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Abstract 
The object of this thesis is to understand the structural behaviour of brick masonry walls taking 
into account the interaction between the brick supporting walls and reinforced concrete floors. 

Chapter 1 introduces the problem of brickwork in compression describing the general behav-
iour of the masonry structures under eccentric compression. 

The theoretical models used for the determination of the capacity reduction factors and accord-
ingly the load bearing capacities for walls vertically loaded is discussed in Chapter 2. 

In Chapter 3, the materials and the modeling strategies properties were analysed. 
Chapter 4 presents a description of the test programme carried out by the Technische Univer-
sität Dresden, and the analyses of the test results are presented. 

Chapter 5 describes the numerical investigation carried out in order to calibrate the FEM model 
used for the next evaluations. 

In Chapter 6 the load bearing capacity of the structure is estimate by using two different theo-
retical formulations. 

In Chapter 7, 8, 9, 10 the influence of the slab position, the wall thickness, the wall elastic 
modulus and the slab elastic modulus respectively were evaluated. 

Finally, in Chapter 11, the general conclusions arising from this research are listed together. 
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1 Introduction 

1.1 General considerations 
Investigations into the load bearing strength of brickwork has come today into use on the basis 
of engineering principles. The interest in loadbearing brickwork was prompted by the realiza-
tion that structural brickwork, unlike other materials, could be an economic solution for con-
structions. 

Theoretical solutions which could describe the behavior of brickwork in compression are still 
under development. 

From observations of the failure mode of centrally compressed walls, it has been noted that 
failure is usually initiated by vertical cracking of the bricks (Hilsdorf, 1969). Furthermore, in 
order to maximize the load bearing capacity, the vertical load applied to the masonry should 
be as concentrically as possible because of the low tensile strength of the mortar between the 
masonry blocks. However, the axial load situation is virtually impossible to reach because of 
different factors, like the bending moment applied by the slab to the joint and the consequent 
rotation which causes the displacement of the vertical reaction from the axis of the wall. 

For this reason the eccentricity and the slenderness must 
both be taken in account, and by knowing this two factors 
is possible to estimate the load bearing capacity by using a 
capacity reduction factor. 

Since the bearing strength of masonry decreases rapidly 
with increasing eccentricity because the low tensile strength 
(Hailer, 1969), it is important to estimate the correct value 
of the bending moment acting to the wall/slab joint. 

The calculation of the bending moment acting on the 
wall/slab joint is actually difficult, because it is influenced 
by the degree of fixity at the joint, the method of construc-
tion, the external loads and on the relative rigidity of the 
slab and wall.  

There are different problems to consider in modeling a 
structure composed of load bearing masonry walls and re-
inforced concrete floors with a frame structure. These prob-
lems are mainly related to the rigidity of the wall slab connections. The determination of the 
distribution of moment throughout the frame, for a given loading, is complicated by the fact 
that the wall stiffness may be dependent on the wall loading. Thus, if the eccentricities of the 
wall loadings cause tension cracking, the rigidity of the frame is reduced and a redistribution 
of moment takes place.  

Due to the nonlinearity of the structural behavior a complete nonlinear analysis is therefore 
required for each load case. Also the secondary effects of wall bending deformations on the 
extent of cracking should be considered. 

Figure 1.1 Eccentric axial load 
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At the other extreme, there are not clear theoretical models which define the magnitude of the 
eccentricity of the slab reaction. A common assumption is that the pressure distribution under 
the bearing area is triangular (Recommended Practice for Engineered Brick Masonry, 1969), 
although if the floor slab span is reduced, a uniform pressure distribution may be assumed but 
there is little information to indicate that the errors involved are on the safe side. 

For a semi-rigid wall slab connection, the moment rotation behavior of the joint must be accu-
rately known, and a nonlinear iterative solution procedure will be required. In this case also, 
details of the joint construction, properties of the concrete floor slab, masonry and mortar, and 
the pre compression in the joint will influence the moment rotation behavior. 

Next chapter shows two possible theoretical ways to analyze the problem of the determination 
of the load bearing capacity with reference to the wall slab connection.  

1.2 Aims 
The ultimate capacity of masonry walls under vertical loading strongly depends by the effective 
eccentricity of the vertical loads. Geometrical parameters, such as the slenderness ratio, or ma-
terial parameters such as the compressive strength and the elastic modulus of masonry and slab 
are significant. The use of sophisticated numerical tools, such as nonlinear approaches framed 
within the macro- or micro-modeling strategies, offers interesting possibilities for the study of 
this kind of problem. 

The aim of this master thesis is to analyze the behavior of exterior wall-ceiling-nodes using a 
numerical model. After a theoretical introduction to the problem, a 3D-model is developed and 
calibrated by using existing experimental data. Following, the influence of different parameters 
on the structural behavior (material and geometry) will be examined. The results of these anal-
ysis will be compared to the results according to DIN EN 1996 1-1/NA. 
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2 Theoretical models 
One of the aspect which causes the nonlinear behaviour of the masonry wall is, among other 
aspects, the low tensile strength of the mortar joints. For practical use it seems reasonable to 
consider the masonry structures with no tensile strength but, when buckling failure is involved, 
the collapse load may be very dependent on the tensile strength of the material. For this reason, 
any realistic theoretical or numerical analysis aimed at producing accurate predictions needs 
to consider the impact of the tensile strength on the ultimate response of the wall. (Sandoval, 
2011) 

Masonry members under compression may fail either because of material over-stressing or 
because of stability failure of slender members. For squat masonry members, the failure takes 
place if the compressive strain at any cross-section reached the ultimate compressive strain of 
the material. Nevertheless, for slender masonry elements the failure occurs before reaching the 
ultimate compressive strain of the material at any cross-section.  

The slenderness of the structure is important for the determination of the structure’s failure 
behaviour. A typical failure stress curve is shown in Fig.2.1. For short columns, where the 
slenderness ratio is low, failure would result from compression of the material, whereas for 
long thin columns and higher values of slenderness ratio, failure would occurs from lateral 
instability. 

 

Figure 2.1 Failure stress curve 

The failure stress at zero slenderness ratio is dependent on the compressive strength of masonry 
units and mortar used in the construction. 

If it were possible to apply pure axial loading to walls or columns then the type of failure which 
would occur would be independent on the slenderness ratio, i.e. the ratio of the effective height 
to the effective thickness.  

However, it is virtually impossible to apply an axial load to a wall or column since this would 
require a perfect unit with no fabrication errors. The vertical load will, in general, be eccentric 
to the central axis and this will produce a bending moment into the joint. 
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The stresses due to the equivalent axial loads and bending moments can be added using the 
formula: 

Total Stress= P/A ± M/Z 

where A and Z are the area and section modulus of the cross-section, P is the axial vertical load 
and M is the bending moment. 

The interaction between the bending moment and the applied load can be considered by reduc-
ing the axial load bearing capacity of the wall by a suitable factor. The resistance of walls to 
vertical loading is obviously related to the characteristic strength of the material used for con-
struction. 

Real walls in multi-storey buildings are usually compressed between reinforced concrete slabs 
through joints which are capable of transmitting bending moments. The transmitted moments 
on the one hand influence the deflected form of the wall and, on the other one, control the end 
rotation of the wall. It follows that a satisfactory method for the design of masonry walls in 
compression must take in consideration the effects between walls and floor slabs. 

2.1 Awni, A.W. Hendry Model 
Awni and A.W. Hendry have developed a theoret-
ical approach for estimating the compressive 
strength of brick masonry walls taking into ac-
count the interaction between the brick supporting 
walls and reinforced concrete slab floors. The the-
ory presented is a development of other solutions, 
produced by Sahlin, Risager and Colville. 

In this method, the basic idea is to calculate the 
magnitude of the bending moment introduced into 
the walls on a frame system with bend-resistant 
corners in a linearly elastic way and, subsequently, 
to reduce this moment by means of a reduction 
factor. The calculation of the reduction factor de-
pends, in addition to other aspects, on the eccen-
tricities of the axial load applied on the wall and 
can be calculated assuming that the point of inflection of the wall is known, or can be estimated, 
and that the portions of the equivalent column between the points of zero moment have a par-
abolic deflection curve.  

The wall curvature is one of the aspect taken in account into the Awni’s model to determine 

the bearing capacity of the wall. The types of wall curvatures are governed by the wall end 
eccentricities which in turn are related to the type and condition of floor loading.  

 
 

 

 

Figure 2.2 Frame system (Awni & Hendry, 
1981) 



2 Theoretical models 

 5 

Thus, three types of wall bending are considered in this study: 

- Walls bent in double curvature with equal and opposite end eccentricities, as shown in 
Fig 2.3a 

- Walls bent in single curvature with equal end eccentricities, Fig. 2.3b 
- Walls bent in single curvature with zero eccentricity at one end, Fig. 2.3c 

 

Figure 2.3 Wall curvatures (Awni & Hendry, 1981) 

In relation to the wall curvature type, there are different ways to calculate the capacity reduc-
tion factor, and for every case there are distinctions between slender or short walls, and for 
cracked or uncracked state.  

The solution taken in account in this work investigates the behaviour of a short wall with no 
eccentricity to one end. 

The principal problem which has to be solved in order to calculate the load bearing capacity is 
to determine the section where the eccentricity is maximum and, secondly, the reduction factor 
resulting from eccentricity and wall slenderness. For different curvatures, the maximum eccen-
tricity section changes position. Is noted that the distance of the section where the maximum 
eccentricity is located depends on the slenderness of the wall, and it increases with the increas-
ing of the slenderness. 

As noted by (Colville, 1978), if the maximum eccentricity lies at the ends of the actual wall 
(i.e. at floor levels), the wall slenderness does not affect the wall bearing capacity computed 
from the ultimate compressive strength. This is the case of short walls with zero eccentricity 
to one end. Of course, if the bearing strength is based on stability of the wall, then the variations 
in wall slenderness ratio will, in all cases, influence the wall load bearing capacity. 
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The aim is to estimate the load bearing capacity when the eccentricity is maximum on the wall 
slab joint. 

The eccentricity at joint level depends on the ratio of stiffness of walls and floors and on the 
characteristics of the joint between them as well as on the wall curvature type. The load bearing 
capacity of a wall is influenced by the same factors, for this reason both problems are consid-
ered in the analytics method. 

In the case of reinforced concrete slabs supported by masonry walls, the actual joint moment 
that could develop depends primarily on two factors. Firstly, on the ratio of the flexural rigidity 
of the wall slab joint, secondly, on the magnitude of the wall pre-compression above the slab 
under consideration. It is assumed that uniform wall pre-compression acts as a restraining force 
in clamping the floor slab. Hence, the higher the wall pre-compression is, the smaller the slab 
end rotation is.  

If, on the other hand, the magnitude of this wall pre-compression is small, a crack will develop 
at the wall slab joint due to loading on the slab. Hence, in this case the slab restraining moment 
will be smaller. 

Experiments show that the fixity of the joint in a masonry structure depends, primarily, on the 
ratio of the flexural rigidity of the floor slab compared to the supporting wall. Since full joint 
fixity may never be achieved in actual structures, the full end moment may never be developed.  

2.1.1 Stress failure equations 
The following formulations allow to calculate the load bearing reduction factor for wall bent 
in double curvature or single curvature with no eccentricity to one end, when the slenderness 
ratio is less than 10 and assuming that the maximum value of the eccentricity is located in the 
wall/slab connection. The slenderness ratio is defined by the ratio between the wall height h 
and the wall thickness t. 

The load bearing capacity can be estimated in this way by knowing the value of the eccentricity 
to the wall slab connection, where the maximum eccentricity is located. This value can be 
computed experimentally or with nonlinear analysis using FEM programs. 

2.1.1.1 Uncracked wall 

For a rectangular wall of width, b, and thickness, t, composed of a linearly elastic material, and 
loaded by an eccentric load P, the maximum compressive stress is given by the following 
equation (Sahlin, Structural Masonry, 1971): 

𝝈𝒎𝒂𝒙 =
𝑷

𝒃𝒕
(𝟏 +

𝟔𝒆𝒎𝒂𝒙

𝒕
)    2.1 

The stress-strain relationship for masonry is nonlinear. However, it is noted that for eccentri-
cally loaded walls, good agreement is obtained between tests and theory using a linear stress-
strain curve if failure is assumed to occur when the maximum stress equals 1.5 times the com-
pressive strength (Recommended Practice for Engineered Brick Masonry, 1969).  
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Thus, it is assumed that stress failure will occur when the maximum compressive stress in the 
wall is 1.5 times the compressive wall strength: 

𝝈𝒎𝒂𝒙 = 𝟏. 𝟓𝝈𝒃     2.2 

Where σb is the prism maximum compressive strength. 

Substituting eq. (2.2) into eq. (2.1) and introducing the notation: 

𝜷 =
𝑷

𝝈𝒃𝒃𝒕
      2.3 

Where, P, is the compressive force in the wall, and σbbt, is the compressive force of the same 
concentrically loaded wall, gives: 

𝜷 =
𝟑

𝟐(𝟏+
𝟔𝒆𝒎𝒂𝒙

𝒕
)

≤ 𝟏     2.4 

This term may be considered to be a capacity reduction factor whose value depends on the 
maximum eccentricity of the load, emax. By definition, it is the ratio of the compressive (eccen-
tric or concentric) force in the wall, to the compressive force of the same concentrically loaded 
wall. It follows that it must always be less than or equal to unity.  

The magnitude of emax that has to be used in eq. (2.4) depends on the slenderness of the wall. 
Thus, when the height of the equivalent column becomes equal to or greater than the actual 
wall height, the maximum eccentricity will occur at the wall end (at floor level). Conversely, 
if the height of the equivalent column is less than the actual wall height, then the maximum 
eccentricity will occur between the wall ends and emax = e is substituted in eq, (2.4). Consider-
ing this case we obtain from eq. (2.4): 

𝜷 =
𝟑

𝟐(𝟏+𝟔𝜺)
≤ 𝟏     2.5 

Where: 

𝜺 =
𝒆

𝒕
       2.6 

Equation (2.5) is based on a compressive stress failure occurring at a floor level. As indicated 
in reference (Sahlin, 1959), however, the stress condition at a wall/floor joint is much more 
complex than indicated by eq. (2.1). As a result, eq. (2.5) is too conservative and it is assumed 
that compression failures cannot occur within a distance equal to 1.5 times the wall thickness 
from the joint (Colville, 1978).Thus, equation (2.5) is modified by the factor γ , given as: 

𝜸 =
(

𝑯

𝟐
)

(
𝑯

𝟐
−𝟏.𝟓𝒕)

      2.7 

Applying eq. (2.7) into eq. (2.6) we finally get: 

𝜷 =
𝟏.𝟓(

𝑯

𝟐
)

(
𝑯

𝟐
−𝟏.𝟓𝒕)(𝟏+𝟔𝜺) 

≤ 𝟏    2.8 
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Based on information given in (Colville, 1978), to distinguish between short and slender walls, 
it is suggested that for walls having a slenderness ratio h/t less than 10 be regarded as a short 
wall and hence, the maximum eccentricity will always occur at the floor level. 

2.1.1.2 Cracked wall 

For a rectangular cross-section of a linear elastic material without tensile strength, the width of 
the compressed zone after tensile cracking will be 3(t/2 - e), and the magnitude of the maximum 
compressive strength is (Sahlin, Structural Masonry, 1971): 

𝝈𝒎𝒂𝒙 =
𝟐𝑷

𝟑𝒃(
𝒕

𝟐
−𝒆𝒎𝒂𝒙)

     2.9 

Considering walls with slenderness ratio less than 10, the maximum eccentricity is assumed to 
occur at the floor level, and by applying the assumption of failure at a distance of 1.5 times the 
wall thickness away from the joint, the following eq. is derived from equations (2.2 and 2.3). 
After substituting into eq. (2.9): 

𝜷 =
𝟗

𝟖
(𝟏 − 𝟐𝜺)

(
𝑯

𝟐
)

(
𝑯

𝟐
−𝟏.𝟓𝒕)

≤ 𝟏   2.10 

This equation replace the eq. (2.8) when the wall is cracked. 

2.2 DIN EN 1996 1-1/NA 
Eurocode 6 is one of a group of standards for structural design being issued by the Commission 
of the European Communities. 

EC6 Part 1–1 is laid out in the following six sections: 

• Section 1. General 

• Section 2. Basis of design 

• Section 3. Materials 

• Section 4. Design of masonry 

• Section 5. Structural detailing 

• Section 6. Construction 

The design vertical load resistance per unit length, NRd, of an unreinforced masonry wall is 
calculated using the National Annex DIN EN 1996 1-1/NA, with the following expression: 

𝑵𝑹𝒅 = ∅𝒊𝒕𝒇𝒅      2.11 

where i is a capacity reduction factor allowing for the effects of slenderness and eccentricity, 
t is the thickness of the wall, fd is the design value of the compressive strength of the wall. 

In DIN, the capacity reduction factor has been approximated by a linear formula, but the for-
mula gives rise to negative capacity reduction factors at high values of slenderness.  

 



2 Theoretical models 

 9 

The capacity reduction factor ∅𝑖 is given by: 

∅𝒊 = 𝟏 − 𝟐
𝒆𝒊

𝒕
      2.12 

where ei  is the eccentricity at the top or bottom of the wall calculated from: 

𝒆𝒊 =
𝑴𝒊

𝑵𝒊
+ 𝒆𝒉𝒊 > 𝟎. 𝟎𝟓𝒕    2.13 

Mi and Ni are respectively the design bending moment and vertical load at the top or bottom of 
the wall and ehi  is eccentricity resulting from lateral loads. 

The basis of the capacity reduction factor is not stated but is known to derive from a complex 
theoretical solution originally developed for plain concrete sections (Kukulski, 1966).  

The effective height is related to the degree of restraint imposed by the floors and beams which 
frame into the wall. Rules are given for the assessment of the effective height of a wall. In 
general, walls restrained top and bottom by reinforced concrete slabs are assumed to have an 
effective height of 0.75×actual height. If similarly restrained by timber floors the effective 
height is equal to the actual height. Formulae are given for making allowance for restraint on 
vertical edges where this is known to be effective.  

In the DIN the effective height is taken as: 

𝒉𝒆𝒇 = 𝝆𝒏𝒉      2.14 

where h is the clear storey height and ρn is a reduction factor where n=2, 3 or 4 depending on 
the edge restraint or stiffening of the wall. Suggested values of ρn are given in the code for 
walls restrained at the top and bottom. In this case the value of the reduction factor is taken 
equal to 1. 

The effective thickness of single leaf walls is usually taken as the actual thickness. 
The slenderness is the ratio of the effective height to the effective thickness, and therefore both 
of these quantities must be determined for design purposes. 

2.2.1 Simplified method for moment calculation 
In order to calculate the eccentricity ei, it is necessary to determine the value of Mi. A simplified 
method of calculating these moments is described in Annex C of DIN. Using the simplified 
frame diagram illustrated in Fig. 2.4 in which the remote ends of each member framing into a 
joint are assumed to be fixed (unless known to be free), the bending moment Mi can be calcu-
lated using: 

𝑴𝒊 =
𝒏

𝑬𝟏𝑰𝟏
𝒉𝟏

𝒏
𝑬𝟏𝑰𝟏

𝒉𝟏
+𝒏

𝑬𝟐𝑰𝟐
𝒉𝟐

+𝒏
𝑬𝟑𝑰𝟑

𝒉𝟑
+𝒏

𝑬𝟒𝑰𝟒
𝒉𝟒

(
𝝎𝟑𝑳𝟑

𝟐

𝟏𝟐
−

𝝎𝟒𝑳𝟒
𝟐

𝟏𝟐
) 2.15 
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where n is taken as 4 if the remote end is fixed and 
3 if free. Here E and I represent the appropriate 
elastic modulus and second moment of area re-
spectively, and ω3 and ω4 are the uniformly dis-
tributed loads. While L and h indicate the height 
of the wall and the length of the slab respectively. 

The load bearing capacity depends on the value of 
the moment acting in the different part of the wall. 
The higher values of the moment are above and 
beside the slab. 

If less than four members frame into a joint, then 
the equation is modified by ignoring the terms re-
lated to the missing members. 

The results of such calculations will usually be 
conservative because the true fixity, i.e. the ratio 
of the actual moment transmitted by a joint to that 
which would exist if the joint was fully rigid, of 
the wall slab joint cannot be achieved.  It will be 
permissible for use in design to reduce the bend-
ing moment, obtained from the calculations in ac-
cordance with equation (2.15) above, by multiply-
ing it by a factor: 

𝜼 = 𝟏 −
𝒌

𝟒
      2.16 

The value of k is given by: 

𝒌 =
𝒏

𝑬𝟑𝑰𝟑
𝒉𝟑

+𝒏
𝑬𝟒𝑰𝟒

𝒉𝟒

𝒏
𝑬𝟏𝑰𝟏

𝒉𝟏
+𝒏

𝑬𝟐𝑰𝟐
𝒉𝟐

≤ 𝟐     2.17 

If the wall bending moment and axial load are calculated 
for any joint in a multi-storey framed structure, then the 
eccentricity can be determined by dividing the moment 
by the axial load. The required moment and axial load 
can be determined using a normal rigid frame analysis. 
This approach is reasonable when the wall compression 
is high enough to contribute to the rigidity of the joints, 
but it could lead to inaccuracies when the compression is 
small. 

When the eccentricity overcome the value equal to 0.33 
times the wall thickness, then the DIN suggest to consider 
the minimal value of the thickness to calculate the load 
bearing capacity.  

Figure 2.4 Simplified frame system  

Figure 2.5 Stress block 
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3 Materials and modeling strategies 
Numerical simulations are necessary to provide information about  the structural behaviour and 
support the derivation of rational design rules. Nevertheless, the development of reliable and 
accurate numerical models cannot be achieved without a careful material description and a 
validation by comparison with a significant number of experimental results. This means that 
experiments in large-scale masonry tests, small masonry samples and masonry components are 
necessary.  

Nonlinear finite element analyses will always be helpful for the validation of the design of 
complex masonry structures under complex loading conditions.  

3.1 Micro- and macro- modeling 
Masonry is a composite material that consists of units and mortar joints. A detailed analysis of 
masonry, must then include a representation of units, mortar and the unit/mortar interface. The 
primary aim of micro-modeling is to carefully represent masonry starting from the knowledge 
of the properties of each constituent and the interface. The necessary experimental data must 
be obtained from laboratory tests in the constituents and small masonry samples. 

Due to the mortar joints, which act as a planes of weakness, and to the anisotropy of the blocks, 
the masonry mechanical properties change as a function of the direction taken in consideration. 
Generally, its numerical representation can be made using an approach based on the micro-
modeling of the individual components (brick, block, etc.) and mortar, or the macro-modeling 
of masonry as a composite. Depending on the level of accuracy and the simplicity desired, it 
is possible to use the following modeling strategies, see Figure 3.1: 

 

- Detailed micro-modeling - units and mortar in the joints are represented by continuum 
elements whereas the unit-mortar interface is represented by discontinuous elements; 

- Simplified micro-modeling - expanded units are represented by continuum elements 
whereas the behaviour of the mortar joints and unit-mortar interface is lumped in dis-
continuous elements;  

- Macro-modeling - units, mortar and unit-mortar interface are smeared out in the con-
tinuum. 
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Figure 3.1 Modeling strategies for masonry structures: (a) masonry sample; (b) detailed micro-modeling; 
(c) simplified micro-modeling; (d) macro-modeling 

In the first approach, Young’s modulus, Poisson’s ratio and, optionally, inelastic properties of 

both unit and mortar are taken into consideration. The interface represents a potential crack/slip 
plane provided with stiffness to avoid interpenetration of the continuum. This enables the com-
bined action of unit, mortar and interface. 

In the second approach, each joint, consisting of mortar and the two units mortar interfaces, is 
assumed into an “average” interface, while the units are expanded in order to keep the geometry 
unchanged. Masonry is thus considered as a set of elastic blocks bonded by potential frac-
ture/slip lines at the joints. Accuracy is lost since Poisson’s effect of the mortar is not included. 

The third approach does not make a distinction between individual units and joints but treats 
masonry as a homogeneous anisotropic continuum.  

One modeling strategy cannot be preferred over the other because different application fields 
exist for micro- and macro-models. Micro-modeling studies are necessary to give a better un-
derstanding about the local behaviour of masonry structures. This type of modeling is particu-
larly used to structural details. Macro-models are applicable when the structure is composed of 
solid walls with sufficiently large dimensions so that the stresses across or along a macro-
length will be essentially uniform. Clearly, macro-modeling is more practice oriented due to 
the reduced time and memory requirements as well as a user-friendly mesh generation. This 
type of modeling is most valuable when a compromise between accuracy and efficiency is 
needed. 

Accurate micro- or macro- modeling of masonry structures requires a careful experimental 
description of the material. However, the properties of masonry are influenced by many differ-
ent factors, such as material properties of the units and mortar, arrangement of bed and head 
joints, anisotropy of units, dimension of units, joint width, quality of workmanship, degree of 
curing, environment and age.  
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3.2 Softening behaviour 
Softening is a gradual decrease of mechanical resistance under a continuous increase of defor-
mation forced upon a sample or structure. It is an important characteristic of quasi-brittle ma-
terials like clay brick, mortar, ceramics, rock or concrete, which fail due to a process of internal 
crack formation. Such mechanical behaviour is usually attributed to the heterogeneity of the 
material, due to the presence of different phases and material defects even prior to loading 
(micro- and macro- defects).  

The initial stresses and cracks as well as var-
iations of internal stiffness and strength 
cause progressive crack development when 
the material is subjected to progressive de-
formation. Initially, the microcracks are sta-
ble which means that they grow only when 
the load is increased. Around peak load, an 
acceleration of crack formation takes place 
and the formation of macrocracks starts. The 
macrocracks are unstable, which means that 
the load has to decrease to avoid an uncon-
trolled growth. In a deformation controlled 
test the macrocrack growth results in soften-
ing and localization of cracking in a small 
zone while the rest of the sample remains 
uncracked. 

For shear failure, a softening process is also 
observed as degradation of the cohesion in 
Coulomb friction models. For compressive 
failure, softening behaviour is highly de-
pendent upon the boundary conditions in the experiments and the size of the specimen, (Mier, 
1984) and (Vonk, 1992). Experimental concrete data provided by (Vonk, 1992) indicated that 
the behaviour in uniaxial compression is governed by both local and continuum fracturing pro-
cesses. 

Fig. (3.2) shows characteristic stress-displacement diagrams for quasi-brittle materials in uni-
axial tension and compression. It is assumed that the inelastic behaviour both in tension and 
compression can be described by the diagram’s integral. These quantities, denoted respectively 
as fracture energy Gf and compressive fracture energy Gc, are assumed to be material proper-
ties. With this energy-based approach, tensile and compressive softening can be described 
within the same context. 

 

 
 

 

Figure 3.2 Stress displacement diagrams: a) Uniaxial 
tension (ft is the tensile strength); b) Uniaxial com-

pression (fc is the compressive strength) 
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It is noted that masonry presents other type of failure mechanism, which consists of unit-mortar 
interface slip under shear loading, see Fig.3.3. Again, it is assumed that the inelastic shear 
behaviour can be described by the fracture energy GII

f, defined by the integral of the diagram 
in the absence of normal confining load. 

Shear failure is an important feature of masonry behaviour which must be considered in a mi-
cro-modeling strategy. However, for continuum models, this failure cannot be directly included 
because the unit and mortar geometries are not discretized. Failure is, then, associated with 
tension and compression modes in a principal stress space. 

 

Figure 3.3 Shear behaviour (c is the cohesion) 

 

3.3 Properties of unit and mortar 
The properties of masonry are strongly dependent upon the properties of its constituents. The 
EC6 uses the compressive strength of the components to determine the strength of masonry 
even if a real indication of those values is not simple. For the masonry units, standard tests with 
solid plates result in an artificial compressive strength due to the restraint effect of the plates. 
The EC6 minimizes this effect by considering a normalized compressive strength fb, which 
results from the standard compressive strength, in the relevant direction of loading, multiplied 
by an appropriate shape/size factor.  

Experiments in the uniaxial post-peak behaviour of compressed bricks and blocks are virtually 
non-existent and no recommendations about the compressive fracture energy Gc can be made. 
It is difficult to relate the tensile strength of the masonry unit to its compressive strength due 
to the different shapes, materials, manufacture processes and volume of perforations. For the 
longitudinal tensile strength of clay, calcium-silicate and concrete units, (Schubert, 1994) car-
ried out an extensive testing program and obtained a ratio between the tensile and compressive 
strength that ranges from 0.03 to 0.10. For the fracture energy Gf of solid clay and calcium-
silicate units, both in the longitudinal and normal directions, (Pluijm, 1992) found values rang-
ing from 0.06 to 0.13 [Nmm/mm2], for tensile strength values ranging from 1.5 to 3.5 [N/mm2]. 
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Experiments on the biaxial behaviour of bricks and blocks are also lacking in the literature. 
This aspect gains relevance due to the usual orthotropy of the units due to perforations. As a 
consequence, the biaxial behaviour of a brick or block with a given shape is likely to be un-
known, even if the behaviour of the material from which the unit is made is known. 

For the mortar, the compressive strength fm is obtained from standard tests. Nevertheless, there 
is still a lack of knowledge about the complete mortar uniaxial behaviour, both in compression 
and tension. 

3.4 Properties of the unit-mortar interface 
The unit-mortar joint is often the weakest part in masonry structure. The nonlinear response of 
the joints, which is then controlled by the unit-mortar interface, is one of the most relevant 
features of masonry behaviour. Two different phenomena occur in the unit-mortar interface, 
one associated with tensile failure and the other associated with shear failure. 

3.4.1 Tensile failure 
(Pluijm, 1992) carried out deformation controlled tests in small masonry specimens of solid 
clay and calcium-silicate units, see Figure 3.4. These tests resulted in an exponential tension 
softening curve with a fracture energy GI

f  ranging from 0.005 to 0.02 [Nmm/mm2] for a tensile 
bond strength ranging from 0.3 to 0.9 [N/mm2], according to the unit-mortar combination. The 
fracture energy is defined as the amount of energy to create a unitary area of a crack along the 
unit-mortar interface. A close observation of the cracked specimens revealed that the bond area 
was smaller than the cross sectional area of the specimen, see Figure 3.5. This so-called net 
bond surface seems to concentrate in the inner part of the specimen, which can be a combined 
result from shrinkage of the mortar and the process of laying units in the mortar bed. The values 
given above refer to the real cross section of a wall and result from an extrapolation of the 
measured net bond surface of the specimen to the assumed net bond surface of the wall, ne-
glecting any influence of the vertical joints.  

 

Figure 3.4 Tensile bond behaviour of masonry. (a) test specimen; (b) stress-crack displacement results 
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Figure 3.5 Tensile bond surface. (a) bond surface for tensile specimens; (b) net bond surface 

3.4.2 Shear failure 
An important aspect in the determination of the shear response of masonry joints is the ability 
of the test set-up to generate a uniform state of stress in the joints. This objective is difficult 
because the equilibrium constraints introduce non-uniform normal stresses in the joint.  

(Pluijm, 1993) presents a characterization of the masonry shear behaviour, for solid clay and 
calcium-silicate units. Confining (compressive) stresses were applied with three different lev-
els: 0.1, 0.5 and 1.0 [N/mm2]. The test apparatus did not allow for application of tensile stresses 
and even for low confining stresses extremely brittle results are found with potential instability 
of the test set-up. For several specimens with higher confining stresses shearing of the unit-
mortar interface was accompanied by diagonal cracking in the unit. 

 

Figure 3.6 Shear bond behaviour of the joint. (a) stress-displacement diagram for different normal stress 
levels; (b) fracture energy as a function of the normal stress level 

The experimental results yield an exponential shear softening diagram with a residual dry fric-
tion level, see Figure 3.6a. The area defined by the stress-displacement diagram and the resid-
ual dry friction shear level is named fracture energy GII

f , with values ranging from 0.01 to 0.25 
[Nmm/mm2], for initial cohesion c values ranging from 0.1 to 1.8 [N/mm2]. The value for the 
fracture energy depends also on the level of the confining stress, see Figure 3.6b. Evaluation 
of the net bond surface of the specimens is no longer possible but the values measured for 
tensile bond strength can be assumed to hold.  
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Figure 3.7 Friction and dilatancy angles. (a) Coulomb friction law with initial and residual friction angle; 
(b) dilatancy angle  

Additional material parameters can be obtained from such an experiment, see Figure 3.7. The 
initial internal friction angle 0, associated with a Coulomb friction model, is measured by tan 
0, which ranges from 0.7 to 1.2, for different unit-mortar combinations. The residual internal 
friction angle r is measured by tan r , which seems to be approximately constant and to equal 
0.75. The dilatancy angle measures the uplift of one unit over the other upon shearing, see 
Figure 3.7b. Note that the dilatancy angle depends on the level of the confining stress, see 
Figure 3.8a. For low confining pressures, the average value of tanfalls in the range from 0.2 
to 0.7, depending on the roughness of the unit surface. For high confining pressures, tande-
creases to zero. With increasing slip, tanalso decreases to zero due to the smoothing of the 
sheared surfaces, see Figure 3.8b. 

 

 

Figure 3.8 Shear bond behaviour of the joint. (a) tangent of the dilatancy angle  as a function of the nor-
mal stress level; (b) relation between the normal and the shear displacement upon loading 
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3.5 Properties of the composite material 
Masonry is a composite material which consists of units and mortar. The failure mechanism of 
the components loaded in tension and compression is essentially the same, with a crack growth 
at the microlevel of the material. In this process inelastic strains result from a dissipative pro-
cess in which fracture energy is released during the process of internal fracture. The composite 
material shows, however, another type of failure, sliding, which results in a dry friction process 
between the components once softening is completed.  

If a micro-modeling strategy is used all these phenomena can be incorporated in the model 
because joints and units are represented separately. In a macro-modeling strategy joints are 
considered like an anisotropic homogeneous material and the interaction between the compo-
nents cannot be incorporated in the model. In-
stead, a relation between average stresses and 
strains is established.  

The principal problem to realize an accurate ma-
sonry model is to know a complete materials de-
scription. This is generally difficult because ex-
perimental data suitable for numerical purpose 
are scarce. The principal relations between the 
different components of brickwork can be derived 
by standard test on materials. It's known that ma-
sonry loaded in uniform compression will fail by 
the development of tension cracks parallel to the 
axis of loading or by a shear failure along lines of 
weakness,  the mode of failure depends on 
whether the mortar is weak or strong relative to 
the units. 

Moreover, it is observed that the strength of ma-
sonry in compression is smaller than the nominal 
compressive strength of the units as given by a 
standard compressive test. On the other hand, the 
masonry strength may greatly exceed the cube 
crushing strength of the mortar used in it.  

 
 

 
 

Figure 3.9 Relation between the different com-
ponents 
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4 Experimental investigation  
The experimental investigations are made by the Technische Universität Dresden and de-
scribed in (Jäger & Baier, 2007). 

The development of reliable and accurate numerical models cannot be achieved without a care-
ful material description and a validation by comparison with a significant number of experi-
mental results. This means that experiments in large-scale masonry tests, small masonry sam-
ples and masonry components are necessary.  

For this reason, a wall-ceiling node model has been selected, which is composed from 2 outer 
walls, each half-storey height and a reinforced concrete slab.  

Wall 

Width:   b= 1.0 m 
Height:  h1,2= 1.25 m 

Thickness:  t= 0.365 m 
Moment of inertia: I= 4052260417 mm4 

Brick:   Thermopor P014 

Mortar:  Thin-bed mortar 
Slab 

Width:   b= 1.0 m 

Height:  h= 5.0 m 
Thickness:  d= 0.2 m 

Concrete:  B25 
Steel reinforcement: BST 500M/S 

Support Depth: ts= 0.19 m 
Moment of inertia: I= 667000000 mm4 

The stress is added at the head of the upper wall and to the slab in order to investigate the 
influence of different vertical loads. The primary aim is the experimental determination of the 
transferred bending moments in the node for different load combinations. 

In addition, the investigations are necessary for the calibration of the FEM model used for the 
simulation of structural behaviour of the wall-ceiling node. 

The moment of inertia of the wall is calculated by the following formulation: 

𝑰 =
𝒕𝟑𝒃

𝟏𝟐
    Equation 4.1 

The moment of inertia of the slab is calculated with: 

𝑰 =  
𝒅𝟑𝒃

𝟏𝟐
    Equation 4.2 

Figure 4.1 Experimental structure 
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Figure 4.2 Wall/Slab node 

The static system considered is shown in Fig.4.3 

 

Figure 4.3 Frame system and binding reactions 

4.1 Materials 
The material parameters are obtained from experimental proofs execute according to (DIN EN 
772-1, 2000) and to (DIN EN 1052-1, 1998). 

4.1.1 Bricks Thermopor P14 
The compressive strength of the bricks was tested according to (DIN EN 772-1, 2000). There 
were summarized the characteristics following:  

Geometrical features: 
Length in x direction:  sx= 247 mm 

Length in y direction:  sy= 365mm 
Length in z direction:  sz= 249 mm 

Mechanical parameters: 

Compressive strength: fb= 9.1 N/mm2 

Elastic modulus:  E= 3000 N/mm2  

Density:   ρ= 0.7 kg/dm3 
Poisson ratio:   ν= 0.17 

Figure 4.4 Brick Thermopor P14 
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4.1.2 Mortar 
To determine the mortar properties standard tests were carried out. One compilation of relevant 
results is shown below. 

Mechanical parameters: 
Density:    ρ= 1.56 kg/dm3 

Compressive strength:  fb= 19,64 N/mm2 

Elastic modulus:   E= 5900 N/mm2 

4.1.3 Masonry 
The determination of Young's modulus and the strength of masonry is carried out using DIN 
EN 1052-1.  

Geometrical features: 

Wall width:    ls= 500 mm 

Wall height:    hs= 1250 mm 

Wall thickness:   ts= 365 mm 

Measurement tools distance:  L1= 500 mm 

Mechanical Parameters: 

Medium compressive strength: f= 6.47 N/mm2 

Characteristic compressive strength: fk=5.39 N/mm2 

Elastic modulus:   E=4700 N/mm2 

 

Figure 4.6 Proof’s execution  

Figure 4.5 Masonry test specimen  
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4.1.4 Concrete 

The determination of the elastic modulus, compressive strength and the stress-strain curve are 
necessary in order to evaluate the concrete properties. The results of the tests are summarised 
following. 

Mechanical Parameters: 

Density:    ρ= 2.33 kg/dm3 

Compressive strength:  fc= 47.03 N/mm2 

Tensile strength:   ft= 3.43 N/mm2 

Elastic modulus:   E= 32000 N/mm2 

 

 

4.2 Load program 
The load at the top of the upper wall is applied by two hydraulic presses to the axis of the wall. 
To load the ceiling plate 4 steel load plates were used. Each plate is extended over the entire 
width of the ceiling strip. The plates are situated at the quarter points of the slab. The vertical 
load N decreases during the experiment, starting from a value of about 100 kN to until 0 kN. 
The vertical load P increases starting from 0 kN until to about 10 kN for every load stages.  

The following load cases were considered in order to calibrate the FEM model. 

 

Table 4-1 Load cases 

The value of ω4 used in the DIN formulation is 
equal to 10.1 kN/m when the vertical load P is 
equal to 6.25 kN, on the contrary it is equal to 
13.16 kN/m when P is equal to 10 kN. The value 
of the distributed load takes in consideration the 
death load of the concrete slab. The vertical load 
acting to the wall/slab connection takes in con-
sideration the death load of the upper wall. 

Load case  N [kN] P [kN] 
A4 103,33 6,26 
A7 102,82 10,01 
B4 52,9 6,26 
B7 52,43 10,01 
C4 13,79 6,27 
C7 13,46 10,02 

Figure 4.8 Frame system  

Figure 4.7 Concrete 
specimen 
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4.3 Measurements 
The mean values of the deformations and distortions were registered for each load stage. 

The  horizontal deformations of the wall are generally relatively low (<1 mm). The vertical 
displacement of the slab are show on the table 4-2. The measurement point 13 measures the 
vertical displacement of the middle of the slab and was selected to calibrate the FEM model. 

 
Load case Measuring point 13 [mm] 

A4 2,3 
A7 4,87 
B4 3,64 
B7 5,88 
C4 4,45 
C7 6,66 

Table 4-2 Experimental vertical displacement 

Load cells were used during the experiment in order to measure the binding reaction of the 
structure. In particular, the horizontal reactions BH and AH were considered.  

 
Load case AH [kN] BH [kN] 

A4 4,45 -4,25 
A7 6,09 -4,53 
B4 3,63 -2,31 
B7 4,78 -2,53 
C4 2,78 -0,78 
C7 3,79 -0,99 

Table 4-3 Experimental horizontal binding reactions 

 

The other results analysed are shown on Annex C.
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5 Numerical investigation 
Numerical simulations are necessary to provide information into the structural behaviour and 
to support the derivation of rational design rules. Nonlinear finite element analyses will always 
be helpful for the validation of the design for masonry structures under complex loading con-
ditions.  

For these reasons a structural numerical model was calibrated according to the requirements of 
the considered problem, or the realistic determination of nodes bending moments under differ-
ent structural load cases. 

Masonry is a multi-component construction material which is essentially characterized by an-
isotropic properties. The FEM model used herein is to be construed as three-dimensional mi-
cro-model, in which the stones and the mortar joints are modelled discretely. This makes it 
possible to assign separate properties of the stone and the mortar. The bond between the two 
components is simulated by contact elements, which in turn very specific properties can be 
assigned 

In Atena 3D program the different material properties can be detected. 

A general analysis of a structure usually consists of application of many small load increments. 
At each of those increments an iterative solution procedure has to be executed to obtain a struc-
tural response at the end of the increment. The Atena 3D program, which is determined for 
nonlinear finite element analysis of structures, offers tools specially designed for computer 
simulation of concrete and reinforced concrete structural behavior. 

5.1 Atena 3D 
Atena 3D program is designed for 3D nonlinear analysis of solids with special tools for rein-
forced concrete structures. However, structures from other materials, such as soils, metals etc. 
can be treated as well. The program has three main functions: 

1. Pre-processing. Input of geometrical objects (concrete, reinforcement, interfaces, etc.), load-
ing and boundary conditions, meshing and solution parameters. 

2. Analysis. It makes possible a real time monitoring of results during calculations. 

3. Post-processing. Access to a wide range of graphical and numerical results. 

Atena 3D recognizes two models, geometrical and numerical. Data of these models are treated 
strictly separately.  

Geometrical model represents dimensions, properties and loading. It consists of an assembly 
of macro-elements (solids). They are connected by contacts, as a matter of fact each macro-
element is an independent object defined by joints lines and surfaces. Thus, on a contact of 
neighboring macro-elements there are double surfaces (consequently also double lines and 
double joints). This provision assures that each object is independent of the others. If we ad or 
remove a macro-element all its entities are added or removed without interference with other 
objects. 
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Reinforcement can be modeled by a discrete bar, which is defined as a geometrical multi-linear 
object. It is embedded in solid objects. Its geometry is defined independently of macro-element. 
Thus, one reinforcing bar can be embedded in any number of macro-elements.  

Geometrical model is completed by defining loading (load cases and load history) and con-
struction cases. 

Numerical model is generated according to the geometrical model and represents a numerical 
approximation of the structural analysis problem. Numerical model is a result of discretization 
made by the finite element method. The mesh generator in ATENA makes possible to generate 
automatically meshes for solid and reinforcing objects. As a consequence of independent 
macro-elements, the finite element meshes are made for each microelement independently. 
Thus, when two macro-elements are connected as neighbouring objects, there are two surfaces 
belonging to each object on the contact. There are two sets of nodes on the contact, which may, 
but need not to coincide. The connection between the nodes of neighbouring objects can be 
perfect, or there may be a contact element to model other types of interaction. 

5.2 FEM model 
The traditional way of modeling walls, shear walls and similar structural parts, build from ma-
sonry, i.e., from bricks (or stones) connected with mortar, is to determine the material proper-
ties of the masonry. For smaller structures, it may be possible to model all bricks discretely, 
i.e. represent each brick with a separate macro-element or volume, and each gap with an inter-
face.  

Modeling mortar with volume elements usually does not make sense and it is also not very 
feasible, because the very thin layer requires mesh refinement and results in a mesh with too 
many finite elements. It is used maybe for some special studies of just a small region between 
2 bricks.  

 

Figure 5.1 FEM model used for the numerical investigation 
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The FEM calibration was carried out by trying to reproduce the structure behaviour as accu-
rately as possible. This was done through a micro-modeling of the structure, defining the pa-
rameters and the geometry of the materials used in the experimental phase. Some parameters, 
such as the tensile strength of mortar and brick, have not been provided through experimental 
tests. For this reason, an iterative analysis was carried out in such a way as to derive these 
values. For example, starting from a value of the tensile strength equal to about 0.4 times the 
compressive strength of the mortar, the value was changed until acceptable results, compared 
with the experimental results, have been achieved. Masonry brick’s tensile strength is supposed 

to be greater than the mortar interface’s one. The characteristics of the steel reinforcement used 
to model the slab are the same used for the experimental investigation. These are shown in 
Annex E. 

In addition to the mechanical parameters, also the load cases are important on the structural 
behavior. Specifically, the vertical force applied on the top of the wall influences the structural 
behavior near the wall/slab joint. It seems that the higher the value of the vertical force is 
applied, the higher the stiffness of the node is.  

5.2.1 Material properties 
The mechanical properties are shown below: 

Macro element parameters   Concrete Brick 

E  [N/mm2] 32000 3000 
ν [-] 0,17 0,17 

fcu [N/mm2] -55,33 -10,71 
fc [N/mm2] -47,03 -9,10 
ft  [N/mm2] 3,43 2,00 
ρ [kg/m3] 2330 700 

Table 5-1 Mechanical parameters of macro-elements 

Interface parameters   Brick-Brick Slab-Brick 

E  [N/mm2] 5900 5900 
fm  [N/mm2] -19,64 -19,64 
ft  [N/mm2] 0,8 1 
µ  [-] 0,6 1 

Table 5-2 Mechanical parameters of interface 

Where: 

E= Young modulus  

ν= Poisson ratio 

fcu= Cubic compressive strength 
fc= Cylindrical compressive strength 

ft=Tensile strength 
ρ= Density 
µ= Friction coefficient  
fm= Mortar compressive strength  
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5.2.2 Load cases 
After the definition of the mechanical parameters the load cases are set. The simulation is car-
ried out by applying a vertical load on the top of the wall and four vertical loads to the slab. 
The load values were summarized on the table below: 

Load case N [kN] P [kN] 
A4 106 6,25 
A7 106 10 
B4 56 6,25 
B7 56 10 
C4 17 6,25 
C7 17 10 

Table 5-3 Load cases 

 

Figure 5.2 Binding reactions on the frame system 

For each load case the vertical displacement on the middle point of the slab and the binding 
reactions are compared with the experimental measurements. The bending moment considered 
are: 

𝑴(𝟏𝟑) = −𝑩𝑯𝒉𝟐     5.1 

𝑴(𝟏𝟐) = 𝑨𝑯𝒉𝟏     5.2 

Where M(13) and M(12) are the bending moments acting above and below the slab respec-
tively, while h1 and h2 are the height of the lower and upper wall respectively.  

By knowing the bending moments it is possible to calculate the eccentricities: 

𝒆𝒐 =
𝑴(𝟏𝟑)

𝑵
      5.3 

𝒆𝒖 =
𝑴(𝟏𝟐)

𝑨𝑽
      5.4 
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Where eo and eu are the upper and the lower load eccentricity, on the wall/slab connection. 

5.3 Results evaluation  
To calibrate the FEM model the numerical results are compared with the experimental results.  

The diagram below shows the vertical displacement of the middle point of the slab. Next, the 
error of the FEM model is calculated. This process is repeated also for the horizontal binding 
reactions BH and AH, with which is possible to calculate the bending moments acting to the 
wall slab connection, above and below the slab respectively. 

 

Figure 5.3 Slab vertical displacement from Measuring Point MP 13 

Load case Error [%] 
A4 13,0 
A7 5,3 
B4 6,0 
B7 1,9 
C4 1,1 
C7 2,3 

Table 5-4 MP 13 Error evaluation 

 

Figure 5.4 Horizontal binding reaction comparison 

 

 

 

A4 A7 B4 B7 C4 C7
EXP 2,3 4,87 3,64 5,88 4,45 6,66
FEM 2,60 5,13 3,86 5,77 4,40 6,81

1,0
3,0
5,0
7,0
9,0

[m
m

]

MP 13 - Slab Vertical Displacement

A4 A7 B4 B7 C4 C7
EXP -4,25 -4,53 -2,31 -2,53 -0,78 -0,99
FEM -3,62 -4,40 -2,27 -2,74 -0,70 -1,08

-5,0
-4,0
-3,0
-2,0
-1,0
0,0

[k
N

]

BH - Horizontal binding reaction
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Load case Error [%] 

A4 14,8 
A7 2,8 
B4 1,6 
B7 8,1 
C4 9,7 
C7 9,0 

Table 5-5 BH Error evaluation 

 

Figure 5.5 Horizontal binding reaction comparison 

Load case Error [%] 
A4 12,6 
A7 5,3 
B4 9,0 
B7 1,7 
C4 12,3 
C7 11,2 

Table 5-6 AH Error evaluation 

Once the model was calibrated, the bending moments and the eccentricities on the node at the 
top and bottom of the slab were calculated.  

 

Figure 5.6 Bending moment comparison above the slab 

 

A4 A7 B4 B7 C4 C7
EXP 4,45 6,09 3,63 4,78 2,78 3,79
FEM 3,89 5,76 3,30 4,86 2,44 3,36

0,0
2,0
4,0
6,0
8,0

[k
N

]

AH - Horizontal binding reaction

A4 A7 B4 B7 C4 C7
EXP 5,31 5,66 2,89 3,16 0,98 1,24
FEM 4,52 5,50 2,84 3,42 0,88 1,35

0,0
1,0
2,0
3,0
4,0
5,0
6,0

[k
N

m
]

M(13) - Moment Above Slab
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Load case Error [%] 
A4 14,8 
A7 2,8 
B4 1,6 
B7 8,1 
C4 9,7 
C7 9,0 

Table 5-7 M(13) Error evaluation 

 

Figure 5.7 Bending moment comparison below the slab 

Load case Error [%] 
A4 12,6 
A7 5,3 
B4 9,0 
B7 1,7 
C4 12,3 
C7 11,2 

Table 5-8 M(12) Error evaluation 

 

Figure 5.8 Eccentricity comparison above the slab 

 

 

 

A4 A7 B4 B7 C4 C7
EXP 5,56 7,61 4,54 5,98 3,48 4,74
FEM 4,86 7,21 4,13 6,08 3,05 4,21

0,0
2,0
4,0
6,0
8,0

[k
N

m
]

M(12) - Moment Below Slab

A4 A7 B4 B7 C4 C7
EXP 50 54 52 57 58 75
FEM 43 52 51 61 52 79

0
20
40
60
80

100

[m
m

]

eo - Eccentricity Above Slab
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Load case Error [%] 

A4 14,6 
A7 3,0 
B4 1,8 
B7 7,0 
C4 10,9 
C7 5,5 

Table 5-9 eo Error evaluation 

 

 Figure 5.9 Eccentricity comparison below the slab 

Load case Error [%] 
A4 12,2 
A7 5,1 
B4 8,6 
B7 1,3 
C4 14,7 
C7 11,2 

Table 5-10 eu Error evaluation 

The bending moment and the eccentricities values are influenced by the vertical force acting 
above the wall. It is clear that the lower the vertical force is, the lower the bending moment is 
and the higher the eccentricity is. 

 
 

 
 

 

 
 

 
 

A4 A7 B4 B7 C4 C7
FEM 41 58 62 82 110 123
EXP 47 61 68 81 129 138

0

50

100

150

[m
m

]

eu - Eccentricity Below Slab
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The following pictures show the vertical stress σzz acting to the node. The yellow area indicates 
the tensile stress, while the green area indicates the compressive stress. 

 

 
Load case A4 

 
 Load case A7 

 
Load case B4 

 
Load case B7 

 
Load case C4 

 
Load case C7 

Table 5-11 Vertical stress qualitative evaluation 

For the first 3 cases, the wall/slab connection does not reach the tensile strength on the upper 
side of the slab, as a consequence it is capable to resist to the tensile stress transferred by the 
slab, which rotates due to the action of the vertical loads P. While, for the next 2 cases (B7 and 
C4), the stone on the exterior side of the wall is the macro-element which contributes to transfer 
the vertical tensile stress from the upper wall to the lower one. In the last case (C7), only the 
lower connections are capable to transfer the tensile stress, while on the upper side there is no 
connections between the macro-elements, i.e. the tensile stress exceeded the tensile strength of 
the mortar interface. 
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6 Load Bearing Capacity evaluation 
The load bearing capacity is evaluated with the theoretical model developed by Awni/A.W. 
Hendry and then the results are compared to the DIN formulation. The normative considers a 
frame system where the loss of rigidity is associated to a reduction factor which depends by 
the rigidity of the beams, but does not takes in account the non-linear behavior of the structure. 
Furthermore, the simplified method suggested by DIN for the bending moment calculation, 
does not consider the influence of the vertical force applied on the top of the wall, or the relative 
position of the slab compared to the edge of the wall, which are actually important for the 
calculation of the eccentricity. 

Following, the bending moments, the eccentricities and finally the load bearing capacity are 
estimated with a FEM numerical model by using a non-linear analysis, in order to compare the 
results to the analytics solutions. 

For this purpose the geometry considered is a wall/slab joint, where the slab is completely 
inserted into the joint.  

 

Figure 6.1 Model used for the load bearing capacity evaluation 

The geometrical parameters are shown below: 

- Wall thickness t= 365 mm  
- Wall height   h1=h2= 1.25 m  

- Wall width  b= 1 m  

- Slab length   l= 4.90 m  
- Slab thickness  s= 200 mm  

The results are divided by considering the upper side and the lower side of the slab separately. 
Following, a comparison between the bending moments and the eccentricities was made in 
order to understand the differences between the numerical analysis and the simplified method 
proposed by DIN. The characteristics values were considered. 
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Figure 6.2 Bending moment comparison above the slab 

 

 

Figure 6.3 Bending moment comparison below the slab 

 

 

Figure 6.4 Eccentricity comparison above the slab 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 9,4 13,1 9,8 13,4 10,1 13,8 10,4 14,1 10,6 14,4 10,8 14,6 10,9 14,6

7,0

12,0

17,0

[k
N

m
]

M(13) - Moment Above Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 9,8 13,4 10,1 13,8 10,4 14,2 10,7 14,5 10,9 14,8 11,1 14,9 11,2 15,1

7,0

12,0

17,0

[k
N

m
]

M(12) - Moment Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
FEM 19 26 24 33 33 45 51 69 103 140 204 275 474 635
DIN 25 33 32 41 42 55 63 82 124 162 241 314 556 725

0
200
400
600
800

[m
m

]

eo - Eccentricity Above Slab
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Figure 6.5 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13) M(12) eo eu 

LC1 35,5 31,0 35,5 31,0 
LC2 27,5 24,1 27,5 24,1 
LC3 31,1 27,1 31,1 27,1 
LC4 24,1 20,9 24,1 20,9 
LC5 27,1 23,4 27,1 23,4 
LC6 21,1 17,8 21,1 17,8 
LC7 23,4 20,0 23,4 20,0 
LC8 18,3 15,1 18,3 15,1 
LC9 20,1 17,0 20,1 17,0 
LC10 15,8 12,8 15,8 12,8 
LC11 18,4 15,4 18,4 15,4 
LC12 14,5 11,7 14,5 11,7 
LC13 17,3 14,3 17,3 14,3 
LC14 14,0 10,7 14,0 10,7 

Table 6-1 Error evaluation 

 
Either the FEM results and the DIN results, show a similar trend. The difference between the 
two cases is that the DIN formulations overestimate the bending moment acting to the node.  

It can be observed that in this geometrical case, the vertical force applied on the top of the wall 
is not the principal parameter that influences the transferred moment from the wall/slab con-
nection. As a matter of fact, there are small differences of the bending moment results for the 
different load cases. On the contrary, the lower the vertical force applied on the top of the wall 
is, the higher the eccentricity resulting is. 

 

 
 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
DIN 24 31 29 38 38 48 54 68 94 115 149 176 229 258
FEM 18 25 23 31 31 41 45 59 81 102 129 158 200 233

0

100

200

300
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m

]
eu - Eccentricity Below Slab
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Following the load bearing capacity is estimated. It is supposed that, for the geometrical situ-
ation taken into account, the compressive failure anticipates the buckling failure (see chapter 
2). 

 

Figure 6.6 Load bearing capacity above the slab comparison 

 

Figure 6.7 Load bearing capacity below the slab comparison 

 

The calculation of the load bearing capacity is carried out using the FEM eccentricity results, 
regarding the uncracked and cracked state, and using the simplified method for the DIN results. 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
DIN 960 912 921 862 857 779 730 613 334 279 223 167 111 56
Uncracked 1967 1967 1967 1967 1967 1967 1967 1967 1945 1593 1207 952 597 459
Cracked 1967 1967 1967 1967 1967 1967 1967 1967 1707 924 0 0 0 0
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Nrdo - Load Bearing Capacity Above Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
DIN 969 928 935 886 882 819 783 698 539 411 334 279 223 167
Uncracked 1967 1967 1967 1967 1967 1967 1967 1967 1967 1959 1681 1462 1223 1088
Cracked 1967 1967 1967 1967 1967 1967 1967 1967 1967 1733 1150 535 0 0

0
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Nrdu - Load Bearing Capacity Below Slab
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The DIN formulation consider the masonry with no tensile strength, which is actually a wrong 
approximation of the real behaviour of the structure. In order to understand the real behaviour 
of the structure, it is possible to analyze the vertical stress σzz resulting from FEM calculations 
acting to the node. 

 

LC1 

 

LC2 

 

LC3 

 

LC4 

 

LC5 

 

LC6 

 

LC7 

 

LC8 

 

LC9 

 

LC10 

 

LC11 

 

LC12 

 

LC13 

 

LC14 

Table 6-2 Vertical stress qualitative evaluation  

The green area indicates the compressive stress. Instead, the yellow area indicates the tensile 
stress acting to the node. The stress values of the iso-areas are shown in the Annex D. 

The structure, for this geometrical case, does not reach the tensile strength on the wall/slab 
connection, even for low value of the vertical load on the top of the wall, and results to be in 
uncracked state.  

Also the cracked state with no tensile strength is considered. In this case the load bearing 
capacity decrese to zero for lower values of the vertical force on the top of the wall. 

The DIN formulations considers, for high values of eccentricity, the minimal compressive area 
lower to 0.33 times the effective area capable to resist to compressive stress. This consideration 
is in a safety side, but it is not realistic because the structure is actually capable to resist to low 
values of tensile stress, which increases the real value of load bearing capacity.



7 Influence of Slab position 

 38 

7 Influence of Slab position 
In order to calculate the load bearing capacity, the DIN does not takes in consideration the 
relative position of the slab compared to the edge of the wall, or the different behavior of the 
upper side of the slab respect the lower side.  

For this reason a series of simulations were achieved, setting different load cases with different 
values of the vertical load on the upper side of the wall. For each simulation the relative posi-
tion of the structural elements were changed, so as to understand the influence of the two pa-
rameters on the structural behavior.  

The determination of the bending moment using the DIN formulation takes in consideration 
only the geometrical characteristics of the masonry, but does not considers the influence of the 
slab position or the vertical load acting to the wall. 

When the value of the slab distance from the edge of the wall increases, there is a different 
behavior compared to the simplified model, due to the non-linear relations between the slab 
and the masonry wall.  

As a matter of fact, the loss of stiffness in the node region leads to a redistribution of the forces 
which is not considered from the DIN formulations. Until the interface is connected within the 
two elements, the bending moments in 
both sides are similar, and the FEM 
values have a similar trend compared 
to those calculated with the simplified 
method. When the upper interface 
fails (cracked state), i.e. the tensile 
stress overcome the tensile resistance 
of the mortar in the wall/slab connec-
tion, the bending moment drastically 
decreases and, as a consequence, also 
the actual eccentricity decreases.  

All these phenomena are analyzed in 
the following chapters by the confron-
tation of the theoretical calculations 
and the FEM results. 

The parameters takes in consideration 
are the distance of the slab from the 
edge of the wall  a and the vertical 
force applied on the top of the wall N. 

- a= variable 
- t= 365 mm  

- d= 200 mm 
 

 

Figure 7.1 Wall/Slab connection detail 
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7.1 a= 50 mm 
The following case takes in consideration the wall slab connection in which the slab is situated 
50 mm far from the edge of the wall.  

 

Figure 7.2 Structure geometry a= 50 mm 

 

 

 

Figure 7.3 Bending moment comparison above the slab 

 

Figure 7.4 Bending moment comparison below the slab 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
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Figure 7.5 Eccentricity comparison above the slab 

 

 

Figure 7.6 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo  eu 

L1 623,1 21,2 623,1 21,2 
L2 226,7 14,4 226,7 14,4 
L3 271,5 14,5 271,5 14,5 
L4 144,5 10,0 144,5 10,0 
L5 150,6 8,2 150,6 8,2 
L6 95,7 5,1 95,7 5,1 
L7 89,7 0,9 89,7 0,9 
L8 63,9 0,8 63,9 0,8 
L9 53,0 8,3 53,0 8,3 
L10 41,5 7,9 41,5 7,9 
L11 39,4 13,4 39,4 13,4 
L12 32,1 11,7 32,1 11,7 
L13 32,2 16,5 32,2 16,5 
L14 27,0 13,8 27,0 13,8 

Table 7-1 Error evaluation 

It is possible to recognize two different behaviors considering the upper or the lower side of 
the wall/slab connection. Firstly, the bending moment acting above the slab, when the latter is 
situated at about 0.15 time the wall thickness, shows a sensible increment of the values when 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12 LC13 LC14
FEM 4 10 9 17 17 28 33 50 81 114 173 238 421 571
DIN 25 33 32 41 42 55 63 82 124 162 241 314 556 725
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the vertical force applied on the top of the wall decreases. Furthermore, the lower the vertical 
force applied on the top of the wall is, the higher the DIN formulation’s precision is. 

On the contrary, below the slab, the bending moments show a similar trend compared to the 
DIN formulation, and the vertical force does not influence so much the results, like in the 
previous situation. The FEM values shows a slight decrement when N decreases and the pre-
cision of the DIN formulation is higher compared with the upper side. 

7.2 a= 100 mm 
In this case the slab is situated 100 mm far from the edge of the wall. 

 

Figure 7.7 Structure geometry a=100 mm 

 

 

Figure 7.8 Bending moment comparison above the slab 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
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Figure 7.9 Bending moment comparison below the slab 

 

 

Figure 7.10 Eccentricity comparison above the slab 

 

 

Figure 7.11 Eccentricity comparison below the slab 

 

 

 

 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
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Error [%] 

Load case M(13)  M(12)  eo  eu  
LC1 12,7 56,9 12,7 56,9 
LC2 39,3 49,3 39,3 49,3 
LC3 41,5 48,4 41,5 48,4 
LC4 162,4 40,5 162,4 40,5 
LC5 265,7 35,4 265,7 35,4 
LC6 262,7 31,4 262,7 31,4 
LC7 811,1 19,5 811,1 19,5 
LC8 1094,6 18,3 1094,6 18,3 
LC9 5527,9 10,3 5527,9 10,3 
LC10 2945,9 13,0 2945,9 13,0 
LC11 5245,6 41,6 5245,6 41,6 
LC12 7048,5 50,0 7048,5 50,0 

Table 7-2 Error evaluation 

When the slab is far about 0.3 times the wall thickness from the edge of the wall, the structural 
behavior is different compared to the previous case analyzed before. In this case, the actual 
moment transferred by the upper side of the slab starts from a similar value compared to the 
analytic calculation but next, a drastic decrement is registered. This behavior is due to the loss 
of contact between the slab and the wall (cracked state), because the interface's tensile strength 
has been exceeded by the tensile stress acting to the node. As a consequence, the eccentricity 
on the upper side tend to assume really small values compared to those calculated with the 
formulations provided by the DIN. 

Regarding the lower side of the slab, the decrement of the upper vertical force N cause a dec-
rement of the bending moment into the joint connection. 
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By looking the following pictures, which show the vertical stress acting to the node, it is pos-
sible to qualitatively understand in which way the loss of contact between the slab and the wall 
occurs. In particular, the first 5 load cases show that the interface is able to resist to the tensile 
stress (yellow area) transferred by the slab to the wall. Starting from the load case LC6, the 
loss of contact within the two surfaces leads to a redistribution of the forces. For this reason on 
the upper side of the wall the bending moment decreases drastically and the node is no longer 
capable to resist to tensile stresses (cracked state).  
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Table 7-3 Vertical stress qualitative evaluation 

In these cases the errors between the analytic solution and the FEM results are large.  
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7.3 a= 150 mm 
This case is similar to the previous cases. The results are shown in the Annex B. 

 

Figure 7.12 Structure geometry a= 150 mm 

7.4 a= 200 mm 
In this case the slab is situated 200 mm far from the edge of the wall. 

 

 

Figure 7.13 Structure geometry a=200 mm 
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Figure 7.14 Bending moment comparison above the slab 

 

 

Figure 7.15 Bending moment comparison below the slab 

 

 

Figure 7.16 Eccentricity comparison above the slab 

 

 

Figure 7.17 Eccentricity comparison below the slab 
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Error [%] 

Load case M(13)  M(12)  eo  eu 
LC1 53,9 63,3 53,9 63,3 
LC2 36,7 56,1 36,7 56,1 
LC3 40,0 57,4 40,0 57,4 
LC4 18,7 48,6 18,7 48,6 
LC5 17,3 47,7 17,3 47,7 
LC6 13,9 37,9 13,9 37,9 
LC7 32,8 32,1 32,8 32,1 
LC8 60,7 22,1 60,7 22,1 
LC9 139,7 3,7 139,7 3,7 
LC10 212,1 12,5 212,1 12,5 
LC11 451,3 41,8 451,3 41,8 
LC12 617,9 55,3 617,9 55,3 

Table 7-4 Error evaluation 

When the slab is far about 0.5 times the thickness of the wall from the edge of the latter, both 
of the upper side and the lower side of the slab show a similar trend. The bending moment 
decrease as the vertical force N decreases. While the eccentricities remains quite constant for 
the different load cases, and does not prove the trend shown in the previous geometric situa-
tions. The eccentricities calculated above the slab remain quite constant for all the load cases. 
On the contrary, below the slab the eccentricities tend to increase slowly when the vertical load 
N decreases. 
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Following the vertical stress σzz acting to the node is qualitatively analyzed. 
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Table 7-5 Vertical stress qualitative evaluation 

In this geometrical situation, when the slab is situated far over 0.5 times the wall thickness 
from the edge of the wall, there is not the development of tensile stress on the connection above 
the slab, which is stressed mainly by compressive load. The acting bending moment decreases 
when the vertical force applied on the top of the wall decreases. After the load case LC7 the 
interface starts to fail. 

On the contrary, above the slab there is tensile stress development only in the last load cases, 
starting from LC9. It is possible to notice a concentration of compressive stress on the edge of 
the wall connected with the slab (blue area). 
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7.5 a= 250 mm 
This geometrical cases shows a similar behavior compared to the previous case. The results are 
shown in Annex B. 

 

 

Figure 7.18 Structure geometry a=250 mm 
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8 Influence of Wall Thickness 
The next simulations have the aim to understand the effect of the wall thickness to the structural 
behavior. The wall thickness is one of the parameters which influence the slenderness of the 
wall, which represent the ratio between the wall height h and the wall thickness t. The slender-
ness is important because the buckling failure is really influenced by this parameter. For slender 
wall, the buckling failure is more likely to occur compared to the compressive material failure, 
when the vertical force applied on the wall is eccentrical. For this reason the slenderness ratio 
should be limited, in order to exercise a control on the flexural tension stress within the wall. 

When slenderness increases, the tensile strength has a larger influence on the load bearing 
capacity, due to role on the flexural mechanism in the activation of the failure. For cases with 
large eccentricity, the tensile strength significantly increases the load capacity. In these cases, 
neglecting the tensile strength can cause a severe underestimation of the load bearing capacity 
of walls. Therefore, the contribution of the tensile strength of the unit–mortar interface on the 
load bearing capacity of masonry walls increases significantly with the slenderness ratio and 
the load eccentricity. Conversely, for small or null eccentricities the failure is mostly due to 
compression crushing, in these cases the tensile strength have not noticeable effect to the final 
load bearing capacity. 

The FEM results were compared with the DIN formulation. The load cases are similar to the 
previous simulations. The vertical force on the top of the wall decreases while the vertical 
forces on the slab change between the same two values. 

8.1 t= 365 mm 
This is the same case analyzed in chapter 6. 

 
Error [%] 

Load case M(13) M(12) eo eu 

LC1 35,5 31,0 35,5 31,0 
LC2 27,5 24,1 27,5 24,1 
LC3 31,1 27,1 31,1 27,1 
LC4 24,1 20,9 24,1 20,9 
LC5 27,1 23,4 27,1 23,4 
LC6 21,1 17,8 21,1 17,8 
LC7 23,4 20,0 23,4 20,0 
LC8 18,3 15,1 18,3 15,1 
LC9 20,1 17,0 20,1 17,0 
LC10 15,8 12,8 15,8 12,8 
LC11 18,4 15,4 18,4 15,4 
LC12 14,5 11,7 14,5 11,7 
LC13 17,3 14,3 17,3 14,3 
LC14 14,0 10,7 14,0 10,7 

Table 8-1 Error evaluation 
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8.2 t= 315 mm 

 

Figure 8.1 Bending moment comparison above the slab 

 

 

Figure 8.2 Bending moment comparison below the slab 

 

 

Figure 8.3 Eccentricity comparison above the slab 
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Figure 8.4 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo eu 

L1 56,8 50,1 56,8 50,1 
L2 44,3 38,4 44,3 38,4 
L3 46,9 40,3 46,9 40,3 
L4 38,5 32,8 38,5 32,8 
L5 40,8 34,9 40,8 34,9 
L6 34,4 29,0 34,4 29,0 
L7 35,9 30,6 35,9 30,6 
L8 30,9 25,9 30,9 25,9 
L9 33,4 28,3 33,4 28,3 
L10 28,3 23,3 28,3 23,3 
L11 31,2 26,0 31,2 26,0 
L12 27,5 22,0 27,5 22,0 

Table 8-2 Error evaluation 

8.3 t= 265 mm 

 

Figure 8.5 Bending moment comparison above the slab 

The last load case shows a decrement of the bending moment, caused by the loss of contact 
between the elements on the wall/slab connection. 
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Figure 8.6 Bending moment comparison below the slab 

 

 

Figure 8.7 Eccentricity comparison above the slab 

 
The last load case LC12 shows a significative decrement of the eccentricity, because of the 
loss of contact between the wall/slab interface. 

 

Figure 8.8 Eccentricity comparison below the slab 
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Error [%] 

Load case M(13)  M(12)  eo eu 
L1 67,2 63,7 67,2 63,7 
L2 48,4 45,2 48,4 45,2 
L3 51,2 47,5 51,2 47,5 
L4 42,2 39,0 42,2 39,0 
L5 44,4 41,0 44,4 41,0 
L6 37,2 34,1 37,2 34,1 
L7 38,3 35,2 38,3 35,2 
L8 32,2 29,1 32,2 29,1 
L9 34,4 31,2 34,4 31,2 
L10 29,2 25,6 29,2 25,6 
L11 35,4 27,1 35,4 27,1 
L12 296,9 48,8 296,9 48,8 

Table 8-3 Error evaluation 

8.4 t= 215 mm 
 

 

Figure 8.9 Bending moment comparison above the slab 

 

 

Figure 8.10 Bending moment comparison below the slab 
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Figure 8.11 Eccentricity comparison above the slab 

 

 

Figure 8.12 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13)  M(12)  eo eu 
L1 68,7 65,0 68,7 65,0 
L2 26,6 19,0 26,6 19,0 
L3 28,1 19,9 28,1 19,9 
L4 21,7 14,4 21,7 14,4 
L5 24,3 16,3 24,3 16,3 
L6 18,6 11,3 18,6 11,3 
L7 21,0 13,2 21,0 13,2 
L8 15,9 8,7 15,9 8,7 
L9 18,1 10,4 18,1 10,4 
L10 13,8 6,5 13,8 6,5 
L11 19,9 8,9 19,9 8,9 
L12 22,9 5,6 22,9 5,6 

Table 8-4 Error evaluation 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
FEM 14 25 28 39 39 53 59 80 118 159 267 339
DIN 24 32 36 47 48 63 71 93 139 181 320 417
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8.5 t= 175 mm 

 

Figure 8.13 Bending moment comparison above the slab 

 

 

Figure 8.14 Bending moment comparison below the slab 

 

 

Figure 8.15 Eccentricity comparison above the slab  

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8
FEM 2,6 5,3 4,0 5,5 4,1 5,7 4,3 5,8 4,4 5,9 4,4 5,3

0,0
2,0
4,0
6,0
8,0

[k
N

m
]

M(13) - Moment Above Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8 4,5 5,8
FEM 2,7 5,7 4,3 5,9 4,4 6,0 4,6 6,2 4,7 6,4 4,8 6,5

0,0
2,0
4,0
6,0
8,0

[k
N

m
]

M(12) - Moment Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
FEM 10 21 20 27 27 37 41 56 83 112 189 230
DIN 18 23 22 29 29 38 43 56 84 110 194 253

0

100

200

300

[m
m

]

eo - Eccentricity Above Slab



  8 Influence of Wall Thickness 

 

 57 

 

Figure 8.16 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13)  M(12)  eo eu 
L1 69,7 65,6 69,7 65,6 
L2 9,4 2,5 9,4 2,5 
L3 12,0 4,2 12,0 4,2 
L4 5,9 0,8 5,9 0,8 
L5 8,0 0,6 8,0 0,6 
L6 2,8 3,7 2,8 3,7 
L7 4,6 2,5 4,6 2,5 
L8 0,1 6,5 0,1 6,5 
L9 1,5 5,4 1,5 5,4 
L10 2,2 8,8 2,2 8,8 
L11 2,4 7,3 2,4 7,3 
L12 9,9 11,0 9,9 11,0 

Table 8-5 Error evaluation 

 
Through the analysis of the results obtained by the different simulations it is possible to notice 
that the higher the slenderness is, the lower the bending moment acting into the node is. 

The error committed by the DIN formulation is higher for low value of slenderness. In addition, 
when the slenderness increases, the bending moments are more influenced by the vertical force 
applied on the top of the wall. In fact, the last case with t equal to 175 mm shows that the 
bending moment above the slab for the load case LC1 is about 0.6 times the bending moment 
acting for the load case LC11.  

By the comparison of the results, it can be see that there is a relation between the slenderness 
and the bending moment, considering the same load case.  

The next diagram shows the relation between the slenderness and the bending moment for the 
same load case, with N equal to 200 kN and P equal to 6.25 kN. The results are obtained from 
the FEM simulations. 
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Figure 8.17 Relation between bending moment and wall slenderness 

The eccentricities have a similar behavior compared to the bending moments.  

 

Figure 8.18 Relation between eccentricity and wall slenderness 

For slender walls, the bending moment is lower and, as a consequence, also the eccentricity 
decreases.  

The parameter which influences the capacity reduction factor is the rate between the eccen-
tricity and the wall thickness e/t.  
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Figure 8.19 Relation between eccentricity ratio and slenderness 

For different values of slenderness the eccentricity rate factor was calculated. For higher slen-
derness the capacity reduction factor will be higher because of the lower eccentricity. The load 
bearing capacity is calculated and the final results are shown in the following chart. 

 

Figure 8.20 Relation between Load Bearing Capacity and Slenderness ratio 

Even if the eccentricity decrease with increasing the slenderness, the load bearing capacity 
decreases, because of the lower thickness of the wall section. The load bearing capacity is 
calculated by using eq. (2.11) from DIN.
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9 Influence of Wall Elastic Modulus 
The following simulations are made in order to understand the influence of the wall elastic 
modulus on the structural behavior.  

The load bearing capacity increases with the compressive strength of the wall. The compressive 
strength depends on the wall young modulus E. For this reason the elastic modulus of the bricks 
which composed the masonry is changed in relation to the compressive strength. 

The elastic modulus of the wall is calculated by using the formulation suggested by the DIN. 
Starting from the compressive strength of the wall, which depend on the compressive strength 
of the bricks and the mortar, it is possible to estimate the elastic modulus with the following 
equation: 

𝑬 = 𝒌𝑬 ∗ 𝒇𝒌  9.1 

Where kE represent the wall stiffness. It is a factor which change in relation to the country. The 
value of kE suggested by the EC6 is equal to 1000. While fk is the compressive strength of the 
wall, calculated using the following formulation based on thin bed mortar: 

𝒇𝒌 = 𝑲𝒇𝒃
𝜶  9.2 

fb is the compressive strength of the brick and K is a factor which depends on the typology of 
the masonry units, the mortar and by the construction typology. In this case it is equal to 0.75. 
The value of α is taken equal to 0.70. 

By increasing the elastic modulus, also the wall rigidity increases. The wall rigidity influences 
the capacity to transfer the bending moment to the joint, because by decreasing the capacity of 
deformation of the materials then the transmitted forces increase.  

Following different cases with different value of wall elastic modulus are analysed. 

The geometry is the same used for the simulation in chapter 6. 
 

9.1 E= 2314 N/mm2 

 

Figure 9.1 Bending moment comparison above the slab 
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Figure 9.2 Bending moment comparison below the slab 

 

 

Figure 9.3 Eccentricity comparison above the slab 

 

 

Figure 9.4 Eccentricity comparison below the slab 
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Error [%] 
Load case M(13)  M(12)  eo eu 

L1 40,4 38,4 40,4 38,4 
L2 29,3 27,5 29,3 27,5 
L3 30,4 28,3 30,4 28,3 
L4 23,5 21,4 23,5 21,4 
L5 26,6 24,3 26,6 24,3 
L6 20,9 18,6 20,9 18,6 
L7 23,6 21,2 23,6 21,2 
L8 18,8 16,5 18,8 16,5 
L9 20,9 18,6 20,9 18,6 
L10 16,7 14,4 16,7 14,4 
L11 19,1 16,7 19,1 16,7 
L12 15,2 12,7 15,2 12,7 

Table 9-1 Error evaluation 

9.2 E= 2629 N/mm2 

 

Figure 9.5 Bending moment comparison above the slab 

 

 

Figure 9.6 Bending moment comparison below the slab 
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Figure 9.7 Eccentricity comparison above the slab 

 

Figure 9.8 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13)  M(12)  eo eu 
L1 32,7 30,5 32,7 30,5 
L2 24,8 23,3 24,8 23,3 
L3 26,1 24,3 26,1 24,3 
L4 19,9 18,0 19,9 18,0 
L5 22,5 20,4 22,5 20,4 
L6 17,0 14,9 17,0 14,9 
L7 19,6 17,4 19,6 17,4 
L8 15,1 12,7 15,1 12,7 
L9 17,3 15,1 17,3 15,1 
L10 13,3 11,0 13,3 11,0 
L11 15,8 13,6 15,8 13,6 
L12 12,6 9,7 12,6 9,7 

Table 9-2 Error evaluation 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
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9.3 E= 2928 N/mm2 

 

Figure 9.9 Bending moment comparison above the slab 

 

Figure 9.10 Bending moment comparison below the slab 

 

Figure 9.11 Eccentricity comparison above the slab 
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Figure 9.12 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo eu 

L1 27,3 25,0 27,3 25,0 
L2 20,4 19,0 20,4 19,0 
L3 22,1 20,4 22,1 20,4 
L4 16,6 15,0 16,6 15,0 
L5 19,3 17,3 19,3 17,3 
L6 14,2 12,3 14,2 12,3 
L7 16,7 14,6 16,7 14,6 
L8 12,2 10,1 12,2 10,1 
L9 14,5 12,4 14,5 12,4 
L10 10,7 8,6 10,7 8,6 
L11 13,2 11,1 13,2 11,1 
L12 11,4 6,9 11,4 6,9 

Table 9-3 Error evaluation 

9.4 E= 3215 N/mm2 

 

Figure 9.13 Bending moment comparison above the slab 

 

 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 35 45 50 64 64 81 89 109 143 171 228 270
FEM 28 38 42 55 55 72 77 99 128 157 205 253

0

100

200

300

[m
m

]
eu - Eccentricity Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 11,9 15,5 11,9 15,5 11,9 15,5 11,9 15,5 11,9 15,5 11,9 15,5
FEM 9,6 13,2 10,0 13,6 10,2 13,8 10,4 14,1 10,6 14,2 10,6 14,0

0,0
5,0

10,0
15,0
20,0

[k
N

m
]

M(13) - Moment Above Slab



9 Influence of Wall Elastic Modulus 

 66 

 

 

Figure 9.14 Bending moment comparison below the slab 

 

 

Figure 9.15 Eccentricity comparison above the slab 

 

 

Figure 9.16 Eccentricity comparison below the slab 
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Error [%] 

Load case M(13)  M(12)  eo eu 
L1 23,3 20,9 23,3 20,9 
L2 17,2 15,8 17,2 15,8 
L3 19,1 17,6 19,1 17,6 
L4 14,1 12,7 14,1 12,7 
L5 16,8 15,1 16,8 15,1 
L6 12,1 10,5 12,1 10,5 
L7 14,6 12,8 14,6 12,8 
L8 10,2 8,4 10,2 8,4 
L9 12,6 10,7 12,6 10,7 
L10 9,1 7,0 9,1 7,0 
L11 12,1 9,3 12,1 9,3 
L12 10,4 5,3 10,4 5,3 

Table 9-4 Error evaluation 

9.5 E= 3492 N/mm2 

 

Figure 9.17 Bending moment comparison above the slab 

 

Figure 9.18 Bending moment comparison below the slab 
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Figure 9.19 Eccentricity comparison above the slab 

 

Figure 9.20 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo eu 

L1 20,2 17,7 20,2 17,7 
L2 14,7 12,9 14,7 12,9 
L3 16,8 14,9 16,8 14,9 
L4 12,1 10,6 12,1 10,6 
L5 14,9 13,0 14,9 13,0 
L6 10,4 8,6 10,4 8,6 
L7 13,0 10,9 13,0 10,9 
L8 9,0 7,2 9,0 7,2 
L9 11,3 9,3 11,3 9,3 
L10 7,7 5,8 7,7 5,8 
L11 10,2 8,3 10,2 8,3 
L12 8,2 4,5 8,2 4,5 

Table 9-5 Error evaluation 

The higher the elastic modulus of the brick is, the higher the flexural rigidity of the wall is. As 
a consequence, the bending moment transmitted by the slab to the joint is higher when the 
elastic modulus of the single stone increases. Therefore, the comparison between FEM results 
and DIN formulations shows a higher precision when the elastic modulus increases, or for 
lower value of the vertical force applied on the top of the wall, by considering the uncracked 
state.  
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The following diagrams show the behaviour described above. By considering the same load 
case, with N equal to 200 kN and P equal to 6.25 kN, it is possible to notice that the higher the 
elastic modulus of the wall is, the higher the bending moment acting to the joint is. 

 

 

Figure 9.21 Relation between bending moment and wall elastic modulus 

Also the eccentricity increases as the elastic modulus of the bricks increases. 

 

Figure 9.22 Relation between eccentricity and wall elastic modulus 
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Considering the load bearing capacity, the increasing of the elastic modulus leads to a lower 
value of the load bearing capacity, because of the higher eccentricity developed by the wall/slab 
connection. The capacity reduction factor is inversely proportional to the eccentricity. 

 

 

Figure 9.23 Relation between Wall Elastic Modulus and Load Bearing Capacity 

 

The load bearing capacity is calculated using the DIN formulation.
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10 Influence of Slab Elastic Modulus 
Elastic modulus is a property of the constituent material. Stiffness is a property of a structure 
or component of a structure, and hence it is dependent upon various physical dimensions that 
describe that component. That is, the modulus is an intensive property of the material. Stiffness, 
on the other hand, is an extensive property of the solid body that is dependent on the material 
and its shape and boundary conditions. 

The stiffness of a structure is of principal importance in many engineering applications, so the 
modulus of elasticity is often one of the primary properties considered when selecting a mate-
rial. A high modulus of elasticity is sought when deflection is undesirable, while a low modulus 
of elasticity is required when flexibility is needed. 

The elastic modulus can be defined as the ratio of the stress (force per unit area) along an axis 
to the strain (ratio of deformation over initial length) along that axis in the range of stress in 
which Hooke's law holds. It can be used to predict the elongation or compression of an object 
as long as the stress is less than the yield strength of the elastic material. 

A solid material will deform when a load is applied to it. If it returns to its original shape after 
the load is removed, this is called elastic deformation. A stiff material needs more force to 
deform compared to a soft material, and an infinite force would be needed to deform a perfectly 
rigid material, implying that it would have an infinite Young's modulus. Although such a ma-
terial cannot exist, a material with a very high Young's modulus can be approximated as rigid. 

Concrete is a quasi-brittle material and has different behaviour in tension and compression. 
The experimental short term uniaxial stress–strain curve for concrete has essentially no linear 
range and the slope of the curve is continuous up to “failure” (see Fig. 10.1). The response of 
the concrete is nonlinear and, after the ultimate stress is reached, the material softens until it 
can no longer carry any stress.  In com-
pression, the stress-strain curve for con-
crete is linearly elastic up to 30 percent 
of the maximum compressive strength. 
Above this point, the stress increases 
gradually up to the maximum compres-
sive strength. After it reaches the maxi-
mum compressive strength, the curve 
descends into a softening region, and 
eventually crushing failure occurs at an 
ultimate stain. In tension, the stress-
strain curve for concrete is approxi-
mately linearly elastic up to the maxi-
mum tensile strength. After this point, 
the concrete cracks and strength de-
creases gradually to zero. 

 
 
 

Figure 10.1 Stress strain curve for concrete 

https://en.wikipedia.org/wiki/Intensive_and_extensive_properties
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties
https://en.wikipedia.org/wiki/Modulus_of_elasticity
https://en.wikipedia.org/wiki/Deflection_%28engineering%29
https://en.wikipedia.org/wiki/Stress_%28mechanics%29
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Strain_%28materials_science%29
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σ is the stress, ε is the strain, Ec is the Young’s modulus of the concrete, Escnt is the secant 
modulus corresponding to the maximum stress σc and given by: 

𝑬𝒔𝒄𝒏𝒕 =
𝝈𝒄

𝜺𝒄
      Equation 10.1 

The bilinear stress–strain curve in Fig. 10.1 is used to represent the tensile behaviour of the 
concrete where the Young’s modulus is the same as that for the compressive behaviour, σt is 
the tensile strength of the concrete, and εtu is the maximum tensile strain. 

If the elastic modulus decreases, the concrete slab is able to reach higher deformation before 
to reach the cracked state.  

The difference between the slab elastic modulus compared to the masonry wall’s one is of 
about one order of magnitude.  

If the slab elastic modulus increases, then it results less deformable and the flexibility is re-
duced. For this reason it is more easy to reach the cracked state in the wall slab connection. 
The deflection is the degree to which a structural element is displaced under a load, and it is 
proportional to the flexibility of the material. It may refer to an angle or a distance. 

The analysis were carried out taking in consideration the structural concrete generally used in 
common constructions. Four  typologies were considered: 

- C25/30 
- C30/37 

- C40/50 
- C45/55 

The mechanical characteristics of the concrete are obtained from pre-set mechanical parame-
ters by Atena 3D program, which are based on mechanical experimental data. The structural 
behaviour in Atena 3D is capable to consider the nonlinear effects due to the crack developing.  

The geometry is the same used for the simulation in Chapter 6. 
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10.1 C25/30 (E= 31000 N/mm2) 

 

Figure 10.2 Bending moment comparison above the slab 

 

 

Figure 10.3 Bending moment comparison below the slab 

 

Figure 10.4 Eccentricity comparison above the slab 
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Figure 10.5 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13)  M(12)  eo  eu 
L1 23,8 17,2 23,8 17,2 
L2 9,5 9,8 9,5 9,8 
L3 13,0 7,6 13,0 7,6 
L4 9,2 10,8 9,2 10,8 
L5 12,5 8,9 12,5 8,9 
L6 9,1 11,8 9,1 11,8 
L7 11,9 10,1 11,9 10,1 
L8 8,9 12,9 8,9 12,9 
L9 12,0 10,8 12,0 10,8 
L10 10,4 13,9 10,4 13,9 
L11 13,3 11,2 13,3 11,2 
L12 9,8 13,3 9,8 13,3 

Table 10-1 Error evaluation 

10.2 C30/37 (E= 33000 N/mm2) 

 

Figure 10.6 Bending moment comparison above the slab 
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Figure 10.7 Bending moment comparison below the slab 

 

Figure 10.8 Eccentricity comparison above the slab 

 

Figure 10.9 Eccentricity comparison below the slab 
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Error [%] 
Load case M(13)  M(12)  eo  eu 

L1 28,0 22,2 28,0 22,2 
L2 7,8 6,2 7,8 6,2 
L3 10,8 4,1 10,8 4,1 
L4 6,4 7,8 6,4 7,8 
L5 9,3 5,8 9,3 5,8 
L6 5,8 9,0 5,8 9,0 
L7 8,4 6,9 8,4 6,9 
L8 5,5 9,8 5,5 9,8 
L9 8,6 7,5 8,6 7,5 
L10 5,7 10,3 5,7 10,3 
L11 8,9 8,0 8,9 8,0 
L12 7,7 11,3 7,7 11,3 

Table 10-2 Error evaluation 

10.3 C40/50 (E=35000 N/mm2) 

 

Figure 10.10 Bending moment comparison above the slab 

 

Figure 10.11 Bending moment comparison below the slab 
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Figure 10.12 Eccentricity comparison above the slab 

 

 

Figure 10.13 Eccentricity comparison below the slab 

 
Error [%] 

Load case M(13)  M(12)  eo  eu 
L1 35,2 31,3 35,2 31,3 
L2 18,8 12,6 18,8 12,6 
L3 21,2 14,4 21,2 14,4 
L4 15,3 8,9 15,3 8,9 
L5 17,4 10,6 17,4 10,6 
L6 12,4 5,9 12,4 5,9 
L7 14,2 7,4 14,2 7,4 
L8 9,7 2,8 9,7 2,8 
L9 12,1 5,0 12,1 5,0 
L10 8,3 1,2 8,3 1,2 
L11 10,9 3,4 10,9 3,4 
L12 7,5 0,4 7,5 0,4 

Table 10-3 Error evaluation 
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FEM 23 34 34 47 53 72 107 145 212 286 494 664
DIN 31 41 42 54 62 81 122 159 238 310 548 714
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10.4 C45/55 (E= 36000 N/mm2) 

 

Figure 10.14 Bending moment comparison above the slab 

The last load case LC12 shows the loss of contact on the interface above the slab.  

 

Figure 10.15 Bending moment comparison below the slab 

 

Figure 10.16 Eccentricity comparison above the slab 

In load case LC12 there is a loss of contact between the slab and the wall. 
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Figure 10.17 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo  eu 

L1 36,9 33,2 36,9 33,2 
L2 22,9 18,0 22,9 18,0 
L3 25,5 20,0 25,5 20,0 
L4 19,2 14,2 19,2 14,2 
L5 21,4 16,1 21,4 16,1 
L6 16,1 11,1 16,1 11,1 
L7 17,8 12,7 17,8 12,7 
L8 13,4 8,3 13,4 8,3 
L9 15,8 10,7 15,8 10,7 
L10 11,8 6,6 11,8 6,6 
L11 14,4 9,1 14,4 9,1 
L12 239,1 27,8 239,1 27,8 

Table 10-4 Error evaluation 

The higher the elastic modulus of the slab is, the lower the bending moment transferred is. 

 

Figure 10.18 Relation between bending moment and slab elastic modulus  

Also the eccentricity shows a similar behaviour compared to the bending moments. 
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Figure 10.19 Relation between eccentricity and slab elastic modulus 

 

More rigid slab leads to a reduction of the bending moment acting to the wall/slab connection 
but, it is more likely that the interface failure occurs, because the deformability is reduced, 
while the wall deformability is higher.  Instead, in the last load cases of the chapter 10.4, when 
the elastic modulus is equal to 36000 N/mm2, the interface fails and the acting bending moment 
drastically decreases.  

The effect of the slab thickness variation is more marked below the slab.  

The EC 6 precision is higher for low values of the elastic modulus of the slab.  
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For high values of wall elastic modulus, the eccentricity is lower and the load bearing capacity 
will have higher value because the capacity reduction factor will be higher for low values of 
eccentricity. 

The next chart shows the relation between the load bearing capacity calculated with the DIN 
formulation and the elastic modulus of the slab. 

 

Figure 10.20 Relation between Slab Elastic Modulus and Load Bearding Capacity 
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11 Conclusions 
The main parameters involved on the ultimate response of masonry walls under vertical loading 
are the slenderness ratio, the load eccentricity, the masonry stiffness and the tensile strength of 
the unit-mortar interface. The consideration of realistic value of the tensile strength of the unit-
mortar interface can improve significantly the prediction of the structural behaviour and of the 
resistance capacity of walls with large slenderness, large eccentricity or low masonry stiffness, 
leading to a less conservative evaluation.  

The DIN simplified formulation does not consider different factors on the calculation of the 
acting bending moment to the wall/slab connection. For instance, the vertical load applied on 
the top of the wall or the actual evolution of the interfaces stiffness. 

- The loss of stiffness due to the development of the cracked state, i.e. when the tensile 
strength of the interface is exceeded by the tensile stress acting to the wall/slab connec-
tion, leads the bending moments to drastically decrease and, as a consequence, the ec-
centricity decreases to a small value. When the interface fails, the DIN formulation 
does not consider the actual behaviour of the cracked structure. In cracked state, the 
calculation of the eccentricity used to calculate the load bearing capacity shall be made 
using non-linear analysis, which consider the loss of contact and the redistribution of 
the forces. This behavior is discussed in Chapter 7. 

- The precision of the DIN formulation is analyzed with respect to the FEM simulations. 
It is possible to notice that the bending moment calculated in the uncracked state with 
the analytic formulation are generally higher than those obtained with non-linear FEM 
analysis. This leads to an underestimation of the real load bearing capacity for short 
walls in uncracked state. Furthermore, the precision is higher for low value of the ver-
tical force applied on the upper wall. This is discussed in Chapter 6. 

- The DIN formulation does not consider the vertical force applied on the top of the wall, 
which is actually important for the bending moment calculation, especially for the 
cracked state of the wall/slab connection. For low value of the vertical load applied on 
the upper wall, it is more likely that the interface going to fail. As a consequence of the 
interface failure, the bending moment decreases drastically for lower value of the ver-
tical force on the top of the wall when the cracked state involves. 

- The DIN simplified method described in Annex C, does not takes in account the differ-
ent behaviour between the upper and the lower side of the slab. The upper side is that 
one more stressed by tensile stress and, as a consequence, the first one to fail when the 
slab is vertically loaded.  
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The structural geometry influences the final structure’s behaviour. In particular, the slab posi-
tion respect to the edge of the wall and the variation of the wall thickness were investigated 
under different load cases. 

- Thanks to the FEM simulations three different behaviour are identified in relation to 
the relative position of the slab to the wall. Those are described in Chapter 7. 

- The wall thickness is a parameter which changes the wall slenderness. Different wall 
thickness cases were analysed. As a result, a reduction of the actual bending moment 
acting to the wall slab connection was detected on the basis of the reduction of the wall 
slenderness. The load bearing capacity shows a decrement whit increment of wall slen-
derness. The results are discussed in Chapter 8. 

The mechanical parameters were investigated, varying the elastic modulus of the different el-
ements of the structure, in particular the masonry wall and the slab. 

- The wall rigidity is influenced by the rigidity of the single elements which composed 
the masonry and by the mortar interface mechanical characteristics, like the interface 
tensile strength. The higher the single stone elastic modulus is, the higher the bending 
moment transferred to the wall slab connection is, because the flexural stiffness is pro-
portional to the elastic modulus of the wall. The higher moments leads to higher eccen-
tricity, which influenced the load bearing capacity, by decreasing it. The results are 
discussed in Chapter 9. 

- The slab rigidity depends on the mechanical characteristics of the concrete. The higher 
the slab elastic modulus is, the lower the bending moment transferred to the joint is. 
For this reason the eccentricity developed will be lower and, on the contrary, the load 
bearing capacity will be higher, until there is the uncracked state. 
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Annex A – Load Cases 
 

- Variation of slab position 

 
a=0 mm 

Load case N [kN] P [kN] 
LC1 500 6,25 
LC2 500 10,00 
LC3 400 6,25 
LC4 400 10,00 
LC5 300 6,25 
LC6 300 10,00 
LC7 200 6,25 
LC8 200 10,00 
LC9 100 6,25 
LC10 100 10,00 
LC11 50 6,25 
LC12 50 10,00 
LC13 20 6,25 
LC14 20 10,00 

Table 12-1 Load cases 

 
a=50 mm 

Load case N [kN] P [kN] 
LC1 500 6,25 
LC2 500 10,00 
LC3 400 6,25 
LC4 400 10,00 
LC5 300 6,25 
LC6 300 10,00 
LC7 200 6,25 
LC8 200 10,00 
LC9 100 6,25 
LC10 100 10,00 
LC11 50 6,25 
LC12 50 10,00 
LC13 20 6,25 
LC14 20 10,00 

Table 12-2 Load cases 
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a=100 mm 

Load case N [kN] P [kN] 
LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-3 Load cases 

 
a=150 mm 

Load case N [kN] P [kN] 
LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-4 Load cases 
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a=200 mm 

Load case N [kN] P [kN] 
LC1 250 6,25 
LC2 250 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-5 Load cases 

 
a=250 mm 

Load case N [kN] P [kN] 
LC1 250 6,25 
LC2 250 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-6 Load cases 
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- Variation of wall thickness 
 

t=365 mm 
Load case N [kN] P [kN] 

LC1 500 6,25 
LC2 500 10,00 
LC3 400 6,25 
LC4 400 10,00 
LC5 300 6,25 
LC6 300 10,00 
LC7 200 6,25 
LC8 200 10,00 
LC9 100 6,25 
LC10 100 10,00 
LC11 50 6,25 
LC12 50 10,00 
LC13 20 6,25 
LC14 20 10,00 

Table 12-7 Load cases 

 
t=315 mm 

Load case N [kN] P [kN] 
LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-8 Load cases 
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t=215 mm 

Load case N [kN] P [kN] 
LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-9 Load cases 

 
t=175 mm 

Load case N [kN] P [kN] 
LC1 250 6,25 
LC2 250 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-10 Load cases 
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- Variation of wall elastic modulus 
 

E=2314 N/mm2 
Load case N [kN] P [kN] 

LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-11 Load cases 

 
E=2629 N/mm2 

Load case N [kN] P [kN] 
LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-12 Load cases 
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E=2928 N/mm2 

Load case N [kN] P [kN] 
LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-13 Load cases 

 
E=3215 N/mm2 

Load case N [kN] P [kN] 
LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-14 Load cases 
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E=3492 N/mm2 

Load case N [kN] P [kN] 
LC1 300 6,25 
LC2 300 10,00 
LC3 200 6,25 
LC4 200 10,00 
LC5 150 6,25 
LC6 150 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-15 Load cases 

 

- Variation of slab elastic modulus 
 

E= 31000 N/mm2 
Load case N [kN] P [kN] 

LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-16 Load cases 
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E= 33000 N/mm2 

Load case N [kN] P [kN] 
LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-17 Load cases 

 
E= 35000 N/mm2 

Load case N [kN] P [kN] 
LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-18 Load cases 
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E= 36000 N/mm2 
Load case N [kN] P [kN] 

LC1 400 6,25 
LC2 400 10,00 
LC3 300 6,25 
LC4 300 10,00 
LC5 200 6,25 
LC6 200 10,00 
LC7 100 6,25 
LC8 100 10,00 
LC9 50 6,25 
LC10 50 10,00 
LC11 20 6,25 
LC12 20 10,00 

Table 12-19 Load cases 
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Annex B – FEM result for different Slab Positions 
 

- a=150 mm 
 

 

Figure B12.1 Bending moment comparison above the slab 

 

Figure B.2 Bending moment comparison below the slab 

 

Figure B.3 Eccentricity comparison above the slab 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 14,8 12,2 9,2 6,5 3,6 4,5 1,4 1,4 0,2 0,5 0,2 0,2
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M(13) - Moment Above Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 29,5 32,7 24,6 27,8 19,6 24,6 16,1 20,4 14,2 14,9 8,8 10,7
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10,0
20,0
30,0
40,0

[k
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]

M(12) - Moment Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
FEM 37 30 30 22 18 22 13 14 4 10 10 10
DIN 32 41 42 55 63 82 124 162 241 314 556 725
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m

]

eo - Eccentricity Above Slab
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Figure B.4 Eccentricity comparison below the slab 

Error [%] 
Load case M(13)  M(12)  eo  eu  

L1 13,6 56,6 13,6 56,6 
L2 37,0 49,0 37,0 49,0 
L3 39,3 48,1 39,3 48,1 
L4 154,7 40,0 154,7 40,0 
L5 252,0 34,9 252,0 34,9 
L6 266,4 32,1 266,4 32,1 
L7 841,3 20,6 841,3 20,6 
L8 1087,2 18,2 1087,2 18,2 
L9 5319,2 10,1 5319,2 10,1 
L10 2940,3 11,6 2940,3 11,6 
L11 5430,5 45,9 5430,5 45,9 
L12 7056,2 55,4 7056,2 55,4 

Table B-20 Error evaluation 

- a=250 mm 
 

 

Figure B.5 Bending moment comparison above the slab 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 30 38 38 49 55 69 96 118 153 184 252 280
FEM 68 74 74 81 84 102 121 144 171 165 172 180
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300
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]
eu - Eccentricity Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 27,8 26,4 21,3 20,5 15,5 14,7 9,6 10,4 5,3 5,3 2,3 2,3
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10,0

20,0

30,0
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M(13) - Moment Above Slab
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Figure B.6 Bending moment comparison below the slab 

 

 

Figure B.7 Eccentricity comparison above the slab 

 

 

Figure B.8 Eccentricity comparison below the slab 

 

 

 

 

 

 

 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7 12,8 16,7
FEM 34,8 38,0 30,1 32,4 24,4 26,8 18,8 21,4 13,2 14,8 9,0 10,7
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M(12) - Moment Below Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
FEM 137 130 105 101 76 72 47 51 26 26 11 11
DIN 51 66 63 82 84 109 124 162 241 314 556 725
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eo - Eccentricity Above Slab

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 LC12
DIN 45 58 55 70 72 88 97 120 156 191 248 283
FEM 124 131 130 135 137 141 143 154 162 169 174 182
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eu - Eccentricity Below Slab
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Error [%] 
Load case M(13)  M(12)  eo  eu  

LC1 54,0 63,3 63,1 63,3 
LC2 36,8 56,1 49,3 56,1 
LC3 40,0 57,4 40,0 57,4 
LC4 18,7 48,6 18,7 48,6 
LC5 17,4 47,7 9,7 47,7 
LC6 13,8 37,9 50,9 37,9 
LC7 32,7 32,1 161,5 32,1 
LC8 60,7 22,0 216,7 22,0 
LC9 139,7 3,4 818,0 3,4 
LC10 212,1 12,7 1095,3 12,7 
LC11 451,3 42,4 4765,5 42,4 
LC12 617,9 55,9 6236,5 55,9 

Table B-21 Error evaluation 
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Annex C – Experimental and FEM Results comparison 
 

EXP 
Load case Av [kN] Cv [kN] 

A4 117,84 10,53 
A7 125,16 17,7 
B4 66,67 11,27 
B7 73,88 18,59 
C4 26,95 11,92 
C7 34,27 19,27 

Table C - 1 Experimental vertical binding reactions  

 
FEM 

Load case Av [kN] Cv [kN] 
A4 117,41 10,96 
A7 124,83 18,03 
B4 66,37 11,48 
B7 74,14 18,72 
C4 27,69 12,14 
C7 34,26 19,57 

Table C - 2 FEM vertical binding reaction 

 
Error [%] 

Av Cv 
0,36 4,08 
0,26 1,86 
0,45 1,91 
0,35 0,69 
2,75 1,82 
0,03 1,53 

Table C - 3 Error evaluation 

 

 

 
 

 
 

 

 
 



 

101 

Annex D – FEM Simulation Results 
 

- Geometrical case used for the calibration of the model 
 

 

Figure D - 1 Vertical stress σzz iso-areas Load Case A4 
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Figure D - 2 Vertical stress σzz iso-areas Load Case A7 
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Figure D - 3 Vertical stress σzz iso-areas Load Case B4 
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Figure D - 4 Vertical stress σzz iso-areas Load Case B7 
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Figure D - 5 Vertical stress σzz iso-areas Load Case C4 

 

Figure D - 6 Vertical stress σzz iso-areas Load Case C7 
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- Geometrical case used for the evaluation of the load bearing capacity 
(a=0) 

 

 

Figure D - 7 Vertical stress σzz iso-areas Load Case 1  
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Figure D - 8 Vertical stress σzz iso-areas Load Case 2 

 

Figure D - 9 Vertical stress σzz iso-areas Load Case 3 
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Figure D - 10 Vertical stress σzz iso-areas Load Case 4 

 

Figure D - 11 Vertical stress σzz iso-areas Load Case 5 
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Figure D - 12 Vertical stress σzz iso-areas Load Case 6 

 

Figure D - 13 Vertical stress σzz iso-areas Load Case 7 
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Figure D - 14 Vertical stress σzz iso-areas Load Case 8 

 

Figure D - 15 Vertical stress σzz iso-areas Load Case 9 
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Figure D - 16 Vertical stress σzz iso-areas Load Case 10 

 

Figure D - 17 Vertical stress σzz iso-areas Load Case 11 
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Figure D - 18 Vertical stress σzz iso-areas Load Case 12 

 

Figure D - 19 Vertical stress σzz iso-areas Load Case 13 
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Figure D - 20 Vertical stress σzz iso-areas Load Case 14 
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- Geometrical case: a=100 mm 

 

Figure D - 21 Vertical stress σzz iso-areas Load Case 1 
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Figure D - 22 Vertical stress σzz iso-areas Load Case 2 

 

Figure D - 23 Vertical stress σzz iso-areas Load Case 3 
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Figure D - 24 Vertical stress σzz iso-areas Load Case 4 

 

Figure D - 25 Vertical stress σzz iso-areas Load Case 5 
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Figure D - 26 Vertical stress σzz iso-areas Load Case 6 

 

Figure D - 27 Vertical stress σzz iso-areas Load Case 7 
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Figure D - 28 Vertical stress σzz iso-areas Load Case 8 

 

Figure D - 29 Vertical stress σzz iso-areas Load Case 9 
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Figure D - 30 Vertical stress σzz iso-areas Load Case 10 

 

Figure D - 31 Vertical stress σzz iso-areas Load Case 11 
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Figure D - 32 Vertical stress σzz iso-areas Load Case 12 
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- Geometrical case: a= 200 mm 

 

Figure D - 33 Vertical stress σzz iso-areas Load Case 1 
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Figure D - 34 Vertical stress σzz iso-areas Load Case 2 

 

Figure D - 35 Vertical stress σzz iso-areas Load Case 3 
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Figure D - 36 Vertical stress σzz iso-areas Load Case 4 

 

Figure D - 37 Vertical stress σzz iso-areas Load Case 5 
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Figure D - 38 Vertical stress σzz iso-areas Load Case 6 

 

Figure D - 39 Vertical stress σzz iso-areas Load Case 7 
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Figure D - 40 Vertical stress σzz iso-areas Load Case 8 

 

Figure D - 41 Vertical stress σzz iso-areas Load Case 9 
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Figure D - 42 Vertical stress σzz iso-areas Load Case 10 

 

Figure D - 43 Vertical stress σzz iso-areas Load Case 11 



 

127 

 

Figure D - 44 Vertical stress σzz iso-areas Load Case 12 
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Annex E – Geometrical parameters of Experimental and FEM 

structure 
 

 

Figure E - 1 Vertical Section 
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Figure E - 2 Back view 
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Figure E - 3 Detail A of the Wall/Slab  
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Figure E - 4 Slab Reinforcement used for the Experimental and FEM structure 

 

 


		Politecnico di Torino
	2017-11-03T14:04:48+0000
	Politecnico di Torino
	Alessandro Grazzini
	Tesi 222028




