and reinforcement
learning. The sketch for each paradigm is shown in Figure 2.3.1.

Figure 2.3.1: Machine Learning Algorithm

In our study, all the training procedures of the artificial neural network are based
on the supervised learning, "which is the machine learning task that inferring func-
tions from labeled training data" [10]. The labeled data comes from the solution-
equipped data set. For example, there is an image file including the printed format
of Latin character a, and this file is named with "9pt_Arial_a.png". In this case,
we could digitize all pixels of the image to a vector as the input object, and then
classify the filename which includes the name of this Latin character as the expected
output object. Overall, we get a pair of the data for training or testing our neural
networks.

The supervised learning is also the reason why we finally decided to build our
dataset. We train the neural networks to recognize Latin characters, Greek char-
acters, and mathematical symbols, which requires the huge and various datasets to
support the learning procedure. In this case, it’s also required to generate the dataset
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automatically by image preprocessing and filename recognition. If the datasets come
from different resources, it’s so hard to manage all of them with a piece of code.

For supervised learning, the training process keeps the neural network adjusting
its internal representation (weight) in order to get the expected result. The difference
between the real result and the expected result is calculated as the error of training,
and then the neural network uses the back-propagation method in order to reduce
this error. Finally, when the neuron network can get the expected result based on its
internal structure, the training successes. The back-propagation method mentioned
above is explained in Section 2.5.

After training step, we still need the testing dataset to check the learning ability
of the neural network. In the training step, the label of the dataset is used for con-
ducting the neural network to study. However, in the test step, the labeled dataset
is used for testing whether the trained neural network could get the corresponding
expected output from any arbitrary input.

2.4 Backpropagation Method

"Backpropagation, also called backward propagation of errors, is an approach com-
monly used in ANN to calculate the error contribution of each neuron after a number
of data is processed"[11]. There is a famous paper written by David Rumelhart, Ge-
offrey Hinton, and Ronald Williams[12]. This paper describes that compared with
other approaches the backpropagation is much faster, which was able to solve some
previously insoluble problems at that time. Because of this paper, the backpropa-
gation method began to be appreciated.

Let’s consider a feedforward neural network with M layers[13].

The input of i th neuron in layer k+1 is as Formula 2.1. It shows that the input
of the k+1 layer is depend only from the outputs of the neurons in k layer, and the

18



2.4 – Backpropagation Method

weight between the i neuron from k+1 layer and the neuron j neuron from k layer

(2.1)

The output of this neuron is shown in Formula 2.2, which is applied the input of
neuron with an activation function f. Usually this function could be sigmoidal or
hyperbolic tan. In this thesis, we use the hyperbolic tan as it range from [-1, 1],
without the bias.

(2.2)

For an M layer network, the system equations in matrix form are

(2.3)

The task of the neural network is trained to learn the mapping between inputs and
their corresponding output by back propagation method which adjusts the inter-
nal weights. How the backpropagation success by each time adjusting the weights
slightly? Let’s us consider in the following way[8]. There is a small change 4wl

jk to
the weight wl

jk (Figure 2.4.1 (a)). This change will result in a change in the output
of the corresponding neuron 4al

j (Figure 2.4.1 (b)). It leads to a change in the
inputs of neurons in the next layer, and later the outputs of these neurons will also
change (Figure 2.4.1 (c)). Finally the cost function changes 4C (Figure 2.4.1 (d)).

The change of the cost is related to the change of that weight, which is shown as
follows.

∆C ≈ ∂C

∂wl
jk

∆wl
jk. (2.4)
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(a) (b)

(c) (d)

Figure 2.4.1: Backpropagation Method (part.1)

The change of the weight ∆wl
jk also leads to the change of corresponding acti-

vation function, which is from the j th neuron in the i th layer. This change will
lead to the change of activation functions in all the neurons of i+1 th layer. As the
Figure 2.4.2 shows.

∆al
j ≈

∂al
j

∂wl
jk

∆wl
jk. (2.5)

Figure 2.4.2: Backpropagation Method (part.2)

∆al+1
q ≈

∂al+1
q

∂al
j

∆al
j. (2.6)
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Substitute the Formula 2.6 with Formula 2.5, we get:

∆al+1
q ≈

∂al+1
q

∂al
j

∂al
j

∂wl
jk

∆wl
jk. (2.7)

Moreover, this change will lead to the change of activation functions in the next
layer. We get the general sketch that the change of the very initial weight will cause
the change of the final cost.

∆C ≈ ∂C

∂aL
m

∂aL
m

∂aL−1
n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂al
j

∂al
j

∂wl
jk

∆wl
jk, (2.8)

In order to compute the final change of the cost, we need to consider all the path
available in this network, which is shown in formula 2.9.

∆C ≈
∑

mnp...q

∂C

∂aL
m

∂aL
m

∂aL−1
n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂al
j

∂al
j

∂wl
jk

∆wl
jk, (2.9)

Substituted with Formula 2.4, we get:

∂C

∂wl
jk

=
∑

mnp...q

∂C

∂aL
m

∂aL
m

∂aL−1
n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂al
j

∂al
j

∂wl
jk

. (2.10)

Above we compute the derivative of c with respect to the weight. As for the every
single the change is shown in Figure 2.4.3.

Figure 2.4.3: Backpropagation Method (part.3)
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2.4.1 Optimize the Back propagation

There are some methods of optimizing the backpropagation method for accelerating
the learning. In the following, there are two methods used in our thesis for improving
the performance of backpropagation algorithm.

Initialization of weights Initialization of the weights plays an important role in
the performance of the feed-forward neural network[14]. There are many methods
of the weights initialization which aims at reducing the influence to the performance
of the neural network. In this study, we use the random initialization due to its
simplicity, and set the different range of initial weights. By the repetition test, we
aim at finding the optimal range of the initial value for improving the performance
of the neural network.

Figure 2.4.4: The learning rate of backpropagation

Learning rate Using the adaptive learning rate by modifying learning rate (eta).
With the standard gradient descent, the learning rate is a fixed constant in the
whole training process. It’s an essential parameter for the performance of the neural
network (i.e. convergent rate). If it’s too small, the algorithm will take a long time
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to converge. However, if it’s too large, the algorithm is very unstable[15]. The
Figure 2.4.4 shows these relationships in general.
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Chapter 3

Implementation

3.1 Parallel neural networks

Based on the previous introduction, we have a general idea of how to train single
neural network with the backpropagation method for improving its performance.

In our study, we aim at pattern recognition for the Latin characters, Greek char-
acters, and mathematical symbols. However, it’s not practical to put all of these
objects into one neural network. Since for a neural network, a large number of dif-
ferent patterns is hard to achieve the fast convergence[16]. In this case, we decide to
separate all these characters into several groups and each of them is recognized by
a neural network. With the trained neural networks, we propose the idea of making
them working in parallel to improve the performance of the overall system. The par-
allel neural networks are based on an amount of separately-trained neural networks.
Each neural network is required to recognize the same image, and produce its own
output based on its structure and parameters. The system of the parallel neural
network will select one of the outputs as the most proper result of the voting algo-
rithm then produce. This idea proposed aims at improving the average performance
of the neural networks.

25



3 – Implementation

3.2 Ensemble Methods

Ensemble method is a meta algorithm which uses other machine learning algorithms
as a component to learn a collection of predictors. It’s based on the attitude that
many predictors always preform better than one. One view of ensemble learning is
related to a psychological phenomenon which is called the wisdom of the crowds.
That is a bunch of algorithms may work better than s single one.

Predictors of the same or different types are combined usually by the un-weighted
average or weight average. These predictors could be neural networks, support
vector machines, or decision trees. But in this part, we only focus on the same
type of learners, and introduce some typical examples like boosting, which uses only
single kind of the learner but many different instances to perform a better job.

Before introducing the ensemble methods, there are two concepts, bias and vari-
ance. Bias is the error from the model choice. "If the value of bias is high, which
means the model that keeps missing valuable trends." [17]. Variance is the random-
ness from the dataset. "If in a model, the variance is high, this model will overfit
and perform badly on the observation beyond training". As shown in Figure 3.2.1,
"the increase of the complexity of the model could reduce the error due to the low
bias. However, from a certain point, the high variance would have an influence on
the high-complexity of the model"[17].

Figure 3.2.1: The bias and variance
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In the following paragraphs, there are two major ensemble methods.

Bagging It’s the Bootstrap AGGregation, which learn from many classifiers, each
of which only with a portion of the data, and then combine these classifiers with
model averaging. The general pipeline is shown in Figure 3.2.2. The basic idea be-
hind this method is to avoid the overfitting by using the cross-validation which makes
many splits of the dataset for training and immediately testing. The cross-validation
could detect the overfitting efficient[18]. Bootstrap is used as the subroutine of its
learner. It creates K learners independently, with the previous training set. Each
learner generates its own training data set from the original full training set by re-
placement, then train a classifier on those data set. Train these learners in parallel
and test on all K (the number of the learners) of them. Finally, do the combina-
tion of all the predictors. For the classifiers, there is the majority vote, and for the
regression, the weight or un-weighted average is calculated. This method aims at
reducing the complexity and avoid overfitting which dues to the un-memorized of
dataset.

Figure 3.2.2: The Bootstrap AGGregation (Bagging)
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Boosting Boosting a technique for producing regression models consisting of a
collection of regressors. Learner learns sequentially with early learners. Errors from
the earlier predictors are marked in "difficult" examples draw the later predictions’
attention. This method successfully converts many "weaker learners" into one "strong
learner".

Gradient Boosting is one of the methods of boosting. It starts with a simple
regression model, and each learner predicts the error subsequently based on the
previous prediction. Overall the final prediction is given by the weighted sum from
each model. The sketch is shown in Figure 3.2.3. Each of the prediction is based on
the previous prediction and its error residual and tends to predicts in a better way.

Figure 3.2.3: The Gradient Boosting

Let’s consider as an example the simple classifier shown in Figure 3.2.4. The
original dataset D1 is split into 2 parts with most of the decisions correct. But
there are still three symbols (two negative and one positive) which are predicted
wrongly. So in the next step, the weights for wrong objects, which are got from
the previous step, are emphasized. In this step, the new classifier classifies most
of the symbols correctly, especially the high-weighted ones. However, it misses the
low-weighted symbols and classifies them wrongly. So in the following step, the
weights are calculated again based on the correctness in the current situation. After
training each classifier, the combination with weights is obtained. These weights for
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each classifier are based on the training precision.

Figure 3.2.4: The Gradient Boosting 2

AdaBoost is Adaptive Boosting, which aims at minimizing the surrogate loss (i.e
exponential loss) as shown in Formula 3.1.

(3.1)

A typical application of AdaBoost is the face detection algorithm, which would com-
bine many weak classifiers and define many features.
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Chapter 4

Results and Performance
Evaluation

4.1 Generate Image Files

The first step for the experimental validation is the preparation of the raw image
files. Our study focuses on recognizing the scientific text which are the Greek char-
acters and mathematical symbols, and also recognizing the normal characters, i.e 26
Latin characters. In this case, the database including the images of these characters
and symbols is required. On the one hand, even if there are already many public
databases of mathematical symbols, which are freely usable for research activities,
but it’s impossible to find one which includes all the symbols we need. On the other
hand, the images from the different database might not be in the same format.So
we decided to create our own image data.

We aim at training six neural networks encompassing mathematical symbols,
Greek characters and Latin characters with the font size from 9 pt to 12 pt. In
general, we choose 26 Latin lower-case characters, 24 Greek characters and 44
frequently-used characters as the training goal. For the Latin characters, there are
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115 different fonts and for the Greek characters and mathematical symbols there
are 6 fonts The details for each type of characters is in the Table 4.1.1.

Type Elements Training Fonts Tot. images Testing Fonts Tot. images
Latin 26 115 11960 6 624
Greek 24 6 576 3 288
Math. 44 6 1056 3 528

Table 4.1.1: Image assignment for training and testing each type of text

Since the image processing is a long, tiring and error-prone procedure. It’s un-
feasible to generate images manually. So we use Matplotlib which is a Python 2D
plotting library. It produces publicatable-quality of the figures in different formats
and interactive environments across platform[19]. We generate both the image files
to be used for the neural networks and the previews of the characters in all available
fonts for better introducing them

Figure 4.1.1 illustrates the code developed to generate the 24 Greek characters
with 4 sizes and 6 fonts automatically. The generation of each character is based on
its corresponding latex code. And the result of this part of the code is the image files
used for training the neural networks. As the above code shows that all the images
are generated one by one automatically. Also every time an image is generated, it is
named after the symbol’s name, font, and size (E.g., 9pt_mathit_subset.png), and
these specific file names help us in the next step to produce the labeled data set. In
each image, there is a single character located in the top left, size is among 9, 10, 11
and 12 pt. The character is black in the white background to present all the symbols
clearly, the previews of the characters for training the artificial neural networks are
shown in the Figure 4.1.2- 4.1.4. In these figures, there are many different fonts for
the Latin characters, with various shapes and real sizes. For the Latin characters,
there are the Arial, Calibri and etc, which are the most common fonts. And for the
Greek and mathematical characters, there are 6 fonts which are specific from the
math font family. That’s the main feature of the artificial neural network or even
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4.1 – Generate Image Files

Figure 4.1.1: The code for the generation of images with Greek characters

the machine learning, which is required a large amount of data set for training and
then get the ability to recognize the character even with some noises.

Figure 4.1.2: The preview of training set for mathematical symbol
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Figure 4.1.3: The preview of training set for Latin characters
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Figure 4.1.4: The preview of training set for Greek symbol

After the generation of image files, we assign them into different neural networks.
The detailed assignment is in the following Table 4.1.2. For example, there are 5980
images for training and 312 images for testing in nn1, which is in charge of the Latin
characters with size 9pt and 10pt. As shown in the column Output Neurons, for
nn1, there are 26, which means this neural network can recognize 26 patterns, i.e.,
26 Latin characters.

Neural
Network Type Font Size

(pt)
Training

Set
Testing
Set

Output
Neurons

nn1 Latin 9-10 5980 312 26
nn2 Latin 11-12 5980 312 26
nn3 Greek 9-10 288 144 24
nn4 Greek 11-12 288 144 24
nn5 Math. 9-10 528 264 44
nn6 Math. 11-12 582 264 44

Table 4.1.2: Data set assignment for each neural network

35



4 – Results and Performance Evaluation

4.2 Image Preprocessing

All the images need to undergo the preprocessing and features extraction before
being analyzed by the ANN. In this part, all the image contents are converted into
vectors[20], and the corresponding file names are decoded also into vectors.

4.2.1 Image content analysis

Figure 4.2.1: A simple example of image preprocessing

The draft of the image preprocessing is shown in the Figure 4.2.1 . We implement
them with Matlab program. In the following, we discuss each of them in details.

Binarization Remove the irrelevant color elements based on a threshold in order.
It’s implemented in Matlab by the Function im2bw() which converts the grayscale
image to binary image. As a result, all the color pixels are converted into the black
(one) or white (zero) pixel, which reduces the subsequent analysis complexity, and
for each image file there is a corresponding matrix, so that one element in the matrix
represents one pixel in the image.

Normalization In the binarization, from each image, we obtain a corresponding
binary matrix which presents all the pixel information. However, this matrix might
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include some invalid element ( e.g. padding of the image). So we want to minimize
the size of the matrix without losing any valid information loss. In this step, for
each image, its matrix is to be re-sized by nr and nc, which are the number of pixels
in the row and column, respectively, and fixed for a neural network (the reason will
be explained in the next step about linearization.). Starting from the right and
the bottom, the padding is removed until the first row or column where non-empty
is found. The re-size of matrices can reduce the computational complexity later.
Finally, we find the minimum values of nr and nc for each neural network, which
can cover all the valid information of the character. Also, the product of nr and nc
is equal to the number of the neurons in the input layer for each neural network, as
shown in Table 4.2.1.

Neural
Network Type Font Size

(pt) nr * nc

nn1 Latin 9-10 90 * 100
nn2 Latin 11-12 110 * 120
nn3 Greek 9-10 80 * 90
nn4 Greek 11-12 90 * 100
nn5 Math. 9-10 110 * 115
nn6 Math. 11-12 135*140

Table 4.2.1: The the number of neurons in the input layer of each neural networks after
image pre-processing

Linearization In the normalization, a re-sized matrix is obtained for each image
file. The size nr*nc is also the size of input layer in a neural network, as one neuron
in the input layer is in charge of one pixel of the image to manage a group of the
images for training in a neural network, it’s necessary to transfer a matrix for an
image into a column vector, which is the procedure of linearization. Then we collect
all the column vectors and present them as a collection of all the images by a matrix
which is the input matrix used for the neural network.
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4.2.2 Image naming convention

During the generation of image file, we make the image file name with the format
of "[fontsize]_[fontname]_[character].png". While analyzing the content of the im-
age to generate input vector of a neural network, we could also get the expected
output vector from the file name. For example, there is an image file with name
9pt_mathit_a.png. Character "a" is the first element among 26 elements which
could be analyzed by the Latin neural networks NN1 and NN2 as we assigned, and
size 9pt belongs to the NN1. So the expected output is generated by a 26-length
column vector with the first element in one and the rest of 25 elements in zero.
Finally, the collection of these expected output vector is managed together as an
output matrix used for the neural network. The combination of output matrix with
its corresponding input matrix becomes the labeled data set used by supervised
learning in training the neural network.
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4.3 Training the Neural Network

After the preparation of labeled datasets (input matrices and expected output matri-
ces), we begin to train the six neural networks separately by means of BP algorithm
with the corresponding training dataset.

In this part, the neural networks are trained separately with different structures
and parameters to find their best performances, which are assessed by the elapsed
time and the steps needed for training. After training, each neural network should
be able to recognize all the images in its training set with 100% accuracy.

The implementation in Matlab is shown as follows:

[weights_12, weights_23, nStep, elapsedT ime] =

train_neural_network(starting_weights_12, starting_weights_23,

trainingSet, trainingOutput, eta,maxStep);

starting_weights_12, starting_weights_23 are initial weights between the first
and second layer and between the second and third layer for a neural network.
The size of weight matrix depends on the number of neurons in each layer. The
number of neurons in the input and output layer are fixed by the valid dimension
of each image and the number of symbols to be recognized by this neural network,
respectively. However, the number of neurons (i.e., N_2) in the hidden layer need
to be explored. For the initialization, we use the random generator (i.e., Matlab
function rand()) to generate the weight for each connection with the range of [-
kk/2,kk/2]. kk is predefined and usually below 1. trainingSet is the collection of the
input vectors generated from images and trainingOutput is the collection of expected
output vectors generated from the image file names. eta is the learning rate of the
back propagation method. maxStep is the maximum steps allowed. If the neural
network after maxStep still can not reach the expected value, an error message is

39



4 – Results and Performance Evaluation

prompted.

In the training step, our aim is to find the optimal solution by adjusting the
values of kk, eta, and N_2, which is related to the performance of back propagation
method and structure of the neural network. We firstly focus on the neural networks
of the Greek characters and mathematical symbols.

We assess the behavior of training process by the elapsed time and the training
steps and the percentage of the errors from testing the training dataset by the trained
neural network, which should be zero.

Table 4.3.1 to Table 4.3.8 report the experimental results on NN3, NN4, NN5
and NN6 to achieve the 100% accuracy. From Table 4.3.1 to Table 4.3.8, the average
elapsed time and steps for training NN3, NN4, NN5 and NN6 are shown respectively
with different values of N_2, kk and eta in 30 repetition tests. The shortest elapsed
time and the fewest steps in each sub-table are marked in red.

Table 4.3.1: Average elapsed time by training NN3 with different values of N_2, kk and
eta
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Table 4.3.2: Average training steps of NN3 with different values of N_2, kk and eta

As we see in Table 4.3.1, with different values of each group of parameters, the
elapsed times vary from [1.93, 28.24]. So to choose the optimal result among the red
marked ones, we consider more about the number of neurons of the hidden layer,
but relatively shorter elapsed time and fewer training steps.

Table 4.3.3: Average elapsed time by training NN4 with different values of N_2, kk and
eta
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Table 4.3.4: Average training steps of NN4 with different values of N_2, kk and eta

Table 4.3.5: Average elapsed time by training NN5 with different values of N_2, kk and
eta
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Table 4.3.6: Average training steps of NN5 with different values of N_2, kk and eta

Table 4.3.7: Average elapsed time by training NN6 with different values of N_2, kk and
eta
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Table 4.3.8: Average training steps of NN6 with different values of N_2, kk and eta

With the evaluation of elapsed time and the number of training steps, we get the
optimal structure and parameters for each neural networks with the requirement of
100% accuracy of recognition on its training data set. The details are shown in the
Table 4.3.9.

neural network N_2 KK ETA
nn1 120 0.4 0.8
nn2 120 0.4 0.8
nn3 200 0.3 0.3
nn4 200 0.3 0.3
nn5 150 0.3 0.4
nn6 150 0.3 0.3

Table 4.3.9: The optimal parameters for accurate the neural network
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4.4 Testing the Neural Network

This section deals with training the neural networks with the testing set, which are
generated from the images the neural networks haven’t study before. The images for
testing are similar to the images for training before, but with some slight differences.
For example, the Latin characters in Arial are used for training, and the Latin
characters in Cambria could be used for testing. During the training procedure, a
neural network learns from many enough images and has the ability to recognize
characters according to their main features. In the testing procedure, the learning
ability is to be assessed by images with the same main features but with some
different features which are not trained before. After the testing and re-adjusting,
the performance of each neural networks, which is assessed by the ability to recognize
the strange but similar images, is improved. This step is implemented by the Matlab
function shown as follows:

[testOutput, elapsedT ime, pErr, nErr] = test_neural_network

(weights_12, weights_23, testSet, expectedOutput)

weights_12, weights_23 are the trained weights from the last step. testSet is
similar with the one mentioned previously, which is the collection of input vectors
generated from each image. expectedOutput is the collection of expected output
vectors, which is generated from the image file name. pErr and nErr are the values
present the accuracy of the trained neural network with the image which is not
learned before. The test result for each trained table is show in Table 4.4.1, which
might be optimized in the following.

As the results show that in the nn3, nn4, nn5 and nn6 the accuracy is 100%.
However, in nn1 and nn2, which are in charge of the Latin characters, the percent-
age of error is much higher. So we adjust the structure and the parameters of these
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Neural Network Content pErr(%)
nn1 Latin 9-10pt 26.5749
nn2 Latin 11-12pt 24.5963
nn3 Greek 9-10pt 0
nn4 Greek 11-12pt 0
nn5 math 9-10pt 0
nn6 math 11-12pt 0

Table 4.4.1: percentage of error (pErr) for each trained neural networks with the testing
set

two neural networks, but this doesn’t improve the performance. Another experi-
ment has been carried with respect to the increase of the number of neurons in the
hidden layer, which obviously improves their performances. The experimental result
is shown in Table 4.4.2 and Figure 4.4.1, in which as the increase of neurons in the
hidden layer, the percentage of the error in recognizing images from testing dataset
rapidly decreases.

Figure 4.4.1: The plot of pErr of NN1 and NN2 trained by different N_2 values with
kk=0.4 and eta=0.8

Of course, as the number of neurons in the hidden layer increases, the elapsed time
is also longer. However, compared with the training elapsed time, we concentrate
more on the accuracy, as the accuracy for the single neuron has the influence on the
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Number of neurons
in the hidden layer

pErr (%)
NN1 NN2

200 26.5769 24.9487
250 25.3333 23.2392
300 24.1667 21.7436
350 22.8141 21.2372
400 21.2244 19.7115
450 20.4936 19.109
500 19.955 18.5321

Table 4.4.2: pErr of NN1 and NN2 trained by different N_2 values with kk=0.4 and
eta=0.8

accuracy of the parallel neural networks.

In a word, the optimal structure and parameters for Latin neural networks NN1
and NN2 are 500 neurons in the hidden layer, the range of random initial weight
for training is [-0.1,0.1] and the learning rate is 0.8. Then the optimal percentage of
error are 15% and 8% for the nn1 and nn2, respectively.

We also check the images which are wrongly recognized by NN2 and present them
in Figure 4.4.2. with the pixel grid.

Figure 4.4.2: The testing images which are wrongly recognized by NN2.

Overall, after the testing trained neural networks with testing data set. The
optimal accuracy and its relative structure and parameters are shown on the Table
4.4.3.
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neural network content N_2 KK ETA pErr(%)
nn1 Latin 9-10pt 500 0.2 0.8 15.3467
nn2 Latin 11-12pt 500 0.2 0.8 8.5597
nn3 Greek 9-10pt 200 0.30 0.3 0
nn4 Greek 11-12pt 200 0.3 0.3 0
nn5 math 9-10pt 150 0.3 0.4 0
nn6 math 11-12pt 150 0.3 0.3 0

Table 4.4.3: percentage of error (pErr) for each trained neural networks with the testing
set

Until now, we find the optimal parameters and structure for each neural network
based on the performance of the testing data set.

4.5 Parallel Neural Networks: Voting Algorithm

In previous parts, we get the six independently-trained neural networks, and opti-
mize their performances. Our aim is combining them together and build our final
OCR. With the parallel neural networks, each neural network still works separately.

We focus on making the neural networks work in parallel and each of them
produces its own output based on its structure and weights. There is the voting
algorithm which selects the most proper output as the final outcome. That’s the
general idea of the parallel neural networks (PNN).

These results could be invalid (i.e., more than one 1 in the final output vector),
valid but wrong (e.g., recognize Latin character ’o’ as number zero), or valid and
correct.

In the single neural network, the errors are only from wrong recognition of the
patterns. However, In parallel neural networks, errors might derive from the mis-
classifications of the voting algorithm.
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So in this part, the main difficulty is how to choose the only correct result as the
final outcome of OCR among the valid ones.

4.5.1 Voting strategies

In Figure 4.5.1 and Figure 4.5.2, there are the brief pipelines about our idea of par-
allel neural networks.

Figure 4.5.1: The parallel neural networks

Firstly, we set a group of image files as our testing dataset, which includes all
the testing sets for six neural networks. It could check easily whether the accuracy
of the parallel neural network is as good as the average accuracy of the six single
neural networks. Secondly, we apply the testing images to the six trained neural
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Figure 4.5.2: The pipeline of the parallel neural networks

networks to create six testing sets and one expected testing output. This means that
if we apply a character in 12pt into the neural network which is specific for size 9pt.
There is a large possibility that the pixels including the character feature will be
lost, which means that the wrong neural network couldn’t recognize it as one of its
members as usually. The only expected testing output is used for the final step to
check the correctness of the output of parallel neural networks, which is generated
according to the name of the image file.

Select a number of the image files generated before as the recognition objects for
the parallel neural networks. These image files could generate six different input
matrices by applied with six neural networks and one expected output matrix by
analyzing their file names.

The reason for the six different inputs matrices is that for each neural network,
the number of neurons in the input layer depends on nr and nc, which are the
minimum sizes to cover all feature pixels without any information loss. Each neural
network analyses a range of the characters with specific sizes, so that the values of
nc*nr are different. In this case, there is the possibility that a character in size 12
pt is applied to a neural network which is specific for the characters in 9 pt, and
some of the feature pixels are lost as the normalization size for this neural network
is not large enough to cover all the feature pixels of this image. In this case, there
is no error message prompted.

As for the only expected output matrix, rather than a real matrix, it’s better to
describe it as a collection of column vectors with various lengths. For example, a
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Latin character produces its expected output vector with length 26, but a Greek
character produces one with length 24, as we analyze 26 Latin characters and 24
Greek characters. This expected output collection is used in the last step for checking
the correctness of outcome of parallel neural networks.

After the generations of six input data sets, we apply them to the corresponding
neural networks. Based on their structure and weights, there are six real output
matrices generated, and then also the rounded output matrix is generated.

From the rounded outputs, we could do the first selection, which works by re-
moving the invalid outputs. The invalid output is defined by the composition of the
rounded output which should consist of only one "high" element which points to one
of the patterns this neural network could recognize, and the rest are " low" elements
which mean the other patterns. In a word, in this step, the neural network who
doesn’t generate a N-length vector with only one ’1’ element and N-1 ’0’ element is
not considered anymore.

After removing all the invalid results, it’s needed to select among the valid results
based our strategies. We provide three methods available for the selection.

Method A Calculate the square root of the sum of the difference between each
element in the rounded and real output vector, which is called Euclidean norm.
Each valid output will produce a Euclidean norm, which is divided by the number
of output neurons and then the smallest one is selected, which means that the neural
network, who produces this smallest mean norm, is selected to be the most suitable
neural network for recognizing this image. In order to optimize its procedure, the
mean Euclidean distance is used for avoiding the effect of the numbers of output
neurons in different neural networks. The detail is shown in Formula 3.2. For
example, the neural network with 24 output neurons and 44 output neurons, even
the former performs better than the latter, but its Euclidean norm may still larger,
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which may cause the error.

MeanEuclideanNorm = ‖ORound −OReal‖
n

(4.1)

Method B Previously all the invalid outputs have been removed, and the rest of
the outputs are all valid, which means in all output vectors there is only an element
in the range of [0.51, 0.99] and the rest in the range [0, 0.49]. So we decide to
choose the largest element in each valid output, which, in some ways, emphasis the
most important value and remove other noise. Then compare all the largest values
select the maximum among them. The output from the neural network who own
this selected value is processed as the outcome of the parallel neural networks.

Method C Based on the Method A, add the previous precision on mean Euclidean
distance. This method is inspired by the Boosting, which is an ensemble method
used for constructing the weak classifiers. The minimum value of the weighted mean
Euclidean distance is selected, and the output from the neural network who produce
this min value is selected as the final outcome of parallel neural networks.

Finally, after the final outcome of the parallel neural networks is selected by three
methods mentioned above, it is compared with the expected outcome generated
before to check its correctness.

4.5.2 Experimental test

In this part, we focus on testing the parallel neural networks (PNN) by two main
parts of data sets: one is training data set, in which previously we get the 100%
accuracy in corresponding neural networks working separately as a result, and the
other is testing data set, in which previously we get on average of 95% accuracy.

Testing PNN with the training set could check errors from the wrong decision of
voting algorithm. And testing PNN with the testing set could evaluate the general
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performance of PNN (i.e., OCR)

Based on the Table 4.4.3. We could regard the NN3, NN4, NN5, and NN6 as
the strong learners and NN1 and NN2 as the weaker learners. The strong learner
has the high ability to recognize its corresponding objects and the weak learner has
the relatively low ability to recognize its objects, which is classified based on their
previous performance.

We test the PNN based on the previous trained neural networks (case 1), and
then improve the strong learners and weaker learner respectively (case 2), Finally,
combine the improvement of both strong and weak learners (case 3). In order to
analyze the behaviors of three methods of voting strategies.

Each test works on three methods of voting strategy. For each strategy, the
specific data sets (eg. Greek characters only) and the mixed data sets (i.e. a
collection of Greek characters, mathematical symbols and Latin characters) are both
applied in order to analyze the behaviors more clearly.

Case 1 Based on previous optimized-trained neural networks. The result is shown
in the Table 4.5.1 and 4.5.2.

Training
Data Set

pErr (%)
Method A Method B Method C

Greek (576) 17.01 11.11 12.67
math (1056) 8.24 13.92 3.41
Latin (1200) 10.17 14.08 17.83
Mixed (2832) 10.84 13.42 11.40

Table 4.5.1: Testing the parallel neural networks with previous training sets(v.1)

This case is based on the neural networks with 85% and 92% accuracies for NN1
and NN2, and 100% for NN3 to NN6. In the training set table, the accuracy should
be 100%. Especially for the Greek data set, the percentage of the error is much
higher than the mathematical data set. As for the testing set table, the accuracy
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Testing
Data Set

pErr(%)
Method A Method B Method C

Greek (276) 5.43 5.43 4.35
math (528) 9.66 13.07 3.98
Latin (600) 13.17 18.5 20.83
Mixed (1404) 10.33 13.89 11.25

Table 4.5.2: Testing the parallel neural networks with testing sets(v.1)

should be about 95% on average, but actually, it’s only in 10.33 with the best
performance. However, compared with the result about training set table, it’s not
out of expectation. For the three strategies in this, method A performs well in
recognizing the Latin characters and on the contrary method C performs better in
the Greek and mathematical. But in general method A performs better.

Case 2 Based on the first case, we improve NN1 and NN2 by increasing the number
of neurons in the hidden layer from 500 to 700. As a result, we get the new accuracy
of NN1 and NN2 which are 91.1% and 90.7% respectively. The following Table 4.5.3
and 4.5.4 summarize experimental results.

Training
Data Set

pErr(%)
Method A Method B Method C

Greek (576) 21.88 11.81 15.63
math (1056) 10.23 13.92 4.36
Latin (1200) 5.5 11.83 7.58

Total 10.60 12.61 8.02

Table 4.5.3: Testing the parallel neural networks with previous training sets(v.2)

Testing
Data Set

pErr(%)
Method A Method B Method C

Greek (276) 17.39 8.7 5.43
math (528) 10.8 14.2 4.55
Latin (600) 10.17 15.67 16
Total(1404) 11.82 13.75 9.62

Table 4.5.4: Testing the parallel neural networks with testing sets(v.2)
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We improve the performance of the weak learner (i.e. Latin ones) in this case.

For method A, the accuracy of recognizing the Greek and the mathematical is
much worse than before but for the Latin character, it’s much better. Generally, its
performance is the same with case 1.

For method B, the general performance is not improved.

For method C, the accuracy of Greek and the mathematical dataset is only
slightly worse than before, but the recognition of the Latin characters is much better.
In general, method B performs better than the last case.

In this case, we change the average accuracy by improving the weak learners
in the parallel neural network, the method C evaluated by the different set of the
images performs better than the other two methods.

Case 3 Based on Case 1, we improve NN3, NN4, NN5 and NN6 by raising the
requirements of training(i.e., with higher threshold ), which also reduces the influ-
ence of random weight generation. The improvement of strong learners is based on
adjusting the threshold for training, as in the previous testing, these neural networks
have already get the accuracy of 100%. The results are shown on the Table 4.5.5
and 4.5.6.

Training
Data Set

pErr(%)
Method A Method B Method C

Greek (576) 1.04 8.68 0.17
math (1056) 0 5.96 0
Latin (1200) 11.67 13.67 21

Total 5.16 9.78 8.93

Table 4.5.5: Testing the parallel neural networks with previous training sets(v.3)

We could get from the result that all of the three strategies perform much better
than before. Especially for the method A and C, the accuracy for recognizing both
Greek characters and the mathematical characters are nearly 99%. Compared with
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Testing
Data Set

pErr(%)
Method A Method B Method C

Greek (276) 1.09 7.61 0
math (528) 0 3.41 0
Latin (600) 16.33 20.17 24.33
Total(1404) 7.19 11.4 10.4

Table 4.5.6: Testing the parallel neural networks with testing sets(v.3)

method C, method A perform better in general. However, for the method B, the
general performance is nearly the same as the last two cases.

Case 4 Combine the improvement from the second and third case.

Training
Data Set

pErr(%)
Method A Method B Method C

Greek 1.91 7.64 0.52
math 0 4.92 0
Latin 7.08 10.67 10.17
Total 3.39 7.91 4.42

Table 4.5.7: Testing the parallel neural networks with previous training sets(v.4)

We improve the performance of both strong learners and weak learners. As Table
4.5.7 and Table 4.5.8 shows, we get the best accuracy of PNN which is 5.06% in
method A. For the method C, it’s a little bit worse than method A which is 7.62%.
As for method B, it is the worst.

Testing
Data Set

pErr(%)
Method A Method B Method C

Greek (276) 2.17 11.96 2.17
math (528) 0 2.28 0
Latin (600) 10.83 17.33 16.83
Total(1404) 5.06 10.61 7.62

Table 4.5.8: Testing the parallel neural networks with testing sets(v.4)
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Since it’s the best performance of PNN could get among the four cases. In the
following, we would analyze an image (Latin character "a") which is recognized by
six neural networks separately. In Figure 4.5.3, these subfigures are plotted by the
input vectors generated from each neural network. All the three strategies of PNN
select the output from the Greek neural network (nn4), so that this image is recog-
nized as Greek character α.

Figure 4.5.3: The testing images which are wrongly recognized by PNN.

Summary from all cases The method A performs steadily in general, which
could face the challenges from different neural networks. In the first, third and
fourth case, its performance is the best among three methods, and with the higher
possibility to be improved For method B, the selection is very limited, which only
based the highest element of an output vector. Compared with other two methods,
it’s the worst one. For method C, compared with the method A, it’s a little bit
unsteady, although it’s developed based on it. However, in the second case, when
we improve the study ability of weak learners, its performance is improved obviously
with respect to the method A.
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There is still a long way to exploit the voting strategies of the parallel neural
networks. In our study, the best performance of the strategy is 94.94% accuracy.
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Chapter 5

Conclusion

The goal of this thesis is to study some tools and strategies for developing an auto-
matic Optical Character Recognition (OCR) system specifically tailored for scientific
text in order to assist blind and visually impaired persons during their studies. In
this thesis, the pattern recognition algorithm of OCR is based on Artificial Neural
Networks (ANN).

As the main outcome of this thesis, we have developed a recognition core based on
six ANNs, each of which focuses on different sets of patterns (like Latin characters,
Greek characters and mathematical symbols) and font sizes.

In order to train the neural network, the labeled data sets are required. In our
study, we selected the 26 Latin characters, 24 Greek characters and 44 the most
frequently-used mathematical symbols as the training objects.

The database consists of image files which are generated using Matplotlib. This
database is the second outcome of this thesis. These images vary in their fonts, sizes
and symbols, and each one has specific file name. We worked on 13,592 files for
training, and 1440 files for testing.

To get the labeled data set, we used Matlab to convert each image into a vector,
the collection of which is the input matrix of a neural network. And the expected
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output of a neural network is generated by recognizing the name of each image file.

After preparing the labeled data sets, we trained the six neural networks sepa-
rately by means of BP algorithm. In this step, each neural network is trained with
different structures and parameters, i.e., the number of neurons in the hidden layer
(N_2), the range of initial weights from random generators (kk) and the learning
rate (eta) to get their best performances evaluated by the elapsed time and training
steps. After training, each neural network is able to recognize all the images in its
training dataset with 100% accuracy. However, the learning abilities for the neural
networks are still to be assessed by the testing dataset. In this step, we re-adjusted
the structures and parameters for each neural network with the aim of improving its
performance which is evaluated by the accuracy of recognizing the images in testing
dataset.

In the experimental test, both of the percentages of errors for testing dataset in
NN1 and NN2, which are in charge of the Latin characters, were about 35%. With
the previous experience, we decided to increase the training dataset from 30 fonts
to 115 fonts and increase the number of neurons in the hidden layer from 100 to
500 which reduces the percentage of errors approximately to 12%. For the neural
networks which are in charge of the Greek character and the mathematical symbols,
the accuracy of the testing data set is 100%. We only focused on finding the optimal
parameters to obtain the shorter elapsed time and less training steps by repetition
tests. In a word, we trained and tested all six neural networks separately and then
assessed their performances in the consideration of elapsed time, training steps, and
learning ability.

Based on six trained neural networks, we exploited the parallel neural networks
(PNN) by developing three strategies of voting algorithm which is used for selecting
the most proper output from all the outputs of six parallel-running neural networks
without considering the invalid outputs, in which there is not only one high element.
In this part, we developed three methods for the voting algorithm. Method A is based
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on the mean Euclidean norm between the real output and the rounded output of
a neural network. Method B focuses only on the maximum element in each output
vector. Method C is based on the method A, but additionally applies the previous
accuracy on the selection.

We assessed three strategies by the previous training set and testing set with
different PNNs, and observed their performances. Generally, the behavior of method
A is the most steadiest and the best, which could recognize the training set with the
accuracy of 96.6% and the testing set with accuracy of 94.9%. The performance of
method C, whose accuracies are 95.6% and 92.4% respectively, is slightly worse than
method A. Additionally, the behavior of method C, much related to the accuracy
of each single neural network, is not so predictable. As for the method B, its
performance is the worst with the accuracies 92.1% and 89.4% for the training set
and testing set.

Overall, in this thesis, we generated our own data set, and trained the six neural
networks separately with the average accuracy 96.95%.

Also we developed three strategies of the voting algorithm for the parallel neural
networks. Among them, the method, which has the best and steadiest behaviors, is
based on the mean Euclidean norm with accuracy 94.9%.

In the future, there is still the large possibility to improve the performance of
PNN by developing new voting strategies based on our current study. For the better
behavior of voting strategies, for example, with the support of large-scale database,
we could apply the occurrence frequency of each character to the voting strategies.
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