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Abstract

The main goal of this thesis work is to investigate optimisation possibilities offered by
a total or partial migration of the track reconstruction algorithm for Inner Tracking System
(ITS) Upgrade to a Graphics Processing Unit (GPU) architecture.

The thesis project has been developed in the framework of A Large Ion Collider Ex-
periment (ALICE) at CERN that after a pause in 2018-2019 (indicated as Long Shutdown
2 (LS2)), will be equipped with an upgraded silicon pixel detector made up of seven layers
with a cylindrical geometry to collect new data in the high luminosity era of the Large
Hadron Collider (LHC). This study and implementation are mandatory for the experiment
to face the enhanced rate of Pb–Pb collisions of up to 6×1027𝑐𝑚−2𝑠−1 (50 kHz interaction
rate) delivered by the LHC during the Run 3 that will follow the LS2 period. Such an im-
provement leads to an estimated data throughput from the ALICE detector greater than 1
TB/s for Pb–Pb events, that is two orders of magnitude higher than the data throughput of
the present running conditions. It is therefore necessary to achieve an important reduction
of the data volume as early as possible during the data-flow: this operation is performed
by the O2 (Online/Offline) facility, that reconstructs and filter the data synchronously with
the data taking process.

Such a requirement makes it necessary to considerably improve the performances of
the current reconstruction algorithms, in order to process that huge amount of data with-
out violating the strict time constraints imposed by the synchronicity. Since part of the
O2 facility will be equipped with GPUs, it is worth to investigate a partial migration of
algorithms to a GPU architecture, in particular those steps that are quite slow but easily
parallelizable.

This thesis work presents an optimised version of the ITS detector tracklet reconstruc-
tion algorithm, that can run on both Central Processing Unit (CPU) and GPU Compute
Unified Device Architecture (CUDA) architectures. Track finding and fitting are two of the
most computationally challenging problems for event reconstruction in particle physics [1].
Indeed, the track reconstruction algorithm must be able to cope with a very high combina-
torial, with thousands of clusters in each detector layer. Moreover, the track reconstruction
in the ITS Upgrade is particularly challenging, because on the one hand the track recon-
struction will be done online and, on the other hand, the experiment aims to reconstruct
all the Pb–Pb collisions that will occur at a rate of 50 kHz [2].

After a brief theoretical analysis of the main algorithm steps and the presentation of
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a performance benchmark for the serial CPU version of the code, the thesis describes in
details the techniques used to realise the CUDA version and the obtained results in terms
of speedup.



Chapter 1

The ALICE Experiment

ALICE is a general-purpose detector running at the LHC with the mission to explore
the features of the heavy-ion collisions delivered by the LHC. It is designed to study the
physics of the strong interaction sector of the Standard Model and in particular the Quark-
Gluon Plasma (QGP), using p–p, p–Pb and Pb–Pb collisions at unprecedented energy (or-
der of TeV) and high density and temperature. After the LS2 in 2018-2019, the ALICE
experiment will be equipped with an upgraded detector, in order to face the enhanced rate
of heavy-ion collisions and collect all the statistics delivered by the LHC.

1.1 Introduction

1.1.1 CERN accelerator complex
ALICE is one of the four major detectors installed at the LHC, together with A Toroidal

LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS) and Large Hadron Collider
beauty (LHCb).

The LHC is the last element in the chain of machines that accelerate particles to in-
creasingly higher energy, known as CERN accelerator complex [4]. Figure 1.1 shows the
CERN LHC ecosystem. The four major experiments, including ALICE, are highlighted
with a yellow circle on the bigger ring, while a bunch of other detectors lay on the smaller
accelerators. More specifically, the ALICE detector and related facilities are located at the
Point 2 of the LHC tunnel, in the district of St. Genis-Pouilly, France.

Protons (p) and lead ions (Pb) follow two different acceleration paths before converg-
ing into the LHC. Protons are formed into a container of hydrogen gas, where atoms are
immersed into an electric field to strip off their electrons, and injected into Linear Acceler-
ator (LINAC) 2, where they reach an energy of 50 MeV. Then the beam enters sequentially
into Proton Synchrotron Booster (PSB), Proton Synchrotron (PS) and Super Proton Syn-
chrotron (SPS), reaching an energy of respectively 1.4 GeV, 25 GeV and 450 GeV, before
it finally reaches the LHC. Lead ions start instead from a container of vaporised Pb and

1



1 – The ALICE Experiment

Figure 1.1: The CERN LHC ecosystem. The LHC is the last ring (dark blue line) in
a complex chain of particle accelerators. The smaller machines are used in a chain to
boost the particles to their final energies and provide beams to a whole set of smaller
experiments. [3]

are injected sequentially into LINAC3 and Low Energy Ion Ring (LEIR), where they are
splitted into 4 bunches, each containing 2.2 × 108 ions. Bunches are accelerated in groups
of two until they reach an energy of 72 MeV, then they are sent into PS and follow the same
acceleration chain described for protons.

Inside the LHC, two beams circulate in two different pipes, one clockwise and the other
anticlockwise, until they reach an energy of 6.5 TeV. Then they are forced to collide in four
points, where the four aforementioned experiments are installed.

1.1.2 Coordinate system
The ALICE coordinate system is a right-handed orthogonal Cartesian system with the

origin corresponding to the beams interaction point inside the LHC [5]. Figure 1.2 gives a
clear graphic representation of the ALICE coordinate system, which defines several useful
components as follows:

2



1 – The ALICE Experiment

Figure 1.2: Definition of the ALICE coordinate system [5]. Some visual aids are reported
in order to better understand axis directions and senses: x-axis goes from Jura mountain
to Saleve mountain, while z-axis goes from the town of Bellegarde to the town of Gex, or
from RB24 building to RB26 building. Part of the ALICE detectors side labelling system
is also reported, with upstream detectors labeled as A and downstream ones labeled as C.

• x-axis, that is perpendicular to the mean beam direction, aligned with the local hor-
izontal and pointing to the centre of the accelerator

• y-axis, that is perpendicular to the x axis and the mean local beam direction, pointing
upward

• z-axis, that is parallel to the mean beam direction

• azimuthal angle 𝜙, that for an observer standing at positive z increases counterclock-
wise from x-axis (𝜙 = 0) to y-axis (𝜙 = 𝜋

2 )

• polar angle 𝜃, that increases from positive z-axis (𝜃 = 0) to (𝑥, 𝑦) plane (𝜃 = 𝜋
2 ).

Polar angle coordinate values are usually reported in units of pseudorapidity1 𝜂

1Spatial coordinate that describes the angle of of a particle with respect to its beam axis. If 𝜃 is the

3



1 – The ALICE Experiment

• spherical coordinate 𝑟 = √𝑥2 + 𝑦2 + 𝑧2

1.1.3 Experiment layout
According to [6], the design of the ALICE detector was mainly driven by the high

particle multiplicity in central2 Pb–Pb events; originally a number of particles per pseu-
dorapidity unit ranging between 2000 and 8000 was estimated, that was up to three orders
of magnitude larger than in a typical p–p interaction at the same energy. On the contrary,
the interaction rate with nuclear beams was low in the beginning (only 10 kHz for Pb–
Pb), allowing the use of slow but high granularity detectors like Time Projection Chamber
(TPC) and Silicon Drift Detector (SDD), that can only cope with a maximum trigger rate
of 1 kHz for minimum bias events.

Figure 1.3: The ALICE experiment apparatus at the CERN LHC. For the sake of visibility,
the HMPID detector is shown in the 12 o’clock position instead of the 2 o’clock position
in which it is actually positioned. [7]

angle between the particle momentum and the positive direction of the beam axis, pseudorapidity is equal
to 𝜂 = − ln [tan (

𝜃
2 )]

2In the literature events are classified into centrality classes corresponding to percentiles of the total
hadronic interaction cross section of the colliding nuclei [2]. Central events have the highest track density.
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1 – The ALICE Experiment

Figure 1.3 shows the ALICE experiment layout in Run 23 It consists of a central bar-
rel embedded in a large solenoid (L3 magnet) with magnetic field 𝐵 = 0.5𝑇 , that mea-
sures hadrons, electrons and photons, and a forward muon spectrometer. The barrel con-
tains, from the inside out, the Inner Tracking System (ITS), the Time Projection Chamber
(TPC), three arrays of Time Of Flight (TOF) detectors for particle identification, the High
Momentum Particle Identification (HMPID) based on Ring Imaging Cherenkov (RICH)
counters, the Transition Radiation Detector (TRD) and two electromagnetic calorimeters,
Photon Spectrometer (PHOS) and Electromagnetic Calorimeter (EMCAL). The forward
muon spectrometer is instead a complex arrangement of absorbers, a dipole magnet and
several Muon Tracking Chambers (MCHs) and Muon Trigger Systems (MTRs). On top of
the magnet that surrounds the central barrel there is an array of scintillators, called ALICE
Cosmic Rays Detector (ACORDE), that is used to trigger on cosmic rays.

Table 1.1 reports some details about the geometrical configuration and the main pur-
poses of each detector in ALICE experiment. Several detectors are dedicated to Particle
Identification (PID), because it plays an important role in a wide range of ALICE physics
analyses. ITS, TPC, TOF detectors and HMPID are involved in hadrons identifications,
while the TRD and the calorimeters provide dedicated electrons identification. Neverthe-
less, the most interesting feature for this thesis work is the ALICE tracking flow, that is
described in the next section.

1.1.4 Tracking flow
Looking at the last column of table 1.1, it appears that tracking operations mainly take

place in ALICE central barrel, more specifically into ITS, TPC and TRD detectors.

Figure 1.4: ALICE tracking flow in central barrel detectors. [8]

3Second LHC activity period, that started in 2015 and it will end on 2018.

5
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Table 1.1: Details about the geometrical configuration and main design purposes of the
ALICE detectors. This table has been realised by merging the description of the ALICE
apparatus in [8] with the summary of detectors subsystem in [6]. The position column re-
ports the radial distance from the beam axis for the central barrel detectors and the distance
along 𝑧 for the others. Where multiple values are specified, the detector is subdivided in
several layers.

Detector Acceptance Position (m) Main purposePolar (𝜂) Azimuthal (𝜙)

ITS
±2, ±1.4 full 0.039, 0.076 tracking, vertex

±0.9, ±0.9 full 0.150, 0.239 tracking, PID
±0.97, ±0.97 full 0.380, 0.430 tracking, PID

TPC ±0.9 at r = 2.8 m full 0.848, 2.466 tracking, PID±1.5 at r = 1.4 m

TRD ±0.84 full 2.90, 3.68 tracking, 𝑒± id

TOF ±0.9 full 3.78 PID

HMPID ±0.6 1.2 ≤ 𝜙 ≤ 58.8 5 PID

PHOS ±0.12 220 ≤ 𝜙 ≤ 320 4.6 photons

EMCAL ±0.7 80∘ ≤ 𝜙 ≤ 187∘ 4.36 photons and jets

ACORDE ±1.3 −60∘ ≤ 𝜙 ≤ 60∘ 8.5 cosmics

MCH −4.0 ≤ 𝜂 ≤ −2.5 full -14.22,-5.36 muon tracking

MTR −4.0 ≤ 𝜂 ≤ −2.5 full -17.12,-16.12 muon trigger

ZDC
|𝜂| ≤8.8 full ±116 forward neutrons

6.5 ≤ |𝜂| ≤ 7.5 |𝜙| ≤ 9.7∘ ±116 forward protons
4.8 ≤ 𝜂 ≤ 5.7 |2𝜙| ≤ 32∘ 7.25 photons

PMD 2.3 ≤ 𝜂 ≤ 3.7 full 3.64 photons

FMD
3.62 ≤ 𝜂 ≤ 5.03

full
3.2

charged particles1.7 ≤ 𝜂 ≤ 3.68 0.752, 0.834
−3.4 ≤ 𝜂 ≤ −1.7 -0.752, -0.628

V0 2.8 ≤ 𝜂 ≤ 5.1 full 3.4 charged particles−3.7 ≤ 𝜂 ≤ −1.7 -0.897

T0 4.61 ≤ 𝜂 ≤ 4.92 full 3.75 time, vertex−3.28 ≤ 𝜂 ≤ −2.97 -0.727
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1 – The ALICE Experiment

Figure 1.4 shows the tracking process across the various central barrel detectors as it
works in Run 2. The procedure starts with a clusterisation phase, in which raw data are
converted into clusters characterized by position, time and some additional parameters like
energy loss in the crossed detectors and time of flight, together with their associated errors.

Then a preliminary determination of the interaction vertex is performed using clusters
in the first two ITS layers. Although full tracks are needed to exactly estimate the position of
the primary vertex, this preliminary step is performed because the primary vertex position
is necessary to filter out clusters during the next phases of the tracking algorithm and to
considerably speed up the whole process.

The interaction vertex is found as the space point to which the maximum number of
cluster pairs, called tracklets, converge. The first vertex found is, by construction, also the
one with the largest number of contributing tracklets and it is assumed to be the primary
vertex of the event. The case when multiple interaction vertices are reconstructed is called
pile-up.

Subsequently, track finding and fitting are performed both in the ITS and the TPC,
following an inward-outward-inward scheme. The first track finding stage takes part in
the TPC, the main tracking detector of the experiment central barrel, using a technique
based on Kalman Filter [9]. Track seeds are initially built with the first two TPC clusters
and the primary vertex point as the third member of the triplet and propagated inward. In
subsequent steps, triplets are formed by three TPC clusters instead.

At each step, each seed is updated with the nearest cluster in a proximity cut. A special
algorithm prevents multiple reconstructions of the same physical track, by limiting the
fraction of possible common clusters in a pair of tracks and rejecting the worse of the
two, according to a quality parameter based on the cluster density, number of clusters and
momentum [8]. Tracks with at least 20 clusters (out of a maximum of 159) and that miss no
more than half of the expected clusters are propagated to the inner radius of TPC detector,
where a preliminary energy loss based PID is performed.

Reconstructed TPC tracks are then propagated to the outermost layer of the ITS, form-
ing the seeds for the ITS track finding step. During this phase, an algorithm based on
Kalman Filter, similar to the one just described for the TPC, is used to reconstruct track
candidates. As a result, each TPC track is associated with a tree of track candidates of the
ITS. The highest quality candidate (i.e. the one with the minimum 𝜒2) from each tree is
added to the reconstructed event, forming an ITS+TPC track.

Figure 1.5 shows the TPC tracking efficiency4 for both p–p and Pb–Pb collisions. Look-
ing at the efficiency trend for low 𝑝𝑇 , it is clear that it is impossible to track particles with

4According to [10], the tracking efficiency is defined as the probability of reconstructing an embedded
simulated track in a data event, given that it could be reconstructed as an isolated track in a simulated event. If
𝑁𝑟𝑒𝑐𝑜,𝑖𝑠𝑜 is the number of correctly reconstructed simulated tracks and 𝑁𝑟𝑒𝑐𝑜,𝑒𝑚𝑏𝑒𝑑 is the number of correctly
reconstructed tracks that were also reconstructed in the simulation, efficiency can be expressed as the ratio
𝑁𝑟𝑒𝑐𝑜,𝑒𝑚𝑏𝑒𝑑

𝑁𝑟𝑒𝑐𝑜,𝑖𝑠𝑜

7
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Figure 1.5: TPC track finding efficiency for primary particles in p–p and Pb–Pb collisions
with respect to transverse momentum 𝑝𝑇 . The results are obtained using as input data from
a Monte Carlo simulation. [8]

𝑝𝑇 ≤ 200 MeV/𝑐 using this method, because of the sharp drop due to energy loss and
multiple scattering in the detector material. Therefore, an additional standalone ITS re-
construction step is performed with those clusters that were not used to build ITS+TPC
tracks [8].

The ITS standalone tracking algorithm used in Run 2 is again based on a Kalman Filter
pattern recognition strategy. Helical seeds are initially built up with two clusters from the
three innermost layers of ITS and the primary vertex. Such seeds are then propagated to
outer layers and updated with clusters filtered with a proximity cut. During the final step,
all track candidates are refitted using a Kalman Filter and the best is retained. The entire
procedure is repeated few times, gradually relaxing the cuts, to achieve better performances
at low 𝑝𝑇 . This strategy allows the tracking of particles with 𝑝𝑇 down to about 80 MeV/𝑐.

Once the ITS standalone reconstruction phase is completed, the Kalman Filter back-
ward refitting takes place. During each step of this phase both the track length integral
and the time of flight expected for various particle species are updated, in order to allow
the subsequent particle identification phase to be performed by the TOF detector. When a
track reaches the TRD, an attempt to match it with a TRD tracks is made, and the same
goes for the TOF detector. Then, tracks are further propagated for matching with signal in
outer detectors (namely EMCAL, PHOS and HMPID).

At this point, all tracks are propagated inwards to the innermost ITS layer with a last
Kalman Filter refit, completing the inward-outward-inward scheme. These global tracks

8
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are used to find the final interaction vertex with an higher precision with respect to the
initial position estimate.

Finally the secondary vertex reconstruction process takes place, in which vertices re-
lated to photon conversions and particle decays are located.

1.1.5 Long Shutdown 2 Upgrade
In July 2018, after more than 3 years of operation, the CERN accelerator complex

will be stopped for about 18 months. According to [11], the main purpose for this LS2
is the upgrade of the LHC injectors, but also a full maintenance of all the accelerator
equipments, a consolidation of part of the machine and some activities related to the LHC
High Luminosity (HL-LHC) project [12] will take place.

In particular, the LHC will increase its luminosity for Pb–Pb collisions, reaching an
instantaneous luminosity of 6 × 1027 cm−2s−1, namely an interaction rate of 50 kHz.

The ALICE detectors must then be upgraded in order to allow the readout of all the
delivered interactions. Planned upgrades will enable ALICE to collect 10 nb−1 of Pb–Pb,
recording about 1011 interactions, will enhance vertexing and tracking capabilities at low
𝑝𝑇 and will allow data taking at higher rates.

According to [13], ALICE planned upgrades for the LS2 include the following features:

• a new beam pipe5, with smaller diameter

• an upgraded TPC with Gas Electron Multiplier (GEM) detectors that replace the
wire chambers presently used and a new pipelined readout electronics

• upgraded forward trigger detectors

• a new high resolution ITS, with a low-material budget , that will be described in
section 1.2.2

• upgraded online systems and offline reconstruction and analysis framework, that will
be described in section 1.3.2

1.2 Inner Tracking System

1.2.1 Run 2 detector design
The Inner Tracking System (ITS) is the innermost detector of the ALICE detector,

composed of six high-resolution cylindrical silicon detectors located at radii between 39

5The tube, kept at ultrahigh vacuum, where particle beams travel and collide. Since all particle interac-
tions take place inside this volume, interaction vertices are always located into the beam pipe.

9
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Figure 1.6: Layout of the Run 2 ITS detector [6]

mm and 430 mm. More specifically, as clearly shown in figure 1.6, the innermost two layers
are equipped with two Silicon Pixel Detectors (SPDs), the following two layers with Silicon
Drift Detectors (SDDs) and the two outer layers with Silicon Strip Detectors (SSDs). The
ITS innermost layer is located at the minimum radius allowed by the size of the beam pipe,
that is a beryllium cylinder with a radius of 3 cm, and provides a mechanical support to
avoid relative motion during measurements. The outer radius is instead determined by the
necessity to match the ITS tracks with the ones reconstructed in the TPC.

The ITS contributes to practically all physics topics addressed by the ALICE experi-
ment because it is crucial to determine the point where the collisions happen. According
to [7], its main tasks are:

• the localisation of the primary vertex with a resolution better than 100 𝜇m

• the reconstruction of secondary vertices from decays of hyperons and D and B
mesons

• the tracking and identification of particles with low momentum (𝑝𝑇 ≤ 100 MeV/𝑐),
as described in section 1.1.4

• the improvement of momentum and angle resolution for the high-𝑝𝑇 particles which
traverse also the TPC

• the reconstruction, albeit with limited momentum resolution, of the particles that
traverse dead regions of the TPC

10
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The design of ITS has been optimised for efficient track finding and high impact pa-
rameter6 resolution, by taking into account the following factors:

• Acceptance: the ITS covers a pseudorapidity range of |𝜂| < 0.9 for vertices located
within ±53 mm with respect to the nominal interaction point (the so called interac-
tion diamond). The first layer covers a more extended pseudorapidity of |𝜂| < 1.98 in
order to provide, together with Forward Multiplicity Detectors (FMD), continuous
coverage for the measurement of charged particle multiplicity which corresponds to
the particles density of one collision.

• Energy loss measurement: ITS contribute to PID through the measurement of par-
ticle energy loss 𝑑𝐸/𝑑𝑥. In order to apply the PID algorithm, at least four mea-
surements are necessary, which implies that at least four layers out of the six need
analogue readout.

• Material budget: the amount of material in the active volume has to be reduced to
a minimum, in order to avoid as much as possible multiple scattering effects that
dominate the momentum and impact parameter resolution for particles with low 𝑝𝑡.
However, SDD and SSD must have a minimum thickness of approximately 300 𝜇m
to provide a reasonable signal-to-noise ratio (SNR) and they must partially overlap
to cover the entire solid angle. This allows the ITS to achieve a relative momentum
resolution better than 2% for pions with 100 MeV/𝑐 < 𝑝𝑇 < 3 GeV/𝑐.

• Granularity and spatial precision: the upper limit of the theoretical estimated track
density is 8000 tracks per unit of 𝜂. This means that the ITS must be able to simul-
taneously detect more than 15000 tracks, with several millions of effective cells in
each layer. Spatial resolution of the ITS detectors determines the impact parameter
measurement resolution and is an essential element of momentum resolution for par-
ticles with 𝑝𝑇 > 3 GeV/𝑐. In order to satisfy the minimum resolution requirements,
the ITS detectors have a spatial resolution of the order of a few tens of 𝜇m, with a
best precision of 12 𝜇m for the innermost detectors.

• Radiation levels: the total amount of radiation received by the ITS during the ex-
pected lifetime of the ALICE experiment varies from a few krad for outer detectors
to about 220 krad for the inner layers. Each sub–detector is designed to withstand
the expected ionizing radiation doses during ten years of operation.

• Readout rate: the ALICE experimental setup can be used with two different readout

6The impact parameter is defined as the vector connecting the centres of the colliding nuclei projected
on the transverse plane to the nuclei momenta [2]. Such quantity is one of the most relevant variables in
ALICE physics analyses.
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configurations, operated simultaneously with two different triggers7. The centrality
trigger activates the readout of the whole ALICE detector, including all ITS layers,
while the muon arm trigger activates only the readout of a subset of fast readout
detectors, including the two innermost layers of the ITS. Therefore, pixel detectors
readout is set at less than 400 𝜇s.

Table 1.2: Characteristics of the six ITS layers, the beam-pipe and the thermal shields. [13]

Layer 𝑟 (cm) ±𝑧 (cm)
Number

of
modules

Active area
per module

𝑟𝜙 × 𝑧 (mm2)

Intrinsic
resolution

(𝜇m)

Material
budget 𝑋/𝑋0

(%)
𝑟𝜙 𝑧

Beam pipe 2.94 - - - - 0.22

ITS layer 1 3.9 14.1 80 12.8 × 70.7 12 100 1.14
ITS layer 2 7.6 14.1 160 1.14

Th. shield 11.5 - - - - 0.65

ITS layer 3 15.0 22.2 84 70.2 × 75.3 35 25 1.13
ITS layer 4 23.9 29.7 176 1.26

Th. shield 31.0 - - - - 1.65

ITS layer 5 38.0 43.1 748 73 × 40 20 830 0.83
ITS layer 6 43.0 48.9 950 0.83

The main parameters of each layer, including the beam pipe and the thermal shields,
are summarised in table 1.2.

1.2.2 ITS Upgrade
The present ITS precision in the determination of the track impact parameter is ade-

quate to physics analyses on particles with 𝑝𝑇 > 2x GeV/𝑐, but for particles at low mo-
menta the statistical significance of measurements is insufficient. For example, the charm
baryon Λ𝑐 has a mean proper decay length of 60 𝜇m, that is lower than current ITS impact
parameter resolution in the 𝑝𝑇 range of the majority of its daughter particles. Therefore,
charm baryons, as well as beauty mesons, beauty baryons and hadrons with multiple heavy
quarks produced in central Pb–Pb collisions are currently not accessible with the running
ALICE experiment configuration.

7In this context, the term trigger is used to refer to a set of hardware and software settings that gives the
opportunity to record only those events that are useful for the physics analyses
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A major limitation of the Run 2 ITS detector is the poor maximum readout rate of 1
kHz, irrespective of detector occupancy. This limitation due to the hardware limits ALICE
to capture only a small fraction of the full Pb–Pb collision rate of 8 kHz delivered by the
present LHC and would outrageously limit the use of 50 kHz Pb–Pb collision rate provided
in Run 3.

Finally, another major limitation in the present ITS is the impossibility to access the
detectors during maintenance and repair interventions. Rapid accessibility of the detector
is a main requirement for the ITS Upgrade.

Figure 1.7: Layout of the upgraded ITS detector

The idea for the design of the ITS Upgrade is to entirely replace the existing ITS detec-
tor with a new one, composed of three inner layers of pixel detectors and four outer layers
with either silicon strip detectors or pixel detectors with a lower granularity. Figure 1.7
shows the layout of the upgraded ITS detector. More specifically, according to [13], the
following requirements need to be fulfilled to cope with the LHC interaction rate expected
during Run 3:

• Reduction of the distance between the ITS and the beam pipe: the introduction of a
new beam pipe with a smaller outer radius of 19.8 mm (with respect to the 30 mm
radius of Run 2) allows the installation of an additional detector layer with a radius
of about 22 mm.

• Reduction of the material budget: in order to improve the impact parameter resolu-
tion, it is particularly important to reduce the material budget for the first detector
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layer. Moreover, reducing the overall material budget will improve also the track-
ing performance and the momentum resolution. The use of Monolithic Active Pixel
Sensors (MAPSs) will allow the material budget per layer to be reduced by a fac-
tor of 7 (50 𝜇m instead of 350 𝜇m). Furthermore, the optimisation of the analogue
front-end timing specifications and readout architecture will reduce the power den-
sity by a factor of 2 and will increase the pixel density by a factor of 50. Finally, an
improved electrical power and signals distribution scheme will reduce the material
budget of electrical power and signal cables by a factor of 5.

• Geometry and segmentation: The upgraded ITS detector consists of seven concen-
tric cylindrical layers covering a radial extension between 22 mm and 430 mm with
respect to the beam line.

• Energy loss measurement: the new detector will preserve PID capabilities, but in
the case where all 7 layers would be implemented with MAPS technology, the per-
formance would be slightly reduced with respect to the present ITS

• Readout time: the upgraded ITS aims to read the data related to each individual
interaction, up to a rate of 50 kHz for Pb–Pb collisions and 2 MHz for p–p collisions.

Table 1.3: Characteristics of the ITS upgrade scenario. The numbers in brackets refer to
the case of microstrip detectors [13].

Layer 𝑟 (cm) ±𝑧 (cm)
Intrinsic

resolution
(𝜇m)

Material
budget 𝑋/𝑋0

(%)
𝑟𝜙 𝑧

Beam pipe 2.0 - - 0.22

ITS layer 1 2.2 11.2
4 4 0.30ITS layer 2 2.8 12.1

ITS layer 3 3.6 13.4

ITS layer 4 20.0 39.0 4 (20) 4 (830) 0.30 (0.83)ITS layer 5 22.0 41.8

ITS layer 6 41.0 71.2 4 (20) 4 (830) 0.30 (0.83)ITS layer 7 43.0 74.3

Main parameters of the new beam pipe and the upgraded ITS layers, are summarised
in table 1.3. Values in brackets refer to the strip detectors design of the four outer layers,
while the other values refer to MAPS technology detectors. Comparing these values to the
ones in table 1.2, it appears that the radius of the outermost ITS remains unchanged, while
the radius of the innermost layer is considerably lower in the upgraded detector.
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The result of simulations indicates that an improved tracking efficiency and 𝑝𝑇 res-
olution for the ITS standalone tracking can be achieved by grouping the seven layers in
an innermost triplet, an intermediate pair and an outermost pair, as shown in figure 1.7.
In particular, the track position resolution at the primary vertex is improved by a factor
of 3 and the standalone tracking efficiency becomes comparable to what can be achieved
combining the information of the ITS and TPC in Run 2.

(a) (b)

Figure 1.8: Tracking efficiency of charged pions for the current and upgraded ITS in the
ITS stand-alone (left panel) and ITS-TPC combined (right panel) tracking modes [13]

Figure 1.8 compares the tracking efficiency for the two versions of the ITS detector,
both for the standalone ITS tracking and for the ITS-TPC combined tracking. The up-
graded ITS layout allows an impressive improvement to be obtained for 𝑝𝑇 < 1 GeV/𝑐, in
particular if all 7 layers are equipped with MAPS detectors.

1.3 Online/Offline computing system

1.3.1 AliROOT framework
The ALICE Run 2 offline framework, called AliROOT [14], was developed to recon-

struct and analyze data, to study different physics topics, coming from both simulations
and real interactions. It was also used to perform simulations necessary to optimize the
ALICE detectors design..

The AliROOT framework massively exploits ROOT [15] functionalities. ROOT is an
object oriented (OO) framework for large-scale data handling applications, is written in
C++ and offers advanced statistical analysis functions, advanced visualisation tools and the
possibility to use C++ as a scripting language, as well as many other features. In particular,
all the results shown this thesis work have been prepared by using the ROOT framework.
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Users can interact with ROOT via a Graphical User Interface (GUI), the command line or
batch scripts.

Figure 1.9: AliROOT data processing flow [7]

Figure 1.9 schematically shows the data processing flow in the AliROOT framework.
Data are generated with simulation programs, namely Monte Carlo (MC) event generators
combined with detector response simulation packages, with the full information about
particles momentum and PID.

AliROOT relies on external MC tools to simulate heavy-ion collision events at the
LHC energy, like Heavy-Ion Jet Interaction Generator (HIJING) [16,17], DPMJET version
II.5 [18] and String-Fusion Model (SFM) [19], mediated by specific interfaces. AliROOT
provides also tools to assemble events from different generators, creating the so called
event cocktails, and to manage the particle correlation in a controlled way (afterburners).

The next step in the simulation chain is the detector response simulation, that is nec-
essary to study in detail ALICE physics capabilities and to verify the functionality of
the framework itself. AliROOT provides a Virtual Monte Carlo (VMC) interface [20],
implemented via C++ virtual classes, in order to make the caller code independent of
the real simulation process implementation, that is demanded to external tools like the
GEANT3 [21], GEANT4 [22] or FLUKA [23] transport codes.

Finally the AliROOT framework provides a track reconstruction suite that can work
with data coming from both the simulation chain and the real detectors Data Acquisition
(DAQ) process. The algorithms used in this step are those described in section 1.1.4. The
obtained tracks can be compared with the initial generated set, in order to evaluate cor-
rectness and performances of the adopted reconstruction algorithm.
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1.3.2 The O2 facility
The highly increased interaction rate that will affect ALICE in Run 3 will result in

an estimated data throughput from the detector greater than 1 TB/s for Pb–Pb events. It
is therefore necessary to achieve a maximal reduction of the readout, as early as possible
during the data flow, in order to minimize the cost of the computing system for both data
processing and storage.

The O2 facility, the Online-Offline computing system that will assist the ALICE ex-
periment during Run 3, has been designed to reach such a challenging goal. It will be a
high-throughput, heterogeneous system, with nodes equipped with hardware acceleration
and a software framework that will provide an abstraction layer to allow the same code to
deliver its functionalities on different platforms, from laptops to the complete O2 system
itself.

Figure 1.10 shows the functional flow of the O2 system. Data will be transferred from
the detectors to the facility, via optical read-out links, in the form of several constant data
streams. Dedicated time markers, synchronized with the LHC clock, will divide these
streams into pieces called Time Frames (TFs). In particular, [24] distinguishes between
Sub-Time Frames (STFs), that contain raw data from a single First Level Processor (FLP),
and Compressed Time Frames (CTFs), that contain processed raw data of all the active
detectors and that, once written, become read only data.

The optimal TF size is a trade-off between several criteria, involving the amount of data
loss, synchronisation between O2 components, calibration efficiency and data distribution.
Any TF size between 20 ms and 100 ms is considered to be suited for calibration/recon-
struction processes, while a finer TF granularity makes data buffering and distribution
easier. [24] identifies a TF duration of 20 ms (a TF rate of 50 Hz) as the selected de-
sign value, with a TF size of 10 GB before compression and a 0.5% of data loss at frame
boundaries.

Due to the local and independent nature of the involved data, a first stage of data pro-
cessing, including local calibration and detector specific pattern recognition, will be per-
formed with an high degree of parallelism and some of the raw data will be already replaced
by the result of the processing. During this step, each FLPs collects the detector data at a
rate of up to 3.2 GB/s from up to 48 read-out links, with a total rate of above 1.1 TB/s over
approximately 8300 read-out links. Data are compressed by a factor of 2.5, merged, split
into STFs and buffered, in order to be dispatched to Event Processing Nodes (EPNs) for
aggregation.

A second, global step is carried out synchronously with the data taking, in order to
assemble the data from all the detector inputs and to perform a global calibration. This
step takes place in EPNs, where each cluster is assigned to a track with an additional
reduction factor of 8 in the data volume. Results of this phase are then stored in the O2

farm or parked in the Tier 0 if the farm capacity is exhausted. The total throughput to data
storage reaches 90 GB/s (above 60 MB/s per EPN) after compression.

A final, asynchronous data processing step takes place before permanently store the
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Figure 1.10: O2 facility data processing flow [24]

reconstructed events. This step will probably use computing resources from the Worlwide
LHC Computing Grid (WLCG), in conjunction with the O2 system, in order to successfully
absorb the peak needs.

The main difference between O2 and the current AliROOT framework is the presence
of synchronous calibration and reconstruction phases, that are necessary to guarantee a
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Figure 1.11: Schematic outline of the O2 facility calibration and reconstruction data flow
[24]

considerable reduction of permanently stored data. Figure 1.11 shows in detail the five
steps of reconstruction and calibration data flows in the O2 framework. In particular, it
appears that standalone track-finding is carried out during Step 1 for both ITS and TPC
detectors, on EPNs. Then, during Step 2, ITS-TPC matching is performed, as well as the
TRD tracking using TPC tracks as seeds, while a final ITS-TPC-TRD matching takes place
during Step 3.

Contrary to the strategy adopted in Run 2, where most of the tracks in the ITS are
the result of a prolongation of the TPC tracks (as described in 1.1.4), in Run 3 the TPC
detector will need the information about the ITS tracks in order to carry out the final
calibration during Step 3. As things stand, at least a partial reconstruction of high 𝑝𝑇 tracks
must be done synchronously to provide constraints for TPC calibration, so the principal
requirement for ITS tracking code is speed.

In order to meet such a goal, a new ITS tracking algorithm based on Cellular Automa-
ton (CA) has been proposed in [2]. Theoretical and actual performances of such algorithm
are analyzed in detail on chapter 2.
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Chapter 2

Track Reconstruction Algorithm

The main goal of this thesis work is to investigate optimisation possibilities offered by
a total or partial migration of the ITS track reconstruction algorithm developed in [2] to a
GPU architecture. However, the first necessary step in that direction is a serial optimisation
of the existing code and a careful analysis of the main bottlenecks in the process.

The ITS Upgrade reconstruction algorithm proposed in [2] can be divided into six main
steps:

• an indexing phase, when information about the reconstructed hits coming from the
previous clusterisation step is organised into an index table, in order to speed up
subsequent data recovery and filtering operations

• a tracklet finding phase, when couple of clusters laying on subsequent layers that
satisfy some filtering criteria are combined into tracklets

• a cell finding phase, when subsequent tracklets that satisfy some filtering criteria are
merged into cells

• a neighbourhood construction phase, when cells are ranked in terms of the number
of compatible inner cells

• a track reconstruction phase, when neighbour cells are combined into track candi-
dates

• a fitting phase, when track candidates are fitted using a Kalman Filter

All of these steps are further described in section 2.1 and for each one a mathematical
model is presented, in order to discuss both the memory occupancy and the computational
complexity in the worst case scenario.

Section 2.2 describes the tracking algorithm implementation I realised during the first
part of my thesis work. After an initial presentation of the main features and a list of the
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major differences with the implementation developed in [2], some of the adopted design
choices and optimisation strategies are described in detail.

In section 2.3 an analysis of the actual performances of the implementation realised for
this thesis work is reported. This is useful to identify the most complex algorithm phases
and to build up a good GPU migration strategy.

2.1 Algorithm flow

2.1.1 Indexing phase
In this phase output data coming from the previous clusterisation step are organised

into an efficient data structure, an 𝑛𝑧 × 𝑛𝜙,index table to be rapidly accessed during the
next phase. A two-way sorting is necessary to compile each bin of size (𝜙𝑏𝑖𝑛, 𝑧𝑏𝑖𝑛𝑖) of the
index table:

• the primary sorting criterion is the value of azimuthal angle 𝜙, normalised to [0, 2𝜋]
range

𝜙𝑏𝑖𝑛 = 2𝜋
𝑛𝜙

(2.1)

• the secondary sorting criterion is the value of 𝑧, that for each layer 𝐿𝑖 must be con-
tained in [𝑧𝑚𝑖𝑛𝑖

, 𝑧𝑚𝑎𝑥𝑖
] range, given by the physical dimension of the 𝑖-th layer of the

ITS detector
𝑧𝑏𝑖𝑛𝑖

=
𝑧𝑚𝑎𝑥𝑖

− 𝑧𝑚𝑖𝑛𝑖

𝑛𝑧
(2.2)

Both sorting criteria are connected to a double constrained domain, so for each layer
𝐿[1,6] (no index table is needed for layer 𝐿0) an index table can be easily set up and stretched
to cover those domains. Assuming that clusters come already sorted in 𝜙 and 𝑧 from the
previous algorithm step, for each of them it is necessary to find bin coordinates, that for a
given cluster 𝑐 = (𝑧𝑐,𝜙𝑐) on layer 𝐿𝑖 are expressed by the following relations:

{⌊

𝑧𝑐 − 𝑧𝑚𝑖𝑛𝑖

𝑧𝑏𝑖𝑛𝑖 ⌋
,⌊

𝜙𝑐
𝜙𝑏𝑖𝑛 ⌋}

(2.3)

Quantities 2.1 and 2.2 can be computed at compile time, as they only depend on 𝑧
extension of each layer (reported in table 1.3) and on index table size 𝑛𝑧 × 𝑛𝜙, that is also
known at compile time. As a result, if 𝑁 is the number of input clusters, the computational
complexity of this phase is:

𝑇 (𝑁) = 𝑂 (𝑁) (2.4)

Assuming that clusters are stored in an associative, sorted data structure, an index table
can be built by simply storing in each bin the unique key 𝑐𝑘𝑒𝑦 of its first cluster. According
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to this, since only 6 index tables are needed (one for each level but 𝐿0) and each table has
𝑛𝑧 × 𝑛𝜙 bins, memory occupancy for this phase is completely independent from the input
size and can be expressed by the following relation:

𝑆 (𝑁) = 6 ⋅ 𝑛𝑧 ⋅ 𝑛𝜙 ⋅ sizeof (𝑐𝑘𝑒𝑦) = 𝑂 (1) (2.5)

2.1.2 Tracklet finding phase
In the first step of the algorithm each layer pair is processed to find a link between

each cluster of the first layer and all the compatible clusters on the second layer, namely
all those clusters that lay on a 2-dimensional window, called region of interest, opened on
the second layer of the pair, as shown in figure 2.1. To quickly build the filtering window
for each cluster, the index table described in section 2.1.1 is used.

Figure 2.1: Example of the index tables for the first couple of layers, courtesy of [2].
Clusters are sorted according to 𝜙 and 𝑧 coordinates and consequently it is possible to
efficiently find, for each cluster in layer 0, all clusters contained in its region of interest on
layer 1.

Considering a cluster 𝑐 = (𝑧𝑐,𝜙𝑐, 𝑟𝑐) on layer 𝐿𝑖, dimensions of its region of interest
are computed with respect to 𝜙𝑐 and to the 𝑧 coordinate of the intersection (𝑧𝐿𝑖+1

, 𝑟𝐿𝑖+1)
between layer 𝐿𝑖+1 and the line passing through the cluster and the interaction vertex 𝑉
of the colliding beams:

𝑧𝐿𝑖+1
= (

𝑧𝑐 − 𝑧𝑉
𝑟𝑐 ) ⋅ (𝑟𝐿𝑖+1 − 𝑟𝑐) + 𝑧𝑐 (2.6)

For each possible cluster pair within the region of interest, only those couples (𝑐1, 𝑐2)
that satisfy all the following filtering criteria can form a valid tracklet:
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• the difference between azimuthal angles of the two cluster must be smaller than a
threshold Δ𝜙𝑀𝐴𝑋 whose value is equal for all layer pairs

|𝜙𝑐1
− 𝜙𝑐2| < Δ𝜙𝑀𝐴𝑋 (2.7)

• the 𝐷𝐶𝐴𝑧, the distance of closest approach along the 𝑧 axis, to the interaction vertex
𝑉 , of the prolongation of the tracklet must be smaller than a threshold Δ𝐷𝐶𝐴𝑀𝐴𝑋

𝑧 ,
whose value is layer dependent

𝑧𝑐1
− 𝑧𝑉

𝑟𝑐1

⋅ (𝑟𝑐2
− 𝑟𝑐1) − (𝑧𝑐2

− 𝑧𝑐1) < Δ𝐷𝐶𝐴𝑀𝐴𝑋
𝑧 (2.8)

If a tracklet is not filtered out by the previous cuts, it is stored together with two quan-
tities related to its direction:

• the segment inclination in the transverse plane, indicated by 𝜙𝑇

𝜙𝑇 = atan2 (𝑦𝑐2
− 𝑦𝑐1

, 𝑥𝑐2
− 𝑥𝑐1) (2.9)

• the inclination of pseudo-plane 𝑟𝑧, indicated by tan 𝜆𝑇

tan 𝜆𝑇 =
𝑧𝑐2

− 𝑧𝑐1

𝑟𝑐2
− 𝑟𝑐1

(2.10)

Considering a single layer pair, the first step of this phase is the bin selection for the
current cluster, namely the construction of its region of interest. This operation consists in
a simple iteration over a subset of the current index table bins. The worst case is when all
bins must be kept: this leads to a computational complexity of

𝑇 (𝑁) =
6

∑
𝑖=1

𝑛𝑧 ⋅ 𝑛𝜙 = 𝑂 (1) (2.11)

The second step is the tracklet filtering. The complexity of this step highly depends
on the number of clusters in the filtering window, namely on the choice of an appropriate
window size for each cluster of the first layer. The number of clusters in each layer can be
represented by the following relation:

𝑁𝑖 = 𝛼𝑖 ⋅ 𝑁 ,

6

∑
𝑖=0

𝛼𝑖 = 1 (2.12)
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For each layer pair, all clusters on the first layer and a subset of clusters on the second
layer must be taken into account. This subset can be quantified as the whole set of clusters
on the second layer reduced by a filtering factor 𝛽𝑇𝑖+1

≥ 1:

𝑇 (𝑁) =
5

∑
𝑖=0

𝑁𝑖 ⋅
𝑁𝑖+1
𝛽𝑇𝑖+1

=
5

∑
𝑖=0

𝛼𝑖 ⋅ 𝛼𝑖+1
𝛽𝑇𝑖+1

⋅ 𝑁2 = 𝑂 (𝑁2) (2.13)

The same applies for the tracklets memory occupancy, with the addition of a filtering
factor 𝛾𝑇𝑖

≥ 1 to take into account the effect of cuts expressed by equations 2.7 and 2.8:

𝑆 (𝑁) =
5

∑
𝑖=0

𝜏𝑖 ⋅ sizeof (𝑡𝑟𝑎𝑐𝑘𝑙𝑒𝑡) ⋅ 𝑁2 = 𝑂 (𝑁2) where 𝜏𝑖 =
𝛼𝑖 ⋅ 𝛼𝑖+1
𝛽𝑇𝑖+1

⋅ 𝛾𝑇𝑖

(2.14)

2.1.3 Cell finding phase
In this step of the algorithm tracklets spanning on three consecutive layers and with

the middle cluster in common are considered. Two consecutive tracklets are combined into
cells if they have compatible directions, otherwise they are discarded.

Neglecting the effects of the multiple scattering, the three clusters of the cell should
lay on a circle because of the presence of the ALICE magnetic field. Circle finding in a
2-dimensional space is computationally complex, so clusters are mapped on a paraboloid
in a 3-dimensional space, with the minimum point laying on the interaction vertex and an
axial symmetry along the 𝑤 direction, using the following parametrisation:

𝑆 = {𝑥, 𝑦,𝑤 = 𝑟2} (2.15)

In this new space, the equation of the circle with centre {𝑥𝑐, 𝑦𝑐, 𝑧𝑐} and radius 𝜌 is similar
to the equation of a plane

𝑤 − 2𝑥𝑥𝑐 − 2𝑦𝑦𝑐 + 𝑤𝑐 − 𝜌2 = 0 (2.16)

A plane in space can be defined as the product of two different quantities:

• the unit vector 𝑛 normal to the plane, that can be defined as the external product
between vectors {𝑠1, 𝑠2, 𝑠3} connecting the clusters

⃖⃗𝑛 = {𝑛0, 𝑛1, 𝑛2} = (𝑠1 − 𝑠0) ∧ (𝑠2 − 𝑠0)

‖(𝑠1 − 𝑠0) ∧ (𝑠2 − 𝑠0)‖
(2.17)

• the distance 𝑐 of the plane from the origin, that can be defined as the projection of
any one of the connecting vectors 𝑠𝑖 on 𝑛

𝑐 = −𝑛 ⋅ 𝑠𝑖 (2.18)
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By comparing the plane expression with 2.16, the following expressions are obtained
for the circle center and radius, respectively:

{𝑥𝑐, 𝑦𝑐} = −1
2

⋅ {
𝑛0
𝑛2

,
𝑛1
𝑛2 } and 𝜌 =

√√√

⎷

1 − 𝑛2
2 − 4 ⋅ 𝑐 ⋅ 𝑛2

4 ⋅ 𝑛2
2

(2.19)

In this step of the track reconstruction phase, for each tracklet pair three selection cri-
teria are applied to the resulting cell {𝑐𝑖, 𝑐𝑖+1, 𝑐𝑖+2}:

• Δ tan 𝜆𝑇 and Δ𝜙𝑇 must not exceed the corresponding threshold values

• value of 𝐷𝐶𝐴𝑧 of the cell must not exceed a 𝐷𝐶𝐴𝑀𝐴𝑋
𝑧 threshold value, where

𝐷𝐶𝐴𝑧 has the following expression:

𝐷𝐶𝐴𝑧 = |
tan 𝜆𝑇1

+ tan 𝜆𝑇2

2
⋅ 𝑟𝑐𝑖

+ (𝑧𝑉 − 𝑧𝑐𝑖)| (2.20)

• value of 𝐷𝐶𝐴𝑥𝑦, the projection of the distance of closest approach to the interac-
tion vertex 𝑉 on the 𝑥𝑦 plane, must not exceed a 𝐷𝐶𝐴𝑀𝐴𝑋

𝑥𝑦 threshold value, where
𝐷𝐶𝐴𝑥𝑦 value has the following expression:

𝐷𝐶𝐴𝑥𝑦 = |𝜌 − √𝑥2
𝑐 + 𝑦2

𝑐 | (2.21)

Cell finding phase tries to combine only those tracklets that share a cluster. Consider-
ing the layer triplet {𝐿𝑖,𝐿𝑖+1,𝐿𝑖+2} and a single cluster 𝑐∗ on the layer 𝐿𝑖+1, there are
𝜆𝐿𝑖→𝑐∗ ≤ 𝛼𝑖 ⋅ 𝑁 tracklets of type {𝑥𝑖, 𝑐∗} and 𝜆𝑐∗→𝐿𝑖+2

≤ 𝛼𝑖+2 ⋅ 𝑁 tracklets of type
{𝑐∗, 𝑥𝑖+2}.

Applying this logic to all 𝛼𝑖+1 ⋅ 𝑁 clusters in layer 𝐿𝑖+1 and extending it to all the layer
triplets, the following relation is obtained:

𝑇 (𝑁) =
4

∑
𝑖=0

𝛼𝑖+1⋅𝑁

∑
𝑐=1

𝜆𝐿𝑖→𝑐 ⋅ 𝜆𝑐→𝐿𝑖+2
≤

4

∑
𝑖=0

(𝛼𝑖+1 ⋅ 𝛼𝑖 ⋅ 𝛼𝑖+2) ⋅ 𝑁3 = 𝑂 (𝑁3) (2.22)

Despite the theoretical cubic time complexity of the worst case, if the filtering operation
in the tracklet finding step is efficient enough, only a small subset of tracklets 𝜆𝐿𝑖→𝑐∗ ≪
𝛼𝑖 ⋅ 𝑁 can be retained, with a great performance improvement in this step.

The same goes for the cells memory occupancy, with the addition of a filtering factor
𝛾𝐶𝑖

≥ 1 to take into account the cuts described above:

𝑆 (𝑁) =
4

∑
𝑖=0

𝜐𝑖 ⋅ sizeof (𝑐𝑒𝑙𝑙) = 𝑂 (𝑁3) where 𝜐𝑖 =

𝛼𝑖+1⋅𝑁
∑
𝑐=1

𝜆𝐿𝑖→𝑐 ⋅ 𝜆𝑐→𝐿𝑖+2

𝛾𝐶𝑖

(2.23)
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In order to compose tracklets into cells, it is necessary to find, for each tracklet in
the first layer pair, all tracklets in the second layer pair that start from its second cluster.
Because of the iterative implementation of the tracklet finding step, if tracklets are stored
into a data structure that preserves the insertion order, all tracklets that start from the same
clusters are contiguous. As a result, the aforementioned search phase can be optimised by
saving into an index table, for each cluster on a layer but 𝐿0, the index of the first tracklet
that starts from it. This operation reduces the compatible tracklets search operation to a
single memory access, but leads to an additional memory occupancy of

𝑆 (𝑁) =
5

∑
𝑖=1

𝛼𝑖 ⋅ 𝑁 ⋅ sizeof (𝑖𝑛𝑑𝑒𝑥) = 𝑂 (𝑁) (2.24)

2.1.4 Neighbourhood construction phase

In this step of the reconstruction algorithm a rank is assigned to each cell. If two cells
spanning on 4 contiguous layers share a tracklet of the pair and satisfy some filtering
criteria based on normal vectors 𝑛 and the radii 𝜌, they are considered to be neighbours.
An index equal to 1 is given to all the cells without any neighbours, while all the cells
with one or more neighbours acquire an index equal to the maximum index among the
neighbours plus one.

To find all the possible neighbours for a cell spanning a layer triplet {𝐿𝑖,𝐿𝑖+1,𝐿𝑖+2},
it is necessary to iterate over all cells on layer triplet {𝐿𝑖+1,𝐿𝑖+2,𝐿𝑖+3} that share the
tracklet laying on the layer pair {𝐿𝑖+1,𝐿𝑖+2}. Considering a tracklet {𝑐1, 𝑐2} on this layer
pair, there are 𝜆𝐿𝑖→𝑐1

≤ 𝛼𝑖 ⋅ 𝑁 cells starting on layer 𝐿𝑖 and 𝜆𝑐2→𝐿𝑖+3
≤ 𝛼𝑖+3 ⋅ 𝑁 starting

on layer 𝐿𝑖+1 and containing the tracklet. By combining those values with equations 2.14
and 2.22, the following relation is obtained:

𝑇 (𝑁) =
3

∑
𝑖=0

𝜏𝑖⋅𝑁2

∑
𝑡=1

𝜆𝐿𝑖→𝑐1
⋅ 𝜆𝑐2→𝐿𝑖+2

= 𝑂 (𝑁4) (2.25)

If cells are stored into a dictionary1, the neighbourhood relation between them can be
represented with a list of cells identified by their unique key 𝑐𝑘𝑒𝑦.

By introducing an additional filter factor 𝛾𝑁𝑖
≥ 1, the memory occupancy for this phase

1An abstract data type storing items, or values. A value is accessed by an associated key. Basic operations
are new, insert, find and delete. A dictionary defines a binary relation that maps keys to values. The keys of
a dictionary are a set, namely an unordered collection of values where each value occurs at most once [25].
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is represented by the following relation:

𝑆 (𝑁) =
3

∑
𝑖=0

𝜏𝑖⋅𝑁2

∑
𝑡=1

𝜆𝐿𝑖→𝑐1
⋅ 𝜆𝑐2→𝐿𝑖+2

𝛾𝑁𝑖

⋅ sizeof (𝑐𝑘𝑒𝑦) = 𝑂 (𝑁4) (2.26)

2.1.5 Track reconstruction phase

During the tracks reconstruction phase all neighbour cells are combined each other
recursively to construct complete roads, starting from cells spanning the outermost ITS
layer triplet. Since each cell 𝑐∗

𝐿𝑖
on layer 𝐿𝑖 has 𝜈𝑐∗

𝐿𝑖
≤ 𝛼𝐿𝑖−1

⋅ 𝑁 neighbours, if 𝑇 ∗ is the
complexity to process that single cell, computational complexity of recursive algorithm
starting from cell 𝑐∗

𝐿𝑖
is

𝑇 ′
(𝑐∗

𝐿𝑖) =
⎧⎪
⎨
⎪⎩

𝑇 ∗, if 𝑖 = 0

𝑇 ∗ +
𝜈𝑖
∑
𝑛=0

𝑇 ′
(𝑐𝑛

𝐿𝑖−1) otherwise
= 𝑂 (𝑁 𝑖) (2.27)

For tracks that span all seven ITS layers (namely those with a given index of 5), since
from equation 2.23 there are 𝜆5 ≤ 𝜐4 reconstructed cells on the outermost layers, compu-
tational complexity of this phase is

𝑇 (𝑁) =
𝜐4

∑
𝑐=0

𝑇 ′
(𝑐𝐿4) = 𝑂 (𝑁7) (2.28)

Since no other selection criteria are applied in this phase, memory occupancy is di-
rectly derived from computational complexity, because all processed roads are also stored
in the memory:

𝑆 (𝑁) = 𝑂 (𝑁7) (2.29)

To speed up the search of compatible cells, tracklets are stored in an index table with the
same logic described in the previous section. As a result, compatible cells search operation
is reduced to a single memory access and memory occupancy is linear with respect to the
number of tracklets:

𝑆 (𝑁) =
4

∑
𝑖=1

𝜏𝑖 ⋅ 𝑁2 ⋅ sizeof (𝑖𝑛𝑑𝑒𝑥) = 𝑂 (𝑁2) (2.30)
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2.1.6 Fitting phase
Complete roads reconstructed during the previous algorithm phase represent the track

candidates. If two or more candidates share at least one cluster, a Kalman Filter fit is applied
to them and only the one with the minimum 𝜒2 is kept. Since the implementation of the
agorithm realised for the current thesis work does not implement the fitting phase, it will
not be described any further.

L0

L1

L2

L3

L4

(a)

L0

L1

L2

L3

L4

(b) (c)

Figure 2.2: Graphical representation of the reconstruction steps on the 𝑥𝑦 transverse plane
of the Cellular Automata algorithm, courtesy of [2]. In particular, the tracklet finding phase
(left), the cell finding phase (middle) and the track reconstruction phase (right) are repre-
sented. The red cross represent the reconstructed position of the interaction vertex, while
the red dots are the reconstructed hits (clusters) on the different ITS layers.

Figure 2.2 graphically summarises all the track reconstruction phases described above
for the first 5 layers of ITS detector. In particular, in figure 2.2c the fit is applied to both
track candidates that share the outermost cluster, in order to retain only one of them (in
this case the right one).

2.2 Serial CPU implementation

2.2.1 Main features overview
Starting from the implementation of the algorithm developed for [2] and integrated

in the AliROOT framework, an optimised serial version has been realised for this thesis
work. In this way, all those constraints explicitly required by the AliROOT context could
be removed, so that the optimisation strategy has to be planned by taking into account only
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the minimum set of functionalities that must be provided by the reconstruction algorithm
itself.

In order to distinguish between the two implementations, the version of the algorithm
integrated in AliROOT will be hereinafter referred to as the AliROOT version, while the
implementation realised for this thesis work will be referred to as the standalone version
of the algorithm.

As a first, obvious step in the code migration process from the AliROOT version to
the standalone one, all AliROOT specific dependencies were removed, including ROOT
primitive type redefinitions, math libraries and data structures. In addition, whatever ex-
ternal library inclusion has been avoided, in favour of a pure C++14 Standard Template
Library (STL) implementation. Such a design choice makes this code a good starting point
for further optimisation and integration analyses, despite its minimal set of functionalities.

With respect to the AliROOT implementation, the standalone one lacks of some fea-
tures that were considered irrelevant to the GPU migration process. Therefore, the last
Kalman filter fitting phase of the algorithm (see section 2.1.6) hasn’t been implemented,
because it doesn’t represent a bottleneck for the process and can thus be performed on
CPU.

Moreover, in order to increase the tracking efficiency at low momenta, in the AliROOT
implementation the whole algorithm flow described in section 2.1 is repeated a second
time, with relaxed filtering criteria and by taking into account also shorter track candi-
dates, spanning yet unused clusters, during the track reconstruction phase. Since both it-
erations share the same logical process, the double step refinement is reduntant for GPU
migration analysis purposes, because the optimisation criteria used in a single step version
of the algorithm are perfectly applicable also to a multi-step version. The same goes for
the shorter track candidates inclusion.

The standalone version offers the possibility to manage events with multiple interaction
vertices coming from the previous vertexing step. This feature, that was missing in the
AliROOT implementation, is mandatory in order to handle pile-up events, that due to
the increased readout rate of the ITS Upgrade will be sizeable. Additionally, the pile-up
management capability introduces the possibility to study the algorithm behaviour with an
increasing amount of input clusters per interaction vertex and to analyze the trend of both
computation time and memory occupancy with respect to the input size.

2.2.2 Software architecture
The full source code written for this thesis work is available at [26]. In order to lay the

groundwork for possible future extensions and to simplify a potential integration with the
ALICE O2 framework, the O2 coding guidelines have been adopted [27].

The general classes architecture in the standalone implementation broadly follows the
AliROOT implementation structure. Input data are read from a text file that, for the sake
of simplicity, has been preferred to a more efficient binary one, and saved into a CAEvent
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object. All the necessary I/O utilities are included into the CAIOUtils namespace, in order
to simplify the potential inclusion of additional suported file formats.

A CATracker object implements all the algorithm flow logic, in order to produce a list
of track candidates from a CAEvent object when its clustersToTracksmethod is called.
In the case of multiple interaction vertices associated to a single event, a list of CARoad
objects is returned for each vertex. Therefore, the output has the form of std::vec-
tor<std::vector<CARoads>>.

Since all the program complexity is incapsulated into the CATracker class implemen-
tation, the usage of the program functionalities is really straightforward: in order to process
a text file containing a certain number of events, the following code is sufficient.

1 s t d : : v e c t o r <CAEvent> e v e n t s =
2 CAIOUti ls : : l o adEven tDa t a ( even t sF i l eName ) ;
3
4 CATracker t r a c k e r { } ;
5
6 f o r ( i n t i E v e n t = 0 ; i E v e n t < eventsNum ; ++ i E v e n t ) {
7
8 CAEvent& c u r r e n t E v e n t = e v e n t s [ i E v e n t ] ;
9 s t d : : v e c t o r < s t d : : v e c t o r <CARoad>> ro ad s =

10 t r a c k e r . c l u s t e r s T o T r a c k s ( c u r r e n t E v e n t ) ;
11
12 doSomethingWithRoads ( r o ad s ) ;
13 }
14

The aforementioned clustersToTracks method internally calls a sequence of pro-
tected methods, each one implementing a single phase of the tracking algorithm. Input
data and intermediate results are propagated from each phase to the following by a spe-
cific struct called CAPrimaryVertexContext. Since CAPrimaryVertexContext is a
data member of CATracker class, the same object can be used to process a sequence of
events by simply resetting the internal data structures, without the need to reallocate the
entire memory if the currently allocate size is enough to store all required data. This comes
with an important performance speedup, because memory allocation operations are quite
costly in a standard CPU architeture and are really expensive in a GPU environment.

In addition to the basic functionalities described above, the standalone implementation
realised for this thesis work contains several features to benchmark various aspects of the
code, discussed in section 2.3. In particular, the main function is able to generate some text
files that can be sent to a series of ROOT scripts, each of which can generate a report on
a specific aspect of the code. Since ROOT offers the possibility to use C++ as a scripting
language, these procedures can easily be launched from command line or directly into an
Integrated Development Environment (IDE), without any need to compile them.

As pointed out in section 1.3.2, code portability is an important requirement for the
O2 framework. The fact that the standalone implementation only relies on C++14 STL
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utilities is an important step forward in that sense. Additionally, the CMake open-source
tool [28] has been adopted in order to manage the code compilation process in a compiler
independent way. More specifically, CMake version 3.0.2 or later is required to compile
the program code, together with a C++14 compliant compiler.

2.2.3 Code optimisation
With respect to AliROOT implementation, some optimisations have been made to the

tracking code. A noteworthy update is the usage of the constexpr specifier whenever pos-
sible, in order to enable the C++ compiler to evaluate the associated expression at compile
time. In particular, all program constants, included in the CAConstants namespace, are
declared as constexpr. This allows the system to optimise such values during the program
execution, for example by placing it in read-only memory [29].

Another C++11 functionality largely used in the standalone implementation is the em-
place_back method of the std::vector class, that allows the new object to be con-
structed in-place at the end of the container. In principle, with respect to the push_back
method, that takes the object to be inserted and then copies (or moves) it into the caller
memory, the emplace_back functionality should run faster, or at least it should never be
less efficient. In practice, as discussed in [29], there are some cases when insertion func-
tions run faster, but an emplace functionality almost certainly outperforms its insertion
counterpart when all the following conditions are satisfied:

• the value being added to the container is constructed, not assigned;

• the argument type being passed differs from the type held by the container.

• The container doesn’t reject the new value as a duplicate. This is always true for
std::vector, because it does not require stored elements to be unique.

Another important speedup has been obtained by simply taking as much computation
as possible out of loops, in order to reduce the number of repeated operation. Indeed, due
to the heavily iterative nature of the tracking process, the code contains several loops, each
one with an high number of iterations. In such a scenario, even the simplest operation, if
taken out of a loop, can cause a noticeable performance improvement.

Finally, an important role in terms of performance optimisation is played by the mem-
ory preallocation of the data structures, described in detail in section 2.3.2. Memory resize
of a std::vector container is an expensive process, because it requires to allocate a block
of memory that is multiple of the container’s current capacity (in most implementations,
container capacity grows by a factor of two each time), copy all the elements from the
old memory into the new one, destroy the objects in the old memory and deallocate the
old memory [30]. Indeed, a proper initial memory allocation of the container, obtained
by calling the reserve method of std::vector, leads to a considerable speedup of the
program.
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2.3 Performance analysis

2.3.1 Track reconstruction efficiency over transverse momentum
The track reconstruction efficiency over transverse momentum 𝑝𝑇 has been analyzed

in order to compare performances of the standalone implementation of the algorithm with
the previous AliROOT version.

In order to be consistent with analyses reported in [2], the same sample of MC gener-
ated events has been used as input data and the same reconstructed tracks labelling system
has been adopted. In order to classify the reconstructed track candidates, an equal numeric
label has been assigned to all clusters that belong to the same MC simulated track; based
on the criteria used to label the clusters of a track, each reconstructed track is assigned to
one of the following subsets:

• a correct tracks subset, that contains all those tracks which clusters share the same
label. In other words, a reconstructed track is considered to be correct only if there
is a perfect correspondence with a MC simulated track;

• a duplicated tracks subset, that contains all those tracks that could be considered
correct, but their label has yet been associated to another track. For each input label,
only one correct track can be reconstructed;

• a fake tracks subset, that contains all those tracks that have at least one cluster with
a different label.

Finally, as in [2], only charged pions with at least one cluster per ITS layer are considered
in this analysis.

Figure 2.3 shows the results obtained for the analysis of the tracking efficiency as a
function of the transverse momentum for pion-related reconstructed tracks with 7 clus-
ters. Looking at the histogram 2.3a, it appears that the tracking efficiency saturates at
𝑝𝑇 ≈ 4𝐺𝑒𝑉 /𝑐 and it rapidly drops for 𝑝𝑇 ≤ 0.7𝐺𝑒𝑉 /𝑐. Such a waveform is compara-
ble to the tracking efficiency obtained for the AliROOT version of the algorithm, when a
configuration with only one iteration and tight cuts was used: this constitutes a proof of
correctness for the new implementation. Histogram 2.3b shows the amount of fake tracks
reconstructed, with respect to the MC generated ones. This behaviour is actually very dif-
ferent from the fake tracks analysis presented in [2], because of the lack of a final fitting
phase that would have removed a significant part of them; the same goes for duplicated
tracks trend, reported in 2.3c. The almost flat waveform in histogram 2.3d shows instead
that the relative amount of duplicated tracks reconstructed by the algorithm does not de-
pend on the 𝑝𝑇 value.

In addition to the comparative analysis described before, it is interesting to study the
algorithm efficiency behaviour when multiple interaction vertices are reconstructed. Fig-
ure 2.4 shows four plots similar to those of figure 2.3, but in this last figure the histograms
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Figure 2.3: Analysis of the algorithm track reconstruction efficiency over transverse mo-
mentum for a sample of 100 central Pb–Pb events without pile-up, separately for correct
(top left), fake (top right) and duplicated (bottom left) tracks subsets. The bottom right
histogram shows the ratio of duplicated to not fake (correct + duplicated) tracks

refers to events with four simulated interaction vertices. The probability to have such a
pile-up in Pb–Pb central events is really low, but this analysis is nevertheless useful to in-
vestigate the algorithm behaviour in the worst case scenario. By comparing the two sets
of histograms, it appears that tracking efficiencies are quite identical, while the amount of
duplicated and fake tracks grows up considerably with the number of input vertices.

2.3.2 Memory occupancy benchmark
In order evaluate the memory occupancy theoretical model for tracklet and cell finding

phases, analysed respectively in sections 2.1.2 and 2.1.3, actual memory occupancy reports
have been generated for both steps. From equation 2.14 it follows that the actual number of
reconstructed tracklets 𝑁𝑇𝑖

spanning the layer couple {𝐿𝑖,𝐿𝑖+1} should be equal to 𝜏𝑖𝑁2.
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Figure 2.4: Analysis of the algorithm track reconstruction efficiency over transverse mo-
mentum for a sample of 100 central Pb–Pb events without four interaction vertices in input,
separately for correct (top left), fake (top right) and duplicated (bottom left) tracks subsets.
The bottom right histogram shows the ratio of duplicated to not fake (correct + duplicated)
tracks.

Coefficient 𝜏𝑖 depends on the number of clusters on the two layers, that is independent
from the algorithm implementation, and on the filtering factor

𝛽𝑇𝑖+1
𝛾𝑇𝑖

=
𝑁𝑇𝑖

(𝛼𝑖 + 𝛼𝑖+1) ⋅ 𝑁2
(2.31)

that is instead dependent to the effectiveness of cuts, but it does not depend from the input
size. The quantity expressed in eq. 2.31 and in particular its Root Mean Square (RMS)
represents therefore a good indicator to evaluate the quality of the model. The same goes
for the cell finding phase, but this time the filtering factor is represented by the following
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relation, where 𝑁𝐶𝑖
is the number of cells spanning the layer triplet {𝐿𝑖,𝐿𝑖+1,𝐿𝑖+2}:

𝑁𝐶𝑖

(𝛼𝑖 + 𝛼𝑖+1 + 𝛼𝑖+2) ⋅ 𝑁3
(2.32)
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Figure 2.5: Distribution of tracklet (top) and cell (bottom) filtering factors in a sample of
100 central Pb–Pb events without pile-up, reconstructed with the CA algorithm. The red
vertical line indicates the mean value of the distribution.
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Figure 2.5 shows the distribution of the values given by eqs. 2.31 and 2.32 for tracklets
and cells starting from the layer 𝐿1. Looking at the two histograms, it appears that cell dis-
tribution is much more sparse than the other one, with a single outlier that is really far from
the mean value. This assertion is fully confirmed by the comparison of the Coefficients of
Variation (CVs) of the two distributions:

𝑐𝑣𝑇 ≈ 7.7%, 𝑐𝑣𝐶 ≈ 39.8% (2.33)

This results is mainly due to the fact that the actual number of retained tracklets is
related to a single filtering phase, while the quantity of reconstructed cells depends on
both the amount of the related tracklets coming from the previous algorithm phase and
the application of the filtering criteria during the second phase. This double selection step
introduces a significative divergence from the simple combinatorial model described in
section 2.1.3. Memory occupancy distributions for outer layers are more stretched, and
the same is obtained for events with multiple interaction vertices.

An important application of the memory occupancy model is the implementation of a
memory preallocation strategy, that plays an important role in the algorithm optimisation.
Indeed, the resize operations are quite expensive in a classical CPU programming model
(as pointed out in section 2.2.3) and not allowed in GPU heterogeneous programming
context. Relations 2.31 and 2.32 can be used to estimate the values of 𝑁𝑇 and 𝑁𝐶 for each
layer and to reserve the appropriate amount of memory to the respective data structures.

Since it is impossible to resize device-allocated structures, the risk of underallocation
must be minimised, because an overflow would force the entire track reconstruction pro-
cess to be restarted. This means that also outliers like the one visible in figure 2.5b must
be taken into account. This is the reason why the preallocation factors are computed as the
mean of the memory occupancy distribution plus ten times its distribution RMS.

Figure 2.6 shows the distribution of the fill factor, namely the ratio between the used and
the allocated memory, for tracklets and cells data structures. Tracklets come with a 75%
average fill factor, that is a quite good result, while cells data structures are considerably
overallocated, with an average fill factor of less than 40%. It is therefore necessary to
correctly handle the outlier visible on the right side of the histogram 2.6b.

Figure 2.7 shows the distribution of the ratio between real and theoretical memory oc-
cupancy for track candidates with 7 clusters. The histogram immediately reveals how this
distribution is much less regular with respect to the ones shown before, with many outliers
really far from the mean value. Therefore, it would be really difficult to make a suitable
prediction for roads data structure occupancy based only on the input size. Appendix A
reports all the memory occupancy benchmark results for a sample of 100 Pb–Pb central
events simulated without pile-up.
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Figure 2.6: Distribution of tracklets (top) and cells (bottom) data structures fill factor for
all layers for 100 central Pb–Pb events without pile-up.

2.3.3 Computing time benchmark

In order to identify possible bottlenecks and to plan a good optimisation strategy, it is
necessary to analyse the time spent by the algorithm during each step. The suite of Call-
grind and KCachegrind tools [31] has been chosen to realise the sequential performance
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Figure 2.7: Distribution of the ratio between the real and the theoretical complete roads
occupancy for a sample of 100 central Pb–Pb events without pile-up, where the denom-
inator is the number of all possible combinations between clusters across all the 7 ITS
Upgrade layers: ∏7

𝑖=1 𝛼𝑖𝑁

analysis. All benchmarks described in the current section have been realised with the fol-
lowing configuration:

• CPU: Intel i7-7700K (4.2GHz, 8MB Cache)

• RAM: Corsair DDR4 32GB (2×16) 2133MHz

• OS: Linux Ubuntu 16.04 LTS

• C++ Compiler: Clang 3.8.0-2ubuntu4, with -O3 optimisation flag

Figure 2.8 shows a list of the most time consuming algorithm functions, sorted in
descending order, for a simulation with a sample of 100 central Pb–Pb events without
pile-up. Looking at the leftmost column of the table, one can see that both the tracklet
finding (7th column) and cell finding (8th column) phases represent by far the bottleneck
of the entire process, with a total consumed CPU time greater than 91%. By observing also
the second column from the left, one can observe that, while most of the computational
time related to cell finding phase is spent into the related function itself, about 25% of the
CPU time spent to find tracklets is related to external calls. In particular, looking at figure
2.9, that shows the callee map for tracklet finding phase, it appears that the computation of
atan2 (see equation 2.9) has a significant impact on the computing time. As things stand,
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Figure 2.8: List of the most time consuming function calls displayed by KCachegrind, for
a sample of 100 central Pb–Pb events without pile-up. The leftmost column refers to the
percentage of time spent into a specific function, including also inner function calls, while
the adjacent column reports only the time spent in the function itself, excluding inner calls.

Figure 2.9: Callee map for tracklet finding phase, displayed from KCachegrind. Callees
are drawn inside of the caller rectangle. The area size of a rectangle is proportional to the
inclusive cost of the function this rectangle represents. [31]

the usage of a more efficient, maybe less precise mathematical library in place of STL
utilities should result in a significant performance improvement.

In addition to a comparative profiling of different algorithm phases, it is also important
to benchmark the absolute computing time needed by the process. This value can be useful
to compare the serial implementation of the tracker with the version reported in [2], in order
to be sure that no important drawbacks have been introduced in terms of performance.
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Furthermore a comparison with the optimised parallel version is useful to measure the
obtained speedup.

Table 2.1: Algorithm computing time measurements for tracklet and cell finding phases
and for the whole process (in ms) analyzing 100 Pb–Pb central events having different
amount of pile-up.

# Vertices 1 2 4 5

Tracklet finding
Min 18.2 76.4 329.1 517.3
Mean 39.4 139.0 549.6 810.0
Max 70.6 269.3 1094.0 1641.0

Cell finding
Min 10.2 50.9 350.3 646.9
Mean 28.5 134.5 862.4 1520.3
Max 44.4 188.7 1213.6 2140.7

Total
Min 33.4 135.0 696.2 1186.2
Mean 75.0 285.4 1437.7 2362.8
Max 110.3 446.5 2326.1 3810.5

Table 2.1 reports measurement of minimum, mean and maximum computing time val-
ues for tracking and cell finding phases and for the whole process, with taking into account
different amount of pile up in the events. It appears that, for large input sizes (4 or more
interaction vertices) cell finding phase becomes more expensive than the previous one, in
accordance with the theoretical model (equations 2.13 and 2.22). This is clearly notice-
able in figure 2.10, that shows a graphical representation of the computing time trend for
the values reported in table 2.1. By comparing the sum of tracklet and cell finding phases
computing times with the total time spent by the process, it is clear how, also with mul-
tiple interaction vertices, these two phases continue to occupy the majority of the CPU
resources, while subsequent steps, despite the higher theoretical computational complex-
ity, remain always negligible.
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Figure 2.10: Minimum (green), mean (red) and maximum (blue) computing time trends for
the tracklet (top) and the cell (middle) finding phases and for the whole process (bottom)
when 100 Pb–Pb central events having different amount of pile-up are analyzed.
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Chapter 3

GPU Implementation Analysis

Modern GPUs are becoming an increasingly common tool to accelerate computational
expensive but embarassignly parallel algorithms in the context of scientific computing.
Indeed, these architectures provide thousands of low-power cores for highly parallelised
performance and for offloading compilation from the CPU [24]. Moreover, if it was ini-
tially quite challenging to efficiently implement an algorithm using graphics specific de-
vice functionalities, the introduction of General Purpose GPU (GPGPU) architectures and
drivers, like CUDA and OpenCL, made easier to fully exploit GPU computational power.

For all these reasons, reference [24] indicates both NVIDIA GPUs, based on CUDA,
and AMD GPUs, based on OpenCL, as potential accelerator architectures for the O2 fa-
cility, together with AMD Fusion System on Chip (SoC) and Xeon Phi board.

Figure 3.1: Tracking time of HLT TPC CA algorithm on Nehalem CPU (6 Cores) and
NVIDIA Fermi GPU [24].
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In the more specific context of CA based tracking reconstruction algorithms, GPU-
oriented implementations have already been adopted by some experiments, like Anti-
proton Annihilation at Darmstadt (PANDA) [32] and ALICE itself for the TPC reconstruc-
tion phase. Regarding the latter, figure 3.1 shows a comparison of the algorithm execution
times obtained with CPU (green line) and GPU (red line). It is clearly noticeable how sub-
stantial the speedup introduced by the GPU is, especially for an high number of clusters
being processed.

Therefore, it is worth to analyze in depth the GPU migration possibilities for the ITS
Upgrade tracking algorithm and this represents the main goal of my thesis project. Nev-
ertheless, the proper tuning up of a program for a GPU execution is a complex operation,
because it requires to adapt the code to the device memory hierarchy, that is radically dif-
ferent from the usual memory configurations, and finally to optimise the program at the
instruction level.

A detailed description of the GPU programming model, in which CPU and GPU coop-
erate to complete the same task in a more efficient way, together with a general overview
of the main GPU optimisation criteria, will be discussed in section 3.1. Since the program
realised for this thesis work has been developed with NVIDIA CUDA framework, such en-
vironment will be described in the aforementioned section, but almost all concepts can be
translated to OpenCL paradigm effortlessly (often there is a mere terminology mismatch
between the two).

The actual application of GPU optimisation techniques to the ITS Upgrade tracking re-
construction algorithm, together with a detailed presentation of the adopted parallelisation
strategy, can be found in section 3.2.

Finally, in section 3.3 an analysis of the parallel implementation performances is re-
ported, together with some considerations for potential further optimisations.

3.1 CUDA programming model

3.1.1 Parallel architecture
The GPUs hardware is more specialised for highly parallel tasks with high arithmetic

intensity with respect to the standard CPU architectures, because more transistors are de-
voted to data processing at the expense of data caching and flow control. These design
choices have been initially driven by the high computing power required to run high-
definition, real time graphics applications (i.e. 3D rendering, video codec or pattern recog-
nition), where large sets of pixels are mapped to parallel independent threads.

Actually, GPUs have proved to be able to accelerate also algorithms outside the field of
graphics, stressing the necessity to general purpose architectures and programming mod-
els. It is precisely for this reason that in November 2006 NVIDIA introduced CUDA, a gen-
eral purpose parallel computing platform that comes with a software environment based
on C programming language [33].
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CUDA aims to allow programmers to develop software that transparently scales its
parallelism according to the number of available processor cores, by introducing a level
of abstraction over thread parallelism, barrier synchronisation and memory management.
A programmer can easily distinguish between a coarse-grained data and task paralellism,
useful to partition a problem in a set of independent subtasks, and a fine-grained thread
parallelism, in which threads can cooperate to solve one of these subtasks in an efficient
way.

Figure 3.2: CUDA threads organisation in the context of a single kernel execution [33].

GPU parallelisation is managed by specific functions called kernels that, when called,
are executed 𝑁 times in parallel by 𝑁 different CUDA threads. More specifically, CUDA
introduces a specific C language extension to allow the programmer to explicitly set the
execution configuration of each kernel acting on two values:

• the amount of threads per block. Each thread block can be a 1-dimensional, 2-
dimensional or 3-dimensional set of threads that can cooperate by sharing data and
synchronizing memory accesses;
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• the amount of blocks. Blocks are organised into a 1-dimensional, 2-dimensional or
3-dimensional grid and are required to execute independently, because no control
on their execution order is possible.

Figure 3.2 shows the threads organisation for a single kernel execution in CUDA program-
ming model.

Each thread can be identified by a 1-dimensional, 2-dimensional or 3-dimensional
thread index 𝑇𝐵𝑖

that is unique inside a block. In the same way, each block is identified by a
1-dimensional, 2-dimensional or 3-dimensional block index 𝐵𝑖. For a 2-dimensional case,
if each block has size 𝐷 = {𝑑𝑥, 𝑑𝑦} and there are 𝐺 = {𝑔𝑥, 𝑔𝑦} blocks into the current
grid, the global index 𝑇𝑖 of a thread with index 𝑇𝐵𝑖

= {𝑡𝑥, 𝑡𝑦} belonging to a block with
index 𝐵𝑖 = {𝑏𝑥, 𝑏𝑦} can be expressed with the following relation:

𝑇𝑖 = (𝑏𝑥 + 𝑏𝑦𝑔𝑥) ⋅ 𝑑𝑥𝑑𝑦 + (𝑡𝑥 + 𝑡𝑦𝑑𝑥) (3.1)

NVIDIA GPU architecture is composed by a scalable array of multithreaded Streaming
Multiprocessors (SMs) to which the parallel workload is equally distributed. Threads of a
single block are forced to execute concurrently on the same SM, while multiple blocks are
not necessarily executed on a single multiprocessor.

In order to allow each multiprocessor to concurrently execute hundreds of threads, a
Single Instruction Multiple Thread (SIMT) architecture is employed. Threads are created,
scheduled and managed in groups of 32, called warps, that start together at the same pro-
gram address but have their own instruction counter and register state, so that they are able
to branch independently. If different threads of a warp diverge because of a data-dependent
conditional branch, all taken paths are serially executed so that threads that are not on the
currently processed path are temporarily disabled and all active threads execute one com-
mon instruction at time. Therefore, full efficiency is realised when all 32 threads of a warp
share the same execution path.

If 𝑇 is the number of threads in a block, the number of warps 𝑁𝑊 in that block can be
expressed by the following relation:

𝑁𝑊 = ⌈
𝑇

𝑊𝑠𝑖𝑧𝑒 ⌉ where 𝑊𝑠𝑖𝑧𝑒 = 32 (3.2)

This means that each block will always contain a number of threads that is a multiple of
𝑊𝑠𝑖𝑧𝑒, with a subset of them permanently disabled if the number of threads per block set
in the kernel launch configuration is not a multiple of 𝑊𝑠𝑖𝑧𝑒. Therefore, the full efficiency
is obtained by setting, for each kernel, a number of threads per block equal to a multiple
of the warp size.

3.1.2 Heterogeneous programming
CUDA programming model assumes that kernels are launched from the host, namely

the hardware that processes the main program flow, and executed on a phisically separated,
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Figure 3.3: CUDA heterogeneous programming execution flow [33].

CUDA-enabled device that operates as a coprocessor. Moreover, both the host and the de-
vice maintain their own separate memory spaces, referred to as host memory and device
memory, so data must be explicitly transferred from host to device in order to be processed
by kernels and must be sent back to the host memory to be read by the subsequent pro-
gram instructions. Such a programming model is called heterogeneous programming and
is shown in a schematic way in figure 3.3.

Kernel launches are asynchronous, in the sense that the control is returned to the host
before the device completes all the requested tasks. If at some point the host needs to await

46



3 – GPU Implementation Analysis

a kernel to finish, it must be implicitly or explicitly synchronised with the device.
In contrast, different kernels are normally executed following a precise order, notwith-

standing the fact that some NVIDIA architectures are able to execute multiple kernels
concurrently. CUDA framework provides streams to manage concurrency between dif-
ferent kernels. Each kernel can be associated to a specific stream by explicitly setting a
stream identifier in its launch configuration: all kernels belonging to the same stream are
executed in order, while kernels from different streams can be executed in any order. If no
stream identifier is specified, a kernel is associated to the default stream and it is executed
in order with respect to all other kernels without an explicit stream association. Therefore,
to obtain a higher speedup it is important to specify different streams for all those device
tasks which executions can be safely overlapped.

As mentioned above, host and device use independent memory spaces. Indeed, in order
to allow a kernel to process program data, the host code must allocate some space on device
memory and copy relevant data into it before launching the kernel itself. Then, in order to
allow host code to process kernel output, data must be copied back to host memory and
device memory must be freed when it is no longer required.

While device memory allocation and release are always synchronous operations, some
NVIDIA hardware architectures are able to overlap data transfers between host and device
with both kernel executions and other data transfers. Nevertheless, this feature requires
the involved host memory to be marked as page-locked (or pinned), in order to prevent
it to be swapped out. Additionally, this kind of memory provides an improved transfer
bandwidth. According to [34], however, pinned memory should not be overused for the
following reasons:

• an excessive use of page-locked memory can reduce the overall system performance,
since it is a scarce resource;

• the pinning of system memory is an heavyweight operation compared to standard
system memory allocations, so it should be used only when the amount of memory
to be transferred in each step is big enough to hide this additional cost.

Dynamic in-kernel global memory allocations are supported by some CUDA-enabled
devices, by calling malloc and free functions from device code. Memory allocated with
malloc lives until the end of the program, or until it is explicitly released by calling free
or by resetting device context. Nevertheless, dynamic allocations are very slow and can
therefore cause an important performance degradation of the whole program execution,
so they should be avoided whenever possible.

3.1.3 Device memory hierarchy
As shown in figure 3.4, CUDA device memory is divided into different spaces, each

one optimised for a specific functionality. Each thread has its private local memory, while
each block can reserve a portion of shared memory that is common to all its threads and has
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Figure 3.4: CUDA memory model [35].

the same lifetime of the block itself. All threads have access to the whole global memory,
where host-driven allocations and transfers take place. Constant memory and texture mem-
ory are two additional read-only memory spaces that, as for global memory, are persistent
across different kernel launches and can be accessed from the host application through
dedicated CUDA functions. Finally, an important role is played by the 32-bit registers
partitioned among active thread warps.

Global memory resides in device memory and is accessed through 32-byte, 64-byte
or 128-byte transactions. Full efficiency is realized when such transactions are coalesced:
when a warp executes an instruction that requires a global memory access, all memory
accesses of the threads within the warp are coalesced into the minimum number of required
memory operations. Indeed, to obtain the best global memory throughput it is important

48



3 – GPU Implementation Analysis

to maximise coalesing with the following strategies:

• following the best access patterns. The optimal access pattern depends on the archi-
tecture of the adopted device;

• using data types that meet the size and alignment requirements of the coalesing fea-
ture. More specifically, global memory instructions support read/write operations on
naturally aligned words of size equal to 1, 2, 4, 8 or 16 bytes. If necessary, padding
can be added to the data in order to force their alignment and to meet the require-
ments.

Local memory resides in device memory too, so accesses have the same high latency
and low bandwidth of the global memory ones and should be coalesced whenever possible.
Additionally, both global and local memory accesses are always cached by default (in both
L1 and L2 caches for older architectures, only in L2 cache for newer ones). According
to [33], the compiler is likely to place in local memory the following variables:

• arrays that are accessed with dynamic indices, namely by indices which values can’t
be figured out at compile time;

• large data structures that would heavily consume register space;

• if the available number of registers is reached, any remaining variable is placed in
local memory.

Excluding delays due to read-after-write dependencies and register memory bank con-
flicts, accessing a register consumes zero extra clock cycles [34]. Therefore, registers
should theoretically be always preferred to local memory, but the heavy usage of the reg-
isters can lead to performance drawbacks. Indeed, the set of registers (register file) in a
multiprocessor must be shared between all the thread blocks. If then each thread uses too
many registers, the number of blocks that can reside on each SM is reduced. The term
register pressure is used to refer to a situation in which there are fewer registers available
than would have been required for an optimal execution.

In other words, an excessively high number of registers used by each thread can lower
the occupancy of the process, namely the ratio of the number of active warps per multi-
processor to the maximum number of possible active warps. A lower occupancy leads to
a lower degree of parallelisation of the tasks and a less efficient ability to hide memory
latency, thereby causing performance degradation.

According to [34], the shared memory has much higher bandwidth and lower latency
than local and global memory, because it resides on a chip. Shared memory is divided into
equally sized modules, called banks, in a way that any memory load or store of 𝑛 consecu-
tive addresses span 𝑛 distinct memory banks and can therefore be serviced simultaneously.
On the contrary, multiple accesses to the same memory bank must be serialised, resulting
in performance degradation. If multiple threads of the same warp address the same shared
memory location, a broadcast access is possible. Shared memory is particularly useful to:
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• enable coalesced access to global memory in case of strided access patterns;

• eliminate or reduce redundant loads from global memory;

• avoid wasted bandwidth.

Constant memory space occupies 64 KB and it is cached, so that a device memory
access only occurs in case of a cache miss. If all threads of a warp access the same loca-
tion in constant cache, then constant memory can be as fast as a register access, so it is
particularly useful when the threads of a warp only access few distinct locations.

Texture memory is optimised for 2D spatial locality and it is cached, therefore it is
particularly useful when threads of the same warp access memory addresses that are close
together. Since within a kernel call the texture cache is not kept coherent with respect to
global memory writes, the threads can safely read only those values that have been updated
before the kernel was launched.

3.1.4 Compilation workflow
CUDA framework comes with its own Instruction Set Architecture (ISA), called Par-

allel Thread Execution (PTX), but it is more convenient to use an high level programming
language such as C to write code and then compile it into PTX. In any case, Nvidia CUDA
Compiler (NVCC) must be used to compile kernels into binary code, in order to allow
them to be executed on a CUDA-enabled device.

Heterogeneous programming model provides a mixture of conventional C/C++ host
code and device specific functions, that must be distinguished during the NVCC com-
pilation workflow. According to [36], CUDA compilation workflow separates the device
functions from the host code, compiles device functions using NVCC and the host code
using the available host compiler and embeds the compiled GPU functions as a fatbinary
image in the host object file.

PTX code can also be loaded by an application at runtime and compiled further to
binary code by device driver. This operation, called just-in-time compilation, increases
the application load time, but it allows to benefit from any new compiler improvements of
new device drivers and it is the only way to allow applications to be executed by devices
that did not exist at the time the application was developed. Nevertheless, it is always better
to generate binary code for a specific architecture whenever possible.

NVCC predefines a set of macros that allows programmers to activate some features
only for some specific CUDA compilation workflow phases. The __CUDACC__ macro, for
example, is defined only when NVCC is compiling CUDA source files and it is particularly
useful to allow the same code to be reused for both host and device contexts, by hiding all
the CUDA specific language extensions to the host compiler .

Each CUDA-enabled GPU supports a specific list of features offered by the framework.
Such set of features is identified by the compute capability, namely a version number X.Y
composed by a major revision number X that denotes the core architecture (i.e. Kepler,
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Maxwell and so on) and a minor revision number Y that corresponds to an incremental
improvement of the core architecture, with a possible inclusion of new features.

Binary code (cubin) is architecture specific, so binary compatibility is guaranteed from
one minor revision to the next one, but not from one minor revision to the previous one
or across major revisions. On the contrary, PTX code produced for some specific compute
capability can always be compiled to binary code of greater or equal compute capability.

Prior to CUDA 5.0 a separate compilation was not supported for device code, so it
was not possible to call device functions or to access variables across files [36]. From the
CUDA 5.0 release on, separate compilation of device code can be explicitly activated with
some dedicated options. This allows programmers to increase device code modularity and
maintainability.

3.2 Parallel GPU implementation

3.2.1 Application assessment
The first necessary step to develop an efficient CUDA implementation of an algorithm

is to define an effective parallelisation strategy, capable to obtain the maximum speedup
without giving up code maintainability and cross-device compatibility and that takes into
account the strong and weak points of the heterogeneous programming model.

Figure 3.5: Distribution of the algorithm steps in an heterogeneous programming model.
Host code portions are blue filled, device ones are green filled and orange is used for
external data and for synchronisation barriers.
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As a first thing, it is necessary to identify which portions of the program should be ex-
ecuted on device and which ones should continue to be part of the host code. Performance
results obtained for the serial implementation of the CA algorithm (and reported in sec-
tion 2.3) motivated the choice to migrate on GPU only the tracklet finding and cell finding
phases. Figure 3.5 shows the distribution of the algorithm steps between host and device
with the chosen parallelisation strategy; as it can be seen, such implementation requires at
minimum three synchronisation barriers between host and device environments.

The result that mainly drove the parallelisation strategy choice is the computing time
percentage spent on each algorithm phase. By analysing the data reported in table 2.1, it
is clear how, on average, more than 92% of the overall computing time is spent on tracklet
and cell finding phases when input data contain a single interaction vertex and how such
time percentage increases with the amount of pile-up. According to Amdahl’s Law, the
maximum speedup 𝑆 that can be expected by parallelising a portion of a serial program
can be expressed by the following relationship, where 𝑃 is the fraction of the total serial
execution time taken by the portion of code that should be parallelised and 𝑁 is the number
of processors over which such portion of the program runs [34]:

𝑆 = 1
(1 − 𝑃 ) + 𝑃

𝑁

(3.3)

Therefore, the parallelisation of the slowest algorithm phases leads to the maximum
theoretical speedup. In particular, since modern GPUs are highly parallel devices, the Am-
dahl’s Law can be simplified by considering an infinite number of processors:

lim
𝑁→+∞

𝑆 = 1
1 − 𝑃

(3.4)

In this case, the maximum theoretical speedup factor achievable with the chosen paral-
lelisation strategy is around 13. Nevertheless, as discussed in section 3.1.2, data need to be
transferred from host memory to device memory in order to be processed by kernels and
viceversa. The overhead introduced by these operations and the fact that real applications
rarely exhibit a perfectly linear scaling make it impossible to reach the theoretical limit.

Another important aspect that emerges from the results reported in section 2.3.2 is the
greater memory occupancy predictability for tracklet and cell finding phases, with respect
to subsequent algorithm steps. As pointed out in section 3.1.2 dynamic in-kernel mem-
ory allocation leads to a considerable performance degradation, so host-driven memory
allocation should be preferred. Furthermore, this require a suitable memory occupancy
prediction, because:

• an underallocation would have disastrous effects on performance, since it would be
necessary to interrupt the kernel execution, free the old allocated memory, allocate
a greater portion of memory and then launch the kernel again;

• since device memory allocation is a costly operation, an excessive overallocation
would result in a slower initialisation phase for algorithm data structures.
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By observing figure 2.7 it is clear how difficult would be to implement a memory pre-
allocation strategy for the track candidates data structure, while tracklet and cell finding
phases show a far more regular memory occupancy distribution.

Nevertheless, also tracklet and cell finding phases parallelisation presents some chal-
lenges 1. In particular, a major issue comes with the index tables compilation process,
described in section 2.1.3: while it is easy to know the position of the first element that
starts from a particular subelement when all elements starting from the same subelement
are processed one after another, it is a not so easy task when elements starting from dif-
ferent subelements are processed in parallel and stored out of order. On the other hand,
without such data structures search, the operations would stop to have a constant com-
putational complexity, introducing an heavy performance degradation in cell finding and
neighbour construction phases.

Finally, also the simple emplace_back operation is costly in a SIMT architecture, be-
cause it must be atomic in order to avoid undefined behaviour; but if an atomic instruction
executed by a warp reads, modifies and writes to the same location in global memory for
more than one of the threads of the warp, all the operations have to be serialised [33].

3.2.2 Parallelisation strategy outline
A possible solution to the aforementioned parallelisation issues would be to have a

single thread that processes each starting subelement and to run both tracklet and cell
finding algorithms two times. In particular:

• the kernel is launched a first time to find, respectively, the number of valid tracklets
associated to each cluster and the number of valid cells associated to each tracklet;

• the index table is compiled, by running a prefix sum 2 algorithm on the data structure
containing the number of valid elements found for each subelement;

• the kernel is launched a second time to actually store found elements into the re-
spective data structure, knowing exactly where to insert each one.

The related pseudocode is reported below:
1
2 void k e r n e l ( bool s t o r e R e s u l t ) {
3

1Since the following considerations are valid for both tracklet and cell finding phases, in order to increase
readability, the term element will be used to refer to both tracklets and cells simultaneously. Furthermore,
the term subelement referred to an element will mean a cluster stored into a tracklet or a tracklet stored into
a cell.

2Let’s consider the symbol ∘ to be an associative operation on a domain 𝐷. The prefix problem is to
compute, for given 𝑥1,… , 𝑥𝑛 ∈ 𝐷, each of the products 𝑥1 ∘ 𝑥2 ∘ … ∘ 𝑥𝑘, 1 ≤ 𝑘 ≤ 𝑛 [37].

53



3 – GPU Implementation Analysis

4 Sube lement c u r r e n t S u b e l e m e n t = sube l emen t s [ t h r e a d I d ] ;
5 s t d : : v e c t o r <Subelement > i nvo l v edSube l emen t s =
6 g e t I n v o l v e d S u b e l e m e n t s ( t h r e a d I d ) ;
7
8 f o r ( i n t i Sube l emen t = 0 ; iSube l emen t < i nvo l v edSube l emen t s . s i z e ( ) ;

++ iSube l emen t ) {
9

10 i f ( i s V a l i d E l e m e n t ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [
i Sube l emen t ] ) ) {

11
12 i f ( ! s t o r e R e s u l t ) {
13
14 ++ v a l i d E l e m e n t s [ t h r e a d I d ] ;
15
16 } e l s e {
17
18 −−v a l i d E l e m e n t s [ t h r e a d I d ] ;
19 e l emen t s [ i nd exTab l e [ t h r e a d I d ] + v a l i d E l e m e n t s [ t h r e a d I d ] ] =
20 Element ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [ i Sube l emen t ] ) ;
21 }
22 }
23 }
24 }
25
26 void h o s t F u n c t i o n ( ) {
27
28 k e r n e l ( f a l s e ) ;
29 comp i l e I ndexTab l e ( ) ;
30 k e r n e l ( t rue ) ;
31 }
32

Such solution solves both issues, because all the elements spanning a particular subelement
are stored adjacently into the data structure, as for the serial implementation, and there is
no need for atomicity in emplace_back function because the insertion code knows exactly
the position of each element. Nevertheless, this implementation is quite slow, because it
requires to launch three kernels serially everytime a tracklet or cell finding step is per-
formed.

A better approach is to group the two runs of the same phase in a single kernel launch, in
order to limit the amount of introduced overhead and to avoid global device synchonisation
barriers between different kernels. The idea here is to use CUDA warp functions, that allow
the programmer to know, in a specific thread, the status of all other threads into the same
warp and also to get the value that a particular variable assumes into another thread of the
warp. In particular:

• during the first run, each thread computes the number of valid elements starting from
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a specific subelement and stores it into a local variable;

• CUDA warp functions are used to perform a prefix sum on such variable, so that
each thread knows the number of elements found by itself and by all the previous
threads in the warp;

• in this way the last thread in the warp, that knows the total amount of elements found
into the current warp, is able to atomically reserve an adequate portion of the related
data structure memory and to propagate the start index to all the other threads using
CUDA warp functions [38];

• during the second run, each thread inserts each found element into its reserved bins.

The related pseudocode is reported below:
1
2 void k e r n e l ( ) {
3
4 Sube lement c u r r e n t S u b e l e m e n t = sube l emen t s [ t h r e a d I d ] ;
5 s t d : : v e c t o r <Subelement > i nvo l v edSube l emen t s =
6 g e t I n v o l v e d S u b e l e m e n t s ( t h r e a d I d ) ;
7 i n t v a l i d E l e m e n t s = 0 , s t a r t I n d e x ;
8
9 f o r ( i n t i Sube l emen t = 0 ; iSube l emen t < i nvo l v edSube l emen t s . s i z e ( ) ;

++ iSube l emen t ) {
10
11 i f ( i s V a l i d E l e m e n t ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [

i Sube l emen t ] ) ) {
12
13 ++ v a l i d E l e m e n t s ;
14 }
15 }
16
17 v a l i d E l e m e n t s = warpPref ixSum ( v a l i d E l e m e n t s ) ;
18
19 i f ( i sLas tWarpThread ( t h r e a d I d ) ) {
20
21 s t a r t I n d e x = sube l emen t s . a t om i cRese rve ( v a l i d E l e m e n t s ) ;
22 }
23
24 s t a r t I n d e x = warpGet ( s t a r t I n d e x , l a s tWa rpTh r e ad I d ) ;
25
26 f o r ( i n t i Sube l emen t = 0 ; iSube l emen t < i nvo l v edSube l emen t s . s i z e ( ) ;

++ iSube l emen t ) {
27
28 i f ( i s V a l i d E l e m e n t ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [

i Sube l emen t ] ) ) {
29
30 −−v a l i d E l e m e n t s ;
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31 e l emen t s [ s t a r t I n d e x + v a l i d E l e m e n t s ] =
32 Element ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [ i Sube l emen t ] ) ;
33 }
34 }
35 }
36
37 void h o s t F u n c t i o n ( ) {
38
39 k e r n e l ( ) ;
40 }
41

Such solution removes the need of launching two kernels, making each warp self consistent
in the execution of its workload. Moreover, despite the reintroduction of atomic memory
reservations, the collision probability is minimised because different warps do not share
a SIMT context and the critical section is limited to a single sum operation. However, the
double repetition of each phase creates a significant drawback to the overall performance,
because validity checks are costly operations from a computational point of view.

An alternative strategy, that allows the second repetition of each phase to be avoided,
consists in storing valid elements directly into their respective data structures as soon as
they are found. In particular:

• a first kernel computes valid elements and stores them into their respective data
structure with a warp atomic memory reservation. In addition, the number of valid
elements found for each subelement is saved into another data structure;

• a second kernel compiles the index table by running a prefix sum algorithm on the
data structure containing the number of valid elements found for each subelement;

• a third kernel deals with elements sorting. In the data structure thus obtained, all
elements starting from the same subelement should be adjacently stored, but their
exact order is not important. Since the size of each group of adjacent elements is
known, because it has been stored during the first kernel run, a counting sort can be
used to achieve this task with a 𝑂 (𝑁) computational complexity. Such algorithm
can be easily paralellised by assigning a subset of elements to each thread.

The related pseudocode is reported below:
1
2 void k e r n e l ( ) {
3
4 Sube lement c u r r e n t S u b e l e m e n t = sube l emen t s [ t h r e a d I d ] ;
5 s t d : : v e c t o r <Subelement > i nvo l v edSube l emen t s =
6 g e t I n v o l v e d S u b e l e m e n t s ( t h r e a d I d ) ;
7
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8 f o r ( i n t i Sube l emen t = 0 ; iSube l emen t < i nvo l v edSube l emen t s . s i z e ( ) ;
++ iSube l emen t ) {

9
10 i f ( i s V a l i d E l e m e n t ( c u r r e n t Sube l emen t , i n vo l v edSube l emen t s [

i Sube l emen t ] ) ) {
11
12 ++ v a l i d E l e m e n t s [ t h r e a d I d ] ;
13 i n t e l emen t I ndex = sube l emen t s . warpAtomicReserve ( ) ;
14 e l emen t s [ e l emen t I ndex ] = i nvo l v edSube l emen t s [ i Sube l emen t ] ;
15 }
16 }
17 }
18
19 void s o r t D a t a ( ) {
20
21 i n t s t a r t I n d e x = t h r e a d I d * e l emen t sP e rTh r e ad ;
22 i n t endIndex = s t a r t I n d e x + e l emen t sP e rTh r e ad ;
23
24 f o r ( iE l emen t = s t a r t I n d e x ; iE l emen t < endIndex ; ++ iE l emen t ) {
25
26 Element e l emen t = e l emen t s [ iE l emen t ] ;
27 i n t c u r r e n t S u b e l e m e n t I n d e x = e l emen t . g e t F i r s t S u b e l e m e n t I n d e x ( ) ;
28 i n t o f f s e t = a tomicSub ( v a l i d E l e m e n t s [ c u r r e n t S u b e l e m e n t I n d e x ] , 1 ) ;
29
30 s o r t e d E l e m e n t s [ i nd exTab l e [ c u r r e n t S u b e l e m e n t I n d e x ] + o f f s e t ] =
31 e l emen t s [ iE l emen t ] ;
32 }
33 }
34
35 void h o s t F u n c t i o n ( ) {
36
37 k e r n e l ( ) ;
38 comp i l e I ndexTab l e ( ) ;
39 s o r t D a t a ( ) ;
40 }
41

Despite the presence of three different kernel launches, the overhead introduced by this
approach has turned out to be smaller than a second repetition of the entire phase, because
both the index table compilation and the element sorting tasks can be performed in an
efficient way.

3.2.3 Implementation details
As outlined before, a good parallelisation strategy is fundamental to obtain an efficient

GPU implementation of the algorithm, but there are also other important elements, such
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as code maintainability and portability, that must be taken into account. With appropri-
ate implementation choices, these goals can be achieved without undermining the main
performance target.

As a first thing, since the software must be able to run also on architectures that do not
include a CUDA-enabled GPU, all CUDA Toolkit dependencies must not be mandatory for
the program compilation. At the same time, maintainability requirements impose that as
much code as possible is common to all different execution targets, but CUDA framework
introduces some specific C language extensions that only NVCC can understand.

Assuming that the target device is known at compile time, CMake tool can be used
to handle conditional inclusion of CUDA libraries, but this is not enough to grant a full
cross-compiler compatibility, because an host compiler would not recognise CUDA spe-
cific language extensions. Moreover, to use the same code for both host and device code
in an heterogeneous programming model, these extensions must be activated only when
the involved code is compiled by NVCC.

In order to achieve this goal, a specific CADefinitions file has been implemented.
Such file uses the NVCC __CUDACC__ macro definition to know if the currently used
compiler is the host compiler or NVCC itself and to consequently toggle the presence of
CUDA specifiers. In particular:

• the file defines a list of macro that assume an empty value when __CUDACC__ macro
is not defined (the host compiler is active), while are translated into a CUDA specifier
when __CUDACC__ macro is defined (NVCC is active);

• functions that must be reused both in host and in device code have such macros
prepended to their definition.

Such solution requires that some files are included both in host and in device code. This
may lead to multiple definitions of some functions and consequently to a compilation error.
In order to correctly handle this situation, a dedicated CMake utility has been implemented
to copy all .cxx files into a temporary folder, changing their extension to .cu, during the
compilation process. In this way, all code can be compiled directly with NVCC, preventing
the aforementioned error to be thrown.

Since [24] indicates both CUDA and OpenCL based devices as potential accelerator
architectures for the O2 facility, an OpenCL compatibile version of the code will be imple-
mented soon. The proposed CADefinitions file is useful also to meet this requirement,
because OpenCL and CUDA are based on similar programming models, but with a slightly
different syntax for C language extensions. Furthermore, all CUDA Toolkit functions have
been wrapped into a vendor agnostic CAGPUtils adapter, in order to hide CUDA specific
syntax and make libraries from different vendors interchangeable at compile time.

In particular, the CAGPUtils Application Programming Interface (API) contains all
the utilities that are necessary to manage an heterogeneous programming environment,
such as memory transfers handling, kernel launch configurations, profiling and so on.
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Moreover, there are also a couple of functions able to evaluate the best kernel launch con-
figuration by taking into account the characteristics of the GPU device on which the kernel
will be executed.

In order to allow a runtime evaluation of those parameters, a vendor-agnostic CAGPU-
Context has been implemented. More specifically, a Singleton pattern has been used to
realise such context:

• when called for the first time, the class constructor initialises an array of device
properties for all available devices;

• the method getDeviceProperties() is able to automatically identify the cur-
rently used device and to return the related property set;

• the method getDeviceProperties(deviceIndex) can be used to get the prop-
erty set of a specific device.

The Singleton pattern is efficient, because each device is queried only once, but the current
implementation is not able to handle an eventual hot swap of GPU devices. Furthermore,
since the target device must be chosen at compile time, architectures with mixed configu-
rations are not supported.

The fact that all device methods have to be explicitly marked in CUDA code has an
important drawback: functions from external libraries that do not natively support CUDA
environment (even STL) cannot be called in the device code. In order to cope with this
lack of compatibility, two heterogeneous programming aware data structures, CAGPUAr-
ray and CAGPUVector, have been implemented along the line of their STL corresponding
ones. These structures allow the programmer to easily handle device memory allocation
and deallocation and atomic resize operations in a transparent way, following the Resource
Acquisition Is Initialisation (RAII) paradigm. Moreover, using the aforementioned CADef-
initions file, a compile time toggle between these structures and the STL ones is made
possible, because type signatures are consistent between the two implementations.

Other implementation choices have been made to speedup the execution of some het-
erogeneous programming specific tasks. An important thing that must be taken into ac-
count is the fact that objects cannot be simply passed by reference to kernels, because host
and device have two separate memory spaces (as described in section 3.1.3). Therefore,
all objects must be either passed by value or copied into device memory before the kernel
launch. In order to minimise the size of kernel parameters and avoid register pressure, a
single object called CAGPUPrimaryVertexContext is allocated in device global memory
and only a pointer to its memory location is passed to kernels. Such object is constructed
from the CAPrimaryVertexContext data structure described in section 2.2.2, using the
CAGPUVector and CAGPUArray custom containers described above.

Another important aspect to consider is that both tracklet and cell finding phases can
process multiple layers in parallel, since there are no data dependencies between them.
Therefore, in order to speed up the process, kernels related to different layers are launched
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in different CUDA streams. As all other CUDA specific elements, also streams have been
wrapped into a vendor agnostic object called CAGPUStream, that hides both the Toolkit
API calls and the stream lifecycle, following the RAII paradigm.

Figure 3.6: Scan performance benchmark for 32-bit elements for various CUDA based
libraries [39].

Finally, since the prefix sum algorithm is widely used in GPU applications, many
CUDA based, open-source libraries offer efficient and maintained implementations of it.
In particular, CUB [40] library was chosen because, as shown in figure 3.6, it offers the
highest performance for all ranges of input data size.

3.3 Performance analysis

3.3.1 Serial implementation comparison
The analysis of the transverse momentum efficiency and computing time described in

section 2.3 for the the serial implementation of the algorithm have been repeated for the
parallel implementation, in order to compare the two versions and to better quantify the
performance gap. On the contrary, the memory occupancy benchmark was not repeated,
because the memory model used in an heterogeneous programming model is totally dif-
ferent from the classic one, so a direct comparison would not be possible.

The architecture used for such analyses, reported below, contains the same hardware
used to benchmark the serial implementation, with the addition of a CUDA-enabled GPU
and the CUDA compiling tools:

• CPU: Intel i7-7700K (4.2GHz, 8MB Cache)
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• RAM: Corsair DDR4 32GB (2×16) 2133MHz

• GPU: NVIDIA GeForce GTX 970 (SM 52, 1664 CUDA cores)

• OS: Linux Ubuntu 16.04 LTS

• C++ Host Compiler: Clang 3.8.0-2ubuntu4, with -O3 optimisation flag

• Device Toolkit: CUDA Toolkit V8.0.61

Also the sample of events used for GPU benchmarks is the same used for the serial im-
plementation of the program. On the contrary, the Callgrind and KCachegrind suite could
not be used for GPU profiling purposes. Nevertheless, CUDA Toolkit comes with it is own
profiling tool, called NVIDIA Visual Profiler (NVVP), that allows programmers to deeply
dive into the CUDA code performance tuning.

Figure 3.7 shows the results of tracking efficiency over transverse momentum analysis
for pion-related reconstructed tracks with 7 clusters. By comparing these charts with those
reported in figure 2.3, it is clear how the two implementations of the algorithm share the
same portions of correct, duplicate and fake reconstructed tracks. This coherence repre-
sents a proof of correctness for the parallel implementation, since it is able to obtain the
same results as the serial one. Moreover, during the data acquisition phase the NVCC flag
-use_fast_math, that tells the compiler to substitute all CUDA math function calls with
their less precise but more efficient implementations, was enabled. The fact that no sig-
nificant efficiency degradation has occurred means that it is safe to leave it enabled in a
production environment.

Table 3.1 reports measurement of minimum, mean and maximum computing time val-
ues for context initialisation, tracking and cell finding phases and for the whole process,
with different amount of pile up in each event. In addition, for comparison purposes, the
values from table 2.1 have been reported in brackets. The GPU implementation of the
algorithm introduced a significant speedup in both tracklet and cell finding phases. Con-
sidering the mean values and the simulations with a single interaction vertex, a speedup
of 12.7 times for the former and 5.7 times for the latter has been obtained, that lead to a
speedup of 4.5 times on the whole process. Moreover, such performance gain becomes
even more evident in simulations with multiple interaction vertices: the GPU implemen-
tation of the algorithm runs 10.7 times faster than the serial one when the processed event
have 5 interaction vertices.

Figure 3.8 shows the computing time distribution between the different algorithm phases.
An important difference with respect to the serial CPU implementation is the fact that most
of the time is not spent on tracklet and cell finding phases, that together occupy less than
50% of the total computing time needed to process an event without pile-up (figure 3.8a).
Instead, the context data structures initialisation phase occupies an important amount of
the total time also for an event with 4 interaction vertices, as shown in figure 3.8b.

An important optimisation for this step is brought by the smart memory management
implemented into contexts constructors, in order to avoid useless memory allocations (as
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Figure 3.7: Analysis of the algorithm track reconstruction efficiency over transverse mo-
mentum for a sample of 100 central Pb–Pb events without pile-up, for correct (top left),
fake (top right) and duplicated (bottom left) tracks subsets. The bottom right histogram
shows the ratio of duplicated to not fake (correct + duplicated) tracks.

described in section 2.2.2). Such optimisation is even more effective in GPU implemen-
tation, because device allocations are synchronous operations and are quite expensive in
terms of computing time. Nevertheless, since no initial memory allocation strategies are
applied, the actual speedup strictly depends on the order in which events are processed.
Figure 3.9 shows the time spent for context initialisation in each event of the data sam-
ple, with spikes corresponding to memory allocations. When the system reaches its steady
state, the density of such spikes should tend to zero, with the exception of potential events
with an high pile-up factor. However, it should be worth to find an appropriate memory
preallocation strategy to maximise straight away the performance gain, continuing with
the work described in section 2.3.2.

Another possible memory management optimisation could be the use of page-locked
host memory for device transfers. Allocating pinned host memory is a costly operation,
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Table 3.1: Algorithm computing time measurements for context initialisation, tracklet and
cell finding phases and for the whole process (in ms) for a sample of 100 Pb–Pb central
events with different amount of pile-up. Values in brackets are related to the serial imple-
mentation of the algorithm.

# Vertices 1 2 4 5

Context init
Min 5.3 9.1 19.3 24.9
Mean 6.7 13.0 25.1 32.5
Max 11.2 22.2 63.1 94.3

Tracklet finding
Min 1.8 (18.2) 6.3 (76.4) 27.0 (329.1) 44.2 (517.3)
Mean 3.1 (39.4) 9.0 (139.0) 35.2 (549.6) 55.1 (810.0)
Max 5.3 (70.6) 13.3 (269.3) 47.2 (1094.0) 70.5 (1641.0)

Cell finding
Min 2.0 (10.2) 6.5 (50.9) 35.4 (350.3) 60.6 (646.9)
Mean 5.0 (28.5) 15.0 (134.5) 72.5 (862.4) 123.1 (1520.3)
Max 7.9 (44.4) 20.9 (188.7) 104.4 (1213.6) 166.0 (2140.7)

Total
Min 9.6 (33.4) 23.4 (135.0) 84.2 (696.2) 133.3 (1186.2)
Mean 16.7 (75.0) 40.2 (285.4) 139.5 (1437.7) 219.9 (2362.8)
Max 27.0 (110.3) 59.9 (446.5) 220.7 (2326.1) 317.9 (3810.5)

but since transfers are far more frequent than reallocations in steady state, the use of
pinned memory should further optimise the context initialisation performances. Indeed,
page-locked memory comes with both an higher transfer bandwidth and the possibility to
parallelise multiple memory transfers, if the CUDA device has more than one copy engine.

3.3.2 GPU profiling

In order to further investigate the effective algorithm efficiency with respect to a mod-
ern GPU potential, it is useful to run NVVP and take a look at some of the output reports.
All results in this section refer to a program running on a sample of 100 Pb–Pb central
events without pile-up.

Figure 3.10 reports the NVVP execution map for all device activities related to a single
event processing. By observing different lines, it is clear that tracklet (indigo bars) and cell
(liliac bars) finding phases related kernels are the most time consuming. Nevertheless, also
initial and final memory transfers and the tracklet sorting (fuchsia bars) need a considerable
amount of time to be performed.

An important parameter is the number of registers necessary to each kernel to run.
The cell finding phase kernel occupies 70 registers, while the tracklet finding phase kernel
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Figure 3.8: Computing time distribution between the different algorithm phases, for a
simulation with 100 Pb–Pb central events without pile-up (top) and with 4 interaction
vertices (bottom)

needs 56 registers. These values are quite high and they limit the device occupancy, result-
ing in a potential waste of some computational power. Indeed, since each block contains
192 threads for the tracklet finding phase and 224 for the cell finding phase, no more than 6
blocks (36 warps) of the former and 4 blocks (28 warps) of the latter can run concurrently
on a single SM, with a theoretical device limit of 64. This leads to a maximum theoretical
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Figure 3.9: Context initialisation time for each event analyzing 100 Pb–Pb central events
without pile-up. Spikes correspond to memory reallocations.

Figure 3.10: NVVP kernel execution map for a Pb–Pb central event without pile-up. The
orange row reports runtime API calls executed from host code. The two golden rows report
memory transfers, from host to device and from device to host respectively. Other coloured
bars refer to device kernel execution. Superimposed bars are executed in parallel.

device occupancy of 56.2% and 43.8%, respectively. Nevertheless, reducing the number
of occupied registers would result in a higher amount of local memory accesses and in a
consequent performance degradation.

Using shared memory to store some big data structures, like clusters or tracklets, should
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(a)

(b)

Figure 3.11: AoS (top) and SoA (bottom) memory layouts, with respective thread access
patterns [41].

be a good strategy to reduce the number of occupied registers without a performance
degradation. However, shared memory is optimised to have the largest bandwidth when all
threads in a warp access contiguous 32-bit (the default) or 64-bit (if explicitly configured)
words, but the Array of Structures (AoS) memory layout adopted for the current imple-
mentation doesn’t fit well with this feature. Figure 3.11 compares the aforementioned AoS
pattern with the more effective Structure of Arrays (SoA) memory configuration, which
guarantees that all threads that require consecutive elements will access consecutive val-
ues in memory. Moreover, [41] presents also more complex memory layouts, that could
lead to a even better memory access performance improvement. The implementation of
such layouts should be considered as a promising optimisation strategy for future works,
because both global and shared memory bandwidth can be increased in this way.

Another factor that limits the actual performance of the algorithm is the fact that the
workload is not perfectly balanced across different threads. This is particularly evident
for the tracklet finding phase, where each thread processes all tracklets starting from a
single cluster. Since the number of cluster couples to process varies from one cluster to
the other, some threads of a warp will remain inactive until the longest one completes
its task, resulting in a lower efficiency. Figure 3.12 shows how this phenomenon leads to
an unbalanced usage of the different device SMs. Nevertheless, such a different workload
from one cluster to the other is a natural consequence of the fact that filtering cuts depend
on the position of each peculiar cluster, so it can’t be easily overcome.
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Figure 3.12: Multiprocessor utilisation for a tracklet finding phase kernel processing a
Pb–Pb central event without pile-up.

Finally, observing the orange line in figure 3.10 it is clear how CPU spends a consid-
erable amount of time waiting for the device, by calling the cudaDeviceSynchronise
function. A multi-thread implementation of the host code, with some kind of pipeline logic,
should minimise this waste of time and introduce an additional speedup in the overall pro-
cess. Furthermore, also neighbourhood construction and tracklet reconstruction phases
should benefit from an appropriate parallel implementation, together with the context ini-
tialisation phase, particularly if page-locked memory is used and parallel memory trans-
fers are allowed. Nevertheless, since context switching between host threads is a costly
operation, the implementation of a multi-threaded version of host code must be carefully
analysed to be included in a future working plan.
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Conclusions

The main goal of this thesis work was to investigate the possibilities to realise a GPU
version of the CA track reconstruction algorithm developed in [2] for the ALICE ITS
Upgrade.

The present ITS is the innermost detector of the ALICE detector, composed of six
high-resolution cylindrical silicon detectors. It contributes to practically all the physics
topics addressed by the ALICE experiment because it is crucial to determine the point
where the collisions happen. A major limitation of the present running condition of the ITS
detector is the poor maximum readout rate of 1 kHz, irrespective of detector occupancy.
This limitation due to the hardware limits ALICE to capture only a small fraction of the
full Pb–Pb collision rate of 8 kHz delivered by the present LHC and would outrageously
limit the use of 50 kHz Pb–Pb collision rate provided in Run 3 (the LHC running phase
that will start in 2019).

The idea for the design of an Upgraded ITS is to entirely replace the existing ITS
detector with a new one, characterised by an additional layer, a smaller distance between
the innermost layer and the beam pipe, a reduction of the material budget and an highly
increased readout rate, up to 50 kHz for Pb–Pb collisions and 2 MHz for p–p collisions.

Such interaction rate will result in an estimated data throughput from the detector
greater than 1 TB/s for Pb–Pb events during Run 3. It is therefore necessary to achieve
a maximal reduction of the readout, as early as possible during the data flow, in order to
minimize the cost of the computing system for both data processing and storage. The O2

facility, the Online-Offline computing system that will assist the ALICE experiment during
Run 3, has been designed to reach such a challenging goal.

The main difference between O2 and the current AliROOT framework is the presence
of synchronous calibration and reconstruction phases, that are necessary to guarantee a
considerable reduction of permanently stored data. As a result, contrary to the strategy
adopted at present (LHC Run 2 phase), where most of the tracks in the ITS are the re-
sult of a prolongation of the TPC tracks, during Run 3 at least a partial reconstruction of
high 𝑝𝑇 tracks must be done synchronously to provide constraints for the TPC calibration.
Therefore, the principal requirement for ITS tracking code is the speed. In order to meet
such a goal, a new ITS tracking algorithm based on CA has been proposed in [2].

Highly parallel implementations of similar algorithms have been previously realised
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for other experiments, like PANDA, and for ALICE TPC detector. Since those implemen-
tations suggest that a noticeable speedup can be obtained with GPUs, it is interesting to
evaluate if CUDA-enabled devices are able to cope with the 50 kHz Pb–Pb readout rate
foreseen for ITS detector when the LHC Run 3 will start (after 2019).

In order to implement an effective parallelisation strategy, a preliminary, standalone
CPU version of the code has been realised, removing all AliROOT specific dependen-
cies from the pre-existing one. Moreover, a mathematical model for each algorithm step
has been elaborated, in order to analyse both memory occupancy and computational com-
plexity in a worst case scenario. Comparing theoretical results with code profiling data, an
effective preallocation strategy has been developed, in order to both optimise performances
and allow data structures to be allocated on a GPU device.

Table 4.1: Algorithm computing time measurements for context initialisation, tracklet and
cell finding phases and for the whole process (in ms) running on a sample of 100 Pb–Pb
central events with different amount of pile-up. Values in brackets are related to the serial
implementation of the algorithm.

# Vertices 1 2 4 5

Context init
Min 5.3 9.1 19.3 24.9
Mean 6.7 13.0 25.1 32.5
Max 11.2 22.2 63.1 94.3

Tracklet finding
Min 1.8 (18.2) 6.3 (76.4) 27.0 (329.1) 44.2 (517.3)
Mean 3.1 (39.4) 9.0 (139.0) 35.2 (549.6) 55.1 (810.0)
Max 5.3 (70.6) 13.3 (269.3) 47.2 (1094.0) 70.5 (1641.0)

Cell finding
Min 2.0 (10.2) 6.5 (50.9) 35.4 (350.3) 60.6 (646.9)
Mean 5.0 (28.5) 15.0 (134.5) 72.5 (862.4) 123.1 (1520.3)
Max 7.9 (44.4) 20.9 (188.7) 104.4 (1213.6) 166.0 (2140.7)

Total
Min 9.6 (33.4) 23.4 (135.0) 84.2 (696.2) 133.3 (1186.2)
Mean 16.7 (75.0) 40.2 (285.4) 139.5 (1437.7) 219.9 (2362.8)
Max 27.0 (110.3) 59.9 (446.5) 220.7 (2326.1) 317.9 (3810.5)

Finally, the code has been adapted to the CUDA heterogeneous programming model,
without sacrificing portability and maintainability. Table 4.1 reports execution time for the
most computationally expensive algorithm phases. In addition, for comparison purposes,
values related to the serial CPU implementation have been reported in brackets. Consider-
ing the mean values and the simulations with a single interaction vertex, a speedup of 12.7
times for the former and 5.7 times for the latter has been obtained, that lead to a speedup
of 4.5 times on the whole process. Moreover, such performance gain becomes even more
evident in simulations with multiple interaction vertices: the GPU implementation of the
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algorithm runs 10.7 times faster than the serial one when the processed event has 5 inter-
action vertices.

Despite the noticeable performance gain, there is still room for other performance im-
provements, in particular concerning the use of page locked memory for host allocation
and the adoption of a more efficient memory layout for data structures, like AoS, in or-
der to optimise access patterns. Furthermore, a parallelised version of the host code could
perhaps lead to an additional performance gain.

Both CPU and CUDA versions of the code realised for this work will be migrated into
the ALICE O2 framework as soon as the OpenCL version, currently under development,
is ready. Some vendor-agnostic APIs have been realised to simplify the OpenCL extension
of at least some parts of the existing CUDA code, if the use of an OpenCL C++ wrapper
is allowed.

70



Appendix A

List of memory occupancy distributions

In this section are reported all memory occupancy benchmark results for the serial
implementation of the CA tracker. Plots are related to simulations with 100 Pb–Pb central
events without pile-up.
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Figure A.1: Tracklet data structures memory occupancy for all 7 ITS layers. By comparing
different plots, memory occupancy distribution appears to be more sparse for inner layers.
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Figure A.2: Cell data structures memory occupancy for all 7 ITS layers. Again, memory
occupancy distribution appears to be more sparse for inner ITS layers.
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Figure A.3: Distribution of the actual to theoretical complete roads occupancy ratio for a
sample of 100 central Pb–Pb events without pile-up, where the denominator is the number
of all possible combinations among clusters across all 7 ITS Upgrade layers: ∏7
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List of Acronyms

ACORDE ALICE Cosmic Rays Detector
ALICE A Large Ion Collider Experiment
AoS Array of Structures
API Application Programming Interface
ATLAS A Toroidal LHC Apparatus

CA Cellular Automaton
CMS Compact Muon Solenoid
CPU Central Processing Unit
CTF Compressed Time Frame
CUDA Compute Unified Device Architecture
CV Coefficient of Variation

DAQ Data Acquisition

EMCAL Electromagnetic Calorimeter
EPN Event Processing Node

FLP First Level Processor
FMD Forward Multiplicity Detectors

GEM Gas Electron Multiplier
GPGPU General Purpose GPU
GPU Graphics Processing Unit
GUI Graphical User Interface

HIJING Heavy-Ion Jet Interaction Generator
HL-LHC LHC High Luminosity
HMPID High Momentum Particle Identification

IDE Integrated Development Environment
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List of Acronyms

ISA Instruction Set Architecture
ITS Inner Tracking System

LEIR Low Energy Ion Ring
LHC Large Hadron Collider
LHCb Large Hadron Collider beauty
LINAC Linear Accelerator
LS2 Long Shutdown 2

MAPS Monolithic Active Pixel Sensor
MC Monte Carlo
MCH Muon Tracking Chamber
MTR Muon Trigger System

NVCC Nvidia CUDA Compiler
NVVP NVIDIA Visual Profiler

OO object oriented

PANDA Anti-proton Annihilation at Darmstadt
PHOS Photon Spectrometer
PID Particle Identification
PS Proton Synchrotron
PSB Proton Synchrotron Booster
PTX Parallel Thread Execution

QGP Quark-Gluon Plasma

RAII Resource Acquisition Is Initialisation
RICH Ring Imaging Cherenkov
RMS Root Mean Square

SDD Silicon Drift Detector
SFM String-Fusion Model
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SNR signal-to-noise ratio
SoA Structure of Arrays
SoC System on Chip
SPD Silicon Pixel Detector
SPS Super Proton Synchrotron

75



List of Acronyms

SSD Silicon Strip Detector
STF Sub-Time Frame
STL Standard Template Library

TF Time Frame
TOF Time Of Flight
TPC Time Projection Chamber
TRD Transition Radiation Detector

VMC Virtual Monte Carlo

WLCG Worlwide LHC Computing Grid
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