
MASTER THESIS

Video Streaming Optimization For The
A380 Cabin Video Monitoring System

Author:
Amna BEN AYED
Supervisor:
Guillaume CHAUVEL- Zodiac Aerospace
examinators:
Enrico MASALA - Politecnico di Torino
Yves MATHIEU - Télécom ParisTech

Host organism:

September 13, 2017

iii

Abstract
Video Streaming Optimization For The A380 Cabin Video Monitoring System

by Amna BEN AYED

Statistics claim that the aircraft video surveillance systems market is estimated to be
$127.13 million in 2014 and is expected to reach $173.83 million by 2020. This in-
creasing concern for in-flight surveillance is triggered by the growing emphasis on
the security of the aircraft and the safety of passengers. The need for video surveil-
lance is even greater for very large aircrafts like the A380 which is the world’s largest
passenger airliner. The system is usually implemented within the most strategic ar-
eas of the aircraft, including the passenger cabins, the cockpit door and cargo areas.
In order to design a video surveillance system that is efficient and that is also suit-
able for safe flight, various challenges are encountered.
This work focuses on one challenge of key importance in the performance and qual-
ity of the whole system, which is the streaming of videos from surveillance cameras
to aircraft monitors. This work was done during my 6 month internship at Zodiac
Aerospace, a world leader in aerospace equipments. It is mainly intended to provide
a quite simple and practical solution to improve and optimize the video streaming
transport layer currently implemented in the Zodiac A380 video surveillance sys-
tem. The proposed optimization makes use of a common practice in the multimedia
world which is putting multimedia content in a convenient form allowing it to be
easily retrieved and correctly played. In fact, in order to get the best streaming per-
formance, it is absolutely necessary to find the best way to compress and encode
multimedia streams. But this is not sufficient. Transmitting the streams in an ade-
quate multimedia container plays on its side a key role in determining the quality of
videos being streamed. This was realized by taking advantage of the characteristics
of a standard multimedia container format which has been selected and adapted for
the specific case of the aircraft cabin video monitoring system.

v

Acknowledgements

I would first like to thank my supervisor in Zodiac Mr Guillaume Chauvel and
all the CVMS team for supporting me upon the different stages of my internship.

I would also like to thank Professor Enrico Masala from Politecnico di Torino and
Professor Yves Mathieu from Télécom ParisTech for participating in the validation
of this work.

Finally, I would like to extend my deepest gratitude to my family and friends for
all the love they gave me and for their continuous encouragement throughout my
years of study. Without them I wouldn’t be where I am today. Thank you. . .

Amna Ben Ayed

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Thesis Context . 1
1.2 Company Presentation . 1
1.3 Cabin Video Monitoring System Project 1
1.4 Project Team Presentation . 3
1.5 Thesis Organization . 4

2 Cabin Video Monitoring System Overview 5
2.1 System Development Methodology . 5

2.1.1 Software life cycle . 5
2.1.2 Product delivery baselines . 6
2.1.3 Certification considerations . 6

2.2 Software Development Tools . 6
2.2.1 Project Management Systems . 6
2.2.2 Code Development Tools . 7
2.2.3 Debugging Tools . 7
2.2.4 Network tools . 8

2.3 System general description . 8
2.4 System Basic Components . 9

2.4.1 Data Acquisition Unit (DAU) . 9
2.4.1.1 Data Acquisition Unit Overview 9
2.4.1.2 Software loading and system Configuration 11
2.4.1.3 DAU Address allocation: 12

2.4.2 Area Distribution Unit (ADU) 12
2.4.2.1 Area Distribution Unit Overview 12
2.4.2.2 ADU Address allocation 13

2.4.3 Cameras . 13
2.4.3.1 Camera Overview . 13
2.4.3.2 Camera configuration . 13
2.4.3.3 Address allocation for cameras 14

2.4.4 Sinks . 14

3 Video Streaming Issues 17
3.1 Video Streaming Functionality Overview 17

3.1.1 Scope on the streaming server in SD mode 18
3.1.2 Software used to play videos on Flight Attendant Panels and

System Display . 18
3.2 Issues With The Current Video Streaming Transport Layer 20
3.3 Goal and expected results . 21

viii

4 Proposed Solution For Video Streaming Optimization 23
4.1 Video Streaming Multimedia Containers And Codecs 23

4.1.1 Codecs . 23
4.1.2 Multimedia containers[2] . 23

4.2 Optimizing Video Streaming Using A Multimedia Container 24
4.2.1 Which multimedia Container To Choose? 24
4.2.2 Streaming MJPEG into Ogg Format Over HTTP 25

4.2.2.1 Ogg overview[3] . 25
4.2.2.2 Embedding MJPEG into an Ogg bitstream 26
4.2.2.3 Packet Timestamp and Variable Frame Rate Considerations[4] 27

5 Proposed solution implementation and Development 31
5.1 Work environment . 31

5.1.1 System Test Bench Description 31
5.1.2 Code development and testing 31

5.2 Streaming MJPEG Over Ogg Demo . 33
5.2.1 Demo Streaming Server Overview 33

Ogg Stream Header Packets . 33
Stream Data Packets . 34

5.2.2 Demo Streaming Server Testing 35
5.3 Solution Implementation On The Data Acquisition Unit 35

5.3.1 Overview On The DAU Http Streaming Server 35
5.3.2 Streaming Server Data Transfer Mechanism 36
5.3.3 Re-implementation of MediaStreamController services to sup-

port Ogg . 36

6 Performance analysis and comparisons 39
6.1 Stream Analysis Duration . 39
6.2 CPU Usage . 39
6.3 Performance at a Variable Frame Rate 41
6.4 Data Overhead . 42
6.5 Latency . 42

ix

List of Figures

1.1 Entirely supervised cabin using a camera with a wide angle of view . . 2

2.1 System development V-Cycle . 5
2.2 CVMS functional overview . 9
2.3 ARINC 600 housing the DAU . 10
2.4 Data Acquisition Unit . 10
2.5 CVMS Configuration Loading . 11
2.6 Operational Software Loading . 12
2.7 Area Distribution Unit . 12
2.8 CVMS cameras . 13
2.9 Cockpit System Display - Flight Attendant Panel 14

3.1 CVMS components involved in the video streaming function 17
3.2 DAU a streaming server and client . 18
3.3 MJPEG stream . 18
3.4 Java-Applet and MPlayer for displaying videos 19
3.5 MPlayer stream analysis . 20

4.1 Ogg bitstreaming . 26
4.2 HTTP response packet from VLC to MPlayer 26
4.3 Fixed Frame Rate VS Variable Frame Rate 27
4.4 Inter-frame compression . 29
4.5 Intra-frame compression . 29

5.1 CVMS System Test Bench . 31
5.2 Ogg setup header packet . 34
5.3 Ogg setup comment packet . 34
5.4 Ogg demo streaming . 35
5.5 Ogg headers sent by Startstreams service 37
5.6 pushBuffer() method re-implementation to stream Ogg packets 38

6.1 MJPEG streaming 1 camera 1 client . 40
6.2 Ogg streaming 1 camera 1 client . 40
6.3 MJPEG streaming 1 camera 4 clients . 40
6.4 Ogg Streaming 1 camera 4 clients . 41
6.5 MJPEG Streaming 2 Cameras 4 Clients 41
6.6 Ogg Streaming 2 Cameras 4 Clients . 41
6.7 Ogg support while conserving MJPEG streaming 42

xi

List of Tables

2.1 CVMS Video stream providers. 13
2.2 CVMS video sinks. 14

4.1 Container formats Comparison . 24
4.2 Ogg Page Header . 25

xiii

List of Abbreviations

ADU Acquisition Data Unit
CVMS Cabin Video Monitoring Sysytem
CDSS Cockpit Door Surveillance System
CDAM Centralized Data Surveillance System
CMV Concentrator and Multiplexer for Video
DVR Digital Video Recorder
DAL Development Assurance Level
DAU Data Acquisition Unit
FAP Flight Attendant Panels
GSP Ground Service Panel
HTTP Hyper Text TransferProtocol
HD High Definition
LRU Line Replaceable Unit
LMF Local Maintenance Function
MSOC Master System On Chip
MJPEG Motion JPEG
SATCOM Satellite Communication
SD Standard Definition

1

Chapter 1

Introduction

1.1 Thesis Context

My master thesis has taken place in Zodiac Aerospace Group. I was part of the soft-
ware development team participating in the realization of the Zodiac video surveil-
lance system for the airbus aircraft A380. In this chapter I will present the company
and the project as well as the organization and the plan of my thesis.

1.2 Company Presentation

Zodiac Aerospace is a leader in aerospace equipments. It is specialized in realizing
on-board systems for aircrafts as well as helicopters. The company was founded
by Maurice Mallet in 1896. Now it employs around 35,000 people in 100 different
sites around the world. Zodiac Aerospace has four main entities: Zodiac Aerosys-
tems, Zodiac Cabin Zodiac Seats, Zodiac Aerospace Services. My internship was
with Zodiac Aerotechnics which is a part of the entity Zodiac Aerosystems. Zodiac
Aerotechnics - Sensing and System Management (ZSSM) is a designs and manufac-
tures highly critical sensors and monitoring systems for the both aircrafts and heli-
copters. The entity also builds complex aerospace systems integrating fuel gauging,
automatic refueling control, center of gravity management and cockpit display func-
tions.

1.3 Cabin Video Monitoring System Project

Getting the aircraft equipped with a video surveillance system plays a key role in
the safety and security of passengers. The importance of video surveillance is even
greater in an aircraft with a very large capacity like the A380.

2 Chapter 1. Introduction

FIGURE 1.1: Entirely supervised cabin using a camera with a wide
angle of view

The system’s been required for 80% of A380 aircrafts and has always been sup-
plied by Parker who has recently decided to stop its production line of the system.
Hence in a response to Airbus request for proposal, Zodiac Controls, part of Zodiac
Group, got engaged in supplying the equipment which perfectly comes as a com-
plement to the group’s offer in terms of control systems.

The system development budget is around 7.14M$. A part’s been paid by Airbus
(around 3.6M$) and the other part is expected to be paid by selling the CVMS Zodiac
HD system and by replacing the Parker equipments.

The Zodiac system implements the High Dynamic Range imaging technology
which makes a great improvement with respect to the Parker system which only
implements Simple Definition video streaming.

The Zodiac system also guarantees compatibility with the previous one. This is a
key point as nearly 80 aircrafts are already equipped with the Parker system and in
case an equipment fails it is necessary to be able to easily replace it without further
modifications. This is the wide context of my internship. During my internship I
have mainly worked on the SD video streaming part.

1.4. Project Team Presentation 3

1.4 Project Team Presentation

The production of a certified aeronautical equipment requires a multi-functional
project team comprised of all development engineering disciplines, Manufactur-
ing Engineering, Quality Assurance (hardware/software), Material (procurement/
product planning), Manufacturing Support, Contracts, and Administration under
the Project direction Lead. The main roles and functions delegated to the members
of the A380 CVMS project team are:

• Project Manager:
in cooperation with the Software manager , the System Manager and the Soft-
ware product Team Manager defines and set up the necessary and adequate
facilities for implementation of the life cycle processes. He plan the attribution
of resources in cooperation with the Department management and checks that
the target delivery dates can be observed.

• System manager (SYM):
defines the equipment requirements, allocates them to the software or to the
hardware.

• Software product team manager (SWPTM):
ensures the physical and functional completeness of the configuration com-
ponents in the reference space. He performs configuration status accounting
activities in compliance with the approved plans and procedures in coordina-
tion with the SWM and draws up the baselines.

• Software manager (SWM):
performs the estimations of the development effort, establishes and updates
the plans and the schedule of the activities, coordinates the work of the soft-
ware development and validation and verification teams and participates in
the project reviews.

• Software development team:develops the source code for the software prod-
uct.

• Software validation & verification team:
develops the software high-level Test Cases, develops the software high-level
Test Procedures, validates the software high-level Test Cases, validates the soft-
ware high-level Test Procedures, executes the Test Procedure and records the
Test Results, verifies Test Results, reports the validation and verification re-
sults.

• Software configuration manager:
ensures the physical and functional completeness of the configuration com-
ponents in the reference space. He performs configuration status accounting
activities in compliance with the approved plans and procedures in coordina-
tion with the SWM and draws up the baselines.

• Software methodology manager (SWMM):
Provides to the SWPTM the tools, techniques and methods appropriate to the
project. He provides the support necessary to all those involved for the appli-
cation of the methodological documents and the use of the reference and tool
software library.

4 Chapter 1. Introduction

• System quality assurance manager (SWQAM):
ensures the conformity with the contractual requirements of the applicable
plans and procedures in cooperation with the SWM, the SWPTM, the SWMM
and the customer. He evaluates their application all through the life cycle in
compliance with the PSAC. The SWQAM has the authority to guarantee inde-
pendently that the corrective actions are performed. He is directly accountable
only to the Quality management.

• Hardware team manager:
performs the estimations of the development effort, establishes and updates
the plans and the schedule of the activities, coordinates the work of the soft-
ware development and validation and verification teams and participates in
the project reviews.

• Sales manager: builds the sales plan.

• Computer system manager: manages the general computer equipment envi-
ronment of the project and provides all those involved with the support nec-
essary for their configuration and use.

During my internship, I was part of the software development team but I was
also in close interaction with the hardware team mainly the Zodiac camera architect.

1.5 Thesis Organization

In order to achieve the goals of my internship I went through the following steps:

• Getting a full understanding of the system in particular the different software
components.

• Getting used to manipulating the test bench of the system which provides sim-
ulators for the different system components and an environment quite close to
the one on-board an aircraft.

• Analyzing the system behavior and identifying all issues related to the CVMS’s
video streaming function.

• Proposing solutions to optimize video streaming and visualization.

• Solution implementation.

• Analyzing the performance of the system after integrating the new solution
and comparing it with respect to the original version.

5

Chapter 2

Cabin Video Monitoring System
Overview

2.1 System Development Methodology

The life cycle of the overall CVMS system follows the V-Cycle model as described in
the figure below. As I have mainly intervened on the software part of the CVMS I
will focus here on the methodology used for software development.

FIGURE 2.1: System development V-Cycle.

2.1.1 Software life cycle

Different processes are needed in order to assure the quality of a certified software
product. the CVMS department summarizes them as follows:

• 1. Equipment definition (provides data for SW development),Planning.

• 2.Development and Validation. (specification, design, coding and integration/
debugging)

• 3.Verification (development and validation of test procedures, tests, verifica-
tion).

• 4.Configuration management.

• 5.Coordination for the certification.

• 6.Project management.

• 7.Quality assurance.

6 Chapter 2. Cabin Video Monitoring System Overview

2.1.2 Product delivery baselines

All along the software development, prototypes are realized and tested by Airbus
before the final product can be released. Testing on prototypes is necessary in order
to detect and correct potential defects on the software.

Ground Test Prototype:Once the equipment validation is completed, a software
prototype is delivered to Airbus for ground testing. Various documents should be
delivered along with the software source code and executable files. The documents
include, among others, the Software Design document, the Software Validation and
Verification document, the software Configuration index, etc.

First Flight Prototype: This baseline is accomplished after successful completion
of the equipment validation. The software is tested and is still subject to changes.
As for Ground Test prototype, a number of documents with the source code and ex-
ecutable files are delivered.

Product release: the developed software end item is released and accepted by
Airbus. This baseline shall contain the complete software documentation.

2.1.3 Certification considerations

We should also note that since it consists of an avionic system, it is necessary to go
through the certification process which assures that all the airworthiness require-
ments are respected. These requirements are based on the Development Assurance
Level (DAL) assigned to the equipment from the safety assessment process and
hazard analysis. A DAL D has been assigned to all CVMS software components.
The certification process’s been based on the standard guideline DO-178B, Software
Considerations in Airborne Systems and Equipment Certification and it is consists
mainly:

• a.On the establishment of software plans at the beginning of the life cycle, in
compliance with the requirements of document ED-12B/DO-178B.

• b.On the demonstration of the implementation of these software plans in the
course of the project.

2.2 Software Development Tools

2.2.1 Project Management Systems

• Git:It is a mature and widely used modern version control system. Each devel-
oper may clone the remote git repository it is interested in on his local machine,
making regular commits allows him to save the project history and browse it
when needed to view changes between different commits. This makes go-
ing back and canceling modifications very easy and efficient. Git also allows
branching which is very practical in order to test different ideas and to easily
switch from one to another. Besides, Git allows to guarantee data integrity by
computing a checksum for each commit.

• Repo: The software developed for the CVMS system is not stored as one Git
repository, it is instead a number of git repositories one included in another.

2.2. Software Development Tools 7

Hence, Repo is mainly used to make it easy to manage many Git repositories.
For example it is possible to update or clone all Git repositories of the project
by only running one single command repo sync.

• Gerrit: It is a web-based code review tool built on top of Git. It basically allows
to review commits before integrating them to the codebase. Different develop-
ers may regularly send their changes, these changes will then be pended until
they are reviewed, discussed and approved by other developers.

• Jenkins: It is installed on the server of the shared repository where built should
be run. Its role is to pick the changed source code, trigger a built and run tests
if required. It is possible to browse the build output in the Jenkins dashboards.
The practice of triggering a build after each commit is very common in soft-
ware development and it allows detect as soon as possible build issues.

2.2.2 Code Development Tools

• GNU Linux OS and software collection: Used to implement all CVMS soft-
ware components, i.e DAU and Camera softwares.

• Development toolchain: GNU toolchain which includes: GNU make for the
automation of compilation and build, GNU Compiler Collection GCC, GNU
Binutils for linking and assembling, etc.

• Firmware build system: PTXdist is used in order to assemble and generate
firmware images. it provides a configuration system Kconfig that allows to
customize package configuration.

• Programming languages: The major part of CVMS software is written in :

– C/C++. This choice is based on the usual constraints when dealing with
embedded systems which are basically: limited resources (memory and
CPU), efficient memory management, small stuff to load into the system
to get the software run, simple access to low level hardware API’s which
are generally written in C or C++.

– Python is used to develop the web application based on the MVC frame-
work Django.

– Java is used to write the Java applet launched by the web application for
video visualization.

– HTML is used to write web pages.

• Database server: Redis is used as an in memory data structure to store in-
formations needed for system functioning. It is the interface that allows the
communication between different software components.

2.2.3 Debugging Tools

• Mantis: It is an open source web-based bug tracker software used to track
software defects.

• GNU Debugger GDB: used to debug code. gdbserver is used to connect the
program to be debugged to GDB.

8 Chapter 2. Cabin Video Monitoring System Overview

• Valgrind: It provides debugging and profiling tools which allow for faster and
more correct programs. The most used tool is Memcheck, it allows to optimize
memory management and to detect potential memory-related errors that are
very common especially when coding in C and C++. This tool is very use-
ful in avoiding errors that might lead to unpredictable behaviour and system
crashes.

2.2.4 Network tools

• Wireshark: It is a free and open source packet analyzer that is used for net-
work troubleshooting and analysis. It is a very useful tool to verify the packets
exchanged between different system components.

• PuTTy: a free and open source terminal emulator that supports different net-
work protocols. It was used to connect and send commands via SSH to the
system embedded cards.

• SSH Unix tool : It is a tool for network connectivity that can be used to execute
commands on a remote machine.

• PackETH: It is a GUI tool that allows to generate any possible Ethernet packets
and to send them on an Ethernet link.

2.3 System general description

The CVMS is intended to assist the flight and cabin crew in order to observe all
aircraft areas and get aware of any exceptional events or potential threats. For that
a number of cameras are installed inside the aircraft cabins and the cockpit.Cameras
can also be optionally installed in the E-Bay and cargo areas.

A crew member can watch different cabin parts at the same location by selecting
the required camera stream on the Flight Attendant Panel (FAP). The cockpit crew
use instead the cockpit System Display (SD) to select and watch Camera streams.

The CVMS can also be used to surveil aircraft cabin on ground. It is possible to
access video streams via the Ground Service Panel (GSP). The GSP is also used to
implement maintenance functions.

The CVMS is realized by an Ethernet network based on a two layer star topology
connecting web cameras to the DAU passing by the ADU’s network switches. The
CVMS system is composed of 4 types of units :

• Cabin Camera: up to 30 they are installed in the entire cabin.

• Cargo Camera: up to 6 they are optional and should be installed in the E-Bay or
in cargo areas.

2.4. System Basic Components 9

• ADU: Area Distribution Unit. Up to 7 in the whole cabin, one ADU can be
connected to up to 10 Cameras.

• DAU:Data Acquisition Unit. It acts as the video server of the CVMS.

Video streams are captured by CVMS cameras installed in the aircraft cockpit and
cabins, they are then distributed to the system’s video sinks. The figure below shows
the CVMS functions involved from the acquisition of the image to its reception by
the video sink.

FIGURE 2.2: CVMS functional overview

The IP addresses are allocated based on the following network configuration:

Basis: 172.22.250
Netmask: 255.255.248.0 (/21)
Broadcast: 172.22.255.255
Range: 172.22.248.1 to 172.22.255.254
Gateway: 172.22.251.1

A DHCP server takes care of automatically affecting the IP address to each CVMS
LRU.

2.4 System Basic Components

2.4.1 Data Acquisition Unit (DAU)

2.4.1.1 Data Acquisition Unit Overview

The DAU is the core of the CVMS and it is directly or indirectly connected to all
CVMS equipments and to the avionic equipments (DVR, CDAM, CMV, etc.).

10 Chapter 2. Cabin Video Monitoring System Overview

FIGURE 2.3: ARINC 600 housing the DAU

From hardware point of view the DAU consists basically of:

• several MSOCs (Media System On Chip) for all its software DAL E functions:
System Control Module, FAPs/SATCOM/GSP web servers, FAPs/ CMV/Camera
controllers, analog acquisition, etc.

• A microcontroller chip for its software DAL D functions: System I/O Con-
troller.

FIGURE 2.4: Data Acquisition Unit

The software component of the DAU has the following functions:

• Video streaming: Transmitting video streams from requested CDSS and CVMS
cameras to the video sinks.

• Web application providing user interface for cabin crew and maintenance per-
sonnel on the FAPs.

• Software and configuration loading.

• Collection and display of informations on the status of different CVMS com-
ponents .

Each MSOC is loaded with the system’s operational software. The software im-
age that is loaded is the same for all of them. The difference is in the processes that
are activated for each one.

2.4. System Basic Components 11

2.4.1.2 Software loading and system Configuration

The CVMS operational software and configuration data are stored in a removable
media storage. As in the figure above, an SD card is used.

• Startup And Configuration Loading

At startup, the DAU checks if the stored configuration in its master SOC is sim-
ilar to the default configuration in the SD external card. If they aren’t similar
the SD card’s default configuration is copied in the DAU’s internal configura-
tion which is on its side copied to the SD current configuration. Otherwise, if
they are similar, the DAU’s stored configuration is compared to the SD card’s
current configuration.
If they are similar The DAU’s internal configuration is used, otherwise the SD’s
current configuration is copied to the DAU’s internal configuration which is,
on its side, copied to the SD’s current configuration.
At start-up, CVMS LRUs connect to the DAU configuration server to get their
configuration.

FIGURE 2.5: CVMS Configuration Loading

• Operational Software Updating The SD card hosts the software images for
DAU, ADUs and cameras. The SD card is mounted on the DAU file system.
At startup the DAU checks whether its internal software version corresponds
to the one in the SD card. In case it is different, the data loading process starts.

The DAU runs the data loading server which initiates the data loading pro-
cess in all the other CVMS LRUs (Cameras and ADUs) by sending an update
request to the data loading client of each of them. The update request is only
sent after the verifying the software revision installed in the LRU. If it corre-
sponds to the one in the SD card, the data loading process is not initiated in
the corresponding LRU.

12 Chapter 2. Cabin Video Monitoring System Overview

FIGURE 2.6: Operational Software Loading

2.4.1.3 DAU Address allocation:

DAU Primary IP : 172.22.250.11
DAU Secondary SOCs : 172.22.250.[12..18]

2.4.2 Area Distribution Unit (ADU)

2.4.2.1 Area Distribution Unit Overview

The ADU supplies up to 10 cameras with 28VDC and gives them an Ethernet access
to the DAU. The key role of the ADUs is hence to transport video streams from
Cameras to DAU. It also has other functions such as:

• Switching on or off cameras individually.

• Assigning IP addresses to its Cameras.

• Sending BITE informations to DAU.

• Participating to the software and configuration loading of CVMS.

• Data loading from DAU.

FIGURE 2.7: Area Distribution Unit

2.4. System Basic Components 13

2.4.2.2 ADU Address allocation

172.22.250.[21..29]

(address is assigned based on the DAU channel to which ADU is connected)

2.4.3 Cameras

2.4.3.1 Camera Overview

The CVMS can be equipped with up to 30 digital cameras (cabin, cargo & custom)
and 4 analog CDSS cameras. Each camera consists basically of an image sensor, an
audio codec and a System on chip to run the camera software.

FIGURE 2.8: CVMS cameras

The main functions of a camera are:

• Capturing and Encoding video and audio: Depending on the video mode con-
figured(SD, mixed or HD) the encoding algorithm used can be MJPEG or H264.

• Streaming Video and audio to the DAU: MJPEG streams are transmitted over
HTTP . HD streams are transmitted over RTP.

TABLE 2.1: CVMS Video stream providers.

Video Providers Max number of providers

Cabin Cameras 30 (one stream per camera)
Cargo Cameras 6 (one stream per camera)
CDSS 4 (analogue streams)

2.4.3.2 Camera configuration

It is possible to configure a number of parameters for each CVMS camera through
the Local Maintenance Function (LMF) provided by the Ground Service Pane. These
parameters are: The AEC/AGC algorithms settings, White balance settings, Image
sensor settings, General image settings, Electronic steering settings, Image compres-
sion settings, Camera network settings, Camera general settings.

14 Chapter 2. Cabin Video Monitoring System Overview

2.4.3.3 Address allocation for cameras

Cargo cameras connected to DAU:172.22.250.[91..100] CVMS Cameras : 172.22.250.[101..199]
(IP addresses are assigned based on ADU Id & Port Id to which the camera is con-
nected)

2.4.4 Sinks

The CVMS is interfaced to 6 types of video sinks:

• Flight Attendant Panels (FAP) in the cabin.

• System Display (SD) in the cockpit via Concentrator and Multiplexer for Video
(CMV).

• Digital Video Recorder (DVR) to record all cameras streams on a removable
storage device.

• Ground Service Panel (GSP) to display the CVMS video and audio streams
outside of the aircraft on ground.

• Satellite Communication (SATCOM) for transmission of video and audio streams
to a ground station during flight.

FIGURE 2.9: Cockpit System Display - Flight Attendant Panel

FAPs are equipped with a touch screen to emulate the cursor. GSP can be ac-
cessed via a normal computer.

TABLE 2.2: CVMS video sinks.

Video sink type Max number of sinks

FAP 4
SATCOM 1
CMV 1
GDP 1
DAU Front Panel 4
SATCOM 1

Video streams are formatted and converted adequately by the DAU streaming
server before being sent to sinks. The table below shows the type of stream for each
sink.

Address allocation for sinks

2.4. System Basic Components 15

FAPs: 172.22.251.[2..11]
DVR: 172.22.250.60
SATCOM : 172.22.251.1
GSP : 172.22.250.67

17

Chapter 3

Video Streaming Issues

3.1 Video Streaming Functionality Overview

The video streams are sent from the cameras to the Area distribution units (ADU)
which then forwards them to the Data Acquisition Unit (DAU). The DAU processes
the video and audio streams collected from the ADU and the Cockpit Door Surveil-
lance System (CDSS) cameras (Analog cameras directly connected to the DAU) and
takes care of broadcasting them to different sinks: Flight Attendant Panels (FAP)
in the cabin, System Display (SD) in the cockpit, Ground Service Panel (GSP) for
on ground video streaming outside of the aircraft, Digital Video Recorder (DVR) to
record all camera streams on a removable storage device, Satellite Communication
(SATCOM) for transmission of video and audio streams to a ground station during
flight.

FIGURE 3.1: CVMS components involved in the video streaming
function

When the DAU receives an http request from a sink, request is decoded to re-
trieve camera number and video format (single or quad).
If the request is coming from a FAP, CMV or SATCOM, the DAU checks for video
display authorization by querying the REDIS database.
If the video is not allowed to be displayed on the sink, a black image with an “access
denied test is sent”.
If the request is coming from GSP or Front Plug, video stream is directly retrieved
and sent.

To implement these video management functions, the DAU runs a streaming
server to handle requests from sinks and a streaming client to receive video streams
from cameras.

18 Chapter 3. Video Streaming Issues

FIGURE 3.2: DAU a streaming server and client

3.1.1 Scope on the streaming server in SD mode

The CVMS DAU streaming web server provides video streams and a navigation
HMI to FAPs and GSP. Videos are embedded in web pages at a typical frame rate
of 15fps that can vary according to the lighting conditions. A JAVA-applet is imple-
mented to play videos on a software media player at a resolution of 640 x 480 pixels
for single view streams and 320 x 240 pixels for each stream for quad view (the size
of the visualized frame of four streams grouped together has the same size of the one
in single view). The bandwidth of streaming in Quad view is in average 8.5 Mbit/s
and in single view is in average 5.4 Mbit/s.

SD cameras and DAU streaming server use MJPEG based video compression
which is basically a stream of JPEG images transmitted over http.
The MJPEG codec corresponds to the definition IETF RFC 2435 and is parameterized
to support the resolutions 640 x 480 and 320 x 240 pixels. The MJPEG stream sent
over http looks like:

FIGURE 3.3: MJPEG stream

3.1.2 Software used to play videos on Flight Attendant Panels and System
Display

CVMS provides the JAVA-applet that will start the software video player installed
on the FAPs and System Display for video visualization. The software’s been fixed

3.1. Video Streaming Functionality Overview 19

in the Airbus technical specification to be Mplayer. The versions of the software
depend on the FAP hardware version.

FIGURE 3.4: Java-Applet and MPlayer for displaying videos

Overview on MPlayer
An understanding of the main functions of the Media Player software is nec-

essary in order to be able to import possible optimizations on the video streaming
function of the system. The two basic MPlayer software components that intervene
when playing a video stream are the : Demultiplexer and the Decoder. The demul-
tiplexer takes care of splitting different multimedia objects interleaved in the stream
(audio and video in our case). It is also responsible for computing the decoding and
the presentation time of every single frame. The decoder on its side takes care of
decompressing and reversing the encoding of multimedia data before it is ready for
playback.

When MPlayer is launched, the first thing it does is to analyze multimedia streams
in order to find out :

• The demuxer to be used (depending on the video format)

• The decoder (depending on the codec, examples: MJPEG, Theora, MP4, etc)

• The video resolution

• The frame rate

• etc

20 Chapter 3. Video Streaming Issues

FIGURE 3.5: MPlayer stream analysis

The figure above shows the results MPlayer gets after analysing the video streams
it received from one of the CVMS cameras: No specific demultiplexer precised (lavf
raw MJPEG demuxer is used when raw encoded data is streamed without being en-
capsulated in any multimedia container), the codec is MJPEG, video resolution is
640x480 and frame rate is at 25 fps.

3.2 Issues With The Current Video Streaming Transport Layer

Merely transmitting JPEG images as soon as they are received from cameras , is
certainly a simple way of delivering MJPEG streams and getting the videos dis-
played and reordered correctly by different sinks. However some issues were no-
ticed, mainly :

• A latency at the beginning of each new video stream being played. This is
mostly annoying when changing from one camera stream to another on the
FAPs.

• A visible time lag between what is filmed and what is displayed.

• The video frames are transmitted without any timestamp indicating the corre-
sponding capture time. When playing them in real time there is no significant
side effects. But recording them with DVR and then trying to play them back,
there is no way to know the exact time for playing each frame.

• The frame rate of videos is assumed to be constant whereas CVMS cameras
do not always capture streams at a fixed frame rate of 15 fps. In fact, CVMS
cameras use two algorithms to control imager dynamic which are the Auto
Exposure Control AEC and the Auto Gain Control.These algorithms control
the sensor exposure time and a gain factor in order to allow image capture un-
der variable light conditions in the aircraft cabins from 0.1 lux to 50,000 lux.
Though, in extremely poor illumination, it is rather difficult to achieve a cor-
rect image brightness and a frame rate of 15 fps. In this case, CVMS cameras

3.3. Goal and expected results 21

activate the night mode by slowing down the original frame rate and waiting
for a maximum exposure time defined by the system configuration. Setting the
maximum exposure time to 200ms, allows for a frame rate slow down to 5 fps.

3.3 Goal and expected results

The goal is to analyze the system behavior in order to identify the main reasons
behind the issues mentioned above. Based on these reasons, the current streaming
transport layer needs to be modified and optimized.

The modifications to be made on the streaming server are mainly expected to:

• Eliminate the latency when a new video stream is requested to be visualized
by the Flight Attendant Panel.

• Improve the synchronization between what is being filmed and what is being
visualized.

• Handle a video streaming with a variable frame rate.

• Be as simple as possible and do not lead to a large increase of the streaming
server’s use of CPU resources.

• do not add a significant data overhead.

It is also required that the proposed solution modifies as few software compo-
nents as possible. In case the solution is proved to be efficient, it is necessary to
integrate it to the system while conserving compatibility with all the equipments
that were designed according to the current streaming transport layer.

23

Chapter 4

Proposed Solution For Video
Streaming Optimization

4.1 Video Streaming Multimedia Containers And Codecs

In order to guarantee an efficient multimedia transmission, consumption and stor-
age, many challenges are encountered. A first challenge, is having the adequate
codec with the required compression ratio and content quality. For video surveil-
lance, a powerful codec is one that facilitates motion detection and object tracking
and that allows efficient video storage. A second challenge, is putting the com-
pressed content in a convenient form allowing it to be retrieved easily and rapidly
without loosing quality.

4.1.1 Codecs

A codec is a computer program which on one hand encodes/compresses data al-
lowing a fast and easy transmission, and on the other hand decodes/decompresses
data when it is played back.

• lossy compression: Certain informations are eliminated in order to reduce the
size especially redundant data, some frames in a video file, sounds barely
heard in an audio file.

• lossless compression: Only redundant data is eliminated. Encoded data is fully
restored at decode time.

A trade-off should between file size and quality should be made when choosing
the compression method.
The codec used for CVMS video streaming in SD mode is MJPEG. This might be
disadvantageous because MJPEG intra-frame video compression, hence comparing
with other available methods it doesn’t allow a significant size reduction. This is
inconvenient when storing videos with the DVR module.

4.1.2 Multimedia containers[2]

A container is basically a file format encapsulating different compressed multimedia
objects, allowing their identification and interleave. Hence, a multimedia container
adds another layer before transmitting raw compressed data: It handles its packag-
ing, transportation and presentation. Ogg and MKV provide advanced functionali-
ties. They can support audio, video, subtitles, chapters, and metadata and a number
of synchronization information needed for playback.
Many multimedia containers are available. The most standard ones are:

24 Chapter 4. Proposed Solution For Video Streaming Optimization

• Ogg, standard container for Xiph.org codecs: Theora, Vorbis.

• Matroska, it not standard for any codec.

• AVI, standard container for Microsoft Windows.

• MOV, standard container for QuickTime.

• MP4, standard container for MPEG-4.

• ASF, standard container for Microsoft WMA and WMV.

• RealMedia, standard container for RealVideo and RealAudio.

To compare multimedia containers we basically consider the following criterias:

• Popularity: is it a very commonly used container.

• Does it support multimedia streaming.

• Overhead: for the same raw data, each container adds a different amount of
data depending on its internal structure

• Support for codec B-frames and Variable Bit Rate audio

• Support for chapters, subtitles, etc.

TABLE 4.1: Container formats Comparison

Container AVI MP4 OGG MKV ASF

Owner Microsoft MPEG Xiph.org Matroska.org Microsoft
Open Source No Yes Yes Yes No
B-Frames support tweaks Yes Yes Yes Yes
VBR audio Yes Yes Yes Yes Yes
Variable frame rate No Yes Yes Yes Yes
Chapters No NO Yes Yes Yes
Stream-able No Yes Yes Yes Yes

4.2 Optimizing Video Streaming Using A Multimedia Con-
tainer

4.2.1 Which multimedia Container To Choose?

An open source multimedia container is needed in order to freely use it and imple-
ment it. Ogg has been chosen as it is the most well-known container in open source
and it is more suited for live streaming than Matroska and MP4. A quite clear docu-
mentation for the format is provided in the Xiph.org website https://xiph.org/ogg/
.

The difficulty in streaming MJPEG into an Ogg bitstream is that it is not the
standard way of streaming MJPEG over Http neither the standard way of using
the Ogg multimedia container. Thus, there are no standard specifications provided
for that. For that, it is needed to investigate the way MPlayer (as it is the media

4.2. Optimizing Video Streaming Using A Multimedia Container 25

player used in our case) identifies and decodes an Ogg bitstream. The source code
of Mplayer was downloaded and logging messages as required were added in order
to understand the software behaviour. This will be particularly necessary for the
code related to the ogg multiplexer and the MJPEG decoder. VLC will be used to
play the role of the streaming server (which is the DAU in the CVMS system).

4.2.2 Streaming MJPEG into Ogg Format Over HTTP

4.2.2.1 Ogg overview[3]

As a multimedia container, Ogg allows the encapsulation of raw compressed data
and the multiplexing of independent multimedia streams for video, audio, text and
metadata. Ogg is originally designed to be used with the Xiph codecs like Theora
and Vorbis. Though it can also be used in a non standard way with other codecs like
in our case the MJPEG. This is made possible because Ogg was designed without any
restrictions on the content it carries, it doesn’t even know anything about the data
it encapsulates. It is left to every codec, to declare and identify itself. A particular
feature of Ogg is that it also provides packet framing, error detection and periodic
timestamp for seeking. The basic unit in an Ogg stream is an Ogg page. Each page is
basically a header that is followed by a payload of a maximum of 255 data segments.
One segment is at most 255 bytes which makes the size of an Ogg page limited
to a maximum of 65307 bytes. As the figure below shows, an Ogg page header is
composed of 8 fields that make a total of 27 bytes and a segment table containing the
lacing values which are the sizes of all the segments in the page payload.

TABLE 4.2: Ogg Page Header

Field Size(bits) Description

capture_pattern 32 magic number: Oggs
version 8 always zero
flags 8
granule_position 64 abstract time-stamp
bitstream_serial_number 32 elementary stream number
page_sequence_number 32 incremented by 1 each page
checksum 32 CRC of entire page
page_segments 8 length of segmenttable
segment_table variable list of packet sizes

Headering allows for a logical segmentation of the bitstream and avoids packet
re-assembly (Which is necessary when physical segmentation of packets is used).
When encoding an Ogg bitstream, packet data is buffered, once the buffer size is
enough to make a page, the header is written followed by a payload of the buffered
data. To check for data loss, it is enough to compare the number of bytes got with
the expected number which computed by summing the lacing values. The integrity
of data is checked using the checksum field of the header. The field reserved for the
stream serial number allows for the interleaving of different Ogg bitstreams. When
decoding data, different bitstreams will be distinguished by the serial number of the
page header.

26 Chapter 4. Proposed Solution For Video Streaming Optimization

FIGURE 4.1: Ogg bitstreaming

4.2.2.2 Embedding MJPEG into an Ogg bitstream

• MIME type:
MIME instruction in the beginning of data transmission, allows the receiver
to easily categorize the data and identify how it should be opened and read.
There are different MIME types depending on the data carried by the con-
tainer. Generally, MIME types related to the ogg container are: audio/ogg,
video/ogg; application/ogg, etc. Though, using VLC to stream MJPEG into
ogg and MPlayer to read the streams, then investigating the http packets on
wireshark, we notice that the http response of VLC upon a request from MPlayer
looks like:

HTTP/1.1 200 OK
Content-Type: application/octet-stream

We will as a result use application/octet-stream as the content-type even if it
is defined as "arbitrary binary data" in RFC 2046.

FIGURE 4.2: HTTP response packet from VLC to MPlayer

• Bitstream headers:
Each Ogg bitstream header is transmitted in a dedicated page. The number of
headers depends on the codec. Generally, at least one page header is transmit-
ted at the beginning of the stream and before transmitting any data packets.
The first page header usually includes informations about the type of codec,
the time base, the time unit, the video resolution (height and width), the buffer
size, etc. Any other informations needed for the codec set up might be also
included. The mapping of the header fields needs to be specified in the codec
as no standard mapping is defined in the Ogg documentation.

• Bitstream data packets:
Data packets carry the data to be decoded on the receiver side. In case of
MJPEG streaming, the Ogg bitstream data packets will encapsulate the JPEG
images.

4.2. Optimizing Video Streaming Using A Multimedia Container 27

4.2.2.3 Packet Timestamp and Variable Frame Rate Considerations[4]

4.2.2.3.1 Variable Frame Rate Definition CVMS cameras produce videos at a vari-
able frame rates. In the best lighting conditions the video streaming is at 15 fps,
while in the worst case, it is at 5 fps. This variation messes up what frame belongs
to what portion of video.
The image below shows what actually happens in real time capture, the delay be-
tween frames isn’t constant, and we may also skip some frames

FIGURE 4.3: Fixed Frame Rate VS Variable Frame Rate

4.2.2.3.2 Issues Related To Variable Frame Rate Videos

• Video and Audio get out of synchronization
In general the most common video editing software do not support a variable
frame. And this leads mainly to a problem in the synchronization between
audio and video. In fact the audio will never be affected by lighting conditions,
while the video frame rate can vary significantly. As a result, if the video player
software continues to play the video and audio at a constant frame rate, they
will lose their synchronization and this can be very annoying.

• Time drift when playing recorded video:
Another problem is also seen when playing the recorded video. In fact because
of the variable frame rate, sometimes the video will be played too fast and the
time is not correct. Hence playing a video recorded at a variable frame rate as
a constant frame rate video results in a time drift.

4.2.2.3.3 Ogg Format Support For Variable Frame Rate When streaming the CVMS
MJPEG video streams, no Timestamps are carried. We only deliver a series of JPEG
images as fast as they are captured by the cameras. So Mplayer, specifically ffmpeg,
will need to make up timestamps to process the Frames. This is done by continu-
ously counting the received frames over a second then comparing the result with the
expected value. If they are the same, nothing should be done, if they are different
two situations can occur: either we got less frames than we expected in this case
the missing frames will be compensated by duplicating some of the received frames,
or we got more frames than expected in this case some frames will be dropped.
Mplayer allows us to specify the desired frame rate by fixing the parameter -fps to
a constant value. Using this value, MPlayer computes the delay between frames as

28 Chapter 4. Proposed Solution For Video Streaming Optimization

1/fps Some container formats do not really support variable frame rate, but they can
“fake” it somehow. For example, AVI gets the highest common multiple of all the
possible frame rates and use it to play the video, some frames will be duplicated in
order to fill in the gaps. Other multimedia containers like Matroska and Ogg com-
pletely drop the idea of frame rate and set an individual timestamp for each frame.
We will focus on Ogg as it is the container we decided to use for our system.

4.2.2.3.3.1 Ogg Timestamp
Each Ogg page (not packet) header contains a timestamp, or granule position in Ogg
terms, encoded as a 64-bit number. The precise interpretation of this number is not
defined by the Ogg specification; it depends on the codec used for each elementary
stream. The specification does, however, tell us one thing: Each Ogg page has in
its header a 64 bits field reserved for the Timestamp. In Ogg terms the timestamp
is called the granule position of the page. The specification does not tell us how to
compute and interpret the granule position. It is up to each codec to know how to
encode the timecode it expects using the 64 bits. This gives the Ogg container more
flexibility and allows for an absolute time stamping instead of a hard coded one.
However, one thing should be put in mind when computing the granule position is
that:
“The position specified is the total samples encoded after including all packets finished on
this page (packets begun on this page but continuing on to the next page do not count).”

A sample is a video frame for video (an image) and a PCM sample for audio.

4.2.2.3.3.2 Timestamp interpretation for MJPEG streaming
As mentioned previously, the meaning of the 64-bit timestamps associated with an
elementary stream depends on the codec of the stream. A lot of tricks can be played
in order to take advantage of the granule position field of the Ogg container. Each
code will define a specific mapping depending on whether it uses inter or intra frame
encoding. A key point that should be taken into consideration when computing the
granule position is how it is used, at the media player software, to get the presenta-
tion timestamp and the decompression timestamp.

MPlayer defines these values as:

• Presentation timestamp PTS: the time at which the decompressed packet will
be presented to the user. Can be AV _NOPTS_V ALUE if it is not stored in the
file.

• Decompression timestamp DTS: The time at which the packet is decom-
pressed. Can be AV _NODTS_V ALUE if it is not stored in the file

As a frame needs to be decompressed before being presented,the presentation time
always needs to be larger than the decompression time. PTS and DTS values were
introduced mainly to deal with inter frame codecs as frames are dependent on each
other, and one frame can depend on an earlier frame.

4.2. Optimizing Video Streaming Using A Multimedia Container 29

FIGURE 4.4: Inter-frame compression

To better understand this, inter frame codecs define 3 types of frames:

• I-frames are the least compressible but don’t require other video frames to de-
code.

• P-frames can use data from previous frames to decompress and are more com-
pressible than I-frames.

• B-frames can use both previous and forward frames for data reference to get
the highest amount of data compression.

for example if a frame is to be displayed as I B B P, our stream might look like:
PTS : 1 4 2 3
DTS : 1 2 3 4
Stream : I P B B
As a concrete example of an inter frame codec, we can mention Theora which splits
the 64-bit timestamp into two fields. The first of these fields encodes the frame num-
ber, starting from one, of the key frame most recently preceding the frame to which
the timestamp applies. The second timestamp field encodes the number of frames,
this time starting from zero, since the most recent key frame. The bit position of the
field split is specified by the Theora stream header.

Now in case of the MJPEG codec, things are much simpler as it is an intra frame
codec, i.e. data of one single frame is analysed in order to compress independently
from any other frame.

FIGURE 4.5: Intra-frame compression

As a result, for MJPEG the PTS and DTS timestamps are equal and frames can be
decoded and presented in the same order they are streamed. For the granule posi-
tion it can simply be the position of the frame in the stream counting from the first
streamed one.

The unit of the timestamps is defined in the first Ogg page (The header page)
as 1/fps multiplied by a factor of 10000000 (following the value used by MPlayer)
which allows for a better precision.

31

Chapter 5

Proposed solution implementation
and Development

5.1 Work environment

5.1.1 System Test Bench Description

The system test bench is realized in a way to simulate as much as possible the real
system in the aircraft. The DAU, CVMS cameras and analog cameras are the same
as the ones used on board. For the CVMS sinks they are simulated with: A normal
computer for the Ground Service Panel which is accessed via a web browser. For
FAPs they are simulated using an ISO file delivered by Airbus and run in a virtual
machine. All the CVMS sink simulators need to be connected to the same local area
network as the CVMS. ADUs are replaced with normal network switches.

FIGURE 5.1: CVMS System Test Bench

The system Test bench is used in the software development phase in order to
easily make tests.

5.1.2 Code development and testing

A PC with a Linux OS for code development. I used eclipse to edit the code.
Once I need to test my changes I only need to generate a new software image using
PTxdist, then I use ssh tools to send the image to the external SD card plugged to the

32 Chapter 5. Proposed solution implementation and Development

DAU. However changing the software image in the SD card doesn’t make the DAU
SOCs update their softwares. One possibility is to manually invalidate the software
of each SOC then to reboot them all. To test the video visualization, I connect my
machine using ssh to the virtual machine emulating a FAP and I launch MPlayer. To
automate ssh connections to different test bench components, the following config-
uration is used:

Host pctest?vm
User zodiac
ControlMaster auto
ControlPath /tmp/ssh-%r@%h:%p
ControlPersist 30
ServerAliveInterval 10
ForwardX11 yes
Host pctest1vm
Hostname 192.168.1.200
Host pctest2vm
Hostname 192.168.1.201

Host msoc*
User root
IdentityFile ~/.ssh/id_rsa_dau
ProxyCommand ssh pctest1vm nc -w 2 %h %p
#ProxyCommand ssh pctest2vm nc -w 2 %h %p
#ProxyCommand ssh cyber3.zodiac-ife.info nc -w 2 %h %p
StrictHostKeyChecking no
UserKnownHostsFile /dev/null
LogLevel INFO
ControlMaster auto
ControlPath /tmp/ssh-%r@%h:%p
ControlPersist 30
ServerAliveInterval 10
Host msoc1
Hostname 172.22.250.11
Host msoc2
Hostname 172.22.250.12
Host msoc3
Hostname 172.22.250.13
Host msoc4
Hostname 172.22.250.14
LocalForward 22222 127.0.0.1:2345
Host msoc5
Hostname 172.22.250.15
Host msoc6
Hostname 172.22.250.16
Host msoc7
Hostname 172.22.250.17
Host msoc8
Hostname 172.22.250.18

pctest1vm and pctest2vm are two different virtual machines each one installed on

5.2. Streaming MJPEG Over Ogg Demo 33

a different computer belonging to a different test bench. These two machines are
used to simulate FAPs and to serve as a proxy to allow connections to DAU msocs.

5.2 Streaming MJPEG Over Ogg Demo

When working with open source software, it is not always guaranteed that it will
behave as expected.
This is even more complicated when using open software in a non standard way as
in our case. In fact, even if the Ogg multimedia container is known to be designed
to be a general purpose container format which allows to encapsulate any type of
encoded data, it is usually used only with codecs designed by Xiph like Theora and
Vorbis. Instead, using it to encapsulate MJPEG encoded data there are no standard
specifications that can be found. Hence, the first step through implementing the
Ogg layer is to identify a clear mapping for the MJPEG codec. The mapping should
define how to identify the codec type, how to compute timestamps for packets ,
which set-up data are needed and how to extract them. It should also be determined
based on the elements expected by MPlayer to correctly decode Ogg streams. That’s
why before starting to work on the CVMS software, a simple HTTP video streaming
server was developed to implement the Ogg layer. Working on a simple server al-
lows to avoid the complexity of the CVMS system and to easily localize and debug
errors. At this step, VLC was used as a media streaming software that can be seen as
a reference since it is able to transmit MJPEG over Ogg streams that can be correctly
decoded by MPlayer.
So to identify the key elements to develop the server, the traffic between VLC and
MPlayer was analysed using Wireshark . The source code of these two softwares was
also investigated. The server was built on top of an open source MJPEG streaming
server on GitHub at the following link: https://github.com/ccrisan/streameye To
develop the Ogg transport layer, the Xiph library Libogg at https://xiph.org/downloads/
was used.

5.2.1 Demo Streaming Server Overview

The tests on MPlayer and VLC allowed to conclude that MPlayer expects to receive
at least on Header packet for codec identification and setup. For the JPEG data
packets they are expected to be encapsulated in a specific way. More details in the
descriptions that follow.

Ogg Stream Header Packets

Header packets are to be sent initially before sending any data packets. A header
packet is by itself a regular Ogg packet. Which means it is composed of a header and
a body. The header is the normal header of a regular Ogg packet. The body should be
defined depending on the type of the Header packet. Looking at MPlayer’s source
code two header packets are streamed for MJPEG codec:

• Codec Setup Header Packet
Its first byte needs to have a ZERO value. It is used to define the codec type
and setup elements. The Header fields are defined as follows:

– Packet type: One byte that is set to ONE to indicate that it is a header
packet.

34 Chapter 5. Proposed solution implementation and Development

– Stream type: A string of 8 characters that indicate the type of the stream.
For video streaming, it should be set to "video"

– Subtype: A string of 4 characters. In case of MJPEG streaming it should
be set to "MJPG".

– Size: A 4 bytes integer storing the size of the packet in bytes

– Time Unit: An 8 bytes integer indicating the time unit that should be used
by MPlayer to compute the presentation and decode time of frames.

– Samples per unit: An 8 bytes integer that can be simply set to 1.

– Default length: A 4 bytes integer, can be set to 1.

– Buffer size: A 4 bytes integer

– Bits per sample: 2 bytes integer, it is not clear how MPlayer makes use of
it.

– Padding 0: 2 bytes for padding (to ensure a fixed size for the structure.)

– Ogg header video : structure containing 2 fields of 2 bytes each. One for
the height and another for the width: allows MPlayer to know the video
resolution.

– Ogg header audio : structure of 3 fields, one of 2 bytes for the audio chan-
nel, another of 2 bytes for the block alignment and another one of ’ bytes
for the number of bytes transmitted per second.

– Padding 2: Another field of 4 bytes for padding.

FIGURE 5.2: Ogg setup header packet

• Comment Packet Its first byte needs to have a value of 3. It can be used to
send further informations on the video stream.

FIGURE 5.3: Ogg setup comment packet

Stream Data Packets

The stream data packets are the ones encapsulating the video frames. Each time the
server receives a JPEG image it encapsulates it in an Ogg packet. The Ogg packet is
then submitted to the Ogg bitstream. Finally, to stream the sequence of images over
Http, it is sufficient to extract Ogg pages from the bitstream one by one and send
them to the network.

5.3. Solution Implementation On The Data Acquisition Unit 35

FIGURE 5.4: Ogg demo streaming

5.2.2 Demo Streaming Server Testing

The Demo server has also a client side that will receive the MJPEG streams. To
emulate the MJPEG stream, a simple script was used.

webcam_emul.sh:
#! /bin/sh
while true; do

for file in directory_storing_jpeg_images/*.jpg; do
cat $file
sleep 0.04

done
done

The script will stream a bunch of JPEG images forming a coherent video. One pos-
sible way to get these images is to use MPlayer dumping tool to convert a video to
a sequence of JPEG frames. mplayer -vo jpeg -sstep 1 video.avi : This will extract a
video frame each 1 second

To make tests on the server, it is sufficient to launch the following command:

./webcam_emul.sh | ./streameye/streameye -s
"--separator--" -p 8082 -l -d

5.3 Solution Implementation On The Data Acquisition Unit

The DAU software part that needs to be modified in order to implement the Ogg
layer is the Http Streaming Server module.

5.3.1 Overview On The DAU Http Streaming Server

This module receives video streams HTTP requests from different sinks: FAP, CMV,
Satcom, GSP, Frontplug. Each HTTP request identifies which camera video stream
is needed and whether a Single View or a Quad View is required. Upon a video
request, the server checks whether the sink is eligible for video delivery, if it is not
it sends a Black/ video not available screen. For every connected sink, the server
creates a corresponding thread: FAP Thread , CMV Thread , GSP/FrontPlug Thread.
A sink Thread mainly functions as follows:

36 Chapter 5. Proposed solution implementation and Development

• Wait for a request from the corresponding sink:
Each sink Thread creates a socket in nonblocking connected mode and call to
select() system call for waiting to incoming request from sinks.

• Process request once received:
When a socket receives a request from a sink, request is decoded to retrieve the
camera number and view format (Single or Quad view) of the requested video
stream. If request is coming from FAP, CMV or SATCOM, the server checks
for authorization in the REDIS database by reading the Display Status for the
corresponding camera. If video is not allowed to be displayed on sink a black
image with on-screen text “Access denied” is sent. If request is coming from
GSP or Front plug, video stream is directly retrieved and sent.

• Transmit video if authorized
To retrieve and transmit video stream to sink, HSSM first gets the MediaProfile
object corresponding to video stream in MediaProfile database using the token
(String) indicating camera number and view format. With MediaProfile object,
HSSM gets a MediaStreamController object.

5.3.2 Streaming Server Data Transfer Mechanism

The data transfer mechanism that is used is the chunked buffer encoding which is
based on streaming HTTP messages of an unspecified number of chunks, a termi-
nating chunk of length zero, a trailer possibly containing useful headers and a CRLF
(carriage return and a Line feed).

Each chunk starts with the number of bytes it carries in it payload and possibly
other parameters. The chunked encoding layer is to be considered when implement-
ing the Ogg layer. The http chunk headers might in fact be inserted between the Ogg
pages and they won’t be removed by the http layer of MPlayer. As a result the Ogg
demuxer might not be able to correctly decode the data packets.

5.3.3 Re-implementation of MediaStreamController services to support
Ogg

MediaStreamController object provides three services:

• startStreams: to start video transmission from HTTP Streaming Client module

• stopStreams: to stop data transmission from Streaming Client module

• registerCallback: to send video stream data

To implement the additional multimedia container layer, it is sufficient to modify
the services of the Media-profile object as follows:

• Start Streams Service :
Before starting to transmit video streams to the Client, the Ogg page header
should be transmitted. The header will include setup informations about the
type of codec, the time base, the time unit, the video resolution (height and
width).

Frame rate = 15, supposing a fixed frame rate of 15 fps.
Video width = 640;
Video height = 480

5.3. Solution Implementation On The Data Acquisition Unit 37

Packet_type = PACKET_TYPE_HEADER, looking to MPlayer code
it should be 1.
Stream type= "video"
Sub type = "MJPG"
Time unit = 10000000* 1/frame rate
Samples per unit = 1
Buffer size = 1024*1024
Bits per sample = 0

FIGURE 5.5: Ogg headers sent by Startstreams service

• Register Call back Service:
The service is used to register a MediaStreamCallback object. Only one single
method of the MediaStreamCallback object needs to be modified. This method
is pushBuffer() and it is called by the HTTP Streaming Client module to send
video streams. PushBuffer is re-implemented as follows:

– JPEG image buffer is passed as a parameter to the function.

– Encapsulate JPEG image into an Ogg packet. The header of the packet
will store the size of the image, the position of the image in the video
stream, a flag indicating whether it is the last or the first packet in the
stream. The body of the packet will be a copy of all JPEG data initiated
by the synchronization byte (=8). It is necessary to put this byte at the
beginning otherwise MPlayer will not know that it is a data packet.

– Submit the packet to the Ogg bitstream.

– Extract all possible Ogg pages from the Ogg stream and concatenated
them to form a complete JPEG image (which is now in a form of a se-
quence of Ogg pages, i.e it doesn’t only contain its JPEG data but also the
Ogg page headers)

– Encapsulate the sequence of concatenated Ogg pages in a single chunk
buffer. This is done in order to avoid the http chunk headers being in-
serted between the Ogg pages which leads to incorrect decoding of the
video data.

– Send Chunk Buffer.

38 Chapter 5. Proposed solution implementation and Development

FIGURE 5.6: pushBuffer() method re-implementation to stream Ogg
packets

39

Chapter 6

Performance analysis and
comparisons

6.1 Stream Analysis Duration

As discussed before when MPlayer is launched, the first thing it does is to analyse
multimedia streams in order to find out :

• The demuxer to be used (depending on the video format).

• The decoder (depending on the codec, examples: MJPEG, Theora, etc).

• The video resolution.

• The frame rate.

In case of MJPEG streaming, the Lavf demuxer is identified as soon as MPlayer is
Launched. Lavf then starts to analyse video streams to identify the adequate codec.
Since MJPEG is just a sequence of raw JPEG encoded data, the stream analyse dura-
tion is relatively quite long.
As the demuxer analyses the stream, more and more data gets buffered. Once the
codec is identified, the buffered data will be decoded and displayed at a frame-rate
of 25fps hardcoded in MPlayer’s source code. This is has two impacts on the video
visualization on FAPs:

• An noticeable effect of acceleration on the video.

• A time lag between the filmed video and the one displayed.

In case of Ogg streaming, MPlayer immediately identifies that it consists of an Ogg
stream and it delegates the stream analysis to the Ogg demuxer. The Ogg demuxer
on its side identifies the MJPEG codec and its setup elements as soon as it receives
the first Ogg header packet.

As a result, Ogg allows a very important optimization on the analysis duration
of streams with respect to MJPEG.

6.2 CPU Usage

The video application uses more CPU resources in the case of MJPEG streaming in
Ogg container. This is because the Ogg layer adds a significant number of memory
writes and reads. An example of one significant write operation , is when Ogg pages
are copied and concatenated in a common buffer to be delivered in a single chunk
buffer . This is done in order to conserve compatibility with the chunked-buffer
HTTP layer.

40 Chapter 6. Performance analysis and comparisons

If we want to avoid concatenating Ogg pages and we decide to send each Ogg
page on its own, MPlayer faces issues when decoding video streams due to the addi-
tional headers added on top of each HTTP chunk buffer. To compare the CPU usage
between Ogg and MJPEG the following scenarios were tested:

• One camera One client

CPU% Minimum Maximum Average

MJPEG 4.5 10.8 7
Ogg 9 14 11

FIGURE 6.1: MJPEG streaming 1 camera 1 client

FIGURE 6.2: Ogg streaming 1 camera 1 client

• One Camera Four Clients

CPU% Minimum Maximum Average

MJPEG 13 22 16
Ogg 18 30 22

FIGURE 6.3: MJPEG streaming 1 camera 4 clients

6.3. Performance at a Variable Frame Rate 41

FIGURE 6.4: Ogg Streaming 1 camera 4 clients

• Two Cameras Four Clients

CPU% Minimum Maximum Average

MJPEG 19 26 22
Ogg 27 36 32

FIGURE 6.5: MJPEG Streaming 2 Cameras 4 Clients

FIGURE 6.6: Ogg Streaming 2 Cameras 4 Clients

6.3 Performance at a Variable Frame Rate

MJPEG simply streams JPEG images without including any metadata. Ogg instead
allows to timestamp video frames before streaming them. This might be of a mi-
nor importance when reading video streams in real time. As in both cases, MPlayer
will display images as soon as it receives them. Though, timestamping video frames
could make significant improvements when reading the CVMS DVR recorded videos.
In fact, as it’s been discussed before CVMS videos do not really have a fixed frame
rate as it might change depending on the cabin lighting conditions.
And as videos get recorded with no timestamp the frames, the media player soft-
ware will have no idea one when to present each of them and will read them at a
fixed frame rate. An acceleration effect will hence be viewed.

As the current DVR was designed to receive an MJPEG stream, it is possible
to conserve compatibility by providing the Ogg stream all together with the MJPEG
stream. The stream format to be forwarded will be indicated by the Sink in the HTTP
request along with the camera number and the view type (single/quad).

42 Chapter 6. Performance analysis and comparisons

FIGURE 6.7: Ogg support while conserving MJPEG streaming

6.4 Data Overhead

One consideration to take into account is the additional data needed for the Ogg
layer with respect to MJPEG. The overhead added by the Ogg layer has two types:
a fixed overhead of 27 bytes for the Ogg page header fields and a variable overhead
that depends on the Image size. The fixed overhead is relatively negligible. The
variable overhead comes from the segment table fields which lists the sizes of all
segments in the ogg page. Each value is one Byte and the number of values is 255
maximum. The packet size is simply the sum of all these values. Thus the Ogg
overhead contributes with 1/255 or nearly 0.4% of the packet size . This overhead
is much higher than in case of other multimedia containers like MP4 which has an
overhead of only 0.04%. CVMS cameras stream images of an average size of 60k
. Hence, the encapsulation of each image in an ogg packet makes an overhead of
60k/255 = 235 bytes. As a result, in normal light conditions and when the frame
rate is 15 fps, we will have an overhead of around 4 kilobytes each second. This
amount of data is quite acceptable and doesn’t lead to any noticeable side effects.

6.5 Latency

Ogg introduces some latency at the streaming server side and at the MPlayer side.
A full Ogg page can be transmitted only when the entire content is buffered as the
page header depends on the packet size and checksum. This makes the lower bound
for latency equivalent to the duration necessary to buffer complete page.

On the MPlayer side, it can start decoding only after receiving and reassembling
of all the pages belonging to the same video frame (One packet may span more than
one page). Thus, the overall latency summing the one at the sender side and at the
receiver side is approximately twice the duration of one page buffering.

One way to minimize latency is to minimize page duration by sending one packet
per page. But in this case we increment the Ogg overhead, as the number of pages,
thus of Ogg page headers, will increment.

43

Conclusion

The Zodiac A380 surveillance system provides more functionalities than the previ-
ous system designed by Parker Hannifin. The key improvement it makes is that of
streaming in both Simple and High definition technologies. Though, in SD mode
the system doesn’t appear to perform as good as in HD mode. Implementing the SD
transport streaming layer as an MJPEG stream carried over HTTP, is certainly the
simplest way to transmit JPEG images captured by surveillance cameras to different
CVMS sinks.
Though, adding one more layer on top of MJPEG to encapsulate raw encoded data
into a multimedia container allows for significant improvements. This will for sure
add an extra overhead of data and increase the streaming server’s CPU usage. But
based on the tests that were made, this shouldn’t have any particular side effects on
the system performance. Ogg container was proved to be of minor complexity. A
complete library is made available on the Xiph web site and implements all the basic
functions of the standard. The integration of the Ogg layer to the CVMS system is
rather simple as few software components are to be modified. However, even if Ogg
is to be implemented, it is still necessary to keep providing MJPEG streams in order
to conserve compatibility with the CVMS equipments that were already designed to
receive MJPEG streams.

45

References

[1] http : //www.zodiacaerospace.com/fr/groupe/presentation
[2] http : //www.divxland.org/en/article/15/multimediacontainerformats#.WS5qTPnyiM8
[3] https : //www.xiph.org/ogg/
[4] https : //support.shinywhitebox.com/hc/en−us/articles/200134755−−V ariable−
Frame−Rates− Explained
[5] http : //stackoverflow.com/questions/14988910/correct−mime− type− for −
multipart−mjpeg − stream− over − http
[6] https : //www.theora.org/doc/Theora.pdf
[7] https : //people.xiph.org/ giles/2004/openweekend/theora− talk/theora.pdf
[8] https : //www.bunkus.org/videotools/ogmtools/
[9] http : //www.streamplug.info/fr/encodage/ogm.html
[10] https : //github.com/ccrisan/streameye
[11] http : //techslides.com/sample− files− for − development
[12] http : //www.viscoda.com/en/support/faqs/87− splitting− a− video− file−
into− a− sequence− of − images−mplayer
[13] http : //www.johnchow.com/an−easy−fix−for−editing−variable−frame−
rate− videos/#
[14] http : //forum.doom9.org/archive/index.php/t− 156236.html
[15] http : //hardwarebug.org/2008/11/17/ogg − timestamps− explored
[16] http : //dranger.com/ffmpeg/tutorial05.html
[17] https : //en.wikipedia.org/wiki/T imebasecorrection

	Abstract
	Acknowledgements
	Introduction
	Thesis Context
	Company Presentation
	Cabin Video Monitoring System Project
	Project Team Presentation
	Thesis Organization

	Cabin Video Monitoring System Overview
	System Development Methodology
	Software life cycle
	Product delivery baselines
	Certification considerations

	Software Development Tools
	Project Management Systems
	Code Development Tools
	Debugging Tools
	Network tools

	System general description
	System Basic Components
	Data Acquisition Unit (DAU)
	2.4.1.1 Data Acquisition Unit Overview
	 2.4.1.2 Software loading and system Configuration
	2.4.1.3 DAU Address allocation:

	Area Distribution Unit (ADU)
	2.4.2.1 Area Distribution Unit Overview
	2.4.2.2 ADU Address allocation

	Cameras
	2.4.3.1 Camera Overview
	2.4.3.2 Camera configuration
	2.4.3.3 Address allocation for cameras

	Sinks

	Video Streaming Issues
	Video Streaming Functionality Overview
	Scope on the streaming server in SD mode
	Software used to play videos on Flight Attendant Panels and System Display

	Issues With The Current Video Streaming Transport Layer
	Goal and expected results

	Proposed Solution For Video Streaming Optimization
	Video Streaming Multimedia Containers And Codecs
	Codecs
	Multimedia containers[2]

	Optimizing Video Streaming Using A Multimedia Container
	Which multimedia Container To Choose?
	Streaming MJPEG into Ogg Format Over HTTP
	4.2.2.1 Ogg overview[3]
	4.2.2.2 Embedding MJPEG into an Ogg bitstream
	4.2.2.3 Packet Timestamp and Variable Frame Rate Considerations[4]

	Proposed solution implementation and Development
	Work environment
	System Test Bench Description
	Code development and testing

	Streaming MJPEG Over Ogg Demo
	Demo Streaming Server Overview
	Ogg Stream Header Packets
	Stream Data Packets

	Demo Streaming Server Testing

	Solution Implementation On The Data Acquisition Unit
	Overview On The DAU Http Streaming Server
	Streaming Server Data Transfer Mechanism
	Re-implementation of MediaStreamController services to support Ogg

	Performance analysis and comparisons
	Stream Analysis Duration
	CPU Usage
	Performance at a Variable Frame Rate
	Data Overhead
	Latency

		Politecnico di Torino
	2017-09-28T08:33:57+0000
	Politecnico di Torino
	Enrico Masala
	Tesi 220383

