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Abstract

Over the past 30 years, both hardware and operating systems have become
incredibly complex and efficient, both in term of computing performances
and energy consumption. However, in the High Performance Computing
(HPC) field new hard challenges are coming regarding systems energy con-
sumption.

In last decades the demand for high performances has continuously in-
creased, boosting the growth of HPC systems, up to enormous dimensions:
as an example, the first two machines from the TOP500 list [1], called Sunway
and Tianhe-2, have respectively 10 million and 3 million cores, with a power
consumption of 15 and almost 18 mega-watts. Sunway, the first one, is close
to 100 Peta-Flops of computing power.

Nowadays we are facing the challenge of Exascale computing: in a few
years, humanity will be able to build the first supercomputer with 1 Exa-
Flops of computing power, ten times more powerful than Sunway. Such a
computing power will be incredibly useful in many domains, like for math-
ematical, industry and artificial intelligence simulations.

But how much energy will consume such a powerful machine? Ten times
more than Sunway would be around 150 mega-watts. This power consump-
tion is not sustainable, in terms of energy cost, power supply facility and
environmental impact. We need then to design hardware and software that
consume less being more powerful.

In this thesis, we present Bull Dynamic Power Optimizer (BDPO), a soft-
ware solution that aims to reduce the energy consumption of a parallel ap-
plication running on an HPC system. Our approach is to optimize the ap-
plication at runtime. BDPO uses Dynamic Voltage Frequency Scaling and
phase detection by monitoring real-time metrics retrieved through hardware
performance counters.

We will describe our hardware counters study on micro-benchmarks, the
BDPO design, and test on real HPC applications, where we reach up to 11%
of energy gain with less than 1% performance loss.
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1 Introduction

Usually solving scientific problems leads to hard or long calculations. This
happens very often in some particular domains, especially those that have to
deal with numerical simulations. Computing systems that aim to efficiently
solve those type of problems are called in general High Performance Com-
puting (HPC) systems. Those clusters usually composed of a large number
of nodes rely on powerful hardware and software facilities in order to use as
effectively as possible program parallelism.

In last decades, HPC clusters have become increasingly powerful, reach-
ing the computing power of around 100 Paeta-Flops. A real example is Sun-
way TaihuLight, the most powerful supercomputer according to the TOP500
list of June 2017 [1]. Obviously, to achieve such a computational power a
great energy supply is required. Nowadays HPC supercomputers with this
capability, like Sunway, consume around 15 mega-watts (for comparison, the
charger of my personal computer can provide a power of 85W). This, by it-
self, is already a great amount of power consumption, but the power, both
in terms of computing and consumption, of those systems is contiguously
growing: the market is ready to come to Exascale computing in a few years.
1 Exa-Flops corresponds to 1000 peta-Flops, that roughly means that we need
to build a supercomputer with ten times more computing power than mod-
ern machines. Such a supercomputer, by estimation, will consume ten times
more energy: surely, it is not possible for cost and energy supply issues to
have a supercomputer that consumes 150 mega-watts. In order to build a
sustainable system in terms of energy cost and environmental impact, we
would expect to budget at most around 20 to 30 mega-watts of power con-
sumption, as set by the US Department of Energy as power constraint for
Exascale machines [2]. This example clarifies the need of constant research
on energy consumption of HPC systems, both for hardware and software
effectiveness.

In this context, HPC clusters are used by a lot of research laboratories
and companies in very different fields, such as physics, biology, meteo ser-
vices, automotive engineering and oceanography, all domain that need some
simulation or a lot of computations. Usually, in order to solve those type
of problems, an expert on a specific domain define a theoretical model for
the simulation. Then, knows that those models are highly parallelizable on a
computing machine1, either the expert himself or another programmer trans-
lates the scientific model into a parallel program, usually using low-level pro-
gramming languages (C, C++, Fortran) and well-known libraries for parallel
programming (MPI, OpenMP). The result of this process is what we call a

1In parallel theory, those problems usually reduce to big matrices operations, that are
known from the literature to be, in most of the cases, highly parallelizable.
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parallel application, that is usually part of the big domain of HPC applica-
tions. In this thesis, we face the problem of energy consumption optimization
of those type of applications.

Our approach is then to reduce the energy consumption of real parallel
applications without make any change in their source code. Moreover, our
objective is to reach energy reduction while avoiding any performance degra-
dation. We produced a system that computes real-time metrics to understand
the compute node behavior. Relying on those metrics and phase detection,
it changes CPU operating frequency dynamically in order to reduce power
consumption only when needed. Testing our tool on real HPC applications,
we reached up to 11% of energy savings with less than 1% performance loss.

This thesis was written during our six-month internship in the Energy Ef-
ficiency team of Bull s.a.s., an Atos company. All the presented material and
results are the outcome of the work done by Mathieu Stoffel and Fabio Fer-
rero (the writer) during the internship, in collaboration with the other team
members. Both of us produced his-own version of this manuscript, avoid-
ing reciprocal influence. The majority of our work during the internship
was done together, while some practical task have been done more inde-
pendently: for example, Mathieu designed the scripts set about manual fre-
quency settings (described in chapter 4) while the study on WRF and GRO-
MACS application presented in chapter 7 was mainly performed by me.

1.1 Contents of the thesis

In chapter 2 we start by presenting the problem of energy savings in the HPC
application domain, exposing the motivation behind our approach. First, we
found the need for an energy-saving software solution that is independent
of the target application implementation. Second, it has to reduce the power
and energy consumption on the machine at runtime, with a minimum im-
pact on the execution and minimum performance loss. This is possible only
by monitoring the machine behavior during application execution by means
of real-time metrics. We then analyze the current state of the art on the prob-
lem by comparing the related work with our approach: we will show that the
main technique used to reduce the power consumption at runtime is the Dy-
namic Voltage Frequency Scaling (DVFS) technique. This technology allows
changing the CPU operating frequency at runtime, reaching energy savings
under certain conditions. We conclude by presenting our solution proposal,
listings our initial objectives: reach real HPC application optimization, no
source code modification in the target application, no performance degrada-
tion while saving energy, and no application profiling before optimization.

Chapter 3 presents the theory and all the concepts that are the basis of
our solution. We first explain the relationship between the energy, power
and execution time, in addition to measure unit used to express the energy.
Then we pass to an overview of cluster energy consumption components,
identifying main energy consumers: first among all the CPU, then the RAM
memory, the Hard-Disks, and cooling system. Going further with the CPU,
we present a power consumption model, that explains the central role of the
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operating frequency for the power consumption of the CPU. We also describe
all the means the CPU has to save energy, notably the C-states and P-states.
Furthermore, we analyze the different HPC applications behaviors, finding
the three majors: CPU-bound, memory-bound and balanced behavior.

In chapter 4 we describe our experimental environment and methodolo-
gies. Firstly, we describe the hardware and software technologies of the clus-
ter we used for our development and tests. We present the architecture of the
system and computing nodes, together with interconnect technologies and
the Slurm workload manager. We that explain our experimental method-
ology notably with all steps we followed for hardware setup and measure
process.

Chapter 5 contains the preliminary tests we performed on micro-benchmarks
in order to study the machine behavior through hardware counters. We then
describe actual counters and libraries we used to access them. Furthermore,
we present our micro-benchmarks study with codelets analysis, expected
values, and values retrieved through counters. We conclude the chapter with
an interpretation of the results: we show how operating frequency and mem-
ory size impacts on performance and energy consumption.

Thanks to obtained results and theory bases, in chapter 6 we present the
Bull Dynamic Power Optimizer (BDPO), the system we designed as main
objective of this research project. We start briefly with the product company
context, explaining where its idea comes from. Then, we pass to a general de-
scription of the BDPO design, describing the role of each module inside the
tool. Furthermore, we explain the functioning for most important modules:
the main Control Loop, the Metric module, the Action module, and the in-
tegrated Profiler. For the Metric module, in particular, we described in deep
how we combined hardware counters to retrieve the Instruction Per Cycle
metric (IPC). This metric was the one we used for all subsequent tests with
real applications. Thanks to the IPC it is possible to detect different phases of
computing stress on the CPU, so that it is possible to gain energy by reducing
the operating frequency when it is not needed.

Chapter 7 shows then all BDPO tests we performed on real HPC appli-
cation: after a presentation of performance metrics we used during tests,
we briefly describe the three applications we used for our validation: GRO-
MACS, WRF and NEMO. Then, we presented all the studies and results we
obtained for each application. We tested those applications on homogeneous
compute nodes, configuring executions from single node up to six nodes in-
volved in the computation. From our study, we find out that GROMACS
is a CPU-bound application, for which the maximal operating frequency is
already the optimal one also for energy consumption. An IPC profile of
GROMACS is then presented. For the WRF application, instead, we find
a peculiar behavior of the IPC metric: the IPC profile of the application was
highly variable, characteristic that prevented our tool to have a significant
energy gain. In the WRF case, BDPO was conservative from the energy point
of view (with respect to references cases), while it introduced around 5% of
performance degradation. We then find out that for some application the IPC



Chapter 1. Introduction 4

metric, alone, could not be sufficient for phase detection. The NEMO appli-
cation leads to more interesting results: BDPO managed to reach an energy
gain from 8% to 11% compared to references cases, while it introduced an
overhead of less than 1% in both cases.

We concluded our thesis with chapter 8, where we compared our initial
objectives with the obtained results. We reached real HPC application energy
saving, as demonstrated by results we just cited where we gained around
10% of energy consumption; BDPO is a tool that does not require to modify
applications source code, as it works without any code annotation in the ac-
tual application implementation; we managed to have a slight performance
degradation, especially taking into account the prototypical nature of BDPO;
for the profiling of the application, we had to assume that the user has a suffi-
cient knowledge of the application to configure BDPO. In this chapter we also
discuss the improvement that we plan for the future of BDPO, explaining our
perspectives after our study, implementation, and testing of this system.
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2 Power consumption
optimization of HPC applications

This chapter presents an overview of the problem of energy saving in the
HPC applications domain. Then, we will focus on describing the current
scientific state of the art, with the work already done related to this problem.
We will try to highlight the similarities and dissimilarities of our approach
related to all the other presented in the state of the art.

2.1 Overview

In the framework we presented in our introduction, we came with the ques-
tion: how to reduce the energy consumption of an HPC application? First,
it is very likely that people in charge of this model-to-code translation are
mainly focused on problem solving and performance issues, and they don’t
care about the energy impact of their implementation. However, we will
show later in this thesis that optimizing performance is also a key factor for
energy saving. Second, programmers do neither have the needed knowledge
about the subject of energy savings on HPC systems nor any information
about the machine on which their code will run. Third, for all existing imple-
mentations, programmers would not like to change what they have already
produced, so that is difficult that they would modify their code using a hypo-
thetical third-party API for energy efficiency, besides huge libraries like the
already cited. Fourth, people often don’t want to perform static analysis of
their applications before its actual execution in order to know in advance the
best machine parameters for optimal energy consumption.

In this context, we found the need for an energy-saving software solution
that is independent of the actual implementation of any real HPC application
and that would reduce the power and energy consumption on the machine
at runtime, with a minimum impact on the execution and performance loss.

2.2 State of the art

Speaking of software solutions for energy saving, the main technique used by
different tools is the Dynamic Voltage Frequency Scaling (shortly DVFS) that,
in a few words, is the possibility to choose and set the operating frequency on
a CPU; we will detail this technology better in chapter 3. Moreover, in 3.3.1
we will explain why this technique allows energy saving and the relation
between the latter and the CPU frequency. Triquenaux [3] identifies three
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primary DVFS controllers: REST, UtoPeak, and FoREST-mn. Furthermore,
Intel has recently released a paper on GEOPM [4], an open source runtime
framework for energy optimization across compute nodes. Moreover, Unni
et al. [5] propose an energy optimization approach for MPI applications re-
lying on DVFS at node level applied by an optimization agent.

Before describing already cited solutions, it is necessary to cite also the
Mont-Blanc project [6]. This is an European project started in October 2011 to
design a new type of computer architecture capable of setting future global
HPC standards, built from energy efficient ARM solutions initially used in
embedded and mobile devices. Bull s.a.s has an important role in this Eu-
ropean project, while from October 2015 it coordinates a new phase of the
project. This phase adopts a co-design approach to ensure that hardware and
system innovations are readily translated into benefits for HPC applications.
It aims at designing a new high-end HPC platform that is able to deliver a
new level of performance/energy ratio when executing real applications.

REST

REST [7] that stands for Runtime Energy Saving Technology is a purely on-
the-fly DVFS controller that provides a software layer that uses hardware
performance counters and gives users a plausible energy consumption im-
provement with their current hardware set-up. The basic idea behind REST is
to select a frequency regarding an application phase behavior. First, it needs
a way to measure the application activity. Then, based on that activity, a
trend has to be selected as we will also explain in 3.4.1. Depending on which
trend it is found, a frequency is selected. Finally, once a frequency is chosen,
it has to be applied.

The work described in this thesis use an approach very similar to REST,
even though the main purpose of the latter is to optimize energy on a single
processor machine, while our objective is to target multi-cores HPC clusters
running real HPC applications.

UtoPeak

UtoPeak [8] is an offline profiling tool, which analyzes the application and
determines the best sequence of frequencies providing the lowest energy con-
sumption for a given program execution. Having this sequence, it is possible
to evaluate the energy reduction performed by a dynamic system such as
REST. In fact, UtoPeak was designed to primarily evaluate the efficiency of
REST: it computes the maximum reduction of energy consumption that is
possible to expect from the use of a DVFS controller. Knowing with this tech-
nique the higher bound on energy reduction, it is possible to have a reference
value to evaluate every DVFS controller.

As we said, UtoPeak performs an offline analysis of the application be-
havior, giving at the end the best parameters for a specific run of an applica-
tion. In our work, on the contrary, we will use an opposite approach: we try
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to explore the effectiveness of dynamic, on-the-fly optimization. The objec-
tive is to design a solution that is able, at runtime, to reduce the energy of an
HPC application.

FoREST-mn

FoREST-mn [9] is the actual evolution of the simpler tool REST. It tries to
solve some of the limitations inside REST, such as its naive decision making
and the need of hardware counters specific to the Nehalem architecture. Ad-
ditionally, FoREST-mn has the possibility to bound the performance loss of
the tool itself to a given threshold. Furthermore, it tries to extend the single-
node nature of REST, taking into account the communication slack typical of
multi-nodes applications.

Even if FoREST-mn seems to be a really good DVFS controller with really
nice energy savings, it needs to annotate the source code. As we explained in
2.1, one of the crucial points of our work is to be completely independent of
the HPC application that needs to be optimized: we do not want to change
anything inside the application source code. This will avoid many problems
that potential users could find using the tool because they do not need to
integrate the tool itself inside their applications. Then, we point to a solution
"as simple as possible" that, starting from scratch, try to reach the maximal
effectiveness with the minimal effort.

Intel GEOPM

In last years Intel disclosed the Global Extensible Open Power Manager [4],
an open-source framework that point to have a centralized controller on ex-
ascale clusters, rather than a per-node monitoring. It leverages application-
awareness to identify compute nodes on the critical path in an MPI job then
diverts power from nodes outside of the critical path to accelerate the critical
path nodes. Power and performance are adjusted via hardware counters and
the DVFS technique.

MPI multi-agent optimizer

Unni et al. [5] propose an energy optimization approach for Message Pass-
ing Interface (MPI) applications running on HPC systems. Their approach
is based on a Multi-agent based energy management framework, which uses
an optimization agent for implementing energy optimization algorithm. This
technique is applicable in two situations. First one is based on a master-slave
model in which, usually when the master process is executing its task, all the
slave processes are in waiting state. During this execution time, all of the
slave processes are idle. Even though they are in waiting state, processors
operate at high frequencies, wasting energy. Our idea is to reduce the pro-
cessors frequencies on slave nodes as long as slave processes are idle, so that
the power wastage can be minimized. Second situation is when processes
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carry out the I/O operation, all the nodes on which these processes run, op-
erate at higher frequencies with CPU low utilization. Hence, reducing power
consumption during this time, power wastage can be minimized.

This approach has with us the common objective to be independent from
application source code. It does not need any code annotation, even if it
is applicable only on a certain domain of MPI applications (master-slave).
However, we found during our studies (section 3.3.2) that activating C-state
on compute nodes it is possible to reach important energy savings during
idle phases and I/O operations.

2.3 Problem analysis and solution proposal

As we saw, reducing energy consumption in HPC applications can be done
in many ways, mainly statically, offline or dynamically. Static analysis are
source code analysis, that do not involve any program run. Offline and dy-
namic analysis are, respectively, studying the application behavior before its
execution or acting directly on it during its actual execution, at runtime.

We will not face static analysis in this thesis, while we target to optimize
applications energy consumption dynamically. As we saw with Utopeak in
2.2 offline analysis often require at least one complete run of the application
in order to analyze it and find the best way to optimize the energy consump-
tion for that job. As we presented in 2.1, many programmers and customers
prefer to have an automatic way to optimize on-the-fly their job on an HPC
cluster rather than pay the cost of pre-run analysis. For sure, for our solution,
we will assume that the user has at least a good knowledge of the behavior
of his application. For this assumption, we had to perform some offline anal-
ysis on target applications to understand how they behave before optimizing
them.

We propose then a software solution that will monitor the behavior of
each computing node through hardware counters, detecting the phase the
application is currently facing and that will act on the system itself depend-
ing on collected data and phase detection, notably changing the operating
frequency of the processor with the DVFS technology.

The main problem of having a solution working at runtime is the over-
head introduced: obviously, the tool will need some resources while running
together with the application, causing some performance loss. For sure, in
HPC we want to minimize as much as possible performance degradation,
also because, as we will present later in this thesis, optimizing the execution
time of certain applications is a way to gain energy.

Summing up, our solution proposal point to have those four main fea-
tures:

• Real HPC application optimization, that is to say not only testing the
tool on synthetic benchmarks where we know what to expect but espe-
cially on real cases, with real parameters.
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• No intrusiveness on the application. The tool must be able to optimize
the consumption of any job submitted on a cluster, without source code
modifications.

• No performance degradation, or at least as less as possible and the clos-
est to zero; in the worst case, it has to be conservative.

• No profiling needed on the application to optimize. Eventually, we
want to create a tool that will be able to be completely automatic, and
it will auto-tune its actions at runtime.

As we will present in this thesis, we reached the first three points, while
the last has been replaced with some assumptions and some procedures be-
fore the launching of the application with our tool are actually needed. Any-
how, we always kept this point in mind, and we designed the tool to be easily
upgraded in that direction, besides having thought possible solutions to be
integrated and that we left for future studies.

Having seen an overview on the actual state of the art on application en-
ergy reduction, next chapter will explain the theory at the base of our solution
design.
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3 Theory and concepts on energy
consumption

This chapter presents the theory and all the concepts that are at behind the
design of our solution. We first explain the relation between the energy,
power and execution time. Then we give an overview on cluster energy con-
sumption components, identifying main energy consumers. Furthermore,
we present a CPU power consumption model, that explains why the oper-
ating frequency could be changed to reach energy reduction. We also de-
scribe all the means the CPU has to save energy, notably C-states and P-
states. Moreover, we analyze here HPC applications behaviors: CPU-bound,
memory-bound and balanced behavior.

3.1 Energy model

In order to express the consumption by a component or an entire system, we
will use the most basic formula that relates the energy to the power and the
time. The pure energy consumption is defined as:

E = P × T (3.1)

where the energy E is computed as the power consumption P of the studied
system multiplied by T , the studied time period. With this simple formula,
we can clearly see which are the two orthogonal levers at our disposal to
module energy consumption, and it is also intuitive to understand that the
total amount of energy consumed by a device is directly proportional to both
the instantaneous consumption of the device (its power) and the period of
time in which it will consume that power. In section 3.3.1 we will also see
that the variations of P and T are quite opposite, meaning the the energy op-
timization of an HPC system is often a research of the best trade-off between
optimizing the execution time and the consumed power.

The most common unit to express energy amount is the Joule1 (J), but as
the previous formula suggest, in electricity the energy is defined as watt-per-
hour or watt-hour (Wh), where the relation between the two is

1Wh = 3.6× 103J.

In this study we will use both of them, but in the majority of the cases we
will refer to the more general unit, the Joule.

1In the SI the Joule is defined as J = kg·m2

s2
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3.2 Cluster energy consumption breakdown

As we already said, an HPC cluster contains many elements, all of them have
different energy consumption. Moreover, each component consume a differ-
ent quantity of energy depending on the context, the type and the amount of
job to be executed. Between all components, we can try to identify which are
the main energy consumers: the CPU and the motherboard, the RAM mem-
ory (Random-Access-Memory), the hard-disk-drives (HDD) and the cooling
system. The tool presented in this thesis will act directly on the consumption
on the CPU, that will be described in details in section 3.3, but it is important
to know if and how it is possible to gain energy on the other components. In
the following we briefly describe the consumption of HDD, memory and the
cooling systems.

3.2.1 CPU

Still nowadays manufacturers are trying to respect the Moore’s law: "the
number of components on an integrated circuit doubles every two years" [10]. For
sure, it exist a physical limit to this incredible growth, and we are every year
closer to it: in 2014 Intel introduced the 14 nanometers CPU architectures
[11]. Obviously we couldn’t have respected the Moore’s low by keep ex-
panding a single processor, because of the Thermal Design Power (TDP): the
increase reached a point where any standard cooling system, like fans pre-
sented above, were not able to keep the CPU in an acceptable temperature
range.

After three generations of hardware design, Intel decided to re-design the
Pentium M family for multi-core. It gave birth to the Core family processors.
The new family was offering a TDP ranging between 10 to 150 Watt. The
150W was obtained on the extreme editions of the family which were quad-
core processors and no longer single core as the Pentium D.

Besides the enhancement and addition done to the Core processor family,
power management features were added. Under the name of Intel SpeedStep
and TurboBoost, leverages were offered to the operating system to manage
the CPU operating frequency and efficiently encounter a wide range of sit-
uations regarding power consumption. All the means offered to the OS to
manage the CPU power consumption are presented below in 3.3.

Though a lot of enhancements were performed on CPU thermal dissipa-
tion and power consumption, it still is acknowledged as the main consumer
in most of the configurations.

3.2.2 Memory

The energy consumption of the RAM modules are, in percentage, much less
relevant comparing to the CPU consumption, described later on in this chap-
ter. Nonetheless, when it comes to the energy consumption of a full HPC
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cluster, they cannot be neglected, due to the high number of RAM units em-
bedded in this kind of machines. As an example, we can take Sunway Tai-
huLight, the most powerful supercomputer in the world at the moment of
the writing of this thesis, that has more the 1300 TB of RAM memory. If we
consider that the most used RAM modules are those with 32 GB of memory,
we can easily see that Sunway contains more than 40.000 RAM units, that is
very likely to be close to the reality, view that its architecture is composed by
little more than 40.000 nodes [1].

The RAM power consumption scales, in most of the cases, linearly with
the voltage supply: based on Ohm’s law we have P = V × I , where P is
the power, V is the voltage supply and I the current intensity. RAM modules
have the possibility, through the BIOS, to choose their working frequency, but
trying to lower too much the speed of the module could heavily impact the
performance of the overall application. In fact, it is well known that memory
access operations are much slower compared to the processor speed, mean-
ing that very likely the memory become a bottleneck. A big drawback of
manually changing the RAM operating frequency is that it has to be per-
formed inside the BIOS. In other words, it means that the machine have to
be rebooted. This operation is usually not possible in an HPC environment,
because of the incredible loss of performances.

3.2.3 Hard-Disks and SSD

For Hard-Drives, the same type of reasoning we used for the RAM in terms
of quantity can be used: modern HPC systems have an huge amount of mass-
memory storage. For instance Titan, the fourth supercomputer in the TOP500
list [1], has 40 Petabyte of storage space [12]. Supposing the usage of 4 TB
disks, the system will use a total of 10.000 disk modules. This number could
be way less negligible in terms of energy consumption than what we can
think about our personal computers: the energy consumption of 10.000 disk
modules has a much higher impact on the overall consumption then one
single Hard-Drive in our PCs.

Hard-Disks power consumption can be attributed to two main actors: me-
chanical parts and an electronic controlling device. The main idea behind its
optimization is to stop working the mechanical parts, that is always the ma-
jor consumer, when they are not needed. This strategy could be applicable at
different levels : using a "standby mode" in which only the mechanical parts
are down, or even deeper saving-energy states, till the total shutdown of the
unit. With a different granularity, it is possible to tune the speed of a disk in
relation to arrival rate of requests. The drawback of this strategy is that the
deeper the sleeping state, the higher the amount of time needed to reach the
nominal speed, causing extra latency and, thus, performance issues.

In the last years, Solid State Drives (SSD) are becoming more and more
attractive from both performance and energy consumption point of view:
SSDs have no moving mechanical components, using instead flash memory.
This is the main point of SSDs with respect to HDDs: laptop hard disks, for
example, consume about 2 watts while in operation. In contrast, the power
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consumption of flash SSDs during operation is in the range of few hundred
milliwatts (mW), and it consumes only a couple of micro-watts (µW) when
idle [13]. Surely, the main drawback of SSDs is the cost per GB, being much
more costly that traditional HDDs. We don’t have recent and precise price
comparison, but in last years the gap is continuously reducing. For their
performance, robustness, and low power consumption, storage systems us-
ing flash memory are then rapidly becoming popular in diverse computing
systems.

3.2.4 Cooling system

When speaking about cooling solutions for computing systems, it is really
important to think about the size scale of the system taken into account. In
HPC systems, a lot of the power injected into the electrical components, es-
pecially CPUs, is transformed into heat. Thinking that HPC computers have
a power consumption in the order of magnitude of Megawatts, the produced
heat amount and that has to be managed is huge. Actually, taking the to-
tal energy consumed by a typical air-cooled cluster, on average 50% of that
energy is not used by the computing process itself, but by powering the nec-
essary cooling systems [14] [15]. This data shows how crucial is efficiency in
cooling systems in order to save energy for a whole HPC cluster.

Recently, a lot of HPC centers are switching from air-cooled to water-
cooled systems, where the latter allow a much higher efficiency and reduced
costs in term of energy. In [15] R. Mahdavi shows that for the Maui High
Performance Computing Center (MHPCC) a much less cooling power is re-
quired by the water based system, compared to the cooling power required
by the air cooled one. From their testing, they estimate that the new solution
will save 200,000$ per year in operating costs.

3.3 CPU power management

During last decades CPUs had a swift, non-stop evolution, regarding size,
the number of transistors per area unity, compute power, the number of pro-
cessing unit and also energy efficiency. Even if many enhancements were
performed on CPU thermal and power dissipation, it is still acknowledged
as the main consumer in most configurations. During years, more and more
leverage was offered from the hardware to the OS to manage the CPU power
consumption. This section presents all the basic concepts and the means used
in our work.

3.3.1 Model of the CPU consumption

Before acting on CPU parameters it is important to understand how the CPU
consume its energy and dissipate its power, identifying the main actors that
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contribute in this process. According to many publications, the most com-
mon model for CPU power consumption is as follows:

PCPU = Pdynamic + Pstatic

where Pdynamic is mainly induced by the activity of the CPU, the higher its
usage the higher its consumption is. On the contrary, the Pstatic term is due
to hardware imperfections such as leakages and wire capacitance. We also
know that the Pstatic changes linearly with the temperature because of the
power leakage of the silicon die, but we will consider it as constant and in-
variant in comparison with the Pdynamic.

Going more in detail in the definition of the Pdynamic term, it varies regard-
ing the CPU activity as shown here:

Pdynamic = A× C × V 2 × f. (3.2)

The activity factor A quantifies the percentage of active gates on a proces-
sor. For example, if a parallel application is using all cores available on a
processor, the value of the A factor will be higher than a sequential program
running on only one core. C is the sum of all gates capacitance, while V and
f are respectively the voltage supply and the operating frequency. As it can
be noticed from the latter formula, Pdynamic is quadratic to V , so that lowering
the voltage means important power saving. However, voltage is not the only
factor to be taken into account in the energy consumption, all the more so as
it does not vary independently as a function of the other factors, notably the
frequency f as described later on: we will see that the operating system sees
the operating frequency and voltage as a couple called P-state. Moreover, we
know that there exist a direct relation between operating frequency and the
system temperature, so that lower the frequency causes a reduction of the
Pstatic, that as we said changes linearly with temperature. In addition, as it
will be explained in the next paragraph, as P-state above, processors expose
additional states, where sub-parts of the system are shutdown. Parts that are
not powered cannot leak, inducing more power saving on Pstatic.

3.3.2 ACPI and OSPM states

As we said before, the OS has a set of leverage in order to control the overall
CPU power consumption. The ACPI (Advanced Configuration and Power
Interface) is an open industry specification co-developed by Hewlett-Packard,
Intel, Microsoft, Phoenix, and Toshiba [16]. It defines a platform indepen-
dent interface for configuration and power monitoring and management. It
allows the users to control a lot of parameters of the whole system, for exam-
ple CPU operating frequency, fan speed or to monitor CPU temperature.

In order to manage the power consumption of the CPU, besides exposing
hardware features through dedicate API, the ACPI allows Operating System
directed Power Management (OSPM): the OS defines some "states of con-
sumption". For example, if the OS figured out that the machine is without
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job for a certain period of time, there is not need to operate at full speed. Us-
ing this strategy, the Operating System can manage its power by modifying
the resource behavior depending on the state it is in. There exist states at
different granularity: global states, processor states and performance states.

For the whole, global system G0 is the working state, while G1 corre-
sponds to the inactive or sleep state and G2 is the shutdown state. Then,
while the system is active (G0 state) the CPU faces different utilization: pro-
cessor states (C-states) ranges from C0 to C7, where only C0 is the working
state and all the other are deeper and deeper idle states, each of them imply-
ing higher power savings. It is also important to do not mistake between idle
states, that concern only the CPU, with sleep states, that are proper of the
global system.

Idle states from C1 to C7 have various entry/exit-state latency: as an ex-
ample, for Intel R© processors [17] the C1 states corresponds to halted core
while cache coherence is maintained. At C3 the L1 and L2 cache content is
flushed into the L3, shared cache. In deeper C6-C7, depending on the model,
the core architectural state is saved in RAM and the power supply of the core
is shutdown. As one can imagine, the deeper the C-state, the higher the cost
in term of time needed to return at C0, the active state.

When the core operates at C0 multiple performance states, called P-states,
exist. Whose number depends on the processor model: at each P-state is as-
sociated both an operating frequency and a voltage: this is due to the fact
that voltage and frequency are strongly related, according to the transistor
physics. Lower voltage implies slower transistor commutation, inducing
lower operating frequency. As we saw for C-states, also for P-states exist
a delay in changing between states: in fact, the voltage transitions between
P-states is not instantaneous since voltage regulators are controlled systems
[18]. If the processor asks to scale the frequency in an ascending shift, mean-
ing switching to higher frequencies, the voltage regulator has to scale up to
meet the required tension according to the selected frequency. If it is a de-
scending shift, the frequency can be immediately switched without waiting
for the voltage to reach the correct level. Indeed, on the first hand, there exists
latency between the request for a frequency switch, and the moment it is ef-
fective. For instance, for the Ivy Bridge micro architecture, scaling frequency
from 1.6 GHz to 3.4 GHz is associated with a latency which is around 45 mi-
croseconds [3], including the fact that an operating frequency scaling implies
a full flush of the CPU execution pipeline. Therefore, the commutation time
of pair voltage/frequency cannot be neglected.

As before, C-states and P-states should not be confused with each other.
C-states are idle power saving states, in contrast to P-states, which are exe-
cution power saving states. During a P-state, the processor is still executing
instructions, whereas during a C-state (other than C0), the processor is idle,
meaning that nothing is executing.
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3.4 Energy profiling

To better understand the energy consumption of computation systems in re-
lation to the type of requested job, a profiling study is needed. The objectives
are to understand how and how much an application consumes, and we will
see that it is possible to categorize applications in three main groups: CPU-
bound, memory-bound and balanced behaviors. According to the type of
application, it is then possible to perform DVFS, as described in 3.5. In a few
words, it consists in setting the operating frequency to the value for which the
energy consumption associated with the execution of the job is minimized.
In chapter 5 some results based on those concepts will be presented.

3.4.1 Application trends

An application is CPU-bounded if its workload consists in computations. As
a consequence, the higher is the operating frequency of the CPU, the faster
the code execution, as much as pure integer and floating-point operations
are concerned. As a result, it will lower the overall energy consumed since
the decrease of the execution time will counterbalance the increase of Pdynamic

due to higher frequency (accordingly to equation 3.1 E = P × T ). As a gen-
eral principle for this type of application, the highest frequency is preferred:
it is a "run to finish" (except for Turbo Boost, when the consumption is too
high to compensate the reduced execution time).

For memory-bounded jobs, instead, the main load is on data exchange
between the CPU and the main memory (LLC and RAM). In fact, if the ap-
plication is memory intensive, a huge amount of requests are going to be
issued to the memory controller. However, accessing data stored in RAM is
incredibly slow, compared to the duration of a CPU cycle. Thus, it results in a
stall of core pipeline due to high latency of memory operations, which entails
a bottleneck for the execution time. As a result, no matter the CPU operating
frequency, the execution time of the application will remain the (almost) the
same. This implies that the lowest operating frequency is to be preferred,
since it leads to a much lower energy consumption of the overall application
execution (decrease both Pdynamic and Pstatic).

As expected, applications with a balanced behavior consists in an alterna-
tion of CPU-bound and memory-bound phases. The resulting energetic pro-
file is not as straightforward as the two previously presented: for lower CPU
frequencies, a balanced application behaves just as if it were CPU-bounded,
so that increasing the operating frequency results in a decrease of the en-
ergy consumption; but after a certain threshold, its behavior changes and it
becomes memory-bounded, so that the CPU is running faster than needed,
regarding the memory access. This means that a minimal energy consump-
tion does exist, for an operating frequency located somewhere around the
threshold previously mentioned.

In addition, during the execution of an HPC application also I/O and
communication phases exist. In a few words, an I/O phase is when a core
has to perform a great amount of data writing and/or reading on disk. A
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communication phase, instead, is when a process on a core is sending or
receiving a message from another process, for data exchange or synchroniza-
tion purpose. In both described cases, the core computational power is not
needed because the execution pipeline is waiting the completion of data ex-
change operations. In such a situation, the core will try to enter a deeper
C-state, in order to save energy as described in 3.3.2. We will better describe
I/O phases with the NEMO application in chapter 7.

3.4.2 Phase detection

The previous section introduced balanced-bounded applications, and no-
tably the fact that they consists in an alternation of CPU-bounded and memory-
bounded phases. In order to study this alternation, two main methodologies
are possible: static and dynamic phase detection.

Static phase detection consists in analyzing the source code of the re-
quested job and extracting some codelets, that should be representative for
the most significant part of the entire application execution. Then, a single-
codelet analysis is performed in order to understand the behavior of each
codelet. Finally, by putting together all codelets results, an overall behavior
prediction is given. Then, according to this prediction, the optimal operating
frequency can be selected.

Dynamic phase detection uses a different approach to retrieve phases in-
formation: during a real execution of the application, several metrics describ-
ing the functioning of the system are monitored on the fly. From the measure-
ment, it is possible to link a particular execution phase of the application to a
specific set of values of those metrics. It will thus be possible to dynamically,
i.e. at runtime, determine the current type of execution phase of the applica-
tion, and adjust the operating frequency accordingly to minimize the energy
consumption.

The metrics in question typically are the number of instruction per cycle
(to have a picture of the CPU stress) also called IPC, and the number of cache
misses (to have a picture of the memory stress). Those metrics are often a
mathematical combination of exposed hardware counters, as we will explain
in sections 5.1 and 6.4.

3.5 DVFS

As it was seen previously, on one hand, the OS has different level of states
in order to manage its power consumption, and on the other hand, we de-
scribed the various natures and possible phases an application may have. In
order to connect those two different notions, the DVFS concept is built. The
idea behind DVFS is to dynamically adapt at runtime the P-state depend-
ing on application phases, to reduce power consumption and hopefully the
energy. This means that during the execution of the target application we
ask to the OS to change the CPU P-state, trying to choose the P-state that fit
the best the current phase of the application, so that the energy consumption
associated with the execution of the job is minimized.
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(A) Phase too small for latency (B) Good phase size for latency

FIGURE 3.1: Frequency transition latency vs phase duration [3]

It must be said that applying DVFS techniques to a system may raise some
issues. To begin with, even if the main goal of DVFS is to lower energy con-
sumption of a machine, it must not be forgotten that it may downgrade its
global performances. When it comes to exascale HPC systems, performances
are just as important as energy consumption. Thus, a trade-off has to be
found between the latter, and DVFS should be parsimoniously implemented.
On top of that, DVFS implies scaling the operating frequencies of the CPU.
However, as it was seen in previous sections, performing such a shift is not
cost less.

This proposition leads to a logical conclusion: since there is a real latency
for the frequency scaling, it doesn’t make any sense to switch the frequency
for phases that have a duration comparable to the latency, as presented in
Figure 3.1. The case where a phase duration is comparable to the transition
latency is shown in fig 3.1a, where the effective frequency change happens
too late, even worst in the following phase. Conversely, fig 3.1b presents
the good case, where the first phase can take advantage from the frequency
choose for its state. Estimate the time duration of a phase in order to deter-
mine whether or not a frequency scaling will be beneficial is one of the most
complex task when it comes to implement DVFS techniques.

Before passing to our micro-benchmarks study, in next chapter we will
describe the experimental environment and methodologies we used for all
our study, development, test and validation.
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4 Experimental environment

This chapter contains a detailed description of all hardware and software
supplies we used during our internship. In particular, we will describe the
cluster that we used for development, testing and measuring purpose. More-
over, in this chapter we will present the experimental methodology and sci-
entific approach we followed for all our work.

4.1 Hardware and software environment

In the Research and Development department of Bull we had the possibility
to develop and test our product on some compute nodes of a real HPC sys-
tem. The following is a description of the machines we used, from both the
hardware and software point of view.

4.1.1 The cluster

All our development, tests and measures have been done on a Bull internal
development HPC cluster, called MEXICO. This cluster is a CPU-based clus-
ter, that is to say that is designed to execute parallel applications thanks to
the multi-core architecture of Intel R© processors. CPU-based clusters differs
from GPU-based clusters mainly for number of cores and computing power
of each core.

The cluster contains more than 60 computing nodes. Being a develop-
ment cluster, it have to serve a lot of different purpose, so all nodes are not
homogeneous, notably by number of cores and memory size. The cluster is
also shared by many development team, so it is divided in logical partitions,
that can be reserved thanks to the Slurm workload manager, that we will
detailed better later in section 4.1.2.

All the nodes in the cluster are connected through both Ethernet and the
InfiniBand interconnect technology. Ethernet is used mainly for adminis-
trative operations on each node, like ssh user connections, while the much
faster InfiniBand connections are used for message and data exchange be-
tween nodes during computing operations.

On top of that, the MEXICO cluster is organized as follow: some of its
nodes are so called login nodes, that acts as entry points for all connections,
notably through ssh. Than, all the nodes mount also a Network File System
(NFS). This network protocol permits to use the network between nodes to
access remote hard drives as local hard disks. With this file system a user
account placed on a server node can be shared among all nodes, having all
same files synchronized and available on all connected machine.
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NFS is useful for administrative issues and users managing, but is not op-
timal for HPC computation. During the execution of an HPC application, in
fact, a lot of different processed would try to write at the same time on the
same disk. This could leads to performance issue if not managed in a proper
way. In Bull, Lustre file system is used to manage HPC input/output oper-
ations. Lustre is a distributed file system, optimized for large-scale cluster
computing. The MEXICO cluster has then some dedicated nodes for I/O.

During our internship we worked with a part of the MEXICO cluster, us-
ing a total of ten different nodes. Those were logically divisible into two
groups, homogeneous in themselves. Four nodes mounts an Intel R© Xeon R©
CPU E5-2650 v3 with a nominal frequency of 2.3 GHz and 20 physical cores
(40 logical with Hyper-Threading activated). The other 6 nodes have an
Intel R© Xeon R© CPU E5-2670 v3, nominal frequency 2.3 GHz, 24 physical
cores per CPU (48 logical cores with Hyper-Threading). All nodes CPUs be-
long to the same hardware architecture family of Haswell processors, and all
of them mount the same Linux Operating System: Red Hat.

4.1.2 The workload manager

As we said, heaving a big cluster means to manage it. In our case, multiple
teams had to work on the same development system, while in a production
environment maybe a cluster owner have to serve multiple customers with
different job requests. This means that, in a development environment, two
teams have to work compulsorily on disjoint set of nodes, otherwise it is
very likely that they will invalidate the measures done from the other team,
interrupt their work an so on. An effective system must be used, especially
when the size of a company, a project or the number of customer is too high
to be managed by a straightforward direct agreement. In Bull, we used the
Slurm workload manager [19].

Slurm is an open source, fault-tolerant, and highly scalable cluster man-
agement and job scheduling system for large and small Linux clusters. Slurm
requires no kernel modifications for its operation and is relatively self-contained.
As a cluster workload manager, Slurm has three key functions. First, it allo-
cates exclusive and/or non-exclusive access to resources, usually compute
nodes, to users for some duration of time so they can perform work. Second,
it provides a framework for starting, executing, and monitoring work, nor-
mally a parallel application, on the set of allocated nodes. Finally, it arbitrates
contention for resources by managing a queue of pending work.

During our internship we used all those three features: we created a reser-
vation for our test and measures that we will describe in chapter 7; we man-
aged the ten nodes we had into two logical groups, dividing them by dif-
ferent number of cores; we monitored the applications we launched and we
retrieved job duration and job energy consumption thanks to the Slurm man-
ager.
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4.2 Experimental methodology

In this section we will explain the experimental methodology we followed in
order to make sure that the state, set-up and experimental conditions were
the same on all nodes we used. Moreover, we will present the strategy and
mathematical means we used for all measures performed in our study.

4.2.1 Experimental hardware setup

Here, the "hardware setup" refers to the configuration of each node used for
our test, mainly regarding the setting of the frequency driver of the CPU. We
here explain all the step we followed to set the appropriate parameters for
C-states, hardware counters, frequency driver and thread pinning.

C-states

First we ensured that on all nodes C-states were active. If C-states are dis-
abled, each core will never goes in a deeper state than C0. This means that it
is always in an active state. In order to activate at least the C1 state, we had
to set the kernel parameter idle=halt. By doing this, we ensure that each
core will go at least into C1 state, where it performs only halt operations.

Hardware counters

We will explain in chapter 5.2 and 6 that hardware counters are a key point
of this study. In order to read counters values we used the perf_event in-
terface included in the Linux kernel. It notably aims at retrieving the values
exposed by the hardware performance counters of the CPU. It is customiz-
able, especially through flags exposed by virtual files. One of those flags is
named perf_event_paranoid, exposed by a virtual file. This flag can be
set in the range from -1 to 2: the higher the value, the lower the number of
retrievable counters. It also controls the permissions level required to access
the counters. We set the value inside the virtual file to -1, in order to have
entire access to counters. We will detail more the perf_event module in
5.1.

Frequency driver and governor

There exist several different CPU frequency drivers, among which Intel_P-
State and acpi-cpufreq. In order to use DVFS manually to dynamically
choose the operating frequency of the cores of the CPU we needed to set the
second one as frequency driver on our nodes.

The acpi-cpufreq driver utilizes a part of the ACPI interface dedicated
to P-states control [20]. For this ACPI driver, besides many configuration pa-
rameters, several frequency governors are available and one of them allows
frequency setting. A frequency governor is a way to define the OS strategy to
manage frequency scaling. acpi-cpufreq notably has the following gov-
ernors [21]:



Chapter 4. Experimental environment 22

• ondemand: it sets the CPU frequency depending on the current system
load. Load estimation is managed by the scheduler and exposed to
user-level space; when triggered, the governor checks the CPU usage
statistics over the last period and the driver sets the CPU accordingly.

• performance: this governor sets the CPU statically to the highest
available frequency.

• powersave: it fixes the CPU operating frequency statically to the low-
est one.

• userspace: this governor allows the user, or any userspace program
running with root privileges, to set the CPU to a specific frequency by
writing a virtual file scaling_setspeed available in the CPU direc-
tory.

Our test machines were set by administrators to use Intel_P-State, which
is loaded by the Linux Kernel at boot time. Consequently, first step consists
in disabling the Intel_P-State driver. To do so, it is required to add a kernel
flag and reboot the machine. Then, in order to select the desired frequency
governor, it is necessary to write in a virtual file, checked by the OS frequency
driver, the name of the desired governor.

View that for our experiments we had to change a lot of times both the
governor and the operating frequency on a set of nodes, we designed a set of
utility scripts written in bash. Those scripts allow to easily choose the gover-
nor on a set of nodes, and for the userspace governor, to set the operating
frequency.

Cores management and Hyper-Threading

For all our experiments we had to ensure that each parallel process was lo-
cated in the correct CPU core. Intel R© processors also embed the Hyper-
Threading technology, that permits to expose two execution contexts on a
single physical core. This technology is powerful, but it may lead to higher
results variability. To enhance the reproducibility of our results we decided
then to avoid the usage of Hyper-Threading, by means of thread pinning
through the taskset Linux utility and choosing an appropriate number of
processes to be placed on one node by the MPI library.

4.2.2 Measurement methodologies

During our internship, we faced many different use cases, for which was im-
possible to apply always the same experimental protocol, especially in terms
of number of measures. Anyway, for all the experiments we will describe
in chapter 5 and 7 we always used the technique of experiment repetitions,
performing our test multiple times. The objective was to ensure as much as
possible the reproducibility of our results. Moreover, for tests with lower
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number of repetitions we used the median mathematical tool, to exclude pos-
sible outliers. Instead, for tests with an high number of repetitions we pre-
ferred the average tool, in order to take into account all the measured cases.
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5 Study of micro-benchmarks with
hardware counters

In order to monitor the behavior of a compute node at runtime, we need a
mean to retrieve some numerical and quantifiable metrics, notably some spe-
cific performance monitoring events. This section presents a brief description
of the libraries used in order to read hardware counters. All those libraries
stand on top of the perf_events interface, a software layer that allows the
access to counters present on most processors. Then we will describes the
actual counters used in our study and the micro-benchmark study we did
related to those counters.

5.1 Hardware events and counters

Performance monitoring events are typically provided by the hardware or
the OS kernel. The most common hardware events are provided by the Per-
formance Monitoring Unit (PMU) of modern processors. They can measure
or counts events related to the hardware, like elapsed cycles, the number of
cache misses or the number of executed instructions from a certain point on.
Then, there exist also software events, that usually count kernel events such
as the number of context switches, or pages faults.

Programming events is usually done through a kernel API, such as Opro-
file, perfmon, perfctr, or perf_events on Linux [22]. The perf_events
interface is a Linux API added into the Linux kernel in version 2.6.31, and
it was originally called Performance Counters for Linux (PCL). This API is
a low-level instruments to reach performance counters, notably exposing to-
gether both the information from PMU and from kernel counters. A lot of
contributors have used perf_events as a base for higher level libraries, in
which the best known are libpfm [22] and PAPI [23] [24].

libpfm

The goal for the libpfm project is to develop a user library to help setup per-
formance events for use with the perf_events Linux kernel interface. The
idea behind this library is to simplify the procedure of events selection and
monitoring, while adding some models and metrics on top of perf_events.
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PAPI

The Performance API (PAPI) project specifies a standard application pro-
gramming interface (API) for accessing hardware performance counters avail-
able on most modern microprocessors. This library expands and integrates
the libpfm library, providing a consistent interface and methodology for use
of the performance counter hardware found in most major microprocessors.
PAPI supply two interfaces to the underlying counter hardware; a simple,
high level interface for the acquisition of simple measurements and a fully
programmable, low level interface directed towards users with more sophis-
ticated needs. PAPI defines also some proper counters, allowing the access
to high level monitoring like network and file systems counters.

5.1.1 Counters

In order to better present the micro-benchmarks study proposed in 5.2 and
other studies in this work, we describe here the specific counters we used as
metrics and their meanings. We recall that the presented counters are cur-
rently available for Intel R© Haswell micro-architecture.

Instruction and cycles

One of the the main metrics that is really interesting to monitor and that we
will show to be crucial in understanding the behavior of an application is
the rate of instruction executed by the core. It is possible to measure this
quantity taking into account the number of instruction fetched by the core
pipeline and the number of clock cycles needed to execute them.

INSTRUCTION_RETIRED The instruction retired counter add one each
time an assembly instruction is completely executed by the core pipeline,
that is to say, the instruction is retired from the pipeline. For instructions that
consists of multiple micro-ops, the counter counts the retirement of the last
micro-ops of the instruction.

READ_TIME_STAMP_COUNTER The Read-Time-Stamp-Counter (RDTSC)
is an assembly instruction that can be used to retrieve the count of the num-
ber of ticks since the last system reboot as a 64-bit value. It is, in a few words,
a counter usable for knowing a period of time, usually expressed in num-
ber of clock ticks or clock cycles. The frequency of counting is the nominal
frequency of the CPU.

UNHALTED_REFERENCE_CYCLES It counts the reference clock cycles while
the clock signal on the specific core is running, that is to say, when the core
is not halted. The reference clock, like for the RDTSC, operates at a fixed fre-
quency (the nominal one), irrespective of core frequency changes due to per-
formance state transitions. The main difference with respect to the RDTSC is



Chapter 5. Study of micro-benchmarks with hardware counters 26

that the latter counts always, independently to core activity, while the URC
only for unhalted instructions.

UNHALTED_CORE_CYCLES This counter is very similar to the URC, with
the only difference that its counting frequency is not the nominal one but the
actual core operating frequency. As an example, having a CPU with nomi-
nal frequency 2.4 GHz and an operating frequency of 1.2 GHz for the entire
selected period of time, the URC will counts the double of the UCC.

Memory usage

Another important metric used to analyze the execution of an application is
the behavior of cache and RAM memory usage. With the counters presented
below it is possible to keep track of memory stress. We present here general
counters for LOAD and STORE counting and low level cache monitoring.

MEM_UOPS_RETIRED:ALL_LOADS This counter take into account all
memory load retired by the core pipeline. We recall that a LOAD assem-
bly instruction is the request by the program to load the content of a memory
address into an internal core register.

MEM_UOPS_RETIRED:ALL_STORES As for loads, this counts the num-
ber of stores instruction retired by the pipeline. A STORE assembly instruc-
tion is the opposite of the LOAD, because it is the request to store the value
of an internal register into a memory address.

L1D:REPLACEMENT In the different levels of cache, it is possible to counts
the number of cache line replaced. With this counter it is possible to monitor
the number of level one data cache line replacement. It is very likely that a
cache line replacement is triggered by a "miss" into the cache: another cache
line will be searched in higher level of cache and it will replace one line into
the current level of cache.

L2_TRANS:L1D_WB In the context of cache line transfers between levels
of cache, is it possible to monitor specific transactions: this counter allows to
count the L1 data write backs that access the L2 cache.

L2_RQSTS:MISS After a cache miss, when a lower level of cache ask
for a new cache line to an higher level cache, the requested line could be
present or not: this counter keep track of all requests that miss the L2 cache.
Those miss will also cause cache line requests to the L3 cache.

Package energy consumption

The Running Average Power Limit (RAPL) [25] provides access to a set of
counters for energy and power consumption information. RAPL is not an
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analog power meter, but rather uses an internal power model. This model
estimates energy usage by means of voltage, temperature, number of actives
cores and internal performance counters. Both the counters below belong to
the RAPL interface.

rapl::RAPL_ENERGY_PKG This counter is related to the energy con-
sumption of the package, also called socket. For example, on nodes described
in 4.1.1 there are two socket per CPU, each of them containing an half of the
cores available per CPU. As we said, each socket has its part of RAM memory
attached to, that in this case is not taken into account for this counter, while
is measured by the following one.

rapl::RAPL_ENERGY_DRAM This counter provides a measure of the
energy consumed by the RAM memory, and it is possible to differentiate the
consumption, as explained before, between the RAM modules present in the
two socket of the CPU.

5.2 Micro-benchmarks study

The characterization of hardware behavior studying hardware counters val-
ues on very small codelet of assembly instructions, that we call micro-benchmarks,
give us the possibility to perform an important evaluation: we can count
manually the expected values that we should expect from measured coun-
ters, and compare those with actual counters values retrieved. This process
helped us to validate counters information.

We will also vary the data size of the micro-benchmarks to stress the mem-
ory hierarchy. We will set different operating frequencies on the core in order
to study the energy consumption and the performances of codelets with re-
spect of core frequency and data size.

5.2.1 Structure and parameters

In order to retrieve counters values for a codelet, we create a simple C pro-
gram that is able to start the counters, launch the codelet, stop the counters
and print the results. In listing 5.1 we have a simplified pseudo code example
of the codelet call. As we can see, the two main parameters are the number
of elements and the codelet repetitions.

1 int main() {
2 // Take number of elements and repetitions
3 read_inputs(nb_elements, repetitions);
4

5 // Compute memory size and allocate memory
6 size = nb_elements * sizeof(double) + 64;
7 allocate_memory(mem, size);
8

9 // Start monitoring
10 evaluation_start(counters);
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11

12 // Start the codelet to be evaluated
13 __codelet(nb_elements, mem, repetitions);
14

15 // Stop the monitoring
16 evaluation_stop(counters);
17

18 // Print the values of the counters
19 print_results(counters, repetitions);
20

21 free_memory(mem);
22 return 0;
23 }

LISTING 5.1: Pseudo code for codelet call

The number of elements is the number of double data type elements
that the main program allocates and that represent the amount of data the
codelet has to deal with. By changing this parameters, considering that we
know the hardware on which the codelet will be executed, we can forecast at
which level of cache the data needed by the core will be placed. In our case,
for example, we have a cache architecture as shown in table 5.1. If we want
that our codelet fetches data out of the L1 cache, we have to ensure to allocate
less than 32 kilobyte (the size of L1 cache). If we want, instead, to fore the
working set to reside in higher cache levels, we have to allocate more than
the size of cache L1. Let us assume, for example, that we want to fill the L3
cache memory: having a size of 30720 kilobyte, we can divide it by 8, that is
the size of an element. We will find out that we need at least 3 million and
840 thousands elements. Obviously, enlarging the amount of data to work
on, we will affect the necessary execution time, view that the codelet will
have to work on more data. With this strategy, we can study the effects in
term of energy consumption, power consumption and performance of two
main factors: the number of cache misses and the latency on different levels
of cache.

The number or repetitions is a necessary parameter for results repro-
ducibility and stability: it simply is the number of times the codelet will re-
execute its work. In fact, a single codelet execution could lead to variable
counter values in between different runs. It is possible then to use a codelet
repetition and take the average of the results. Moreover, as we just said, dif-
ferent memory sizes to work with means very different execution times: this
could cause too short or too long codelet executions. So, we can tune the

Memory Level Size
cache L1 (private) 32 KB
cache L2 (private) 256 KB
cache L3 (shared) 30720 KB

RAM 64 GB

TABLE 5.1: Cache and memory size on test node
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Repetitions Number of elements Memory allocated
4 M 1 K 7.8 KB

1.3 M 3 K 23.5 KB
370 K 11 K 86 KB
160 K 25 K 195 KB
4 K 1 M 7.8 MB

1.3 K 3 M 23.4 MB
666 6 M 47 MB
333 12 M 94 MB

TABLE 5.2: Set of configurations for codelet study

number of repetitions in order to have a comparable total execution time.
The functions evaluation_start() and evaluation_stop() are those

in charge to initialize, start and stop the counters monitoring. For our exper-
iments we performed our measurements using the Performance API library
(PAPI), already described in section 5.1.

As a strategy, knowing the cache and RAM sizes like described in table
5.1, we decided to choose two different data size per level of cache: one data
size that is "small" for the cache size, and another that almost fill the cache
level selected. With this procedure, we selected the combination of parame-
ters showed in table 5.2. Each line of the table represent a configuration used
to launch the micro-benchmark: it is possible to notice, as said before, that
for lower number of elements are needed a very high number of repetitions.
The execution time, otherwise, it will be really short. We found this param-
eters empirically, with the objective to have an execution time of at least 2-3
seconds. The table also shows for each number of elements the correspond-
ing size into the memory. With this set of parameters we know that the first
two rows will work on L1 cache, the third and fourth on L2 cache and so on,
while the last two lines will need to access data in RAM memory, that is the
the most common case for real HPC applications. It is important to say that
the last configuration does not fill the 64 GB of available RAM, but simply
goes a little further than the configuration just before. We made this choice to
avoid a too long execution time, required by the codelet to deal with 64 GB
of data.

The function print_results(counters, repetitions) take the re-
sults of counters and normalize them on the number of repetitions and num-
ber of loops needed to fit the requested memory size, permitting to evaluate
the counters values as they were on a single execution of the codelet, pre-
sented in next section.

5.2.2 Codelet analysis

The herein below code listing 5.2 presents one of the codelets we used in our
experiments:

1 void __codelet(long nb_elem, double *a, long rep)
2 {
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3 long i = 0, j = 0;
4 do {
5 i=0;
6 do { // LOAD a[i]; Loads using 64 bytes strided accesses
7 __asm__ __volatile__(
8 "movaps (%[a], %[i], 8), %%xmm1\n\t"
9 "movaps 64(%[a], %[i], 8), %%xmm2\n\t"

10 "movaps 128(%[a], %[i], 8), %%xmm3\n\t"
11 "movaps 192(%[a], %[i], 8), %%xmm4\n\t"
12 :
13 : [a] "r" (a), [i] "r" (i)
14 :
15 );
16 i += 32;
17 } while( i < nb_elem );
18 } while( j++ < rep );
19 return;
20 }

LISTING 5.2: Codelet code

We recall that this codelet is called by the main process presented in listing
5.1, right after the starting of the counters and right before the counters stop.

The main purpose of this codelet is to force with each assembly instruc-
tion a new cache line to be requested from memory. As described in 4.1.1
each cache line has a size of 64 bytes. The idea is to load a couple of elements
of the array in an internal register in order to force the load of the correspond-
ing cache line into L1. Then, with a stride of 64 bytes, we repeat the process,
ensuring that at each time a new cache line is requested.

To achieve this, the codelet is composed by four assembly instructions, en-
capsulated into two loops: the outer loop is the one that ensure to repeat the
innermost loop as many time as requested by the repetitions parameter rep,
while the inner loop is in charge to call the assembly instructions correctly on
the entire allocated array. In a few words, the four internal instructions cover
a segment of 256 bytes into the array, that corresponds to 32 double data (8
byte each one). Consequently, at each step of the internal loop, we increase
the i elements counter of 32 unit.

For our experiments we pinned this codelet on a single core, that is to say
that we ensure that the OS will not perform a migration of our execution on
another core. With this method, we try to have a measure as clean as possible.

We recall that the results we expected from this experiment will be on av-
erage on all repetitions performed, on the total number of loop performed
into the innermost loop. This means that the values obtained from the mea-
sures will represent the counters values for the execution of a single cycle
in the innermost loop. Table 5.3 shows counters’ results for the described
codelet.

As we can see, the configuration is the third we presented in table 5.2,
with a total data size of 86 kilobytes and 370.000 repetitions. We set the oper-
ating frequency at 1.2 GHz so that we expect a value for the UNHALTED_CORE_CYCLES
counter almost the half of the UNHALTED_REFERENCE_CYCLES, having a
dependency the former on the operating frequency and the latter on the
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nominal frequency, that is 2.3 GHz, almost the double of the chosen one for
this experiment. This expectation is confirmed by results, that as we can see
shows an RDTSC and URC almost identical (no halted cycles are present dur-
ing the experiments) with a value of 17.5 cycles, while the UCC shows 9.1
cycles, that is almost in the same proportions as the frequencies, as antici-
pated. With the described configuration we also expect that the L1 size will
not be enough to contain the requested memory size. This will cause a con-
tinuous cache line replacement in L1, also between all repetitions performed.
Otherwise, having a smaller data size that fits the L1 cache, all needed data,
after being loaded a first time, will be already available for all subsequent
repetitions, that will not cause cache misses any more. This is validated by
measure results, that shows an L1(miss) counter value of 4 misses per loop,
one for each movaps instruction. As we expected, no L1(write-back) are
counted, because of the LOAD nature of the codelet, confirmed also by the
LOAD counter, that shows 4 LOAD instructions per loop. Taking into account
the total number of instructions present in each loop cycle, as showed by
the instruction retired counter IR there are 7 assembly instructions in the in-
nermost loop: 4 movaps, one for the counter i addition and two needed to
implement the innermost while condition, namely a test instruction and a
jump.

Another important result that table 5.3 shows is the difference between
the energy consumed by the package, including the core and the cache en-
ergy consumption, and the RAM that is much smaller. This is an additional
indicator on how much important is to optimize the CPU energy consump-
tion, being the largest consumer of the system.

5.3 First results and interpretation

As explained in section 5.2 the objective of this step of our study is to under-
stand how a core behaves with different data sizes and with different clock
frequencies. This section is dedicated to the interpretation of obtained re-
sults.

5.3.1 Impact of frequency and data movement on energy

The first comparison that is possible to see is the graphic presented in figure
5.1. It gives an idea of the energy and execution time using different data
sizes, that as we said act on the level of cache used. On the horizontal axis
are present all different memory size used in the experiment. The left vertical

MEM(kB) REP FREQ(GHz) RDTSC URC UCC IR
86 370000 1,2 17,5437 17,4285 9,0931 7,035

LD ST L1(miss) L1(wb) L2(miss) E_PKG(nJ) E_RAM(nJ)
4 0 4,0117 0,0005 0,00 209,86 10,64

TABLE 5.3: Counters results for codelet
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FIGURE 5.1: CPU energy (nJ) and execution time (ns) by level
of cache

axis represent the energy consumption, expressed in nano-Joule, while the
right vertical axis represent the execution time expressed in nano-seconds.
The graphic shows four lines that, by couple, have different natures: the two
on top refers to the energy consumption axis and the two at the bottom refers
to the execution time axis. Putting our attention on the energy lines, the red
one is the energy consumption when the core frequency is set at the mini-
mal available frequency, in our case 1.2 GHz. The violet line, instead, is the
energy consumed at 2.3 GHz, the highest frequency, with the TurboBoost de-
activated. The same difference stands for the two line on execution time: the
orange one is the execution time at minimal frequency and the light blue at
maximal frequency.

A first intuitive result we expected confirmed by this graphic is that the
more data the core have to deal with, the more time is needed. But more im-
portant, this relation is not linear. We can see, in fact, that the biggest changes
in both the execution time and energy consumption are present when we
change the level of cache used, while remaining in the same level of cache,
even doubling (L2) or tripling (L1-L3) the data size used, there are almost no
alterations in both energy and time; there are sensitive changes only when we
work on RAM memory, anyway they are quite small compared to a data size
almost doubled (from 47 to 97 megabyte). We can also see that the gap be-
tween caches grows with higher cache level, and is quite remarkable the gap
between L3 cache and the RAM: this is due to the very different read/write
speed of RAM modules in comparison to much faster cache memories.

This graphic, together with the one in figure 5.2, shows that, with this
particular codelet, the choice to work at the lowest frequency doesn’t save
the overall energy consumption at all. In fact, it’s clear that the orange line
in the first graph indicates always higher values than the light blue one. This
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FIGURE 5.2: CPU energy by cache accessed and operating fre-
quency

seems to be in contrast with equation 3.2, for which lower frequencies get
lower Pdynamic. However, this is not the case, because as explained in section
3.4.1 we have to take into account also the time, using the general equation
3.1 for energy. In this example the higher power used to have an higher
frequency on the core is less relevant than the time saved. Consequently we
can stand that this codelet has a compute-bound behavior, especially due
to the fact that is only one core active over twelve available, so that it can’t
saturate the memory bandwidth. It is very likely that running this codelet in
parallel on all available cores, we will detect a memory-bound behavior.

Figure 5.2 also shows the consumed energy at every intermediate fre-
quency, including TurboBoost. Different lines stands for codelet execution
on different cache levels. This graph complete the information given by the
last one, providing a vision of what happens by changing the frequency. As
we can see, thanks to the speed on lower level of caches, executions on L1
and L2 are less sensible to frequency changes, even if we can anyway see a
descending trend. From L3, and especially from the RAM, the energy con-
sumption is lower on higher frequencies, with the exception of the Turbo-
Boost, that we will detail later on. From this figure we can understand the
importance of cache memories not only for performance, but also for energy
savings purpose.

5.3.2 Energy, power and TurboBoost

Going further in the relation between energy, power and time, we analyze
figure 5.3 and 5.4, in order better understand the relation expressed by equa-
tion 3.1 when we are in the most frequent use case in real parallel applica-
tions: frequent RAM memory access.

The first graphic shows the comparison between energy consumed and
the execution time, while the second the relation with the latter and the
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FIGURE 5.3: CPU energy and execution time by operating fre-
quency

power, both of them for each operating frequency available on the node, rep-
resented on the horizontal axis. As before, the left vertical axis expresses the
energy consumed in nano-Joule and the right horizontal the time in nano-
seconds. In the first, the red line is then the series of energy value, in the
second the blue line is the power and for both the green line is the execution
time.

Those two graphic, together, not only confirm what we find out from pre-
vious results, but give us also an idea on how can be difficult to weight the
frequency changes. In fact, from figure 5.3 we can see that in general the en-
ergy is lower for higher frequency used, because as we explained previously
they lead to a faster execution. This consideration is applicable to almost all
cases but TurboBoost: indeed the rightmost case in first graphic has higher
energy consumption than 2.2 GHz and 2.3 GHz cases, even if it has a con-
siderable drop in the execution time. The second graphic on power explains
why. It express in fact the relation we presented in equation 3.2 between
dynamic power consumption and operating frequency: the higher the fre-
quency, the higher the power. As we can see from figure 5.4 this statement
is valid for all frequencies, especially for the TurboBoost, where the increase
of power consumption compared to other high frequency is much higher.
This explain the previous graphic: according to formulas 3.1 E = P × T ,
in this case the rise of power consumption is greater than the time gained
time going faster. In fact, the TurboBoost is an Intel R© technology that permit
to overclock a core for a limited amount of time, depending on the type of
workload, number of active cores, estimated power consumption and pro-
cessor temperature. So power consumption of TurboBoost can vary a lot
depending on the use case, but as we saw in our experiment (figures 5.3 and
5.4) it is not an energy-safe choice. It becomes reasonably inadvisable if the
objective is energy saving.
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FIGURE 5.4: CPU power and execution time by operating fre-
quency

With all the information provided by the study of micro-benchmark be-
havior through hardware counters, we have a good starting point to present
the design of our tool: the Bull Dynamic Power Optimizer.
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6 Bull Dynamic Power Optimizer

This chapter presents Bull Dynamic Power Optimizer, shortly BDPO, that is
the experimental tool we developed during our internship in Bull. We will
explain its company context, design and behavior, that is strongly based on
all energy saving concepts we explained in previous chapters.

6.1 Product context

The idea for BDPO arrived in order to complete a suite of Bull products for
energy savings. The final project is to create a unified framework for cluster
energy management, that at the moment contains one product developed by
the Power Efficiency team in the Bull Research and Development division:
the Bull Energy Optimizer, called briefly BEO.

Bull have built supercomputers for decades, and with the coming of exas-
cale computing, as we already explained, the need for hardware and software
optimization for energy consumption is becoming more and more relevant
and urgent.

BEO is an infrastructure-oriented tool, and it was started with four main
approaches in mind:

• Descriptive approach: keep track of all possible energy consumption
data and metrics on a cluster;

• Diagnostic approach: give limits a diagnosis on the whole system,
knowing for example when it is in an energy-saving state or a energy-
consuming state, or if the system is passing predefined thresholds;

• Predictive approach: understand with all collected information how
the machines are consuming, being able to predict for given conditions
the behavior of the cluster from a performance and energy consump-
tion point of view;

• Prescriptive approach: Give hints to administrators and users to how
they could reduce the energy consumption of their systems or jobs.

The idea behind BEO is then to offer to cluster administrators and users
all the possible means to easily understand how and how much a big and
complex cluster consumes, at a physical and logical levels: the customer can
figure out which parts use more power, either a switch, a computer node or
a storage node; it can also estimates the energy cost in terms of money for a
specific job or for a part of the cluster for a certain period. Bull Energy op-
timizer is nowadays ad the diagnostic level, continuously evolving to reach
the predictive and prescriptive features.
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In this framework, the Bull Dynamic Power Optimizer was started with
this internship as application-oriented tool next to BEO, in order to explore
the potentiality of direct energy optimization of parallel applications, starting
from the DVFS technique.

6.2 BDPO design

In order to obtain the maximum performance with the minimum perfor-
mance degradation and resource demanding on a node of a cluster, we de-
cided to design this utility with the C programming language, that permits
to achieve high performance and write optimized code for very lightweight
memory usage.

Even if the C programming language doesn’t support the Object Oriented
Programming paradigm, that easily leads to a modular design, we choose to
develop this project in a modular way, designing simple and effective inter-
actions between modules, paying particular attention to those module that
have to run efficiently at runtime.

We decided, moreover, to design a tool that will be distributed and in-
stalled on each node of the cluster, so that each instance will be responsible
of the monitoring of its own node, avoiding message passing between nodes
and a centralized solution, that could lead to bottleneck problems and per-
formances issue. This approach is not too far from the concept of autonomic
computing [26]. An autonomic system can be modeled in terms of an inde-
pendent control loops with sensors (for self-monitoring), effectors (for self-
adjustment), knowledge and planner/adapter for exploiting policies based
on self- and environment awareness. This architecture is sometimes referred
to as Monitor-Analyze-Plan-Execute (MAPE). It is somehow possible to asso-
ciate our modules to sensors, effectors, planner and adapter, but we did not
design BDPO modules to fit the MAPE model.

The diagram in figure 6.1 shows the software solution we designed. The
following is a brief description of each module:

The main

This is the launching program: it initializes all other modules, launches the
Control Loop and takes care of the finalization of modules.

Control Loop

The Control Loop is the core of this design, the module that act as fulcrum
between all other modules. It is in charge of looping at a specific polling
period, calling functions and asking values to all other modules, depending
on parameters received by the configuration module, returning values from
other module and process logic that we will describe in section 6.3.
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FIGURE 6.1: BDPO modular design with relations between
modules

Metric Module

This module contains the logic behind metric extraction. It manages already
presented counters in order to obtain metrics to be delivered to the Control
Loop. A detailed description of this module is provided in section 6.4.

Trigger Module

The Trigger is the module that will receive from the Control Loop the mon-
itored metric and figures out the state in which the machine is going in or
it is coming from. For now it is implemented in the simplest way possible:
it receives a threshold from the configuration file and simply answer to the
Control Loop if the received metric value is above or below the predefined
threshold. It keeps a history of the previous state, so that it can tell if the
machine is passing from the "lower state" below the threshold to the "upper
state" above it, and vice versa.

Action Module

This module have to define the actions that have to be performed on the
machine depending on the state detected by the Trigger. We give more details
on actions in section 6.5.

Log module

If activated in the configuration file or the command line, the logger is in
charge of keeping track of the history of all actions performed by BDPO,
depending on the machine state and the metric value. The produced log file
could be useful to better understand and analyze the behavior of BDPO on
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different applications offline. It uses an optimized buffer in order to avoid
high number of system calls at runtime.

Profiler module

As the Logger, the Profiler can be activated by the configuration file or the
command line options. It is the main tool we used for all experiments we will
describe in chapter 7, as it permits to keep track of all metric value retrieved
by the Metric module. It also used an optimized buffer, and we will better
describe this module in 6.6.

Configuration Module

This is the module that is in charge of parsing the configuration file and the
command line options, in order to create a global structures of parameters
that can be used by all the other modules in the system. Options include
names of output files, the polling period for the Control Loop, the threshold
used by the Trigger and so on.

6.3 Control loop

The control loop is the main manager module. It is responsible to coordinate
all the other modules, which communicate through it. It has also to activate
the right module depending on the parameters passed from the configura-
tion file or the command line. Listings 6.1 shows the Control Loop pseudo
code:

1 int bdpocontrol() {
2

3 metric = bdpoconfig_get(metric);
4

5 bdpometric_load(metric);
6

7 bdpometric_start(metric); // Start metric monitoring
8

9 do { // main Control Loop
10 bdpometric_get(metric, &metric_value);
11

12 if (is_action_active) {
13 state = bdpotrigger_state(metric, metric_value);
14

15 switch (state) {
16 case STATE_CROSSED_UP:
17 return_code = bdpoaction_freq_up();
18 if (is_log_active) {
19 return_code = bdpolog_log(&log_data);
20 }
21 break;
22

23 case STATE_CROSSED_DOWN:
24 return_code = bdpoaction_freq_down();
25 if (is_log_active) {
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26 return_code = bdpolog_log(&log_data);
27 }
28 break;
29 }
30 }
31

32 if (is_profile_active) {
33 return_code = bdpoprofile_profile(&profile_data);
34 }
35

36 sleep(sleep_period);
37

38 } while (!stop_main_loop);
39

40 bdpometric_stop(metric); // Stop metric monitoring
41

42 return (return_code);
43 }

LISTING 6.1: Control Loop pseudo code

As we can see from the pseudo code, the first two functions take the de-
sired metric from the configuration module and than load it into the metric
module. Then, the monitoring of the specified metric is started.

The core of this module is obviously the central loop. As the listings
shows there are a lot of conditions: those are all previously taken from the
configuration file or the command line through the configuration module.
Those condition are necessary to run every module only when necessary,
and to manage the logical dependencies between modules1. The main loop
gets a metric value and then pass it to the Trigger. The Trigger will then eval-
uate the current value of the metric with the past node states, returning a
new state. The latter is then used by the Control Loop to understand which
action is the right one to call. For now only the two action related to target
frequencies for DVFS are implemented, as we will detail in 6.5. If needed,
the system will also log the decisions and actions taken. Last, the loop will
call the profiler if the related option is true.

When the main loop is stopped by a signal from the user, it simply stops
the monitoring of the metric and then returns.

6.4 Metric extraction

The main idea behind the implementation of the metric module is to create
an infrastructure that is by itself expandable. In our case, for instance, we cre-
ated an interface that can be called for different type of metrics, completely
independent to each other. As we saw from listings 6.1 at line 5, there is a call
to bdpometric_load(metric) that permits through pointers to functions

1For instance, if the action module is deactivated, there are no reason to activate the trig-
ger module because the trigger decisions are necessary only for deciding which action is
needed to execute
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to call all the other functions related to the metric to the desired implemen-
tation. This technique allows to have completely independent implementa-
tions of different type of metrics, with the use of different technologies, coun-
ters or interfaces. With the function call described before we simply select the
desired metric to be monitored.

6.4.1 Instruction per cycle

The first metric we implemented for BDPO is the Instruction Per Cycle (IPC)
metric. The idea behind the use of this metric is to being able to have a quan-
tity that gives us a measure of the actual workload on the nodes. The ob-
jective of this metric is then to help to discriminate between compute phases
and not-compute phases.

As we explained in section 3.4.1, for compute-bound phases higher fre-
quencies are the best choice for energy consumption, because they reduce the
execution time. Instead, for memory-bound phases or non-compute phases
in general we know that lower frequencies permits energy savings, while
they use lower power consumption during the phase. We used this logic to
call the right action to be performed on the cores, as already explained in
previous Control Loop description.

The IPC is computed using some of the counters described in 5.1.1, as
follows:

IPCnode =

∑tot_cores
core INSTRUCTION_RETIREDcore

TSC
. (6.1)

We recall that nowadays compute nodes, especially in HPC systems, have
multi core CPUs. Moreover, most of the counter previously described are
available for each core, and this is the case for the INSTRUCTION_RETIRED
and RDTSC counters. For those reasons, we had the choice between defining
a metric with a per core granularity or an aggregated metric per node. For
sake of lightness and runtime performances of our tool, we made the decision
to define an IPC per node. This choice define also the granularity that BDPO
have to use in order to take an action on the hardware, as described in next
section.

As we can see from equation 6.1, then, to compute the node IPC we
sum the value of the INSTRUCTION_RETIRED counter over all the available
cores, dividing it for the total number of cycle occurred during the desired
period of time.

Figure 6.2 shows an example of what the IPC monitoring gives for a ma-
trix multiplication application implemented with MPI and the dgemm rou-
tine [27]. The diagram shows the IPC detected on a single node with 20
cores working on the matrix multiplication. This example clearly shows a se-
quence of different compute phases: it alternates dgemm multiplications with
smaller matrices and bigger matrices. Working on smaller matrices causes an
higher IPC, because small data size takes advantage from low-latency lower-
level caches. Instead, when the program has to compute bigger matrices that
not fit the caches, it has to work more into the RAM memory. RAM has
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FIGURE 6.2: IPC profile of a simple MPI application

higher latency that slows down the core execution pipeline, causing a lower
IPC profile.

This is a clean and simple example, and we will present in chapter 7 what
this metric gives as result during the execution of real HPC applications.

6.4.2 Memory activity

We also started studying another metric, related to the memory stress. In
particular, the idea was to understand the data flow activity between core-
related caches and the uncore-related caches. This data traffic is usually be-
tween the L2 and L3 caches, because the L2 cache is private to the core and
the L3 cache is shared between all cores in the same package.

The memory activity metric takes into account both write and read oper-
ations the L2 cache performs on L3 cache. This metric is computed by

L3_ACTIV ITYnode =
∑tot_cores

core (L2_WBcore + L2_RQSTcore)

TSC
.

In our studies we haven’t reach a good level of testing of this metric in
order to implement optimization strategies related to memory metrics, so
that all the studies presented in the last part of this thesis will refer only on
the already presented IPC metric.

6.5 Taking an action

As we already said, the action module is in charge of the definition of all
possible actions that can be performed on a compute node, so that using
those actions in the correct application phase, power saving is possible. Like
the metric module, we designed the action module with modularity in mind,
so that it is always possible to enlarge the set of actions to be taken.

As we have largely explained in chapter 3, the DVFS is the target mean
for energy optimization for this project. We had then to implement a method
that permits to scale the core frequency to a desired frequencies.
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In section 4.2 we have already presented the CPU frequency scaling driver
for the Linux environment, where we have the possibility to choose in be-
tween multiple frequency governors. Setting the userspace frequency gov-
ernor, it is then possible to choose the operating frequency of each core ei-
ther by calling a driver function or by directly writing specific virtual files
with the desired frequency. Those virtual files, one per core, are used by the
acpi-cpufreq to set the operating frequencies, only when the userspace
governor is active. We recall that dynamically scale the frequency is not a
cost-less process. There is an overhead due to frequency transition, as de-
scribed previously in 3.5.

From listing 6.1 we already saw the two pseudo functions related to the
bdpoaction module: freq_up() and freq_down(). The strategy behind
this design is that during the initialization phase of BDPO, the action module
takes from the configuration manager the high and low frequencies to be
used by those two functions. We will details further the process of choosing
of high and low frequencies in chapter 7.

As we explained, at the current version the BDPO use the DVFS tech-
niques with a fixed high frequency and low frequency, but there exist other
techniques and actions to be explored in the future, notably the scaling of
uncore operating frequency and the clock modulation [28].

6.6 Integrated profiler

The profiler is a tool that permits to follow the trend and behavior of metrics
on-the-fly during a program run. Figure 6.2 is an example of profiler use:
after the execution of the matrix multiplication program, we can see how the
IPC changed during the run, allowing deeper application understanding.

We decided then to integrate this feature to BDPO, adding the possibility
to activate the dump of the retrieved metrics values in an output file. This is
showed also in lines 32-33 of listing 6.1, that contains the conditional profiler
call.

A really important point of a profiler is that it must be as lightweight as
possible, so that perturbation of application execution is minimized. We also
know that writing values into a file involves a system call, that is quite heavy
in terms of performances. Moreover, it is possible to write values either in
text format or binary format. Translation from numeric values to chain of
characters is also a time consuming operation, especially when done quite
often.

We designed then a lightweight profiler that relies on an optimized fixed
size, binary buffer.

The optimized buffer

This solution permits to reduce a lot the number of system calls to perform
input/output operation of files, and totally avoid the overhead introduced
by the string conversions. We can see from Control Loop pseudo code that
at each loop, a metric value is requested to the metric module. Then, if the
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purpose is to only profile the application, no action are needed, so that all
the logic behind the combination trigger-action is skipped. The metric value
is then passed at the profiler in its binary form, in the code represented by
the structure profiler_data. No translation is needed and, furthermore,
the size of the structure is fixed. The profiler internally, put this value in
the buffer, which size is always known and surely a multiple of the data
size, thanks to the smart initialization of the buffer. This technique prevents
the buffer to check against overflows at each add of a new element. Once
the buffer is full, it performs a system call to write its whole content on the
output file.

The translator

During the whole execution of the application together with BDPO, only bi-
nary values are stored on disks. So how to read it? We designed an internal
binary-to-string translator, that it will be called either at the end of the over-
all execution (when the target application has already finished its work, so
no high performances are needed anymore) or on demand, to translate al-
ready produced binary files. This design allows then high performances and
lightness at runtime and human-exploitable results when needed.
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7 Validation on real HPC
applications

In this chapter we will briefly present some real HPC applications we choose
for the validation of the BDPO tool, explaining the objective we had on those
targets. We then present the results we obtained for each application, fol-
lowed by an analysis of the results.

7.1 Performance metrics

HPC applications are, in general, quite complex by themselves: they are do-
main specific, with usually an elaborated software structure, with algorithms
designed to be as parallelizable as possible. From and external point of view,
it is often quite hard to understand in deep what they do, especially trying
to know how they behave at runtime. For example, one can expect that a
parallel application running on multiple homogeneous nodes it acts homo-
geneously on all of them. This is not always the case, as workload unbalance
may happen.

The third objective we presented in chapter 2 for the BDPO project helps
to understand the parameters and metrics we used to analyze the results we
will presents in this chapter. In that point, we said that we wanted to reach
almost no performance degradation for the target application. As we said
many times, in the High Performance Computing environment, as the name
suggests, performances are crucial. With our tool we wanted to save energy
on a real HPC system running a real HPC application, but an important point
was to do not affect the system performances, or at least as less as possible
and the closest to zero.

For parallel software, in general, performances are evaluated as the ex-
ecution time. The shorter the execution time, the higher the performance.
Then, we used the Slurm workload manager, as described in section 4.1.2, to
measure the energy consumed by each job.

Asking applications experts inside the company, we figured out that in
the HPC environment, roughly speaking, the 80% of the time systems are
configured to run with the performance frequency governor, that set the
operating frequency always at the highest frequency available. For the re-
maining 20% of use cases, the ondemand governor is used, that tries to per-
form some frequency scaling based on the workload. So we took those two
cases as reference, and we compared the application run with BDPO active
with both independent run using the two mentioned frequency governors.
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Every application is different from the others, so we didn’t expected to
be able to reach energy saving on all of them. For this reason, we have
set the constrains to be, at least, conservative on a program execution. This
means that, comparing a run with BDPO with an execution with either the
performance or the ondemand governor, the performance overhead intro-
duced by BDPO it is in an acceptable range.

7.2 HPC applications

Here is a brief presentation of the HPC application we used for our tests.

GROMACS

The GROningen MAchine for Chemical Simulations (GROMACS) [29] is a
molecular dynamics package mainly designed for simulations of proteins,
lipids and nucleic acids. It means that it is able to simulate the Newtonian
equations of motion for systems with hundreds to millions of particles. It
was originally developed in the Biophysical Chemistry department of Uni-
versity of Groningen, and is now maintained by contributors in universities
and research centers worldwide. GROMACS is one of the fastest and most
popular software packages available, and can run on both CPU-based and
GPU-based clusters. It is free, open-source software released under the GNU
Lesser General Public License.

It is primarily designed for biochemical molecules that have a lot of com-
plicated bonded interactions, but since GROMACS is known to be fast at
calculating the non bonded interactions (that usually dominate simulations)
many groups are also using it for research on non-biological systems, for ex-
ample polymers.

WRF

The Weather Research and Forecasting (WRF) Model [30] is a next-generation
mesoscale numerical weather prediction system designed for both atmospheric
research and operational forecasting needs. The model serves a wide range
of meteorological applications across scales from tens of meters to thousands
of kilometers. The WRF developing process began in the latter part of the
1990’s and was a collaborative partnership between a lot of different enti-
ties, like the National Center for Atmospheric Research, the National Oceanic
and Atmospheric Administration, the Air Force Weather Agency, the Naval
Research Laboratory, the University of Oklahoma and the Federal Aviation
Administration.

For researchers, WRF can produce simulations based on actual atmo-
spheric conditions (observations and analyses) or idealized conditions. WRF
offers operational forecasting a flexible and computationally-efficient plat-
form, while reflecting recent advances in physics, numerics, and data assim-
ilation contributed by developers from the expansive research community.
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NEMO

The Nucleus for European Modelling of the Ocean alias NEMO [31] is a
modelling framework of ocean related engines, aiming at modeling a set of
oceanic events and phenomena for research purposes. It is developed and
maintained by the NEMO European Consortium, involving France, Italy and
the United Kingdom (CNRS, CMCC, Nerc ...). It has been developed with
a modular approach, and contains several different modules with different
purpose, notably: GYRE is dedicated to simulate oceanic whirlpool; OPA is
dedicated to simulate ocean dynamics (called "the blue ocean component");
LIM simulate the phases equilibrium between ice and water around the poles
(called "the white ocean component"); TOP is dedicated to simulate the geo-
logical and chemical mechanism which have an impact on the oceans, such as
CO2 absorption (called "the green ocean component"). Those modules may
be executed separately or together.

The range of applications includes oceanographic research, operational
oceanography, seasonal forecast and (paleo)climate studies. Used by a large
community of users since 2008, a lot of projects have been carried out and
about 300 publications have been published using the framework.

7.3 Results presentation and analysis

In order to test the BDPO tool on the presented applications, we had to un-
derstand how those applications work. First, we had to compile the source
code, with the necessary libraries and compilation tool set. Second, we had to
understand how to run the application in its simplest form. Third, a launch-
ing parameter study was necessary in order to find a reasonable and plausi-
ble run configuration, in term of nodes, number of processes, and computing
parameters. Fourth, a profiling of the program with different operating fre-
quencies was needed in order to know how the application itself behaves
at runtime, and to understand if it had clear memory-bound or compute-
bound functioning. In those cases, we already know that setting the system
to respectively the minimal and the maximal operating frequency ensure an
optimal energy consumption. Fifth, if we found that the application has a
balanced behavior, the next step was to study it with almost all available op-
erating frequencies, comparing the energy consumption of each run in order
to find the best frequency to be used by BDPO. Finally, we performed a set of
runs with both performace and ondemand governor for reference and then
with BDPO active to retrieves our results. The following are results presented
by application.

7.3.1 GROMACS

The set up of GROMACS was done by means of a Bull internal framework,
mainly created for taking measures on real applications. This framework
was useful for us in order to avoid a lot of compiling and running issue. This
execution framework fixes the execution time of a run at around 5 minutes.
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Frequency 1.2 GHz 2.3 GHz
ns/day 0.968 1.776

TABLE 7.1: Performance results for GROMACS application

Then, depending of the available resources, like nodes and cores on each
node, the application performs a different workload, which fits the requested
execution time. Using this technique, the more are the available resources,
the bigger is the workload.

Having a fixed execution time prevent us to provide a comparison be-
tween execution time of different runs. However, to solve this problem, the
application gives an output parameter which expresses the overall perfor-
mance of the application for a run: ns/day. This parameter specify the num-
ber of nanoseconds of chemical reaction that the system will be able to com-
pute for a 24 hours of calculus.

We use then this parameter as index for performances. The higher the
ns/day the higher the run performance.

Experimental Results

The first test we performed on GROMACS, as explained above, was to un-
derstand if this application already had a well-known behavior. To check
this, we used the framework described before to launch GROMACS with
two different operating frequencies: the minimal and the maximal one, re-
spectively 1.2 GHz and 2.3GHz. The framework automatically balanced the
workload based also on the chosen operating frequency in order to give two
run with a duration of 5 minutes. Tests were performed on a compute node
with 20 physical cores, with only one process pinned per core (we did not
used Hyper-Threading), and TurboBoost deactivated. Results are presented
in table 7.1.

These results express the CPU-bound nature of the GROMACS applica-
tion: we can say that with almost doubled frequency, we obtain almost dou-
ble performance. This means that the "bottleneck" in the application is almost
only the computation phase, so that the quicker we compute, the quicker we
complete the execution. In this type of application, accordingly with theory
explained in chapter 3, we know that the maximal frequency is always the
best choice in term of energy consumption and performance.

IPC profile

We also analyzed the IPC profile of GROMACS: figure 7.1 shows the overall
evolution of the IPC during an execution at maximal frequency. The hori-
zontal axes represents the time, with the number of seconds passed from the
profiler start. On the vertical axes there is the IPC values. As we can see, the
IPC has the same trend during the entire duration of the application, contin-
uously oscillating between 30 to 40 IPC.
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FIGURE 7.1: GROMACS IPC profile

FIGURE 7.2: GROMACS IPC profile (zoom)

If we want to have a closer look, figure 7.2 shows with a different hori-
zontal scale what happens during the 10 seconds highlighted with a red box
in figure 7.1.

First, the second image shows a clear periodicity into the profile. This is
probably due to the characteristic iterative approach of parallel applications.
Moreover, we can also see that the IPC almost never get down below a value
around 28-30 IPC, suggesting a permanent intensive-work phase. The rela-
tively small oscillations in the profile are very likely do to message passing
between processes, but as we have seen from performance evaluation before,
they are not enough substantial to cause a memory-bound behavior.

Because of the presented study, understood that the GROMACS applica-
tion is CPU-bound and the frequency that best fit in this case is the highest
one, we didn’t apply the BDPO tool on the GROMACS application.
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7.3.2 WRF

The WRF application has many compilation options and possible usage. We
compiled WRF for Idealized Data Cases and distributed memory option (us-
ing the MPI library), and we performed our test on the 3D baroclinic waves
case1.

We then performed some preliminary tests in order to tune the parame-
ters. The objective was to have an overall execution time of 10 minutes. We
found that using two homogeneous nodes of our cluster, both of them with
20 physical cores, and setting the WRF internal domain parameters e_we,
e_sb and e_vert with a value of 200, we had an execution time of around
10 minutes.

Frequencies comparison

After first tests, we execute a set of WRF runs in order to explore the be-
havior and performances of the application with all available frequencies, as
described before, replicating the set 3 times for reproducibility purpose. In
all those experiment our tool was deactivated.

Figure 7.3 shows the results for the runs with all available frequencies.
The chart in the figure presents, for all frequencies marked on the horizon-
tal axis, the energy consumption and the execution time of the job. On the
left vertical axis there are the energy values in kilo-Joule, represented with
the green line on the chart, while on the right vertical axis are presented the
execution time values in seconds, represented with the blue line in the chart.
The values on the chart represent the median of the 3 set of run repetitions.

We can see that the best performances in terms of execution time are
reached with the highest frequencies: 2.2 GHz and 2.3 GHz. In fact, they have
almost the same value. On the other hand, best performances in terms of en-
ergy consumption are reached using one of the middle frequencies, more
precisely 1.8 GHz. This result tell us that WRF, in the studied case, is a bal-
anced application, that is to say that it isn’t a CPU-bound application neither
a memory-bound application: even if the blue line (the execution time) sug-
gest a descending trend while raising the operating frequencies, typical of
CPU-bound behavior, the energy line give us other important information.
In fact, it tell us that going from lower to middle frequencies (left half of
the chart), the application behaves like a CPU-bound one, because also the
energy consumption goes down with the execution time. Things change in
the right half of the chart, where the reduction of the execution time due to
higher frequency is no more sufficient to have an energy gain. It is very likely
that from 1.8 GHz to the maximal frequency we start to saturate the memory
bandwidth, causing a memory-bound behavior.

Those results were crucial to select the two frequencies needed to launch
BDPO. As max frequency, useful for compute phases, we selected 2.2 GHz
because it is the frequency for which we found the best execution time and
energy consumption better then the maximal one. As min frequency, to be

1For reference, the cited case is related to the code em_b_wave inside the WRF framework
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FIGURE 7.3: WRF frequency comparison

used during memory or message-passing phases, we choose 1.8 GHz because
it is the frequency with the lowest energy consumption and with a reasonable
performance degradation for the execution time.

IPC profiling

We then need to study the IPC profile of WRF in order to find out the thresh-
old to be used by BDPO. We recall that the threshold is necessary for BDPO
to discern between compute phase and memory phase. With this method-
ology, the tool will apply on the node the lower frequency for the memory
phase and the higher one for the compute phase.

The charts in figures 7.4 and 7.5 shows respectively the IPC profile of an
execution of WRF and a scaled version, a sort of zoom on ten seconds in order
to better understand the IPC trend: the run is in parallel on two computation
node, each one of them with 20 cores all set at maximum frequency. The
two IPC profiles2 are in this case overlapped, with the purpose of coherence-
checking between nodes. As always, the horizontal axis represents the time
in seconds while in the vertical axis there are the IPC values. The red and blue
lines, almost overlapped, are the IPC profiles for the two different nodes.

The general view shows three little phases, at the beginning, in the mid-
dle and at the end, where the IPC is really stable, around a value of 35 IPC.

2We recall that the BDPO profile run on each node, so that during an execution in parallel
on two machines we have two different IPC profile for one execution.
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FIGURE 7.4: WRF IPC profile

FIGURE 7.5: WRF IPC profile (zoom)

Those probably correspond to some synchronization phases between pro-
cesses. Another possibility is that they are write-on-disk phases, but we ex-
clude that because in other test, that we will describe better in section 7.3.3,
we saw that during writing phases the processors go to C-states, and the IPC
drop down to zero. Other than that, two big computation phases are present,
where we can clearly see an oscillation of IPC, actually larger than the GRO-
MACS case study, from below 50 IPC to below 10.

The zoom view shows a slice of 10 seconds, highlighted by the red box
in the first image, during the computation phase from second 80 to second
90. As we can see, the profile presents a lot of drops and raises with a very
variable IPC, that swing in a range around 10-40 IPC. The IPC profile is much
less regular than the one seen with GROMACS.

The previous described profile was obtained by taking one sample each
10 milliseconds. We than though to augment the sampling frequency in or-
der to see a better profile. Figure 7.6 shows a profile comparison between
the one already described and another one captured with the same condition
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FIGURE 7.6: WRF sampling frequency comparison

Job ID Execution time (s) Energy consumption (kJ)
3180 516 245.1
3181 517 246.5
3182 525 249.8
3183 518 246.7
3184 519 247.5

median 518 246.7

TABLE 7.2: WRF with BDPO set of run

as before but the sampling frequency, that is set to take a sample each 5 mil-
liseconds instead of 10. The comparison tell us that apparently the WRF has
a really fast variability, that did not permit to clearly see some phase alterna-
tion.

BDPO Results on WRF

We tested WRF with BDPO activated, with a threshold at 20 IPC. We recall
that we choose as low frequency 1.8 GHz and as high frequency 2.2 GHz. For
reproducibility, we performed 5 runs with BDPO active, where the obtained
results are presented in table 7.2.

We compared results with BDPO to results taken at the most used case
in nowadays clusters, with the performance frequency governor, that set
the operating frequency at the maximal available. As we can see from table
7.3, the BDPO tool is conservative for the energy consumption. On the other
hand, for the studied case it suffers a performance degradation of around
5%. This is probably due to the high variability of the application IPC, that
during the run triggers too many times an action performed by BDPO. In
this particular case our tool simply continuously try to change the operating
frequency too often, not permitting to gain energy from the change. This also
probably cause the 5% of overhead. We already described this type of issue
in section 3.5.

7.3.3 NEMO

NEMO was an interesting application to study, because it gives to the user
some features that aren’t available for other applications. First among all,



Chapter 7. Validation on real HPC applications 54

Set Execution time (s) Energy consumption (kJ)
performace 495.3 246.2

BDPO (median) 518 246.7
Comparison +4,58% +0,19%

TABLE 7.3: WRF results compared to reference

with NEMO we have the choice to set and choose how many intermediate
checkpoints are performed during the computation by the application.

A checkpoint is a moment during the execution of the application where
the program itself dump on disks all the results founded so far. This can be
really helpful in the case a job lasts for hours, days in some cases. If a failure
of the system occurs, all the work already done is lost. Instead, having some
periodical checkpoint, after a failure the program can restart from the last
checkpoint rather than restarting from scratch.

For the NEMO application we had then the possibility to tune different
run parameters, especially three: the domain size, the number of interme-
diate checkpoints and the total number of iterations. The iterations specify
the subsequent time slice of simulation to be processed: more the iterations,
more the time simulated. We found a reasonable combination of parameters,
to be run on 6 homogeneous computing nodes: with a domain size of 60, we
set 2 intermediate checkpoints for a total of 300 iterations. The six mentioned
nodes were all homogeneous, with 24 physical cores on each node.

Frequencies comparison

As we did for all studies applications, we ran NEMO with the described con-
figuration, on six nodes, using all available frequencies. Figure 7.7 present a
chart with results obtained running NEMO on each operating frequency.

As for the WRF case, this chart is organized with all frequencies on the
horizontal axis, the energy values on the left vertical axis and the execution
time values on the right vertical axis. As before, the energy line is colored in
green while the execution time is the blue line. Unfortunately, we have one
probable outlier at 1.3 GHz, that seems to mark a considerable drop in the
consumed energy for a job duration that is way higher than all the others.
We added then a dotted line in order to highlight the most probable trend of
the two lines.

This chart help us to understand the NEMO functioning. As we can see,
going from lower to higher frequencies, both the lines seems to have a linear
behavior, even if the execution time is always decreasing while the consumed
energy is almost always increasing. For a compute-bound application, as
explained in chapter 3, we would expect a lower energy consumption for
higher frequency because the job is completed faster. This is not the case
for NEMO. By the way, for a memory-bound application we would expect
an execution time almost invariant on different used frequency. Also this is
not the case, even if is closer than the compute-bound case. We reach then
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FIGURE 7.7: NEMO frequency comparison

Frequency Execution time (s) Energy consumption (kJ)
2.3 GHz 504 675.5
2.0 GHz 510 643.7
1.5 GHz 541 613.3
1.2 GHz 573 608.1

TABLE 7.4: NEMO remarkable frequency raw results

the conclusion that the NEMO application is a balanced application, with a
tendency to memory-bound behavior.

From the previous chart, moreover, we selected also the frequency to be
used by BDPO as lower and upper frequency. Indeed, it is noticeable that
for 1.5 GHz, the energy gain is almost maximal with a reasonable execution
time loss, while, for 2.0 GHz, there is a substantial energy saving, around
5%, with less than 1% performance degradation. Table 7.4 shows energy and
time values for cited frequencies, together with maximal and minimal ones.

IPC profile

We then studied the NEMO IPC profile in order to better understand its run-
time behavior and choose an appropriate threshold to be set in the BDPO tool
configuration. Figure 7.8 presents the IPC line for one NEMO run with the
already specified configuration, with the BDPO profiler polling period set at
10 milliseconds.
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FIGURE 7.8: NEMO IPC profile

As before, the chart shows the IPC profile on one compute node, while
for this type of job, 6 different nodes where involved in the computation.
One important thing to say before analyzing this profile is that the NEMO
behavior was different on each node. In other words, the NEMO application
has an unbalanced workload distribution. This functioning is probably due
to the nature of the computation: the module we choose to work with, in fact,
tries to simulate an oceanic whirlpool. The mathematical equations involved
in the simulation are then different in terms of complexity depending on the
domain region. Surely, different processes are in charge of the computation
of different regions. This means that it is very likely that some nodes have
to solve complex computations than others. We saw this difference mainly
from the IPC values, that were higher on some nodes on lower for others.

Apart from the latter fact, all the 6 different IPC profiles were perfectly
synchronized on the computing and checkpoints phases. This IPC profile, in
fact, clearly shows some NEMO characteristics: we can easily distinguish be-
tween compute phases and checkpoints. The computing phases are defined
by a really variable IPC, while, as it is possible to see from the chart, at the
beginning of checkpoints the IPC drop down close to zero. Then, following
a step pattern, the IPC slowly raise, till a new computing phase begin.

Why the IPC drops down to zero and then slowly returns up? Because of
C-states and process synchronization. We recall that a checkpoint is a heavy
data write on disks. Processors, in general, are not responsible of I/O op-
eration, so during a checkpoint, they enter deep idle states, accordingly to
section 3.3.2. We recall that with our setup, described in section 4.2.1, we
activated idle states, but preventing the system to enter deeper C-states then
C1. During C1 state, no instructions are fetched by the execution pipeline, so
we found an IPC really close to zero. One important consequence of C-states
is that they are really energy safe, performing clock and power gating. When
a core goes to C-state, it consume surely less than when it is operating at the
minimal frequency. This means that it is not possible to gain energy with
DVFS when the core goes into C-states.

Each process is in charge of its part of I/O operation, so that when it
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FIGURE 7.9: NEMO IPC profile (zoom)

finishes, it starts to synchronize with the others, with an MPI active wait. This
causes the raising pattern during the checkpoint. At the end of the execution,
a final write on disks is done.

Figure 7.9 represents a zoomed views of the previous chart, more pre-
cisely a 5 seconds slice highlighted by the red box during the second compute
phase. As we can see form the chart in the figure, it is clearly recognizable a
periodic patter in the IPC profile. This is due by the previous described iter-
ative approach of NEMO. The IPC is not stable, that is to say that there are
a lot of variations, with repeated peaks, followed by drops due to MPI com-
munications and memory accesses; however, it is a much more stable profile
then the one studied for the WRF application.

We then choose an IPC threshold of 12.5, in order to avoid the very fast
and little changes below 10 IPC.

BDPO results with NEMO

In order to test BDPO with the NEMO application and to determine whether
its energy consumption could be decreased, we ran NEMO with low fre-
quency set at 1.5 GHz and high frequency at 2.0 GHz, polling period set at
10 milliseconds and with the NEMO usual configuration.

In order to be able to reproduce our measures, we performed 31 runs with
all our possible NEMO use cases: the first is the one with BDPO activated,
the second was with the frequency governor set to performance, the third
was with ondemand frequency governor, the fourth with the userspace
governor and a fixed frequency at 1.5 GHz and the last one with the same
governor but a fixed frequency to 2.0 GHz. The last two configurations were
necessary in order to understand the quality of BDPO mechanics.

Once completed all runs, we computed the average energy consumption
and execution time for each groups of NEMO execution. Then, we compared
the performances obtained with BDPO with the ones obtained with the two
previously mentioned reference contexts. The results are sum up in tables 7.5
and 7.6.
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Raw results Execution time (s) Energy consumption (kJ)
NEMO with BDPO 521 632.4

performance governor 516 689.3
ondemand governor 519 713.9

1.5 GHz 539 613.9
2.0 GHz 510 643.4

TABLE 7.5: NEMO application raw results

BDPO relative results Execution time (s) Energy consumption (kJ)
performance governor + 1.00% - 8.25%
ondemand governor + 0.42% - 11.42%

1.5 GHz - 3.32% + 3.01%
2.0 GHz + 2.17% - 1.70%

TABLE 7.6: NEMO application relative results

Table 7.5 shows the raw values for the BDPO case and all the references.
Table 7.6 presents instead the percentage relations between the results ob-
tained with BDPO (the first line of the first table) with the other cases. For
example, looking at the first line of table 7.6 that is the one referring to the
performance governor, the most used one in the HPC field, we can see that
the test performed with our tool active reaches on average substantial energy
saving, around 8%, degrading the performances of only 1%.

Even higher is the save of energy with respect the ondemand governor,
where BDPO saves more than the 11% of energy facing a performance degra-
dation close to zero.

Comparing the runtime frequency scaling of BDPO with the two fixed-
frequency cases, we can see that using all the time the lower frequency of
1.5 GHz we save 3% more energy than BDPO but having around 3% more
of performance degradation (this result is in line with the memory-bound
behavior we exploited before in this chapter). Using, on the other hand, all
the time the higher frequency the NEMO application is 2% faster than BDPO
but it use almost 2% more energy.

As a result, for applications such as NEMO, it seems really possible to
optimize the job energy consumption thanks to BDPO.
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8 Conclusions and future work

We started this thesis by taking into account the problem of the increasing en-
ergy consumption on modern supercomputers. Today’s HPC systems have
reached the computing power of 100 Peta-Flops, consuming around 15 mega-
watts. Research centers, system integrators, and chip makers are driving the
effort to hit the Exascale goal in the upcoming years, that roughly means to
build a supercomputer with ten times more computing power than modern
machines, turning over the 1 Exa-Flops. This also means, by estimation, to
consume ten times more energy. Of course, it is not possible for cost and en-
ergy supply reason to have a supercomputer that consumes 150 mega-watts.
In order to build a sustainable system, we would expect to budget around
20-30 mega-watts of power consumption. This simple example clarifies the
need of constant research on energy consumption of HPC systems, both in
term of hardware and software consumption.

8.1 Objectives and findings

We then come with the idea of a software solution that aims to dynamically
reduce the power consumption of a parallel job, at runtime. Our initial ob-
jectives were then to:

• Reach real HPC application optimization: we did not want to test our
tool only on well-known benchmarks where we precisely know what to
expect in term of application behavior, but we targeted real cases used
in nowadays market by HPC customers, in realistic operating condi-
tions.

• Optimize applications without change of their source code: this means
to have a non-intrusive approach, so that the system must be able to
optimize the energy consumption of any job submitted on a cluster,
without depending on the actual implementation of the job applica-
tion. This also allows optimizing the consumption on already existing
applications, without asking programmers to modify the already writ-
ten code.

• Do not affect application performances: we wanted to create a solution
that causes no degradation, or at least as less as possible and the closest
to zero. This point is very important in the framework of HPC systems,
while they are built to reach the highest performances possibles.

• Have no information on target application: eventually, we want that
our system will be able to be completely automatic. In other words,
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no profiling of the target and tool parameters tuning are necessary to
improve the energy consumption of the machine.

With all those objectives in mind, we designed the Bull Dynamic Power
Optimizer (BDPO), a system that is able to compute some real-time metrics
to understand the compute node behavior. In particular, as main metric we
used the Instructions Per Cycle (IPC), that is a per-core metric aiming to rep-
resent the workload on the core. Based on that, BDPO takes some decisions
figuring out the phase in which the system is going in or is coming from. To
every decision corresponds an action, that is to apply the DVFS technique on
all processing cores on the machine CPU: if the application is in a memory
phase or message passing phase, that usually correspond to a low IPC value,
BDPO puts on the node a low operating frequency, in order to consume less
energy. On the contrary, if the program is entering a computing phase with a
high IPC, it sets the system operating frequency to a high frequency permit-
ting to save energy thanks to a faster execution.

After the BDPO development process, we tested it on some real HPC ap-
plications. We took into account three different applications: GROMACS,
WRF, and NEMO. Those three differs by the application domain, models in-
volved, architectures and programming languages. We also had different
results for each one of them: for GROMACS we find out during its study
that it is a CPU-bound application and the frequency that best fit in this case
is the highest available operating frequency. We then didn’t apply the BDPO
tool on the GROMACS application. We did it, instead, on the other two HPC
programs. With WRF we find out a limitation of the IPC metric: in this case,
the too high variability of the metric did not allow to reach an energy gain,
while we introduced a performance overhead of less than 5%. For NEMO,
instead, we reached to gain from 8% to 11% of energy consumption with re-
spect to the most used references cases, having a maximum performance loss
of 1%.

8.2 Future work

All those results are really important: first, we validate our software solu-
tion on real HPC application, demonstrating that is actually possible to gain
energy using our approach. We saw that in the worst case it is possible to
introduce some performance loss, but they are still reasonable, under the 5%.
Moreover, we learned a lot from the test we performed: we find out that an
important next step is to add more metrics to our set. As we saw from the
WRF case, the IPC by itself could be insufficient in some case. A deep study
has to be performed on memory metrics, I/O metrics and on power/energy
metrics in order to be able to better understand the application behavior at
runtime.

Furthermore, another important aspect to be enhanced into BDPO is a
more intelligent decision maker, with the possibility to take a decision based
on the metric history rather than the last value retrieved. On one hand this
will also help to do not take some unnecessary actions, drastically reducing
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the BDPO overhead; but on the other hand, a too complex logic could intro-
duce more weight in the trigger mechanism, affecting performances.

Based on our description, in order to test BDPO on real applications we
had to perform some studies and profiling them, that is in contrast with the
last objective we presented early in this chapter. To be able to work, BDPO
needs at least three parameters, that are the values of the high and low fre-
quency to be used for DVFS, and the metric threshold for the trigger mech-
anism. So far, those three parameters have to be given and are fixed at the
BDPO start. Future development is necessary to reach the point where BDPO
will auto tune those parameters values at runtime.

In conclusion, in this thesis we show that in the context of real HPC ap-
plications, relying on real-time metrics monitoring and the DVFS technology,
without modifying in any way the target application, we reached up to 11%
the energy savings with less than 1% performance loss.
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