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Abstract

A simple method based on creation of Fourier amplitude spectrum model

from a response spectrum is presented. The procedure generates suites of

stochastic ground motions strictly matching the mean value of a target re-

sponse spectrum. The application of white-noise with constraints on the

variance and inter-frequency correlation provides the realistic variability of

the Fourier amplitude spectrum. A two corner frequency model is estimated

from empirical ground-motion data and a kappa filter is applied to capture

the attenuation at high frequencies. The method showed excellent match-

ing in terms of both the mean and dispersion values with either the median

from GMPEs or conditional mean spectra. Time-histories generated by this

methodology do not require scaling or frequency content adjustments. The

method proposed can be successfully applied from Design spectra.

Phase derivatives distributions of the PEER NGA-West1 database are es-

timated and the relationship between the distribution dispersion and seismo-

logical parameters are evaluated. The shape parameter of logistic distribution

is proposed as an appropriate measure of dispersion of the phase derivative.

First, the relation between the shape parameter and the significant duration

(5-75% Arias intesity) is used to check database for outliers. Second, an em-

pirical relation relating shape parameter with moment magnitude, rupture

distance, soil category and rupture directivity is developed using non-linear

regression. Three applications of the phase derivative models for stochastic

ground motion models are proposed: (i) random logistic-distributed phase

angles, (ii) calibration of an exponential time window consistent with the

phase derivatives shape parameter, and (iii) generation of a near fault pulses

using a modified phase difference distribution.

The stochastic ground motions generation is used to develop suite of time
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histories for the conditional scenario spectra (CSS). The CSS are a set of

response spectra with assigned rates of occurrence that reproduce the hazard

over a wide range of hazard levels and spectral periods at one site. The CSS

provide an estimate of the seismic history for a site in terms of the time

histories likely to be experienced at the site. These time histories and their

rates are then used to estimate the hazard curve for engineering demand

parameters. The method used for generate stochastic ground motions is

based on matching target response spectra which is the main set of CSS.

The main advantages of this application are: (i) the small number of time

histories (generally less than one hundred) required to reproduce the hazard

compared to methods that use recorded time histories, and (ii) the very fast

computation.
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Chapter 1

Introduction

Dynamic structural analysis is increasingly advancing into selection of real

ground motions as input; records databases and reliability are constant grow-

ing, moving artificial ground motions to the background. Nevertheless, these

databases does not totally cover all areas of the world as well as case studies

with high magnitude earthquakes; therefore real records are not suffice and

other resources are needed.

Douglas, Aochi (2008) proposes a survey of all methodologies used to gen-

erate predicted earthquakes ground motions. Overall, it is possible to divide

all the methodologies in two approaches: ’physics-based’ and experimental

approach. The first one can be defined as mathematical models based on

physical principles; the second one as mathematical models based on fitting

of experimental data.

The second category is also named ’black box’ method, because it is based

on the recreation of a certain feature of ground motion records without phys-

ical considerations. A common method is the usage of white noise modified

by filtering in the frequency domain and multiplied by an envelope function.

Usually, the frequency content and envelope function are obtained by predic-

tion equations (Sabetta, Pugliese, 1996). SIMQKE (Gasparini, Vanmarcke,

1976) is another code belonging to this category; the frequency content is

filtered by a function which is obtained from a target elastic response spec-

trum. Furthermore, the latter requires an iterative process of adjustment in

the frequency content.
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The lack of physic assumptions in the ’black box’ methods moved the

focus of researchers in the first category, where it is possible to find a larger

number of solutions. Boore (2003) proposes one of the most exhaustive

and simple ’physic-based’ methods. A Fourier amplitude spectrum (FAS)

model is estimated using a point-source spectrum model; therefore, this is

transferred to the site by means of anelastic and geometric attenuation. The

obtained FAS is used for filtering a Gaussian white noise by following the

same procedure of ’black box’ category. Natural prosecution of this method

is the discretization of the complex geometry of a fault by the combination

of several points-source spectra. Atkinson, Assatourians (2015) describes the

implementation and validation of such methodology.

Another group of physic-based methods is composed by finite difference

methods (FDM), finite element methods (FEM) and spectral element meth-

ods (SEM). They are becoming more and more the best solution for simulate

near-fault effect and obtain a reliable prediction of an earthquake source lo-

cation and information about the medium. Drawbacks are the very high time

consumption and the difficulties to parallelize the computation.

In chapter 2 is proposed a methodology which fits in the physic-based cat-

egory. The work-flow is coincident with the procedure used in Boore (2003):

the frequency content of white noise is filtered by a FAS model and inverted

in the time domain. First novelty consists of a procedure for obtain a FAS

model from a target response spectrum. The FAS model is developed by

means of a generalized double corner frequency model and application of an

high-frequency filter commonly used for stochastic ground motions. Second

novelty comes from the achievement of time non-stationarity. Typically, the

white noise is windowed by an envelope function in the time domain and then

filtered in the frequency domain. The effect of such windowing is represented

in the frequency domain by a variation of phase derivatives (the derivative of

phase angles) distribution. For this aim, in chapter 3 a study of earthquakes

phase derivatives is presented in order to propose a prediction equation to ap-

ply for stochastic ground motions non-stationarity. This methodology allows

the creation of suites of stochastic ground motions able to have a mean values

matching a target response spectrum. Furthermore, the FAS is generated by

means of a covariance matrix; this leads to two remarkable improvements, (i)
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dispersion consistent with the target spectrum obtained by the adjustment in

the variance and (ii) inter-frequency correlation consistent with earthquakes

records.

In summary, suites of stochastic ground motions generated by this pro-

cedure show mean value and dispersion consistent with a target spectrum

and correlation in the frequency content. Moreover, the application of phase

derivatives ad hoc computed according to site conditions provides congruous

time non-stationarity. All these features allows the application of stochastic

ground motions for the generation of Conditional Scenario Spectra (CSS).

The CSS is a selection of response spectra with assigned rates of occurrence,

which is able to represent all the seismic scenarios for a case study. There-

fore, such set can be used to obtain fragility curve of engineering demand

parameters (EDP); in other words, a plot of the variation of a meaningful

parameter (e.g. interstory drift) according to the hazard level. The inputs

are the Uniform hazard spectra with an assigned hazard and mean value

of magnitude and distance for each level. Chapter 4 describes in detail the

procedure to develop the CSS from stochastic ground motions.
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Chapter 2

Stochastic ground motion

model

2.1 Abstract

A simple method based on creation of Fourier amplitude spectrum model

from a response spectrum is presented. The procedure generates suites of

stochastic ground motions strictly matching the mean value of a target re-

sponse spectrum. The application of white-noise with constraints on the

variance and inter-frequency correlation provides the realistic variability of

the Fourier amplitude spectrum. A two corner frequency model is estimated

from empirical ground-motion data and a kappa filter is applied to capture

the attenuation at high frequencies. The method showed excellent match-

ing in terms of both the mean and dispersion values with either the median

from GMPEs or conditional mean spectra. Time-histories generated by this

methodology do not require scaling or frequency content adjustments. The

method proposed can be successfully applied from Design spectra.
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2.2 Introduction

A relationship between a response spectrum and the Fourier amplitude spec-

trum (FAS) was proposed in Gasparini, Vanmarcke (1976). The aim is

achieved by the application of random vibration theory which provides the

power spectral density function definition from a response spectrum by an

iterative process. FAS is obtained by energetic equilibrium with the power

spectral density function. Therefore, time-histories are computed as super-

position of sine waves shaped by an envelope function to accomplish the non-

stationarity. FAS models from this method often show unphysical trends in

low and high frequency ranges and require a final process of scaling to match

the response spectrum. A process of adjustment in the frequency domain is

necessary to improve the spectrum matching. Herein, a method to define a

FAS model based on physical constraints is proposed. The procedure aims

to obtain a FAS model that allow the creation of stochastic ground motions

which response spectra are consistent with a target spectrum. Moreover, the

application of inter-frequency correlation model provides the generation of

FAS with proper variability and correlation. No scaling and adjustment is

required to this methodology.
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2.3 Fitted FAS model

The method is based on the generation of a FAS model from a target re-

sponse spectrum. Equation 2.1 represents the generalized FAS model used

to recreate the frequency amplitudes in the low frequency range.

FA(C, fa, ε, f) = C

f 2(1 − ε)

1 + ( f
fa

)
2 +

f 2ε

1 + f2

(f2c−f2a )/ε+f2a

 (2.1)

It is an additive double corner frequency (fa;fb) model (D. M. Boore, Abra-

hamson, 2014); ε is a weighting parameter giving the relative contributions

of the two spectra, C is a scaling parameter. The expression is obtained by

the constraint of flat high-frequency acceleration spectrum and equating the

double corner frequencies model to the single corner frequency model:

fb = fa

√
(fc/fa)

2 − (1 − ε)

ε
(2.2)

Attenuation at high frequencies is modeled by the application of κ filter

(Anderson, Hough, 1984), which is multiplied by the equation 2.1.

D(f) = e−πκf (2.3)

Following a procedure aiming to find ε , fa and C calibrated for matching

low frequency part of the target response spectrum and a proper value of κ

for the high frequency part:

1. A target spectrum is developed. It can be computed from either GMPE

or conditional mean spectrum. A value of magnitude is set.

2. Twenty samples of white-noise are generated. No time window is ap-

plied. The duration should be no less than 10 s in order to provide

sufficient frequency resolution. FAS of each sample is scaled by the

ω-square model (Aki, 1967) expressed in eq. 2.4. The corner frequency

value (fc) is set from the magnitude chosen in the first step1.

FA =
2πf 2

1 + ( f
fc

)
2 (2.4)
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This step is represented in figure 2.1.

(a) Uniform white noise generation.
(b) Fourier amplitude spectrum compu-

tation and normalization by RMS.

(c) Fourier amplitude spectrum scaling

by the single corner frequency model.
(d) Inverse Fourier transformation.

Figure 2.1: Description of white-noise generation and scaling.

3. Four cycles of adjustment are performed in the frequency domain (FAi)

proportionally to the response spectrum mismatching (SAT/SAi) to

obtain a strict spectrum-matching (see figure 2.2a):

FAi+1 = FAi
SAT
SAi

(2.5)

4. The combined suite of samples is fit with the model in equation 2.1.

1In our applications the corner frequency is computed by log(fc) = 2.623 − 0.5M
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Non-linear regression estimates ε, fa and C (see figure 2.2b); fc is fixed

by the single corner frequency model.

(a) (b)

Figure 2.2: Response spectra and Fourier amplitude spectra of the adjusted

samples.

5. A large number of realizations (e.g. 1000) is generated from the FAS

model with ε, fa and C estimated in the previous step. κ filter is

applied with a value of 0.03 s. The procedure of generation can be

summarized as follow:

• Random Fourier amplitudes (lnA(f)) computation according to a

multivariate normal distribution (Stafford, 2017) with mean vector

FA(C, fa, ε, fc, f) and covariance matrix
∑

(f):

lnA(f) ∼ N [FA(C, fa, ε, fc, f),
∑

(f)] (2.6)

• Random uniform phase angles generation. During this step, phase

angles are generated uniform because the aim is to carry out a

fast computation and the non-stationarity of each realization is

not necessary.

• Inverse Fourier transform computation to obtain the simulated

accelerograms.

6. Computation of response spectrum for each realization. Therefore com-

putation of mean response spectrum.
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7. Visual check if the mean response spectrum matches the target spec-

trum in short periods. If an adequate matching is not obtained, the

procedure go back to step 5 and κ is adjusted. This part is repeated

until short periods matching is guaranteed.

8. Eventually time-histories can be obtained from the FAS model with

ε, fa and C estimated in step 4 and κ value from the previous step.

The procedure of generation is equivalent to the one described in step

5 with the application of a proper distribution of phase angles:

• Random Fourier amplitudes (lnA(f)) computation according to a

multivariate normal distribution (Stafford, 2017) with mean vector

FA(C, fa, ε, fc, f) and covariance matrix
∑

(f) (see eq. 2.6).

• Phase angles computation by procedure proposed in chapter 3.

• Inverse Fourier transform computation to obtain the simulated

accelerograms.
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2.4 Comparison with GMPEs and CMS

The method is tested with four target spectra. Geometric mean [0.22ASK

0.22BSSA 0.22CB 0.22CY 0.12IM] of NGA-West2 equations (N. A. Abra-

hamson, Kamai, 2014; D. M. Boore, Atkinson, 2014; Campbell, Bozorgnia,

2014; Chiou, Youngs, 2014; Idriss, 2014) is developed; table 2.1 shows GM-

PEs input. Parameters are selected according to site conditions of Franco-

fonte, Sicily; a set of conditional mean spectra is created from the GMPE by

conditioning to site uniform hazard spectrum (2475 years return period) at

structural periods 0.2, 0.5 and 1 seconds. Figure 2.3a shows the four spectra.

We set a procedure for each target spectrum based on the following steps:

• Obtain FAS model parameters and kappa by the procedure previously

described.

• Generate a suite of 1000 stochastic ground motions. Random logistic-

distributed phase angles are used (see chapter 3) for obtain non-stationarity.

Each time-history is baseline corrected and low-filtered by Butterworth

filter with a cut-off frequency of 0.02 Hz.

• (Exclusively for CMS) Remove each time-history exceeding the mean

target value +/- 2.5 times the standard deviation. Logarithmic stan-

dard deviation is limited at 0.15 for avoid ”pinch” in the conditioning

period.

Figure 2.3b shows FAS models obtained. Overall, FAS models represent

consistency with target spectra; in particular, 1 s CMS highlights the model

flexibility, that is able to reproduce higher amplitudes at low frequencies.

FAS model parameters computation includes a multivariable analysis, con-

sidering three outputs. Figure 2.4 represent the region of possible fa,ε pairs

(C is fixed) shaded according to the coefficient of determination R2. In our

applications best pairs (in terms of R2) are far from flim frontier (i.e. fa

upper bound, see eq. 2.7) with ε value around 0.1.

flim =

√
1

1 − ε
fc (2.7)
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(a) Target spectra. (b) Fitted FAS models.

Figure 2.3: GMPE and CMS along with fitted FAS model for the Franco-

fonte example site. Uniform hazard spectrum comes from Italian interactive

seismic hazard map.
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(a) GMPE solutions. (b) 0.2 s CMS solutions.

(c) 0.5 s CMS solutions. (d) 1 s CMS solutions.

Figure 2.4: fa,ε solution pairs for each FAS model.
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Table 2.1: Parameters used in GMPEs computation. Omitted values are set

as unknown.

M
Rrup

(km)

Rjb

(km)

Rx

(km)

Ry0

(km)

Vs30

(m/s)
Frv Fnm Fhw

Dip

(◦)

Ztor

(km)

7 6 4.47 -4.47 0 760 1 0 0 45 4

Figure 2.5 shows suites of spectra for each target. A perfect matching

of the mean value can be considered in range between 0.01 s and 10 s as

confirmed by Goodness of fit plot (see figure 2.6) with logarithmic residuals

lying within a range of +/- 0.2.

A measure of dispersion is produced through the comparison of standard

deviation between target spectrum and simulated spectra. Concerning the

variance of input FAS (i.e. the variance used in the eq. 2.6), it is impor-

tant to remark that in these applications we fixed the variance to a constant

value of 0.8. Such imposition allows to recreate a dispersion consistent with

the GMPE standard deviation as showed by figure 2.7a. However, the com-

parison with CMS standard deviation showed a general underestimation of

dispersion when distant from conditioning period.

It is intuitive that such behavior is governed by the inter-frequency corre-

lation model implemented for the generation of FAS, some considerations

about the correlation are presented in the next section.
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(a) GMPE. (b) 0.2 s CMS.

(c) 0.5 s CMS. (d) 1 s CMS.

Figure 2.5: Suite of simulated spectra for each target.
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(a) GMPE goodness of fit.

(b) 0.2 s CMS goodness of fit.

(c) 0.5 s CMS goodness of fit.

(d) 1 s CMS goodness of fit.

Figure 2.6: Goodness of fit plots. The black line is mean bias, light gray

shading shows its standard deviation and dark shading shows 90% confidence

limits on the mean bias.
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(a) GMPE standard deviation.

(b) 0.2 s CMS standard deviation.

(c) 0.5 s CMS standard deviation.

(d) 1 s CMS standard deviation.

Figure 2.7: Logarithmic standard deviation plots for each target spectrum.
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2.5 Interfrequency correlation

The model proposed in Stafford (2017) is used in the generation of stochastic

ground motions with inter-frequency correlation (see eq. 2.6):

lnA(f) ∼ N [FA(C, fa, ε, fc, f),
∑

(f)] (2.8)

The mean vector FA(C, fa, ε, fc, f) is defined has been defined previously.

The Covariance matrix
∑

(f) is expressed as follow:

∑
(f) =


σ2(f1) ρ(f1, f2)σ(f1)σ(f2) · · · ρ(f1, fn)σ(f1)σ(fn)

ρ(f2, f1)σ(f2)σ(f1) σ2(f2) · · · ρ(f2, fn)σ(f2)σ(fn)
...

...
. . .

...

ρ(fn, f1)σ(fn)σ(f1) ρ(fn, f2)σ(f1)σ(f2) · · · σ2(fn)


(2.9)

Where σ(fi) is the standard deviation at the frequency fi and ρ(fi, fj) is the

correlation between frequencies fi and fj. They come from three different

contributions; between-event component (E ), within-event component (A)

and between-site component (S ):

ρ(fi, fj) =
ρE(fi, fj)σE(fi)σE(fj) + ρA(fi, fj)σA(fi)σA(fj) + ρS(fi, fj)σS(fi)σS(fj)

σ(fi)σ(fj)
(2.10)

σ2(fi) = σ2
E(fi) + σ2

A(fi) + σ2
S(fi) (2.11)

Each contribution is defined in Stafford (2017).

A test was carried out on the suite of one thousand simulated spectra

from GMPE, in order to check the consistency of correlation obtained by this

methodology. Figure 2.8a shows the correlation computed from logarithmic

residuals of FAS model. A visual check with the imposed correlation model

in figure 2.8b confirms the generation of inter-frequency correlation in the

FAS.

A further test on spectral acceleration correlation was performed with

the model proposed by Baker, Jayaram (2008) and corrected in the high

frequency part according to Carlton, Abrahamson (2014) (0.05 s is the T1.5

from the target GMPE) represented in figure 2.8d. The correlation obtained

by the suite is plotted in figure 2.8c. It shows consistency in the shape,
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(a) Simulated FAS correlation. (b) FAS correlation model.

(c) Simulated spectral acceleration cor-

relation.

(d) Spectral acceleration correlation

model.

Figure 2.8: Comparison between simulated correlation (left column) and

model correlation (right column) for FAS and spectral acceleration values.

although a general overestimation is detected, especially in short periods

(see fig. 4.5). Such difference is behind the underestimation of dispersion

obtained from CMS; namely, the standard deviation is more correlated to

the conditioning period than the model in Baker, Jayaram (2008).
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Figure 2.9: Spectral acceleration correlation for periods 0.2 s, 0.5 s and 1 s.
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Figure 2.10: Suite of stochastic ground motions matching Eurocode 8 design

spectrum. κ filter is set to 0.08 s, logarithmic standard deviation σ to 1.

2.6 Application from a design spectrum

In this section, a brief example of a procedure to obtain a suite of stochastic

ground motions spectrum compatible with a design spectrum is presented.

The example proposed is computed from the Eurocode 8 design spectrum

with ground acceleration ag equal to 0.8 g and soil category C. FAS model

parameters and κ are generated by the procedure described previously. A

set of stochastic ground motions (in our example 50 ) is computed. The

definition of an user-defined threshold provides the remotion of all simulated

spectra that show an excessive dispersion around the target spectrum. In

figure 2.10 are plotted 35 simulated spectra from a set of 50 realizations.

The average spectrum (red line) obtained from this suite fulfills the required

spectrum compatibility by Eurocode 8.
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2.7 Conclusions

A method for obtain a Fourier amplitude spectrum model (FAS) from a re-

sponse spectrum has been developed. Nonlinear regression provides a FAS

model from set of white-noise samples adjusted to match the response spec-

trum. The application of kappa filter provides the matching in the short

periods part of the target response spectrum.

Tests on suite of simulated spectra generated from NGA-West2 ground

motions prediction equation showed excellent matching regarding mean and

dispersion values. Further tests on CMSs showed this methodology can be

applied successfully from them.

A recent model of inter-frequency correlation in the FAS was applied

in our tests. They showed consistency with well-known model for spectral

acceleration correlation in terms of shape. However, a general overestimation

was obtained, especially in range of short periods.

Simplicity and small time demand are the main virtues of this method-

ology. Nevertheless, the methodology is constructed on physic assumptions

and relies on target response spectrum as basic input, which can be defined

in several site conditions (e.g. fault parameters, regional characterization),

providing more functionality to the model.

An application for selection of ground motions matching a design spec-

trum has been presented. After the generation of a large set of time-histories,

all simulations out of user-defined boundaries are removed. This procedure

allows to obtain suite of stochastic ground motions spectrum-compatible with

an assigned dispersion around the design spectrum.
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Chapter 3

Analysis of phase derivatives

distribution and application for

stochastic ground motions

3.1 Abstract

Phase derivatives distributions of the PEER NGA-West1 database are esti-

mated and the relationship between the distribution dispersion and seismo-

logical parameters are evaluated. The shape parameter of logistic distribution

is proposed as an appropriate measure of dispersion of the phase derivative.

First, the relation between the shape parameter and the significant duration

(5-75% Arias intesity) is used to check database for outliers. Second, an em-

pirical relation relating shape parameter with moment magnitude, rupture

distance, soil category and rupture directivity is developed using non-linear

regression. Three applications of the phase derivative models for stochastic

ground motion models with a given Fourier amplitude spectrum are proposed:

(i) random logistic-distributed phase angles, (ii) calibration of an exponential

time window consistent with the phase derivatives shape parameter, and (iii)

generation of a near fault pulses using a modified phase difference distribu-

tion.
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3.2 Introduction

Despite several models were efficiently built to recreate the Fourier Am-

plitudes of earthquake ground motions (Boore, 2003), nowadays modeling

Fourier phase angles is a difficult task and still purpose of studies. Ohsaki

(1979) defines, for the first time, phase differences and their importance in

signal non-stationarity. They are computed as follow:

∆Φ = Φi+1 − Φi; i = 0, 1, ..., N/2 − 1 (3.1)

Phase differences are usually represented by histogram in a range between

between 0 and 2π. They show a ’normal-like’ probability distribution, which

has the feature to recreate the ground motion shape: typically the mean

represents the position of peak in time-domain and the standard deviation

”the broadness” around the peak. T. Yokoyama, Watabe (1988) built a

model to define each phase difference in a range of 36 values, according to

magnitude, fault distance and soil category. Thráinsson, Kiremidjian (2002)

divided phase angles in three categories, small, intermediate and large related

to Fourier amplitude. They define mean and standard deviation prediction

equations from magnitude, distance from the site to source and soil category

for each Fourier amplitude category. However, the goodness of these models

is affected by the signal length of each record; in other words, different phase

differences distributions are obtained from the same record by changing the

signal length. For this reason, in this study the authors propose to normalize

phase differences by signal length, namely to build a model based on phase

derivatives. The presence of fat tails in phase derivatives suggested the ap-

plication of distribution with kurtosis higher than the normal distribution

(i.e. leptokurtic distributions) such as the Logistic distribution. The shape

parameter of logistic distribution is chosen as a dispersion measure of phase

derivatives. A prediction equation of the shape parameter is defined accord-

ing to magnitude, rupture distance, soil category and directivity is defined.

Eventually, three applications for accelerograms simulation are proposed.
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3.3 Phase angles processing and probability

density functions

The research was carried out in a database of 3551 recorded ground motions

coming from the NGA (B. Chiou, Silva, 2008). Only records with rupture

distance lower than 50 km were processed. Equation 3.2 defines phase deriva-

tives computed for each record.

Φ̇ =
∆Φ

∆f
(3.2)

The normalization by signal length provides that dissimilarities between each

distribution are exclusively affected by seismological parameters and not by

computation process. Each phase derivatives distribution was processed by

considering phase angles within a range of frequency between 1 Hz and 10

Hz. Furthermore, a filter removed every phase derivative with a value of

exceedance probability below 30% of the empirical cumulative distribution.

This process provided the removal of noise.

A simple visual check of phase derivatives distributions highlighted that they

typically show distribution with fat tails. Such behavior is confirmed by fit-

ting a normal distribution and comparing it with the histogram of proba-

bility density function. Thus, the employment of a leptokurtic distribution

is proposed; for this purpose, the logistic distribution is selected. Logistic

distribution is a ”normal-shaped” distribution with higher kurtosis defined

by means of mean (µ) and a scale parameter (σ); the probability density

function is given by:

f(x;µ, σ) =
e−

x−µ
σ

σ(1 + e−
x−µ
σ )

2 (3.3)

Figure 3.1 shows processed phase derivatives of ChiChi event along with nor-

mal and logistic distributions; this is a clear example of the better goodness

of fit obtained by logistic distribution.

Aim of following regression analyses is to obtain a model for predict σ.

In this context, we consider µ as a fixed parameter used to position the

distribution along the signal length; thus, it is not a purpose of study. σ is

derived by maximum likelihood estimation.
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(a) Chichi earthquake record.

(b) Unprocessed phase derivatives.

(c) Centered and filtered phase deriva-

tives.

Figure 3.1: ChiChi earthquake record and its phase derivatives.
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3.4 Model definition

Analysis involves the definition of an equation relating the significant dura-

tion SD(time between 5% and 75% of Arias intensity) and phase derivatives

shape parameter. By means of equation 3.4, a model based on well-known

relations (eq. 3.5) between duration and seismological parameters is created.

log(σ/π) = α1 + α2log(SD) (3.4)

SD = DM +DRrup +DVs30 +DDir (3.5)

In detail, theoretical seismic source models (Boore, 2003) defines that mag-

nitude influences duration through corner frequency (fc) ratio (eq. 3.6).

Equation 3.7 shows typical form of equations describing corner frequency

with event magnitude. Replacing it in equation 3.6 we find the magnitude

contribution 3.8.

DM = 1
fc

(3.6)

fc = 10α−βM (3.7)

DM = 10βM (3.8)

Atkinson, Boore (1995) propose a linear proportion between rupture distance

and duration:

DRrup = βRrup (3.9)

Near-surface shear-wave velocity logarithm is set as soil category contribu-

tion.

DVs30 = β log(Vs30) (3.10)

The directivity effect on phase derivatives is examined. Two parameters

are proposed: (i) ratio between hypocentral and rupture distance and (ii)

difference between hypocentral and rupture distance.

DDir = β
Rhyp
Rrup

(3.11)

DDir = β(Rhyp −Rrup) (3.12)

Regression analysis is conducted in three stages:

1. Linear regression aiming to find α1 and α2 in equation 3.4.
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2. Non-linear regression aiming to find β1, β2, β3 and β4 in equation 3.13.

log(σ/π) = α1 + α2log[β1 + 10β2M + β3Rrup + β4 log(Vs30)] (3.13)

3. Non-linear regression aiming to find γ1 and γ2 with all parameters fixed

by previous regressions for the two directivity parameters proposed in

equations 3.11 and 3.12.

log(σ/π) = α1+α2log[β1+10β2M +β3Rrup+β4 log(Vs30)+(γ1+γ2DDir)]

(3.14)
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3.5 Regression analysis

3.5.1 First stage

Linear regression is carried out to find α1 and α2 in equation 3.4. Signifi-

cant duration values are acquired by the PEER report 2013/03 (D. Ancheta,

2013). A scatter plot (fig. 3.2a) shows pairs SD - σ/π along with the line ob-

tained by regression. A comparison with equivalence line highlights smaller

steepness for regression line; namely σ tends to less increase than significant

duration.

Residuals distribution shows a right-skewed behavior (fig. 3.3a); a limit

of 0.3 in residuals allows the exclusion of a relevant part of outliers (see fig.

3.2b). These outliers show excessively broad or narrow phase derivatives

dispersion, not in accordance with SD variation; they can be identified as (i)

time-histories containing two earthquakes (aftershock) or (ii) time-histories

with abnormal presence of surface waves due to basin effect (see fig. 3.4

for an example). Quantile-quantile plot in figure 3.3b shows a remarkable

improvement after the exclusion of such records.

(a) SD - σ/π plot. (b) SD - Logarithmic residuals plot.

Figure 3.2: First stage regression plots.

3.5.2 Second stage

Non-linear regression is conducted to define β1, β2, β3 and β4 in equation

3.13. Table 3.1 reports parameters obtained by first and second stages. Ac-
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(a) Quantile-quantile plot of all records.
(b) Quantile-quantile plot after removal

of outliers.

Figure 3.3: First stage residuals quantile-quantile plot.

Table 3.1: First and second stage parameters.

α1 0.0019

α2 0.4664

β1 -6.1722

β2 0.1707

β3 0.1360

β4 -1.2739

cording to Boore (2003); Atkinson, Boore (1995), we expected values of β2

and β3 around, respectively, 0.5 and 0.05. However, the regression leaded to

a smaller value than expected β2 and a larger value than expected β3. Sev-

eral attempts were carried out by set a fixed value of β2 or β3, nevertheless

unacceptable goodness of fitting reduction was obtained in every case. Table

3.2 reports the correlation matrix of four parameters; the correlation between

β2 and β3 is -0.20, excluding a trade-off between the two parameters. Fig-

ure 3.5 shows logarithmic residuals versus magnitude, rupture distance and

soil category. Overall, no trend is detected from the comparison between

logarithmic residuals and each parameter. Furthermore, quantile-theoretical

quantile plot (fig. 3.6) shows that we can reasonably defines residuals nor-

mally distributed within plus and minus 1 standard deviation bounds.

30



Figure 3.4: ChiChi earthquake record. This is an example of record removed

from regression analysis.

Table 3.2: Second stage correlation matrix.
1 −0.36 −0.24 −0.97

−0.36 1 −0.20 0.15

−0.24 −0.20 1 0.23

−0.97 0.15 0.23 1
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Figure 3.5: Logarithmic residuals versus magnitude, rupture distance and

soil category.

3.5.3 Third stage

In the third stage, the effect of directivity is taken into account. Non-linear

regression analysis is performed with parameters obtained by the previous

stages. Table 3.3 shows γ1 and γ2 from equation 3.14. Results from both anal-

yses define a very low dependency of phase derivatives on directivity effect

explicated by ratio or difference between hypocentral and rupture distance.

Moreover, the low correlation reported in table 3.4 validates the results ob-

tained by the directivity expressed by the ratio; conversely, high correlation

of difference parameter discredits its goodness of fit. Quantile-quantile plot is

not reported owing to the negligible observed improvement. It is necessary to

be cautious about this result, because the directivity should be an important

effect on phase derivatives. For this reason, a reflection about the presence

of directivity effect in phase derivatives distribution is proposed within the

conclusions.
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Figure 3.6: Second stage residuals quantile-quantile plot.

Table 3.3: Parameters obtained by third stage regression.

Rhyp/Rrup Rhyp −Rrup

γ1 0.0055 0.0748

γ2 -0.0020 -0.0107

Table 3.4: Third stage correlation matrix.

(Rhyp/Rrup) (Rhyp −Rrup)[
1 −0.21

−0.21 1

] [
1 −0.72

−0.72 1

]
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3.6 Applications

Prediction of phase derivatives dispersion can be used in stochastic ground

motion generation. We consider that a Fourier amplitude spectrum (FAS)

has already been computed and the application of phase angles provides

the non-stationarity. Two methods are proposed for obtain phase angles

to combine with FAS. Moreover, a method for create near fault pulses for

stochastic ground motions is proposed. The three applications are subject of

the next three subsections.

3.6.1 Random logistic-distributed phase derivatives

1. Estimation of σ by means of equation 3.13.

2. Generation of Random logistic-distributed phase derivatives (mean value

set to π/df for centered peak).

3. Multiplication by df in order to obtain phase differences.

4. Phase angles generation from phase differences (first phase angle can

be random or arbitrary set).

5. Apply obtained phase angles to FAS model and inverse Fourier trans-

form.

An example of stochastic ground motions obtained by this procedure is plot-

ted in fig. 3.7 along with its phase differences.

Arias intensity of a suite of real records and another suite of stochastic ground

motions suites is plotted in Figure 3.8. Records are selected from NGA-

West2 database by search parameters: 6.5 < M < 7.5, 1 < Rrup < 20 km ,

760 < Vs30 < 2000 m/s; suite of stochastic ground motions is generated from

an uniformly sorted selection of the same parameters by the methodology

proposed in chapter 2. Stochastic ground motions arias intensity matches

remarkably the real records behavior within a range of most interest (0% -

75%). Such concept is confirmed by the mean value comparison, which shows

mismatching exclusively in the upper tail.
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Figure 3.7: Stochastic ground motion generated by random logistic-

distributed phase derivatives.

However, a comparison in terms of range (i.e. the difference between max-

imum and minimum value) shows a general underestimation; which implies

that a part of phase derivatives variability is not taken into account in the

model proposed.

3.6.2 Exponential window calibration

A common procedure is windowing a white-noise by an exponential function

(Saragoni, Hart, 1973), Fourier transforming, computing phase angles and

applying them to FAS model. An analysis about the relationship between

signal total duration and σ of phase derivatives obtained by this procedure

was carried out. In detail, several white-noise samples of different total dura-

tion were generated and windowed by an exponential window with parameter

ε = 0.2, η = 0.05; therefore phase derivatives shape parameter was computed

for each sample. Figure 3.9 shows regression lines from the white noise and

the equivalent procedure applied to stochastic ground motions. In both cases,

we considered phase derivatives within 1 Hz and 10 Hz. Two regression lines

are reasonably equivalent, validating the application of such relationship to

find the total duration of a windowed signal, which phase derivatives distri-

bution shows a desired shape parameter value. Definitively, the procedure
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(a) Suites (b) Mean value

(c) Range

Figure 3.8: Comparison between a suite of real ground motions and stochastic

ground motions in terms of Arias intensity. Time zero is set at 50% of Arias

intensity.

can be summarized as follow:

1. Estimation of σ by means of equation 3.13.

2. Find the total duration (TD) for the white-noise.

TD = −4.21 + 2.156σ (3.15)

3. Generate a white noise with duration TD.

4. Apply the exponential windows with parameter ε = 0.2, η = 0.05.

5. Fourier transform and phase angles computation.
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6. Apply obtained phase angles to FAS model and inverse Fourier trans-

form.

Likewise the first procedure, this process provides a final result with phase

derivatives distribution compatible with the imposed shape parameter. Nev-

ertheless, the exponential window shows asymmetric shape typical of earth-

quakes that is not reproducible with phase derivatives logistic-distributed.

Figure 3.9: Regression lines expressing the relationship between signal total

duration and phase derivatives shape parameters.

3.6.3 Pulse creation

Fixing the values of phase derivatives within frequency range of 0-1 Hz in

the center of distribution allows the creation of a velocity pulse in sim-

ulated accelerograms. According to the chosen procedure, it is necessary

to change phase derivatives for: π/df (centered random logistic-distributed

phase derivatives) or 0.4π/df (exponential window with ε = 0.2). Figure

3.10 shows an example of stochastic ground motion generated by exponen-

tial window and modification of phase angles below 1 Hz.
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Figure 3.10: Acceleration, phase differences, velocity and displacement of

a stochastic ground motion generated by exponential window phase angles.

The record contains a velocity pulse created by centering phase differences

below 1 Hz.
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3.7 Conclusions

A study about phase derivatives distribution through the NGA-West1 database

has been proposed. The presence of fat tail in distributions suggested an

application of leptokurtic distribution. A remarkable improvement in the

goodness of fit process has been obtained by implementing logistic distribu-

tion.

Three stages regression analysis has been carried out. First stage de-

fined a prediction equation between logistic distribution shape parameter

and significant duration. Shape parameters are computed by means of max-

imum likelihood estimation after a process of noise removing in each record.

Second stage defined the relationship between phase derivatives dispersion

and magnitude, rupture distance, soil category. Output parameters showed

that phase derivatives dispersion increases less than expected with magni-

tude and is more affected by the rupture distance contribution. Third stage

demonstrated a very low dependency to directivity effect explicated as ra-

tio or difference between hypocentral and rupture distance. Although this

result seem to deny dependency of phase derivatives on directivity, the au-

thor’s opinion is that the directivity effect is inside the overall distribution.

In particular, we suggest that two distributions, corresponding two separate

frequency ranges, in combination recreates the distribution studied in this

paper. The two distributions should have different position and broadness;

the distance between the two mean values should reproduce a directivity

effect estimation.

Phase derivatives dispersion prediction equation can be used for gener-

ation of stochastic ground motions; three applications are proposed. First

application is the imposition of phase angles from random logistic-distributed

phase derivatives. Arias intensity function of stochastic ground motions ob-

tained by this procedure and real records has been compared. In particular,

two suites (selected by parameters 6.5 < M < 7.5, 1 < Rrup < 20 km ,

760 < Vs30 < 2000 m/s) showed notable matching in terms of shape. Range

comparison suggested that further studies are necessary to take into account

the entire variability of phase derivatives distribution. As previously de-

clared, the frequency dependency of distributions is an important feature to
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consider in phase derivatives variability in future works. Second application

regards the calibration of exponential window for generation of phase angles

by windowing a white-noise. The selection of a proper signal duration pro-

vides the desired phase derivatives dispersion; an equation is proposed for

this aim. The equation has been successfully tested with a methodology of

stochastic ground motion generation. Third application allows the creation

of velocity pulse by modifying phase derivatives for frequency below 1 Hz ;

the effect is obtained by centering phase derivatives in the distribution.

40



Chapter 4

Conditional scenario spectra

generation through simulated

spectra

4.1 Abstract

A stochastic ground motions generation methodology with realistic variabil-

ity and inter-frequency correlation of the FAS and phase derivatives is used

to develop suite of time histories for the conditional scenario spectra (CSS).

The CSS are a set of response spectra with assigned rates of occurrence that

reproduce the hazard over a wide range of hazard levels and spectral periods

at one site. The CSS provide an estimate of the seismic history for a site

in terms of the time histories likely to be experienced at the site. These

time histories and their rates are then used to estimate the hazard curve for

engineering demand parameters. The method used for generate stochastic

ground motions is based on matching target response spectra which is the

main set of CSS. The main advantages of this application are: (i) the small

number of time histories (generally less than one hundred) required to repro-

duce the hazard compared to methods that use recorded time histories, and

(ii) the very fast computation.
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4.2 Introduction

Selection of ground motions in earthquake design is the first step for non-

linear response study. The typical routine is based on obtain values of mag-

nitude and distance based from site hazard deagreggation and search for

records that respects those values within a certain range. Response spec-

trum matching is taken into account by selecting only records that match a

target response spectrum (if available) or by modifying the frequency con-

tent. Output of this procedure is a small set of accelerograms, which provides

the estimation of the median response of your structural system. A change

in the process of selection and a consequent larger set of accelerograms is

required to consider the response variability. Incremental Dynamic Analysis

(Vamvatsikos, Cornell, 2002) is one of the existing approaches. It consists

in selection of a set of ground motions, which are scaled progressively to

reconstruct a fragility curve showing variation of an important structural

parameter versus a parameter describing record intensity. The assumption

of this methodology is that intensity variation is only related to a scaling

factor and not to a change in other features (e.g. response spectrum shape,

duration). The Conditional Scenario spectra (CSS) is a selection of set of

spectra with assigned rate of occurrence, which is able to reproduce site seis-

mic history. CSS adds the intrinsic variability of earthquakes by selecting

a wider range of spectra, which shape is consistent with the hazard level

represented. Arteta (2017) presents a description of CSS methodology and

offers an example of its application. In this chapter, a detailed procedure of

CSS computation by means of stochastic ground motions is presented. The

aim of this study is to highlight the pros of a such application, and propose a

standard procedure to obtain the CSS from a set of Uniform hazard spectra

by means of stochastic ground motions.
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4.3 Conditional Scenario Spectra definition

A typical set of CSS is plotted in fig. 4.8a. Each spectrum has an assigned

rate of occurrence, which is represented in fig. 4.8b. The hazard can be

estimated from the CSS by a generic test value of spectral acceleration. The

usual aim of a case study is to reproduce a set of uniform hazard spectra,

obtained by probabilistic seismic hazard analysis (PSHA). Therefore, an es-

timation of hazard from CSS is represented in equation 4.1

ν(SA(T ) > SAUHS(T )) =
N∑
i=1

Ratei ∗H(SAi(T ) − SAUHS(T )) (4.1)

The hazard ν of exceeding a spectral value SA greater than SAUHS (uni-

form hazard spectrum value) is provided by sum of rates of occurrence Ratei

of scenario spectra which show a spectral value SAi greater than SAUHS.

The aforementioned condition is mathematically represented by the heavi-

side function H(SAi(T ) − SAUHS(T )), expressed in equation 4.2.

H(SAi(T ) − SAUHS(T )) =

{
1

0

SAi(T ) ≥ SAUHS(T )

SAi(T ) < SAUHS(T )
(4.2)

The rates of occurrence are calibrated to provide an hazard ν, which matches

PSHA hazard in range of all structural periods (see fig. 4.7). The potentiality

of CSS lies in the usage of rates of occurrence to build risk curves of engi-

neering demand parameters (EDP). Each ground motion can be run through

a structure model to obtain an EDP (e.g. interstory drift) and construct risk

curve by equation 4.3.

ν(EDP > d) =
N∑
i=1

Ratei ∗H(EDP − d) (4.3)

Further informations about risk curves estimation are provided in Arteta

(2017). The next section details the methodology used to generate a set of

stochastic ground motions consistent with seismological history of a site and

the calibration of rates of occurrence to match the Uniform hazard spectra

from PSHA.
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Figure 4.1: Uniform hazard spectra in Francofonte, Sicily.

4.4 Procedure of CSS creation

A real case study is proposed as example to describe the process of CSS

creation. Francofonte, a Sicilian location is the chosen site. Uniform hazard

spectra (fig. 4.1) as well as the mean values of magnitude and distance

(tab.4.1) are obtained from Italian interactive seismic hazard map. Next

subsections describes in detail the procedure divided in three steps:

• GMPEs generation.

• Scenario spectra selection.

• Rates of occurrence calibration.

4.4.1 GMPEs generation

The procedure involves the computation of one GMPE for each hazard

level. GMPEs calibration depends on site condition; in particular, deagreg-

gation provides values of magnitude and rupture distance (see table 4.1).

In the example proposed, the geometric mean [0.22ASK 0.22BSSA 0.22CB

0.22CY 0.12IM] of NGA-West2 equations (N. A. Abrahamson, Kamai, 2014;

D. M. Boore, Atkinson, 2014; Campbell, Bozorgnia, 2014; Chiou, Youngs,
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Table 4.1: Mean values of magnitude and distance for different return periods

in Francofonte, Sicily.

Return Period (yrs) 2475 975 475 200 140 100 70 50 30

M 6.58 6.31 6.11 5.87 5.77 5.67 5.56 5.47 5.32

R 6.03 7.83 9.53 11.9 13.22 14.7 16.8 19.4 25.2

2014; Idriss, 2014) is developed. The other parameters used for GMPEs cal-

ibration are chosen by considering fault conditions for the case study.

This step provides a set of GMPEs consistent with every hazard level (see

fig. 4.2).

4.4.2 Scenario spectra selection

Suites of stochastic ground motions are generated by means of the method-

ology described in chapter 2, which provides a Fourier amplitude spectrum

model corresponding to each GMPE. The application of phase angles com-

puted by prediction equation of phase derivatives dispersion proposed in

chapter 3 provides the non-stationarity to each time-history. Input parame-

ters for phase derivatives prediction are chosen according to the hazard level.

The following list describes the procedure of scenario spectra selection:

1. Generation of 100 time-histories for each GMPE by the aforementioned

procedure. Every time-history exceeding the mean value +/- 3.5 times

the standard deviation is removed. Figure 4.3 shows all set of candidate

scenario spectra computed for each hazard level.

2. Arbitrary selection of a number of scenario spectra per hazard level NS

(typical between 10 and 20). The total number of scenario spectra Ntot

is:

Ntot = NS ∗NHL (4.4)

Where NHL is the number of hazard levels.

Montecarlo simulation generates a set of selected scenario spectra. Nor-

malized logarithmic residuals εSAj,i are computed between each scenario
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Figure 4.2: Representation of only GMPEs calibrated for the first and last

hazard levels along with the Uniform hazard spectra (dotted line).
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(a) 2475 years. (b) 975 years. (c) 475 years.

(d) 200 years. (e) 140 years. (f) 100 years.

(g) 70 years. (h) 50 years. (i) 30 years.

Figure 4.3: Set of candidate scenario spectra computed for each hazard level.
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spectra SAj,i and GMPE (SAGMPEj) corresponding to the hazard level

j:

εSAj,i(T ) =
lnSAj,i(T ) − lnSAGMPEj(T )

σlnGMPEj

(4.5)

This step aims to find a set that optimize the mean value of residuals to

zero and the standard deviation to one for each level. Furthermore, the

correlation is computed from the all spectra and optimized to match

the model proposed by Baker, Jayaram (2008). Figure 4.4 shows the

optimization for each level in terms of mean and standard deviation.

Figure 4.5 represents the correlation values obtained by all spectra and

the model used.

4.4.3 Rates of occurrence calibration

An initial value of rate of occurrence is assigned to the i scenario spectrum

corresponding to the j hazard level from the target hazard Vj:

Ratei =

{
V1
NS

1 < i ≤ NS
Vj−Vj−1

NS
NS < i < Ntot

(4.6)

The levels are counted from the top, the first level correspond to the lowest

hazard level. A simple algorithm allows the adjustment of rates of occurrence.

It increases or decreases the rate of occurrence of each scenario spectrum

aiming to minimize the misfit between the target and hazard computed from

CSS. The misfit is defined as the average of squared logarithmic difference

for all hazard levels:

Misfit =
1

NHL

1

NT

NT∑
k=1

NHL∑
j=1

log

(
Vj
νj,k

)2

(4.7)

Where νj,k is the hazard estimated from CSS for each hazard level j and

period k, NT is the total number of periods. Figure 4.6 shows the comparison

between target and estimated hazard for periods 0.1 s and 1 s before and

after optimization. Figure 4.7 provides an overview of hazard estimation

for all hazard levels and periods. The procedure of calibration includes the

exclusion of all spectra with very low contribution. In the example proposed
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(a) 2475 years. (b) 975 years. (c) 475 years.

(d) 200 years. (e) 140 years. (f) 100 years.

(g) 70 years. (h) 50 years. (i) 30 years.

Figure 4.4: Plot of normalized residuals for each hazard level. In first graph,

gray lines represent the normalized residuals for each scenario spectrum, red

line represent the mean value. In second graph, black line represent the

standard deviation of normalized residuals. Montecarlo simulation aims to

match red line with 0 and black line with 1.
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(a) Correlation from CSS. (b) Correlation from model.

Figure 4.5: Comparison of spectral values correlation. Montecarlo simulation

aims to match the correlation represented in the first plot with the second

plot.

(see fig. 4.8), 90 scenario spectra are reduced to 84 after the optimization.

The usage of weighted average along hazard levels in misfit computation can

improve the goodness of fit. Although it privileges high hazard levels by

reducing goodness of fit for low hazard levels.

4.4.4 Summary

The entire procedure of CSS generation can be briefly outlined as follow:

• GMPEs generation - one set of GMPEs is computed for each hazard

level according to site conditions.

• Scenario spectra selection - one suite of stochastic ground motions

is generated from each GMPE. Only ground motions within a range

between the mean target value +/- 3.5 times the standard deviation

are selected. Monte Carlo simulation is carried out to select a set of

scenario spectra able to represent mean, dispersion values of GMS for

each hazard level as well as to recreate spectral correlation consistent

with a correlation model.

• Rates of occurrence calibration - Rates of occurrence are initially

estimated as uniform distributed for each level. A process of optimiza-
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Figure 4.6: Comparison between target and hazard estimated from CSS

for periods 0.15 s and 1.5 s before and after optimization. Application

of weighted misfit provides better matching at high levels hazard trading off

for a reduction of matching at low hazard levels.
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Figure 4.7: Comparison between target UHS and recovered by Conditional

scenario spectra UHS.

(a) CSS able to replicate the seismic haz-

ard of example case study.

(b) Rate of occurrence related to each

spectrum part of CSS. Spectrum index

is sorted from low to high hazard.

Figure 4.8: CSS and rates of occurrence for the case study of Francofonte,

Sicily.
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tion calibrates rates of occurrence to match the input hazard and ex-

clude every spectrum requiring an excessive changing from the starting

value.
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4.5 Conclusions

In this chapter a methodology for developing the conditional scenario spec-

tra (CSS) from stochastic ground motions has been proposed. The CSS is

a set of response spectra with assigned rates of occurrence, which is able to

recreate the seismic hazard of a case study. Rates of occurrence are cali-

brated to match hazard obtained by probability seismic hazard assessment

(PSHA). The application of CSS allows to build risk curves of engineering

demand parameters (EDP); in other words, CSS provides an assessment of

engineering application behavior in all seismic scenarios through a represen-

tative parameter (e.g. interstory drift).

A set of Uniform hazard spectra with assigned hazard and the mean values

of magnitude and distance for each level are inputs for CSS generation. The

procedure can be divided in three steps.

First, ground motion prediction equations (GMPEs) are developed for

each hazard level. Input parameters for GMPEs are mean values of magni-

tude and distance obtained by deagreggation. In case of GMPEs character-

ized by further parameters (e.g. soil category, fault mechanism), they can be

set according to site condition.

Second, suites of at least 100 stochastic ground motions are generated

from each GMPE. The employed methodology is based on Fourier amplitude

spectrum model obtained by a target response spectrum (the GMPE in this

case); the non-stationarity is achieved by the application of phase derivatives

distribution predicted from magnitude, distance and soil category. Monte-

carlo simulation random generates small sets of candidate scenario spectra;

output of this simulation is a small set of spectra able to represent mean

value, dispersion of all GMPEs and show correlation consistent with well-

known models.

Third, rates of occurrence are assigned to all scenario spectra. Therefore,

the rates are iteratively adjusted to match the input hazard by means of

a misfit parameter. At the end of the process, spectra with a low rate of

occurrence are removed, because their small contribution to the hazard.

Final result of this procedure is a set of spectra, which amount is less

than one hundred. Compared to the method with recorded time histories,
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stochastic ground motions allows a remarkable reduction in the total number

of spectra. The previous feature as well as the simplicity and speed of the

procedure are the main advantages of the proposed methodology. Application

of this CSS with engineering structure are expected in future studies.
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Chapter 5

Conclusions

This paper proposes a methodology for obtain Fourier amplitude spectrum

model (FAS) from a target response spectrum. Response spectra of stochas-

tic ground motions generated from such model matches, on average, the tar-

get spectrum. An analysis of phase derivatives distribution of earthquakes

records database provides the predictive equation for calibrate a proper distri-

bution to combine with the aforementioned FAS. Non-stationarity of stochas-

tic ground motions is achieved from phase derivatives distribution consistent

with the site condition parameters (i.e. magnitude, rupture distance, soil

category). All this features contribute to employ stochastic ground motions

for create a set of spectra able to represent the seismic history of one site,

namely the Conditional Scenario Spectra (CSS). The CSS can be constructed

from a set of Uniform Hazard Spectra, by means of ground motion prediction

equations (GMPEs) and a proper site characterization. The following sec-

tions briefly summarize the important findings of this work, the limitations

of this work, and suggested future work related to this paper.

5.1 Fourier amplitude spectrum model

The FAS model is obtained by fitting a generalized source model with a set

of adjusted simulated spectra. These spectra are generated consistent with a

simple corner frequency model and are adjusted in the frequency content to

match the target spectrum. A procedure of non-linear regression provides the
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best parameters to shape a FAS model matching the FAS of such adjusted

spectra. Attenuation in the high frequency part of the spectrum is obtained

by κ filter, calibrated iteratively by visual check. Stochastic ground motions

can be obtained from this model by generating random normally-distributed

FAS with a mean values which is the FAS model previously described. The

usage of a covariance matrix allows to control frequency variance and inter-

frequency correlation.

Several tests have been carried out and they showed that suite of stochas-

tic ground motions generated from this procedure are able to match, on av-

erage, target spectra such as GMPEs, Conditional mean spectra (CMS) and

Design spectra. No scaling or frequency adjustment is included in the proce-

dure. In our tests, a constant variance of 0.8 along with the inter-frequency

correlation model proposed in Stafford (2017) allows a remarkable repro-

duction of NGA-West2 dispersion. The authors tested the FAS model with

uncorrelated frequency content (i.e. covariance matrix with null off-diagonal

elements) and discovered that the mean spectrum obtained from a suite is,

exclusively in the uncorrelated case, dependent on variance values. A con-

stant variance of 0.4 allows the matching in case of uncorrelated frequency

content. The potentiality of this methodology lies in the capacity of fully

reproduce a target response spectrum. The development of GMPE based

on a proper site characterization can be used to generate stochastic ground

motions which respect all the feature of earthquakes response spectra.

The only lack of these simulated ground motions is the stationarity of the

frequency content. In fact, they are computed without considering that the

frequency content varies during a typical earthquake record. Two solutions

are available for this aim. The first one is to consider Fourier amplitudes

not constant in the time domain. This option includes to define a function

describing the Fourier amplitude variation with time, which must be differ-

ent with the considered frequency. The second option is to apply a phase

derivative distribution dependent on the frequency content, as specified in

the next section.
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5.2 Phase derivatives analysis

The phase angles computed from Fourier transform of an earthquake record

contain important information about the time non-stationarity. Distribution

of phase derivatives (i.e. phase differences normalized by the signal length)

shows a shape consistent with the shape in time domain; in particular, the

mean represents the position of peak in time-domain and the standard de-

viation ”the broadness” around the peak. Furthermore, these distributions

show a leptokurtic behavior (i.e. higher kurtosis than normal distribution);

for this reason, in this paper the application of logistic distribution has been

proposed. Such distribution is defined by a mean value and shape parameter.

The analysis proposed in this paper aims to find a predictive equation

for the shape parameter from earthquake records (the mean values is ig-

nored in this paper). Three stages regression analysis has been carried out.

The first stage establishes an equation relating the significant duration (i.e.

5-75% Arias intensity) with the shape parameter. Second stage creates a

relationship between shape parameter and magnitude, rupture distance and

soil category by means of the equation found in the first stage. Such equa-

tion is based on well-known relationship between significant duration and

seismological parameters; for this reason, the shape parameter has been con-

nected with the significant duration. Third stage aims to find dependence

of shape parameter with directivity effect. The directivity effect has been

tested by two different parameters: ratio and difference between hypocentral

and rupture distance.

The first stage allowed to distinguish a group of outliers, identified as

records with two earthquakes or record with an abnormal basin effect; all

these records have been removed from the analysis. Final parameters showed

consistency with typical parameters used with significant duration. However,

phase derivatives shows less dependence on magnitude and more dependence

on rupture distance than significant duration. Trade-off between the two

parameters can be excluded by the low correlation obtained from the corre-

lation matrix. Third stage showed that the directivity can not be considered

by one parameter; regression of both parameters showed a very low level of

dependence.
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Phase derivatives can be used in three different applications for generation

of stochastic ground motions. First application is to obtain phase angles

from random logistic-distributed phase derivatives. Second application is the

calibration of an exponential window from the equation proposed for relate

phase derivatives shape parameter with the total duration of the exponential

window. This procedure allows to obtain a more realistic shape in the time

domain which is consistent in the phase derivatives distribution with the

predictive equation. Third application is a modification of phase derivatives

below 1 Hz which are centered in the distribution. This modification causes

the creation of a near-fault pulse.

Suite of stochastic ground motions has been computed by consideration

a all the combination of parameter between 6.5 < M < 7.5, 1 < Rrup < 20

km , 760 < Vs30 < 2000. Suite of earthquakes records has been selected from

NGA-West2 database with the same parameters. A comparison in terms of

Arias Intensity (AI), showed that stochastic ground motions reproduce accu-

rately, on average, the AI shape; especially in range 0-75% of Arias intensity.

A comparison in terms of AI range demonstrates that the AI dispersion is

not completely reproduced, showing that a small part of variability is not

taken into account by this predictive equation.

The absence of dependence on directivity effect expressed by two param-

eters showed that directivity effect must be taken into account in another

way. The author’s opinion is that the directivity effect is inside the overall

distribution. In particular, we suggest that two distributions, correspond-

ing two separate frequency ranges, in combination recreates the distribution

studied in this paper. The two distributions should have different position

and broadness; the distance between the two mean values should reproduce

a directivity effect estimation.

5.3 Conditional scenario spectra through sim-

ulated spectra

The CSS is a set of response spectra with assigned rates of occurrence, which

is able to recreate the seismic hazard of a case study. Rates of occurrence
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are calibrated to match hazard obtained by probability seismic hazard assess-

ment (PSHA). The application of CSS allows to build risk curves of engineer-

ing demand parameters (EDP); in other words, CSS provides an assessment

of engineering application behavior in all seismic scenarios through a repre-

sentative parameter (e.g. interstory drift). A set of Uniform hazard spectra

with assigned hazard and the mean values of magnitude and distance for

each level are inputs for CSS generation. The procedure can be divided in

three steps.

First, ground motion prediction equations (GMPEs) are developed for

each hazard level. Input parameters for GMPEs are mean values of magni-

tude and distance obtained by deagreggation. In case of GMPEs character-

ized by further parameters (e.g. soil category, fault mechanism), they can be

set according to site condition.

Second, suites of at least 100 stochastic ground motions are generated

from each GMPE. The employed methodology is based on Fourier amplitude

spectrum model obtained by a target response spectrum (the GMPE in this

case); the non-stationarity is achieved by the application of phase derivatives

distribution predicted from magnitude, distance and soil category. Monte-

carlo simulation random generates small sets of candidate scenario spectra;

output of this simulation is a small set of spectra able to represent mean

value, dispersion of all GMPEs and show correlation consistent with well-

known models.

Third, rates of occurrence are assigned to all scenario spectra. Therefore,

the rates are iteratively adjusted to match the input hazard by means of

a misfit parameter. At the end of the process, spectra with a low rate of

occurrence are removed, because their small contribution to the hazard.

Final result of this procedure is a set of spectra, which amount is less

than one hundred. Compared to the method with recorded time histories,

stochastic ground motions allows a remarkable reduction in the total number

of spectra. The previous feature as well as the simplicity and speed of the

procedure are the main advantages of the proposed methodology. Application

of this CSS with engineering structure are expected in future studies.
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