
Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Data-flow analysis and optimization in Convolutional
Neural Networks on-chip

Relatori:
Prof. Andrea Calimera
Dott. Valerio Tenace

Candidato:
Luca Mocerino
matricola: 229006

Ottobre 2017

Abstract

In recent years machine learning has become an increasingly important topic in the
computer science field, computer vision in particular. Their domain of application
is classification, object detection/recognition and identification of handwritten dig-
its. These technologies can be used in many fields such as automotive (autonomous
guide), aerospace, but also domotic applications.
In the last few years, a new class of machine learning algorithms, the so called "deep
learning", has substantially improved in terms of accuracy and efficiency. How-
ever, these algorithms require high-performance platforms with huge computational
power and large memory resources. Cutting edge research is looking for viable so-
lutions to implement such deep-learning algorithms into portable/wearable devices.
Unfortunately such lightweight embedded platforms are resource constrained. Here
the challenge: map these algorithms on low-power/low-energy architectures while
preserving a reasonable level of accuracy.

Within this context, this work introduces a dataflow analysis and optimization
technique for a specific class of deep learning algorithm, i.e., Convolutional Neu-
ral Network (CNN). A CNN consists of a set of different layers: pooling layer for
reducing feature maps dimensions; dropout for avoiding overfitting; softmax for the
final classification and fully-connected layer for forwarding and backwarding propa-
gation. For the intrinsic nature of the computation, the most energy consuming is
the CONV layer that performs matrix convolution. The number of CONV layers
in a CNN determines the overall energy consumption of the network. It is worth
noticing that CONV layers are not just computational bounded, but also memory
bounded; indeed, the ceaseless memory access for reading/writing operands repre-
sents a substantial contribution to the total power consumption. Even if the con-
volution operation is computationally intensive, also in parallel compute paradigms
the data movements can be more energy consuming than the computation [34].
A heterogeneous architecture is the target for our simulation, since, among the pos-
sible implementation strategies, tightly coupled processing arrays with embedded
memory hierarchy represent the most suited solution. As main advantage, those ar-
chitectures improve (if compared to conventional CPUs and GPUs). More precisely,
this heterogeneous architecture is made of a CPU, an off-chip memory, an on-chip
memory hierarchy and a processing element (PE) plan for computation. Using this
topology as reference template, this thesis introduces a simulation engine able to
simulate the dataflows and gives as feedback the performance evaluation in terms of
energy and latency. Moreover, it uses textual representation for the memories and
PE plan configuration. This tool provides the right support to design and properly
size the architecture. The simulation engine is integrated into a popular framework
for deep learning, called Caffe, in order to extract the network topology and give a
fast energy estimation of CNN. The proposed solution is faster than logic simula-
tors (i.e. ModelSim) and gives information about performance compared to other
software frameworks (Caffe,Tensoflow, etc ...). Using the described architecture as
a reference, we implement and simulate convolutional layers in order to extract the
performances (energy/latency). Using the proposed tool, this work investigates two

ii

different dataflows: a modified "No Local Reuse dataflow" and the "Window Sta-
tionary Dataflow".
The former, as the name suggests, does not use the PE registers to store any kind
of data. It only uses a big buffer (> 2Mbyte) in order to store the complete input
feature maps and kernels. The intermediate results are accumulated in an inter-PE
buffer. This dataflow is used as a baseline for the performance.
The latter belongs to the "weights stationary dataflow" family. The weights stay
stationary in the PEs’ register file in order to maximize the weights and reuse dur-
ing convolution. The partial sums are accumulated into an inter-PE buffer and the
PE plan is configured to implement a tree of adder for speeding up partial sums
accumulation. The data reuse mechanism implemented through the local buffer
guarantees a substantial reduction of the energy consumption and latency: 35% and
49% (on average), respectively.
The same simulation engine is used for the assessment of a new pooling strategy
aimed at improving energy efficiency. It consists of the classical average pooling,
but preserving the feature maps dimensions. This technique, used with a mechanism
that can detect equal value in the feature map in order to skip MAC operations,
allows to reduce the energy consumption (~40%) working on two factors: number
of multiply and add operations and size reduction on the input feature map, with a
little loss in terms of network accuracy (~5-6%).

iii

Acknowledgements
I would like to express my special appreciation and thanks to Professor Andrea
Calimera, who has been a true mentor to me; without his guidance and constructive
advice this thesis would not have been possible. Also, I am particularly grateful for
the assistance given by Valerio Tenace. Last but not least, I would like to thank all
my affections, whose support over these years was invaluable.

Luca Mocerino, Torino, October 2017

v

Contents

List of Figures ix

List of Tables xi

Acronyms 1

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Goals and Challenges . 3
1.3 Thesis Organization . 4

2 Background and Concepts 5
2.1 Convolutional Neural Networks . 5

2.1.1 Introduction to Neural Networks 5
2.1.2 Convolutional Neural Network architectures 7

2.2 Embedded Convolutional Neural Networks 11
2.2.1 Potential Hardware Platforms 11
2.2.2 Existing CNN Implementations on Embedded Platforms . . . 12

2.3 Dataflows Taxonomy . 15
2.3.1 Output Stationary Dataflow 15
2.3.2 No Local Reuse Dataflow . 15
2.3.3 Weight Stationary Dataflow 16

2.4 Exploiting data statistics . 17
2.4.1 Operations reduction . 17
2.4.2 Operand size reduction . 20

3 Energy-Efficient Dataflows: modelling and simulation 23
3.1 Dataflows description . 23

3.1.1 Reference Architecture . 23
3.1.2 Simulation Framework . 26
3.1.3 Window Stationary Dataflow 28
3.1.4 No Local Reuse . 35

3.2 Average "pooling" optimization . 37

4 Evaluation and Results 41
4.1 Experimental setup . 41

4.1.1 Energy/Latency model . 41

vii

Contents

4.1.2 AlexNet . 42
4.2 Dataflow results . 43

4.2.1 NLR Results . 44
4.2.2 WS Results . 46
4.2.3 Dataflows comparison . 47

4.3 Average "pooling" results . 48

5 Conclusion 55
5.1 Achievement . 55
5.2 Future Work . 56

Bibliography 57

viii

List of Figures

2.1 Biological and Artificial Neuron . 6
2.2 Artificial Neural Network structure [7] 6
2.3 Convolution [8] . 8
2.4 Max pooling example [6] . 9
2.5 Design exploration in [23] . 12
2.6 Eyeriss block diagram . 13
2.7 Google TPU block diagram . 14
2.8 Google TPU block diagram . 14
2.9 Output Stationary dataflow schema [25] 15
2.10 No Local reuse dataflow schema [25] 16
2.11 Weight Stationary dataflow schema [25] 16
2.12 Filter design in GoogleNet and VGG-16 [37] 18
2.13 Zero detection in [37] . 19
2.14 Weights pruning in [36] . 19
2.15 Approximation flow in [39] . 20
2.16 Dynamic vs static fixed-point: Top-1 accuracy for CaffeNet on ILSVRC

2014 validation dataset . 21
2.17 Weights distribution in the original and logarithmic domain 21

3.1 Reference architecture schema . 24
3.2 Processing element schema . 24
3.3 Simulation framework schema . 26
3.4 Memory description file example . 27
3.5 Configuration and storage handling 29
3.6 An example of 3x3x3 filter where C0, C1, C2 are respectively the

filter channels. 31
3.7 Convolution computation . 32
3.8 PE plan after initial weights assignment 33
3.9 Tree of addition configuration . 34
3.10 NLR dataflow . 35
3.11 Step 1 and 2 of average "pooling" algorithm 38
3.12 Step 4 of average "pooling" algorithm 38
3.13 Image before and after average pooling 39
3.14 Average pooling on 7x7 image window 39

4.1 AlexNet structure [42] . 42
4.2 NLR - Performance . 44

ix

List of Figures

4.3 NLR - Energy distribution . 44
4.4 WS - Performance . 46
4.5 WS - Energy distribution . 46
4.6 WS vs NLR - Energy comparison . 47
4.7 WS vs NLR - Latency comparison 47
4.8 MAC operations . 49
4.9 MACs operation comparison . 49
4.10 NLR - Average Pooling - Performance 50
4.11 WS - Average Pooling - Performance 50
4.12 Dataflow - Average Pooling - Comparison 51
4.13 Image samples from ILSVRC2012 validation set 51
4.14 Accuracy/Performances . 52
4.15 Latency . 53

x

List of Tables

3.1 Parameters shape . 30
3.2 Parameters example . 32
3.3 Max vs Average "pooling" . 37

4.1 Normalized energy cost . 41
4.2 AlexNet convolutional layers . 42
4.3 Filter size for each Conv layer: Channels and Kernel width/height . . 43
4.4 Configuration for simulation experiments 43
4.5 Energy/latency saving comparison . 48
4.6 Average energy and latency savings for the two dataflows 50
4.7 Accuracy comparison . 52
4.8 Accuracy loss/Energy saving . 52

xi

Acronyms

AI Artificial Intelligence
ASIC Application specific integrated circuit
ALU arithmetic logic unit
CGRA Coarse Grain Reconfigurable Architecture
CNN Convolutional Neural Networks
CPU Control Processing Unit
DSP Digital signal processor
EDA Electronic Design Automation
FPGA Field-Programmable Gate Array
FPU Floating-point unit
IC Integrated circuit
LUT Look-up table
MAC Multiplier–accumulator
PE Processing element
SoC System-on-a-Chip
RTL Register transfer level
VLSI Very-large-scale integration

1

1
Introduction

In order to clarify its purpose and consistency, it is of prominent interest to contex-
tualize this work and illustrate the goals.

1.1 Context and Motivation

The first idea of a neural network was theorized in the forties [2]. Since then, mod-
elling and the approaches to Artificial Intelligence (AI) have drastically changed. In
recent years, deep convolutional neural networks have been widely used since they
achieved record-breaking accuracy, especially in Computer Vision tasks. The main
drawback of CNN is the computational complexity. The popularity of CNN in the
last few years [3] and the market interest for the possible CNN applications have
pushed a very dynamic field of research. The computational complexity makes CNN
incompatible with an embedded environment. This was true for years, when ma-
chine learning algorithms were only used in power demanding systems, datacenters,
etc...
The increasing efficiency and accuracy of CNNs allow the utilization of these net-
works in a wide range of applications. The automatic inspection could be used
in manufacturing applications, object recognition for visual surveillance; navigation
may be used by an autonomous vehicle or mobile robot. The majority of these
environments requires an embedded system, a portable system. The main trade-off,
in this case, is related to energy efficiency and throughput, or area overhead and
performances. In order to sustain a certain level of performances while maintaining
power consumption low, new design methodologies and new platforms have to be
developed.

1.2 Goals and Challenges
This work is contextualized in the situation described in the previous section. In
that context, first we have to identify a platform that can satisfy the availability of
resources that can be used to parallelize the computation and a memory hierarchy
with resources near the computation. Then, we have to spot an energy efficient
dataflow, for scheduling and mapping the highest energy-demanding CNN layer,
convolution. Finally, we have to find a technique to exploit the peculiar format of
the data involved in the computation in order to reduce energy consumption and
at the same time sustain a certain level of performances (throughput and network

3

1. Introduction

accuracy). In this work we address these problems by developing a new dataflow
and a technique for exploiting data statistics.

1.3 Thesis Organization
The report is organized as follows:

Chapter 2 Background and Concepts: in chapter two we introduce the reader
to deep learning algorithms, with a special focus on CNN; also, we described the
state-of-the-art for ConvNet on embedded world.

Chapter 3 Energy-Efficient Dataflows: modeling and simulation: in chapter
three we describe the developed dataflows (No Local Reuse and Window Stationary
dataflow) and the developed optimization.

Chapter 4 Evaluation and Results: in chapter four we comment the perfor-
mance results of the simulated dataflows and the optimization applied on them.

Chapter 5 Conclusion: in chapter seven we summarize the achievements of our
work and we give recommendations for future works.

4

2
Background and Concepts

In this chapter the reader can find a description of the "deep learning" field with a
special focus on the Convolutional Neural Networks. An overview on the existing
and potential hardware platforms for CNN follows.

2.1 Convolutional Neural Networks

This section gives a brief overview of neural networks describing the main concepts.
Then, the focus is moved to ConvNet in detail.

2.1.1 Introduction to Neural Networks

Artificial neural networks (ANNs) are computing systems that can learn (a pro-
gressively performance improvement) how to do tasks by considering examples,
generally without task-specific programming [1]. The first mathematical model was
provided by W. McCulloch and W. Pitts [2] in the late 1943. Their work gave a
new perspective on the human brain logic and it started a new field of research
which was unexplored at that time. In the 1954, Rosenblatt introduced the concept
of perceptron, a solution for pattern recognition problem [4]. Over those years, the
research continued (e.g. in 60’, the first multilayer network was theorized [5]), but
achievements in developing new theoretical models did not follow progresses in com-
puting capability. This is the reason why the research slowed down for years. In the
last few decades, since computing platforms addressed the computational request,
the research has increasingly speeded up.

Neural networks are originally inspired by the biological neural network of the ner-
vous system. Many analogies link artificial neural networks to the biological ones.
The biological networks are composed of the neurons and the synapses. The synapses
are not only the means of transmission of the information, but they can also control
the information working on the amplitude of the signal or blocking the transfer.

In the artificial neural network the basic unit is the artificial neuron. As formally
described in the equation(2.1), neuron has an input signal xi that is multiplied by
one or more weights (wi) and added to a constant parameter (bias bj) in order to
give the output results.

5

2. Background and Concepts

yi = bj +
NØ

i=0
(xi ∗ wi) (2.1)

The weights are the mathematical way to model the synapses behavior. For example,
if the weight wi > 1, the input signal is amplified; otherwise with wi < 1, the input
is reduced [6]. The following picture shows the neurons structures:

Figure 2.1: Biological and Artificial Neuron

An artificial neural network is composed of many different neurons layers. Only
the neurons belonging to the same layer can be connected together. The following
picture shows a trivial neural network:

Figure 2.2: Artificial Neural Network structure [7]

In this case, the network has four neurons in the first layer and three at the output.
A neural network has to learn in order to recognize and make predictions, just like a
child. The neural network development is made up of two steps: training (learning)
and validation.

6

2. Background and Concepts

Training

The training phase is crucial for developing a good neural network. Just like a hu-
man being learns from experiences and from samples, a neural network learns from
samples. In this case samples are labeled (supervised learning), not labeled (un-
supervised learning) or a mix of labeled and not labeled samples (semi-supervised
learning). In neural networks the weights are the objects of the learning process.
In the initial training phase, the weights are initialized with random parameters.
The samples are sequentially presented to the network input layer (forward). The
outputs are compared to a ground truth labels using a loss function. That is a met-
ric for quantifying the distance between output and expected results. The main
purpose of the training phase is to repeat the forwarding on all the training set
(epoch) minimizing the loss function. Then a gradient is used to understand how
weights influence the error. The gradient is computed backpropagating the output
error through the network (backward). According to the gradient the weights are
updated.
The training phase is an optimization loop composed of these three phases: forward-
ing, backwarding and updating.

Validation
After a while (epochs), the algorithm used for training converges. In order to extract
the accuracy of the network, a validation phase is needed. This phase uses a set of
inputs different from the ones used for training (training set): the validation set.
The idea is to test the network on new samples that represent the real application
samples for the considered network. Each input sample is submitted in the network
for the forwarding phase. The outputs are compared to the real ones in order to
understand the accuracy of the network.

2.1.2 Convolutional Neural Network architectures
Covolutional Neural Networks (CNN or ConvNet) represent a special class of deep
learning algorithms mostly used for two-dimensional inputs (images, video) for im-
age classification, object recognition tasks. A CNN consists of a set of layers, inputs,
outputs and different hidden layers.
In a classic neural network, the neurons of each layer are fully connected. In image-
related application, the inputs are pixels. In a small image (i.e 200x200) the number
of processed inputs are 200x200x3. As a consequence, in a fully-connected layer, bil-
lions of weights are required. Not in this case, because for images we can exploit the
locality of the information. For example, if we want to recognize an airplane in a
picture, in the majority of the cases the airplane is in the center of the picture. The
border pixel or the background pixels are not significant for that task. The core of
the information, for image, stands in the neighbor relationship among near pixels.
For example, the edges give us information about the shape of the object to detect
[6]. This is the main reason we do not need all fully connected layers but we can
replace most of them with convolutional ones.

7

2. Background and Concepts

Parameters The parameters involved in ConvNet are the input feature maps with
WxHxC size, where W stays for the width, H for the height and C represents
the number of input channels. The filters have KxKxC size, where Ks are the
dimensions of the kernel and C the number of the channels. The number of filters
represents the output channels size. Another important parameter is the bias B, its
dimension is equal to the number of filters.

The layers in CNN are the following:

• Convolutional: this layer applies multi-dimensional convolution on a set
of input feature maps with a set of filters (multi-dimensional kernels). The
output of convolution is provided after computing the dot product between
the weights and a local region on the input feature map.[6]

Figure 2.3: Convolution [8]

Figure 2.3 shows the convolution operation between a slice of the input feature
map and a kernel. Sometimes the input feature map could be padded with
zeros (or ones).

• Pooling: it is common to find a pooling layer among the convolutional layers.
The pooling layer reduces the spatial dimension of the convolutional output
and consequently it reduces the number of input parameters for the following
convolutional layer. The most used pooling is the max pooling, which uses the
maximum value from each cluster of neurons [9]. It works on the width and
height dimensions leaving depth unchanged. Another form of common pooling
is the L2-norm pooling. The following picture shows a max pooling example:

8

2. Background and Concepts

Figure 2.4: Max pooling example [6]

In Figure 2.4 a pooling kernel of size 2x2 and stride 2 is used to reduce input
size.

• Fully-connected: as suggested by its name, a fully-connected layer connects
every neuron in one layer to every neuron in another layer. It is the basic con-
cept of a regular neural network. The computation is a matrix multiplication
and bias addition [6].

• Nonlinearity: it is used to apply a non-linear activation function. Several
activation functions are used in CNN; here the most common ones:
– Rectified Linear Unit (ReLu) [10]: f(x) = max(0, x) where x is the

input pixel;
– Sigmoidal: f(x) = 1

1+ex ;
– Parameteric rectified linear unit (PReLU) [11]: f(α, x) = max(α∗
x, x) where α is another parameter to "learn".

• Local Response Normalization (LRN): this layer was introduced the first
time in AlexNet [42]. The concept is related to the biological concept of "lat-
eral inhibition". It is the capacity of a stimulated neuron to affect the neural
activity of neighbors neurons. This mechanism creates a sort of competition
among the neighbor neurons. In artificial neural networks the same effect can
be reproduced by normalizing a neuron response compared to the neurons of
the adjacent output channels.

• Dropout: the most popular technique used in order to avoid the overfitting
1. It works by cutting ("dropping") some random connections in the training
phase.

• Softmax: the classical classifier. It computes the final score for each class
and it is usually used as the last layer in the most common CNN architectures.

Popular Neural Networks frameworks In the last few years, the software
frameworks for designing, training and validating neural networks have drastically
grown. Among others, the most used are Caffe [34], TensorFlow [14], Neural Net-

1It occurs when a model has poor predictive performance since the generated parameters fits
"too much" the training set.

9

2. Background and Concepts

work Toolbox from Matlab [12], Theano [13]. The majority of these frameworks are
both CPU and GPU compatible. For this work Caffe is used in order to extract the
interesting parameters and to validate the network after applying optimization.

Popular network for Image Classification The popularity of CNNs, the dif-
fusion of image classification contests and competitions contributed to the growth
of the developed CNN. Here we describe the most popular ones:

• AlexNet[42]: the network used in this work. It is composed of five convo-
lutional layers, three fully connected layers and about 60 million of parameters.

• GoogLeNet [15]: by Christian Szegedy et al. from Google, it is the state-of-
the-art of CNN in image classification. It is a record-breaking network since
it achieved 6.67% of error rate in ILSVRC with 1.2 a million of parameters.
It is composed of 22 layers, only three of which are the convolutional layers.
The strength of this network stands in the so called Inception modules that
can reduce the numbers of channels.

• VGG [16]: stands for Visual Geometry Group from University of Oxford.
This network has 19 convolutional layers with more than 150 million of pa-
rameters.

• SqueezeNet [17]: the design purpose of this network is different from the
others, not aiming at the accuracy, but at parameters reduction. It obtains
50X less parameters than AlexNet, preserving the same accuracy.

10

2. Background and Concepts

2.2 Embedded Convolutional Neural Networks
In the previous chapter we described the state-of-the-art for ConvNet. In this chap-
ter we describe the embedded solution adopted for CNN algorithms in terms of
commercial and research platforms.

2.2.1 Potential Hardware Platforms
Embedded systems usually have more strict constrains, compared to the general
purpose ones, in terms of area and energy. Moreover, in some cases those systems
have process tasks with a constrained deadline (real-time application). These are
the main reasons why designing algorithms for an embedded platform could be a
non trivial task. The task becomes harder when the algorithms are CNNs that
require a high-computational capability while preserving the strict constrains that
derive from the embedded world. Nonetheless, there are still several options for de-
veloping CNNs on embedded platforms. The most popular ones are described below:

• CPUs: processors which are commonly used in general purpose systems. The
high throughput required in CNN algorithms seems not to fit adequately this
solution. High-parallel computing paradigms (SIMD) multi-cores architectures
effectively address the computation requirement to achieve high throughput,
energy consumption still remains high as data movement can be more expen-
sive than computation [25].

• GPUs: originally designed for graphical applications, these platforms have
now adopted a general purpose paradigm (GPGPUs). GPUs are multi-core
platforms with a high-level of computing parallelism supporting OpenCL or
CUDA software frameworks. A top gamma GPU like NVidia GeForce GTX
Titan X [18] is composed of more than 3000 floating-point processing cores
running at 1 GHz. While computing 6600 GFLOP/s, power consumption is
up to 250W. The majority of GPUs are well suited for CNN applications, but
the area overhead and the high energy consumption make GPUs not suited
for an embedded environment.

• FPGAs: special ICs composed of an array of programmable logic blocks and a
hierarchy of reconfigurable interconnections. This allows to modify the design
after the manufacturing process. This characteristic makes FPGAs appealing
in supporting CNN application. In [20], the authors evaluate emerging DNN
algorithms on two generations of Intel FPGAs (Intel Arria10 and Intel Stratix
10) against the latest highest performance NVIDIA Titan X Pascal GPU. The
results show that Intel Stratix 10 FPGA is 5.4x better in performance (TOP-
S/sec) than Titan X Pascal GPU on GEMMs for sparse, Int6, and binarized
DNNs, respectively. On Ternary-ResNet, the Stratix 10 FPGA can deliver
60% better performance over Titan X Pascal GPU, while being 2.3x better in
performance/watt [21]. So, power consumption is lower than GPUs but higher
for an embedded environment.

11

2. Background and Concepts

• ASICs: apparently an adequate compromise between performance and en-
ergy consumption. Several solutions have been designed, which are suitable
for CNN. The main problem with ASICs is that they require lots of effort in
the design; plus, in the majority of cases they are not easily scalable. How-
ever, recent researches have achieved appreciable results. Some of them are
described below.

2.2.2 Existing CNN Implementations on Embedded Plat-
forms

In this section we introduce the most relevant works on CNN implementations with
a special focus on ASIC solutions, since an ASIC is the architecture used as reference
for our simulations.

The FPGA approach

A milestone for FPGA implementations is the approach of Zhang et. al. in 2015 [23].
After observing several FPGA implementation of CNNs, he realized the majority of
those implementations did not maximize the exploitation of the available FPGA re-
sources. That research group developed a polyhedral-based optimization framework
for analyzing loops tiling in convolution. All the possible schedules were analyzed
using the "roofline model", which relates to computation and communication for the
design exploration.

Figure 2.5: Design exploration in [23]

In Figure 2.5 we find the FLOPS vs Computation to Communication ratio curve for
conv5 layer of AlexNet using Xilinx Virtex7 485T FPGA as platform. The possible
implementations (varying the tiling factor) are represented in 2.5 as dots and the
red lines indicate the platform constraints. In that design space, the best solutions
can be chosen, C in this case.

12

2. Background and Concepts

ASIC approaches
In recent literature, the custom accelerators for CNNs are uncountable. We try to
present the state-of-the-art of both commercials and research in chronological order.
The first work to mention is DaDianNao accelerator(2014) [22], used both for train-
ing and inference. It is a multi-chip system composed of 1 to 64 nodes and a large,
shared off-chip central memory (DRAM). The synthesized results are up to 126.66x
for energy saving and 300.04x faster than the GPU baseline.
Another relevant architecture was proposed in [25] in 2016. It is a heterogeneous
platflorm for CNN.

Figure 2.6: Eyeriss block diagram

In Figure 2.6, we can notice 168 processing elements composed of three parts: a com-
putation, memory and control. A four memory hierarchy includes off-chip DRAM,
on-chip Global Buffer, inter-Pe communications and register files. The energy effi-
cient features in [25] are the RLC encoding for reducing DRAM accesses (left side in
2.6), zero detection unit2 and the Row-Stationary dataflow. The basic idea of that
dataflow is to break the high-dimensional convolution into a set of 1D primitives.
Each primitive operates on one row of filter weights and one row of input feature
map pixels, and generates one row of partial results [25]. Data are fetched from the
different elements of the memory hierarchy.

The state-of-the-art for CNNs on ASIC is the Tensor Processing Unit used by Google
in its datacenters [24].

2discussed in the following sections

13

2. Background and Concepts

Figure 2.7: Google TPU block diagram

Figure 2.7 shows the block diagram of TPU. The core of TPU is the Matrix Mul-
tiply Unit (MMU), which is composed of 256x256 MACs that can perform 8-bit
multiply-and-adds on signed or unsigned integers designed for dense matrices. The
Accumulators are used to accumulate the results of MMU, one 256-element partial
sum per clock cycle. The memory hierarchy is composed of a dedicate memory for
loading/storing weights, Weight Memory (8Gb DRAM), a 24 Mb on-chip Unified
Buffer for partial results[24]. The several benchmarks are used for performance
evaluation of CNN, Multi-level-percetron etc.

Figure 2.8: Google TPU block diagram

In 2.8, we find the relative performance/Watt ratio of TPU compared to CPU and
GPU. TPU dominates the competitors. In 2.8, TPU’ is an improved version with
larger memory and higher operating frequency.

14

2. Background and Concepts

2.3 Dataflows Taxonomy
In the recent literature all dataflows can be clustered in the following classes [25]:

• Output Stationary (OS) Dataflow;
• Input Stationary (IS) Dataflow;
• No Local Reuse (NLR) Dataflow;
• Weight Stationary (WS) Dataflow.

2.3.1 Output Stationary Dataflow
The main feature of this family of dataflows is the accumulation of the partial sums
in the same PE registers. At the same time each pixel should stay stationary in the
PE to be accumulated with the purpose of minimizing the accumulation cost. Each
dataflow is different depending on the choice of the accumulation plane:

• Accumulate the partial sums over the channels (multiple or single);

• Accumulate the partial sums considering one sub pixel plane (multiple or sin-
gle);

• Mixed solution.

These sub-classes share the concept of accumulating data in the register file of the
PEs and using an intra-PE data reuse, with the need of additional register memory.
Some examples of the above described dataflows can be found here [27, 28, 29]

Figure 2.9: Output Stationary dataflow schema [25]

2.3.2 No Local Reuse Dataflow
In this kind of dataflow there is no data reuse at PE level, so the PEs are used only
for computation and the global buffer could be larger than the previous cases. There
is only an inter-PE reuse, array level. The datapath of each PE reads as input an
input feature map element and a weight element and performs the MAC operation.
The partial sums are accumulated in the global buffer as the input/output feature
map in order to reduce the read/write operations from the main memory.
Some examples of the above described dataflows can be found here [30, 31]

15

2. Background and Concepts

Figure 2.10: No Local reuse dataflow schema [25]

2.3.3 Weight Stationary Dataflow
For this class of dataflows the weights are stationary in registers of PEs in order to
maximize the weights and convolutional reuse. Weights belonging to same filters are
fetched from the DRAM and remain stationary in the register file. KxK weights
are in registers and the input feature map is fetched from the buffer or directly from
DRAM and shared among the PEs. Moreover, partial sums are not accumulated
in the register file, so additional buffer traffic is required for computing them. The
buffer size is critical for the performance: a small buffer could require additional on-
chip transactions for the partial sums and off-chip transactions for swapping data
from buffer to external memory.
Some examples of the above described dataflows can be found here [32, 33]
This work will present a variant of that class of dataflows.

Figure 2.11: Weight Stationary dataflow schema [25]

16

2. Background and Concepts

2.4 Exploiting data statistics

In the previous chapters it was stated that the convolution operation is the most
expensive in terms of energy. Data involved in this operation derive from two classes
of input feature maps and filters. The most used methods are classified using two
generals criteria:

• Reduce the number of the operations;

• Reduce the size of the operand;

Moreover, another classification can be done, based on the object of the optimization:
input feature maps or filters. In the following chapter we summarize the most used
optimization techniques and then we present the optimization developed in this
work.

2.4.1 Operations reduction

In order to reduce the number of operations for convolution, different approaches
have been developed at different points of the design:

1. Network level: pruning a set of CNN layers;

2. Intra Layer compaction: exploiting the input data (filters or input feature
maps) statists to compress data.

Network level

The first approach involves the CNN designers. It consists of minimizing the number
of convolutional layers in order to reduce the total number of operations. The main
concept is to break the high-dimensionality of convolutional layers and decompose
them in smaller layers. In this operation the trade-off is between network accu-
racy and number of operations. An example of decomposing filters is shown in the
following picture:

17

2. Background and Concepts

Figure 2.12: Filter design in GoogleNet and VGG-16 [37]

In Figure 2.12, we can notice that GoogleNet [15] uses separable filters, which are
special filters that can be expressed as the outer product of two vectors. So, the
original kernel can be written as a matrix product of a column and a row vector.
Moreover, the convolution operation is associative so:

f ∗ (v ∗ h) = (f ∗ v) ∗ h (2.2)

where v and h are the two vectors that compose the original kernel and f the other
signals involved in convolution. In that way, considering HxW input feature map
size and KxK the kernel sizes, the original complexity is HWKK; instead, with
separable filters the computational complexity of convolution will be HW (K +K).
Moreover, the filters obtained after training are not usually separable.

Intra Layer compaction

Many examples of this kind of approaches are presented in recent literature, the
most relevant ones are described in this work.

Zero handling

The data involved in convolution, filters and input feature maps are full with zero
values. Moreover, after the ReLU layer, other zero values are added in the output
feature maps. There are two ways of exploiting this fact for reducing the multi-
ply and add operation. The first one is to use a zero detector for skipping the
MAC operations; the second one is to exploit this data characteristic to use a sparse
representation for matrices or to use data encoding such as RLC (Run-Length Com-
pression) or smarter ones, to compress data [25]. The former can be easily applied
using a "zero detector". An example can be found in the following picture:

18

2. Background and Concepts

Figure 2.13: Zero detection in [37]

In Figure 2.13, the architecture presents a "zero detection" mechanism that allows
to recognize zero elements in input feature maps while reading them from the ded-
icated scratchpad memory. This mechanism guarantees an estimated power saving
of 45%.

Another way to prune the weight is described in [36]. In that work, weights are
pruned during the training phase. This pruning mechanism is based on weights
magnitude. This technique in 2.14 is composed of three steps:

• A standard training for learning the connectivity;
• All connections with weights below a certain threshold are pruned;
• Retraining for learning the new weights.

The following picture shows the dataflow adopted in [36] :

Figure 2.14: Weights pruning in [36]

19

2. Background and Concepts

In Figure 2.14, on the left there is a schematic representation of the original network
before and after the pruning. This technique is also used on fully connected layers
with an average speed up of 3.2x on GPU, 3x on CPU [36]. Moreover, in this
technique we do not find an energy aware pruning. Some examples of energy-aware
methods can be found here [38].

2.4.2 Operand size reduction
The operand size reduction is one of the most exploiting optimization area. In this
work only few relevant approaches are reported. Two are the main possible opti-
mizations:

• Bit-width reduction and data representation;
• Data quantization;

Bit-width reduction and data representation

The values involved in convolution are usually floting-point values. The first ap-
proach can be to change representation from floating point to fixed-point represen-
tation. In [39], we can find an example of dynamic and static fixed-point. The
dynamic fixed-point representation allows to customize the data representation of
each layer of the network in order to reduce the data size and meanwhile minimize
the accuracy loss. The following technique is composed of the steps shown in the
following picture:

Figure 2.15: Approximation flow in [39]

In Figure 2.15, the work-flow is shown. A first analysis on the weights allows to
properly choose the quantization parameters. Then, a similar analysis is done on
the connections. After these two steps, the required bit-width for each different
layer is found. The network was tested on the test set in order to evaluate the
accuracy. If the accuracy is the desired one, the optimization algorithm stops.
Otherwise, the bit-width configurations previously chosen for the layers are changed
and re-tested. Once a good trade-off between small number representation and
classification accuracy is found, the resulting network can be fine-tuned. In that
phase, the network was retrained with the new weights and the gradient function

20

2. Background and Concepts

in back propagation computes the error between the floating point weights and the
quantized ones.
The results in terms of network accuracy are shown in the following picture:

Figure 2.16: Dynamic vs static fixed-point: Top-1 accuracy for CaffeNet on
ILSVRC 2014 validation dataset

In Figure 2.16, we can find the accuracy comparison between dynamic and static
fixed-point of different bit-widths. What emerges is the better performance of dy-
namic fixed point.

Data quantization

Quantization means remapping data from a given set to a different one reducing the
number of levels (bits) of representation. In this case the main purpose is improving
performances (enegy/speed) while preserving a certain accuracy. An example of
quantization applied to weights can be found in [40]. In this case the new domain
is logarithmic.

Figure 2.17: Weights distribution in the original and logarithmic domain

21

2. Background and Concepts

In Figure 2.17, there are the representations of weights distribution in linear and
logarithmic domain. The main advantage to use the log domain is that the product
in this domain is just a shift. So, the most used operation in convolution (MAC)
is replaced by a shift and add operation, faster and less energy consuming. Two
approaches are used: log domain for activations only or for both weights and ac-
tivations. The results, using weights: 5-bits for CONV, 4-bit for FC; activations:
4-bits, imply just a 3.2% of accuracy loss for AlexNet [40].

22

3
Energy-Efficient Dataflows:
modelling and simulation

This chapter is the core of the work. It provides a detailed description of the designed
dataflows and the adopted simulation framework. Then, an optimization technique
is presented.

3.1 Dataflows description

This section illustrates the core of the work. Firstly, it presents the reference ar-
chitecture on which we simulate the implemented dataflows; then, the simulation
framework is described. Finally, the two implemented dataflows are detailed.

3.1.1 Reference Architecture

In the previous chapters there is a description of the several proposed architectures,
ASIC or on FPGA. The adopted architecture is a heterogeneous one and it is com-
posed of :

• Main memory (DRAM);

• Global buffer;

• PE plan: composed of NxN processing elements with register file;

• Inter-PE buffer shared among PEs.

The following picture shows the schematic of the architecture :

23

3. Energy-Efficient Dataflows: modelling and simulation

Figure 3.1: Reference architecture schema

The architecture in Figure 3.1 has four levels of storage hierarchy: DRAM, global
buffer, array (inter-PE communication) and RF, sorted by their energy cost for
data accesses from high to low [25]. The main memory is the off-chip where data
are stored: input feature map and filters. The main buffer is an on-chip memory.
The buffer usage depends on the implemented dataflow. The PE plan is the chip
where there are NxN processing elements. All PEs share a memory buffer used in
both the implemented dataflows, for storing partial sums.
The following picture shows the schematic of the internal structure of a Processing
Element:

Figure 3.2: Processing element schema

24

3. Energy-Efficient Dataflows: modelling and simulation

The processing element structure in Figure 3.2 conceptually has an ALU that in-
cludes a Multiplier and Accumulate (MAC) ,two FIFOs queue for data exchanging
to/from inter-PEs buffer and a register file. As for the implemented dataflow, the
size of this register file (i.e the number of registers) and the number of PEs change.

The main purpose of this architecture is that of supporting an energy efficient
dataflow. Hence, a memories hierarchy is used for reducing the memory accesses to
an off-chip memory. Moreover, the PE plan guarantees an high parallel computation,
required for the convolution operation.

25

3. Energy-Efficient Dataflows: modelling and simulation

3.1.2 Simulation Framework
The simulation framework is the main core of the work since it allows to evaluate
the energy and latency of the developed dataflows. It was totally written in Python
and it uses the most common libraries used for image processing and data science
as Numpy, Scipy etc . . .
The following picture shows the overall simulation framework:

Figure 3.3: Simulation framework schema

In Figure 3.3, it is described the entire software architecture. On the left side of
the image, there are Caffe files used in our framework. "Caffe is a deep learning
framework made with expression, speed, and modularity in mind" [34]. Caffe uses
file with extension .prototxt 1 to describe the CNN networks with their layers.
Moreover, a .caffemodel 2 is used to store the model obtained after training phase.
Both protocols are Google Protocol Buffer.
From .caffemodel and .prototxt file, we extract the real parameters (filters and
biases) used in convolutional layers of the selected network. The additional input
files describe the memory hierarchy and convolutional layer parameters shapes in
the adopted custom protocol. The main parameters for memory specifications are:
number of words, energy access cost, just to cite the most relevant. On the other
hand, the parameters for the architecture are the number of PEs, registers per PE,

1Plaintext protocol buffer.
2Binary protocol buffer.

26

https://github.com/google/protobuf

3. Energy-Efficient Dataflows: modelling and simulation

inter-PE buffer size, type, ALU cost etc...

Figure 3.4: Memory description file example

In Figure 3.4, an example of configuration is showed. In 3.4, by crga we mean PE
plan and the inter-PE buffer. In this case we use 11x11 PEs, each of them having 32
registers with an unitary energy access cost and an inter-PE buffer with 1024 words
with an access cost of 2 and a read/write with unitary latency.
The outputs of the simulations are the characteristics of the convolutional layer
(number of MACs operation, input/output feature map size), energy and latency.
The software framework is composed of Python classes for memories and PE descrip-
tion, utility classes for extracting operation statistics, given the input parameter
shapes.

27

3. Energy-Efficient Dataflows: modelling and simulation

3.1.3 Window Stationary Dataflow
The implemented dataflow belongs to a weights stationary family since it shares all
the concepts described at the beginning of this chapter, but it takes some changes
in order to achieve better performance in terms of energy saving. First of all, we try
to resume the main concepts related to the weights stationary family:

• Pros:
– Weights are stationary in Register File;

– Maximization of weights and convolutional reuse;

• Cons:
– Partial sums are NOT (always) accumulated in the PEs;

– Additional bus traffic due to continuous memory-to-memory transfer;

This work aims at taking the main advantages of this solution and operating on the
drawbacks.
The Window Stationary Dataflow takes its name from the fact that we store in the
PEs register file at least one complete filter: a K x K x C where K is the width/height
of a square kernel and C the kernel channels. The intermediate buffer must contain
a complete input feature map (W x H x C : width, height and channels) and at least
one kernel (K x K x C) depending on the considered configuration. In that way we
have no need of fetching data directly from the main memory (off-chip transaction).
The PE plan is able to compute at least one window each C clock cycle, where C
are the considered kernel/image channels. In that way the MAC results are accu-
mulated in the PE register file. For the partial sums we use an intra-PE buffer
in order to compute the additions using PE in a sort of tree of adders trying to
exploit efficiently all the computation capability available.
The main dataflow could be splitted in two parts: configuration and storage of the
input parameters, convolution.

28

3. Energy-Efficient Dataflows: modelling and simulation

Part one: configuration and storage of the input parameters

In the following picture we can find the part one description: configuration and
storage handling.

Figure 3.5: Configuration and storage handling

29

3. Energy-Efficient Dataflows: modelling and simulation

This dataflow in Figure 3.5 performs the following steps:

1. Input feature maps and kernels are loaded in the main memory.

2. The buffer must contain all input feature maps and at least one complete fil-
ter. So input feature maps are completely loaded in the buffer. Then, if there
is any available space in the buffer, all space available is filled with a certain
number of filters. The filters that are not in the buffer yet are loaded in a
second moment, when that part of filters, which are in the PE register file, is
no longer useful for the computation.

3. According to the PE plan configuration (i.e. number of PE and register file
size of each PE), a subset of filters is stored in the RF. The PE plan must
contain at least one complete kernel at time.

4. At that point, the convolution is performed with input filters from register file
and input feature map from buffer. In this way we use the nearest memory
for the most frequent memory accesses (reads of kernel elements).

Part two: convolution

The convolutional layer is the most significative in terms of computation. Now
we analyze the convolution operation and how we perform it in our dataflow.

"Multidimensional discrete convolution refers to the mathematical operation between
two functions f and g on an n-dimensional lattice that produces a third function,
also of n-dimensions"[35].

In order to illustrate the adopted operation, in the following table we define the
parameters shape.

Parameter Description
M Number of multidimensional filters and output feature map channels
C Number of input feature map and filter channels

H/W Input feature map height/width
K Filters height/width

OH/OW Output feature map height/width
S Stride

Table 3.1: Parameters shape

30

3. Energy-Efficient Dataflows: modelling and simulation

Using the parameters in Table 3.1, we can describe the used convolution with the
equation (3.1), where 0 ≤ u ≤ M , 0 ≤ y ≤ OH (with OH = (H − K + S)/S) and
0 ≤ x ≤ OW (with OW = (W −K + S)/S).

Outfmap[u][x][y] =
C−1Ø
z=0

K−1Ø
i=0

K−1Ø
j=0

I[z][Sx+ i][Sy + j]xW[u][z][i][j] (3.1)

For sake of clarity, we attach also a C-like pseudo-code for a naïve implementation
of convolution with nested for loops:

for (u=0;u< M; x++){
for (y=0;y< OH; y++){

for (x=0;x< OW; x++){
for (i =0; i< K; i++){

for (j =0; j< K; j++){
for (z=0;z< C; z++){

output [u] [x] [y]+=I [z] [Sx+i] [Sy+j]∗W[u] [z] [i] [j]
}

}
}

}
}

}

The pseudo code representation allows us to understand the computational com-
plexity of this operation in terms of number of MACs operations. Moreover, we can
gather the information that the loops are independent from each other so the loop
order can be chosen properly.
In order to better describe our dataflow behavior, in the next line we propose a
simple example of how the computation happens in on-chip part of our architecture.
Example:

In our example we analyze the convolution of a 3x3x3 kernel with an input feature
map describing the computational behavior and the main benefits of this approach.

Starting point : All required data are in the main buffer waiting to be distributed
in the PE register file.
The following picture shows the filter used in this example and the corresponding
three channels C0, C1, C2:0 −1 −1

1 −1 0
0 1 −1

1 −1 −1
0 0 1
0 −1 −1

0 1 1
0 −1 0
0 1 1

 (3.2)

Figure 3.6: An example of 3x3x3 filter where C0, C1, C2 are respectively the filter
channels.

31

3. Energy-Efficient Dataflows: modelling and simulation

In the following table we summarize the shape of the parameters described in Table
3.1:

Parameter Value

M 1
C 3

H/W Not relevant
K 3

OH/OW Not relevant
S 1

PE plan 3x3 with 4 regs

Table 3.2: Parameters example

For this example we use one filter (M in Table 3.2) and a PE plan composed of
9 PEs each of them with 4 registers. After setting the parameters, the following
picture shows in a visual way all the parameters involved in convolution:

Figure 3.7: Convolution computation

In Figure 3.7, what is shown is the convolution between an input filter with all its
channel C, on a slice of the input feature map of size WxH giving as results an
output feature map element.

All the configurations are done at that moment. Each PE has in its register file
one (in this case, or more, depending on the configuration) weight for each filter
channel. In this way each PE can perform the MACs operations along the channels
accumulating the results in the additional register available. All the PEs can elab-
orate the whole window in parallel, in a C x MAC latency clock cycle; after that,
the results are written in the inter-PE register file. This feature improves the
computational throughput by exploiting all the computational power available.
Moreover, the partial sums are accumulated in the inter-PE register file that allows
to exploit the nearest (free) memory storage improving the energy efficiency of

32

3. Energy-Efficient Dataflows: modelling and simulation

the computation.
The following picture is a snapshot of the PE plan and the respective register file:

Figure 3.8: PE plan after initial weights assignment

In Figure 3.8, we can see the distribution of weights in the PEs register files. The
blue values belong to the channel C0 of the filter in 3.6, the green ones to C1 and
the pink ones to C2. The filter mapping in Figure 3.8 allows to have the values
from different channels that belong to the same filter in the register file of a PE.
The additional register is used for accumulating temporary MAC results. In these
examples, after the MACs operations, we have nine values to be summed together.
This phase is shown in the following picture:

33

3. Energy-Efficient Dataflows: modelling and simulation

Figure 3.9: Tree of addition configuration

We can see the nine values resulting from the previous phase to be added on the
top of the Figure 3.9, in the inter-PE buffer. At this point the PEs are configured
to form a tree of adder. The adders in PEs are used to compute the final sum
loading/storing partial sums to/from inter-PE buffer...
This mechanism improves the throughput and the energy efficiency when reading
values in the nearest memory location (lower access cost).
The main benefits of using this dataflow are the following:

• Maximization of the weight and convolutional reuse;

• Exploitation of the nearest memory available to load/store data in order to
minimize the energy consumption due to the data movements;

• Reuse of the computational capability of each PE also to maximize the through-
put of partial sums.

34

3. Energy-Efficient Dataflows: modelling and simulation

3.1.4 No Local Reuse
This dataflow is used as baseline for the performance comparison. This dataflow
belongs to the homonym dataflow family. The main features are :

• No local RFs are used to accumulate data;

• The global buffer is usually big (>2Mbyte) in order to store the whole dataset
(input feature maps and filters);

• The accumulation of partial sums is in the inter-PE buffer;

The main dataflow is described in the following picture:

Figure 3.10: NLR dataflow

35

3. Energy-Efficient Dataflows: modelling and simulation

The dataflow in Figure 3.10 performs the following steps:

1. Input feature maps and kernels are loaded in the main memory.

2. The buffer must contain all input feature maps and at least one complete fil-
ter. So input feature maps are completely loaded in the buffer. Then, if there
is any available space in the buffer, all space available is filled with a certain
number of filters. The filters that are not in the buffer yet are loaded in a sec-
ond moment, when that part of filters is no longer useful for the computation.
For that kind of dataflow it is preferable to have the whole input dataset in
the global buffer.

3. At that point the convolution is performed with input filters and input feature
maps fetched from buffer.

In the following chapter we will find a comparative analysis between the two dataflows
that underlines the main differences in terms of performance.

36

3. Energy-Efficient Dataflows: modelling and simulation

3.2 Average "pooling" optimization
In the CNN, the input parameters of convolutional layers are input feature maps
and filters. This work presents an optimization strategy for input feature maps.
The main idea is to work on the number of operations involved in convolution.
In order to do that, we apply an average pooling on the input feature map. The
choice of average comes from an accurate evaluation after the comparison between
average and max pooling. In order to do that, we selected a subset of images from
ILSVRC2012 validation set3 [41] , applied transformation of this image set and used
the Euclidean distance as metric for evaluating the similarity between the original
images and the transformed ones.
If p = (p1, p1, ..., pn) and q = (q1, q1, ..., qn) are two points in an Euclidean n-space,
then the distance (d) from p to q is given by the following formula:

d(q,p) =
öõõô nØ

i=1
(qi − pi)2 (3.3)

The results are shown in the following table:

Technique W Euclidean dististance (average value)
Max "pooling" 2 40.13

3 56.70
Average "pooling" 2 24.62

3 30.31

Table 3.3: Max vs Average "pooling"

The Table 3.3 shows that average "pooling" has a better results in terms of similar-
ity, that is the reason why we chose this method.
For sake of clarity, the implemented technique is improperly called average "pool-
ing" since, as described in the Chapter 2., a pooling layer reduces the size of the
input feature map. In this case, the feature map preserves the original dimen-
sions.

The steps involved in that kind of optimization are the following:

1. Choosing a window size (W) according to the granularity of the pooling;

2. Parsing the input feature map with a step related to the selected window size.

3. All the elements of selected window are accumulated and the average value is
computed.

4. All the elements belonging to the selected window are replaced with their
average value.

3In the next chapter this choice will be motivated

37

3. Energy-Efficient Dataflows: modelling and simulation

A practical example is shown in the following pictures:

Figure 3.11: Step 1 and 2 of average "pooling" algorithm

In Figure 3.11, we can see the input feature map and the selected window (W). In
this example W=2. After that we have to compute the average value of the data in
that window.

Pavg = p1 + p2 + p3 + p4
4 (3.4)

Finally, the average values is assigned to the entire window:

Figure 3.12: Step 4 of average "pooling" algorithm

38

3. Energy-Efficient Dataflows: modelling and simulation

A visual representation of the results is provided in order to understand the effect
of this technique on the input feature maps:

(a) W=0 (b) W=2

(c) W=3 (d) W=5

Figure 3.13: Image before and after average pooling

In Figure 3.13, we can see the visual effect of our technique on a possible example
of input image. When W is increased, larger regions have the same average value.
The visual effect is the so called "pixel effect", that worsens the initial image quality.
The euclidean distance between the original and transformed image grows along
with the window size. If these are the drawbacks, what the benefits? We use an
example to show them:

Figure 3.14: Average pooling on 7x7 image window

39

3. Energy-Efficient Dataflows: modelling and simulation

In Figure 3.14, the area with the same color represents regions of the image with
the same pixel value (the average one). A mechanism which can detect a sequence
of equal values can be used to skip the operations that have the same input feature
map value. In this way we can reduce the number of operations according to the
window size. As for the adopted example, we can see the number of operations sav-
ing in 3.14. Moreover, we have not only a significant reduction in terms of number
of operations, but we can store (and transfer) less data than the original image.
The main benefits of this method are the following:

• Reducing the number of operations;
• Reducing the effective dimension of the input feature map.

In the following chapter the impact of this optimization on the developed dataflows
will be described.

40

4
Evaluation and Results

In this chapter we analyze the performances of the dataflows described in the pre-
vious chapter and the optimization developed and applied on those dataflows. The
chapter is divided in three sections. In the first section we show the model for es-
timating performances. Then, the performances of the two dataflows. Finally, the
results concerning the application of the average pooling on the developed dataflows.

4.1 Experimental setup
In this section we will describe the performance model for our simulations and all
the configurations and setting used for the developed dataflow simulation.

4.1.1 Energy/Latency model
The main purpose of this work is to describe an energy model in order to test a
designed dataflow. Moreover, we know that data transfer in the memory hierarchy
and MAC operations are the main contributions to the energy consumption of a
convolutional layer. For the energy characterization we use data from [25]:

Memory Norm. Energy cost
DRAM 200
Global Buffer (>100kB) 6
Inter-PE buffer (1-2mm) 2
Register File 1

Table 4.1: Normalized energy cost

The values in Table 4.1 are related to works [25, 43, 44], based on 65nm technology.
Those reference values are used to compute the overall energy cost with the follow-
ing equation.

Total Energy = # access x (Norm. Energy access cost)
= #dram access x (DRAM cost) +#buffer access x (BUFFER cost)
+#inter-pe buffer x (I-PE buff cost) +#RF access x (RF cost)

Moreover, for latency we count memory accesses and operations weighted for their
normalized cost in terms of clock cycles. For the proposed results this cost is unitary.
In the following section we describe the CNN used in our experiments.

41

4. Evaluation and Results

4.1.2 AlexNet

AlexNet [42] is a convolutional neural network compared the first time in the Ima-
geNet Large Scale Visual Recognition Challenge in 2012, for the classification task.
ILSVRC evaluates algorithms for object detection and image classification on large
scale. One high level motivation is to allow researchers to compare progress in de-
tection across a wider variety of objects taking advantage of the quite expensive
labeling effort. Another motivation is to measure the progress of computer vision
for large scale image indexing for retrieval and annotation [45].
The following picture shows the AlexNet structure:

Figure 4.1: AlexNet structure [42]

In Figure 4.1, there are AlexNet layers, five Conv Layers and three Fully-Connected
layers. It was implemented in CUDA for GPUs and in a second moment for CPUs.
A pre-trained model is available for the Caffe framework. This model obtains a
top-1 accuracy 57.1% and a top-5 accuracy 80.2% on the validation set, using only
the center crop 1. The Caffe implementation of this model is our reference model 1.
The Conv Layers are the most interesting ones for our work. The following table
shows the parameters involved in each convolutional layer:

M W H K C OH OK S
CONV1 96 227 227 11 3 55 55 4
CONV2 256 27 27 5 96 27 27 1
CONV3 384 13 13 3 256 13 13 1
CONV4 384 13 13 3 384 13 13 1
CONV5 256 13 13 3 384 13 13 1

Table 4.2: AlexNet convolutional layers

1 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

42

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

4. Evaluation and Results

4.2 Dataflow results
In the previous section we have described the performance model and the convolu-
tional layers involved in our experiments. The last configuration is the architectural
configuration. We want to find a suitable configuration for both dataflows and for
all CONV layers. In Window Stationary Dataflow, as a project decision, at least
one complete filter must be in the buffer, so the total storage area (#PE x RF_size)
≥ C x K x K . In order to do that, we have to analyze the parameters involved in
convolution for each layer:

K C Total
CONV1 11 3 363
CONV2 5 96 900
CONV3 3 256 2304
CONV4 3 384 3456
CONV5 3 384 2304

Table 4.3: Filter size for each Conv layer: Channels and Kernel width/height

We chose the number of PEs in order to fit the largest kernel (11 x 11). So choosing
the PE plan size equal to 121, the resulting number of registers per PE is 29. In the
following table architectural parameters are summarized:

Parameter Value

DRAM Not relevant
Buffer 600kB

Inter-PE buffer 1kB
#PE 121

#regs per PE 29

Table 4.4: Configuration for simulation experiments

43

4. Evaluation and Results

4.2.1 NLR Results
After describing the simulation framework and the configuration, we can see the
results. In the following picture we can find the energy and latency of AlexNet
Conv layers:

(a) Energy (b) Latency

Figure 4.2: NLR - Performance

The energy/latency distribution in Figure 4.2 is related to the sizes of the convo-
lutional layers. The most energy consumption one is the layer that processes the
96 input feature maps and 256 filters 5 x 5. In the other layers the input feature
maps and/or filters are smaller. In the following picture we can find the energy
distribution:

Figure 4.3: NLR - Energy distribution

From the results in Figure 4.3, for this dataflow the buffer is the memory element
used the most, since both input feature maps and filters are fetched from the buffer

44

4. Evaluation and Results

for convolution.

45

4. Evaluation and Results

4.2.2 WS Results
Now, we analyze the WS dataflow. The following picture shows the results:

(a) Energy (b) Latency

Figure 4.4: WS - Performance

The pattern of the performance in Figure 4.4 is similar to the previous dataflow in
4.2.

Figure 4.5: WS - Energy distribution

For CGRA we mean the sum of inter-PE buffer and local register files. In this
dataflow, compared to NLR, the energy distribution changes. The buffer is still the
most used memory element, but the usage of RF and inter-PE plays a significant
role in the energy distribution. Moreover, we can observe an anomalous usage of
inter-pe buffer in the CONV1 layer. We have to remember that inter-PE buffer
is used to accumulate partial sums after the MACs computation. So, the number

46

4. Evaluation and Results

of accesses depends on the kernel size, 11x11 in that case: for each "window" the
number of accesses is 11x11, the biggest size among CONV layers.

4.2.3 Dataflows comparison
At this point of the work we have evaluated the performance of each dataflow and
now it is possible to compare them.

Figure 4.6: WS vs NLR - Energy comparison

From Figure 4.6 the differences between the two dataflow in terms of energy emerge.
The fact that in WS dataflow we fetch data from the register file and not from the
buffer implies a significant energy saving.

Figure 4.7: WS vs NLR - Latency comparison

47

4. Evaluation and Results

In terms of latency, the factor that allows us to speed up the operations lies in the
fact that we do not need to fetch weights from buffer each cycle of computation, but
they are stationary in the register files of PE. In the following table we quantify the
amount of performance saving:

Energy saving (%) Latency saving (%)

CONV1 32.61 58.89
CONV2 28.24 57.47
CONV3 37.04 44.81
CONV4 25.34 44.89
CONV5 39.79 43.37
Average 32.60 49.89

Table 4.5: Energy/latency saving comparison

From Figure 4.6, 4.7 and Table 4.5 what emerge are the energy/latency differences
between the two dataflows. The average energy saving is the 32.60% with a corre-
sponding latency saving of 49%.

In WS dataflow the factors that allow to save energy/latency are:

• Maximization of convolutional and weights reuse due to the usage of PE reg-
ister files and the exploitation of the inter-PE buffer to accumulate partial
sums.

• The usage of a tree of adders to speed up the partial sums.

4.3 Average "pooling" results

In this section we analyze the results that come from the application of average
pooling technique on our network. The first consideration concerns understanding
the impact of average pooling on the number of MAC operations. In the following
picture we can find the MAC operations per Conv layer:

48

4. Evaluation and Results

Figure 4.8: MAC operations

From Figure 4.8 it emerges that some layers present more MAC operations than
others. In order to understand the goodness of our approach and at the same time
evaluate the drawbacks, we analyze the first convolutional layer of AlexNet.

Figure 4.9: MACs operation comparison

In Figure 4.9, we can see the effect of average pooling in terms of operations reduction
on the CONV1 layer, the input image. The equal pixels recognition in a selected
window has an impact on MAC operation reduction. Moreover, we are interested in
evaluating the impact of that optimization on the developed dataflows.

49

4. Evaluation and Results

(a) Energy (b) Latency

Figure 4.10: NLR - Average Pooling - Performance

The impact on the performance on the NLR dataflow is perfectly aligned with what
we expected. In 4.10 we can see a 36.94% energy saving and 38.75% for latency
saving.

(a) Energy (b) Latency

Figure 4.11: WS - Average Pooling - Performance

WS dataflow performances patterns follow the NLR one in 4.10. In the following
table we resume the average savings.

Energy saving (avg%) Latency saving (avg%)
W=2 ~31 ~28
W=3 ~48 ~45

Table 4.6: Average energy and latency savings for the two dataflows

In Table 4.6, we can find the average energy/latency saving between the two dataflows
varying the window size. The following picture shows the difference of performances
between the two dataflows that remain constant.

50

4. Evaluation and Results

(a) Energy (b) Latency

Figure 4.12: Dataflow - Average Pooling - Comparison

In the engineering field "there is no free lunch". The drawback of this technique
is the accuracy loss of the overall network since the transformed image is more
different than the original, varying the windows size. In order to estimate the
AlexNet accuracy, we use the ILSVRC2012 validation set on classification task.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.13: Image samples from ILSVRC2012 validation set

51

4. Evaluation and Results

In Figure 4.13, there are some samples from ILSVRC2012 validation set used for
estimating the accuracy of our network. The following validation flow is used:

• Fetch and transform original image using average pooling;
• Perform classification;
• Compare output label with the correct one and accumulate the result.

With this flow we can extract the accuracy of AlexNet after average pooling. The
following table resumes the results:

top-1 accuracy (%) top-5 accuracy (%)
Original 57.1 80.2
W=2 55.0 78.5
W=3 50.6 74.5

Table 4.7: Accuracy comparison

In Table 4.7, there is the AlexNet accuracy applying average "pooling" on the same
validation set with different windows size. We can notice a 2.1% of accuracy loss with
W=2 and 6.5% with W=3. The following pictures show the trend of performances
saving / accuracy trade-off.

(a) Accuracy/Energy (b) Accuracy/Latency

Figure 4.14: Accuracy/Performances

In Figure 4.14, it is shown the relationship between accuracy and energy saving.
The trend is almost equal for both dataflow.
The following table resumes the ratio between performance saving and accuracy lost.

Accuracy loss (%) Energy saving (%) Latency saving (%)
top-1 W=2 2.1 31 28

1.7 48 45
top-5 W=3 6.5 31 28

5.7 48 45

Table 4.8: Accuracy loss/Energy saving

52

4. Evaluation and Results

Finally, this technique guarantees a good balancing between accuracy and perfor-
mance according to data in Table 4.8.
In the last analysis we use NLR dataflow as reference and we compare the energy
performance of that dataflow with the WS dataflow with and without average pool-
ing.

(a) Energy (b) Accuracy/Latency

Figure 4.15: Latency

In this analysis we want to evaluate the performance benefit of using WS optimized
dataflow. From 4.15 emerges that the achieved energy saving (from NLR to optimize
WS) is 49.2% when W=2 and 62.74% with W=3.

53

5
Conclusion

This chapter outlines the achievements of this work and provides some directions
for future studies.

5.1 Achievement
The main reason behind this work is to present a dataflows analysis for ConvNet on
a heterogeneous platform. This work offers a detailed description of the dataflows
and the reasons behind our design choices. The strengths of the Window Stationary
dataflow lie in:

• The maximum exploitation of all hardware resources available for convolu-
tional and weights reuse;

• The maximum exploitation of near-memory computing in the usage of the
nearest memory resource to accumulate MAC results and partial sums.

Those features allow to have an energy saving (compared to the baseline dataflow)
of 33% (on average) and latency saving of 49% (on average).
The custom simulation framework has been developed in order to be integrated to
deep learning existing tools (i.e Caffe, Tensorflow, Theano). It uses textual descrip-
tion for the architectural configuration and the ConvNet layer parameters. From
those tools we extract the main parameters used as inputs in the performance sim-
ulation framework.
A further analysis has been done in order to exploit the data statistic of the convo-
lutional inputs. The adopted approach can be integrated in our simulation engine
written in Python. An energy saving / accuracy loss trade-off emerges from the
experimental results. An accuracy loss of 2.1% (compared to the baseline dataflow)
leads to an energy saving of 31% (on average).

55

5. Conclusion

5.2 Future Work
The results are promising but further studies are required in order to obtain a
complete and reusable simulation framework. The author believes the following
suggestions may improve this work:

1. The current simulation software is not completely modular. Most of the soft-
ware routines and classes are reusable. But the core of the dataflow modeling is
dataflow depending. Further efforts are required to implement a new dataflow
using this framework. This problem is due to the facts that dataflows could
be very different from each other in the architectural exploitation and in data
elaboration.

2. The developed optimization technique is tested on the first layer of AlexNet
since the accuracy evaluation is easy with the existing tools. Further experi-
ments on intermediate outputs would be interesting to understand the overall
optimizations.

3. The reference architecture used in our work perfectly addresses a stationary
oriented filter mapping. Moreover, the inter-PE buffer allows the near-memory
computation locality. However, it would be interesting to test the developed
dataflows on different architectures in order to evaluate the performances.

4. The choice of using a dataflow that belongs to the window stationary dataflow
class is due to the fact that this is the dataflow that presented the widest mar-
gin of improvement compared to the other classes. But it could be interesting
to implement other dataflows that belong to other classes, in order to complete
the performance analysis.

56

Bibliography

[1] Artificial neural network, https://en.wikipedia.org/wiki/Artificial_
neural_network

[2] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in
nervous activity", The bulletin of mathematical biophysics, vol. 5, no. 4, pp.
115–133, 1943

[3] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, vol. 521, no.
7553, 2015.

[4] Rosenblatt, F. (1958). "The Perceptron: A Probabilistic Model For Informa-
tion Storage And Organization In The Brain". Psychological Review. 65 (6):
386–408.

[5] Ivakhnenko, A. G.; Grigor’evich Lapa, Valentin (1967)." Cybernetics and
forecasting techniques". American Elsevier Pub. Co.

[6] A. Karpathy. (2016). Stanford University CS231n: Convolutional Neural
Networks for Visual Recognition. http://cs231n.github.io.

[7] Open neural network: High Performance library for Advanced Analytics ,
http://www.opennn.net/

[8] Guo, Yanming and Liu, Yu and Oerlemans, Ard and Lao, Song-Yang and Wu,
Song and S. Lew, Michael. (2015). Deep learning for visual understanding: A
review. Neurocomputing. 187. . 10.1016/j.neucom.2015.09.116.

[9] Ciresan, Dan; Meier, Ueli; Schmidhuber, Jürgen (June 2012). "Multi-column
deep neural networks for image classification".IEEE Conference on Computer
Vision and Pattern Recognition. New York, NY: Institute of Electrical and
Electronics Engineers (IEEE), 2012.

[10] Nair, Vinod; Hinton, Geoffrey E. (2010), "Rectified Linear Units Improve
Restricted Boltzmann Machines", 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10, USA: Omnipress, pp.
807–814, ISBN 9781605589077.

57

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
http://cs231n.github.io
http://www.opennn.net/

Bibliography

[11] Xu, Bing; Wang, Naiyan; Chen, Tianqi; Li, Mu. "Empirical Evaluation of
Rectified Activations in Convolutional Network". arXiv, 2015.

[12] The MathWorks, Inc. (2016). Neural Network Toolbox - MATLAB, [Online].
Available:http://mathworks.com/products/neural-network.

[13] R. Al-Rfou, G. Alain, A. Almahairi, et al., "Theano: A python framework for
fast computation of mathematical expressions", CoRR, vol. abs/1605.02688,
2016.

[14] : Martin Abadi, Ashish Agarwal, Paul Barham, et al., "TensorFlow: Large-
scale machine learning on heterogeneous systems", Software available from
tensorflow.org, 2015

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed and D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich, "Going Deeper with Convolu-
tions",CoRR,abs/1409.4842, 2014.

[16] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition", ArXiv preprint arXiv:1409.1556, 2014.

[17] F. N. Iandola, M. W. Moskewicz, K. Ashraf, et al., "SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1mb model size", ArXiv:1602.07360,
2016.

[18] NVIDIA Corporation. (2016). NVIDIA GeForce GTX Titan X Secifi-
cations. Available: http://www.geforce.com/hardware/desktop-gpu/
geforce-gtx-titan-x/ specifications

[19] David Gschwend,"ZynqNet: An FPGA-Accelerated Embedded Convolutional
Neural Network", Master Thesis, August 2016, ETH Zürich.

[20] Nurvitadhi, Eriko and Venkatesh, Ganesh and Sim, Jaewoong and Marr,
Debbie and Huang, Randy and Ong Gee Hock, Jason and Liew, Yeong Tat
and Srivatsan, Krishnan and Moss, Duncan and Subhaschandra, Suchit and
Boudoukh, Guy; "Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?", Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’17.

[21] TheNextPlatform, "Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Learning?", https://www.nextplatform.com/2017/03/21/
can-fpgas-beat-gpus-accelerating-next-generation-deep-learning/,
2017.

[22] Y. Chen, T. Luo, S. Liu, et al., "DaDianNao: A machine-learning super-
computer", in Proceedings of the 47th Annual IEEE/ACM International

58

 http://mathworks.com/products/neural-network
tensorflow.org
http://www.geforce.com/hardware/desktop-gpu/geforce-gtx-titan-x/
http://www.geforce.com/hardware/desktop-gpu/geforce-gtx-titan-x/
https://www.nextplatform.com/2017/03/21/can-fpgas-beat-gpus-accelerating-next-generation-deep-learning/
https://www.nextplatform.com/2017/03/21/can-fpgas-beat-gpus-accelerating-next-generation-deep-learning/

Bibliography

Symposium on Microarchitecture, IEEE Computer Society, 2014.

[23] Zhang, Chen and Li, Peng and Sun, Guangyu and Guan, Yijin and Xiao,
Bingjun and Cong, Jason, "Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks", Proceedings of the 2015 ACM/SIGDA
ISFGA.

[24] Jouppi, Norman P. and Young, Cliff and Patil, Nishant and Patterson, David
and Agrawal, Gaurav and Bajwa, Raminder and Bates, Sarah and Bhatia,
Suresh and Boden, Nan and Borchers, Al and Boyle, Rick and Cantin,
Pierre-luc and Chao, Clifford and Clark, Chris and Coriell, Jeremy and Daley,
Mike and Dau, Matt and Dean, Jeffrey and Gelb, Ben and Ghaemmaghami,
Tara Vazir and Gottipati, Rajendra and Gulland, William and Hagmann,
Robert and Ho, C. Richard and Hogberg, Doug and Hu, John and Hundt,
Robert and Hurt, Dan and Ibarz, Julian and Jaffey, Aaron and Jaworski,
Alek and Kaplan, Alexander and Khaitan, Harshit and Killebrew, Daniel
and Koch, Andy and Kumar, Naveen and Lacy, Steve and Laudon, James
and Law, James and Le, Diemthu and Leary, Chris and Liu, Zhuyuan
and Lucke, Kyle and Lundin, Alan and MacKean, Gordon and Maggiore,
Adriana and Mahony, Maire and Miller, Kieran and Nagarajan, Rahul and
Narayanaswami, Ravi and Ni, Ray and Nix, Kathy and Norrie, Thomas and
Omernick, Mark and Penukonda, Narayana and Phelps, Andy and Ross,
Jonathan and Ross, Matt and Salek, Amir and Samadiani, Emad and Severn,
Chris and Sizikov, Gregory and Snelham, Matthew and Souter, Jed and
Steinberg, Dan and Swing, Andy and Tan, Mercedes and Thorson, Gregory
and Tian, Bo and Toma, Horia and Tuttle, Erick and Vasudevan, Vijay and
Walter, Richard and Wang, Walter and Wilcox, Eric and Yoon, Doe Hyun,
"In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017

[25] Chen, YuHsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,"Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks", IEEE International SolidState Circuits Conference, ISSCC 2016,
Digest of Technical Papers, 2016,262-263.

[26] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, "Understanding Sources of
Inefficiency in General-purpose Chips", ISCA, 2010.

[27] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, "Memory-centric
accelerator design for Convolutional Neural Networks", IEEE ICCD, 2013.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep Learning
with Limited Numerical Precision", CoRR, vol. abs/1502.02551, 2015.

[29] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, "ShiDianNao: Shifting Vision Processing Closer to the Sensor" ,

59

Bibliography

ISCA, 2015.

[30] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Networks",
FPGA, 2015.

[31] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, "DaDianNao: A Machine-Learning Supercomputer",
MICRO, 2014

[32] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, "A 1.93TOPS/W
scalable deep learning/inference processor with tetra-parallel MIMD architec-
ture for big-data applications", IEEE ISSCC, 2015.

[33] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini,
"Origami: A Convolutional Network Accelerator", GLSVLSI, 2015.

[34] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey
and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell,
Trevor, "Caffe: Convolutional Architecture for Fast Feature Embedding",
arXiv preprint arXiv:1408.5093, 2014.

[35] Wikipedia: Multidimensional discrete convolution https://en.wikipedia.
org/wiki/Multidimensional_discrete_convolution.

[36] S. Han, J. Pool, J. Tran, W. J. Dally, "Learning both Weights and Connections
for Efficient Neural Networks",arXiv:1506.02626v3 [cs.NE], 30 Oct 2015.

[37] Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, "DNN Model and
Hardware Co-Design", ISCA Tutorial 2017.

[38] Tien-Ju Yang, Y.n Chen, V. Sze, "Designing Energy-Efficient Convolutional
Neural Networks using Energy-Aware Pruning", ISCA 2017.

[39] Gysel, Philipp and Motamedi, Mohammad and Ghiasi, Soheil,
textit"Hardware-oriented Approximation of Convolutional Neural Net-
works", arXiv preprint arXiv:1604.03168, 2016.

[40] E. H. Lee, D.Miyashita, E. Chai, B. Murmann, S. S. Wong, LogNet: Energy-
efficient neural networks using logarithmic computation, ICASSP 2017.

[41] Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and Li, K. and Fei-Fei,
L., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR09, 2009.

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet

60

https://en.wikipedia.org/wiki/Multidimensional_discrete_convolution
https://en.wikipedia.org/wiki/Multidimensional_discrete_convolution

Bibliography

Large Scale Visual Recognition Challenge", IJCV, vol. 115, no. 3, pp. 211–252,
2015.

[43] M. Horowitz, "Computing’s energy problem (and what we can do about it)",
IEEE ISSCC, 2014

[44] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, and
M. Horowitz, "Towards energy-proportional datacenter memory with mobile
dram", ISCA, 2012.

[45] ImageNet Large Scale Visual Recognition Challenge, http://www.
image-net.org/challenges/LSVRC/

61

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and Motivation
	Goals and Challenges
	Thesis Organization

	Background and Concepts
	Convolutional Neural Networks
	Introduction to Neural Networks
	Convolutional Neural Network architectures

	Embedded Convolutional Neural Networks
	Potential Hardware Platforms
	Existing CNN Implementations on Embedded Platforms

	Dataflows Taxonomy
	Output Stationary Dataflow
	No Local Reuse Dataflow
	Weight Stationary Dataflow

	Exploiting data statistics
	Operations reduction
	Operand size reduction

	Energy-Efficient Dataflows: modelling and simulation
	Dataflows description
	Reference Architecture
	Simulation Framework
	Window Stationary Dataflow
	No Local Reuse

	Average "pooling" optimization

	Evaluation and Results
	Experimental setup
	Energy/Latency model
	AlexNet

	Dataflow results
	NLR Results
	WS Results
	Dataflows comparison

	Average "pooling" results

	Conclusion
	Achievement
	Future Work

	Bibliography

		Politecnico di Torino
	2017-10-11T19:40:25+0000
	Politecnico di Torino
	Andrea Calimera
	Tesi 229006

