
POLITECNICO DI TORINO

Computer Engineering
Master’s Degree in Embedded Systems

Master Thesis

B-Glove
a wireless MIDI instrument for disability
Overcoming communicative barriers: an application of the Globality of languages

Advisor:
Prof. Antonio Servetti

Candidate:
Sebastiano Franchina

Tutors
Paolo Cavagnolo
Riccardo Turino

October 2017

To my parents
(Ai miei genitori)

i

La musica, come la vita, si può fare in un solo modo: insieme.
La musica ci insegna la cosa più importante di tutte: ascoltare.

La musica è la nostra vera terapia.

Music, like the life, can be made in a single manner: together.
Music teaches us the most important thing: listening.

Music is our real therapy.

Ezio Bosso

ii

iii

Acknowledgements

I decided to write this section in Italian. If it is not important for the people which
will read this thesis for a scientific interest, it is very important for me to be understood
in the best way possible by the people I will cite.

Montale diceva che la nostra vita rassomiglia in gran parte al volo dei gabbiani: per-
lustrano il mare in cerca di pesce, si cibano, trovano una spiaggetta tranquilla e vi si
appollaiano, per poi ripartire, come se su ogni spiaggia un cartello recasse scritto "Più in
là". La nostra vita è fatta di bivi. Li troviamo, consapevolmente o meno, mentre percorri-
amo le nostre strade, ma soprattutto quando una strada che stavamo percorrendo finisce
e si dirama in due o più direzioni.

Finita per me la strada dell’Università, del Politecnico di Torino, iniziata 5 anni fa
(sembra sia ieri), desidero e ritengo sia opportuno rivolgere un pensiero a coloro i quali
questa strada me l’hanno, magari non sempre resa più facile, nè più difficile, ma sicura-
mente riempita, o che hanno creato per me delle zone di sosta nelle quali trovare ristoro
e sostentamento per proseguire nella vita e nel mio percorso di studi. Lo voglio fare, non
con un grazie, ma, andando contro ciò che ho detto all’inizio, con un "acknowledgement",
un grato riconoscimento, un "Reddite quae sunt Caesaris Caesari".

Desidero iniziare manifestando la mia profonda gratitudine a coloro i quali mi hanno
dato la possibilità di realizzare questo lavoro che, come dirò nell’introduzione, rappresenta
non solo il coronamento del mio percorso di studi, ma anche un’esperienza di crescita
d’inestimabile valore.

Quindi, in ordine, la Prof.ssa Caire, per la sua gentilezza e disponibilità nell’indicarmi
con probabilità di successo del 100 percento colui il quale mi ha proposto questo lavoro di
tesi e ne è stato Relatore, il Prof. Servetti, che a sua volta ringrazio per avere impacchet-
tato per me una tesi per come la desideravo, cioè una combinazione tra ciò che mi piace
definire il mio pane, l’informatica, e ciò che mi piace definire la mia principale passione, la
musica. Lo ringrazio inoltre per la sua disponibilità e gentilezza, rare a sentire esperienze
d’altri laureandi. Ringrazio Paolo, il cui contagioso entusiasmo è stato un trampolino di
lancio fondamentale per l’inizio di questo lavoro.

Un pensiero va sicuramente a Samir, ai suoi genitori ed agli altri ragazzi di "Tra silen-
zio e baccano". L’esperienza con loro mi riporta alla mente il mio film preferito, Patch
Adams, e, in particolare, la scena in cui lui - accusato di praticare la medicina senza titolo
- dichiara: "Tutti coloro che vengono al mio ranch sono pazienti, ma tutti coloro che ven-
gono al mio ranch sono anche medici". Se è vero che nel mio piccolo, ho potuto essere
d’aiuto o di conforto, o se ho potuto contribuire a creare qualche istante di benessere e/o
divertimento per questi ragazzi, è anche vero che la loro voglia, l’imponenza con la quale si
sono schierati ed hanno vinto contro i loro limiti, sono stati carburante per le mie piccole,
in confronto, lotte quotidiane.

iv

Come non rivolgere immensa gratitudine a Riccardo, che alla fine ha potuto vedere e
mettere le mani nel costato del WiFi, ed Emanuela. Ringrazio entrambi per la loro buona
volontà, il loro entusiasmo, la passione e la serietà con i quali portano avanti - lottando
contro le mille difficoltà - questo meraviglioso progetto - Tra silenzio e baccano - che, in-
sieme a loro, mi auguro possa ancora crescere. Li ringrazio per la pazienza nel concedermi
di fare le mie prove tecniche, per le mille telefonate e per l’amicizia che mi hanno concesso.

Rivolgo uno smisurato grazie alla Dott.ssa Guerra Lisi, ideatrice della Globalità dei
Linguaggi (GdL), cui questo lavoro di tesi si ispira, la quale mi ha proposto - sulla fiducia
- di presentare davanti al pubblico del 22esimo Convegno Nazionale della GdL a Roma
il mio guanto e che mi ha onorato accettando di essere autrice della prefazione a questa tesi.

Ringrazio Antonella, l’abile e paziente sarta che ha trasformato un prototipo dalle
scocciose apparenze in un guanto figo.

Mischiando un po’ gli ambiti, tra tesi, musica, lavoro, passioni, affetti, famiglia, vado
al pazzo, scatenato, professore senza il quale l’esitazione che mi contraddistingue in gran
parte delle scelte della mia vita non si sarebbe immediatamente trasformata in un si a
questa tesi; senza il quale Torino sarebbe stata una città più brutta in cui vivere; un mae-
stro senza il quale la mia passione per la musica ed il mio interesse per la composizione
non sarebbero stati uguali; al quale devo tanto per avermi consolato, consigliato, sostenuto
e sopportato in tutti quei momenti in cui mi sentivo solo e perso: il Pruf. Gabriele Sedino.
Grazie Gab.

Conosciuta poco prima di entrare al Politecnico, ho condiviso con lei i cinque anni a
Torino e gliene ho combinate tante. Credo di averglielo già detto in qualche altra occa-
sione, ma val la pena di ripeterlo in un documento ufficiale: grazie alla mia paziente amica
Fernanda Scalisi, Fernandina, la mia prima amica, colei che ha segnato un passaggio im-
portante della mia vita e che ha visto per prima, in me, qualcosa di buono. La ringrazio
per avermi dato una famiglia a Torino e per essere stata e rimasta, sempre e comunque,
nella mia vita.

Ringrazio quindi il resto della mia famiglia di Torino, partendo da Antonio, il mio
coinquilino preferito che mi ha insegnato a vivere lontano da casa. Fausto, complice nella
creazione della DPS e fraternamente disponibile. Elda, la mia meravigliosa vicina. E poi
Francesca, Angela, Rosa Giulia e Antonio; Antonio 2.0 e tutti gli altri della DPS; Davide,
anche per i generosi prestiti elettronici, Silvia, per le rilassanti e mai negate pause caffè
insieme, Alessandro; i miei colleghi. Tante le difficoltà affrontate insieme, tante le gioie
condivise, tante le esperienze vissute con voi. Grazie.

Non posso non ringraziare don Pippo, paternamente disponibile negli anni a Torino;
zio Hani e Pino come punti di riferimento di zona San Paolo.

v

Ringrazio coloro che, da lontano, si sono comunque resi presenti. Tra loro, i miei par-
enti: le mie nonne: Carmela, Annina e Maria, le mie zie ed i miei cugini, per avermi sempre
aspettato, per aver sempre trattenuto il mio cuore in Sicilia. Ringrazio mio figlioccio Ivan
e la pancanona Veronica per l’affetto e la vicinanza dimostratimi - anche salendo a Torino
per festeggiare qui con me questo traguardo, lo zio Franco, il mio patrox: Andrea, il Prof.
Schillaci, Antonella Raffa, Sanpippo, Jessica, Alessio e Simone, Bruno e Rita, Armando.

Ringrazio la mia famiglia: i Claudi e coloro cui è dedicato questo lavoro, i miei genitori,
la mia forza, la mia critica, il mio principale riferimento, la mia sicurezza. I miei genitori
senza i quali, probabilmente, non sarebbe esistito questo lavoro perchè non sarebbe esis-
tita l’esperienza a Torino, neanche il Politecnico... Mio padre, perchè non sarebbe esistito
Sebastiano.

Rivolgo un ultimo acknowledgement, senza far nomi, a tutti coloro che non ci sono
o non ci sono più, ma che ci sono stati e continuano ad esserci, dentro. L’amico Gab mi
ha insegnato che quando si brinda si "batte" per tenerli presenti ed è in questi momenti
di festa, o comunque di fine-round nel ring della vita, che più frequentemente capita di
brindare e quindi di volgere loro il pensiero.

A volte mi piace strimpellare al pianoforte e vi confesso che, quando suono, m’illudo
che la musica - l’arte che meglio di tutte afferma il passare del tempo, "scomparendo" dopo
un po’ - se non raggiunge più le mie orecchie e svanisce, è perchè ha raggiunto i luoghi in
cui si trovano coloro che non ho fisicamente accanto.

Così, se Torino mi ha insegnato a stare lontano dalle persone che amo, la musica mi
insegna come raggiungerle. Così mi trovo anch’io a superare - sempre con lei, "la nostra
vera terapia" - le distanze, i silenzi, le assenze.

Grazie a tutti

Seba

vi

Foreword

English version below

L’obiettivo – o piuttosto la scommessa – della Globalità dei Linguaggi, considerata in
questa tesi, è di mostrare quanto la più incorporea e autonoma delle arti – la Musica –
sia in realtà sostanziata delle materie e leggi del cosmo, dei principi costitutivi ed evolu-
tivi dei viventi, delle articolazioni, emozioni e sensazioni della nostra realtà psicosomatica
umana. Tutto ciò è inscritto nella musicalità di ciascun essere umano, oltre le differenze,
anche diagnostiche, come dimostrato nella parte esperienziale di questa tesi. In concreto
rivisita l’esperienza musicale facendone emergere le implicazioni sinestetiche, simboliche,
interdisciplinari, nell’ottica della Globalità dei Linguaggi (GdL): una disciplina della co-
municazione e dell’espressione con tutti i linguaggi, ideata da me, da circa 50 anni, che
è stata formulata progressivamente in una serie di pubblicazioni e dà il nome alle Scuole
Triennali e ad un Master universitario. Nell’ esposizione della stessa trovo affinità di pen-
siero con il Paradigma della GdL.

Secondo il modello della Competenza Musicale Comune della GdL (Gino Stefani), sono
le Pratiche Sociali a volere e dover istituire in modo riconoscibile come "musicali" una serie
di pratiche estético-ludiche - il canto, il concerto, la composizione, la danza, ecc... - e una
serie di Tecniche "Musicali" ossia codificate in funzione di tali pratiche. É in questo senso
che, nella nostra società, un evento sonoro può essere detto "Musica" invece che "rumore",
e che si può parlare di "specifico musicale", e di "più o meno Musica" in un dato evento,
come nel caso esposto nella tesi: Tra silenzio e Baccano.

Nell’ottica antropologica dei POTENZIALI UMANI (in accordo con l’estetica radicale
di un John Cage), "Musica" è "il suono vissuto esteticamente", e "Musicalità" è "vivere
esteticamente il suono"; suono è qualunque evento acustico; in quest’ottica la distinzione
suono/rumore o l’equivalente Musica/rumore non ha senso dal versante dell’oggetto-evento,
ma solo dal versante del soggetto umano. Ciò è conforme al detto comune: "non è bello ciò
che è bello, ma è bello ciò che piace", che si può riformulare: "Musica" è suono gradevole,
rumore lo sgradevole.

Nel vissuto le due facce dell’esperienza – l’oggetto e il soggetto – sono in relazione di
reciprocità.

vii

"Esteticamente" implica due dimensioni, l’autonomia e la sensorialità. In un senso, "es-
tetico" è vissuto in e per se stesso, ovvero come esperienza autonoma, non in funzione di
qualche utilità ulteriore, interna o esterna alla persona (produzione, comunicazione, ter-
apia, ecc.). Così , "bello" - per noi sinonimo di "estetico" - si oppone a "utile". La Musica
non è cercata perché serve a qualcosa, ma perché è bella, per chi la produce con il B-Glove.

In altro senso, "estetico" è "vissuto sensorialmente", conforme al senso etimologico
(aisthesis: sensazione). In questo senso, dire che "bello" è "ciò che piace", è parlare di
un’esperienza sensorialmente positiva, euforizzante, che aumenta il piacere di vivere e di
sentire.

La GdL fonda e spiega quest’ottica con la sua ESTETICA PSICOFISIOLOGICA,
mostrando in profondità le radici, gli inviluppi del musicale nel corpo: dalla sincronia-
sintonia-sinfonia del feto nel grembo materno al flusso-sound vitale qualificato dalle emos-
azioni, alle modalità melodiche e ritmiche con cui si muovono le articolazioni; e poi di-
mostrando la continuità e lo sviluppo di questa costituzione protomusicale nella vita in-
fantile e poi adulta, incluse le stereotipie sonore degli autistici e le sovversioni delle avan-
guardie.

Anche gli etnomusicologi “si sono resi conto che quanto più ci si avvicina all’individuazione
degli universali in musica, tanto più i fenomeni con cui si ha a che fare sono radicati nella
natura psicofisiologica dell’essere umano” (Baily).

“Come è musicale l’uomo?” La domanda, e più ancora le risposte, dell’etnomusicologo
John Blacking (1973) erano sembrate rivoluzionarie per una cultura ancora fortemente eu-
rocentrica. Ma le esigenze della nascente musicoterapia e poi i problemi dell’ intercultura
l’hanno progressivamente acclimatata e riformulata nel tema della Identità musicale.

Nella GdL questo tema viene articolato nel percorso di costruzione della Persona, dove
la prima domanda è: “Chi sono io?”

Per rispondere, è utile anzitutto considerare che ogni Identità consta di più dimensioni
o Identità. In sintesi: una dimensione o identità Universale (U), data a tutti gli uomini
per natura; una Culturale (C), proveniente dal contesto storico e sociale; una Individuale
(I), diversa per ogni storia personale. In questo modello la dimensione individuale include
evidentemente quella culturale, ed entrambe l’universale: uno sviluppo di un avviluppo di
potenziali profondi. In schema:

viii

Rispetto all’ uso del B-Glove, la domanda “Come è musicale l’uomo?” si può e si deve
riformulare, nella GdL, in quella più generale: “Come è comunicativo ed espressivo l’essere
umano?”. L’identità di homo musicus, la costituzione musicale universale dell’essere umano
sarà uno sviluppo, una esplicitazione, una visione particolare dell’identità dell’homo sen-
tiens, ludens, loquens.

Qui la GdL propone risposte articolate a diversi livelli; per ciascun livello c’è (almeno)
un modello teorico ben formulato, ma che solo in parte è stato sviluppato nelle infinite
applicazioni concrete, e che dunque sollecita la ricerca su una estetica psicofisiologica uni-
versale, musicale, che non si può perdere neanche nelle diversità patologiche più gravi,
come si dimostra in questa tesi.

Il B-Glove di Sebastiano Franchina è di facile indossabilità, per cui è adeguato per
soggetti poco collaboranti o anche spastici (di qualunque età anche alzheimer), e permette
il "compiacimento nel produrre effetti" così importante per favorire la Comunicazione e
l’Espressione nella contemporaneità dei Linguaggi: plastico-motorio-sonoro nelle sfuma-
ture propriocettive grafico-cromatiche. In particolare viene realizzata la musica spontanea
di ciascuno secondo un "Progetto Persona nella GdL", che permette un dialogo Musi-
cArTerapeutico secondo ritmi, melodie, glissando, funzionali allo sblocco bioenergetico del
"corpo tripartito": Melodia, dalle ascelle in su, come bramosia; Sound, come emozionalità
nel plesso solare; Ritmo, come scarica verso il basso, dai genitali agli arti inferiori. È im-
portante sottolineare che la MANO, quindi il B-Glove può orientarsi verso l’alto (musica
apollinea), o irradiando intorno al centro (musica panica), o scaricando verso il basso in
modo catartico (musica dionisiaca).

ix

The aim - or rather the bet - of the Globality of Languages, considered in this thesis, is
to show how much the most incorporeal and autonomous of the arts - Music - consists of
the substances and laws of the cosmos, of constitutive and evolutionary principles of the
living, of the joints, emotions and sensations of our human psychosomatic reality. All this is
inscribed in the musicality of each human being, apart from the differences, even diagnos-
tics, as demonstrated in the experiential part of this thesis. In fact, the music experience
has been revised by highlighting the sinesthetic, symbolic, interdisciplinary implications
of the Global Language (GdL) perspective: a discipline of communication and expression
with all the languages, conceived by me for about 50 years, which has been formulated
progressively in a series of publications and gives the name to the three-years Schools and
a Master’s degree. In this thesis I find affinity with the GdL paradigm.

According to the model of GdL’s Common Music Competence (Gino Stefani), the
Social Practices are willing and need to recognize as "musicals" a series of esthetic-ludic
practices - song, concert, composition, dance, etc ... - and a series of "Musical" Techniques
that are coded according to such practices. It is in this sense that in our society, a sound
event can be called "music" instead of "noise" and that we can talk about "music" and
"more or less music" in a given event such as in the case mentioned in the thesis: Tra
silenzio e baccano.

In the anthropological view of HUMAN POTENTIALS (in accordance with the radi-
cal aesthetics of a John Cage), "Music" is "aesthetically-lived sound", and "Musicality" is
"aesthetically living the sound"; sound is any acoustic event; in this respect, the sound /
noise distinction or the equivalent Music / Noise does not make sense from the side of the
object-event, but only from the side of the human subject. This is in line with the common
saying: "It is not beautiful what is beautiful, but it is beautiful what it likes", which can
be rephrased: "Music" is pleasing sound, noise is an unpleasant sound.

The two faces of experience - the object and the subject - are in in a mutual relation.

"Aesthetically" involves two dimensions, autonomy and sensoryity. In a sense, "aes-
thetic" is lived in and for itself, or as an autonomous experience, not in function of any
further usefulness, internal or external to the person (production, communication, therapy,
etc.). So, "beautiful" - for us synonymous with "aesthetic" - it opposes "useful". Music is
not sought because it serves something, but because it is beautiful for those who produce
it with the B-Glove.

x

In other respects, "aesthetic" is "sensory lived", conforming to the etymological sense
(aisthesis: sensation). In this sense, saying that "beautiful" is "what he likes" is talking of
a sensitively positive, euphoric experience that increases the pleasure of living and feeling.

GdL sets and explains this view with its PSYCHOFISIOLOGICAL AESTHETICS,
deepening the musical roots in the body: from synchrony-symphony-symphony of the fetus
in the maternal womb to the vital flux-sound qualified by emos-actions, to melodic and
rhythmic modes with which the joints move; and then demonstrating the continuity and
development of this protomusical constitution in childhood and later life, including the
sonor stereotypics of autistic people and avant-garde subversions.

Even ethnomusicologists "have realized that the closer they are to the identification
of universals in music, the more the phenomena they are dealing with are rooted in the
psychophysiological nature of the human being" (Baily).

"How is a man musical?" The question, and even more the answers of the ethno musi-
cologist John Blacking (1973) seemed revolutionary for a still highly Eurocentric culture.
But the demands of emerging music therapy and then the issues of interculturality have
progressively acclimatized and reformulated into the theme of musical identity.

In the GdL this theme is articulated in the construction of the Person, where the first
question is: "Who am I?"

To answer, it is useful first to consider that each Identity is of multiple dimensions
or Identities. In summary: a Universal Dimension or Identity (U), given to all men by
nature; a Cultural one (C), coming from the historical and social context; an Individual
one (I), different for each personal story. In this model the individual dimension obviously
includes the cultural one, and both the universal: a development of an envelopment of
deep potentials. In scheme:

In relation to the use of the B-Glove, the question "How is a man musical?" can and
should be reformulated, in the GdL, in the more general one: "How is the human being
communicative and expressive?". The identity of homo musicus, the universal musical con-
stitution of the human being, will be a development, an explication, a particular vision of
the identity of homo sentiens, ludens, loquens.

xi

Here the GdL proposes responses articulated to different levels; for each level there
is (at least) a well-formulated theoretical model, only partially developed in the infinite
number of concrete applications, and which urges research on a universal, musical psy-
chophysiological aesthetic that can not be lost even in the bigger pathological diversities,
as demonstrated in this thesis.

The B-Glove by Sebastiano Franchina is easy to wear, so it is suitable for non-cooperating
or even spastic subjects (of any age even alzheimer’s), and allows "feeling pleasure while
producing effects" so important to promote communication and expression in the Con-
temporaneity of Languages: plastic-motor-sound in the chromatic proprioceptive nuances.
In particular, the spontaneous music of each one is made according to a "Person Project
in the GdL", which allows a MusicArTerapeutic dialogue according to rhythms, melodies,
glissandos, functional to the bioenergetic unlock of the "tripartite body": Melody, from the
armpits up, like craving; Sound, as emotionality in the solar plexus; Rhythm, as discharge
down, from the genitals to the lower limbs. It is important to point out that the HAND,
then the B-Glove can point upwards (Apollonian music), or radiating around the center,
or cathartically discharging down (Dionysian music).

xii

Contents

Introduction 1

Music and MIDI 3
Music: levels of representation and digital production 3
MIDI: Musical Instrument Digital Interface . 4

MIDI Messages . 4
The velocity . 5
Note On . 6
Note Off . 6
Control Change . 6

Software . 7
Ableton Live . 7
rtpMIDI . 8
MIDI-OX . 9
Max for Live and MIDI Note Mapper . 10

Music for therapy 11
The Music Therapy: history and definition . 11
Music for Autism . 12

Autism . 12
Music Therapy for children affected by Autism 13

Music and movement: Orff Method . 13
Globality of languages . 14

Some theory about 3D mechanics and flight dynamics 15
Quaternions . 15
Yaw, Pitch and Roll . 15
Madgwick Filter . 16

The context 17
Tra silenzio e baccano . 17

Samir . 18
Arduino Disability Orchestra . 19

Cavarin . 19

xiii

Requirements 20
Starting point and requirements . 20
Addressing the requirements: basic idea for a new instrument 21

Sensing subsystem . 22
Processing (and communication) subsystem 23

The final Requirement Document . 24
Market analysis . 26

The B-Glove 27
Hardware Design . 27

Sensing part: the IMU . 27
The microcontroller: Adafruit Feather Huzzah ESP8266 (AFH) 28
Power . 29
The glove: design . 30
Putting all together: the schematic . 30
Putting all together: placement on the glove 31

Software Design and Testing . 31
Needed libraries . 33
WiFi and rtpMIDI connections (Setup) . 33
IMU initialization (Setup) . 35
The loop: condition for looping and outside messages polling 36
Data collection and filtering . 36
MIDI management . 38

Performance and costs evaluation . 50
Speed . 50
Usability and limits . 50
Reliablity . 51
Safety . 51
Costs . 51

Instruments Manager 53
PC preparation . 54

Connection settings on the instrument . 54
rtpMIDI: setting up the connection . 54
MIDI-OX and MIDI-Yoke . 56
Ableton Live sets and Max MIDI Notes Mapper 57

Why Visual Basic? . 59
The software . 59

Instructions for use . 59
The code . 61

xiv

Samir and the B-Glove 69
Why Samir? . 69
At the first appointment: the birth of the name 70
The concert in Poirino (TO) . 70

Ideas for the future 72
B-Glove and Instruments Manager improvements 72
General ideas for Tra silenzio e baccano . 73

Conclusions 74

Bibliography 76

Appendices 78
B-Glove full code . 79
Instruments Manager full code . 89
Processing code for graphing roll, acceleration, base-note and velocity 101
Arduino Due code - initial tests . 103

xv

Introduction

If it is true that a thesis has to reflect the path of a student during his universitary
experience, it should involve not only the capabilities the student acquired during his
studies, but also his hobbies, his interests, his life.

In a world in which the engineer is ever more specialized, but where is requested to him
to be extremely versatile, the thesis work of an engineer should be a tip in a sea seeming
very far from his subject of study and, in some way, an opportunity for testing himself
and for growing up in his transversal knowledges.

Animated by these considerations, which are not more than opinions of who is writing,
it has been tried to find an argument requiring a bit of multidisciplinarity.

Working on a combination between the Computer Engineering and the Music, was the
initial address of the author. The possibility to work on a combination between Computer
Engineering, Music and disability gave to this experience, from the point of view of who is
writing, an added value with respect to the already great importance of the thesis work:
besides the degree, besides the thesis, besides the curriculum and the experiences in the
Internet of Things field (of main interest for the author for his future career), they will
have been collected the smiles of all those guys for which this work has been conducted,
as well as life experiences that every man should do.

This thesis is part of a whole project of the Politecnico called Arduino Disability Or-
chestra (ADO). The main purpose of ADO is designing and prototyping electronic musical
instruments for people with disabilities. The final (for the moment) product of this work
is a MIDI glove able to produce music. It is connected through the WiFi to a PC which
synthesizes the notes through the Ableton Live Software. It works in different modes, al-
lowing to the performer to be part of an orchestra or to play a solo.

The glove has been designed for Samir (fantasy name), which gave it the name of Black
Glove (because of the colour of the first prototype he played). Samir is a guy affected by an
atypical form of Autism with mental retardation: as we will see later, despite he presents
all the symptoms of Autism, Samir sometimes behaves differently from the majority of
autistic people. He is part of "Tra silenzio e baccano", an ensembles of guys affected by
cognitive and/or physical disabilities which directly use the ADO instruments.

1

1 – Introduction

In order to develop this thesis, a direct contact with these guys, and in particular with
Samir, has been required. If in principle seemed strange, if in principle a sense of inutility
was present thinking at a similar work for people in those conditions, after the first re-
hearsals it has been possible to focus the importance and the utility that a similar project
can have for these people. If in a first time their disabilities seemed to make everyone
unable to do something, after, their smiles and their wish of playing make the same people
determined to address the same scope: having fun together.

In the first chapters of this thesis, is briefly described the MIDI protocol, some needed
software and some concepts of 3D mechanics and avionics useful in the discussion of the
work. Moreover, the motivations in support of making disabled people able to play mu-
sic are discussed, with a general overview of the music-therapy history, its application to
autistic people and a focus on some music-therapy methods involving also the movement.

In particular, the main aspects related to the Globality of languages (GdL) discipline
(by Stefania Guerra Lisi, who wrote the foreword for this thesis) are discussed. In fact, the
combination between movement expressiveness and musical feedback seems to completely
match with the GdL paradigm. The B-Glove has been presented during the 22th Globality
of languages National Convention in Rome.

Then, the real context is presented, starting by the history of "Tra silenzio e baccano",
together with a general overview of its components and a particular focus on Samir and
his pathology.

A chapter is dedicated to the analysis of the requirements that a new instrument,
designed for disability, should have. In particular, it is discussed taking into account the
components of "Tra silenzio e baccano" and their limits.

A technical presentation of the B-Glove is then proposed, focusing on hardware and
software designs, showing some results of its usage and evaluating its performance in terms
of cost, speed, usability, etc... A chapter is dedicated to the Instruments Manager soft-
ware, a program developed for managing the B-Glove (and every instrument using the
same protocol) from the PC.

After an analysis of the utility the B-Glove can have for Samir, who inaugurated
it during a concert, some ideas for the future of "Tra silenzio e baccano" are proposed,
together with some improvements for the B-Glove.

2

Music and MIDI

Music: levels of representation and digital production
Music is, in general, a sequence of notes that can be represented in different ways and

at different levels [1]. Depending on the representation, different parameters are considered
and used in order to transmit the information relative to the musical signal.

At the physical level, music is an audio signal, i.e. a waveform characterized and de-
scribed in terms of amplitude and frequency. It would result difficult, for a musician, to
reproduce a piece of music by looking at a graph representing its sonogram. Thus, what
is to consider is the scope for which the music is represented.

The path of a piece of music includes a number of levels of representation that can be
summarized as follow:

• the composer thinks at the piece of music from a structural point of view (structural);

• he writes it in symbols (symbolic);

• the performer converts the symbols in actions on the instrument (operative);

• the sound produced by the instrument propagates till reaching the ears of the listener
and exciting its nervous system (physical);

• the listener perceives the music in terms of volume, duration, tone, etc... (perceptive).

• the listener can convert what he has listened in symbols (symbolic)

The composer, the performer, the instrument and the listener can be substituted by
electronic devices or software on a PC. Like in the reality, they have to agree on the same
musical representation. Then, a piece of music acquired through the microphone can be
converted in that musical representation; a musical representation of a track can be con-
verted in audio.

The device or software in charge of translating a sequence of notes in audio is called
synthesizer. The synthesis operation generates electric signals that are converted to audio
using amplifiers, loudspeakers and/or headphones.

3

2 – Music and MIDI

Depending on the complexity of the synthesizer, the sequence of notes can be con-
verted in order to resemble different musical instruments. The quality of the sound and
its psico-acoustic properties directly depend on the quality of the synthesizer in the same
way in which the performers and the instruments affect the sound during an acoustical
performance.

The one in charge of storing and (re)generating musical events, instead, is the se-
quencer. It can be an electronic device or a software and it is able to acquire data from an
input peripheral, editing them, storing them and send them to the synthesizer. If the data
are sent in the same time they are collected (like in an electronic keyboard), you have a
real-time sequencing.

The synthesizer can be embedded in the sequencer or not.

MIDI: Musical Instrument Digital Interface
The MIDI protocol is used as common standard music technology protocol for connect-

ing and allowing the communication between products coming from different companies,
like smart-phones, computers and musical instruments [2].

It defines the communication protocol and the digital and electrical interfaces for the
devices and allows to establish a communication on 16 channels for each single link. Each
channel can be associated to a musical instrument with a specific timbre and so no more
than 16 timbres can be simultaneously synthesized [1].

MIDI Messages

The MIDI protocol works through messages that can be divided in system and chan-
nel messages: while the first category includes messages for configuration, synchronization
and timing between multiple MIDI devices, all the musical event messages belong to the
second one.

A MIDI message is composed by one or more words of 10 bits (8 + 2 for delimitation).
The first word is called status byte, it has the MSb equal to 1 and it is used for indicating
the kind of information contained in the following words, called data bytes. Each byte
can be divided in two nibbles of 4 bits: the first indicating the most significant ones, the
second indicating the least significant ones.

The first nibble of the status byte of a system message is always 1111. Thus, with the
second nibble you can identify up to 16 system messages but only 11 are practically used.
The structure of the status byte of a channel message is instead 1tttcccc, where ttt rep-
resents the kind of channel message and cccc the number of channel to which it is directed.

4

2 – Music and MIDI

Both system and channel messages are divided into subcategories. The three most im-
portant and used messages belong to the Channel Voice Message category. They are called
Note On, Note Off and Control Change and they are composed by two data bytes each.

Before going to the messages, it results to be useful to analyse a parameter which is
used in the first two: the velocity.

The velocity

It can be easily confused with the volume of a note, but it is something different.

The MIDI protocol has been structured considering the piano keyboard. When press-
ing or releasing a key on the piano, the speed with which it is moved down or up affects
the dynamics of the whole sound.

The relation between this speed, called velocity, and the dynamics of the sound is
different than the effect of a static volume regulation. The velocity is something that can
be set only at the beginning and at the end of a note, while the volume can be modified
even during the period the note is reproducing.

It is immediate to observe that velocity affects the freedom in modifying the volume,
but not vice versa. For example, playing a note with 0 velocity means being not able to
listen anything, whatever it is the volume.

Another consideration can be done in relation to the kind of instrument you are play-
ing (or synthesizing). In some instruments, like a piano, the velocity directly affects the
duration of the note, while in others, like an organ, this is not true. If you press and
leave pressed a key of a piano, the note starts with a certain velocity, it has a dynam-
ics, then it ends. If you press a key of an organ and you leave it pressed, the note never ends.

For the first kind of instruments, setting the volume can become useless at a certain
point and you have to play another note if you want to modify the dynamics; for the second
ones, each time a note is played, you can only act on the volume for affecting the dynamics.

Although in the real world it is difficult to find yourself in the second situation, when
synthesizing it is very common to find instruments with a sound which never ends.

5

2 – Music and MIDI

Note On

The Note On message is characterized by a status byte equal to 1001cccc and two data
bytes indicating the note and the velocity respectively.

Each data byte has a structure equal to 0xxxxxxx and so the meaningful value can go
from 0 to 127 (27 - 1): you can represent 128 notes and 128 values of velocity. The central
C (Do in Italian notation) is assigned to the value 60.

Note Off

The Note Off message is characterized by a status byte equal to 1000cccc and two
data bytes indicating the note and the velocity respectively. It can be considered like a
Note On message with velocity equal to 0. For this motivation, the sequences of Note On
and Note Off messages are substituted with a single Note On status byte with couples of
note/velocity.

Control Change

Through the so called controllers, it is possible to manage the expressiveness of a MIDI
device. An example of controller is the piano pedal or the breath control for a flute.

The status byte of a Control Change message has the following structure: 1011cccc.
The first data byte indicates the kind of control you want to act on. The meaning of the
second data byte depends on the kind of control and can assume:

• continue values, from 0 to 127, like for controller 7: main volume

• discrete values, like for controller 64: pedal, which can be inserted (from 0 to 63) or
not (from 64 to 127).

6

2 – Music and MIDI

Software

As said before, the sequencer and the synthesizer can be substituted either by electronic
devices or software on a PC. The software used for this thesis will be now briefly described.

Ableton Live

Running on Windows and MAC-OS, it is one of the most common and most used
software DAWs, that is software able to record, edit and produce audio files, sound effects,
songs, music.

Generally, with software DAW is indicated, not only the software, but the combination
of a computer, an audio interface (or sound card), a digital audio editor software and one
or more input devices.

Differently than the others DAWs, Ableton is designed for live performances. It comes
with two views: the arrangement one, very similar to any kind of sequencer interface, and
the session one (see the figure), allowing to arrange different scenes and to easily group
instruments and effects.

Figure 2.1: Ableton Live 9 Suite interface

Live can be controlled through external MIDI devices/surfaces: a determined MIDI
Control message can be associated (mapped) to an Ableton function. This is possible

7

2 – Music and MIDI

previously checking, in the MIDI section of the Ableton settings, the remote control for
the corresponding input device, like showed in the figure.

Figure 2.2: MIDI peripherals settings on Ableton Live Suite 9

rtpMIDI

rtpMIDI is a virtual-MIDI driver, allowing Windows systems to be connected to MIDI
devices through the network. Thanks to this driver, it is possible to exploit the LAN for
exchanging MIDI messages.

Figure 2.3: rtpMIDI interface

While a similar driver, called network-MIDI, is included in all the Apple operating sys-
tems, on Windows it needs to be installed. A PC mounting rtpMIDI and an Apple device
can communicate, without problems, through the network: rtpMIDI and network-MIDI
are fully compatible.

If using Wi-Fi connections, this driver allows to avoid long and heavy MIDI cables for
interconnecting different DAWs between them or to other MIDI devices.

8

2 – Music and MIDI

MIDI-OX

MIDI-OX is a very powerful MIDI utility for Windows systems. It is used both for
monitoring purposes and for allowing the communication between external devices and
the PC through SysEx messages [3].

It allows to have a look of input and output MIDI streams and to manage a mapping
between them. Moreover, thanks to an included driver called MIDI Yoke, it is possible to
generate almost each configuration of mapping between any Windows MIDI application
input and any Windows MIDI application output.

In fact, MIDI Yoke provides up to 16 MIDI input ports and 16 MIDI output ports,
each of them allowing up to 4 connections, which can be used for performing every kind
of configuration [4].

Figure 2.4: Part of the MIDI-OX interface

Using MIDI-OX it is also possible to generate MIDI messages either through the com-
puter keyboard or the embedded control panel.

Finally, MIDI-OX owns a COM interface which can be used and accessed by the lan-
guages supporting COMs (for example Visual Basic).

9

2 – Music and MIDI

Max for Live and MIDI Note Mapper

Max for Live is an Ableton-integrated version of Max. Max is a visual programming
language for music and multimedia, used for instruments, audio effects, synthesizers and
every kind of device you need in Ableton Live. In fact, Max is completely integrated in
Ableton [5].

Figure 2.5: Max interface with an example

It can be used for building controllers in order to change the way in which external
devices interact with Ableton. You can also add video and lights to your Ableton live set [6].

It comes with a collection of instruments, effects and tools and you can download more
from the Max community where the users share their own Max devices.

MIDI Note Mapper It is a device for Max, using which you can filter incoming MIDI
notes and remap them to different ones [7].

Figure 2.6: Midi Note Mapper

10

Music for therapy

The Music Therapy: history and definition
Music has been surely used as medicine in the past two ad a half millennia, but maybe

even before [8]. What has changed in time has been the healer, that is the person in charge
of using music for healing a patient [9]:

• in ancient societies, shamans and tribal musicians used particular rhythmic patterns
for helping people possessed by evil spirits. The members of the patient’s family and
someone of the community contributed to produce the rhythms. These were slow for
decreasing the temperature and expelling fever spirits, quick for increasing it and
expelling rheumatoid spirits.

• in the Ancient Greece music was used by priests for restoring the harmony between
body and soul. Music was considered able to influence entire populations: Plato
wrote "Justice is to the soul as health is to the body. Through music, the soul learns
harmony and rhythm and even a disposition to justice."

• even in the Christian era, priests used music, but this time as a message of hope,
for creating the Heaven in the heart and make the patient feeling loved by God.
Some instruments like trumpets, flutes etc... - commonly used for pagan music, were
avoided.

• starting from the Renaissance and even in the Romantic Era, music was not more
used by spiritual entities, but by physicians and musicians for helping patients in
solving their emotional or physical problems. A theory called "of temperaments and
body juices" was at the bases of these practices in which the music was used for af-
fecting breathing, pulse, blood pressure and metabolic rate. Here, the patient became
active part of the orchestra.

• in the first years of the 17th century, the interest for therapeutic properties of mu-
sic rapidly grew and in 1940s music therapy started to be considered as a clinical
profession, with a proper training of specialized music therapists [10].

What is in charge of a each music therapist is exploiting musical experiences and the
relationships deriving from them in order to help the clients to promote their health [11].

11

3 – Music for therapy

The World Federation of Music Therapy (WFMT), bringing together the most im-
portant music therapy organizations, defines the Music Therapy as "the professional use
of music and its elements as an intervention in medical, educational, and everyday envi-
ronments with individuals, groups, families, or communities who seek to optimize their
quality of life and improve their physical, social, communicative, emotional, intellectual,
and spiritual health and well-being." [12].

Music for Autism

Autism

Autism has been categorized as a neurodevelopmental disorder, that is disturbs that
manifest themselves during the first 5 years of a child and which affect learning-abilities,
memory, self-control and emotions and which can cause intellectual disabilities (also known
as mental retardation) [13], communication and language problems, etc...

Neurodevelopmental disturbs are categorized as follow:

• Intellectual disabilities, or mental retardation

• Autism spectrum disorders, including Asperger, Kanner, Autism

• Motor disorders, including coordination disorder and tics

• Traumatic brain injury

• Communication, speech and language disorders

• genetic disorders, including Down syndrome, hyperactivity disorder and schizophre-
nia

• disorders due to neurotoxicants caused by alcohols, heavy metals, drugs, etc..

Autism Spectrum Disorders (ASDs) are characterized by [13]:

• deficits in social communication and interaction;

• repetitive and restrictive behaviours and activities;

• difficulties in establishing, maintaining and understanding relationships.

Symptoms change with the development and can be masked through compensative
mechanisms. Further, they can manifest themselves only when the social interests over-
comes the limited capacities.

12

3 – Music for therapy

When diagnosing an autism spectrum disorder, it has to be specified if it is associated
to other mental or behavioural neurodevelopmental disturbs; in fact, an ASD is often as-
sociated to a mental retardation and sensory perceptual and behavioural problems [14].

Music Therapy for children affected by Autism

Different medical, behavioural, developmental and educational therapies have been
tested in order to try to contrast the disturbs caused by ASDs, whose results are discussed
and analysed in [15] and [16].

It has been recognized that the quality of the interventions, medical and/or behavioural,
depends on the specific areas, on the specific disturbs and that they are often not so ef-
fective.

In 1943, trying to give a first definition of Autism, Kenner noticed that many autistic
children enjoy music very much [17]. Although children affected by ADSs manifest lack
of interest for the outside world, the majority of them are attracted by music and some
present a particular predisposition for the perception and discrimination of sounds [14].
Using music started to be an option for helping autistic people.

Music and movement: Orff Method

The Orff method for music therapy takes the name from its inventor, Gertrude Orff,
and has been classified by Bruscia as a Developmental Music Therapy [18]. The method
intends the music with the same sense intended by the great composer Carl Orff in his
Orff-Schulwerk music-education approach: "musiké", a combination of words, sounds and
movements. It is based on three main elements.

The first one is the improvisation: not necessarily "free improvisation"; the structure
can be provided by music itself with sounds and silences. The use of improvisation provides
creative stimuli to the client.

The second is the instrumentation: both musical instruments (like strings, keyboards
and percussions) and non musical ones (like balls, hand puppets, etc..) can be used for
play music in the sense of "musiké".

The last regards the possibility for the therapists of meeting the needs of the user using
the multisensory properties of music: the sound can be felt in different ways.

13

3 – Music for therapy

Globality of languages
In the last 50 years, Stefania Guerra Lisi developed a discipline, called Globality of

languages (or With all languages) [19], whose main purposes are the research, the educa-
tion, the rehabilitation, the therapy in order to improve or develop communicational and
expressive capacities.

The paradigm of this discipline is exploiting every kind of tool, meaning and language
as possible - starting from the most used for human communication: the body language -
for developing a cure for a particular person, not a generalized one. Expressing our-self,
in any ways, is always therapeutic.

Then, from the paradigm derive a series of models and theories which are put in
practice through specific methods, paths and operating styles. In every case, the methods
observe the globality of a person: while some of them analyse the single person in her daily
behaviours and in her globality, others exploit the group energy, realizing the integration,
promoting an egalitarian communication between all the diversities. Fundamental in the
Globality of languages is the therapy of smiles.

Figure 3.7: 22th National Convention poster

During the last National Convention of the Globality of languages (the 22th from the
1996) called "Comunicare per vivere" (Communicating for a living), a space has been given
to the presentation of the B-Glove. After a brief improvisation with an accordionist, M°
S. Panu, the B-Glove has been used by a volunteer from the crowd.

14

Some theory about 3D mechanics
and flight dynamics

Quaternions

Quaternions have been defined by W. R. Hamilton in 1843 as the quotient of two vec-
tors in the three-dimensional space [20], they extends the complex numbers and they are
very used for calculations involving three-dimensional rotations in 3D mechanichs. They
are represented in form a + bi + cj + dk, where a, b, c and d are real numbers and i, j
and k are the quaternion units.

Yaw, Pitch and Roll

Yaw, pitch and roll are the coordinates of rotation of an aircraft. Considering this
coordinate system, the z-axis positive direction is toward the Earth.

Figure 4.8: Max interface with an example

The Yaw is the rotation around the so called vertical axis and is computed exploiting
the Earth magnetic North (or the true North). The Pitch is the angle between the x-axis
of the aircraft and the Earth ground plane. The Roll is the angle between the y-axis of
the aircraft and the Earth ground plane. Deriving Yaw, Pitch and Roll coordinates from
a quaternion-based representation of the orientation is quite immediate.

15

4 – Some theory about 3D mechanics and flight dynamics

Madgwick Filter
The Sebastian Magdwick’s orientation filter is a sensor fusion algorithm which com-

bines acceleration, rotation rate and magnetic moments in order to obtain the orientation
of an object in a quaternion-based representation [21].

Compared with the conventional Kalman filter, it is able to reach comparable perfor-
mance with a lower computational power and at a higher sampling rate. Moreover, it has
been developed for being used with Inertial Measurement Units (IMU) [22].

16

The context

Tra silenzio e baccano

“Tra silenzio è baccano” (Between silence and noise) is a project born in 2013 from
Riccardo Turino and Emanuela Badoglio. By chance, they have noticed that Matteo,
Emanuela’s son, responded to musical stimuli produced by Riccardo with its guitar.

Matteo was almost completely paralyzed: even now, he is able only to move its hands
and its head; he is affected by physical and cognitive disabilities and he is not able to
speak. When Riccardo played the guitar, Matteo replied with some sounds from its mouth
and vibrating its hands. Moreover, he was visibly happy, he smiled.

Riccardo and Emanuela decided that Matteo should be made able to receive feedbacks
from his movements, he should be made able to understand that those movements were
producing something and to participate to the song he was listening with its movements.
Therefore, with the help and the suggestion of Daniele, they positioned a chime close to
Matteo in a way he could play it when vibrating his hands. Then, they would like to
amplify the sound produced by Matteo and they have placed five piezos in the tubes of
the chime, realizing an electronic instrument.

Figure 5.9: Matteo, playing the chime during the last concert of Tra silenzio e baccano

17

5 – The context

Today, Matteo plays the chime, synthesized with harp sounds, during the concerts of
“Tra silenzio e baccano”. In fact, through the “Vivere” association – grouping families hav-
ing kids with disabilities, Riccardo and Emanuela composed an orchestra in which each
guy plays an instrument and/or sings.

In a typical performance of "Tra silenzio e baccano", Riccardo plays his guitar and
drags the guys into the music. Some of them are volunteers, contributing to build a mu-
sical mood on which the solos of the guys affected by disability find foundation.

In the last concert the orchestra was composed by: a chime (Matteo), 5 iPads, 2 MIDI
Keyboards, some digital and acoustic percussions, 2 bongos, a bass, violin, a flute, a har-
monic, the Cavarin, the B-Glove (Samir) and the Riccardo’s guitar.

On the iPads, a particular app is installed: it allows to manage different iPads from
a single master one, in order to set a common music scale and to set the instruments to
play for each track. The Cavarin and, now, the B-Glove have been realized from scratch.

Samir

Samir is a 22 years old guy and is affected by an atypical Autistic Psychosis and by
a mental retardation. When he was a child, he didn’t speak and he was, sometimes, very
restless, repeating some problematic behaviours like running back and forth, jumping on
the spot, sniffing food and people and touching the walls.

Today, Samir is a joyous person which loves to make contact with other people. Repet-
itive behaviours and hobby-horses are still present in his life, but in a less problematic
way: he needs to program in advance how to spend his days and his weeks, marking on the
calendar every thing he’s going to do; each time he talks with someone, he always brings
up the same, often illogic, arguments.

Samir keeps his room in order and organizes his space, is autonomous in personal
cleansing, showering and beating. He prepares his training bag and brings it near to the
exit door in advance. He does some domestic jobs, such as washing dishes, ordering spaces,
hanging the laundry and setting up the table.

He ended up the high school even if its school level is that of a 6 years old child. On
the other hand, he loves and is also very good at playing the piano and painting. He draws
with the bureau, without ever cancelling, and his works are very beautiful. Moreover, he
has fun dancing.

He is enrolled to a sportive association for guys affected by disabilities and he plays
basket, football and swim. Moreover, he sings in a choir of disabled people.

18

5 – The context

During the meetings and the rehearsals of "Tra silenzio e baccano" it has been noticed
that Samir loves perform in front of a public. This makes it difficult to stop him when
repeats his patterns at the piano or when sings at the microphone: you have to give him
a precise time after which he will can perform again.

Arduino Disability Orchestra
Arduino Disability Orchestra (ADO) is a project born in collaboration with “Tra silen-

zio e baccano”, grouping engineers, makers, designers, artists in order to design and pro-
totyping musical instruments for people with disabilities.

Cavarin

It is the first instrument prototyped by ADO, used in all the last concerts of "Tra
silenzio e baccano". It consists of an Arduino Leonardo connected to an Ultrasonic Sensor
which is in charge of measuring the distance between the instrument and the player.

Figure 5.10: The Cavarin

Depending on the distance, a different note is synthesized: a different couple of MIDI
messages (note-off of the previous note plus note-on of the new note) is serially sent to
the PC that synthesizes and plays it through Ableton. When the distance is very low or
very high, a note-off message is sent, producing the silence.

It has been used in two versions:

• with the hand

• with the wheelchair, with larger intervals for the notes

19

Requirements

Starting point and requirements
The first thing to try to avoid when speaking about people with disabilities is, as is

known, any kind of limit, any kind of barrier. For allowing people affected by physical
disabilities to enter in somewhere, architectural barriers have to be avoided. In the same
way, allowing playing music can introduce a series of limits and of difficulties, not only
physical, that should be bypassed.

Music, as said, can be defined as a sequence of sounds of determined frequencies: the
notes. Whether notes are played simultaneously or consecutively, you can speak about
musical consonance and dissonance, regarding the pleasantness that those sounds have for
the ear. Despite in the XX century the usage of the dissonance is intensely practised, in
musical composition are very used music scales, directly dependent on consonance.

Having the possibility of setting a music scale on a musical instrument, means that if
who is playing this instrument is performing a solo over a base adopting the same scale,
he will be always in consonance with it. This is fundamental if the consonance is requested
and if the guy in charge to play the instrument is not able to remember or to understand
which notes he have to play and in which order.

This is the road on which "Tra silenzio e baccano" is moving: using instruments (iPads
or microcontroller-based devices) allowing to set a musical scale, in order to guarantee a
consonant final music.

Playing a musical instruments means not only playing a sequence of notes, but playing
it with a certain dynamics of volume. Something that in the instruments used by "Tra
silenzio e baccano" was missing, was the possibility of giving a velocity to the MIDI notes:
both the iPads and the Cavarin have not a mechanism allowing dynamics.

Another possible limit of the Cavarin could be the constraint imposed by the sensor:
the hand (or the wheelchair) has to move within the conical detection space of the sensor,
otherwise no sound is produced. Thus, the guy in charge of playing the Cavarin is anchored
to the place where it is mounted and this is not always convenient.

20

6 – Requirements

Regarding the architectural barriers, we can include and consider as such wires and
cables. In "Tra silenzio e baccano" performances, there still be a huge amount of cables for
the powering of the instruments and for their amplification.

The previous considerations conducted to a list of functional and non-functional re-
quirements that a new instrument should have:

• Possibility of setting a music scale (F)

• Controllable volume/velocity (F)

• Avoid anchorages (NF)

• Wireless (NF)

– Embedded powering -> Battery
– Amplification (?)

Addressing the requirements: basic idea for a new instrument
The main goal was exploiting some capacities of the guys and making them able to

produce music. The majority of them had the possibility of controlling the movements of
one or both the hands, some of them were able to speak and to walk, Matteo only vibrated
his hands and rotated his head.

The main idea was exploiting the speed of a movement in order to give a dynamics to
a sound effect or to a note. This would have allowed us to address the first requirement.

Thinking at the exploitable movements, the options were represented by the rota-
tory movement of Matteo’s head for triggering and piloting the dynamics of one or more
(through its inclination) sound effects, or by the more controllable movements of the hands
of any guy.

This second option has been chosen, deciding to realize a glove making able the per-
former to select the note through the inclination of the hand and to control the dynamics
through the speed of the movement.

21

6 – Requirements

Figure 6.11: Rotation of the hand for note selection (AllHandModels with LeapMotion)

The new requirements became:

• Sensor unit able to measure both the speed of the hand in order to control vol-
ume/velocity and the inclination of the hand in order to select the note;

• Processing unit for managing the sensors;

• Radio Unit for wireless communicating with the PC;

• Battery for powering the system;

• Possibility to set a music scale (?);

• Amplification (?)

Thus, the requirement was a sensor node (as we will see, a wireless sensor node). While
the selection of the kind of sensor has been rather easy, the selection of the kind of pro-
cessing (and communication) unit has required to deal with different considerations and
to take different decisions which are discussed in the following paragraphs.

Sensing subsystem

As said, the selection of the sensing subsystem has been quite easy. Instead of using
different sensors for measuring the speed and the inclination, it has been decided to use a
single IMU (Inertia Measurement Unit) and to exploit, not the speed, but the acceleration
of the hand for the dynamics. Technical details are leaved to the Hardware and Software
design sections.

22

6 – Requirements

Processing (and communication) subsystem

The two requirements affecting the selection of the processing subsystem typology were:

• Amplification

• Music scale selection

As written in a previous chapter, two main modules are involved in music production:
the sequencer and the synthesizer. Avoiding cables from the hand to the amplifiers and/or
loudspeakers, required the application of one of the following two options:

• placing the amplification circuit on the hand;

• sending data wireless to an amplification system

The first option was not feasible due to the context in which the instrument has to be
used: mounting a loudspeaker on the hand means using a small loudspeaker, with a limited
sound power; this wouldn’t be audible during a live performance with other instruments.

This bore to the necessity of designing a wireless sensor node, able to transmit data.
However, the solution of a second problem was now required: the kind of data to send.

Three solutions could be taken into account, depending on the placement of the se-
quencing and synthesizing operations:

1. sending the raw data of the sensor unit to a PC, deriving from them the MIDI
sequence, synthesizing it with a software synthesizer and sending it to the amplifi-
cation;

• medium weight of data to be sent to the PC
• no processing subsystem is required: only the radio unit for transmitting data

to the PC

2. producing the MIDI sequence on the glove, sending it to the PC, synthesizing it and
sending it to the amplification;

• light data to be sent to the PC
• medium effort for the processing subsystem

3. producing the MIDI sequence on the glove, synthesizing it on the glove, sending the
audio data to the PC or to the amplification

• heavy data to be sent to the PC
• high effort for the processing subsystem: a DSP (Digital Signal Processor) could

have been necessary.

23

6 – Requirements

On the other hand, the setting of the music scale have to be done between the sequenc-
ing and the synthesizing operation. For the solution 3, it should have been done on the
glove, by sending some commands from the PC. For the solutions 1 and 2, instead, it was
possible to decide if setting the scale on the glove or on the PC. This second possibility
could be exploited by sending always the same MIDI notes to the PC and transposing
them depending on the wanted music scale.

It has been decided to follow the solution 2 and to set the music scale on the PC. This
allowed:

• using a microcontroller instead of a DSP

– lower cost
– simpler to program

• sending light data (MIDI messages) instead of heavy ones (raw sensor data or audio
data)

– less problems in wireless transmission and lower latencies
– distributed elaboration
– physical separation between sequencing and synthesizing operation: this will

allow to reuse the synthesizer configuration on the PC for other similar instru-
ments

The final Requirement Document
The target was composed by

• an electronic MIDI musical instrument having the appearances of a glove

• a software or a group of software on the PC handling the MIDI messages received
by the glove and synthesizing them

Basic functionalities:

• data about inclination and acceleration of the hand have to be collected by a sensor

• raw sensor data have to be converted in MIDI messages

– the rotation space (Roll) of the hand have to be divided into a predefined num-
ber of intervals, each of them corresponding to a note. Each time the hand has
an inclination in a determined interval, a Note On message has to be produced
(after a appropriate Note Off message for the previous note).

24

6 – Requirements

It has been decided that an appropriate rotatory space for the right hand is
the one showed in the next figure: a range of about 220° to be divided into a
predefined number of intervals.

– the velocity has to be computed depending on the acceleration of the hand:
every cycle of the real-time software has to detect the acceleration and to send
a Control-7 (Main volume) Change message with the new velocity as control
value; the velocity of the Note On message has to be equal to the last Control
Change message’s one

• MIDI messages have to be sent to the PC wirelessly

• MIDI messages have to be handled by the PC, mapped to the correct music scale
and synthesized with a determined instrument

Figure 6.12: Rotation space of the hand for note selection (AllHandModels with Leap M.)

25

6 – Requirements

Other functionalities:

• the number of notes has to be variable: the PC software has to allow to send in a
convenient manner the number of notes to the instrument, depending on the music
track that is to be playing or decided on the fly by the user; on the other side, the
instrument has to set itself the intervals in an appropriate way

• the PC software has to give the possibility of monitoring the incoming MIDI mes-
sages and of starting and stopping the loop of the real-time software running on the
instrument

Constraints:

• the components have to be small and light (for wearability)

• real-time embedded system: low latencies (necessary if dealing with music)

Market analysis
Before starting thinking how to realize the glove, of course, a market analysis has been

done, evaluating similar products in terms of characteristics and prices. The number of
developed MIDI-gloves is pretty high, but the available solutions are quite different than
the one discussed above.

The majority of them exploits the contact between the fingers or the movements of
the hand for modulating a track and not for producing music from scratch. Some of them
are students projects and are not yet on the market.

Only some of them are wireless, exploiting the Bluetooth or the WiFi. The following
is the list of the most interesting MIDI gloves.

• Remidi T8 [23]

• Aura [24]: not for sale

• Tornado A1 [25]

• Glove midi controller [26]

• Midi Drum Glove [27]

• Gesture-based MIDI Glove [28]

• Mimu Glove [29]

26

The B-Glove

Hardware Design

Sensing part: the IMU

An IMU (Inertia Measurement Unit) is a device that combines different kinds of sen-
sors, mainly accelerometers, gyroscopes and sometimes magnetometers. It is able to pro-
vide to the user information about its proper acceleration1, its angular rate and sometimes
about the magnetic field from which is surrounded.

The Adafruit LSM9DS0 IMU combines a 3-axis accelerometer, a 3-axis gyroscope, a
3-axis magnetometer and a temperature sensor. The first three sensors can be combined
in order to obtain information about the 3-dimension acceleration and orientation.

Figure 7.13: Adafruit LSM9DS0 IMU

1Proper acceleration (from Wikipedia): in relativity theory, proper acceleration is the physical accelera-
tion (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration
relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured.
Gravitation therefore does not cause proper acceleration, since gravity acts upon the inertial observer that
any proper acceleration must depart from (accelerate from). A corollary is that all inertial observers always
have a proper acceleration of zero.

27

7 – The B-Glove

The major advantages of this device were:

• an acceptable cost: around 30 €

• small dimensions and negligible weight: 33 x 20 x 2 mm on 2.3g (good for wearability)

• SPI and I2C interfaces

• easiness in using with Arduino-based platforms

– available libraries
– possibility of using both 3.3 V and 5 V for powering it, depending on the se-

lected microcontroller

The microcontroller: Adafruit Feather Huzzah ESP8266 (AFH)

After a first test phase performed on an Arduino Due, during which the functionalities
have been better defined (see the Software design section), the Adafruit Feather Huzzah
ESP8266 microcontroller has been selected.

Figure 7.14: Adafruit Feather Huzzah ESP8266

This microcontroller can be programmed with the Arduino IDE, using the Arduino
compiler and so the Arduino programming language. This allowed to re-use the code al-
ready written for the Arduino Due, changing the part relative to the transmission of the
MIDI to the PC (from Serial to WiFi) and adding what was missing.

Moreover, it integrates the ESP8266, that is a WiFi module. This has avoided the
necessity of providing a Radio Unit to be connected to the system for the communication
with the PC. Thanks to the available libraries for the WiFi connection and for the MIDI
over WiFi transmission, a lot of work has been simplified using this component.

28

7 – The B-Glove

Power

The power supplying is a substantial problem for every wireless sensor node; in partic-
ular, for the ones that have to be wearable and so as smaller and lighter as possible. The
problem has been solved with a Li-Po Battery pack having:

• nominal capacity: 1500 mAh

• output voltage: 3.7 V

• maximum output power: 5.6 W

Figure 7.15: Li-Po 1500 mAh Battery

The average current requested by the system is around 100 mA, allowing a life time
of about 15 hours with the battery completely charged.

Although it was possible, through the USB port of the AFH, to recharge the battery
with a 100 mA current, a charger module from XCSOURCE has been added in order to
decrease the charging time. This last embeds the TP4056 LI-Ion battery charger whose
output current depends on the resistance value read on the RPROG pin, like showed in the
table taken from the data-sheet. The XCSOURCE module embeds a RPROG of about 1.22
kΩ, resulting in an output current of 1 A and so in a charging time of about one hour
and half. This module also allows to prevent complete discharge of the battery and so to
increase its life.

Figure 7.16: XCSOURCE Battery Charger Module and TP4056 output current table

29

7 – The B-Glove

The glove: design

The final glove is not more totally black, like the prototype whose Samir gave the name
(Black Glove). It is composed by two gloves: an internal one for separating the skin from
the electronics and an external (blue or red) one for covering the electronics.

Figure 7.17: Internal (right) and external (left) gloves

Both the LSM9DS0 IMU and the AFH microcontroller are able to work up to a tem-
perature of 85°C (look at the data-sheets): covering the electronics does not represent a
problem.

Putting all together: the schematic

Figure 7.18: The schematic, made in Autocad

30

7 – The B-Glove

Putting all together: placement on the glove

The placement has been done by taking into account both functional and comfort aspects.

The IMU could be placed both on the palm and on the back of the hand, provided it
was the most parallel to it as possible. It has been decided to place it on the back, like also
the other components, in order to allow the hand to comfortably close. The final position
is the one showed in the following figure, together with the final glove (even if not yet
sewn):

Figure 7.19: Placement of the components on the internal glove an covering

For a correct initialization of the IMU, it has to be parallel to the floor when it is
powered on. In order to give to the user the possibility to check this condition, a small
bubble level has been placed on the external glove. Moreover, a button switch allows
connecting and disconnecting the battery from the rest of the circuit. The components
have been sewn on the internal glove as well as the external glove. Some holes have been
created for the switch and for the micro-USB plugs.

Software Design and Testing
The software running on the microcontroller of the B-Glove is nothing more than a

sequencer: it takes some values from the IMU and derives a sequence of Note On, Note
Off and Control Change MIDI messages.

The first version of the software has been developed on an Arduino Due board, which
was connected to the IMU through the I2C protocol exploiting the already predisposed
ports of both the Arduino and the IMU. Moreover, it was connected via USB to the PC
to which it transmitted the MIDI messages. Thus, the first version of the glove was not
wireless.

31

7 – The B-Glove

We prefer to describe the final version, in order to immediately have the final overview.
However, both the codes, the Arduino Due version and the AFH one, are attached to this
thesis in the Appendix.

As described in the Hardware section, the final B-Glove software runs on the Adafruit
Feather Huzzah microcontroller embedding the ESP8266 WiFi module. As said before,
the AFH can be programmed using the Arduino IDE and the Arduino compiler, so with
the Arduino code.

The structure of an Arduino program is composed by two main parts: the setup and
the loop. Both the parts corresponds to two functions: the setup() one is executed only
one time at the beginning, then, the loop() function is executed consecutively until the
system is powered off.

The main operations executed by the software, can be mapped to the two functions as
follow:

• setup()

– Connection to the WiFi network
– Connection to rtpMIDI
– Initialization of the IMU

• loop()

– Listening of incoming MIDI messages (used for starting and stopping the se-
quencing and for setting the number of notes/chords/notes per chord)

– Checking of the PC availability for receiving MIDI
– Reading IMU data
– Data filtering
– Derivation of avionic parameters
– Computation of the musical note(s)/chord(s) depending on the interval
– Delivering of the right MIDI message(s): couples of Note On and Note Off

messages or a Control Change message

32

7 – The B-Glove

Needed libraries

Before showing the different part of the code, the following commented piece of code
shows the libraries that have been included in order to use the IMU sensor and the ESP8266
on the microcontroller. Moreover, the AppleMIDI library is used for communicating MIDI
on the network, with the same protocol used and understood by rtpMIDI (Windows) and
network-MIDI (Apple).

1 //For I2C connect ion between AFH and IMU
2 #inc lude <Wire . h>
3

4 //For IMU
5 #inc lude <Adafruit_Sensor . h>
6 #inc lude <SFE_LSM9DS0 . h>
7 #inc lude " MPU6050_6Axis_MotionApps20 . h "
8

9 //For Wifi and MIDI
10 #inc lude <ESP8266WiFi . h>
11 #inc lude <ESP8266mDNS. h>
12 #inc lude <AppleMidi . h>

Listing 7.1: Needed libraries

WiFi and rtpMIDI connections (Setup)

They connection to the WiFi is performed pre-storing in two variables the credentials
and by using the WiFi.begin(ssid,password) function. Further, it is checked if the connec-
tion has taken place.

Regarding the WiFi connection, we had to consider the way in wich it was better
to proceed: changing the router would mean changing the credentials. There were three
possibilities:

• setting fixed credentials and leave to the user to configure the network for the glove;

• sending the credentials through the Serial Port (using the Instruments Manager
software) each time a new router is used: they would be stored on the EEPROM
and so they wouldn’t be lost when the instrument is powered-off;

• embedding a micro-SD reader, storing on a micro-SD the credentials (through the
Instruments Manager software) and read them from there.

The main obstacle of the second option is the limited number of writing/erasing cycles
allowed by the EEPROM (some thousands). It is not so low, but still limited. Moreover,
reading the IP which has been assigned to the instrument by the DHCP requires opening
the Serial Port and reading it or access the router or the ARP table.

33

7 – The B-Glove

The third solution avoids using the cable and the EEPROM. However, if it is more
simple w.r.t. the second, the IP address can be read only by checking the clients connected
to the network.

The first option seems to be inconvenient because of the needing of having a network
with fixed credentials. However, considering the possibility of each PC of using its network
board as an access point, this solution becomes the easiest to apply. It does not require
re-programming the glove and the IP address can be found on the same program setting
up the access point (see the next chapter for more information). The credentials have been
set like follows.

1 const char ∗ s s i d = " g love " ;
2 const char ∗ password = " b lackg love " ;

Listing 7.2: Credentials for WiFi connection

The rtpMIDI connection is performed throug the AppleMIDI.begin("test") function,
taking as parameter the name of the session which will appear on rtpMIDI when the con-
nection will be established.

1 /∗ CONNECTION TO THE WIFI ∗/
2 WiFi . begin (s s id , password) ;
3 whi le (WiFi . s t a t u s () != WL_CONNECTED) {
4 delay (500) ;
5 }
6

7 /∗ CONNECTION TO RTPMIDI ∗/
8 // Create a s e s s i o n and wait f o r a remote host to connect to us
9 AppleMIDI . begin (" t e s t ") ;

10

11 AppleMIDI . OnConnected (OnAppleMidiConnected) ;
12 AppleMIDI . OnDisconnected (OnAppleMidiDisconnected) ;
13

14 AppleMIDI . OnReceiveNoteOn (OnAppleMidiNoteOn) ;
15 AppleMIDI . OnReceiveNoteOff (OnAppleMidiNoteOff) ;

Listing 7.3: WiFi and rtpMIDI connection code

The last four instructions represent the definition of 4 functions in charge of handling
four events: their name ar pretty meaningful and you can see the body of the function
in the complete code in the Appendix. However, the code of the OnAppleMidiNoteOn
function is presented also in the MIDI-management code explanation, in the following,
because it is in charge of handling the commands received by the PC which, as we will
see, sends them as MIDI Note On messages.

34

7 – The B-Glove

IMU initialization (Setup)

As already mentioned in the Hardware section, during the initialization (happening at
the powering on of the circuit), the IMU board has to be parallel with respect to the floor.
This is fundamental in order to have correct readings and so a correct production of MIDI
messages.

The initialization consists in setting, for each sensor of the IMU, the wanted scale and
the wanted update rate. Here, has been decided to have the maximum possible resolution
and so to set the lowest ranges possible, correspondent to:

• 4G (gravity acceleration) for the accelerometer: 2G was low for hand acceleration

• 245 degrees per second (dps) for the Gyroscope

• 2 Gauss for the Magnetometer

The output data rates (ODR) are:

• 50 Hz for the accelerometer

• 190 Hz for the Gyroscope

• 12.5 Hz for the Magnetometer

Moreover, they have been set the Anti-Aliasing filter rate of the Accelerometer to 50
Hz and the Bandwidth for the Gyroscope to 12.5 Hz. Almost the totality of them are
default values. Some other combination of values have been tested, but an absence of
improvements has convinced to leave the following ones.

1 /∗ DEVICE INITIALIZATION ∗/
2

3 //LSM9DS0 dof (MODE_I2C, LSM9DS0_G, LSM9DS0_XM) ;
4 uint 32_t s t a t u s = dof . begin () ;
5

6 delay (1000) ;
7 dof . s e t A c c e l S c a l e (dof .A_SCALE_4G) ;
8 dof . s e tGyroSca le (dof .G_SCALE_245DPS) ;
9 dof . setMagScale (dof .M_SCALE_2GS) ;

10 dof . setAccelODR (dof .A_ODR_200) ;
11 dof . setAccelABW (dof .A_ABW_50) ;
12 dof . setGyroODR(dof .G_ODR_190_BW_125) ;
13 dof . setMagODR(dof .M_ODR_125) ;
14 delay (1000) ;
15 dof . calLSM9DS0 (gbias , ab ia s) ;

Listing 7.4: IMU initialization code

The dof.calLSM9DS0(gbias, abias) collects a number of samples from the Gyroscope
and the Accelerometer, averages and scales them to g’s and dps and computes the biases
errors to subtract to the following data.

35

7 – The B-Glove

The loop: condition for looping and outside messages polling

As we will see in the MIDI-management code explanation, the "poweredon" boolean
variable is set by the OnAppleMidiNoteOn function when the MIDI Note On message
corresponding to the start command of the glove is received by the PC.

The "isConnected" boolean variable, instead, is set by the OnAppleMidiConnected
function, each time a connection with rtpMIDI is established, and unset bu the OnAp-
pleMidiDisconnected function.

1 void loop ()
2 {
3 // L i s t en to incoming notes
4 AppleMIDI . run () ;
5

6 i f (i sConnected && poweredon) {
7
8 }
9 }

Listing 7.5: The loop: condition for looping and polling for outside messages

Thus, data from the IMU are collected if the glove is connected to the PC and the
PC is ready for receiving MIDI data. Before entering the real body of the loop (inside the
if), a polling for incoming MIDI messages is performed with the AppleMIDI.run() function.

When the rtpMIDI session disconnects, the OnAppleMidiDisconnected function calls
a reset function in a way of retrying the connection.

Data collection and filtering

The data collection from the IMU sensors is performed through some functions of the
SFE_LSM9DS0 library. When read, the data are corrected subtracting the biases errors
and then are routed to specific variables.

At this point, the update time is computed in order to be used for the filtering and
this last is applied, in order to have a certain continuity in data.

The last part of the code is in charge of producing the meaningful data that will be used
for the MIDI messages fabrication. In particular, they are computed the three parameters
of avionics: yaw, roll and pitch; and it is derived the 3D acceleration.

36

7 – The B-Glove

1 dof . readGyro () ; // Read raw gyro data
2

3 // Convert to degree s per seconds , remove gyro b i a s e s
4 gx = dof . calcGyro (dof . gx) − gb ia s [0] ;
5 gy = dof . calcGyro (dof . gy) − gb ia s [1] ;
6 gz = dof . calcGyro (dof . gz) − gb ia s [2] ;
7

8 dof . readAcce l () ; // Read raw acce l e romete r data
9

10 // Convert to g ’ s , remove acce l e romete r b i a s e s
11 ax = dof . c a l c A c c e l (dof . ax) − ab ia s [0] ;
12 ay = dof . c a l c A c c e l (dof . ay) − ab ia s [1] ;
13 az = dof . c a l c A c c e l (dof . az) − ab ia s [2] ;
14

15 dof . readMag () ; // Read raw magnetometer data
16

17 // Convert to Gauss and c o r r e c t f o r c a l i b r a t i o n
18 mx = dof . calcMag (dof .mx) ;
19 my = dof . calcMag (dof .my) ;
20 mz = dof . calcMag (dof .mz) ;
21

22 Now = micros () ;
23 // s e t i n t e g r a t i o n time , s i n c e l a s t f i l t e r update
24 d e l t a t = ((Now − lastUpdate) /1000000.0 f) ;
25 lastUpdate = Now;
26 MadgwickQuaternionUpdate (ax , ay , az , gx∗PI/180.0 f , gy∗PI/180.0 f ,
27 gz∗PI/180.0 f , mx, my, mz) ;
28

29 //Computation o f the a v i o n i c parameters
30 yaw = atan2 (2.0 f ∗ (q [1] ∗ q [2] + q [0] ∗ q [3]) , q [0] ∗ q [0]
31 + q [1] ∗ q [1] − q [2] ∗ q [2] − q [3] ∗ q [3]) ;
32 p i t ch = −a s in (2.0 f ∗ (q [1] ∗ q [3] − q [0] ∗ q [2])) ;
33 r o l l = atan2 (2.0 f ∗ (q [0] ∗ q [1] + q [2] ∗ q [3]) , q [0] ∗ q [0]
34 − q [1] ∗ q [1] − q [2] ∗ q [2] + q [3] ∗ q [3]) ;
35 p i t ch ∗= 180.0 f / PI ;
36 yaw ∗= 180.0 f / PI ;
37 // TO MODIFY FOR TURIN
38 yaw −= 2.2 ;
39 r o l l ∗= 180.0 f / PI ;
40

41 // Ac c e l e r a t i o n : components and computation o f the t o t a l one
42 curraccx=ax∗SENSORS_GRAVITY_STANDARD;
43 curraccy=ay∗SENSORS_GRAVITY_STANDARD;
44 cur raccz=az∗SENSORS_GRAVITY_STANDARD;
45 cur racc= s q r t (curraccx ∗ curraccx+curraccy ∗ curraccy
46 +cur raccz ∗ cur raccz) ;

Listing 7.6: Data collection and filtering

37

7 – The B-Glove

MIDI management

In this section we will see, not only the way in which the notes and the velocities are
derived from the roll and the acceleration, but also the MIDI communication protocol
allowing to control the glove from the PC.

The B-Glove MIDI management regards both incoming and outcoming MIDI messages:
the first ones are used for delivering some setting commands to the instrument from the PC;
the second ones are used for the sequencing and also for acknowledging commands received
by the PC. The sequencing operation is performed through three functions delivering Note
On, Note Off and Control change messages respectively. They are:

• AppleMIDI.noteOn(note, velocity, channel)

• AppleMIDI.noteOff(note, velocity, channel)

• AppleMIDI.controlChange(controlNumber, controlValue, channel)

All the possible kinds of commands deliverable by the PC to the instrument using
the Instruments Manager software, are specific MIDI Note On messages whose velocity is
meaningful for understanding the kind of command. They are handled through the On-
AppleMidiNoteOn function.

Before analysing incoming and outcoming MIDI messages, it is useful to explain the
general idea about the behaviour. Extending the requirements, it has been programmed
the instrument in order to deliver not only single notes, but also chords. Till now, it has
been programmed only for chords up to 4 note each, but it results to be not difficult to
extend the number of notes-per-chord.

Once the instrument has received by the PC the number of notes/chords it has to play
in the whole rotation space of the hand, this last is divided into a correspondent number
of intervals. When the roll falls in a determined interval, a specific note/chord is delivered
to the PC.

The first interval (in a clockwise sort) always corresponds to the central C (Do in
Italian notation), that is a MIDI height of 60. The following intervals are mapped to the
following notes : 61, 62...up to 75. The maximum number of notes playable in a whole
rotation has been decided to be 16.

When the instrument is set for playing a chord, each interval does not correspond to
a single note, but to a series of 2, 3, or 4 notes having a MIDI height difference of 16, like
showed in the following figure.

38

7 – The B-Glove

Figure 7.20: Mapping roll-intervals to notes/chords

Even when a chord has to be played (more than one note at a time), only the base-note
is computed and stored, depending on the roll. The others are eventually computed on
the fly when the MIDI Note On messages are sent (see later). The base-note is stored into
a variable called "notetoplay" at the end of each loop cycle. Before changing the "noteto-
play" content, it is copied into a variable called "oldnote". The comparison between the
two allows to understand if the angular interval of inclination of the hand has changed or
not. Both "notetoplay" and "oldnote" are initialized to 0.

We are now ready for seeing how the incoming messages are handled, that is analysing
the code of the OnAppleMidiNoteOn function:

1 void OnAppleMidiNoteOn (byte channel , byte note , byte v e l o c i t y) {
2 i f (v e l o c i t y > 0 && v e l o c i t y <= 16) {// Changing number o f notes / chords
3 numOfNotes=v e l o c i t y ; p r e v e l a b r o l l=0 ;
4 f o r (i n t i=0 ; i<pre inchord ; i++){
5 AppleMIDI . noteOf f (o ldnote+i ∗16 , 1 , 1) ;
6 delay (20) ;
7 }
8 o ldnote=0 ; note top lay=0 ;
9 AppleMIDI . controlChange (9 , v e l o c i t y , 1) ;

10 }
11 e l s e i f (v e l o c i t y == 88) {// Powering−on the sequencer
12 poweredon=true ;
13 AppleMIDI . controlChange (9 , 88 , 1) ;
14 }
15 e l s e i f (v e l o c i t y == 89) {// Powering−o f f the sequencer
16 poweredon=f a l s e ;
17 f o r (i n t i=0 ; i<pre inchord ; i++){
18 AppleMIDI . noteOf f (o ldnote+i ∗16 , 1 , 1) ;
19 delay (20) ;
20 }
21 p r e v e l a b r o l l=0 ; o ldnote=0 ; note top lay=0 ;
22 v e l o c i t y=0 ; p r e v v e l o c i t y=0 ;
23 AppleMIDI . controlChange (9 , 89 , 1) ;
24 }
25 e l s e i f (v e l o c i t y > 89 && v e l o c i t y < 94) {// Changing notes−per−chord
26 inchord=v e l o c i t y −89 ;
27 AppleMIDI . controlChange (9 , v e l o c i t y , 1) ;
28 }
29 }

Listing 7.7: OnAppleMidiNoteOn function code

39

7 – The B-Glove

It is pretty easy to understand from the code that the possible incoming messages are
22 and, as said, they are MIDI Note On messages on the channel 1 (starting counting from
0) distinguishable looking at the velocity. They can be grouped in:

• Setting poweredon: velocity = 88

• Unsetting poweredon: velocity = 89

• Setting the number of notes: velocity = 1 to 16

• Setting the number of notes-per-chord: velocity = 90 to 93

We can see that for each received command, an acknowledge is sent through a Control-
9 Change message. Moreover, when is requested to change the number of notes-per-chord,
a specific variable called "inchord" is set, while when it is requested to change the number
of notes/chords playable with a full rotation, a variable called "numOfNotes" is set.

The delay of 20 or 30 milliseconds between two MIDI messages is used for avoiding
losses. As we will see later, it does not imply any considerable latency problems.

Moving to the sequencing, in order to derive the base-note depending on the angular
interval of inclination where the hand is, as said, the precomputed roll is exploited. In
particular, depending on the total number of notes which has to be played in the whole
rotation space of the hand, two parameters are defined:

• zero position: the angular distance between the yaw axis of the hand

• interval amplitude

Sixteen values (the total number of notes can go from 1 to 16) for the zero position
and sixteen for the intervals amplitude are stored into two 16-element vectors, called ze-
roPosition and angle respectively and indexed through the numOfNotes variable set in the
OnAppleMidiNoteOn function:

1 i n t z e r o P o s i t i o n [16]={54 , 54 , 36 , 25 , 20 , 54 , 48 ,
2 40.5 , 36 , 32.5 , 50 , 45 , 42.5 , 56 , 52.5 , 49 } ;
3 i n t ang le [16]={216 , 108 , 72 , 50 , 40 , 36 , 32 , 27 ,
4 24 , 21 , 20 , 18 , 17 , 16 , 15 , 14 } ;

Listing 7.8: Declaration of zeroPosition and angle vectors

40

7 – The B-Glove

Varying the zero position allows to have a more intuitive interaction with the glove: the
zero position is changed in order to always have a "central interval", parallel to the floor,
moving in which you maintain the note. The following examples should clarify eventual
doubts:

Figure 7.21: Examples of intervals placement depending on the total number of notes

In order to compute the note, the following operations are executed:

• the zero position is summed to the computed roll;

• it is checked if the hand has an admitted inclination (between the zero position and
the end of the last interval)

• it is checked if the hand hasn’t yet leaved the previous interval: on this check, an
hysteresis of 2.5° is applied in order to avoid continual switches;

• in the case the hand is in a new interval, the new note is computed dividing the
elaborated roll (roll + zero position) by the angle of an interval and summing 60
(the MIDI value corresponding to the central C, or Do in Italian notation).

1 double e l a b r o l l ;
2 e l a b r o l l=r o l l+z e r o P o s i t i o n [numOfNotes] ;
3

4 i f (e l a b r o l l < numOfNotes∗ ang le [numOfNotes] && e l a b r o l l > 0) {
5

6 i f (e l a b r o l l < p r e v e l a b r o l l ∗ ang le [numOfNotes]−2.5
7 | | e l a b r o l l > (1+p r e v e l a b r o l l) ∗ ang le [numOfNotes]+2.5) {
8

9 e l a b r o l l=e l a b r o l l / ang le [numOfNotes] ;
10 e l a b r o l l=f l o o r (e l a b r o l l) ;
11 p r e v e l a b r o l l=e l a b r o l l ;
12 notetop lay=60+e l a b r o l l ;
13 }
14

15 }

Listing 7.9: Computation of the note to play depending on the hand inclination and
on the total number of notes

41

7 – The B-Glove

It is clear from the algorithm that the notes which can be generated always correspond
to MIDI heights from 60 up to a maximum of 75 (C4 to D#5), like desired: they will be
mapped to a musical scale before being synthesized, as we will see in the following chapter.

Every time a new note is derived from the hand inclination, there can be two cases:

• the new note is equal to the previous one (notetoplay = oldnote)

• the new note is different than the previous one

In the second case, the velocity is computed, as we will see in a while, and a Control
Change message is sent .In the first case, instead, a couple (or some couples if a chord has
to be played) of a Note Off and a Note On MIDI messages is sent. The velocity of the
Note On MIDI message is the last computed one.

The computation of the velocity is the most critical part of the MIDI management on
the B-Glove. The way in which the velocity is computed affects the dynamics of the sound
produced by the glove, the perception of a real-time influence of the user on the sound
and so the pleasure of playing it.

Finding a good way for computing the velocity - as we said - from the acceleration, has
been the highest effort-requiring operation because of the different attempts of approaching
the problem and the different correction parameters that, along the way, it has been neces-
sary to add for deriving the best correspondence between movement and sound perception.

The first idea was to derive the velocity, not from the acceleration, but from the speed
of the hand. However, after different tests and attempts of integrating the acceleration,
this approach has been abandoned: the non-negligible errors caused by the discrete inte-
gration were not acceptable.

The approach that has been follow and that is now used for computing the velocity is
its derivation from the acceleration. In particular, the total acceleration, the one result-
ing by the quadratic sum of the three components. In this way, any movements in any
directions can act on the velocity and you can move the hand in the most convenient and
comfortable way.

It is to consider that the IMU always senses the gravity acceleration that therefore
has to be subtracted to the resultant of the accelerations. From now on, we will refer to
the acceleration to which the gravity component has been subtracted with the name of
"corrected acceleration".

Another consideration affecting the selection of the best approach for computing the
velocity regarded the instruments which it was desirable to use for synthesizing the se-
quence of MIDI messages produced by the B-Glove. In particular, we had to distinguish

42

7 – The B-Glove

between instruments for which the concept of velocity is equivalent to the volume (like
an organ) and instruments for which the initial velocity affects the entire evolution of the
sound (like for a piano).

The modulation of the velocity after the first one sent with the Note On message, make
sense only for an instrument for which the volume variation has an impact on the sound.
Considering a piano, after a while you pressed a key, the sound is so soft that a variation
of volume does not produce effect. The following image should clarify any doubts:

Figure 7.22: Instruments distinction for velocity computation

If you would like to synthesize the sequence with an instrument like a piano, you should
intercept the maximum speed of a movement and use it for computing the velocity of a
single Note On message.

Due to the difficulty of computing the speed and due to the difficulty of intercepting
the "peak" of a movement, it has been decided to consider only the second group of in-
struments and to compute the velocity for altering the volume in time.

A first idea was to compute the velocity in an incremental way, following the steps below:

• The velocity is initialized at 0

• Each time the velocity has to be computed, the corrected acceleration is evaluated:

– if the corrected acceleration is greater than 1 (if it is considerable), its integer
part is added to the previous velocity value;

– otherwise, the previous velocity is decremented by 1.

The code for implementing these steps is listed below. Moreover, a figure shows the
results of a test, performed on this version of the B-Glove, during which the acceleration,
the velocity, the note and the inclination (roll) have been monitored. It has been obtained
connecting the glove to the PC using an USB cable and programming it in order to give
in output on the Serial port the mentioned parameters. Then, they have been read by a
Processing script (whose code is in the Appendix) and have been drawn in the 4 graphs.
In all the cases, the instrument is set for playing 6 notes.

43

7 – The B-Glove

1 i f (f l o o r (curracc −G) >=1) {
2 i f (vo lume increas ing+f l o o r (curracc −G) < 128) {
3 vo lume increas ing=vo lume increas ing+f l o o r (curracc −G) ;
4 }
5 e l s e {
6 vo lume increas ing=127 ;
7 }
8 l a s t=f a l s e ;
9 }

10 e l s e {
11 i f (vo lume increas ing − 1 > 0) {
12 vo lume increas ing = vo lume increas ing − 1 ;
13 l a s t=f a l s e ;
14 }
15 e l s e {
16 vo lume increas ing=0 ;
17 }
18 }
19 p r e v v e l o c i t y=f l o o r (v e l o c i t y) ;
20 v e l o c i t y=vo lume increas ing ;
21

22 i f (p r e v v e l o c i t y != f l o o r (v e l o c i t y)) {
23 AppleMIDI . controlChange (7 , f l o o r (v e l o c i t y) , 1) ;
24 }

Listing 7.10: Version 1 of velocity computation

Figure 7.23: Test of the velocity-computation algorithm 1

44

7 – The B-Glove

This was, more or less, the code running on the first B-Glove prototype used by Samir
during the concert of "Tra silenzio e baccano" in Poirino (TO). However, this very simple
approach suffered of three main problems, which are pretty evident in the previous figure:

• a very high vibrato-effect

• difficult to play and to maintain a note at a low volume

• not so controllable velocity: to high for a medium acceleration

Both the first two problems were due to the fact that, each time the hand was not
accelerating, the velocity was decreased by 1. It is to consider that, if you move the hand
up and down (the only way for maintaining the note volume), each time it reaches the
maximum and the minimum position, the acceleration is very low (even null) and so the
velocity is decremented by 1. The idea was to decrease the velocity in a more complex
way:

• decreasing it of a value always less than a factor A

• scaling the factor A considering the previous velocity: if lower velocity, then higher
A, then slower decreasing; otherwise lower A and faster decreasing.

• Different tests bring to a value of 0.6 for the factor A.

The third problem, instead, was due to the complete proportionality between the accel-
eration and the velocity incrementing value: if, for example, we got a resultant acceleration
equal to 2g = 19.6, the velocity was incremented by 9. The idea for solving it was scaling
the resultant acceleration with a correction factor. After different tests, 0.75 has been set:
the previous example conducts now to a velocity incrementation of 4.

Below, you can find the results of the test of this second version and its code.

Figure 7.24: Test of the velocity-computation algorithm 2

45

7 – The B-Glove

1 f l o a t l i n e a r f a c t o r=0.75 ;
2 f l o a t l i n e a r d e c f a c t o r=0.6 ;
3

4 i f (f l o o r ((cur racc ∗ l i n e a r f a c t o r)−G) >=0) {
5 i f (vo lume increas ing+f l o o r ((cur racc ∗ l i n e a r f a c t o r)−G) < 128) {
6 vo lume increas ing=vo lume increas ing+f l o o r ((cur racc ∗ l i n e a r f a c t o r)−G) ;
7 }
8 e l s e {
9 vo lume increas ing=127 ;

10 }
11 l a s t=f a l s e ;
12 }
13 e l s e {
14 i f (vo lume increas ing − l i n e a r d e c f a c t o r ∗ (vo lume increas ing / 127) > 0

) {
15 vo lume increas ing = vo lume increas ing − l i n e a r d e c f a c t o r ∗ (

vo lume increas ing / 127) ;
16 l a s t=f a l s e ;
17 }
18 e l s e {
19 vo lume increas ing=0 ;
20 }
21 }
22 p r e v v e l o c i t y=f l o o r (v e l o c i t y) ;
23 v e l o c i t y=vo lume increas ing ;
24

25

26 i f (p r e v v e l o c i t y != f l o o r (v e l o c i t y)) {
27 AppleMIDI . controlChange (7 , f l o o r (v e l o c i t y) , 1) ;
28 }

Listing 7.11: Version 2 of velocity computation

Thanks to the second correction discussed before, it has been noticed that the impact
of a movement on the velocity was maximum when the hand was parallel to the floor (in
both positions) and minimum when it was orthogonal. Then, an ulterior correction factor
has been added, scaling the impact of the acceleration on the velocity incrementation with
respect to the roll. After different tests they have been derived a maximum scale factor of
1.2 if the roll is -90° or 90° and a minimum one of 1 if the roll is 0° or 180°.

The function allowing to perform this scaling operation has been mathematically de-
rived as follow:

• computing the straight lines passing through the following two couples of points:
(1.2, 90) (1, 180) and (1, 0) (1.2, 90);

• combining them with the absolute value

• applying the absolute value to the roll for including the case of roll < 0.

46

7 – The B-Glove

In Arduino language, the resulting operation is:

1 maxfactor=1.2 ;
2 minfactor=1 ;
3 r o l l f a c t o r=maxfactor −(maxfactor−minfactor) ∗(abs (90−abs (r o l l)) /90) ;

Listing 7.12: Roll factor computation

The following figure shows the results of the test of this version.

Figure 7.25: Test of the velocity-computation algorithm 3

The last improvement of the code, regards the introduction of an averaging operation
on the velocity. The oscillations that still remained when trying maintaining the note,
brought to the idea of considering the past of the velocity, not only in terms of the last
computed one, but for a longer time. Initially, it has been performed the classical average
on the last 50 values of velocity, memorizing them in a vector, using the following function:

1 f l o a t averag ing (f l o a t Vi , f l o a t pastV) {
2 i n t iA = 0 ;
3 f l o a t r e t=pastV∗N−v e l o c i t y v e c t o r [0] ;
4

5 f o r (iA=0 ; iA < N−1 ; iA++){
6 v e l o c i t y v e c t o r [iA]= v e l o c i t y v e c t o r [iA+1] ;
7 }
8 v e l o c i t y v e c t o r [N−1]=Vi ;
9 r e t=r e t+Vi ;

10 r e t=r e t /N;
11 re turn r e t ;
12 }

Listing 7.13: Average-based velocity computation - version 1

47

7 – The B-Glove

Despite the problem of oscillations was almost solved, this solution was very time-
consuming, causing the overall system slowdown. Moreover, as expected, the system re-
sponse was not more real-time, especially for "instantaneous" movements.

The main causes of this problems were the high number of values in the velocity win-
dow and the average computation algorithm.

Great improvements have been obtained applying the following two corrections:

• reduction of the velocity window from 50 to 30 elements

• computation of an approximate average, using the following code which avoids the
velocities storing considering as older value the average itself.

1 f l o a t averagingS (f l o a t Vi , f l o a t pastV , i n t numel) {
2 f l o a t r e t=pastV∗numel−pastV ;
3 r e t=r e t+Vi ;
4 r e t=r e t /numel ;
5 re turn r e t ;
6 }

Listing 7.14: Average-based velocity computation - version 2

Further, for a better response to instantaneous movements, the averaging function has
been used two times, considering also a lower-wide velocity window and using this last as
velocity value if very high with respect to the average on 30 values. This last version is
the final one and the following are the test results and the full code:

Figure 7.26: Test of the velocity-computation final algorithm

48

7 – The B-Glove

1 i f (notetop lay != oldnote) {
2 f o r (i n t i=0 ; i<pre inchord ; i++){
3 AppleMIDI . noteOf f (o ldnote+i ∗16 , 1 , 1) ;
4 delay (20) ;
5 }
6 pre inchord=inchord ;
7 f o r (i n t i=0 ; i<inchord ; i++){
8 AppleMIDI . noteOn (e l a b r o l l+60+i ∗16 , v e l o c i t y , 1) ;
9 delay (20) ;

10 }
11 }
12 e l s e {
13

14 i f (f l o o r ((cur racc ∗ l i n e a r f a c t o r ∗ r o l l f a c t o r)−G) >=0) {
15 i f (vo lume increas ing+f l o o r ((cur racc ∗ l i n e a r f a c t o r ∗ r o l l f a c t o r)−G) < 1

28) {
16 vo lume increas ing=vo lume increas ing+f l o o r ((cur racc ∗ l i n e a r f a c t o r ∗

r o l l f a c t o r)−G) ;
17 }
18 e l s e {
19 vo lume increas ing=127 ;
20 }
21 l a s t=f a l s e ;
22 }
23

24 e l s e {
25 i f (vo lume increas ing − l i n e a r d e c f a c t o r ∗ (vo lume increas ing / 127) > 0

) {
26 vo lume increas ing = vo lume increas ing − l i n e a r d e c f a c t o r ∗ (

vo lume increas ing / 127) ;
27 l a s t=f a l s e ;
28 }
29 e l s e {
30 vo lume increas ing=0 ;
31 }
32 }
33

34 p r e v v e l o c i t y=f l o o r (v e l o c i t y) ;
35 v e l o c i t y=averagingS (vo lumeincreas ing , v e l o c i t y , N) ;
36

37 f l o a t v e l o c i t y o n l e s s=averagingS (vo lumeincreas ing , v e l o c i t y , 25) ;
38

39 i f abs (v e l o c i t y o n l e s s −v e l o c i t y > 4) {
40 v e l o c i t y=v e l o c i t y o n l e s s ;
41 }
42

43 i f (p r e v v e l o c i t y != f l o o r (v e l o c i t y)) {
44 AppleMIDI . controlChange (7 , f l o o r (v e l o c i t y) , 1) ;
45 }
46 }
47 o ldnote=notetop lay ;

Listing 7.15: Delivering of the MIDI messages to the PC

49

7 – The B-Glove

Performance and costs evaluation

Speed

Through the following functions it has been possible to compute the speed of the
instrument in terms of how many MIDI messages it is able to send in a second. This rate
is also the frequency at which the Madgwick filter has to work.

1 Now = micros () ;
2 d e l t a t = ((Now − lastUpdate) /1000000.0 f) ;
3

4 Serial . p r i n t (" f i l t e r r a t e = ") ; Serial . p r i n t l n (1.0 f / de l ta t , 1) ;
5 Serial . p r i n t (" d e l t a t = ") ; Serial . p r i n t l n (de l ta t , 6) ;

Listing 7.16: Computation of filter rate and time between consecutive MIDI messages

Considering single notes (not chords), we can assume as maximum deltat 4.5 ms,
reached sometimes when changing the note (because of the delay between Note On and
Off messages placed for avoiding losses). However, the medium time is about 4 ms. Fur-
ther, we have a minimum rate of about 220 Hz and a rate of 250 Hz on average (500 MIDI
messages per second, really faster with respect to human possibilities).

Considering also chords, we reach a minimum rate, of course, when the instrument
is set for playing 16 chords of 4 notes: in this case, the minimum rate is 6 Hz (48 MIDI
messages per second). 6 Hz means having a maximum time of 166 ms: this is lower than
the time considered to be the maximum acceptable latency between audio and video (200
ms). The perception of a real-time behaviour still remain.

Usability and limits

The B-Glove seems to be pretty to use. Its design makes it comfortable and the results
in terms of MIDI production are acceptable. It presents a very low latency and the re-
sponse to the user movements is pretty rapid, thanks to the working velocity-computation
algorithm. It is pretty intuitive to use and does not requires particular accuracy. It is
perfect for improvisation and it is quite easy to use it for solos on musical bases. However,
there are some limitations in its usability.

A first limitation regards the kind of instrument which can be used for synthesizing
the MIDI sequence produced by the B-Glove. Considering that the MIDI Note On signal
is sent only one time at the beginning, the B-Glove results to be usable almost exclusively
if synthesized with instruments for which velocity is equivalent to volume, like an organ.

The modulation of the velocity of a note in time has effect only if the note produced
by the synthesizer maintains its volume in that time. This is not true for a piano, for
example, which can synthesize the B-Glove only if it is used for producing a very speedy
sequence of notes, each having a considerable velocity.

50

7 – The B-Glove

Another limitation, which can be overcame with some training like for every instrument
on the Earth, regards the possibility for the user of deciding exactly the sequence of notes
he wants to play. This is mainly due to the fact that there is not a physical separation
between them and so, without practice, is difficult to play the desired note. However, it’s
the same for a chord of a contrabass: there are not indicators showing the transition from
one note to another.

The main nuisance speaking about the B-Glove regards the necessity of maintaining it
straight during its ignition. This is an intrinsic limit of the IMU and results to be difficult
to be overcome.

Reliablity

We can say that the overall system is reliable from the point of view of the communica-
tion between the instrument and the PC. Thanks to the programming strategies adopted
both for the instrument and the Instruments Manager codes (see the following chapter),
the communication is enough monitored and they are avoided losses of MIDI messages.
Moreover, if the connection is lost, the instrument is reset in order to reconnect when it
becomes available again.

Safety

The B-Glove can be considered a safe device, both for the user and from the instrument
itself point of view. Mounting the electronics on an internal glove, allowed avoiding the
contact with the user, eventual short circuits and wounds for the user. Moreover, they have
been considered the operating conditions of the main parts of the B-Glove (AFH and IMU)
and they are made for work at very high temperature (about 80°), which never be reached.

Costs

In terms of hardware, the B-Glove is not so expensive to realize. It is composed by the
following components, listed with the respective prices:

Component Price
Adafruit Feather Huzzah with ESP8266 21.62 €
Adafruit IMU LSM9DS0 29.21 €
LiPo Battery pack 8.25 €
Charger module 1.54 €
Switch 0.80 €
Level bubble 0.62 €
Gloves ~15 €
Total cost ~80 €

51

7 – The B-Glove

In terms of programming, it required the highest effort researching the best way for
exploiting the acceleration for computing the velocity. Another considerable part of effort
has been taken by the definition and the implementation of a good communication protocol
between the B-Glove and the PC, especially for delivering MIDI messages from the PC to
the outside. It can be said that the programming part required between 1 and 2 person
months.

52

Instruments Manager

In order to use the B-Glove and to make it easier to manage it from the PC, a software
has been developed, called Instruments Manager.

As the name says, this software is not devoted to the exclusively usage with the B-
Glove, but it is meant for working also with other instruments, adopting the same com-
munication protocol which has been established between the B-Glove and the PC, and
with multiple instruments at a time.

For the moment, the Instruments Manager software is able to manage one instrument
at a time, considering only the second (1 starting by 0) MIDI channel. However, it is not so
difficult to extend the program for managing more (up to 16) instruments contemporary,
exploiting all the channels.

Taking into account these considerations, the discussion about the Instruments Man-
ager software will be as abstracted as possible from the instrument. The B-Glove will be
used only as example.

The Instruments Manager software does not establish the connection with the instru-
ments (this is done by rtpMIDI), but manages their MIDI settings. In particular, it is
able of starting and stopping the sequencing operation, sending the number of notes/-
chords the instruments have to play, opening and managing Ableton Live sets. So, it is
an intermediate software between the driver (rtpMIDI) and the synthesizer (Ableton Live).

The main motivation driven us to the realization of this software (instead of using, for
example, a Max device or plug-in), was the necessity of a easier and more intuitive way
for managing the instrument and a dissociation from Ableton, maybe less intuitive and,
in each case, replaceable with another synthesizer, perhaps cheaper.

In the first section of this chapter we will see how the PC is prepared for using In-
struments Manager and how it works. Besides rtpMIDI and Ableton, Max for Live is used
for mapping the notes coming from the instruments to a musical scale or to a sequence
of note decided during the realization of the live set; moreover, we will see how MIDI-OX
plays a fundamental role creating the communication channel between the output signals
produced by Instruments Manager and the instruments.

53

8 – Instruments Manager

PC preparation

Connection settings on the instrument

How we said above, the instrument is programmed for connecting to a WiFi network
having SSID equal to "glove" and key equal to "blackglove". This has been done in order
to avoid reprogramming it or sending new credentials when changing the network.

The setting-up of this network can be done by changing the parameters of the personal
router or, in alternative, by using an hotspot software. This last solution has been tested;
in particular, the MyPublicWiFi software has been used.

The network has been set and started like showed in the following image. This corre-
sponds, on Windows 10, to starting the hostednetwork using the "netsh wlan start host-
ednetwork" command on the shell.

Figure 8.27: MyPublicWiFi - Glove-network setting-up

Then, the instrument has been powered-on and, after a while, it connected to the
network. The IP address can be obtained by looking at the "Clients" tab and, as we will
see in the next section, it will be useful for setting the MIDI communication on rtpMIDI.
The following figure shows an example of a connected client.

rtpMIDI: setting up the connection

What is done with rtpMIDI is setting up the connection, through the network, between
the MIDI instrument and the PC. Thanks to rtpMIDI, the MIDI messages arrives to the

54

8 – Instruments Manager

Figure 8.28: MyPublicWiFi - Clients tab and IP getting

PC via WiFi. For doing that, you have to follow two steps:

1. setting up a session, clicking on the first [+] button in the interface and enabling it;

2. adding the instrument to the "Directory" space, by clicking on the second [+] button
and writing a name and the IP address you get on MyPublicWiFi.

Figure 8.29: rtpMIDI empty interface

If you do not use a hotspot software, the IP address assigned to the instrument can be
got through the router management page. In alternative, you can connect the instrument
via USB to the PC and read the Serial port: in this way you can read the IP address which
is printed once the instrument has joined the network.

55

8 – Instruments Manager

MIDI-OX and MIDI-Yoke

After installed MIDI-OX and MIDI-Yoke, you can set up a channel from the output of
the Instruments Manager software to the network. The output of this channel will be the
network session created on rtpMIDI; its input will be one of the MIDI-Yoke ports which
will be also used in output by Instruments Manager, like showed in the following figure.

Figure 8.30: Connections

In order to set up this channel, it is sufficient to open the MIDI-OX software, open
Options -> Midi Devices and select the inputs and outputs devices. Then, click on the
Port Routings button in the upper sidebar and configure the connection like showed below.

Figure 8.31: MIDI-OX Configuration

56

8 – Instruments Manager

Ableton Live sets and Max MIDI Notes Mapper

The setting operation on Ableton consists of three steps. The first one is allowing
Ableton to receive both notes (Note On and Off MIDI messages) and to be controlled
from the outside (Control MIDI messages). This can be done by putting "Yes" in both
the "Track" and "Remote" columns, on the line correspondent to the rtpMIDI session, in
Preferences -> MIDI.

Figure 8.32: Enabling inputs on Ableton Live

The second step is mapping the notes to the wanted scale. This can be done using the
Max for Live MIDI Notes Mapper device. Once you dragged the instrument on a column
in the session view, you have to drag there also the MIDI Notes Mapper plug-in. Open-
ing it, you got the interface below where you have to map the notes from 60 to 123 (the
only ones played by the instrument as standard), or a portion of them, to the wanted ones.

Figure 8.33: Midi Notes Mapper for music scale setting

57

8 – Instruments Manager

Finally, you have to map the Control-7 Change messages to the Track Volume. For
doing that you have to power on the instrument and to start the MIDI communication
(see the software explanation section). At this point, you can perform the mapping by
right-clicking on the Track-Volume and then clicking on "Edit MIDI Mapping".

Figure 8.34: Mapping to Track Volume control

Now, it is sufficient to produce with the instrument the event triggering the MIDI
Control-7 Change message (for the B-Glove, moving the hand) and this command will be
automatically mapped to the Track Volume control, like showed below.

Figure 8.35: Control-7 Change mapped to Track Volume control

58

8 – Instruments Manager

Why Visual Basic?

The initial version of the software only was in charge of giving a visual feedback de-
pending on the incoming MIDI messages. In particular, the background colour of the
window should change depending on the musical note.

This results to be helpful if the glove is used for producing a determined sequence
of note (less if improvising) because of the possibility of knowing the note that is to be
played before it is actually played: changing the inclination of the hand, without a move-
ment producing acceleration and so a velocity, you doesn’t listen anything but you see the
selected note.

For this purpose, it was sufficient to intercept the MIDI messages and to map each
note to a different colour. It has been done starting from a VB-Net software found on the
Internet [30], exploiting the COM port of MIDI-OX in order to read the incoming MIDI
messages. It has been rewritten for Visual Basic and it has been added the colouring part.

Despite the lower level operations, as we will see in the following section, are performed
in C#, it has been decided to continue using Visual Basic for developing the software
interface, because of its simplicity of use.

The software

The final software is based on a C# package, downloaded from the Internet [31] as
part of the VB-Net source code of MIDI utility. The package is called Toub.Sound.Midi,
it has been written by Steve Toub in 2004 and it contains a MIDI player, a MIDI parser
and other utilities exploiting the MIDI APIs for reading, writing, modifying, and playing
MIDI events/tracks/sequences/files.

Instructions for use

The initial interface, appearing when starting the program, is the following:

Figure 8.36: Instruments Maganer start-up GUI

59

8 – Instruments Manager

The software is, for the moment, programmed for using only an instrument at a time.
In order to use the Instruments Manager software, you have for first to:

• open the rtpMIDI and MIDI-OX software;

• configure them like is explained in the PC preparation section;

• power on and connect the instrument to rtpMIDI.

Only at this point you can open the IM software. If you forget to execute the first step,
the program gives an error message and doesn’t start. If you don’t arrive to the last step,
the power-on button of the software remains yellow for three seconds, then gives an error.

Further, in order to connect to the instrument, you have to select the right network
sessions for incoming and outcoming MIDI messages. If you configure MIDI-OX and MIDI-
Yoke like explained before, you have to select as output network the first "Out to M" (the
complete names of the MIDI-Yoke ports are hidden because of the C# library). The input
network, instead, is the session generated by rtpMIDI.

Once you have correctly set the networks, if the instrument is connected to rtpMIDI
and the MIDI-OX mapping has been rightly configured, clicking on the power-on button
of the software, it becomes red and the window enlarges, showing the rest of the GUI.

Figure 8.37: Instruments Maganer GUI

60

8 – Instruments Manager

Last incoming and outcoming MIDI messages are automatically showed in the two
monitors. These last can be cleared by clicking the relative clear buttons. Moreover, the
parameters of MIDI-height and MIDI-velocity of all the incoming Note On and Control-7
Change MIDI messages are used for setting the current note and the velocity in the labels
and in the progress bar.

The software can work in two modalities:

• with a predefined Live Set

• in a customized way

At the beginning, all the Live Sets contained in the software folder are uploaded in the
corresponding drop down list. If there are some new files, they are requested the number
of chords and the number of notes-per-chord which the instrument has to play when each
of them is selected. When the program is closed, these last are memorized in a text file
that is loaded the next time the software is opened.

If you want to use one of these Live Sets, you can select it in the part of the interface
on the left, checking the right number of chords and notes-per-chord and opening Ableton
Live, contemporary sending to the instrument the correct number of notes.

Otherwise, you can open Ableton Live on your own and send a customized number of
chords (between 1 and 16) and a customized number of notes-per-chord (between 1 and
4) to the instrument, using the part of the interface on the right.

The code

In this section some important functional parts of the code are analysed. For some of
them, the code is showed, others are analysed in terms of flow chart. The complete code
is in the Appendix.

As mentioned when motivating the VB choice, this software exploits a C# library of
MIDI functions. In particular, the Toub.Sound.Midi library is used for output-purposes.
Moreover, in order to perform the input-monitoring operations, it exploits the "winmm.dll"
Windows Multimedia APIs [32]: some of them are redeclared for being used in the program.

61

8 – Instruments Manager

As an example, the following piece of code shows the declaration of two API-based
functions: the midiInGetNumDevs, getting the number of input MIDI devices, and the
midiInOpen, which opens a MIDI input device for monitoring. The MIDIINCAPS type is
a structure able to hold some information about an input device, like showed below.

1 Public Declare Function midiInGetDevCaps Lib " winmm .dll" Alias " midiInGetDevCapsA "
(ByVal uDeviceID As Integer , ByRef lpCaps As MIDIINCAPS , ByVal uSize As

Integer) As Integer
2 Public Declare Function midiInOpen Lib " winmm .dll" (ByRef hMidiIn As Integer ,

ByVal uDeviceID As Integer , ByVal dwCallback As MidiInCallback , ByVal
dwInstance As Integer , ByVal dwFlags As Integer) As Integer

Listing 8.17: winmm.dll declarations

1 Public Structure MIDIINCAPS
2 Dim wMid As Int16 ’ Manufacturer ID
3 Dim wPid As Int16 ’ Product ID
4 Dim vDriverVersion As Integer ’ Driver version
5 <MarshalAs (UnmanagedType .ByValTStr , SizeConst :=32) > Dim szPname As String ’

Product Name
6 Dim dwSupport As Integer ’ Reserved
7 End Structure

Listing 8.18: MIDIINCAPS structure

The midiInOpen function implies the declaration of one more function, the MidiIn-
Callback, a callback function for handling the incoming MIDI messages which is declared
as a Public Delegate function, that is a function which can be associated to a method
having the same form in terms of parameters and returned value type. In this case, the
function that is effectively called for handling the incoming MIDI messages is the MidiIn-
Proc, whose declaration and body are in the following piece of code.

Moreover, even the MidiInProc function needs to delegate another function for dis-
playing data that have to be monitored. This is done through declaring the DisplayData
function which, like you can see in the following piece of code, is called each time the
MidiInProc function is called.

1 Public Delegate Function MidiInCallback (ByVal hMidiIn As Integer , ByVal wMsg As
UInteger , ByVal dwInstance As Integer , ByVal dwParam1 As Integer , ByVal
dwParam2 As Integer) As Integer

2 Public ptrCallback As New MidiInCallback (AddressOf MidiInProc)
3
4 Public Delegate Sub DisplayDataDelegate (dwParam1)
5
6 Function MidiInProc (ByVal hMidiIn As Integer , ByVal wMsg As UInteger , ByVal

dwInstance As Integer , ByVal dwParam1 As Integer , ByVal dwParam2 As Integer)
As Integer

7 If MonitorActive = True Then
8 txtMonitorIN . Invoke (New DisplayDataDelegate (AddressOf DisplayData), New Object

() { dwParam1 })
9 End If

10 End Function

Listing 8.19: MidiInProc function

62

8 – Instruments Manager

The DisplayData function intercepts the incoming MIDI messages and, depending on
the kind of messages, updates the input monitor. Looking at the code of the B-Glove, we
can easily derive the kind of MIDI messages which can arrive:

• Note (60 to 76) On, Note (60 to 76) Off, Control-7 Change

• Control-9 Change for powering on/off and notes/chords-number changing acknowl-
edgements.

Before analysing the DisplayData function, it is useful to give some more information
about the general structure of the software. It works as a Finite State Machine, changing
its state depending on the user actions and on the instrument behaviour.

Clicking on the power button, the user can initiate or stop receiving MIDI messages
from the instrument and monitoring them. What happens on clicking, is a transition to
a waiting state (one for each of the two possible transitions: ON/OFF, OFF/ON), dur-
ing which the software waits for the ack MIDI message from the instrument, setting a
3-seconds timer. Elapsed this time, the software gives an error message and goes in the
OFF state.

Something similar happens for the number of notes/chords message: the software waits
for an ack like before and goes in the OFF state if, after 3 seconds, it has not arrived. The
definition of the states and the FSM are showed below.

Figure 8.38: Instruments Maganer FSM

63

8 – Instruments Manager

1 Public Enum instrState
2 pOn
3 pOff
4 WaitingToOff
5 WaitingToOn
6 End Enum

Listing 8.20: Instruments Manager FSM states definition

Further, we already said that the software gives the possibility of setting the instrument
and sending the right numbers of chords and notes-per chords for a particular Ableton
Live Set. This requires a preparatory phase which is executed at the beginning, during the
initialization of the program.

What is done in practice, is loading into the structure defined below and into the re-
lated drop-down list, all the Ableton Live sets contained in the software folder. For each
of them, it is checked if the numbers of chords and of notes-per-chord have been already
memorized: if they have been not, they are requested to the user and they are stored in
a text file. Further, the stored data of files which are no longer present in the folder are
deleted.

1 Private Structure song
2 Public Name As String
3 Public NON As Integer
4 Public IC As Integer
5 Public ToDel As Boolean
6 End Structure
7
8 Dim allsongs () As song

Listing 8.21: Songs structure

At this point, the user can select a Live set from the ones showed in the drop-down list
and then, through the openLive button, send to the instrument the corresponding number
of chords and the number of notes-per-chord.

A very similar approach is used for sending a customized number of chords and notes-
per-chord through the sendNotes button. It is not showed here, but you can find it in the
whole code in the Appendix.

The code of the openLive button is showed below: the Timer is set, as well as a flag
that will be used in the DisplayData function for correctly interpreting the Ack. Note that
the output monitor is used here for informing the user of the messages which are sent to
the instrument. In the same way, it is used in the power on/off button.

64

8 – Instruments Manager

1 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
2 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop . OpenMidiOut (DeviceID)
3 Dim output As Integer
4
5 Dim notesinchord As Integer = 89 + lblNotesIC .Text
6
7 numberOfNotes = lblNumberOfNotes .Text
8 waitingForNotesAck = True
9 fromLive = True

10 txtMonitorOUT . AppendText (" Number of notes for Live set has been sent" & vbCrLf)
11 output = Convert . ToInt32 (Hex(numberOfNotes) & "3D90", 16)
12 MidiInterop . SendMidiMessage (device , output)
13
14 txtMonitorOUT . AppendText (" Notes per chord for Live set has been sent" & vbCrLf)
15 output = Convert . ToInt32 (Hex(notesinchord) & "3D90", 16)
16 MidiInterop . SendMidiMessage (device , output)
17
18 timeTimer = timerSeconds
19 Timer1 . Start ()
20 device . Close ()

Listing 8.22: openLive button code

The time has come to analyse the DisplayData function. It is nothing more than a
multiple-branches if-else statement, which considers all the possible incoming MIDI mes-
sages and fills the input monitor.

The incoming MIDI messages are composed by three bytes which are parsed and stored
in three variables: StatusByte, DataByte1, DataByte2. The StatusByte indicates the kind
of message:

• 176 -> Control Change

• 144 -> Note On

• 128 -> Note Off

The DataByte1 of a Control Change message indicates the Control to change: if it is
equal to 9, we have an ack and we have to distinguish between the four kinds of ack; if it
is equal to 7, we have a velocity variation. The total number of possible input messages is
25: 22 for acknowledges and 3 for sequencing.

When an ack arrives, if it is related to a number-of-notes variation, it is checked if it
has been requested in a customized way or for an Ableton Live set. In this second case,
the right Live set is opened. Thus, this happen only when the ack has been received.

In the following, the code of the DisplayData function is showed, as well as a scheme
representing the meaning of the incoming MIDI messages

65

8 – Instruments Manager

Figure 8.39: DisplayData scheme

1 Private Sub DisplayData (dwParam1)
2 StatusByte = (dwParam1 And &HFF)
3 DataByte1 = (dwParam1 And & HFF00) >> 8
4 DataByte2 = (dwParam1 And & HFF0000) >> 16
5
6
7 If poweredon = instrState . WaitingToOn And StatusByte = 176 And DataByte1 = 9 And

DataByte2 = 88 Then
8 txtMonitorIN . AppendText (" Start " & vbCrLf)
9 poweredon = instrState .pOn

10 btnPower . BackgroundImage = Image . FromFile ("./ images /ON.png")
11 Me. Height = 539
12 Me. Width = 670
13
14 ElseIf poweredon = instrState . WaitingToOff And StatusByte = 176 And DataByte1 =

9 And DataByte2 = 89 Then
15 txtMonitorIN . AppendText ("Stop" & vbCrLf)
16 poweredon = instrState .pOff
17 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
18 Me. Height = 302
19 Me. Width = 670
20
21 ElseIf poweredon = instrState .pOn And StatusByte = 176 And DataByte1 = 7 Then
22 txtMonitorIN . AppendText ("Control -7 Change : " & DataByte2 & vbCrLf)
23 ProgressBar1 . Value = DataByte2
24 lblVelocity .Text = DataByte2
25
26 ElseIf poweredon = instrState .pOn And StatusByte = 144 Then
27 txtMonitorIN . AppendText ("Note " & DataByte1 - 59 & " On , Velocity : " &

DataByte2 & vbCrLf)
28 ProgressBar1 . Value = DataByte2
29 lblVelocity .Text = DataByte2
30 lblNote .Text = (DataByte1 - 59) Mod 16

66

8 – Instruments Manager

31
32 ElseIf poweredon = instrState .pOn And StatusByte = 128 Then
33 txtMonitorIN . AppendText ("Note " & DataByte1 - 59 & " Off" & vbCrLf)
34
35 ElseIf waitingForNotesAck = True And StatusByte = 176 And DataByte1 = 9 And

DataByte2 > 0 And DataByte2 <= 16 Then
36 waitingForNotesAck = False
37 txtMonitorIN . AppendText (" Received Ack for number of notes " & vbCrLf)
38 Timer1 .Stop ()
39 If fromLive = True Then
40 fromLive = False
41 If (System . Diagnostics . Process . GetProcessesByName (" Ableton Live 9 Suite ").

Length > 0) Then
42 System . Diagnostics . Process . GetProcessesByName (" Ableton Live 9 Suite ")(0).

Close ()
43 End If
44 System . Diagnostics . Process . Start (FileFolderPath & comboLiveSet . SelectedItem

& " Project \ " & comboLiveSet . SelectedItem & ".als")
45 End If
46 ElseIf waitingForNotesAck = True And StatusByte = 176 And DataByte1 = 9 And

DataByte2 > 89 And DataByte2 <= 94 Then
47 waitingForInChordAck = False
48 txtMonitorIN . AppendText (" Received Ack for notes in chord " & vbCrLf)
49
50 End If
51
52 If poweredon = instrState .pOff Then
53 midiInStop (hMidiIn)
54 midiInClose (hMidiIn)
55 comboNetIN . Enabled = True
56 comboNetOUT . Enabled = True
57 MonitorActive = False
58 End If
59
60 End Sub

Listing 8.23: DisplayData function

As last aspect related to the code of the Instruments Manager software, the instruc-
tions executed when clicking on the power button are listed below. Here is the management
of the MIDI input devices, the initialization of the input monitor and so the call to the
midiInOpen function discussed above.

67

8 – Instruments Manager

1 If comboNetOUT . SelectedIndex = -1 Or comboNetIN . SelectedIndex = -1 Then
2 MsgBox (" Select the networks .")
3 Else
4
5 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
6 Dim output As Integer
7 Dim ss As String = " Start "
8 Dim nomessage As Boolean = False
9

10 If poweredon = instrState .pOff Then
11 output = 88
12 ss = " Start "
13 poweredon = instrState . WaitingToOn
14 btnPower . BackgroundImage = Image . FromFile ("./ images /WAIT.png")
15 ElseIf poweredon = instrState .pOn Then
16 ss = "Stop"
17 output = 89
18 poweredon = instrState . WaitingToOff
19 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
20 Else
21 nomessage = True
22 poweredon = instrState .pOff
23 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
24 Me. Height = 302
25 End If
26
27 If nomessage = False Then
28 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop . OpenMidiOut (DeviceID)
29 output = Convert . ToInt32 (Hex(output) & "3D90", 16)
30 MidiInterop . SendMidiMessage (device , output)
31 txtMonitorOUT . AppendText (ss & " command sent" & vbCrLf)
32 device . Close ()
33 End If
34
35 If poweredon = instrState . WaitingToOn Or poweredon = instrState . WaitingToOff

Then
36 DeviceID = comboNetIN . SelectedIndex
37 comboNetIN . Enabled = False
38 comboNetOUT . Enabled = False
39 midiInOpen (hMidiIn , DeviceID , ptrCallback , 0, CALLBACK_FUNCTION Or

MIDI_IO_STATUS)
40 midiInStart (hMidiIn)
41 MonitorActive = True
42 Else
43 midiInStop (hMidiIn)
44 midiInClose (hMidiIn)
45 comboNetIN . Enabled = True
46 comboNetOUT . Enabled = True
47 MonitorActive = False
48 End If
49
50 End If

Listing 8.24: Power button code

68

Samir and the B-Glove

Why Samir?
Samir joined Tra silenzio e baccano during the the B-Glove development. His desire of

movement and the possibility of the B-Glove to be carried around, completely matched
between them.

Moreover, thinking about his Autism, the usage of the glove seemed a good idea to
perform, in some way, a music therapy work on him. Some suggestions of Riccardo traced
a path for helping Samir, including three main steps:

1. Meeting the instrument:

• let him to use the instrument without obstacles, to play with it, to find the best
interaction, (hopefully) to like it;

• let him receiving a feedback from the instrument, recognising and feeling himself
as the producer of the music.

2. Setting him into a musical context:

• allow him being part of a song, build a musical harmony with him;
• give to his experience a musical sense.

3. Joining to an orchestra composed by other guys with disabilities:

• give him the possibility to be part of a more complex musical experience in
which he have to respect a certain schedule;

• let him musical communicating with others, contrasting the communicative
isolation proper of autistic people, respecting some communication constraints
in terms of time and methods.

These steps can be followed with every instrument and by every guy. However, the B-
Glove gives to Samir the possibility of musically performing in the sense of "musiké" (words,
sounds and movements) and following the Globality of languages approach: exploiting all
the possible communication languages. Not only, he is free to move, but his movements
becomes the origin of the sound.

69

9 – Samir and the B-Glove

Moreover, it can be also part of a behavioural therapy in which Samir is trained for
playing a particular pattern of notes with the B-Glove and this pattern can be gradually
modified or totally changed in order to educate him to accept the alteration of his daily
repetitive behaviours.

At the first appointment: the birth of the name
After the first idea of the B-Glove had been implemented with the AFH microcon-

troller, so in a wireless way, an appointment with Samir has been organized, in order to
let him testing its new toy and to collect some ideas in order to better adapt the glove to
the most natural interaction for Samir.

He dressed the B-Glove and, when Riccardo started playing his guitar, the hand of
Samir started moving, rapidly, up and down: he had found the best way for playing the
B-Glove, completely autonomously.

Then, Riccardo started playing Dabuè, a song composed by him for being played by
Tra silenzio e baccano, the B-Glove has been set in order to play 6 notes of the "E major
pentatonic" music scale and Samir improvised on that base, rotating the hand and moving
it up and down.

It has been decided to repeat the same thing, with the whole orchestra, during the
near concert that 15 days after would take place in Poirino (TO).

At the end of this first appointment, it has been asked to Samir which name he would
like to give to its new toy. Looking at it, Samir said "Guanto" (glove), and then "Guanto
nero" (black glove).

The concert in Poirino (TO)
Surely, it has been a great and significant test bench for the instrument:

• Samir has been requested to play the B-Glove in a public context, in front of a lot
of people.

• The B-Glove, still in the prototyped version and without the possibility of managing
it from the PC (the Instruments Manager software was not yet developed), has been
subject to a never tested working period: Samir was placed on stage and it cannot
be possible to manage the powering-on of the instrument, paying attention to the
initialization constraints, during the concert. Thus, the glove, even if silenced for the
majority of the time, transmitted MIDI signals for a lot of time.

• Even the network context was a novelty for the B-Glove: it has been connected to
an Apple Router together with 5 iPads and a MAC, all transmitting MIDI signals.

70

9 – Samir and the B-Glove

The intervention of Samir with the B-Glove was programmed during the Dabuè song.
After involving other guys for playing their solos on his base, Riccardo has gone up on
stage and called Samir for playing with him. Then, they have come down from the stage
and they have danced in front of the public for some seconds. Finally, Riccardo has said
to Samir to come back to his place and Samir has run, up to the stage, to his chair. The
B-Glove had worked.

Figure 9.40: Samir, using the B-Glove prototype during the rehearsals for the live - Poirino

71

Ideas for the future

"Tra silenzio e baccano" is a project whose noble purposes stimulates in doing more
and more. The passion of the owners of the Project, Riccardo and Emanuela, in helping
disabled children in expressing themselves with music is perfectly combined with a desire
of having fun together, developing new instruments, composing new tracks, inventing new
schemes of interventions of the guys.

B-Glove and Instruments Manager improvements

Starting from the B-Glove instrument, as said before, it can be considered a usable
device, not needing the interventions of a technician every time it has to be used.

The possibilities of improvement directly come from its limitations. The first is without
doubts find a way for switching it on without having the must of maintaining the hand
straight.

Further, despite the instrument is quite intuitive to use thanks to the algorithms for
the velocity-computation, it could be a good idea researching new sensors allowing to
exploiting, not more the acceleration, but the speed of the hand. This could make the
instrument even more intuitive and enjoyable.

For what regards the functional part, it can be tried to increase the admitted number
of notes-per-chord. If we maintain the standard of the instrument settable for 1 to 16
notes, 128 notes (MIDI available number) can be exploited for sending chords of up to 8
notes at a time: more than what a human can do. However, this can increase the latency
too much.

Moreover, it could be added an echo modality in which the note does not dead imme-
diately when a new one has to be played, but its volume decrease less drastically.

Considering the limitation connected to the possibility of being synthesized only with
a particular kind of instruments, it could be interesting to introduce a modality in which
the velocity-computation and the delivered MIDI messages are performed in a way which
allows synthesizing it also with other instruments.

72

10 – Ideas for the future

A further functionality can be obtained by adding a flex sensor to a finger: you can
evaluate the flex of the fingers and exploit it for varying the linear decreasing coefficient
of the velocity and having a better controllability of the dynamics, for example speeding
up the decreasing when the hand is closed. It could be thought also to add other sensors
in order to exploit other movements of the hand and to extend the possibilities of the
B-Glove, mapping each sensor to a particular kind, for example, of MIDI Control.

An interesting thing which can imply a considerable research and practical work can
be finding a way for playing the instrument in time to a music. The current B-Glove, like
we said, is perfect for improvisation. Reducing the amount of training needed for playing
it in a more controlled way could be a good thing, even considering the context in which
it has to be used.

From the side of the Instruments Manager software, it have to be extent for han-
dling and managing different devices at a time, with a view to the conversion of all the
instruments of "Tra silenzio e baccano" (older and newer) to the same standard of com-
munication.

Thinking at the synthesis, it could be useful to look for alternatives to Ableton and
Max in order to maintain low the price of the whole system.

General ideas for Tra silenzio e baccano
The main purpose connected to the orchestra of "Tra silenzio e baccano" is reducing

the amount of cables and wires used for powering and amplifying the instruments.

The first step could be making all the instruments able to communicate with the PC
through the WiFi and avoiding amplification and powering cables. This can be immedi-
ately (and has been partially) done with the Cavarin, using an AFH instead of the Arduino
Mega, and the Chime of Matteo, connecting piezos to an AFH instead that directly to a
sound card. This last requires a research on the best way for connecting multiple analogue
sensors to the AFH (having only an analogue-in pin). Moreover, this strategy can be used
in the development of new instruments.

Then, searching or developing some devices in order to acquire the MIDI signals from
the MIDI keyboards and sending them to the Instruments Manager Software, for applying
mapping and synthesizing operations at the base station and avoiding the amplification
cables.

Developing a WiFi MIDI Network between the iPads and the base station, in order
to perform, even here, the synthesis with a single device and avoiding amplification cables.

73

Conclusions

This thesis work can be considered as a starting point of a project that can become
very wide. Developing only an electronic musical instrument can be considered as a work
for its own sake. But the B-Glove finds its continuity at its origin, in the motivation that
inspired us for its creation: the disability.

The path that has been traced by Riccardo for Samir can be useful for him, but maybe
even more useful for other autistic or disabled people presenting more accentuated com-
munication and interaction problems. Samir is a joyous person, which loves the human
contact. However, different kinds of communication disturbs lead some people to isolate
themselves and it could be important intercepting those languages which are congenial to
them and exploiting these last for integrating these people.

The Globality of languages discipline, we think, completely matches with the proposals
of the B-Glove: deriving music, smiles and fun from a glove, with a very simple interac-
tion, as a stimulus for many disabled people. As explained by Stefania Guerra Lisi in the
foreword, using the B-Glove allows a MusicArTerapeutic dialogue with a person and also
to unlock his body, allowing him to express himself through his own spontaneous music.

The B-Glove is for sure a wireless MIDI instrument and its capacities in sequencing
can be improved both in terms of hardware and software, as we saw above. This thesis
work, however, did not propose only a wireless MIDI instrument, but also a communication
protocol and some rules for developing an orchestra of electronic instruments, manageable
from the PC. In the optic of disability, this last aspect is very important because of the
freedom in realizing every kind of instrument exploiting every kind of interaction, using
the same easy protocol of sequencing and synthesis.

Besides Tra silenzio e baccano, the participation to the National convention of the
Globality of languages gave the possibility to the author - in addition to a personal en-
richment in the musical, social and communication fields - to receive a feedback to his
work by the external world. A great interest has been showed by different kinds of people,
from the University Professors to the parents of disabled guys. Some information about
the final price and the time-to-market of the B-Glove have been requested, giving to the
author suggestions for thinking at a commercial version of the B-Glove.

74

11 – Conclusions

The initial target of the author has been achieved: the sea in which he tipped was
almost completely unknown for him and, despite it had happened to deal with disabled
people, the author went through a path allowing him to get closer to their world and to
their needs and to give a practical explanation to the words of Ezio Bosso cited at the
beginning of this thesis.

The world needs communication, not only information.
The world needs listening people, not only hearing ones.

This thesis has given to the author the possibility to meet the Globality of Languages,
recognizing it, not only as a way for treating disabled people, but also for re-conducting
the human being on the road of humanity. On the other side, it has given the possibility of
understanding the difficulties connected to the promotion of wonderful and useful projects
like Tra silenzio e baccano, which often have to deal with economic and social shortcomings.

From the point of view of who is writing, there’s a great satisfaction for the work which
has been conducted. The results may be debatable, but the path driven there provided
the author with the possibility of putting in practice the whole studies of the Embedded
System Master course for a very practical, social and not abstracted goal.

75

Bibliography

[1] Vincenzo Lombardo and Andrea Valle. Audio e Multimedia. Ed. by Apogeo Educa-
tion. 2005.

[2] MIDI. What’s MIDI? url: https://www.midi.org/ (visited on 08/30/2017).
[3] MIDI-OX. Description. url: http://www.midiox.com/ (visited on 09/06/2017).
[4] MIDI Yoke. Description. url: http://www.midiox.com/myoke.htm (visited on

09/06/2017).
[5] Ableton. Max for Live. url: https://www.ableton.com/en/live/max-for-live/

(visited on 09/06/2017).
[6] Cycling ’74. Max for Live. url: https://cycling74.com/products/maxforlive

(visited on 09/06/2017).
[7] Vertecs. MIDI Note Mapper 1.0. url: http://www.maxforlive.com/library/

device/2273/midi-note-mapper (visited on 09/14/2017).
[8] Peregrine Horden. Music as Medicine: The History of Music Therapy Since Antiq-

uity. Ed. by Routledge. 2016.
[9] Debbie Carroll. Historical roots of Music Therapy: a brief overview. Ed. by Revista

do Núcleo de Estudos e Pesquisas Interdisciplinares em Musicoterapia. 2011.
[10] American Music Therapy Association. History of Music Therapy. url: https://

www.musictherapy.org/about/history/ (visited on 08/30/2017).
[11] Kenneth E. Bruscia. Defining Music Therapy. Ed. by Barcellona Publischers. 2014.
[12] World Federation of Music Therapy. What is Music Therapy? url: http://www.

musictherapyworld.net/WFMT/Home.html (visited on 09/01/2017).
[13] American Psychiatric Association.Manuale diagnostico e statistico dei disturbi men-

tali DSM-5. Ed. by Raffaello Cortina Editore. 2014.
[14] Shi Zhi-Min and Qing Xie Gui-Hong Lin and. Effects of music therapy on mood,

language, behavior, and social skills in children with autism: A meta-analysis. Ed.
by Chinese Nursing Research. 2016.

[15] Z. Warren, J. Veenstra-VanderWeele, and W. Stone. Therapies for Children With
Autism Spectrum Disorder. Ed. by Agency for Healthcare Research Comparative
Effectiveness Reviews No. 26 and Quality (US). 2011.

76

https://www.midi.org/
http://www.midiox.com/
http://www.midiox.com/myoke.htm
https://www.ableton.com/en/live/max-for-live/
https://cycling74.com/products/maxforlive
http://www.maxforlive.com/library/device/2273/midi-note-mapper
http://www.maxforlive.com/library/device/2273/midi-note-mapper
https://www.musictherapy.org/about/history/
https://www.musictherapy.org/about/history/
http://www.musictherapyworld.net/WFMT/Home.html
http://www.musictherapyworld.net/WFMT/Home.html

BIBLIOGRAPHY

[16] A.S. Weitlauf, M.L. McPheeters, and B. Peters. Therapies for Children With Autism
Spectrum Disorder: Behavioral Interventions Update. Ed. by Agency for Healthcare
Research Comparative Effectiveness Review No. 137 and Quality (US). 2014.

[17] Łucja Bieleninik et al. Effects of Improvisational Music Therapy vs Enhanced Stan-
dard Care on Symptom Severity Among Children With Autism Spectrum Disorder.
Ed. by American Medical Association. 2017.

[18] Melanie Voigt. Orff Music Therapy. url: https://www.voices.no/index.php/
voices/article/view/134/110 (visited on 09/15/2017).

[19] Stefania Guerra Lisi. Globality of languages. url: http://www.centrogdl.org
(visited on 09/15/2017).

[20] A. S. Hardy. Quaternions. Ed. by Health ’Ginn and Company’. 1881.
[21] Sebastian O.H. Madgwick, Andrew J.L. Harrison, and Ravi Vaidyanathan. Esti-

mation of IMU and MARG orientation using a gradient descent algorithm. Ed. by
IEEE. 2011.

[22] X io Technologies. Open source IMU and AHRS algorithms. url: http://x-io.co.
uk/open-source-imu-and-ahrs-algorithms/ (visited on 09/14/2017).

[23] Remidi. Remidi T8. url: https://www.remidi-pro.com/ (visited on 09/14/2017).
[24] Ray Li (Student of Cornell University). Aura. url: http://www.cornell.edu/

video / ray - li - invents - electronic - musical - instrument - aura (visited on
09/14/2017).

[25] Global DJ. Tornado A1. url: http://en.global-dj.com/ (visited on 09/14/2017).
[26] Anson Dorsey et al. Glove Midi Controller. url: https://people.ece.cornell.

edu/land/courses/ece4760/FinalProjects/s2010/ecg35_ajd53_jps93/ecg35_
ajd53_jps93/index.html (visited on 09/14/2017).

[27] Adafruit. Midi Drum Glove. url: https://learn.adafruit.com/midi- drum-
glove/overview (visited on 09/14/2017).

[28] Maxwell Dergosits, Richard Branciforte, and Students of Cornell University.Gesture-
based MIDI Glove. url: https://people.ece.cornell.edu/land/courses/
ece4760/FinalProjects/f2014/mad293_rjb297/mad293_rjb297/index.html
(visited on 09/14/2017).

[29] Mimu Tech.Mimu Glove. url: http://mimugloves.com/tech/ (visited on 09/15/2017).
[30] by julynessi Topic on the MIDI-OX website Forum section. VB.net Code to Work

with midi-ox. url: http://www.midiox.com/cgi-bin/yabb/YaBB.pl?board=
MOXScript;action=display;num=1293921718 (visited on 09/10/2017).

[31] Steve Toub. Toub.Sound.Midi. url: https://www.planet-source-code.com/vb/
scripts/ShowCode.asp?txtCodeId=5525&lngWId=10 (visited on 09/10/2017).

[32] Microsoft. winmm MIDI functions. url: https://msdn.microsoft.com/en-us/
library/windows/desktop/dd798495(v=vs.85).aspx (visited on 09/13/2017).

77

https://www.voices.no/index.php/voices/article/view/134/110
https://www.voices.no/index.php/voices/article/view/134/110
http://www.centrogdl.org
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://www.remidi-pro.com/
http://www.cornell.edu/video/ray-li-invents-electronic-musical-instrument-aura
http://www.cornell.edu/video/ray-li-invents-electronic-musical-instrument-aura
http://en.global-dj.com/
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2010/ecg35_ajd53_jps93/ecg35_ajd53_jps93/index.html
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2010/ecg35_ajd53_jps93/ecg35_ajd53_jps93/index.html
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2010/ecg35_ajd53_jps93/ecg35_ajd53_jps93/index.html
https://learn.adafruit.com/midi-drum-glove/overview
https://learn.adafruit.com/midi-drum-glove/overview
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/mad293_rjb297/mad293_rjb297/index.html
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/mad293_rjb297/mad293_rjb297/index.html
http://mimugloves.com/tech/
http://www.midiox.com/cgi-bin/yabb/YaBB.pl?board=MOXScript;action=display;num=1293921718
http://www.midiox.com/cgi-bin/yabb/YaBB.pl?board=MOXScript;action=display;num=1293921718
https://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5525&lngWId=10
https://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5525&lngWId=10
https://msdn.microsoft.com/en-us/library/windows/desktop/dd798495(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd798495(v=vs.85).aspx

Appendices

78

B-Glove full code
1 /∗ LIBRARIES DECLARATIONS ∗/
2

3 #inc lude <SPI . h>
4 #inc lude <Wire . h>
5 #inc lude <Adafruit_Sensor . h>
6 #inc lude <SFE_LSM9DS0 . h>
7 #inc lude <ESP8266WiFi . h>
8 #inc lude <ESP8266mDNS. h>
9 #inc lude <AppleMidi . h>

10 #inc lude " MPU6050_6Axis_MotionApps20 . h "
11

12

13 void (∗ resetFunc) (void) = 0 ; // d e c l a r e r e s e t func t i on at address 0
14

15

16 /∗ DEFINITIONS ∗/
17

18 #d e f i n e GyroMeasError PI ∗ (40.0 f / 180.0 f) // gyroscope
measurement e r r o r in rads / s (shown as 3 deg/ s)

19 #d e f i n e beta s q r t (3.0 f / 4.0 f) ∗ GyroMeasError // compute beta
20

21 #d e f i n e G SENSORS_GRAVITY_STANDARD
22

23

24 /∗ COMPONENTS DECLARATIONS ∗/
25

26 MPU6050 mpu;
27

28 #d e f i n e LSM9DS0_XM 0x1D // Would be 0x1E i f SDO_XM i s LOW
29 #d e f i n e LSM9DS0_G 0x6B // Would be 0x6A i f SDO_G i s LOW
30 LSM9DS0 dof (MODE_I2C, LSM9DS0_G, LSM9DS0_XM) ;
31

32

33 /∗ INTEGRATION TIME VARIABLES ∗/
34

35 f l o a t d e l t a t = 0.0 f ; // i n t e g r a t i o n i n t e r v a l f o r both f i l t e r
schemes

36 uint 32_t lastUpdate = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l
37 uint 32_t Now = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l
38

39

40 /∗ CONNECTION TO THE WIFI ∗/
41

42 const char ∗ s s i d = " g love " ;
43 const char ∗ password = " b lackg love " ;
44

45 const char ∗ host = " 1 9 2 . 1 6 8 . 2 . 1 1 0 " ;
46

47 bool i sConnected = f a l s e ;
48 APPLEMIDI_CREATE_INSTANCE(WiFiUDP, AppleMIDI) ; // see d e f i n i t i o n in

AppleMidi_Defs . h
49

79

50 bool poweredon=f a l s e ;
51

52

53 /∗ VARIABLES FOR MIDI MANAGEMENT ∗/
54

55 f l o a t vo lume increas ing=0 ;
56 i n t o ldnote=0 ;
57 i n t notetop lay=0 ;
58 double p r e v e l a b r o l l=0 ;
59

60 i n t numOfNotes=6 ;
61 i n t z e r o P o s i t i o n [16]={54 , 54 , 36 , 25 , 20 , 54 , 48 , 40.5 , 36 , 32.5 , 50 , 4

5 , 42.5 , 56 , 52.5 , 49 } ;
62 i n t ang le [16]={216 , 108 , 72 , 50 , 40 , 36 , 32 , 27 , 24 , 21 , 20 , 18 , 17 , 16

, 15 , 14 } ;
63

64 bool l a s t=f a l s e ;
65

66 #d e f i n e N 30
67

68 f l o a t v e l o c i t y v e c t o r [N]={0 } ;
69 f l o a t v e l o c i t y=0 ;
70 f l o a t p r e v v e l o c i t y=0 ;
71

72 i n t pre inchord=1 ;
73 i n t inchord=1 ;
74

75

76 /∗ VARIABLES FOR DATA ∗/
77

78 f l o a t ab ia s [3] = {0 , 0 , 0 } , gb ia s [3] = {0 , 0 , 0 } ;
79 f l o a t ax , ay , az , gx , gy , gz , mx, my, mz ; // v a r i a b l e s to hold l a t e s t

s enso r data va lue s
80 f l o a t q [4] = {1.0 f , 0.0 f , 0.0 f , 0.0 f } ; // vec to r to hold quatern ion
81

82 double curraccx=G;
83 double curraccy=G;
84 double cur raccz=G;
85 double curracc , o ldacc ;
86

87 f l o a t pitch , yaw , r o l l ;
88

89

90

91 void setup ()
92 {
93 Serial . begin (115200) ;
94

95

96 /∗ CONNECTION TO THE WIFI ∗/
97

98 Serial . p r i n t (" Gett ing IP address . . . ") ;
99 WiFi . begin (s s id , password) ;

100 whi le (WiFi . s t a t u s () != WL_CONNECTED) {

80

101 delay (500) ;
102 Serial . p r i n t (" . ") ;
103 }
104 Serial . p r i n t l n (" ") ;
105 Serial . p r i n t l n (" WiFi connected ") ;
106 Serial . p r i n t l n () ;
107 Serial . p r i n t (" IP address i s ") ;
108 Serial . p r i n t l n (WiFi . l o c a l I P ()) ;
109

110

111 /∗ CONNECTION TO RTPMIDI ∗/
112

113 Serial . p r i n t l n ("OK, now make sure you an rtpMIDI s e s s i o n that i s
Enabled ") ;

114 Serial . p r i n t ("Add dev i ce named Arduino with Host/ Port ") ;
115 Serial . p r i n t (WiFi . l o c a l I P ()) ;
116 Serial . p r i n t l n (" :5004 ") ;
117 Serial . p r i n t l n ("Then pr e s s the Connect button ") ;
118 Serial . p r i n t l n ("Then open a MIDI l i s t e n e r (eg MIDI−OX) and monitor

incoming notes ") ;
119

120 // Create a s e s s i o n and wait f o r a remote host to connect to us
121 AppleMIDI . begin (" t e s t ") ;
122

123 AppleMIDI . OnConnected (OnAppleMidiConnected) ;
124 AppleMIDI . OnDisconnected (OnAppleMidiDisconnected) ;
125

126 AppleMIDI . OnReceiveNoteOn (OnAppleMidiNoteOn) ;
127 AppleMIDI . OnReceiveNoteOff (OnAppleMidiNoteOff) ;
128

129

130 /∗ DEVICE INITIALIZATION ∗/
131

132 uint 32_t s t a t u s = dof . begin () ;
133

134 delay (1000) ;
135 dof . s e t A c c e l S c a l e (dof .A_SCALE_4G) ;
136 // de lay (500) ;
137 dof . s e tGyroSca le (dof .G_SCALE_245DPS) ;
138 // de lay (500) ;
139 dof . setMagScale (dof .M_SCALE_2GS) ;
140 // de lay (500) ;
141 dof . setAccelODR (dof .A_ODR_200) ;
142 // de lay (500) ;
143 dof . setAccelABW (dof .A_ABW_50) ;
144 // de lay (500) ;
145 dof . setGyroODR(dof .G_ODR_190_BW_125) ;
146 // de lay (500) ;
147 dof . setMagODR(dof .M_ODR_125) ;
148 // de lay (500) ;
149 delay (1000) ;
150 dof . calLSM9DS0 (gbias , ab ia s) ;
151

152 }

81

153

154

155

156

157 void loop ()
158 {
159

160 //Check f o r incoming s i g n a l s
161 AppleMIDI . run () ;
162

163 i f (i sConnected && poweredon) {
164

165 /∗ READING DATA AND PRODUCING INFO FROM DEVICE ∗/
166 dof . readGyro () ;
167 gx = dof . calcGyro (dof . gx) − gb ia s [0] ;
168 gy = dof . calcGyro (dof . gy) − gb ia s [1] ;
169 gz = dof . calcGyro (dof . gz) − gb ia s [2] ;
170

171 dof . readAcce l () ;
172 ax = dof . c a l c A c c e l (dof . ax) − ab ia s [0] ;
173 ay = dof . c a l c A c c e l (dof . ay) − ab ia s [1] ;
174 az = dof . c a l c A c c e l (dof . az) − ab ia s [2] ;
175

176 dof . readMag () ;
177 mx = dof . calcMag (dof .mx) ;
178 my = dof . calcMag (dof .my) ;
179 mz = dof . calcMag (dof .mz) ;
180

181 /∗ COMPUTING INTEGRATION TIME AND APPLYING THE FILTERING ∗/
182 Now = micros () ;
183 d e l t a t = ((Now − lastUpdate) /1000000.0 f) ; // s e t i n t e g r a t i o n time

by time e lapsed s i n c e l a s t f i l t e r update
184 lastUpdate = Now;
185 MadgwickQuaternionUpdate (ax , ay , az , gx∗PI/180.0 f , gy∗PI/180.0 f , gz

∗PI/180.0 f , mx, my, mz) ;
186

187 /∗ DERIVING AVIONIC PARAMETERS ∗/
188 yaw = atan2 (2.0 f ∗ (q [1] ∗ q [2] + q [0] ∗ q [3]) , q [0] ∗ q [0] + q [1

] ∗ q [1] − q [2] ∗ q [2] − q [3] ∗ q [3]) ;
189 p i t ch = −a s in (2.0 f ∗ (q [1] ∗ q [3] − q [0] ∗ q [2])) ;
190 r o l l = atan2 (2.0 f ∗ (q [0] ∗ q [1] + q [2] ∗ q [3]) , q [0] ∗ q [0] − q [1

] ∗ q [1] − q [2] ∗ q [2] + q [3] ∗ q [3]) ;
191 p i t ch ∗= 180.0 f / PI ;
192 yaw ∗= 180.0 f / PI ;
193 yaw −= 2.2 ; // MODIFIED FOR TURIN Dec l i na t i on at Danvi l l e ,

C a l i f o r n i a i s 13 degree s 48 minutes and 47 seconds on 2014−04−04
194 r o l l ∗= 180.0 f / PI ;
195

196 /∗ DERIVING DIRECTIONAL AND RESULTANT ACCELERATIONS ∗/
197 curraccx=ax∗G;
198 curraccy=ay∗G;
199 cur raccz=az∗G;
200 cur racc= s q r t (curraccx ∗ curraccx+curraccy ∗ curraccy+cur raccz ∗ cur raccz

) ;

82

201

202

203

204 /∗ BEHAVIOUR DEFINING ∗/
205

206 /∗ DERIVING THE NOTE ∗/
207 double e l a b r o l l ;
208 e l a b r o l l=r o l l+z e r o P o s i t i o n [numOfNotes−1] ;
209 i f (e l a b r o l l < numOfNotes∗ ang le [numOfNotes−1] && e l a b r o l l > 0) {
210 i f (e l a b r o l l < p r e v e l a b r o l l ∗ ang le [numOfNotes−1]−2.5 | | e l a b r o l l >

(1+p r e v e l a b r o l l) ∗ ang le [numOfNotes−1]+2.5) {
211 e l a b r o l l=e l a b r o l l / ang le [numOfNotes−1] ;
212 e l a b r o l l=f l o o r (e l a b r o l l) ;
213 p r e v e l a b r o l l=e l a b r o l l ;
214 notetop lay=60+e l a b r o l l ;
215 }
216 }
217

218

219 /∗ COMPUTING THE VELOCITY AND SENDING THE MIDI MESSAGES ∗/
220 f l o a t r o l l f a c t o r=1 ;
221 f l o a t maxfactor=1.2 ;
222 f l o a t minfactor=1 ;
223 r o l l f a c t o r=maxfactor −(maxfactor−minfactor) ∗(abs (90−abs (r o l l)) /90) ;
224

225 f l o a t l i n e a r f a c t o r=0.75 ;
226 f l o a t l i n e a r d e c f a c t o r=0.6 ;
227

228 i f (notetop lay != oldnote) {
229 i n t need=oldnote−60 ;
230 f o r (i n t i=0 ; i<pre inchord ; i++){
231 AppleMIDI . noteOf f (need+60+i ∗16 , 1 , 1) ;
232 delay (20) ;
233 }
234 pre inchord=inchord ;
235 f o r (i n t i=0 ; i<inchord ; i++){
236 AppleMIDI . noteOn (e l a b r o l l+60+i ∗16 , v e l o c i t y , 1) ;
237 delay (20) ;
238 }
239

240

241 }
242 e l s e {
243

244 i f (f l o o r ((cur racc ∗ l i n e a r f a c t o r ∗ r o l l f a c t o r)−G) >=0) {
245 i f (vo lume increas ing+f l o o r ((cur racc ∗ l i n e a r f a c t o r ∗ r o l l f a c t o r)−

G) < 128) {
246 vo lume increas ing=vo lume increas ing+f l o o r ((cur racc ∗

l i n e a r f a c t o r ∗ r o l l f a c t o r)−G) ;
247 }
248 e l s e {
249 vo lume increas ing=127 ;
250 }
251 l a s t=f a l s e ;

83

252 }
253 e l s e {
254 i f (vo lume increas ing − l i n e a r d e c f a c t o r ∗ (vo lume increas ing / 12

7) > 0) {
255 vo lume increas ing = vo lume increas ing − l i n e a r d e c f a c t o r ∗ (

vo lume increas ing / 127) ;
256 l a s t=f a l s e ;
257 }
258 e l s e {
259 vo lume increas ing=0 ;
260 }
261 }
262 p r e v v e l o c i t y=f l o o r (v e l o c i t y) ;
263 v e l o c i t y=averagingS (vo lumeincreas ing , v e l o c i t y , N) ;
264

265 f l o a t v e l o c i t y o n l e s s=averagingS (vo lumeincreas ing , v e l o c i t y , 25) ;
266

267 i f abs (v e l o c i t y o n l e s s −v e l o c i t y > 4) {
268 v e l o c i t y=v e l o c i t y o n l e s s ;
269 }
270

271 i f (p r e v v e l o c i t y != f l o o r (v e l o c i t y)) {
272 AppleMIDI . controlChange (7 , f l o o r (v e l o c i t y) , 1) ;
273 }
274 }
275 o ldnote=notetop lay ;
276 }
277 }
278

279

280 f l o a t averagingS (f l o a t Vi , f l o a t pastV , i n t numel) {
281 f l o a t r e t=pastV∗numel−pastV ;
282 r e t=r e t+Vi ;
283 r e t=r e t /numel ;
284 re turn r e t ;
285

286 }
287

288

289

290 /∗ Event hand le r s f o r incoming MIDI messages ∗/
291

292

293 void OnAppleMidiConnected (u int 32_t ss r c , char ∗ name) {
294 i sConnected = true ;
295 Serial . p r i n t (" Connected to s e s s i o n ") ;
296 Serial . p r i n t l n (name) ;
297 }
298

299

300 void OnAppleMidiDisconnected (u int 32_t s s r c) {
301 i sConnected = f a l s e ;
302 Serial . p r i n t l n (" Disconnected ") ;
303 resetFunc () ; // c a l l r e s e t

84

304 }
305

306

307 void OnAppleMidiNoteOn (byte channel , byte note , byte v e l o c i t y) {
308

309 Serial . p r i n t (" v e l o c i t y : ") ;
310 Serial . p r i n t (v e l o c i t y) ;
311 Serial . p r i n t l n () ;
312 i f (v e l o c i t y > 0 && v e l o c i t y <= 16) {
313 numOfNotes=v e l o c i t y ;
314 p r e v e l a b r o l l=0 ;
315 i n t need=oldnote−60 ;
316 f o r (i n t i=0 ; i<pre inchord ; i++){
317 AppleMIDI . noteOf f (need+60+i ∗16 , 1 , 1) ;
318 delay (20) ;
319 }
320 o ldnote=0 ;
321 notetop lay=0 ;
322 AppleMIDI . controlChange (9 , v e l o c i t y , 1) ;
323 }
324 e l s e i f (v e l o c i t y == 88) {
325 poweredon=true ;
326 AppleMIDI . controlChange (9 , 88 , 1) ;
327 }
328 e l s e i f (v e l o c i t y == 89) {
329 poweredon=f a l s e ;
330 i n t need=oldnote−60 ;
331 f o r (i n t i=0 ; i<pre inchord ; i++){
332 AppleMIDI . noteOf f (need+60+i ∗16 , 1 , 1) ;
333 delay (20) ;
334 }
335 p r e v e l a b r o l l=0 ;
336 o ldnote=0 ;
337 notetop lay=0 ;
338 v e l o c i t y=0 ;
339 p r e v v e l o c i t y=0 ;
340 AppleMIDI . controlChange (9 , 89 , 1) ;
341 }
342 e l s e i f (v e l o c i t y > 89 && v e l o c i t y < 94) {
343 inchord=v e l o c i t y −89 ;
344 AppleMIDI . controlChange (9 , v e l o c i t y , 1) ;
345 }
346

347

348 }
349

350

351 void OnAppleMidiNoteOff (byte channel , byte note , byte v e l o c i t y) {
352 Serial . p r i n t (" Incoming NoteOff from channel : ") ;
353 Serial . p r i n t (channel) ;
354 Serial . p r i n t (" note : ") ;
355 Serial . p r i n t (note) ;
356 Serial . p r i n t (" v e l o c i t y : ") ;
357 Serial . p r i n t (v e l o c i t y) ;

85

358 Serial . p r i n t l n () ;
359 }
360

361

362 /∗ MADGWICK FILTER FUNCTION ∗/
363

364 void MadgwickQuaternionUpdate (f l o a t ax , f l o a t ay , f l o a t az , f l o a t gx ,
f l o a t gy , f l o a t gz , f l o a t mx, f l o a t my, f l o a t mz)

365 {
366 f l o a t q1 = q [0] , q2 = q [1] , q3 = q [2] , q4 = q [3] ; // shor t name

l o c a l v a r i a b l e f o r r e a d a b i l i t y
367 f l o a t norm ;
368 f l o a t hx , hy , _2bx , _2bz ;
369 f l o a t s 1 , s 2 , s 3 , s 4 ;
370 f l o a t qDot1 , qDot2 , qDot3 , qDot4 ;
371

372 // Aux i l i a ry v a r i a b l e s to avoid repeated a r i thmet i c
373 f l o a t _2q1mx;
374 f l o a t _2q1my;
375 f l o a t _2q1mz;
376 f l o a t _2q2mx;
377 f l o a t _4bx ;
378 f l o a t _4bz ;
379 f l o a t _2q1 = 2.0 f ∗ q1 ;
380 f l o a t _2q2 = 2.0 f ∗ q2 ;
381 f l o a t _2q3 = 2.0 f ∗ q3 ;
382 f l o a t _2q4 = 2.0 f ∗ q4 ;
383 f l o a t _2q1q3 = 2.0 f ∗ q1 ∗ q3 ;
384 f l o a t _2q3q4 = 2.0 f ∗ q3 ∗ q4 ;
385 f l o a t q1q1 = q1 ∗ q1 ;
386 f l o a t q1q2 = q1 ∗ q2 ;
387 f l o a t q1q3 = q1 ∗ q3 ;
388 f l o a t q1q4 = q1 ∗ q4 ;
389 f l o a t q2q2 = q2 ∗ q2 ;
390 f l o a t q2q3 = q2 ∗ q3 ;
391 f l o a t q2q4 = q2 ∗ q4 ;
392 f l o a t q3q3 = q3 ∗ q3 ;
393 f l o a t q3q4 = q3 ∗ q4 ;
394 f l o a t q4q4 = q4 ∗ q4 ;
395

396 // Normalise acce l e romete r measurement
397 norm = s q r t (ax ∗ ax + ay ∗ ay + az ∗ az) ;
398 i f (norm == 0.0 f) r e turn ; // handle NaN
399 norm = 1.0 f /norm ;
400 ax ∗= norm ;
401 ay ∗= norm ;
402 az ∗= norm ;
403

404 // Normalise magnetometer measurement
405 norm = s q r t (mx ∗ mx + my ∗ my + mz ∗ mz) ;
406 i f (norm == 0.0 f) r e turn ; // handle NaN
407 norm = 1.0 f /norm ;
408 mx ∗= norm ;
409 my ∗= norm ;

86

410 mz ∗= norm ;
411

412 // Reference d i r e c t i o n o f Earth ’ s magnetic f i e l d
413 _2q1mx = 2.0 f ∗ q1 ∗ mx;
414 _2q1my = 2.0 f ∗ q1 ∗ my;
415 _2q1mz = 2.0 f ∗ q1 ∗ mz;
416 _2q2mx = 2.0 f ∗ q2 ∗ mx;
417 hx = mx ∗ q1q1 − _2q1my ∗ q4 + _2q1mz ∗ q3 + mx ∗ q2q2 + _2q2 ∗ my

∗ q3 + _2q2 ∗ mz ∗ q4 − mx ∗ q3q3 − mx ∗ q4q4 ;
418 hy = _2q1mx ∗ q4 + my ∗ q1q1 − _2q1mz ∗ q2 + _2q2mx ∗ q3 − my ∗ q2q

2 + my ∗ q3q3 + _2q3 ∗ mz ∗ q4 − my ∗ q4q4 ;
419 _2bx = s q r t (hx ∗ hx + hy ∗ hy) ;
420 _2bz = −_2q1mx ∗ q3 + _2q1my ∗ q2 + mz ∗ q1q1 + _2q2mx ∗ q4 − mz ∗

q2q2 + _2q3 ∗ my ∗ q4 − mz ∗ q3q3 + mz ∗ q4q4 ;
421 _4bx = 2.0 f ∗ _2bx ;
422 _4bz = 2.0 f ∗ _2bz ;
423

424 // Gradient decent a lgor i thm c o r r e c t i v e s tep
425 s 1 = −_2q3 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q2 ∗ (2.0 f ∗ q1q2 + _2

q3q4 − ay) − _2bz ∗ q3 ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2q4
− q1q3) − mx) + (−_2bx ∗ q4 + _2bz ∗ q2) ∗ (_2bx ∗ (q2q3 − q1q4) +

_2bz ∗ (q1q2 + q3q4) − my) + _2bx ∗ q3 ∗ (_2bx ∗ (q1q3 + q2q4) + _2
bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;

426 s 2 = _2q4 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q1 ∗ (2.0 f ∗ q1q2 + _2q
3q4 − ay) − 4.0 f ∗ q2 ∗ (1.0 f − 2.0 f ∗ q2q2 − 2.0 f ∗ q3q3 − az) + _2
bz ∗ q4 ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2q4 − q1q3) − mx)
+ (_2bx ∗ q3 + _2bz ∗ q1) ∗ (_2bx ∗ (q2q3 − q1q4) + _2bz ∗ (q1q2 + q
3q4) − my) + (_2bx ∗ q4 − _4bz ∗ q2) ∗ (_2bx ∗ (q1q3 + q2q4) + _2bz
∗ (0.5 f − q2q2 − q3q3) − mz) ;

427 s 3 = −_2q1 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q4 ∗ (2.0 f ∗ q1q2 + _2
q3q4 − ay) − 4.0 f ∗ q3 ∗ (1.0 f − 2.0 f ∗ q2q2 − 2.0 f ∗ q3q3 − az) +
(−_4bx ∗ q3 − _2bz ∗ q1) ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2
q4 − q1q3) − mx) + (_2bx ∗ q2 + _2bz ∗ q4) ∗ (_2bx ∗ (q2q3 − q1q4) +
_2bz ∗ (q1q2 + q3q4) − my) + (_2bx ∗ q1 − _4bz ∗ q3) ∗ (_2bx ∗ (q1q

3 + q2q4) + _2bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;
428 s 4 = _2q2 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q3 ∗ (2.0 f ∗ q1q2 + _2q

3q4 − ay) + (−_4bx ∗ q4 + _2bz ∗ q2) ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4)
+ _2bz ∗ (q2q4 − q1q3) − mx) + (−_2bx ∗ q1 + _2bz ∗ q3) ∗ (_2bx ∗ (q
2q3 − q1q4) + _2bz ∗ (q1q2 + q3q4) − my) + _2bx ∗ q2 ∗ (_2bx ∗ (q1q3
+ q2q4) + _2bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;

429 norm = s q r t (s 1 ∗ s 1 + s 2 ∗ s 2 + s 3 ∗ s 3 + s 4 ∗ s 4) ; // normal i se
s tep magnitude

430 norm = 1.0 f /norm ;
431 s 1 ∗= norm ;
432 s 2 ∗= norm ;
433 s 3 ∗= norm ;
434 s 4 ∗= norm ;
435

436 // Compute ra t e o f change o f quatern ion
437 qDot1 = 0.5 f ∗ (−q2 ∗ gx − q3 ∗ gy − q4 ∗ gz) − beta ∗ s 1 ;
438 qDot2 = 0.5 f ∗ (q1 ∗ gx + q3 ∗ gz − q4 ∗ gy) − beta ∗ s 2 ;
439 qDot3 = 0.5 f ∗ (q1 ∗ gy − q2 ∗ gz + q4 ∗ gx) − beta ∗ s 3 ;
440 qDot4 = 0.5 f ∗ (q1 ∗ gz + q2 ∗ gy − q3 ∗ gx) − beta ∗ s 4 ;
441

87

442 // I n t e g r a t e to y i e l d quatern ion
443 q1 += qDot1 ∗ d e l t a t ;
444 q2 += qDot2 ∗ d e l t a t ;
445 q3 += qDot3 ∗ d e l t a t ;
446 q4 += qDot4 ∗ d e l t a t ;
447 norm = s q r t (q1 ∗ q1 + q2 ∗ q2 + q3 ∗ q3 + q4 ∗ q4) ; // normal i se

quatern ion
448 norm = 1.0 f /norm ;
449 q [0] = q1 ∗ norm ;
450 q [1] = q2 ∗ norm ;
451 q [2] = q3 ∗ norm ;
452 q [3] = q4 ∗ norm ;
453

454 }

Listing 25: B-Glove full code

88

Instruments Manager full code

1 Imports System
2 Imports System .IO. Ports
3 Imports System . Threading
4 Imports System . Runtime . InteropServices
5 Imports Toub. Sound .Midi
6 Imports Microsoft . VisualBasic . Constants
7 Imports System .Text
8 Imports NativeWifi
9

10
11
12 Public Class Form1
13 ’Acks waiting time
14 Public Const timerSeconds = 3
15
16 ’States of the software
17 Public Enum instrState
18 pOn
19 pOff
20 WaitingToOff
21 WaitingToOn
22 End Enum
23
24 ’Structure holding a live set
25 Private Structure song
26 Public Name As String
27 Public NON As Integer
28 Public IC As Integer
29 Public ToDel As Boolean
30 End Structure
31
32 ’Structure for MIDI devices
33 Public Structure MIDIINCAPS
34 Dim wMid As Int16 ’ Manufacturer ID
35 Dim wPid As Int16 ’ Product ID
36 Dim vDriverVersion As Integer ’ Driver version
37 <MarshalAs (UnmanagedType .ByValTStr , SizeConst :=32) > Dim szPname As String

’ Product Name
38 Dim dwSupport As Integer ’ Reserved
39 End Structure
40
41 ’MIDI management functions
42 Public Declare Function midiInGetNumDevs Lib " winmm .dll" () As Integer
43 Public Declare Function midiInGetDevCaps Lib " winmm .dll" Alias "

midiInGetDevCapsA " (ByVal uDeviceID As Integer , ByRef lpCaps As MIDIINCAPS ,
ByVal uSize As Integer) As Integer

44 Public Declare Function midiInOpen Lib " winmm .dll" (ByRef hMidiIn As Integer ,
ByVal uDeviceID As Integer , ByVal dwCallback As MidiInCallback , ByVal
dwInstance As Integer , ByVal dwFlags As Integer) As Integer

45 Public Declare Function midiInStart Lib " winmm .dll" (ByVal hMidiIn As Integer)
As Integer

46 Public Declare Function midiInStop Lib " winmm .dll" (ByVal hMidiIn As Integer)
As Integer

47 Public Declare Function midiInReset Lib " winmm .dll" (ByVal hMidiIn As Integer)
As Integer

48 Public Declare Function midiInClose Lib " winmm .dll" (ByVal hMidiIn As Integer)
As Integer

49 Public Delegate Sub DisplayDataDelegate (dwParam1)
50 Public Declare Function midiOutGetNumDevs Lib " winmm .dll" () As Integer

89

51 Public Declare Function midiOutGetDevCaps Lib " winmm .dll" Alias "
midiOutGetDevCapsA " (ByVal uDeviceID As Integer , ByRef lpMidiOutCaps As
MIDIINCAPS , ByVal cbMidiOutCaps As Integer) As Integer

52 Public Delegate Function MidiInCallback (ByVal hMidiIn As Integer , ByVal wMsg
As UInteger , ByVal dwInstance As Integer , ByVal dwParam1 As Integer , ByVal
dwParam2 As Integer) As Integer

53 Public ptrCallback As New MidiInCallback (AddressOf MidiInProc)
54 Public Const CALLBACK_FUNCTION As Integer = & H30000
55 Public Const MIDI_IO_STATUS = &H20
56
57 ’Holds the state of the software
58 Dim poweredon As instrState = instrState .pOff
59
60 ’Path of the softeare and of the folder containing the Live Sets
61 Dim AppFolderPath As String = IO.Path. Combine (IO. Directory . GetParent (

Application . ExecutablePath).FullName , "")
62 Dim FileFolderPath As String = IO.Path. Combine (IO. Directory . GetParent (

Application . ExecutablePath).FullName , " AblFiles \ ")
63
64 ’Acks management
65 Dim waitingForNotesAck = False
66 Dim waitingForInChordAck = False
67 Dim timeTimer As Integer
68
69 ’MIDI management
70 Dim hMidiIn As Integer
71 Dim hmo As Integer
72 Dim numberOfNotes As Integer = 0
73 Dim fromLive As Boolean = False
74 Dim StatusByte As Byte
75 Dim DataByte1 As Byte
76 Dim DataByte2 As Byte
77 Dim MonitorActive As Boolean = False
78
79 ’Structure of the live sets
80 Dim allsongs () As song
81
82
83
84
85
86
87 Function MidiInProc (ByVal hMidiIn As Integer , ByVal wMsg As UInteger , ByVal

dwInstance As Integer , ByVal dwParam1 As Integer , ByVal dwParam2 As Integer)
As Integer

88 If MonitorActive = True Then
89 txtMonitorIN . Invoke (New DisplayDataDelegate (AddressOf DisplayData),

New Object () { dwParam1 })
90 End If
91 End Function
92
93 Private Sub DisplayData (dwParam1)
94 StatusByte = (dwParam1 And &HFF)
95 DataByte1 = (dwParam1 And & HFF00) >> 8
96 DataByte2 = (dwParam1 And & HFF0000) >> 16
97
98
99 If poweredon = instrState . WaitingToOn And StatusByte = 176 And DataByte1 =

9 And DataByte2 = 88 Then
100 txtMonitorIN . AppendText (" Start " & vbCrLf)
101 poweredon = instrState .pOn
102 btnPower . BackgroundImage = Image . FromFile ("./ images /ON.png")

90

103 Me. Height = 539
104 Me. Width = 670
105
106 ElseIf poweredon = instrState . WaitingToOff And StatusByte = 176 And

DataByte1 = 9 And DataByte2 = 89 Then
107 txtMonitorIN . AppendText ("Stop" & vbCrLf)
108 poweredon = instrState .pOff
109 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
110 Me. Height = 302
111 Me. Width = 670
112
113 ElseIf poweredon = instrState .pOn And StatusByte = 176 And DataByte1 = 7

Then
114 txtMonitorIN . AppendText ("Control -7 Change : " & DataByte2 & vbCrLf)
115 ProgressBar1 . Value = DataByte2
116 lblVelocity .Text = DataByte2
117
118 ElseIf poweredon = instrState .pOn And StatusByte = 144 Then
119 txtMonitorIN . AppendText ("Note " & DataByte1 - 59 & " On , Velocity : " &

DataByte2 & vbCrLf)
120 ProgressBar1 . Value = DataByte2
121 lblVelocity .Text = DataByte2
122 lblNote .Text = (DataByte1 - 59) Mod 16
123
124 ElseIf poweredon = instrState .pOn And StatusByte = 128 Then
125 txtMonitorIN . AppendText ("Note " & DataByte1 - 59 & " Off" & vbCrLf)
126
127 ElseIf waitingForNotesAck = True And StatusByte = 176 And DataByte1 = 9

And DataByte2 > 0 And DataByte2 <= 16 Then
128 waitingForNotesAck = False
129 txtMonitorIN . AppendText (" Received Ack for number of notes " & vbCrLf)
130 Timer1 .Stop ()
131 If fromLive = True Then
132 fromLive = False
133 If (System . Diagnostics . Process . GetProcessesByName (" Ableton Live 9

Suite "). Length > 0) Then
134 System . Diagnostics . Process . GetProcessesByName (" Ableton Live 9

Suite ")(0). Close ()
135 End If
136 System . Diagnostics . Process . Start (FileFolderPath & comboLiveSet .

SelectedItem & " Project \ " & comboLiveSet . SelectedItem & ".als")
137 End If
138 ElseIf waitingForNotesAck = True And StatusByte = 176 And DataByte1 = 9

And DataByte2 > 89 And DataByte2 <= 94 Then
139 waitingForInChordAck = False
140 txtMonitorIN . AppendText (" Received Ack for notes in chord " & vbCrLf)
141
142 End If
143
144 If poweredon = instrState .pOff Then
145 midiInStop (hMidiIn)
146 midiInClose (hMidiIn)
147 comboNetIN . Enabled = True
148 comboNetOUT . Enabled = True
149 MonitorActive = False
150 End If
151
152 End Sub
153
154 Private Sub Form1_Load (ByVal sender As Object , ByVal e As System . EventArgs)

Handles Me.Load
155

91

156 Me. Height = 302
157 Me. Width = 670
158 Me.Show ()
159
160 If (System . Diagnostics . Process . GetProcessesByName (" rtpMIDI "). Length <= 0

Or System . Diagnostics . Process . GetProcessesByName (" midiox "). Length <= 0) Then
161 MsgBox (" Before starting this program , MIDI -OX and rtpMIDI have to be

opened .")
162 End
163 End If
164
165 picClearIN . Parent = txtMonitorIN
166 picClearOUT . Parent = txtMonitorOUT
167 picClearIN . Location = New Point (252 , 0)
168 picClearOUT . Location = New Point (252 , 0)
169
170 noteSelection . SelectedItem = noteSelection . Items (10)
171 inChord . SelectedItem = inChord . Items (3)
172
173 ’LOAD OF FILES
174 For Each s As String In System .IO. Directory . GetDirectories (FileFolderPath ,

"* Project ")
175 Dim provs () As String = s. Split ("\ ". ToCharArray , StringSplitOptions .

RemoveEmptyEntries)
176 comboLiveSet . Items .Add(provs (provs . Length - 1). Split (" ". ToCharArray ,

StringSplitOptions . RemoveEmptyEntries)(0))
177 Next
178
179
180 Dim testo As String = ""
181
182 ’ALREADY NUMBERED FILES
183 testo = My. Computer . FileSystem . ReadAllText (AppFolderPath & "\ NumOfNotes .

txt")
184
185 Dim rows () As String = testo . Split (vbCrLf . ToCharArray , StringSplitOptions .

RemoveEmptyEntries)
186 Dim songs (rows. Length - 1) As song
187 Dim c As Integer = 0
188 For Each row As String In rows
189 Dim data () As String = row. Split (" ". ToCharArray , StringSplitOptions .

RemoveEmptyEntries)
190 If data. Length = 3 Then
191 songs (c).Name = data (0)
192 songs (c).NON = data (1)
193 songs (c).IC = data (2)
194 songs (c). ToDel = False
195 c = c + 1
196 End If
197 Next
198
199 Dim i As Integer = 0
200 Dim nmore As Integer = 0
201 Dim songsmore (100) As song
202
203
204 If Not (testo = "") Then
205
206
207 ’CHECK IF STILL PRESENT
208 For Each song As song In songs
209 If Not (comboLiveSet . Items . Contains (song.Name)) Then

92

210 If MsgBox (song.Name & " non è ùpi presente tra i file Ableton .
Eliminare ?", vbYesNo) = 6 Then

211 song. ToDel = True
212 End If
213 End If
214 Next
215
216 ’CHECK FOR NEW PRESENCES
217
218 For Each name As String In comboLiveSet . Items
219 Dim found As Boolean = False
220 For i = 0 To songs . Length - 1
221 If songs (i).Name = name Then
222 found = True
223 Exit For
224 End If
225 Next
226 If found = False Then
227 songsmore (nmore).Name = name
228 Do
229 Dim s As String = InputBox ("New Live set: " & name & "." &

vbCrLf & "How many notes / chords (1 - 16)?")
230 If IsNumeric (s) Then
231 If s > 0 And s < 17 Then
232 songsmore (nmore).NON = CInt(s)
233 End If
234 End If
235 If songsmore (nmore).NON > 1 Then
236 s = InputBox ("How many notes per chord (1 - 4)?")
237 If IsNumeric (s) Then
238 If s > 0 And s < 5 Then
239 songsmore (nmore).IC = CInt(s)
240 End If
241 End If
242 Else
243 songsmore (nmore).IC = 0
244 End If
245 Loop Until songsmore (nmore).NON > 0
246 nmore = nmore + 1
247 End If
248 Next
249
250 Else
251
252 ’ADDING NEW SONGS
253 For Each name As String In comboLiveSet . Items
254 songsmore (nmore).Name = name
255 Do
256 Dim s As String = InputBox (" Nuova canzone : " & name & ".

Inserisci numero di note (1 - 16).")
257 If IsNumeric (s) Then
258 If s > 0 And s < 17 Then
259 songsmore (nmore).NON = CInt(s)
260 End If
261 End If
262 If songsmore (nmore).NON > 1 Then
263 s = InputBox ("How many notes per chord (1 - 4)?")
264 If IsNumeric (s) Then
265 If s > 0 And s < 5 Then
266 songsmore (nmore).IC = CInt(s)
267 End If
268 End If

93

269 Else
270 songsmore (nmore).IC = 0
271 End If
272 Loop Until songsmore (nmore).NON > 0
273 nmore = nmore + 1
274 Next
275
276
277 End If
278
279
280 ’COMPOSING OF THE FINAL STRUCTURE
281 Dim dimension As Integer = 0
282 If testo = "" Then
283 dimension = nmore
284 Else
285 dimension = nmore + songs . Length
286 End If
287 ReDim allsongs (dimension - 1)
288
289 c = 0
290
291 If Not (testo = "") Then
292 For i = 0 To songs . Length - 1
293 If songs (i). ToDel = False Then
294 allsongs (c) = songs (i)
295 c = c + 1
296 End If
297 Next
298 End If
299 For j As Integer = c To nmore + c - 1
300 allsongs (j) = songsmore (j - c)
301 Next
302
303
304
305
306 ’MIDI STUFF
307
308
309 If midiInGetNumDevs () = 0 Then
310 MsgBox ("No MIDI devices connected ")
311 ’Application .Exit ()
312 End If
313
314 Dim InCaps As New MIDIINCAPS
315 Dim DevCnt As Integer
316
317 For DevCnt = 0 To (midiInGetNumDevs - 1)
318 midiInGetDevCaps (DevCnt , InCaps , Len(InCaps))
319 comboNetIN . Items .Add(InCaps . szPname)
320 Next DevCnt
321
322
323 ’OUTPUT
324 If midiOutGetNumDevs () = 0 Then
325 MsgBox ("No MIDI devices connected ")
326 ’Application .Exit ()
327 End If
328 For DevCnt = 0 To (midiInGetNumDevs - 1)
329 midiOutGetDevCaps (DevCnt , InCaps , Len(InCaps))
330 comboNetOUT . Items .Add(InCaps . szPname)

94

331 Next DevCnt
332
333 End Sub
334
335
336
337
338 Private Sub Form1_FormClosed (ByVal sender As Object , ByVal e As System . Windows

. Forms . FormClosedEventArgs) Handles Me. FormClosed
339
340 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
341 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop . OpenMidiOut (

DeviceID)
342 Dim output As Integer = 89
343 output = Convert . ToInt32 (Hex(output) & "3D90", 16)
344 MidiInterop . SendMidiMessage (device , output)
345 device . Close ()
346
347 MonitorActive = False
348 midiInStop (hMidiIn)
349 midiInReset (hMidiIn)
350 ’midiInClose (hMidiIn)
351
352 ’WRITING FINAL FILE
353 Dim textToWrite As String = ""
354 For Each song As song In allsongs
355 textToWrite = textToWrite & song.Name & " " & song.NON & " " & song.IC

& vbCrLf
356 Next
357 My. Computer . FileSystem . WriteAllText (AppFolderPath & "\ NumOfNotes .txt",

textToWrite , False)
358
359 Dim stopN As New ProcessStartInfo
360
361 stopN . FileName = "cmd.exe"
362 stopN . Arguments = "/c netsh wlan stop hostednetwork "
363 stopN . UseShellExecute = False
364 stopN . CreateNoWindow = True
365
366 Process . Start (stopN)
367
368 Application .Exit ()
369 End Sub
370
371
372 Private Sub Button7_Click (sender As Object , e As EventArgs) Handles btnPower .

Click
373
374 If comboNetOUT . SelectedIndex = -1 Or comboNetIN . SelectedIndex = -1 Then
375 MsgBox (" Select the networks .")
376 Else
377 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
378 Dim output As Integer
379 Dim ss As String = " Start "
380
381 Dim nomessage As Boolean = False
382
383 If poweredon = instrState .pOff Then
384 output = 88
385 ss = " Start "
386 poweredon = instrState . WaitingToOn
387 btnPower . BackgroundImage = Image . FromFile ("./ images /WAIT.png")

95

388
389 ElseIf poweredon = instrState .pOn Then
390 ss = "Stop"
391 output = 89
392 poweredon = instrState . WaitingToOff
393 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
394
395 Else
396 nomessage = True
397 poweredon = instrState .pOff
398 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
399 Me. Height = 302
400 Me. Width = 670
401 End If
402
403 If nomessage = False Then
404 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop .

OpenMidiOut (DeviceID)
405 output = Convert . ToInt32 (Hex(output) & "3D90", 16)
406 MidiInterop . SendMidiMessage (device , output)
407 txtMonitorOUT . AppendText (ss & " command sent" & vbCrLf)
408 device . Close ()
409 End If
410
411 If poweredon = instrState . WaitingToOn Or poweredon = instrState .

WaitingToOff Then
412 DeviceID = comboNetIN . SelectedIndex
413 comboNetIN . Enabled = False
414 comboNetOUT . Enabled = False
415 midiInOpen (hMidiIn , DeviceID , ptrCallback , 0, CALLBACK_FUNCTION Or

MIDI_IO_STATUS)
416 midiInStart (hMidiIn)
417 MonitorActive = True
418 Else
419 midiInStop (hMidiIn)
420 midiInClose (hMidiIn)
421 comboNetIN . Enabled = True
422 comboNetOUT . Enabled = True
423 MonitorActive = False
424 End If
425
426 End If
427
428 End Sub
429
430 Private Sub btnPower_BackgroundImageChanged (sender As Object , e As EventArgs)

Handles btnPower . BackgroundImageChanged
431 If poweredon = instrState . WaitingToOn Or poweredon = instrState .

WaitingToOff Then
432 timeTimer = timerSeconds
433 Timer1 . Start ()
434 Else
435 Timer1 .Stop ()
436 End If
437
438 End Sub
439
440 Private Sub Button7_MouseDown (sender As Object , e As MouseEventArgs) Handles

btnPower . MouseDown
441 If poweredon = instrState .pOn Then
442 btnPower . BackgroundImage = Image . FromFile ("./ images / MOUSEON .png")
443 ElseIf poweredon = instrState .pOff Then

96

444 btnPower . BackgroundImage = Image . FromFile ("./ images / MOUSEOFF .png")
445 Else
446 btnPower . BackgroundImage = Image . FromFile ("./ images / WAITs .png")
447 End If
448 End Sub
449
450 Private Sub Button7_MouseUp (sender As Object , e As MouseEventArgs) Handles

btnPower . MouseUp
451 If poweredon = instrState .pOn Then
452 btnPower . BackgroundImage = Image . FromFile ("./ images /ON.png")
453 ElseIf poweredon = instrState .pOff Then
454 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
455 Else
456 btnPower . BackgroundImage = Image . FromFile ("./ images /WAIT.png")
457 End If
458 End Sub
459
460 Private Sub Timer1_Tick (sender As Object , e As EventArgs) Handles Timer1 .Tick
461 If timeTimer = 0 Then
462 Timer1 .Stop ()
463 poweredon = instrState .pOff
464 btnPower . BackgroundImage = Image . FromFile ("./ images /OFF.png")
465 Me. Height = 302
466 Me. Width = 670
467 midiInStop (hMidiIn)
468 midiInClose (hMidiIn)
469 comboNetIN . Enabled = True
470 comboNetOUT . Enabled = True
471 MonitorActive = False
472 MsgBox ("The istrument is not reachable . Please check the rtpMIDI

connection .")
473 Else
474 timeTimer = timeTimer - 1
475 End If
476
477 End Sub
478
479
480 Private Sub Button5_Click (sender As Object , e As EventArgs) Handles

btnSendNotes . Click
481
482 numberOfNotes = noteSelection .Text
483 waitingForNotesAck = True
484 waitingForInChordAck = True
485 Dim notesinchord As Integer = 89 + inChord .Text
486
487 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
488 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop . OpenMidiOut (

DeviceID)
489 Dim output As Integer
490
491 txtMonitorOUT . AppendText (" Notes in chord has been sent" & vbCrLf)
492 output = Convert . ToInt32 (Hex(notesinchord) & "3D90", 16)
493 MidiInterop . SendMidiMessage (device , output)
494
495
496 txtMonitorOUT . AppendText (" Number of notes has been sent" & vbCrLf)
497 output = Convert . ToInt32 (Hex(numberOfNotes) & "3D90", 16)
498 MidiInterop . SendMidiMessage (device , output)
499 timeTimer = timerSeconds
500 Timer1 . Start ()
501 device . Close ()

97

502
503 End Sub
504
505
506 Private Sub Button4_Click (sender As Object , e As EventArgs) Handles

btnOpenLive . Click
507
508 If lblNumberOfNotes .Text = "" Then
509 MsgBox (" Select a Live Set.")
510 Else
511 Dim DeviceID As Integer = comboNetOUT . SelectedIndex
512 Dim device As MidiInterop . MidiDeviceHandle = MidiInterop . OpenMidiOut (

DeviceID)
513 Dim output As Integer
514
515 Dim notesinchord As Integer = 89 + lblNotesIC .Text
516
517 numberOfNotes = lblNumberOfNotes .Text
518 waitingForNotesAck = True
519 fromLive = True
520 txtMonitorOUT . AppendText (" Number of notes for Live set has been sent"

& vbCrLf)
521 output = Convert . ToInt32 (Hex(numberOfNotes) & "3D90", 16)
522 MidiInterop . SendMidiMessage (device , output)
523
524 txtMonitorOUT . AppendText (" Notes per chord for Live set has been sent"

& vbCrLf)
525 output = Convert . ToInt32 (Hex(notesinchord) & "3D90", 16)
526 MidiInterop . SendMidiMessage (device , output)
527
528
529 timeTimer = timerSeconds
530 Timer1 . Start ()
531 device . Close ()
532 End If
533
534 End Sub
535
536 Private Sub ComboBox3_SelectedIndexChanged (sender As Object , e As EventArgs)

Handles comboLiveSet . SelectedIndexChanged
537 For Each song As song In allsongs
538 If song.Name = comboLiveSet . SelectedItem Then
539 If song.IC > 1 Then
540 Label2 .Text = " Number of chords "
541 Label12 . Visible = True
542 lblNotesIC . Visible = True
543 Else
544 Label2 .Text = " Number of notes "
545 Label12 . Visible = False
546 lblNotesIC . Visible = False
547 End If
548 lblName .Text = song.Name
549 lblNumberOfNotes .Text = song.NON
550 lblNotesIC .Text = song.IC
551 Exit For
552 End If
553 Next
554 End Sub
555
556
557 Private Sub PictureBox2_Click (sender As Object , e As EventArgs) Handles

picClearOUT . Click

98

558 txtMonitorOUT . Clear ()
559 End Sub
560
561 Private Sub PictureBox1_Click (sender As Object , e As EventArgs) Handles

picClearIN . Click
562 txtMonitorIN . Clear ()
563 End Sub
564
565 Private Sub PictureBox1_MouseDown (sender As Object , e As MouseEventArgs)

Handles picClearIN . MouseDown
566 picClearIN . Image = Image . FromFile ("./ images / sclear .png")
567 End Sub
568
569 Private Sub PictureBox1_MouseUp (sender As Object , e As MouseEventArgs) Handles

picClearIN . MouseUp
570 picClearIN . Image = Image . FromFile ("./ images / clear .png")
571 End Sub
572
573 Private Sub PictureBox2_MouseDown (sender As Object , e As MouseEventArgs)

Handles picClearOUT . MouseDown
574 picClearOUT . Image = Image . FromFile ("./ images / sclear .png")
575 End Sub
576
577 Private Sub PictureBox2_MouseUp (sender As Object , e As MouseEventArgs) Handles

picClearOUT . MouseUp
578 picClearOUT . Image = Image . FromFile ("./ images / clear .png")
579 End Sub
580
581 Private Sub Button4_MouseDown (sender As Object , e As MouseEventArgs) Handles

btnOpenLive . MouseDown
582 btnOpenLive . BackgroundImage = Image . FromFile ("./ images /OLs.png")
583 End Sub
584
585 Private Sub Button4_MouseUp (sender As Object , e As MouseEventArgs) Handles

btnOpenLive . MouseUp
586 btnOpenLive . BackgroundImage = Image . FromFile ("./ images /OL.png")
587 End Sub
588
589 Private Sub DomainUpDown1_TextChanged (sender As Object , e As EventArgs)

Handles noteSelection . TextChanged
590 btnSendNotes .Text = "Set the instrument for playing " & noteSelection .Text

& " "
591 If inChord .Text > 1 Then
592 btnSendNotes .Text = btnSendNotes .Text & " chord "
593 Else
594 btnSendNotes .Text = btnSendNotes .Text & "note"
595 End If
596
597 If noteSelection .Text > 1 Then
598 btnSendNotes .Text = btnSendNotes .Text & "s"
599 End If
600 End Sub
601
602
603
604 Private Sub inChord_TextChanged (sender As Object , e As EventArgs) Handles

inChord . TextChanged
605 btnSendNotes .Text = "Set the instrument for playing " & noteSelection .Text

& " "
606 If inChord .Text > 1 Then
607 btnSendNotes .Text = btnSendNotes .Text & " chord "
608 Else

99

609 btnSendNotes .Text = btnSendNotes .Text & "note"
610 End If
611 If Not (noteSelection .Text = "") Then
612 If noteSelection .Text > 1 Then
613 btnSendNotes .Text = btnSendNotes .Text & "s"
614 End If
615 End If
616 End Sub
617
618 End Class

Listing 26: Instruments Manager whole code

100

Processing code for graphing roll, acceleration, base-note and
velocity

1 import p r o c e s s i n g . s e r i a l . ∗ ;
2 Serial myPort ;
3

4 i n t numValues = 4 ;
5

6 f l o a t [] va lue s = new f l o a t [numValues] ;
7 i n t [] min = new i n t [numValues] ;
8 i n t [] max = new i n t [numValues] ;
9 c o l o r [] va lCo lor = new c o l o r [numValues] ;

10

11 f l o a t partH ;
12

13 i n t xPos = 0 ;
14 boolean c l e a r S c r e e n = true ;
15

16

17 void setup () {
18 s i z e (1200 , 600) ;
19 partH = he ight / numValues ;
20

21 myPort = new Serial (th i s , Serial . l i s t () [0] , 115200) ;
22 myPort . b u f f e r U n t i l (’ \n ’) ;
23

24 t e x t S i z e (10) ;
25

26 background (0) ;
27 noStroke () ;
28

29 va lue s [0] = 0 ;
30 min [0] = 0 ;
31 max [0] = 60 ;
32 va lCo lor [0] = c o l o r (255 , 0 , 0) ;
33

34 va lue s [1] = 0 ;
35 min [1] = 0 ;
36 max [1] = 128 ;
37 va lCo lor [1] = c o l o r (0 , 255 , 0) ;
38

39 va lue s [2] = 0 ;
40 min [2] = 59 ;
41 max [2] = 76 ;
42 va lCo lor [2] = c o l o r (0 , 0 , 255) ;
43

44 va lue s [3] = 0 ;
45 min [3] = 0 ;
46 max [3] = 360 ; // custom range example
47 va lCo lor [3] = c o l o r (255 , 0 , 255) ; // purple
48

49 }
50

101

51 void draw () {
52

53 i f (c l e a r S c r e e n) {
54 background (0) ;
55 c l e a r S c r e e n = f a l s e ; // r e s e t f l a g
56 }
57

58 f o r (i n t i=0 ; i<numValues ; i++) {
59 f l o a t mappedVal = map(va lue s [i] , min [i] , max [i] , 0 , partH) ;
60 s t r oke (va lCo lor [i]) ;
61 l i n e (xPos , partH ∗(i+1) , xPos , partH ∗(i+1) − mappedVal) ;
62 s t r oke (255) ;
63 l i n e (0 , partH ∗(i+1) , width , partH ∗(i+1)) ;
64 f i l l (50) ;
65 noStroke () ;
66 r e c t (0 , partH∗ i+1 , 70 , 12) ;
67 f i l l (255) ;
68 t ex t (round (va lue s [i]) , 2 , partH∗ i+10) ;
69 f i l l (125) ;
70 t ex t (max [i] , 40 , partH∗ i+10) ;
71 }
72 xPos++;
73 i f (xPos > width) {
74 xPos = 0 ;
75 c l e a r S c r e e n = true ;
76 }
77

78 }
79

80 void s e r i a l E v e n t (Serial myPort) {
81 t ry {
82 St r ing i n S t r i n g = myPort . r ea d St r i n g Un t i l (’ \n ’) ;
83

84 i f (i n S t r i n g != n u l l) {
85 i n S t r i n g = trim (i n S t r i n g) ;
86 va lue s = f l o a t (sp l i tTokens (inSt r ing , " , \ t ")) ;
87 }
88 }
89 catch (RuntimeException e) {
90 e . pr intStackTrace () ;
91 }
92 }

Listing 27: Processing code for graphing

102

Arduino Due code - initial tests
1 #inc lude <SPI . h> // Inc luded f o r SFE_LSM9DS0 l i b r a r y
2 #inc lude <Wire . h>
3 #inc lude <Adafruit_Sensor . h>
4 #inc lude "MIDIUSB. h "
5 #inc lude <SFE_LSM9DS0 . h>
6

7 #d e f i n e LSM9DS0_XM 0x1D // Would be 0x1E i f SDO_XM i s LOW
8 #d e f i n e LSM9DS0_G 0x6B // Would be 0x6A i f SDO_G i s LOW
9 LSM9DS0 dof (MODE_I2C, LSM9DS0_G, LSM9DS0_XM) ;

10

11 #d e f i n e beta s q r t (3.0 f / 4.0 f) ∗ GyroMeasError // compute beta
12 #d e f i n e zeta s q r t (3.0 f / 4.0 f) ∗ GyroMeasDrift // compute zeta , the

other f r e e parameter in the Madgwick scheme u s u a l l y s e t to a smal l
or zero value

13 #d e f i n e Kp 2.0 f ∗ 5.0 f // these are the f r e e parameters in the Mahony
f i l t e r and f u s i o n scheme , Kp f o r p r o p o r t i o n a l feedback , Ki f o r
i n t e g r a l

14 #d e f i n e Ki 0.0 f
15

16 uint 32_t count = 0 ; // used to c o n t r o l d i s p l a y output ra t e
17 uint 32_t delt_t = 0 ; // used to c o n t r o l d i s p l a y output ra t e
18 f l o a t pitch , yaw , r o l l , heading ;
19 f l o a t d e l t a t = 0.0 f ; // i n t e g r a t i o n i n t e r v a l f o r both f i l t e r

schemes
20 uint 32_t lastUpdate = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l
21 uint 32_t Now = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l
22

23 f l o a t ab ia s [3] = {0 , 0 , 0 } , gb ia s [3] = {0 , 0 , 0 } ;
24 f l o a t ax , ay , az , gx , gy , gz , mx, my, mz ; // v a r i a b l e s to hold l a t e s t

s enso r data va lue s
25 f l o a t q [4] = {1.0 f , 0.0 f , 0.0 f , 0.0 f } ; // vec to r to hold quatern ion
26 f l o a t e Int [3] = {0.0 f , 0.0 f , 0.0 f } ; // vec to r to hold i n t e g r a l

e r r o r f o r Mahony method
27 f l o a t temperature ;
28

29 i n t vo lume increas ing=0 ;
30 double o ldnote=0 ;
31

32 void noteOn (byte channel , byte pitch , byte v e l o c i t y) {
33 midiEventPacket_t noteOn = {0x09 , 0x90 | channel , p itch , v e l o c i t y } ;
34 MidiUSB . sendMIDI (noteOn) ;
35 }
36

37 void noteOf f (byte channel , byte pitch , byte v e l o c i t y) {
38 midiEventPacket_t noteOf f = {0x08 , 0x80 | channel , p itch , v e l o c i t y } ;
39 MidiUSB . sendMIDI (noteOf f) ;
40 }
41

42 void controlChange (byte channel , byte cont ro l , byte va lue) {
43 midiEventPacket_t event = {0x0B, 0xB0 | channel , cont ro l , va lue } ;
44 MidiUSB . sendMIDI (event) ;
45 }

103

46

47 void setup ()
48 {
49 Serial . begin (115200) ; // Star t s e r i a l at 115200 bps
50

51

52 uint 32_t s t a t u s = dof . begin () ;
53

54 dof . s e t A c c e l S c a l e (dof .A_SCALE_2G) ;
55 dof . s e tGyroSca le (dof .G_SCALE_245DPS) ;
56 dof . setMagScale (dof .M_SCALE_2GS) ;
57 dof . setAccelODR (dof .A_ODR_200) ;
58 dof . setAccelABW (dof .A_ABW_50) ;
59 dof . setGyroODR(dof .G_ODR_190_BW_125) ;
60 dof . setMagODR(dof .M_ODR_125) ;
61 dof . calLSM9DS0 (gbias , ab ia s) ;
62 }
63

64 void MadgwickQuaternionUpdate (f l o a t ax , f l o a t ay , f l o a t az , f l o a t gx ,
f l o a t gy , f l o a t gz , f l o a t mx, f l o a t my, f l o a t mz)

65 {
66 f l o a t q1 = q [0] , q2 = q [1] , q3 = q [2] , q4 = q [3] ; // shor t name

l o c a l v a r i a b l e f o r r e a d a b i l i t y
67 f l o a t norm ;
68 f l o a t hx , hy , _2bx , _2bz ;
69 f l o a t s 1 , s 2 , s 3 , s 4 ;
70 f l o a t qDot1 , qDot2 , qDot3 , qDot4 ;
71

72 // Aux i l i a ry v a r i a b l e s to avoid repeated a r i thmet i c
73 f l o a t _2q1mx;
74 f l o a t _2q1my;
75 f l o a t _2q1mz;
76 f l o a t _2q2mx;
77 f l o a t _4bx ;
78 f l o a t _4bz ;
79 f l o a t _2q1 = 2.0 f ∗ q1 ;
80 f l o a t _2q2 = 2.0 f ∗ q2 ;
81 f l o a t _2q3 = 2.0 f ∗ q3 ;
82 f l o a t _2q4 = 2.0 f ∗ q4 ;
83 f l o a t _2q1q3 = 2.0 f ∗ q1 ∗ q3 ;
84 f l o a t _2q3q4 = 2.0 f ∗ q3 ∗ q4 ;
85 f l o a t q1q1 = q1 ∗ q1 ;
86 f l o a t q1q2 = q1 ∗ q2 ;
87 f l o a t q1q3 = q1 ∗ q3 ;
88 f l o a t q1q4 = q1 ∗ q4 ;
89 f l o a t q2q2 = q2 ∗ q2 ;
90 f l o a t q2q3 = q2 ∗ q3 ;
91 f l o a t q2q4 = q2 ∗ q4 ;
92 f l o a t q3q3 = q3 ∗ q3 ;
93 f l o a t q3q4 = q3 ∗ q4 ;
94 f l o a t q4q4 = q4 ∗ q4 ;
95

96 // Normalise acce l e romete r measurement
97 norm = s q r t (ax ∗ ax + ay ∗ ay + az ∗ az) ;

104

98 i f (norm == 0.0 f) r e turn ; // handle NaN
99 norm = 1.0 f /norm ;

100 ax ∗= norm ;
101 ay ∗= norm ;
102 az ∗= norm ;
103

104 // Normalise magnetometer measurement
105 norm = s q r t (mx ∗ mx + my ∗ my + mz ∗ mz) ;
106 i f (norm == 0.0 f) r e turn ; // handle NaN
107 norm = 1.0 f /norm ;
108 mx ∗= norm ;
109 my ∗= norm ;
110 mz ∗= norm ;
111

112 // Reference d i r e c t i o n o f Earth ’ s magnetic f i e l d
113 _2q1mx = 2.0 f ∗ q1 ∗ mx;
114 _2q1my = 2.0 f ∗ q1 ∗ my;
115 _2q1mz = 2.0 f ∗ q1 ∗ mz;
116 _2q2mx = 2.0 f ∗ q2 ∗ mx;
117 hx = mx ∗ q1q1 − _2q1my ∗ q4 + _2q1mz ∗ q3 + mx ∗ q2q2 + _2q2 ∗ my

∗ q3 + _2q2 ∗ mz ∗ q4 − mx ∗ q3q3 − mx ∗ q4q4 ;
118 hy = _2q1mx ∗ q4 + my ∗ q1q1 − _2q1mz ∗ q2 + _2q2mx ∗ q3 − my ∗ q2q

2 + my ∗ q3q3 + _2q3 ∗ mz ∗ q4 − my ∗ q4q4 ;
119 _2bx = s q r t (hx ∗ hx + hy ∗ hy) ;
120 _2bz = −_2q1mx ∗ q3 + _2q1my ∗ q2 + mz ∗ q1q1 + _2q2mx ∗ q4 − mz ∗

q2q2 + _2q3 ∗ my ∗ q4 − mz ∗ q3q3 + mz ∗ q4q4 ;
121 _4bx = 2.0 f ∗ _2bx ;
122 _4bz = 2.0 f ∗ _2bz ;
123

124 // Gradient decent a lgor i thm c o r r e c t i v e s tep
125 s 1 = −_2q3 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q2 ∗ (2.0 f ∗ q1q2 + _2

q3q4 − ay) − _2bz ∗ q3 ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2q4
− q1q3) − mx) + (−_2bx ∗ q4 + _2bz ∗ q2) ∗ (_2bx ∗ (q2q3 − q1q4) +

_2bz ∗ (q1q2 + q3q4) − my) + _2bx ∗ q3 ∗ (_2bx ∗ (q1q3 + q2q4) + _2
bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;

126 s 2 = _2q4 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q1 ∗ (2.0 f ∗ q1q2 + _2q
3q4 − ay) − 4.0 f ∗ q2 ∗ (1.0 f − 2.0 f ∗ q2q2 − 2.0 f ∗ q3q3 − az) + _2
bz ∗ q4 ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2q4 − q1q3) − mx)
+ (_2bx ∗ q3 + _2bz ∗ q1) ∗ (_2bx ∗ (q2q3 − q1q4) + _2bz ∗ (q1q2 + q
3q4) − my) + (_2bx ∗ q4 − _4bz ∗ q2) ∗ (_2bx ∗ (q1q3 + q2q4) + _2bz
∗ (0.5 f − q2q2 − q3q3) − mz) ;

127 s 3 = −_2q1 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q4 ∗ (2.0 f ∗ q1q2 + _2
q3q4 − ay) − 4.0 f ∗ q3 ∗ (1.0 f − 2.0 f ∗ q2q2 − 2.0 f ∗ q3q3 − az) +
(−_4bx ∗ q3 − _2bz ∗ q1) ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4) + _2bz ∗ (q2
q4 − q1q3) − mx) + (_2bx ∗ q2 + _2bz ∗ q4) ∗ (_2bx ∗ (q2q3 − q1q4) +
_2bz ∗ (q1q2 + q3q4) − my) + (_2bx ∗ q1 − _4bz ∗ q3) ∗ (_2bx ∗ (q1q

3 + q2q4) + _2bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;
128 s 4 = _2q2 ∗ (2.0 f ∗ q2q4 − _2q1q3 − ax) + _2q3 ∗ (2.0 f ∗ q1q2 + _2q

3q4 − ay) + (−_4bx ∗ q4 + _2bz ∗ q2) ∗ (_2bx ∗ (0.5 f − q3q3 − q4q4)
+ _2bz ∗ (q2q4 − q1q3) − mx) + (−_2bx ∗ q1 + _2bz ∗ q3) ∗ (_2bx ∗ (q
2q3 − q1q4) + _2bz ∗ (q1q2 + q3q4) − my) + _2bx ∗ q2 ∗ (_2bx ∗ (q1q3
+ q2q4) + _2bz ∗ (0.5 f − q2q2 − q3q3) − mz) ;

129 norm = s q r t (s 1 ∗ s 1 + s 2 ∗ s 2 + s 3 ∗ s 3 + s 4 ∗ s 4) ; // normal i se
s tep magnitude

105

130 norm = 1.0 f /norm ;
131 s 1 ∗= norm ;
132 s 2 ∗= norm ;
133 s 3 ∗= norm ;
134 s 4 ∗= norm ;
135

136 // Compute ra t e o f change o f quatern ion
137 qDot1 = 0.5 f ∗ (−q2 ∗ gx − q3 ∗ gy − q4 ∗ gz) − beta ∗ s 1 ;
138 qDot2 = 0.5 f ∗ (q1 ∗ gx + q3 ∗ gz − q4 ∗ gy) − beta ∗ s 2 ;
139 qDot3 = 0.5 f ∗ (q1 ∗ gy − q2 ∗ gz + q4 ∗ gx) − beta ∗ s 3 ;
140 qDot4 = 0.5 f ∗ (q1 ∗ gz + q2 ∗ gy − q3 ∗ gx) − beta ∗ s 4 ;
141

142 // I n t e g r a t e to y i e l d quatern ion
143 q1 += qDot1 ∗ d e l t a t ;
144 q2 += qDot2 ∗ d e l t a t ;
145 q3 += qDot3 ∗ d e l t a t ;
146 q4 += qDot4 ∗ d e l t a t ;
147 norm = s q r t (q1 ∗ q1 + q2 ∗ q2 + q3 ∗ q3 + q4 ∗ q4) ; // normal i se

quatern ion
148 norm = 1.0 f /norm ;
149 q [0] = q1 ∗ norm ;
150 q [1] = q2 ∗ norm ;
151 q [2] = q3 ∗ norm ;
152 q [3] = q4 ∗ norm ;
153

154 }
155

156

157

158

159 void loop ()
160 {
161 dof . readGyro () ; // Read raw gyro data
162 gx = dof . calcGyro (dof . gx) − gb ia s [0] ; // Convert to degree s per

seconds , remove gyro b i a s e s
163 gy = dof . calcGyro (dof . gy) − gb ia s [1] ;
164 gz = dof . calcGyro (dof . gz) − gb ia s [2] ;
165

166 dof . readAcce l () ; // Read raw acce l e romete r data
167 ax = dof . c a l c A c c e l (dof . ax) − ab ia s [0] ; // Convert to g ’ s , remove

acce l e romete r b i a s e s
168 ay = dof . c a l c A c c e l (dof . ay) − ab ia s [1] ;
169 az = dof . c a l c A c c e l (dof . az) − ab ia s [2] ;
170

171 dof . readMag () ; // Read raw magnetometer data
172 mx = dof . calcMag (dof .mx) ; // Convert to Gauss and c o r r e c t f o r

c a l i b r a t i o n
173 my = dof . calcMag (dof .my) ;
174 mz = dof . calcMag (dof .mz) ;
175

176 Now = micros () ;
177 d e l t a t = ((Now − lastUpdate) /1000000.0 f) ; // s e t i n t e g r a t i o n time

by time e lapsed s i n c e l a s t f i l t e r update
178 lastUpdate = Now;

106

179

180 MadgwickQuaternionUpdate (ax , ay , az , gx∗PI/180.0 f , gy∗PI/180.0 f , gz
∗PI/180.0 f , mx, my, mz) ;

181

182 yaw = atan2 (2.0 f ∗ (q [1] ∗ q [2] + q [0] ∗ q [3]) , q [0] ∗ q [0] + q [1
] ∗ q [1] − q [2] ∗ q [2] − q [3] ∗ q [3]) ;

183 p i t ch = −a s in (2.0 f ∗ (q [1] ∗ q [3] − q [0] ∗ q [2])) ;
184 r o l l = atan2 (2.0 f ∗ (q [0] ∗ q [1] + q [2] ∗ q [3]) , q [0] ∗ q [0] − q [1

] ∗ q [1] − q [2] ∗ q [2] + q [3] ∗ q [3]) ;
185 p i t ch ∗= 180.0 f / PI ;
186 yaw ∗= 180.0 f / PI ;
187 yaw −= 2.2 ; // MODIFIED FOR TURIN Dec l i na t i on at Danvi l l e ,

C a l i f o r n i a i s 13 degree s 48 minutes and 47 seconds on 2014−04−04
188 r o l l ∗= 180.0 f / PI ;
189

190 Serial . p r i n t l n ("New note or volume ") ;
191 double e l a b r o l l ;
192 e l a b r o l l=r o l l+90 ;
193 i f (e l a b r o l l < 180 && e l a b r o l l > 0) {
194

195 e l a b r o l l=e l a b r o l l /30 ;
196 i f (e l a b r o l l − f l o o r (e l a b r o l l)>0.5) {
197 e l a b r o l l=c e i l (e l a b r o l l) ;
198 }
199 e l s e e l a b r o l l=f l o o r (e l a b r o l l) ;
200

201

202 i n t notetop lay=e l a b r o l l+60 ;
203

204 #i f d e f DEBUG
205 Serial . p r i n t (" Note to play : ") ; Serial . p r i n t l n (notetop lay) ;
206 #e n d i f
207

208 i f (notetop lay != oldnote) {
209 vo lume increas ing=0 ;
210 Serial . p r i n t l n (" Sending note o f f ") ;
211 noteOf f (1 , o ldnote , 64) ; // Channel 0 , middle C, normal

v e l o c i t y
212 MidiUSB . f l u s h () ;
213 // de lay (100) ;
214 Serial . p r i n t l n (" Sending note on ") ;
215 noteOn (1 , notetoplay , 64) ; // Channel 0 , middle C, normal

v e l o c i t y
216 MidiUSB . f l u s h () ;
217

218 // de lay (200) ;
219 }
220 e l s e {
221

222 double curraccx=ax∗SENSORS_GRAVITY_STANDARD;
223 double curraccy=ay∗SENSORS_GRAVITY_STANDARD;
224 double cur raccz=az∗SENSORS_GRAVITY_STANDARD;
225

226 #i f d e f DEBUG

107

227 Serial . p r i n t (" Curracx ") ; Serial . p r i n t l n (curraccx) ;
228 Serial . p r i n t (" Curracy ") ; Serial . p r i n t l n (curraccy) ;
229 Serial . p r i n t (" Curracz ") ; Serial . p r i n t l n (cur raccz) ;
230 #e n d i f
231

232 i f (s q r t (curraccx ∗ curraccx+curraccy ∗ curraccy+cur raccz ∗ cur raccz)
−SENSORS_GRAVITY_STANDARD > 0.05) {

233 i f (64+volumeincreas ing+f l o o r (s q r t (curraccx ∗ curraccx+
curraccy ∗ curraccy+cur raccz ∗ cur raccz)−9.8) < 128) {

234 vo lume increas ing=vo lume increas ing+f l o o r (s q r t (curraccx ∗
curraccx+curraccy ∗ curraccy+cur raccz ∗ cur raccz)−9.8) ;

235 controlChange (1 , 7 , 64+volume increas ing) ;
236 MidiUSB . f l u s h () ;
237 }
238 e l s e {
239 controlChange (1 , 7 , 128) ;
240 MidiUSB . f l u s h () ;
241 }
242 }
243 e l s e {
244 i f (vo lumeincreas ing >0) {
245 vo lume increas ing=volumeincreas ing −1 ;
246 controlChange (1 , 7 , 64+volumeincreas ing) ;
247 MidiUSB . f l u s h () ;
248 }
249 }
250 // de lay (60) ;
251 }
252 o ldnote=notetop lay ;
253 }
254 }

Listing 28: Arduino Due code - initial tests

108

List of Figures

List of Figures

2.1 Ableton Live 9 Suite interface . 7
2.2 MIDI peripherals settings on Ableton Live Suite 9 8
2.3 rtpMIDI interface . 8
2.4 Part of the MIDI-OX interface . 9
2.5 Max interface with an example . 10
2.6 Midi Note Mapper . 10

3.7 22th National Convention poster . 14

4.8 Max interface with an example . 15

5.9 Matteo, playing the chime during the last concert of Tra silenzio e baccano 17
5.10 The Cavarin . 19

6.11 Rotation of the hand for note selection (AllHandModels with LeapMotion) 22
6.12 Rotation space of the hand for note selection (AllHandModels with Leap M.) 25

7.13 Adafruit LSM9DS0 IMU . 27
7.14 Adafruit Feather Huzzah ESP8266 . 28
7.15 Li-Po 1500 mAh Battery . 29
7.16 XCSOURCE Battery Charger Module and TP4056 output current table . . 29
7.17 Internal (right) and external (left) gloves . 30
7.18 The schematic, made in Autocad . 30
7.19 Placement of the components on the internal glove an covering 31
7.20 Mapping roll-intervals to notes/chords . 39
7.21 Examples of intervals placement depending on the total number of notes . . 41
7.22 Instruments distinction for velocity computation 43
7.23 Test of the velocity-computation algorithm 1 44
7.24 Test of the velocity-computation algorithm 2 45
7.25 Test of the velocity-computation algorithm 3 47
7.26 Test of the velocity-computation final algorithm 48

8.27 MyPublicWiFi - Glove-network setting-up 54
8.28 MyPublicWiFi - Clients tab and IP getting 55
8.29 rtpMIDI empty interface . 55

109

List of Figures

8.30 Connections . 56
8.31 MIDI-OX Configuration . 56
8.32 Enabling inputs on Ableton Live . 57
8.33 Midi Notes Mapper for music scale setting 57
8.34 Mapping to Track Volume control . 58
8.35 Control-7 Change mapped to Track Volume control 58
8.36 Instruments Maganer start-up GUI . 59
8.37 Instruments Maganer GUI . 60
8.38 Instruments Maganer FSM . 63
8.39 DisplayData scheme . 66

9.40 Samir, using the B-Glove prototype during the rehearsals for the live - Poirino 71

110

LISTINGS

Listings

7.1 Needed libraries . 33
7.2 Credentials for WiFi connection . 34
7.3 WiFi and rtpMIDI connection code . 34
7.4 IMU initialization code . 35
7.5 The loop: condition for looping and polling for outside messages 36
7.6 Data collection and filtering . 37
7.7 OnAppleMidiNoteOn function code . 39
7.8 Declaration of zeroPosition and angle vectors 40
7.9 Computation of the note to play depending on the hand inclination and on

the total number of notes . 41
7.10 Version 1 of velocity computation . 44
7.11 Version 2 of velocity computation . 46
7.12 Roll factor computation . 47
7.13 Average-based velocity computation - version 1 47
7.14 Average-based velocity computation - version 2 48
7.15 Delivering of the MIDI messages to the PC 49
7.16 Computation of filter rate and time between consecutive MIDI messages . . 50
8.17 winmm.dll declarations . 62
8.18 MIDIINCAPS structure . 62
8.19 MidiInProc function . 62
8.20 Instruments Manager FSM states definition 64
8.21 Songs structure . 64
8.22 openLive button code . 65
8.23 DisplayData function . 66
8.24 Power button code . 68
25 B-Glove full code . 79
26 Instruments Manager whole code . 89
27 Processing code for graphing . 101
28 Arduino Due code - initial tests . 103

111

	Introduction
	Music and MIDI
	Music: levels of representation and digital production
	MIDI: Musical Instrument Digital Interface
	MIDI Messages
	The velocity
	Note On
	Note Off
	Control Change

	Software
	Ableton Live
	rtpMIDI
	MIDI-OX
	Max for Live and MIDI Note Mapper

	Music for therapy
	The Music Therapy: history and definition
	Music for Autism
	Autism
	Music Therapy for children affected by Autism

	Music and movement: Orff Method
	Globality of languages

	Some theory about 3D mechanics and flight dynamics
	Quaternions
	Yaw, Pitch and Roll
	Madgwick Filter

	The context
	Tra silenzio e baccano
	Samir

	Arduino Disability Orchestra
	Cavarin

	Requirements
	Starting point and requirements
	Addressing the requirements: basic idea for a new instrument
	Sensing subsystem
	Processing (and communication) subsystem

	The final Requirement Document
	Market analysis

	The B-Glove
	Hardware Design
	Sensing part: the IMU
	The microcontroller: Adafruit Feather Huzzah ESP8266 (AFH)
	Power
	The glove: design
	Putting all together: the schematic
	Putting all together: placement on the glove

	Software Design and Testing
	Needed libraries
	WiFi and rtpMIDI connections (Setup)
	IMU initialization (Setup)
	The loop: condition for looping and outside messages polling
	Data collection and filtering
	MIDI management

	Performance and costs evaluation
	Speed
	Usability and limits
	Reliablity
	Safety
	Costs

	Instruments Manager
	PC preparation
	Connection settings on the instrument
	rtpMIDI: setting up the connection
	MIDI-OX and MIDI-Yoke
	Ableton Live sets and Max MIDI Notes Mapper

	Why Visual Basic?
	The software
	Instructions for use
	The code

	Samir and the B-Glove
	Why Samir?
	At the first appointment: the birth of the name
	The concert in Poirino (TO)

	Ideas for the future
	B-Glove and Instruments Manager improvements
	General ideas for Tra silenzio e baccano

	Conclusions
	Bibliography
	Appendices
	B-Glove full code
	Instruments Manager full code
	Processing code for graphing roll, acceleration, base-note and velocity
	Arduino Due code - initial tests

		Politecnico di Torino
	2017-10-16T15:45:53+0000
	Politecnico di Torino
	Antonio Servetti
	Tesi 230092

