
POLITECNICO DI TORINO

I Facoltà di Ingegneria
Corso di Laurea Magistrale in Ingegneria Edile

Tesi di Laurea Magistrale

Implementation of BIM methodology for district
data visualization

Ottobre 2017

Relatore:
prof.ssa Anna Osello

Candidato:
Fabrizio Provera

Abstract

Recent years have seen an increasing number of technologies and spatial tools for enabling
better decision-making in the urban environment. They had a wide diffusion because of the
need for municipalities to be planned more efficiently, to accommodate growing populations
while mitigating urban sprawl, making in this way a more advanced human and environment
oriented planning.
At the same time the AEC has experienced a radical transformation, lead by the technological
innovations brought by the raise and development of the Building Information Modeling (BIM)
and the Geographic Information System (GIS) technologies. Both have imported in the world
of architectural and territorial design powerful tools able to give great data richness to the
projects. In this innovative context, this dissertation intend to find a connection between these
two worlds, which are actually quite unable to communicate and share their immense fortune of
knowledges. More specifically, it has been developed a methodology able to export geometries
and informations from a BIM model, to convert them into a GIS compatible format and finally
create a dashboard tool to collect these data, focusing on the definition of standardised
procedures and on the intent of pursuing an "open" and "integrated" approach, by the use of
open source specifications and softwares.

I

TABLE OF CONTENTS

1. Introduction 1
 1.1. BIM/GIS interoperability 2
 1.2. Virtual globes 4

2. Project's description and objectives 7
 2.1. Project description 8
 2.1.1. Description 8
 2.1.2. Case buildings 11
 2.1.3. State of the art 13
 2.2. Proposed objectives 14
 2.2.1. Theoretical approach: open BIM and integrated BIM 14
 2.2.2. Objectives' definition 22
 2.2.3. Attended results 26

3. Proposed methodology 29
 3.1. General description 30
 3.2. Planning phase 32
 3.3. BIM phase 37
 3.3.1. Preliminary operations 37
 3.3.2. RVT - gbXML exportation 45
 3.3.3. RVT - IFC exportation 63
 3.3.4. Connections between Revit model and exchange models

 87
 3.4. DIM phase 93
 3.4.1. Visualization on Cesium 93
 3.4.2. Conversion to glTF format 104
 3.4.3. Importation and visualization 108

4. Results analysis 113
 4.1. Visualization 114
 4.1.1. Objects and attributes representation from gbXML and

IFC models 114
 4.1.2. Comparison and best case choice 118
 4.2. Methodology 121

5. Conclusions 125
 5.1. Final assessments 126
 5.2. Future developments 127

ANNEXES 139
A. gbXML geometries' representation 140

II

III

IMAGES' INDEX

Fig. 2–1 - Open BIM logo 14
Fig. 2–2 - BIM Capability Stages 17
Fig. 2–3 - NBIMS I-CMM Chart 18
Fig. 2–4 - BIM Maturity levels 20
Fig. 2–5 - Bew - Richard BIM Maturity Model diagram 22
Fig. 2–6 - Project's structure 23
Fig. 2–7 - Expected objectives 25
Fig. 2–8 - Attended LoD1 visualization 26
Fig. 2–9 - Attended LoD2 visualization 26
Fig. 2–10 - Attended LoD3 visualization (step A on left, step B on

right) 26
Fig. 3–1 - Diagram of the procedure 31
Fig. 3–2 - Sensors' family editing 37
Fig. 3–3 - Project template file 38
Fig. 3–4 - Georeferencing (step 1) 39
Fig. 3–5 - Georeferencing (step 2) 40
Fig. 3–6 - Georeferencing (step 3) 41
Fig. 3–7 - Georeferencing (step 4) 42
Fig. 3–8 - Real north rotation (step 1) 42
Fig. 3–9 - Real north rotation (step 2) 43
Fig. 3–10 - Real north rotation (step 3) 43
Fig. 3–11 - Shared parameters file 44
Fig. 3–12 - gbXML logo 45
Fig. 3–13 - General structure of the gbXML model 48
Fig. 3–14 - Campus element definition 51
Fig. 3–15 - Construction element, Layer element and Material ele-

ment definition 53
Fig. 3–17 - Section view and gbXML 3D view of the Sensor room 56
Fig. 3–16 - Creation of the Sensor room's container 56
Fig. 3–18 - Areas and volumes computing setting window 57
Fig. 3–19 - Energy settings window 58
Fig. 3–20 - gbXML export window (Room detail) 60
Fig. 3–21 - gbXML export window (Analytical surfaces detail) 61
Fig. 3–22 - XML editor interface view 62
Fig. 3–23 - IFC logo 63
Fig. 3–24 - EXPRESS-G representation of Entity Datatype 66
Fig. 3–25 - EXPRESS-G representation of Enumeration Datatype 66
Fig. 3–26 - EXPRESS-G representation of Defined Datatype 66
Fig. 3–27 - EXPRESS-G representation of Select Datatype 66
Fig. 3–28 - EXPRESS-G representation of Simple Datatype 66
Fig. 3–30 - EXPRESS-G representation of Subtyping 68
Fig. 3–29 - EXPRESS-G representation of Attribute 68
Fig. 3–32 - Objects, products and elements definition 69
Fig. 3–31 - IfcRoot and fundamental classes 69
Fig. 3–33 - Mandatory and optional (in grey) levels of the spatial

structure 70
Fig. 3–34 - Definition of IfcObjectPlacement 72
Fig. 3–35 - Definition of IfcProductRepresentation 73

IV

Fig. 3–36 - Definition of IfcProperty 74
Fig. 3–37 - Properties attachment 76
Fig. 3–38 - Revit's browser view of the 3D IFC-dedicated view 77
Fig. 3–39 - Revit's browser view of the list of schedules 79
Fig. 3–41 - IFC mapping file 80
Fig. 3–40 - IFC Export Classes dialog panel 80
Fig. 3–42 - IFC Export main panel 81
Fig. 3–43 - IFC export-setup panel, tab 1 82
Fig. 3–44 - IFC export-setup panel, tab 2 83
Fig. 3–45 - IFC export-setup panel, tab 3 83
Fig. 3–46 - IFC export-assignments panel 84
Fig. 3–47 - BIMVision interface 85
Fig. 3–48 - IfcQuickBrowser interface 86
Fig. 3–49 - IFC-GUID Base-64 character encoding mapping 88
Fig. 3–50 - Revit's Select Elements by ID window 89
Fig. 3–51 - Revit's Element ID checking using the Select Elements by

ID command 90
Fig. 3–52 - IfcGUID checking in the Revit element's property 90
Fig. 3–53 - IfcGUID and Element ID checking on BIMVision 91
Fig. 3–54 - Overview of the communication between Revit model and

exchange models 92
Fig. 3–55 - DIM environment definition 93
Fig. 3–56 - Cesium logo 93
Fig. 3–59 - Subdivision of the scene in tiles and child tiles 95
Fig. 3–58 - Tiles' tree structure 95
Fig. 3–57 - 3DTiles logo.png 95
Fig. 3–60 - Tiles' representation on Cesium 96
Fig. 3–61 - JSON's main entities definition 98
Fig. 3–62 - 3DTiles' files organization 99
Fig. 3–63 - glTF logo 99
Fig. 3–64 - glTF asset's composition 101
Fig. 3–65 - glTF asset's structure 102
Fig. 3–66 - glTF geometries' representation 103
Fig. 3–67 - Overall conversion process schema 104
Fig. 3–68 - Folder contating the tileset.json and the b3dm files

 108
Fig. 3–69 - Dashboard interface 110
Fig. 3–70 - Dashboard visualization from smartphone 111
Fig. 4–1 - LoD visualization of the gbXML based model 114
Fig. 4–2 - gbXML visualization issues 115
Fig. 4–3 - LoD visualization of the IFC based model 115
Fig. 4–4 - IFC visualization issues 117
Fig. 4–5 - Nomenclature decoding 122

V

TABLES' INDEX

Tab. 2–1 - "By platform" and "Open" approaches description 14
Tab. 2–2 - BIM Capability Stages description 16
Tab. 2–3 - BIMMI levels description 19
Tab. 2–4 - Bew - Richard's levels description 21
Tab. 3–1 - LoD definition 33
Tab. 3–2 - Case studies' comparison 36
Tab. 3–3 - KML and glTF comparison 100

VI

1

1. Introduction

2

 1.1. BIM/GIS interoperability

The integration of data through geographic information system (GIS)-based
building informationmodeling (BIM) has recently emerged as an important
area of research. Several studies have investigated the benefits of the effective
integration of BIM and GIS.
This process generally involves the extraction and transformation of information
required by each stakeholder in the relevant project. GIS and BIM are similar
in that they both model spatial information — the former is used for outdoor
modeling and the latter for indoor modeling — and have common use cases,
such as location-based municipal facilities information queries and management.
In order to realize use cases based on BIM and GIS, effective interoperability
between GIS and BIM should be supported by an appropriate platform. [1]
The integration of BIM and GIS can offer substantial benefits to manage the
planning process during the design and construction phases. While BIM systems
focus on developing objects with the maximum level of detail in geometry,
GIS are applied to analyze the objects, which already exist in the physical
environment, in a most abstract way. The major difficulty in integrating BIM and
GIS systems reflects their incompatibility such as the modeling environment and
reference system (e.g., GIS data are georeferenced and usually two dimensional
while the BIM data are three-dimensional objects located within local coordinate
systems). Although these two technologies have evolved from distinctly
different beginnings, both can benefit from each other if they could exchange
data effectively. As BIM technology is mainly centered on indoor environments,
GIS can extend the benefits and applicability of existing building models to the
outdoor environment.
However, it is not an easy task to transfer data from BIM to GIS or vice versa
without consideration of data format and meaning. Current state-of-the-art BIM
(or GIS) tools enable the data exchange between the systems by using a common
data format. Therefore, the users are able to access data from a different software
program and exchange data within the BIM (or GIS) domain. However, it
requires the user to have a thorough understanding of both systems and their
functionalities. The integration tools and current standards lack the ability to
help the user to convey meaning, which is interpretable by both construction
project participants as well as BIM and GIS tools. In order to fully integrate GIS
and BIM, there is a need to provide interoperability at the semantic level.
The current approach to exchange and share building data between BIM
applications is based on the exchange of industry foundation classes (IFC)
files. While this approach was, and still remains, an effective way to hold and
exchange data among various participants in a building, construction, or facility

3

management project, it does not provide semantic-based representation of
knowledge for another domain (e.g., geospatial domain), and thus limits the
capability of inferring additional knowledge. [2]

4

 1.2. Virtual globes

The virtual globes can be categorized into two groups: the first, running on
desktop devices and the second, running on web browsers, evolved in the last few
years, thus the modern ones. Regarding the modern virtual globes, the two most
outstanding examples in open source domain are NASA Web World Wind and
Cesium. These two leverage the latest technologies for Web: JavaScript, WebGL
and HTML5. They can be used by non-experts thanks to their API (Application
Programming Interface) and customized conveniently to meet the needs of case
studies. This means that almost any computer programmer without advanced
programming skills can create their own virtual globe application and share it
with everyone via Web. Moreover, they can run on any device (desktop or mobile)
and major operating systems, without having to install additional software, such
as plugins or extensions. As a result, modern and open source virtual globe APIs
increase the opportunity to create three-dimensional maps and to let users
interact with them. [6]
They can be divided also in antoher way: Closed source platforms are complete
software packages targeted at end users who simply need to add data to create
visualisation applications for particular areas or themes. Users often have to pay
for closed source systems, although free versions with limited functionality are
sometimes available. For closed source systems, the ownership of the software
stays with the producer of the product which means the user cannot sell,
distribute, copy and/or change the content of the software. As the owner has
complete control, it puts the user at risk if for instance the owner decides to
suddenly decommission the product. Open source platforms are often not as
straight forward to use, so tend to be targeted at experienced users/developers
who can support customisation (via coding). Open source platforms can be
updated more quickly than closed source platforms when the user community
gets enthusiastic. They may be more reliable for long term projects due to the
broader base of developers which reduces the likelihood that they will disappear
if the original creator stops working on them. [35]
These systems are revolutionizing earth observation data access and integration
in two primary ways:

• Democratization of access. The popularity of the openly accessible
virtual globes extends far beyond the traditional professional communities
engaged in geospatial science and commerce. The number of people
interactively viewing and extracting content from earth observations
such as satellite imagery is on a rapid upward swing as a result of virtual
globes. For the technical users virtual globes have vastly reduced the
overhead associated with accessing global archives of satellite imagery by

5

eliminating purchase costs and effort required to stage and manage large
image holdings.

• Democratization of content contribution. Users are able to make
links to their own earth observation data via web mapping services and
insert site specific content (such as descriptions and photographs) which
can be openly accessed by the broader community. This has made it
possible to integrate earth observation data from diverse sources, enable
increased productivity for individual projects and studies. Virtual globes
are presently used extensively in areas including education, research/
collaboration, and disaster response. The current wealth of technologies,
expanding bandwidth, changing user expectations, and data available via
the geospatial web are driving the rapid development of virtual globes.
This paper presents a brief overview of virtual globes over the last decade,
reviews the current capabilities and applications for virtual globes, and
envisions what may be anticipated in the coming years. [7]

As cities become more densely populated there is a need for more advanced
planning tools to assist decision-makers, planners and communities to collectively
plan for more sustainable, productive and resilient cities. The recent emergence
of the concept of geodesign, which embraces the intersection of geography and
design, has seen the development of a new suite of planning support tools to aid
the design and planning of cities, particularly at the scale of precincts. [3]

6

7

2. Project's
description and

objectives

8

 2.1. Project description

 2.1.1. Description

Before introducing the specific objectives and targets of the present research, it's
fundamental to describe the context in which it will be inserted and the generic
aspect involved.

Referring to the previous chapter, this project is intended to pursue the process
of integration between the BIM and the GIS universes, bringing to the same
platform data and geometries from these two IT environments.
This process involves a sequence of conversion and transferring procedures
intended to maintain and finally show informations and scenes from projects
previously designed on sectoral and non communicating BIM and GIS softwares.
This project wants to focus on the BIM side, where the main obstacle to face
is the impossibility of using directly the native format of BIM softwares (as RVT
is for Revit) as exchange format: this means we have to find alternative ways
in order to export data not only to a BIM exclusive use, but for universal and
generic end practices.
Fortunately, the BIM softwares, like Revit, allows different exportation possibilities,
some maybe focused only on specific use (like gbXML for energy analysis), other
more suitable for general purposes (like IFC), and this give us the possibility of
finding a indirect solution with the available means.

As mentioned in the previous chapter, virtual globes are expanding very fast in the
daily use and they are getting more and more applications. One of these is surely
the implementation with realistic 3D building models, intended to represents
whole cities around the world for different purposes. Since today, this use of
the virtual globes has shown less or more elaborated buildings' representations,
where several systems of modeling and photogrammetry have given in last years
successful results in terms of buildings' representation.
The second aspect which characterizes the late development of the virtual
globes' market is the visualization of geographic and demographic data, as true
GIS softwares, where with, interactive systems of stylization and visualization, we
are able to benefit from information from different disciplines, directly applied
to virtual objects and environments. Over the past several years virtual globes
have revolutionizing access to earth observation data and integration. They have
lowered the start-up threshold for access to global satellite data and opened up
new possibilities for collaborative research and product generation [7].

BIM/GIS interoperability

Virtual globe as means
of dissemination

9

In this optic, the new frontier of virtual globes technologies, which this project
intends to reach, is the implementation on a web based virtual globe of
informations from a BIM based modeling made on district scale, for the creation
of a DIM interface, described as in "1.1. BIM/GIS interoperability".
These intents have been faced in two projects, described briefly below, that
inspired the idea of this essay.

 2.1.1.1. DIMMER and EeB inheritance

 2.1.1.1.1. DIMMER project

This research takes its origins with the development of the DIMMER ("District
Information Modelling and Management for Energy Reduction") project, a three
years program started on 1 October 2013 which has involved several companies
from all around Europe.
DIMMER was a project intended "to integrate BIM and district level 3D models
with real-time data from sensors and user feedback to analyse and correlate
buildings utilization and provide real-time feedback about energy-related
behaviours" [44].
This project has involved two cities' districts, in Turin and Manchester, considering
a total of 15 buildings (7 in Turin, 9 in Manchester), both public (university
campuses, schools) and private, of different period of construction.
This project aimed to unlock potentiality of BIM technologies, applying them
to a district level (DIM) and combining them with the ICT (Information and
Communication Technologies) on a GIS interface. In this project, progresses in
real-time monitoring and BIM have been combined to create a District Information
Model and Management system, a simulation framework for monitoring district
level energy usage, aimed at a consistent reduction in terms of emissions and
consumptions and at enabling a more efficient energy distribution policies.
Informations, collected from sensors installed in the buildings and along the
distribution networks and from users' personal devices, were gathered in a
dedicated middleware and then represented on end-user applications.

An important role for this project was in fact dedicated to the development of
a dashboard for dynamic monitoring and management of energy consumption,
visualising heating data in case of Turin pilot and district heating, HVAC and
electricity data for Manchester pilot.
Description of the major functionalities implemented into the Dashboard [8]:

a) Geospatial capabilities and functionality for visualisation and for
analysis of geospatial data patterns;

District Information
Modeling

Description

Dashboard

10

b) Authentication and user profiling, possibility for definition of specific
user with associated roles;

c) Visualisation of data through 2D and 3D maps;

d) Analysis of the information related to the pilot buildings and district
as the whole (construction period, volume, heating system, temperature,
floors number, address, name of building, building category);

e) Energy consumption analysis through tables and charts, e.g. energy
consumption, energy power, energy indicators such as thermal behaviour
index;

f) The dashboard is accessible through a specific user profile, depending
on the target user; each target user can access specific data/information,
which are not available for everyone.

In particular, for what involved the transmission of the BIM models for the DIM
visualization, the strategy applied was that of sharing a gbXML model of the
building. This choice had many advantages, including:

• gbXML model had to be in any way considered for the energy analysis
tools. So we could use the same model both for simulation both for GIS
visualization;

• gbXML, in terms of visualization, is very light, as it is composed only by
analytical surfaces.

However, many issues, reported in chapter "4. Results analysis", dug up in terms
of manageability of this format for the use it was intended for, and so we had to
find alternatives.

 2.1.1.1.2. EeB project

This project was born as a continuation of the DIMMER project, intended to
apply the same strategy to the city of Settimo Torinese, near Turin.
The EEB (Zero Energy Buildings in Smart Urban Districts) is intended "to pursue
the increase the energy efficiency in buildings, and then of urban districts,
through the pervasive use of technologies for the real-time monitoring and
control of environmental parameters and of the energy production/consumption

by means of smart devices" [45].

gbXML as format for
simulations and GIS 3D
representation

11

 2.1.2. Case buildings

Since the present research is intended to pursue this interoperability between
BIM and GIS technologies, it was useful to apply it to an active project like
EeB, where it could be possible to have access to sensors data and to make a
contribution to its development.
For this reason,we have considered the three buildings involved in the project,
that are presented below.

12

13

 2.1.3. State of the art

Referring to the EeB project, which contains the most recent step undertaken in
the direction which this project is intended to, we can assess the actual state of
the art, analysing the used procedures and the results obtained.

14

 2.2. Proposed objectives

 2.2.1. Theoretical approach: open BIM
and integrated BIM

 2.2.1.1. Open BIM

The first target of the project is to make it fit with the Open BIM program, in the
light of the numerous advantages this will add.

Open BIM is a marketing campaign started by two important software houses
like Tekla and Graphisoft, aimed at encouraging the promotion and the coordinate
development of the Open BIM Certification, which is a technical certification
system intended to help AEC software houses to improve, test and certify that
the data produced by their softwares communicate correctly with the other
Open BIM applications.

But the most important objective of the Open BIM program is the definition
of a "open" design approach, which separates clearly from the previous
"by platform", in particular for its benefits in terms of collaboration. The "by
platform" collaboration is based on different application from the same software
developer, while the "open" approach allows a collaboration based on different
software solutions.

Tab. 2–1 - "By platform" and "Open" approaches description

BY PLATFORM
Approach (old)

OPEN
approach (new)

NO data conversion

Limited external data usage

Compatibility issues

Transparent workflow

System indipendent

Overall BIM compatibility

In other words, Open BIM defines a transparent and open workflow, allowing
the several stakeholders involved during all the building's lifecycle to collaborate
independently of the softwares used, and at the same time it defines a common
language, based on convertible and shared data and easily applicable to large
scale projects.

Open BIM Certification

Fig. 2–1 - Open BIM
logo

Open BIM approach

15

 2.2.1.2. Integrated BIM

The second main intent of this project is to develop a project's strategy which
could be assimilated within the concept of integrated BIM.
The definition of integrated BIM derives from the debates about the definition of
capability and maturity level of the BIM, started in the early '00s when this new
technology entered the world of constructions.

In spite of an increasing diffusion of the BIM technologies and the abundance of
technical discussions and literature professing the capability of BIM methodologies
to increase productivity and efficiency, BIM has not found yet the availability of
metrics and tools to measure this benefits. "This mismatch between expected
BIM deliverables and unforeseen BIM requirements increases the risks, costs
and difficulties associated with BIM implementation, allows the proliferation of
‘BIM wash’ – falsely professing the ability to deliver BIM services or products -
and prevents industry players from achieving their BIM potential" [9].
One of the greatest obstacles for the global adoption of the BIM technologies
is the lack of standard productivity data which could estimate BIM's financial
sustainability. This involve us in the "chicken - egg" causality dilemma: BIM
should be practiced for its economical benefits, but without knowing exactly
these benefits we are reluctant to adopt it [13].
There is, in short, the need of a BIM performance metrics, which could help
teams and organizations to evaluate their own BIM competencies or compare
them with an industry benchmark.

The first solution to this set of problems is to define a BIM framework or, in other
words, to organize the domain knowledge around the BIM technology.
This operation will allow practitioners and educators to gain advantage by
a structured subdivision of the domain knowledge, which can promote
understanding and technical development by presetting data and arguments in
ordered sections [11].
Succar [9] indicates five components which defines the BIM domain and enable
accurate BIM performance measurement:

• BIM Capability stages;

• BIM Maturity levels;

• BIM Competency sets;

• BIM Organisational scales;

• BIM Granularity levels.

Focusing on the two first components, we can initially give a proper definition of

BIM Framework

16

"capability" and "maturity".
The capability can be defined as "the basic ability to perform a task or deliver a
BIM service" [9] of a team or organization which works using BIM services. The
capability can be described through three BIM Capability Stages, that defines
the minimum BIM requirements that those teams or organizations must reach.
These stages, as represented in Fig. 2–2, lead an evolution from a pre - BIM, the
status point before the BIM implementation, and the post - BIM environment, a
non well defined ending point representing the final evolving target of employing
virtually integrated tools and concepts.
These three stages can be described as it follows.

Tab. 2–2 - BIM Capability Stages description

BIM Stage 1

Object - based

modeling

• Object-based 3D parametric software tool

• Single-disciplinary models

• No modifiable parametric attributes

• Data exchanges between project
stakeholders are unidirectional and
communications continue to be synchronous
and disjointed

BIM Stage 2

Model - based
collaboration

• Players actively collaborate with other
disciplinary players

• Communications between BIM players
continue to be asynchronous

• Higher detail construction models move
forward and replace (partially or fully) lower-
detail design models

BIM Stage 3

Network - based
integration

• Semantically-rich integrated models

• Integration can be achieved through model
server technologies

• Models become interdisciplinary nD
models

• Synchronous interchange of model and
document-based data

BIM capability

17

Between each of these stages we can identify four theoretical steps (step A,
step B, step C and step D) which indicate the incremental working from a stage
to another one, representing so the wide interval between the different stages
along the continuum represent in the image below.

Fig. 2–2 - BIM Capability Stages

The maturity refers instead to "the quality, repeatability and degree of excellence
within a BIM Capability" [9]. In other words, BIM Maturity is the ability to excel in
performing a task or delivering a BIM service/ product.
For the moment we can specify that, in general, the progression from a lower to
a more advanced maturity level is characterised by the following aspects:

• Better control through performance targets and effective results;

• Better predictability by lowering in terms of cost, performance and
competency variables;

• Greater effectiveness in reaching the defined goals, allowing to set
new more ambitious ones.

At this point we bump into the problem of measuring these qualities and abilities
which characterise the BIM maturity and defining maturity levels.
To address this issue, since BIM is included in the more generic IT universe, it has
been analysed in its maturity aspects using Maturity Models and Tools developed
for generic softwares and application fields but applicable to BIM and the AEC
industry, as a basis for the development of BIM specific Maturity Model.
These models have been analysed in their suitability for the BIM application and
for the definition of the different level of maturity and finally the BIM Maturity
index.

The first effort to create a BIM specific performance model is attributed to the
U.S National Building Information Modeling Standard (NBIMS) in 2007 with the
name of Interactive Capability Maturity Model (I-CMM).
This model consists of 10 levels of maturity, each characterised by 11 parameters.

BIM maturity

BIM Performance meas-
urement

Interactive Capability
Maturity Model

18

Fig. 2–3 - NBIMS I-CMM Chart

However, in its current form, the I-CMM tool suffer from structural limitations
that may restrict its usefulness and usability.

In 2010, Succar developed his own Building Information Modelling Maturity Index
(BIMMI), characterized by five maturity levels, whose names took reference from
the other generic IT Maturity Models mentioned above. These levels are listed in
the chart below.

Building Information
Modelling Maturity
Index

19

Tab. 2–3 - BIMMI levels description

level A:
INITIAL

• Absence of an overall strategy

• Shortage of defined processes and policies

• BIM adoption is partially achieved

• Collaboration capabilities incompatible with those of project
partners

• No pre-defined process guides, standards or interchange protocols

level B:
DEFINED

• Business opportunities arising from BIM are identified but not yet
exploited

• Basic BIM guidelines are available

• Collaboration with project partners starts to be organized

• Primitive predefined process guides, standards and interchange
protocols

• Responsibilities are distributed through contractual means

Level C:
MANAGED

• The vision to implement BIM is communicated and understood by
most staff

• BIM implementation strategy is detailed

• Business opportunities coming from BIM are acknowledged

• BIM roles are institutionalized

• Detailed standards and quality plans

• Collaboration responsibilities, risks and rewards are clear

level D:
INTEGRATED

• Software selection and deployment follows strategic objectives

• Modelling deliverables are well synchronized across project

• Knowledge is integrated into easy accessible organizational systems

• BIM roles and competency targets are imbedded within the
organization

• BIM standards and performance benchmarks are incorporated

20

level E:
OPTIMIZED

• BIM implementation strategy and its effects on organizational
models are continuously revisited and realigned with other strategies

• Alterations to processes or policies are proactively implemented

• Selection/use of software tools is continuously revisited to enhance
productivity and align with strategic objectives

• Collaborative responsibilities, risks and rewards are continuously
revisited and realigned

• Benchmarks are repetitively revisited

Fig. 2–4 - BIM Maturity levels

The following paragraph is dedicated to a UK specific BIM context, defined by the
PAS 1192 regulation, which represents the main reference for the appliance of
the BIM methodology in the UK territory.
PAS 1192-2, in particular, focuses on project delivery and it is referred to
organizations and individuals responsible for the whole lifecycle of buildings and
infrastructure [14].
One of the most interesting aspects of this regulation is the definition of a The
UK maturity model was developed by Mark Bew and Mervyn Richards in 2008
[40]. There are many versions of the base model with subtle but meaningful
differences; in this case its represented and analysed the 2016 version.
It is commonly known as the "BIM Wedge" because of its particular graphical
shape (see Fig. 2–5). From the left to right, this chart is divided into four sections
representing the increasing levels of maturity, listed in Tab. 2–4. These levels can
be grouped into three categories, representing their state of definition:

• Stable (levels 0 and 1);

• Stabilising (level 2)

• Yet to stabilize (level 3)

In the lower part they're reported all the legislations which defines each level's

Bew-Richard BIM Matu-
rity Model

21

standard.

Tab. 2–4 - Bew - Richard's levels description

level 0 BIM

• Effectively means no collaboration

• 2D CAD drafting only is utilised, mainly for Production Information

• Output and distribution is via paper or electronic prints, or a mixture
of both

level 1 BIM

• Mixture of 3D CAD for concept work and 2D for approval
documentation and Production Information

• Electronic sharing of data is carried out from a common data
environment (CDE)

• Models are not shared between project team members

level 2 BIM

• Collaborative working, but not necessarily working on a single,
shared model

• Design information is shared through a common file format

level 3 BIM

• Full collaboration between all disciplines

• Single, shared project model, held in a centralized repository

• This is known as "Open BIM"

The importance of these levels is certified by the fact that UK government has
adopted these definitions in its Construction Strategy, forcing, for example, that
all publicly-funded construction work must be undertaken by using Building
Information Modelling to Level 2, by 2016 [16].
The main flaw of the Bew - Richards Maturity Model is that actually it’s not a
maturity model, in the true sense of the word, but it can be described more
properly as a strategy model, a policy model or an industry roadmap [40]. This
erroneous definition has several potential consequences, first of all the risk of
confusing the strategic targets with compliance milestones with set standards
and protocols.
Applied more widely outside the UK territory, the BIM Wedge loses much of its
efficacy, but it can still be used for the definition of long-term objectives, since it
shows itself like an open-ended model that invites to imagine subsequent levels
and to add layers of knowledges on top of those already defined.

22

I
Standards I

I
I
I

Level 0

CAD
Drawings, lines, arcs, text etc.

Level 1 Level 2

3D IFD
IFC

iBIM

�C_P_IC�-----------<1 IDM
Avanti -='
Bs

-
1

"'
19

""
2

�----------1 ISO BIM
User Guides CPIC, Avanti, BSI © 2008 / 2016 Bew-Richards

(I)
E
(I) OJ <O C: <O
E
Q)
gj<O
(I)
0
�
� :.J

Models, objects, collaboration integrated, interoperable data
I

BS 1192 I
I PAS I PAS I1192-2 1192-3

CAPEX OPEX

I BS 1192-4 I
I PAS 1192-5 I

I BS 8541-1, BS 8541-2, BS 8541-3, BS 8541-4, BS 8541-5 , BS 8541-6 I
BS 7000-4 I
BS 8536-1 I
BS 8536-2 I

I IFC: BS ISO 16739 I
I IDM: BS ISO 29481-1 I
I IFD: BS ISO 12006-3 I

Fig. 2–5 - Bew - Richard BIM Maturity Model diagram

 2.2.2. Objectives' definition

In view of this, we can start defining the milestones and the targets of the project.
Bearing in mind the concepts of "open" and "integrated" BIM, it is possible to
plan a collaborative, multidisciplinary and multiuser workflow that allows the
development of open, coordinated and simultaneous projects between the
various technicians or agents in an interactive way, through the progressive
resolution of its various aspects.
Before planning a well defined methodology, it may be useful to create a
conceptual map of the project in which we can highlight the characteristics of the
project responding the above-mentioned notions of "open" and "integrated".
The concept of integrated BIM, in view of what explained above, is based on
the synchronous interchange of interdisciplinary models and document-based
data. For this reason it's necessary to elaborate a project with a network based
structure, where data from different disciplines converge to the same storage
environment, based on advanced server technologies, creating in this way what
we call a "middleware".

23

The middleware is a connection software that consists of a set of services and
application development environments that allow multiple entities (processes,
objects, etc.), resident on one or more computers, to interact through an
interconnection network in spite of differences in communication protocols, local
system architectures, operating systems. In this way data from local platform are
simultaneously shared and analysed and managed for a specific output service.
In this case the output is limited to the conversion and loading of BIM models
into a GIS environment.

Fig. 2–6 - Project's structure

Considering that this research is marked on the implementation of BIM in district
data visualization, GIS data won't be discussed in depth since its integration in
the DIM environment is already resolved.

Focusing on the exportation and conversion operations analysed in the following
chapter, we can highlight some aspects to consider along these procedures in
order to give to the processes an "open" and "integrated" conformity:

• Unique BIM model: This is the starting point of the project. This choice
is made with the purpose of avoiding the creation of independent BIM
models for specific use only. We don't want a BIM model optimized for the
structural analysis or energetic simulations. The objective is to maintain
the uniqueness of the BIM model, but finding a way to optimize it for the
different purposes, working for example on the creation of specific use
model's views, like in the case of the IFC exportation.

24

• Use of open standard exchange formats: An open format (like IFC,
gbXML and glTF) is a file format for storing digital data, defined by a
published specification, usually maintained by a standard organization,
and which can be used and implemented by anyone. For example, an open
format can be implemented by both proprietary and free and open-source
software, using the typical software licenses used by each. The result is
that the project is not constrained to any specific application or program.

• Use of a open source converter software: Furthermore, applications
used across the project must be "open source", which means softwares
whose authors (more precisely, rights holders) make public the source
code, promoting the free study and allowing independent programmers
to make changes and extensions. For this reason, even if in the market it's
possible to find sophisticated tools, it took an important part in the project
the development of a project's specific software, used to convert the BIM
models in a GIS ready format, responding to the definition of open source
software.

•  Use of a web based and open source web globe: This aspect, whose
importance is restricted to the final output of the project, give us unlimited
possibilities in terms of visualization and navigation. In particular, the use of
this kind of web globe gives the opportunity to have free access to source
codes, and then to a great customization of the product, and to apply it to
any browser, device or system.

• Creation of standard layouts and libraries: This strategy gives the
project a solid structure, where user's choices are constrained by pre
defined lists of objects and attributes. This imposition is intended to
limit the proliferation of random data and elements which can cause
misunderstandings and redundancy errors. In this view, for example, also
the specification of a well defined nomenclature can give an important
contribute.

• Automation of the processes: Finally, another important aim of the
project is to make the processes as automatic as possible. This will avoid
the user to do customized operations, obtaining on the other hand a better
control over the workflow, since every step made is tied to strong and pre
defined rails. In facts, this is possible for example with the creation of fixed
export set up which can be exported and applied to different BIM models.

25

Fig. 2–7 - Expected objectives

26

 2.2.3. Attended results

Suddenly are exposed some concepts of the expected results in terms of
visualization and navigation through the dashboard, divided per LoD.

Fig. 2–8 - Attended LoD1 visualization

Fig. 2–9 - Attended LoD2 visualization

Fig. 2–10 - Attended LoD3 visualization (step A on left, step B on right)

27

The main interface is derived by the BIMVision software, in order to simulate the
GIS environment we want to build. It is composed of a main window where we
can navigate in the 3D space and interact with the represented objects.
On the right it's possible to see, on the top, a navigation panel whereby we can
use a tree structured map of the represented model to navigate through the
different layers and select, hide and show the different elements displayed. On
the bottom right corner is placed a panel where are shown the properties of the
selected objects.

Visualization is supposed to be diversified for three different levels of detail,
according to increasing approach in the navigation window:

• LoD1 visualization: Only a low detailed and generic model of the whole
building is represented;

• LoD2 visualization: Are represented the external elements of the
building, as roofs, external walls and external ceilings; clicking on them we
can benefit from generic information about the aspect and dimensions of
the selected entities;

• LoD3 visualization: It's intended to be the most detailed visualization
where we can interact also with interior elements. To do this it has been
supposed a strategic sequence to properly navigate inside the building:

 · Step A: At a specific zoom level over the building, it appears a
panel where we can select a building level and, as a thematic plan
view of the storey is shown, we can choose a specific room;
 · Step B: Once selected, a camera view is rendered in the navigation

window and, once we select a particular object, on the right we
can now use a panel with informations about the room in question
and, lower, a 3D map of the building where the selected objects are
highlighted.

The information represented are more technical, about energetic and
mechanical area of interests.

28

29

3. Proposed
methodology

30

 3.1. General description

The fundamental step to reach the supposed objectives defined in "2.2.2.
Objectives' definition" is to define a methodology or, in other terms, a sequence
of operations aimed at gradually define and improve the BIM model, making it
fit with our necessities.
To better conceive, understand and communicate this methodology, it has
been necessary to draw a diagram composed of different graphical boxes, each
representing a particular conceptual or practical operation during the workflow.
This diagram is represented in Fig. 3–1.

The diagram is supposed to be read from the top to the bottom, following the
logical connections from the START to the END. The rectangular boxes represent
the main steps of the methodological path; the curved rectangular boxes indicate
specific sub operations; the rhomboidal boxes state for decisional and control
points.
It is divided into three main groups, representing three different thematic stages
in the operations flow. These groups are:

• Planning phase: it includes all the decisional steps aimed at defining
the starting point;

• BIM phase: it includes all the operations made using the Revit software,
till the exportation phase;

• DIM phase: it starts from the conversion in the glTF format and ends
with the final visualization on the virtual globe.

The orange highlighted boxes represents finally fundamental steps in the
standardization of the methodology, described more accurately in the following
specific paragraphs.

31

Fig. 3–1 - Diagram of the procedure

32

 3.2. Planning phase

This section consider all the preliminary operations aimed at define the aspect
the outcoming model must have.

First of all it's necessary to define which of the multitude of the BIM objects
we want to be exported. This requires to do a selection among those objects
that are supposed to have a relevant role in the final use experience, in terms
both of geometrical and analytical importance. According to these premises all
the decorative and purely structural elements have been rejected since they are
useless or not visible.
This selection also involves a reduction of the 3D model's weight in terms of
memory, allowing a better handling in the processes of video rendering.

Then, it's indispensable to define the informations we want to extrapolate from
the BIM model, especially those attached to the objects previously listed above.
Here too the work to be done is to recognise the data inherent to the final
user necessities, ignoring all the information that are useless for the project's
purposes.

The third problem to face is the definition of the Levels of Detail (LoD), which
represent the capability of a 3D model to increase or decrease the complexity
of its geometries, as it moves away or it approaches to the viewer or according
to a relevance parameter. This feature increases the rendering efficiency, by
decreasing the workload on the hardware involved in the visualization and
reducing the quality of the objects representation, but without making this
visible because of the greater distance.
However, the definition of LoD isn't reserved only to a graphical context but it's
nowadays applied also to different field of application. In this particular case, LoD
is applied also to show the BIM information according to a specific graphical LoD.
In particular it was made a selection among all the data selected in the paragraph
above, in order to show for each object and for each LoD representation
appropriate informations with, when possible, the opportunity of having a direct
reply from the graphical representation.

Objects' selection

Data's selection

LoD definition

33

Tab. 3–1 - LoD definition

Description Visualized
objects

Visualized
data

L
o
D

 1 • Low Detail

• Only masses
visualization

MASSES

% opaque surface
% transparent surface
Building energy certification
Building typology
Building use
Construction period
Electricity supply
Location
Name
Occupancy number
Orientation
Renewable energy
Heating supply
S/V
CASE_NAME
Total annual measured
energy consumption
Total annual simulated
energy consumption
CASE NUMBER
USE
TC_sensor
HOST_ID

L
o
D

 2

• Medium detail

• Generic
informations

• BIM objects' se-
lection

• "Show/Hide" option

WALLS

Famiglia
Tipo
Funzione
Area
Volume
Vincolo di base
Vincolo parte superiore
Altezza non collegata

CEILINGS

Famiglia
Tipo
Livello
Perimetro
Area
Volume

34

ROOFS

Famiglia
Tipo
Volume
Area
Inclinazione
Livello di base

L
o
D

 3

• High detail

• Detailed and
technical informa-

tions

• Internal
visualization and

navigation

WALLS

Famiglia
Tipo
Larghezza
Coefficiente di scambio
termico
REI
Esposizione

CEILINGS

Famiglia
Tipo
Spessore
Coefficiente di scambio
termico
REI

ROOFS

Famiglia
Tipo
Spessore
Coefficiente di scambio
termico

STAIRS

Famiglia
Tipo
Livello di base
Livello superiore

RAILINGS (Only visualization)

DOORS

Famiglia
Tipo
Livello
Da locale: codice locale
A locale: codice locale
Altezza
Larghezza
Area
Emergenza
REI
Codice

35

WINDOWS

Famiglia
Tipo
livello
Da locale: codice locale
Altezza
Larghezza
Area

SENSORS

Famiglia
Tipo
Contrassegno
Livello
Consumo elettrico
Potenza elettrica
URL istanza

ROOMS

Nome
Numero
Codice Locale
Utilizzo locale
Categoria locale
Tipologia locale
Direzione
Occupanti
Area
Volume
Capacità

Another important step in this stage of the process is the identification of the
case study, between those involved in the EeB project and the choice has fallen
upon the Scuola Materna Rodari.
The reason of this selection is due mainly to the fact this is the only one in which
real sensors have been placed and this gives the opportunity to improve the
virtual modeling and analysis with real data.
Another important reason is because, since the present project starts from pre
built BIM models, that of the Scuola Materna Rodari is the most fitting with
our needs and objectives. It has in fact a more accurate structure which gives
the possibility of getting since the start good results in terms of visualization,
exportation and richness of data, thus avoiding time and work spreading for
optimizing it and correcting errors.

Case study's choice

36

Tab. 3–2 - Case studies' comparison

Scuola
Materna
Rodari

Scuola
Media Statale

Nicoli

Biblioteca
Civiva

Archimede

gbXML exportation

IFC exportation

In place sensors

Richness of attributes

Accurate modeling

37

 3.3. BIM phase

 3.3.1. Preliminary operations

 3.3.1.1. Creation of sensors' family

The first step of this stage of the methodology, is the creation on Revit of the
sensors that must be applied on the 3D model and for this purpose it has
been created a Revit family called "Sensore cubico" (referring to the geometric
representation of this object).
We have initially to click on the home "R" button and then on "New" and "Family".
We have now to choose which category of family we want to create and the
most suitable option is the "Hosted data device" in order to allow the application
of these devices over generic surface, either walls or ceilings.
The sensor is made making a simple extrusion from the hosting surface and
suddenly managing its properties going through the "Create" and then "Family
Type".

Fig. 3–2 - Sensors' family editing

These sensor have to be placed for the EeB project purpose in specific rooms
where the real ones were effectively applied.

38

 3.3.1.2. Creation, saving and open-
ing of a dedicated project template

The first step to accomplish in this preliminary modeling phase is the creation of
a customized project template.
This operation corresponds to the definition of a blank default revit model, with
well determinate settings, which can be used as starting point for a generic revit
project. When we want to start a new project, in fact, the first thing we must do
is to choice the template the most corresponding to our needs. Revit has itself a
set of industry templates, as "architectural" or "structural", which differ in terms
of view settings, unity of measurement, in place families and many other things.

In terms of standards definition, this operation has a leading role since allows
to start the modeling phase with a pre defined environment in which the main
generic properties are already set and fixed, and so the modeller can work
focusing only on the project, without worrying about several generic setting
which are already settled.
The common sharing of the same template project is essential when several
revit models have to be created with the same characteristics, like in the case
of the EeB and the DIMMER projects. In this way all the projects will look in the
same way, using the same general settings and nomenclature, avoiding issues
due to a different, incoherent or conflicting preparation of them.
Creating a good template is essential to working smarter and faster, becoming
more productive and saving valuable time.
In general, a project template can be defined by different aspects, such as naming
standards, annotations, materials, object stiles, lineweights, etc.

In this specific case, a template project has been created adding first of all the
sensor's family created as described in the previous paragraph. This allows the
operator to have direct access to this kind object, without the need of make him
require or search it from external sources.
Other customisations include the creation of a specific 3D view and schedules, as
defined more accurately in "3.3.3.2.1. Preliminary operations on Revit".
These operations are dedicated to the attempt of creating a standard exportation
of the Revit to the IFC format. Note that the schedules' setting can be defined a
priori, without successive customization needs, but the 3D view, even if view's
are defined, we need to improve the visualization by hiding and show specific
objects, according to the specific project needs and following the guidelines
proposed in the paragraph.
Once we've defined the project template, we can save it as a .rte file and
successively open it in order to start the modeling of a new project.

Fig. 3–3 - Project
template file

39

 3.3.1.3. Georeferencing and rota-
tion of the model

The situation at the beginning of this procedure is the one represented in the
image below.

Fig. 3–4 - Georeferencing (step 1)

In the lower right corner of the window it's possible to see that the Survey Point
and the Project Base Point aren't combined with the 3D model.
The Project Base Point defines the origin (0,0,0) of the coordinate system of
the project itself and can be used for positioning the building on the planimetry
or for identifying design elements of a building during construction. Clicking on
it the coordinates and elevation spot are displayed, referring to the coordinate
system of the project. The Survey Point represents a known real physical
point, such as a geodetic detection mark, and it is used to correctly orient the
geometry of the building to a different coordinate system, such as that used in
a particular civil engineering application. Clicking on it it's possible to show the
geographic coordinates attached to this point.
As it appears in Fig. 3–4, the 3D model is placed randomly in the physical space
and so we have to give it a well defined positioning.
The thing to do is first of all to obtain the geographic coordinate of a specific point
of the model and to succeed in this we used the Google Earth Pro application.
After we choose a reference point along the perimeter of the building, we must
place, more accurately as possible, a "placeholder" represented by a yellow
pin. Once did this, it will appear a window which give us the coordinate of the

Georeferencing

40

selected point.
We can highlight the fact that the fact that the coordinate system used by Google
Earth Pro, World Geodetic System 1984 (WGS84), is the same in use in Revit; so
this will prevent from evident placement errors.

Fig. 3–5 - Georeferencing (step 2)

Once we obtained these values, we must open the "Manage" tab in Revit, click
on the "Position" icon and then it will appear a window with an empty bar
(see Fig. 3–6) where we have to paste our coordinates in the form "(Latitude),
(Longitude)".
In the map below the bar, the red pin, representing the position of the survey
point, will move towards the geographic reference point managed in Google
Earth.
We have to specify that it's possible to do this operation of placing the pin, directly
from this Revit window but because of the bad quality of the map visualization
and of the low precision which derives from it, it's better to lean on a more
powerful and specific tool like Google Earth.

41

Fig. 3–6 - Georeferencing (step 3)

Clicking on the "OK" button the window will close and the Survey Point is finally
associated to well defined geographic coordinates. But now we have to associate
them to a specific point of the 3D model, the same one chosen as reference in
Google Earth. To do this is necessary to click on the Project Base Point and a
"clip" icon will appear in this form ; clicking on it, it will change in , and that
means we have unlocked its positioning, which is for default constrained to the
Survey Point.
Now we can move the Project Base Point to the reference point and we can see
that it moves away from the Survey Point. Once placed, we have to lock it again
clicking on , in order to attach him to the building. At this point, however, the
virtual model is still placed randomly and the Survey Point, which includes the
geographic coordinate, isn't attached to the model.
To prevent this, we must click again on the Project Base Point. On its right they
will appear informations about its N/S and E/W placement in relative coordinates,
and as we can see they are initially not well defined. Clicking on these values we
can manage each one to a zero value and the Project Base Point will immediately
move and overlap the Survey Point. The reference point of the 3D model is now
attached to the Survey Point and so the geographic coordinates and this means
that the 3D model is attached to the correct geographic coordinates.

42

Fig. 3–7 - Georeferencing (step 4)

Once we correctly placed the 3D model in the geographic coordinate system,
we can proceed by rotating the project north in order to coincide it with the real
one.
To get information about the rotation angle we can use a satellite view or, in
order to be more accurate, we can get technical maps. In this case it has been
downloaded from the website of the Municipality of Settimo Torinese a DWF file
that, once opened with Autocad, allows to calculate and then save the angle,
taking a reference point.

Fig. 3–8 - Real north rotation (step 1)

Returning on the Revit interface and opening a generic plan view, we have to
manage the property window setting the "Orientation" option to "Real north".
We can now go to the "Manage" tab and click on "Position" and then "Rotate
true north". We can now place the rotation center at the reference point took to

Real north rotation

43

calculate the angle on autocad, and so setting the rotation angle manually.

Fig. 3–9 - Real north rotation (step 2)

Fig. 3–10 - Real north rotation (step 3)

44

 3.3.1.4. Creation of a shared param-
eter file

In order to facilitate the standardisation of the operations in Revit, it's very useful
to benefit from the creation of a shared parameter file.
This step is fundamental, not so much for the exportation (especially the RVT-IFC
conversion), but in the optic of the successive operation of parsing the exchange
models. It's very important in fact that the attributes setting in Revit follows a
well defined encoding which can be instructed by the shared parameters
functionality.
This file must include the list of all those attributes that we have defined above for
each object, in order to have a unique nomenclature and to avoid the presence
of redundant attributes.
This file can be suddenly loaded inside the Revit project template defined in
"3.3.1.2. Creation, saving and opening of a dedicated project template", so that it
can be accessible directly from the start of a new project based on that template.

Creation of a Shared
parameters file

Fig. 3–11 - Shared
parameters file

45

 3.3.2. RVT - gbXML exportation

 3.3.2.1. gbXML format

 3.3.2.1.1. Introduction

Main features

gbXML, which stands for "Green Building XML schema", is an open schema based
on XML language and developed to facilitate the transfer of building information,
stored in building information models, enabling integrated interoperability
between building design models and a wide variety of engineering analysis tools
and models available today.
Today, gbXML has the industry support and wide adoption by leading Building
Information Modeling (BIM) vendors including Autodesk, Trimble, Graphisoft,
and Bentley. With the development of export and import capabilities in over 40
engineering and analysis modeling tools, gbXML has become a industry standard
schema. Its use dramatically simplifies the transfer of building information to and
from architectural and engineering models, eliminating the need for time
consuming plan take-offs. This removes a significant cost barrier to designing
sustainable and energy efficient buildings. It enables building design teams to
truly collaborate and realize the potential benefits of Building Information
Modeling.
Therefore, this standard is designed for including only the information needed
to support energy analysis being commonly used as input for energy simulation
software.

History

In 1999, Green Building Studio, with the collaboration of the California Energy
Commission PIER Program and Pacific Gas and Electric, started the development
of the gbXML project.
In June of 2000, the first gbXML schema was submitted and shortly thereafter,
gbXML became the draft schema for the Building Performance & Analysis
Working Group.
In 2008 Green Building Studio was acquired by Autodesk.
In 2009, gbXML was spun off from Green Building Studio to become a stand-alone
entity. Since this moment, gbXML project experienced a faster development:
funding was secured, the schema was drastically improved, a new website was
launched, and a community of thousands of architects, engineers, and energy

Fig. 3–12 - gbXML logo

46

modelers attended live webinars explaining the benefits of gbXML.
Today, gbXML is funded by organizations such as the U.S. Department of Energy,
the National Renewable Energy Lab (NREL), Autodesk, Bentley Systems, and
others.
The employment of this exchange format allows building designers to focus on
creating environmentally responsible buildings that use intelligent technologies
to meet their client's needs at the lowest cost possible. Helping realize the
promise of Building Information Modeling, gbXML allows intelligent solutions for
the design, certification, operation, maintenance, and recycling of buildings.

 3.3.2.1.2. Syntax and structure

XML inheritance

XML, abbreviation for "extensible markup language", is a type of computer
language that allows software programs to communicate information with little
to bigger interaction.
XML was developed by the World Wide Web Consortium (W3C) in 1998, with
the purpose of creating a extensible markup language of general use. It derives
from the Standard Generalized Markup Language (SGML), which is a standard
for defining generalized markup languages for documents, developed by the
International Standard Organization (ISO) in 1986. XML, however, differs from it
for his specific World Wide Web oriented application.
A markup language is a computer language that uses tags to define elements
within a document. It is human-readable, meaning markup files contain standard
words, rather than typical programming syntax. "Extensible" means that it's
possible to create a set of personalized tags.
This language is normally used for the exchange of documents but also for store
and exchange data structures. It is supported by Unicode encoding in order to
admit a great interoperability between different human languages, supporting in
this way the use of several alphabets and symbols used around the world and in
different application fields.
XML is a free domain standard, and this allows the development of several
libraries for XML's data manipulation in different programming languages and
the capability of a great number of software to read XML models.
Its great interoperability is also granted by the fact it is software and hardware
independent, so that it allows the representation of every kind of document
independently from his applicative finalities.

XML can be also be described as a metalanguage. In fact, such as the grammatical
definitions and rules describes a language, XML defines a set of syntactic rules

XML as markup language

XML as metalanguage

47

which formally defines a markup language known as "XML application", like
the gbXML schema. Every XML application derives a set of common syntactic
characteristics and defines a formal particular syntax.
An XML document is considered to be "well formed" (that is, able to be read and
understood by an XML parser) if its format complies with the XML specification,
if it is properly marked up, and if elements are properly nested.

Syntax

Looking to the definition of the XML language it's possible to give a proper
definition of the gbXML schema, analysing its main entities and the way the
building model decomposes into the schema.

Basically, the gbXML exchange format is a set of text string elements, organized
in a hierarchical structure and composed of "markup" (or "tag") and "content"
entities.
gbXML documents must contain above all an element called prolog. In this
element is possible to read the XML version and the character encoding used in
the gbXML model. This element doesn't belong to the gbXML model.
After the declaration of the prolog, the gbXML schema requires the presence of a
root element that is the parent of all other elements, in their turn all disposed as
child element of the root element in a tree structure. The root element contains
the actual gbXML model.

<?xml version="1.0" encoding="UTF-16"?>

Markups can be either start-tags or end-tags: the first ones are strings of
characters contained in and including the "<[...]>" Structure; end-tags are instead
described by the "</[...]>" form. Strings of characters that are not markup are
content. Markups describes the structure and the aspect of the document.
An element is a logical document component that either begins with a start-tag
and ends with a matching end-tag. The characters between the start-tag and end-
tag, if any, are the element's content, and may contain markup, including other
elements, which are called child elements. This ability allows XML to support
hierarchical structures. Element names describe the content of the element, and
the structure describes the relationship between the elements.

XML elements can have attributes, which are particular entities contained in
the tag and designed to declare data related to a specific element. Attribute
are composed by a declaration and, included in doubles quotes, a content part;
the two parts are separated by the "=" symbol. In the gbXML schema these
entities are very useful to declare metadata, like ID references between the XML

Elements, markups and
contents

Root Element schema

Attributes

48

elements.

For a better comprehension of the gbXML syntax we can analyse a simple
example referring to a bookstore's list of item.

<bookstore>
 <book category="children">
 <title>Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
 </book>
 <book category="web">
 <title>Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year>
 <price>39.95</price>
 </book>
</bookstore>

<title>, <author>, <year>, and <price> have text content because they contain
text strings.
<bookstore> and <book> have element contents, because they contain elements.
Those elements are called "child elements".
<bookstore> is the Root Element of this XML file.
<book> has an attribute (category="children").

Structure

If we open a gbXML model as a text file we will find a tree structure described
as below.

Fig. 3–13 - General structure of the gbXML model

This tree structure is not intended to be a definitive list of all the elements in a
gbXML document, just to give a sense of the level of nesting of informations. The
elements can in fact be ignored or included in the gbXML model, depending on
the export operation. In the case of the exportation made through the default
gbXML exporter included in Revit, the only child elements exported will be at
most:

• Campus;

49

• Construction;

• Layer;

• Material;

• DocumentHistory.

The gbXML element, which is the root element of the model, describes with its
attributes the units of measurement used in the gbXML model and the gbXML
schema version.

<gbXML useSIUnitsForResults="true" temperatureUnit="C" lengthUnit="Meters"
areaUnit="SquareMeters" volumeUnit="CubicMeters" version="0.37" xmlns="http://
www.gbxml.org/schema">

All the geometric information is defined in the Campus element, composed of
the global child elements: Location, Building and Surface.
The Location element is used to indicate the global position of the building and
its orientation from the North.

<Location>
 <StationId IDType="WMO">160478_2006</StationId>
 <ZipcodeOrPostalCode>00000</ZipcodeOrPostalCode>
 <Longitude>7.76864</Longitude>
 <Latitude>45.1382</Latitude>
 <Elevation>709.8792</Elevation>
 <CADModelAzimuth>0</CADModelAzimuth>
 <Name>Settimo Torinese, Piem., Italy</Name>
 </Location>

The Building element describes the spaces or volumes enclosed by surfaces. It
decomposes in the child elements Space and BuildingStorey: the first one defines
the position of each space in the model, its planar geometry, its shell geometry
and its relation with the surfaces which compose it; the second one defines the
height and the planar geometry of the building storeys present in the model. The
CADObjectId element contained into the Space element present as its content a
set of six numbers: this is the CAD object ID identifier of the Revit instance and
it's very important in the development of the project because it represents a
univocal bridge between the Revit model, the gbXML model and the IFC model.

The Surface elements describe every surface generated in the gbXML exportation,
defining their borders, their orientation; they may eventually contain the
presence of the child element Opening to describe the same characteristics of
a opening element attached to those surfaces. The surfaces, as declared by the
SurfaceType attribute, can be either of these categories:

• ExteriorWall;

• InteriorWall;

gbXML Element Schema
Campus element

Location Element Schema
Building element

Surface element

50

• UndergroundWall;

• InteriorFloor;

• SlabOnGrade;

• RaisedFloor;

• UndergroundSlab;

• Roof;

• Opening;

• Air;

• Shade.

The type of surface is figured out depending on the source element and the
number of space adjacencies. If there is no associate source element and no
space adjacencies, it will have a type of Shade. If there are any space adjacencies,
it will have a type of Air.
In terms of geometry, gbXML only represents rectangular shapes, simplifying
the geometry so that it can be used as input for most energy analysis tools.
The characteristic points that define one surface are included in the child
CartesianPoint elements that give the model its three-dimensional representation
through its three coordinates (x,y,z). These coordinates are relative to the base
point of the building model.
The Name child element is automatically generated during the exportation,
following a specific encoding which reports synthetically information about the
orientation and the spaces to which the surface is related.
The CADObjectId element reports instead the name of the Revit instance
associated to the analytical surface in question, specificing the family name and
the type name. It's very important to notice in the content of this element the
presence, as pointed out when talking about the Space elements, of a string of
six numbers between square parentheses which does the same important job.

<Surface surfaceType="ExteriorWall" constructionIdRef="aim7316"
exposedToSun="true" id="aim7857">

 <AdjacentSpaceId spaceIdRef="aim0441" />
 <RectangularGeometry id="aim7858">
 <Azimuth>180</Azimuth>
 <CartesianPoint>
 <Coordinate>-33.14352</Coordinate>
 <Coordinate>-22.76354</Coordinate>
 <Coordinate>-2.55</Coordinate>
 </CartesianPoint>
 <Tilt>90</Tilt>
 <Width>7.09999990463257</Width>
 <Height>2.54999995231628</Height>
 </RectangularGeometry>
 <PlanarGeometry>
 <PolyLoop>

51

 <CartesianPoint>
 <Coordinate>-33.14352</Coordinate>
 <Coordinate>-22.76354</Coordinate>
 <Coordinate>-2.55</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>-26.04352</Coordinate>
 <Coordinate>-22.76354</Coordinate>
 <Coordinate>-2.55</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>-26.04352</Coordinate>
 <Coordinate>-22.76354</Coordinate>
 <Coordinate>0</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>-33.14352</Coordinate>
 <Coordinate>-22.76354</Coordinate>
 <Coordinate>0</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 </PlanarGeometry>
 <CADObjectId>Muro di base: EXT40 [1693541]</CADObjectId>
 <Name>S-1-E-W-2</Name>
 </Surface>

Fig. 3–14 - Campus element definition

Every Surface element, through its constructionIdRef attribute, is related to a
specific Construction element. This element is a combination of layers, such
as a wall or a roof. It contains several attributes useful for the definition of the
thermal and mechanical characteristics of the related Surface element. If the
"Export Defaults" under Energy Settings in Project Information is not checked,

Example of Surface element schema

Construction element,
Layer element and Ma-
terial element

52

this element is not exported and so its child elements Layer and Material.
Each Construction element is related through the layerIdRef attribute to a Layer
element, which consists of a orderly set of MaterialId child elements. These refer
in their turn to a specific Material element where it's possible to collect further
information about the thermal and mechanical properties of the materials.

<Construction id="aim7262">
 <U-value unit="WPerSquareMeterK">1.346738</U-value>
 <Absorptance unit="Fraction" type="ExtIR">0.7</Absorptance>
 <Roughness value="Rough" />
 <LayerId layerIdRef="aim7266" />
 <Name>Pavimento: INT35</Name>
 </Construction>
<Layer id="aim7266">
 <MaterialId materialIdRef="aim7267" />
 <MaterialId materialIdRef="aim7274" />
 <MaterialId materialIdRef="aim7281" />
 <MaterialId materialIdRef="aim7288" />
 <MaterialId materialIdRef="aim7295" />
 </Layer>
<Material id="aim7274">
 <Name>Sabbia e Calcestruzzo: 0.07 [m]</Name>
 <R-value unit="SquareMeterKPerW">0.3349282</R-value>
 <Thickness unit="Meters">0.07</Thickness>
 <Conductivity unit="WPerMeterK">0.209</Conductivity>
 <Density unit="KgPerCubicM">950</Density>
 <SpecificHeat unit="JPerKgK">657</SpecificHeat>
 </Material>
 <Material id="aim7281">
 <Name>Calcestruzzo, gettato in opera: 0.06 [m]</Name>
 <R-value unit="SquareMeterKPerW">0.05172414</R-value>
 <Thickness unit="Meters">0.06</Thickness>
 <Conductivity unit="WPerMeterK">1.16</Conductivity>
 <Density unit="KgPerCubicM">2000</Density>
 <SpecificHeat unit="JPerKgK">870</SpecificHeat>
 </Material>
 <Material id="aim7288">
 <Name>Laterizio pav: 0.18 [m]</Name>
 <R-value unit="SquareMeterKPerW">0.3</R-value>
 <Thickness unit="Meters">0.18</Thickness>
 <Conductivity unit="WPerMeterK">0.6</Conductivity>
 <Density unit="KgPerCubicM">1800</Density>
 <SpecificHeat unit="JPerKgK">870</SpecificHeat>
 </Material>
 <Material id="aim7295">
 <Name>Intonaco interno: 0.02 [m]</Name>
 <R-value unit="SquareMeterKPerW">0.03921569</R-value>
 <Thickness unit="Meters">0.02</Thickness>
 <Conductivity unit="WPerMeterK">0.51</Conductivity>
 <Density unit="KgPerCubicM">1120</Density>
 <SpecificHeat unit="JPerKgK">960</SpecificHeat>
 </Material>

Example of Construction Element, Layer Element and Material Element schema

53

Fig. 3–15 - Construction element, Layer element and Material element definition

The DocumentHistory element gather informations about the people and
programs that created and modified the gbXML file. It's important to notice the
CADModelId child element which gives us a univocal identifier of the Revit model,
used to map a CAD model or BIM to its corresponding gbXML file, represented
by a hexadecimal string of characters.

<DocumentHistory>
 <ProgramInfo id="aim0004">
 <CompanyName>Autodesk, Inc.</CompanyName>
 <ProductName>Autodesk Revit 2016 BEES</ProductName>
 <Version>2016 20150714_1515(x64)</Version>
 <Platform>Microsoft Windows 7</Platform>
 <ProjectEntity>
 <URI>file:///C:/Dropbox/TESI/Casi studio/Modello BIM Scuola Rodari .rvt</URI>
 <GUID entity="File">306389db-f5a9-4e5e-b9ac-035c2cca6b2e</GUID>
 </ProjectEntity>
 </ProgramInfo>
 <CreatedBy personId="aim0005" programId="aim0004" date="2017-02-

14T09:16:19">
 <CADModelId>306389db-f5a9-4e5e-b9ac-035c2cca6b2e</CADModelId>
 </CreatedBy>
 <PersonInfo id="aim0005" />
 </DocumentHistory>

 3.3.2.2. Customization of the expor-
tation: creating a standard

 3.3.2.2.1. Preliminary operations on Re-
vit

Model's geometries optimization

This section explains the most commonly encountered issues with Revit models
which lead to incorrect geometry within the gbXML file, and gives solutions in
each case. The best way to ensure a good gbXML import from Revit is to have
these guidelines in mind from the beginning of the project. Correcting an existing
Revit model is much more complicated and time-consuming.
The aim of this section is to ensure that when rooms are applied to the Revit
model the resulting gbXML will have a complete set of surfaces and all the

DocumentHistory ele-
ment

DocumentHistory schema

54

surfaces will have the correct type.
Ignoring these rules may cause confused and incorrect geometry in the gbXML
such as missing walls, walls which have no connection to the building, adjacent
rooms failing to join together, and internal surfaces exposed to the outside air.

The first operation to do is to verify that all rooms are properly contained and
that all rooms link correctly to neighbouring rooms or to external elements of the
building. Rooms are the fundamental entities in the gbXML export operations
and the preliminary correct disposition of these will allow to proceed with the
first export attempt and the gradual optimization of the Revit model according
to the issues highlighted along the procedure. Any part of the building which is
not occupied by a room will not be exported correctly to the gbXML model. If a
room is obstructed in any way from touching the surfaces associated with it, the
data exported to the gbXML will be incorrect.
The first expedient is to fill every volume in the building with a room entity, even
if the concerned space isn't intended to have particular relevance or dimensions,
even in case of wall voids. This operation is necessary to export a completely
defined geometric shell of the building, without void elements, especially in the
exterior facade. This can be done by creating a new specific room or by expanding
a neighbouring pre existent room.
Another important operation is to verify the vertical borders of the rooms: it's
fundamental that the lower and the upper limits of the room entities correspond
respectively to (at least) the finishing of the floor and the ceiling, taking care
there isn't a overlapping with other room entities in the same or other building
levels. This procedure allows, during the exportation, the creation of a complete
set of coherent analytical surfaces.
Finally, it's important to check the correct disposition of room separation lines.
These should only be used to separate one room from another but in all other
instances room separation lines should be deleted. Room separation lines should
never overlap walls or other room separation lines. If they do then this will show
up as a warning within Revit, so check that any such warnings have been resolved
before exporting the model.

When drawing the building’s roof and floors, we must bear in mind that any gaps
in the roof will allow Revit rooms to leak from the building and, in case of gbXML
exporting, the room below the roof will generate undesired Air surfaces. In order
to ensure that the roof footprints are sufficient to fully cover the rooms below
them it can be useful to increase the upper limits of the rooms on the top floor
and then go to the gbXML export dialog window. In this way it can be possible
to check the presence of roof's and ceiling's gap, highlighted by the presence of
vertical flat surfaces leaking out the room's upper border.

Rooms

Roof and floor footprints

55

In case of parallel and overlapping building elements (like walls, roofs and
ceilings) it's recommended to replace these with a unique equivalent entity.
This precaution will prevent the undesired separation of two rooms that are in
fact linked each other, since there is not a connection between the two building
elements on Revit.

All columns must be made non-room bounding. Room bounding columns create
external links within the building, meaning the column surfaces are treated as if
they were exposed to the outside air. Room-bounding columns can also lead to
confused geometry being output to the gbXML, such as missing areas. Where
columns form part of a wall between two rooms and removing the column would
cause the rooms to occupy the same area, the wall should be extended to fill the
gap left by the column.

In the end, some geometric issues can be prevented by the use of two Revit
commands: "join geometries" and "wall joins".
The first one must be used to improve the connection between different building
elements, allowing the analytical surfaces to better communicate each others.
This command permit also to notice if two elements aren't well connected such
as a ceiling with a wall.
The second one, instead, allows to manage the intersection between walls,
optimizing the creation of the correct analytical surfaces also in corner zones,
which are frequently a critical zone.

Creation of sensors

This paragraph describes the procedure necessary for the geometric exportation
of the sensor applied in the case buildings.
Since the gbXML only exports room elements and the analytical surfaces related
to these, it was indispensable to find an alternative way to allow the sensors to
be seen once the model was exported in gbXML format.
The solution was found by creating fake room entities, following a well defined
procedure described below.

The first thing to do is to create the "container" of the sensor room. Looking at
Fig. 3–16, the steps to follow are:

a) Create a spherical mass element;

b) Apply wall on top surface;

c) Apply wall on low surface;

d) Join the two walls with the "Join geometries" command.

Parallel and overlapping
elements

Columns

"Join geometries" and
"wall joins" commands

56

Fig. 3–16 - Creation of the Sensor room's container

Once made this and deleted the mass, we have created the void element to fill
with the sensor room. To do this we have to simply use the "Room" command
in Revit and click inside the shell we've created; then, going to a section view
which intersect the container, we can manage the upper and lower borders of
the cylindrical room generated.
The choice of using a sphere as basis for this operation is due to the fact that
other geometric support had done some problems, interfering with the other
effective room (like creating void element above the sensor). This procedure
allows also to use the simpler closed shell possible on Revit, using only two
curved walls, avoiding the use of additional ceilings or floors and then the risk of
succumb to modeling's error.
The procedure concludes by assigning as name of the sensor room the encoded
name of the effective sensor used in the case buildings. This will permit to
distinguish the sensors from the other spaces of the building, making possible to
interrogate them in the final applications.

Fig. 3–17 - Section view and gbXML 3D view of the Sensor room

57

 3.3.2.2.2. "gbXML export" management

The volume computation for a space is based on its room-bounding components.
By default, Revit does not compute room volumes in this way but computes
them calculating the product of the area of its base and the height of the space,
obtaining approximative results especially in presence of irregular or sloping
surfaces.
In order to constrain Revit to do a more meticulous computation, we have
switch on “Area and Volumes” in the Volume Computations panel under the
Computations tab of the Area and Volume Computations dialog before exporting
the model.

Fig. 3–18 - Areas and volumes computing setting window

Once made this, we can start personalizing the energy settings of the model. To
do this it's necessary to go under the "Analyse" tab and click over the "Energy
settings" icon. The window represented in the image below will appear.

Areas and volumes com-
putation

Energy settings manage-
ment

58

Fig. 3–19 - Energy settings window

The first property set, "Common", gives the possibility to assign a building
typology to the Revit model, to specify the geographical position of the project
(if it wasn't already done) and to declare which project's level is the ground floor.
The second one, the most important, allows to manage the exportation in all its
aspects. We can in fact specify the following fields:

• Export Category: this option determines whether rooms or spaces are
exported. There's no actual difference in results between the two possibility
but, since in our project only the Room entities have been managed, the
approach chosen is the first one;

• Export Complexity: this data specifies the level of detail provided

59

when generating gbXML data for openings, and whether shading surface
information is exported. The possibilities range between simple options, in
which curtain walls and curtain systems are exported as a single opening
(without individual panels), and complex options, permitting to curtain
walls and curtain systems to be exported as multiple openings, panel by
panel;

• Include Thermal Properties: if Export Category is set to rooms, we've
select this option to export thermal properties to gbXML. Note that if we
don't select this field the Construction element and his child elements will
not be exported;

• Sliver Space Tolerance: this field allows to specify a tolerance value
for sliver spaces. All areas that are within the sliver space tolerance are
considered sliver space.

 3.3.2.3. gbXML model analysis

 3.3.2.3.1. Geometries monitoring

Before completing the gbXML exportation, it may be necessary to check for
possible problems that might affect the success of the transition process and to
make sure that the model is correctly configured for export from a geometrical
point of view.
To do this we can use the 3D viewer offered by the default gbXML exporter
included in Revit. We can open it by clicking on the Revit's R "file" button, then
on "Export" and finally on "gbXML".
On the right we can manage again the energy settings we already set; once we've
eventually modified these fields we can click on the "Detail" tab. At this point we
have the possibility to choose between to level of detail to check the geometries:

• Rooms;

• Analytical surfaces.

The first possibility gives us the chance to navigate level by level in order to
control the proper dispositions and extensions of the rooms. This tool offers also
some visualization features like the "Highlight" command to make easier the
navigation and visualization in the 3D viewer visible on the left.
But most important of all, clicking on the warning button it's possible to read
a problem's review eventually connected to a non correctly defined room in
the model. In this case we have to fix all the problems one by one, until all the
warning icon disappears.

60

Fig. 3–20 - gbXML export window (Room detail)

Once we have checked that all the rooms are correctly placed and defined, we
can analyse the model by a "Analytical surface". In this way the 3D view will
generate separate analytical surfaces with different colour, to indicate the
different categories they belong (Wall, Floor, Roof, Opening, etc.). This step is
necessary to control if all the surfaces will be exported correctly and if there are
undesired categories we don't want to be exported, such as Air.
The procedure proceed with the optimization of the model's geometry, following
the tips exposed in "Model's geometries optimization" until all the surfaces are
correctly disposed for the exportation.
Once the model geometries are checked, we can proceed clicking on the "Next..."
button and complete the gbXML exportation, with the creation of a XML file.

61

Fig. 3–21 - gbXML export window (Analytical surfaces detail)

 3.3.2.3.2. Properties monitoring with
XML Editor

At this point we can proceed analysing the data structure of the gbXML model.
To do this is necessary to open the XML file as a text document and this operation
simply need a normal text reader software, but into this multitude of applications,
we selected XML Editor, which it uses the Internet Explorer interface to open the
XML editor in a interactive way, as visible in the image below.
This is due to the fact that XML Editor permits a better navigation and
comprehension of the intricate nested structure of the document, thanks to
his capability to open and close parent elements by clicking on the "-" and "+"
symbols present on the left side of them. In this way is possible to parse the file
step by step, going from the superior levels of detail to the most particular.
Another simple but important tool offered by this program is the "Search"
feature, which allows to control if a particular element has been exported from
Revit to the gbXML model or above all to check the connection between the
different elements, using as investigation key the ID attributes that stand among
them.
Most elements have in fact an ID univocal attribute contained into commas and
that follows a specific encoding: "aimxxxx". At the place of the "x" characters
it will be present a progressive number. This attribute allows the element to
communicate between them thanks to specific IdRef attributes which call a

62

specific ID attribute in the model.

Fig. 3–22 - XML editor interface view

63

 3.3.3. RVT - IFC exportation

 3.3.3.1. IFC format

 3.3.3.1.1. Introduction

Main features

IFC stands for “Industry Foundation Classes”, the set of internationally
standardized object definitions for use in the Construction Industry, developed
by the International Alliance for Interoperability (IAI).
The development of the IFC is strictly connected to the evolution of the Building
Information Modeling universe.
IFC defines how informations should be provided/stored for all stages of a
building projects lifecycle, from “very little” information to “everything”.
It is a neutral and open file format that is not controlled by a single vendor or
supplier group. This is an object-based file format with a data model developed
by the International Alliance for Interoperability (IAI) to facilitate interoperability
between architecture, engineering and building industry disciplines.

History

The birth of the IFC is due to the necessity of creating a totally open standard,
in order to face many problems that afflicted the world of the constructions.
First of all it was necessary to improve the automation and the interoperability
between the several softwares used in the design process and that were having
a great development in the 90s.
The IFC initiative began when Autodesk started a consortium with the aim to
involve several companies, active in the AEC field, in the development of a set
of C++ classes that could support integrated application development. Since
its debut in 1994, 20 US companies joined the consortium, that initially took
the name of Industry Alliance for Interoperability and then that of International
Alliance for Interoperability (IAI) in 1997. This alliance was born as a non-profit
organization, with the goal of creating the IFC standard, a neutral and open
specification that is not controlled by a single vendor or group of vendors. Every
member of the IAI is very important for the definition of the standards by sharing
their own experience and providing the informations that’s needed to decide
whether or not is becoming a standard.
There have been five principal releases of the IFC over since 1996; these had
been IFC1, IFC1.5.1, IFC2.0, IFC2x, IFC2x2 and IFC2x3. Since the release of IFC2x

Fig. 3–23 - IFC logo

64

(published in 2000), each release has left the core (or ‘platform’) of the IFC
specification unchanged, and has added to it. This platform guarantee has meant
that most vendors have had no difficulty in upgrading their application to IFC2x2,
IFC2x3 and hopefully in future to IFC2x4. Since the publication of IFC2x new
releases where mainly driven by adding new concepts to the IFC specification
in order to capture more exchange use cases and to improve existing definitions
reflecting the lessons learnt from implementation and usage. Since IFC2x a new
major release has been published every 3 years.

 3.3.3.1.2. Syntax and structure

STEP and EXPRESS inheritance

The IFC specification is written using the EXPRESS data definition language,
defined as in “ISO 10303-11: Industrial automation system and integration -
Product data representation and exchange - Part 11: Description methods: The
EXPRESS language reference manual”. It has the advantage of being compact and
well suited to include data validation rules within the data specification. The IFC
exchange file structure (the syntax of the IFC data file with suffix “.ifc”) is the so
called “STEP physical file” format (or “STEP - File”), defined as ISO 10303-21. It is
an ASCII file format used to exchange IFC between different applications.

STEP (Standard for the Exchange of Product model data) is a standard containing
a set of rules for integration, representation and data-sharing and it is formalized
by the specific ISO 10303. From a technical point of view, one of the advantages
of STEP is its ability in supporting several protocols within a whole structure;
every protocol contains a diagram, which describes the operations needed to
pursue the target, and a model of requirements, that shows the infos required
for that activities. Today the main advantage of STEP is its capacity of sharing
project data as solid models; it has opened the path to the 3D data sharing that
evolved in the definition for example of the IFC standard.

EXPRESS is a standard data modelling language for product data and, as above-
mentioned, it is defined within the STEP specification, in ISO 10303 -11. It’s
fundamental, first of all, specify what are data models: they define data objects
and relationships among data objects for a certain domain of interest.
In light of this, we can give a proper definition of what is EXPRESS language: it
provides for the modeling of data and data relationships with a very general and
powerful inheritance mechanism and it includes a full procedural programming
language which is used to specify constraints on data instances. The mechanisms
it provides for defining the types of object and their properties, that will be used

Standard for the Exchange
of Product metal data

EXPRESS data modelling
language

65

in a given data set, and the constraints to which those objects should conform,
are far richer than other exchange formats.
EXPRESS is therefore a language designed specifically to represent aspects of
product data through schemas and constraints; it is not a programming language,
although it was influenced by several programming languages. EXPRESS data
schemas have two most common representations: a lexical and a graphical. The
lexical form is stored in ASCII files, similar to many programming languages, and
so looks like a plain text files. The language elements are formed into a stream of
text, divided into physical lines, using a limited character set and defined special-
purpose syntax. A physical line is any number (including zero) of characters
ended by a newline.
The graphical representation of EXPRESS is called EXPRESS-G. It is a graphical
modelling notation developed within STEP and used for IFC definition. It is used
to identify classes, the data attributes of classes and the relationships that exist
between classes and consists of semantically defined symbols comprised primarily
of boxes, lines and small circular arrowheads. EXPRESS-G is directly related to the
EXPRESS data definition language and everything is drawn in EXPRESS-G can be
defined in EXPRESS; however, not everything that can be defined in EXPRESS
can be drawn in EXPRESS-G. One of the advantages of using EXPRESS-G instead
of EXPRESS is that the structure of a data model can be explained in a more
understandable manner.

Syntax

The most generic element of the EXPRESS schema is declared using the SCHEMA
keyword; within a SCHEMA various datatypes can be defined together with
structural constraints and algorithmic rules. A schema is a collection of entities
(or classes), attributes, and relationships between entities. It defines the patterns
or templates by which populations of these entities and relationship shall be
represented. Such a schema is often called a Product (Data) Model (as opposed
to a populated data model). A model is a population of a schema, following
the patterns, templates and constraints stipulated by the schema. It contains
the actual instances of the entities (or classes). Such a model is often called
a populated data model, a project data model, a building information model
(if content is construction industry specific. An IFC exchange file represents a
building (information) model.

Datatypes can belong to different categories, related into a hierarchical structure.
In the following lines are shown these different datatypes categories, combined
with the respective EXPRESS-G representation. This specification is useful in order
to understand correctly the graphical representation reported during the study

EXPRESS-G

Datatypes

66

and the analysis of the different IFC classes and the definition of the relationship
between them.

• Entity data type: This is the most important datatype in EXPRESS.
Entity datatypes are what we are mostly interested for and are also known
as CLASSES. They can be related in two ways, in a sub-supertype tree and/
or by attributes.

• Enumeration data type: Enumeration values are simple strings such as
red, green, and blue for an rgb-enumeration. An enumerated data type
provides for a range of possible values which the attribute may have
described in an enumeration list. The attribute may only take one value
from the possible range. It is shown as a rectangular box with dashed lines
and a double vertical bar to the right. The name given to the enumeration
is written in the box.

• Defined data type: This further specializes other datatypes (for
example it define a datatype positive that is of type integer with a value >
0). A defined data type is used to take the place of a simple data type and
is used to make the meaning of the model clearer. An organization may
have a description which could take the form of a simple STRING data type.
However, it might be more appropriate to make a data type called ‘text’
which could be used for the description. A defined data type is shown in
EXPRESS-G as a rectangular box using dashed lines and the name given to
the type written in the box.

• Select data type: Selects define a choice or an alternative between
different options. Most commonly used are selects between different
entity types. More rare are selects that include defined types. In the case
that an enumeration type is declared extensible, it can be extended in
other schemas. A select data type enables the choice of which direction to
follow in the model; in effect, select the class to be used for a purpose. In
this sense, it is similar to a supertype/subtype and its construction in
EXPRESS-G looks similar. A select is shown in EXPRESS-G as a rectangular
box using dashed lines with a double vertical bar at the left hand end and
the name given to the type written in the box.

• Simple data type: is the atomic parts of EXPRESS and EXPRESS-G; that
is, it cannot be subdivided into anything smaller. A simple data type is
shown as a solid rectangular box with a double vertical line at the right
hand side of the box. The actual name of the data type is enclosed within
the box.

 · String: This is the most often used simple type. EXPRESS strings
can be of any length and can contain any character (ISO 10646/
Unicode).

Fig. 3–24 - EXPRESS-G
representation of Entity

Datatype

Fig. 3–25 - EXPRESS-G
representation of

Enumeration Datatype

Fig. 3–26 - EXPRESS-G
representation of
Defined Datatype

Fig. 3–27 - EXPRESS-G
representation of Select

Datatype

Fig. 3–28 - EXPRESS-G
representation of Simple

Datatype

67

 · Binary: This data type is only very rarely used. It covers a number
of bits (not bytes). For some implementations the size is limited to
32 bit.
 · Logical: Similar to the boolean datatype a logical has the possible

values TRUE and FALSE and in addition UNKNOWN.
 · Boolean: With the boolean values TRUE and FALSE.
 · Number: The number data type is a supertype of both, integer

and real. Most implementations take uses a double type to represent
a real_type, even if the actual value is an integer.
 · Integer: EXPRESS integers can have in principle any length, but

most implementations restricted them to a signed 32 bit value.
 · Real: Ideally an EXPRESS real value is unlimited in accuracy and

size. But in practise a real value is represented by a floating point
value of type double.

• Aggregation data type: The possible kinds of aggregation types are
SET, BAG, LIST and ARRAY. While SET and BAG are unordered, LIST and
ARRAY are ordered. A BAG may contain a particular value more than once,
this is not allowed for SET. An ARRAY is the only aggregate that may contain
unset members. This is not possible for SET, LIST, BAG. The members of an
aggregate may be of any other data type. SET and LIST, finally, are the most
used in the EXPRESS language.

 · ARRAY a fixed size collection of things with order represented as
A[1:?].
 · BAG a collection of things with no order and allowed duplication

represented as B[1:?].
 · LIST a collection of things with order and no duplication

represented as L[1:?].
 · SET a collection of things with no order and no duplication

represented as S[1:?].
The first character in square parentheses in an aggregation is the minimum
possible value. The second character is the maximum possible value and may be
either a number or the “?” character which means “indeterminate”.

For what involves the relationship between datas, there are many things to say.
First of all it’s necessary to specify that everything’s related to a class is considered
to be an attribute or data member. Attributes may be either mandatory or
optional. Mandatory means that whenever is declared an instance of the class,
a value of that attribute must be given. Optional means that a value may be
given but that it is not necessary. Mandatory relations are represented through a
solid line between class and attribute. On the other hand, optional relations are
shown by a dashed line between class and attribute. The name of the relation is

Attributes

68

written above the line, without the use of the space character, and a circle shows
the primary direction of the relation.

Fig. 3–29 - EXPRESS-G representation of Attribute

Another important concept to notice is that the relations automatically create
a supertype/subtype structure in which the attributes are subordinated to
a inheritance mechanism. EXPRESS allows for the specification of entities
as subtypes of other entities, where a subtype entity is a specialization of its
supertype. This establishes an inheritance relationship between the entities in
which the subtype inherits the properties of its supertype. Considering the case
where there is a general specification for a class but that this is expanded by
particular characteristics of subtypes, for the layered element, wall, floor and
roof slab have already been indicated as subtypes. Each subtype has all the
characteristics of the layered element acquired by inheritance. However, each
subtype may have additional attributes. Supertype/subtype relations are a
special form due to this inheritance capability, and are represented by a double
thickness line.

Fig. 3–30 - EXPRESS-G representation of Subtyping

The last concept to analyse is the inverse relationship. If another entity has
established a relationship with the current entity by an explicit attribute, an
inverse attribute may be used to describe that relationship in the context of the
current entity. This inverse attribute may also be used to constrain the relationship
further. An inverse attribute declaration also names an explicit attribute of the
referencing entity.

IFC model classes breakdown

The IfcRoot is the most abstract and root class for all IFC entity definitions and
the common supertype all all IFC entities. All entities that are subtypes of IfcRoot
can be used independently. The IfcRoot class, in addition, assigns the globally
unique ID, the ownership and the history information to the entity.
There are three fundamental classes in the IFC model, which are all derived from
IfcRoot:

Supertype/subtype

Inverse relationship

IfcRoot and fundamental
classes

69

• IfcObjectDefinition: captures all object occurrences and object types;

• IfcPropertyDefinition: captures dynamically extensible property sets;

• IfcRelationship: captures relationships among objects.

Fig. 3–31 - IfcRoot and fundamental classes

Once defined the main structure of the IFC model, it’s fundamental to analyse
the different occurrences, which are the fundamental part and also the concrete
final output of the project matter of this thesis.
All the occurrences and all their types are gathered within the IfcObjectDefinition
class, that is the is the generalization of any semantically treated thing or process.
Types are, in turn, gathered in the IfcObjectType class. Types are grouping of
objects with a common definition of representation and properties.
IfcProduct is the root class for all physical objects and is subdivided into: spatial
elements, physical elements, structural analysis items and other concepts.
Products may have associated materials, shape representations, and placement
in space.
Going into a more detailed decomposition of the IfcObjectDefinition hierarchical
tree, we can also analyse the IfcElement class which include all components that
make up an AEC product.

Fig. 3–32 - Objects, products and elements definition

The spatial structure of a building project can be described as “breakdown of
the project model into manageable subsets according to spatial arrangements”.
That means it is created by using the decomposition relationship as described
in the image next, in which the involved instances are connected with the
IfcRelAggregates subtype and create a hierarchical structure. The classes
which compose the spatial structure are: IfcProject, IfcSite, IfcBuilding and
IfcBuildingStorey. It is important to notice that only the IfcProject, IfcBuilding and
IfcBuildingStorey are mandatory entities, while the IfcSite represent an optional
level in the spacial structure. These classes all belongs to the IfcObject supertype.

Objects, products and
elements

Spatial structure and
space elements

70

Fig. 3–33 - Mandatory
and optional (in grey)
levels of the spatial

structure

Every IFC exchange file has inside the presence of one and only IfcProject
instance. The IfcProject’s main purpose in an exchange structure is to provide
the root instance and the context for all other information items included and to
establish also the context for information to be exchanged or shared, and it may
represent a construction project but does not have to.
It has a several functions in the IFC model: the first one is to establish the context
of all representations within the project, the second one is to relate, as the
uppermost container class, to all products, also the highest spatial container
class instances (as IfcSite or IfcBuilding).
The IfcSite instance is used to give further information about the building site,
such as geographical coordinates and address, and a geometrical representation
of the surrounding terrain. The geometrical placement of the site, defined by the
IfcLocalPlacement, shall be always relative to the spatial structure element, in
which this site is included, or absolute, referring to the world coordinate system,
as established by the geometric representation context of the project.
The building, represented by the IfcBuilding class, is used to issue additional
information about the building itself. A building may range over several connected
or disconnected buildings. A building can also be eventually decomposed in
parts, where each part identifies a building section.
The IfcBuildingStorey instance is used to provide information about the building
storeys, described as a horizontal aggregation of spaces that are vertically bound
provided with an elevation information.

Geometries

The first informations about the geometry and the spatial placement of the

71

element in the IFC model derives directly from the IfcProject instance, through the
IfcRepresentationContext and his subtypes IfcGeometricRepresentationContext
and IfcGeometricRepresentationSubContext. These classes define the context
to which all the shape representations of products relate through their
IfcRepresentation instance. In particular, in the IfcRepresentationContext we
can find information about the World Coordinate System, the precision of the
measurements and the true North direction.
The other information about the geometry and the position of the elements
derives from the IfcProduct instance of that same product. Every object in the IFC
file that derives from IfcProduct, in fact, can have geometric representations. Any
object in IFC that has a geometric representation needs to have a value for the
two attributes, inherited from IfcProduct: ObjectPlacement and Representation.

The ObjectPlacement attribute gives, through the IfcObjectPlacement
information about the placement of the element in the spatial context, which
can be of three different types:

• Absolute: relative to the World Coordinate System;

• Relative: relative to the placement of another product;

• Constrained: relative to grid axes.
In particular, referring to the spatial structure of the IFC model previously
analyzed, it’s important to notice that only the IfcSite instance has to be placed
absolutely (referring so only to the World Coordinate System declared within the
IfcProject); IfcBuilding, on the contrary, shall be placed relatively to the IfcSite
placement and in the same way IfcBuildingStorey instance is relative to the
IfcBuilding container placement.
Regarding to the specific geometric elements contained in the IFC model (which
can all relate to the generic class of IfcElement) we can individuate two different
way of placing them in the spatial context relatively to:

• The local placement of its container (normally to the IfcBuildingStorey
to which is associated;

• The local placement of the IfcElement to which is constrained.
The placement of the IfcProduct is ruled by the IfcLocalPlacement (for the first
case) and the IfcGridPlacement (for the second one) subtypes. In the first case
the RelativePlacement attribute leads to the IfcAxis2Placement2D and the
IfcAxis2Placement3D Select Datatype, that gives the geometric placement and
the axis direction for the concerned object. In the second case the definition of
the placement is relative to the intersection of two grid lines (IfcGridAxis) within
the same grid.

/* Definition of the world coordinate system */
#1=IFCGEOMETRICREPRESENTATIONCONTEXT($, ‘3Dmodel’, 3, 1.0E-05, #2, $);

Object placement

72

#2=IFCAXIS2PLACEMENT3D(#3, $, $);
#3=IFCCARTESIANPOINT((0.0, 0.0, 0.0));
/* Definition of the local absolute coordinate systems */
#4=IFCLOCALPLACEMENT($, #7);
#7=IFCAXIS2PLACEMENT3D(#10, $, $);
#10=IFCCARTESIANPOINT((3.8, 1.4, 0.0));
#5=IFCLOCALPLACEMENT($, #8);
#8=IFCAXIS2PLACEMENT3D(#11, #16, #17);
#11=IFCCARTESIANPOINT((1.2, 1.4, 0.0));
#16=IFCDIRECTION((0.0, 0.0, 1.0));
#17=IFCDIRECTION((0.96592, 0.25881, 0.0));

Fig. 3–34 - Definition of IfcObjectPlacement

The Representation attribute leads first of all to the IfcProductRepresentation
subtype, which is the container for all representations of the same product.
It’s possible in fact for a product to have different graphical representations, all
grouped in the IfcProductRepresentation box. A product can have one or various
geometric representations, and a single geometric representation can be shared
among multiple products.
Each IfcProductRepresentation has to have at least one IfcRepresentation subtype,
which defines the general concept of representing product properties through
the use of two attributes: RepresentationType, used to declare the geometric
model used for the shape representation, and RepresentationIdentifier, which
denotes the part of the representation captured by the IfcShapeRepresentation.
The IfcShapeRepresentation represents the concept of a particular geometric
representation of a product or a product component within a specific geometric
representation context. The most used representation types are listed below:

• Curve2D: 2 dimensional curves;

• GeometricSet: points, curves, surfaces (2 or 3 dimensional):
 · GeometricCurveSet: points, curves (2 or 3 dimensional);
 · Annotation2D: points, curves (2 or 3 dimensional), hatches and

text (2 dimensional);

• SurfaceModel: face based and shell based surface model;

Example of IfcLocalPlacement schema

Representation

73

• SolidModel: including swept solid, Boolean results and Brep bodies
more specific types are:

 · SweptSolid: swept area solids, by extrusion and revolution;
 · Brep: faceted Brep’s with and without voids;
 · CSG: Boolean results of operations between solid models, half

spaces and Boolean results;
 · Clipping: Boolean differences between swept area solids, half

spaces and Boolean results;
 · AdvancedSweptSolid: swept area solids created by sweeping a

profile along a directrix.

Fig. 3–35 - Definition of IfcProductRepresentation

Properties

The single properties can be distinguished between:

• Statically defined properties: they are declared through their own
entity type and the meaning of the properties is defined by the name of
the explicit attribute.

• Dynamically extendable properties: they define properties for which
the IFC model only provides a kind of “meta model”, specified within the
IfcProperty class. This means no entity definition of the properties exists
within the IFC model. The declaration is done by assigning a significant
string value to the “Name” attribute of the entity as defined in the entity
IfcPropertySet and at each IfcProperty, referenced by the property set.

A Property of the second category must belong to one of the following
IfcSimpleProperty, represented in the image below.

Properties

74

Fig. 3–36 - Definition of IfcProperty

Properties are stored in Property Sets and every Property Set exists only
if it contains at least one Property. All Property Sets are a subtype of the
IfcPropertySetDefinition class, which is an abstract supertype of property sets,
including:

• Statically defined property sets: declared using their specific class
name.

• Dynamically defined property sets: declared through the generic
IfcPropertySet class;

IfcPropertySet is a container class that holds properties within a property tree,
interpreted according to their name string attribute. As the name itself explains,
this entity is a SET aggregation data type, that means the order of appearance of
the attributes isn’t important.

Some Property Sets have predefined instructions on assigning significant name
to their attributes, according to an explicit specification released by the IAI.
That’s because, since there are numerous alphanumeric attribute definitions
depending on discipline, life-cycle stage, building regulation and region, there
will never be a complete set of internationally standardized attributes. However,
the IAI intent to standardize a basic set of properties, by releasing an external
Property Set Definition Schema (PSD Schema) in which are defined a great
number of Pset elements. These consists of a list of pre defined attributes and
are identifiable by a specific and encoded name. The naming convention “Pset_
Xxx” applies to those property sets and shall be used as the value to the Name
attribute.
Are listed below two examples of these particular Pset, which gather together

Property Sets

Property Set Definition
(PSD) Schema

75

the properties of a kind of wall and one of door:

• Pset_WallCommon: Reference; AcousticRating; FireRating;
Combustible; SurfaceSpreadOfFlame; ThermalTransmittance; IsExternal;
ExtendToStructure; LoadBearing; Compartmentation.

• Pset_DoorCommon: Reference; FireRating; AcousticRating;
SecurityRating; IsExternal; Infiltration; ThermalTransmittance ;
GlazingAreaFraction; HandicapAccessible; FireExit; SelfClosing; SmokeStop.

The names and the related attributes of these Pset are reported in the IFC model
respectively as the Property Sets’ name and as the single property name.

#6341= IFCPROPERTYSINGLEVALUE(‘Reference’,$,IFCIDENTIFIER(‘Muro di
base:INT10’),$);

#6342= IFCPROPERTYSINGLEVALUE(‘LoadBearing’,$,IFCBOOLEAN(.F.),$);
#6343= IFCPROPERTYSINGLEVALUE(‘ExtendToStructure’,$,IFCBOOLEAN(.T.),$);
#6344= IFCPROPERTYSINGLEVALUE(‘IsExternal’,$,IFCBOOLEAN(.F.),$);
#21110= IFCPROPERTYSINGLEVALUE(‘ThermalTransmittance’,$, IFCTHERMALTRAN-

SMITTANCEMEASURE (4.09259259259259),$);
#21111= IFCPROPERTYSET(‘0vqduHLff0k9GtsQSzjiBl’,#41,’Pset_WallCommon’,$,(#63

41,#6342,#6343,#6344,#21110));

Property sets, defining a particular type of object, can be assigned in three
different ways:

• Relating of an object type, for which a set of properties is defined. This is
done though assigning an IfcTypeObject (through the IfcRelDefinesByType
relationship) to a single or multiple object occurrences;

• Sharing a standard set of values defined in an IfcPropertySet (or any
other subtype of IfcPropertySetDefinition) across multiple instances of
that class (through the IfcRelDefinesByProperties relationship);

• Defining different property values within a private copy of the
IfcPropertySet for each instance of that class.

The IfcTypeObject instance is attached to an object using the relationship class
IfcRelDefinesByType. This allows for the object and the IfcTypeObject to exist
independently and for the IfcTypeObject to be attached to the object when
required. An advantage of using the relationship class is that the object does
not contain any references to property set definitions if none are needed. Use
of the relationship class also allows the IfcTypeObject to be attached to one or
many objects. That is, many objects may share a single IfcTypeObject with its
contained property set definitions if required.

Both, statically and dynamically defined property sets are attached to an
object using the relationship class IfcRelDefinesByProperties. This allows

Example of Pset application exportation in the STP File

Properties assignments
mechanisms

Type Object attachment

Property Set Definition
attachment

76

for the object and the property definition to exist independently and for the
IfcPropertySetDefinition to be attached to the object when required. An
advantage of using the relationship class is that the object does not contain any
references to property set definitions if none needed. Use of the relationship
class also allows the property set definition to be assigned to one or many
objects. That is, many objects may share a single property set definition with
common values if required.

Fig. 3–37 - Properties attachment

The question about the material properties follows a separate path. Above all
is fundamental to notice that the only elements in the IFC model that have
this kind of information are those belonging to the IfcElement class (subtype
of IfcProduct). Those elements are associated to the IfcMaterialSelect Select
Datatype through the IfcRelAssociatesMaterial relationship. At this point, the
IfcElement instance is redirected to one of the following classes:

• IfcMaterial (to be used in case of one single solid material);

• IfcMaterialList (for multiple material elements when precise structure
is not specified);

• IfcMaterialLayerSetUsage (for layered elements, where the structure
is specified).

An important consideration useful for the development of the present project is
the exportation of the chromatic representation of the materials, that is made
possible by the IfcColourRGB entity, which is associated directly to IfcElement
geometry and, especially, his surface representation. This entity gives the
coordinates of the RGB colour map (e.g.: the white colour must have coordinates
1,1,1).

Material properties
association

77

 3.3.3.2. Personalization of the ex-
portation: creating a standard

 3.3.3.2.1. Preliminary operations on Re-
vit

The exportation in the IFC format starts with a proper planning from the Revit
model.
The first step in this preliminary procedure is the setting of a specific project view
in which we are going to hide all the objects and occurrences we don't want to
include in the file exportation. For this scope it has been preferred a 3D view,
for the possibility of having a better control over the global visualization of the
project, monitoring in the same time the object placed in all the different levels.
This view has been called "IFC_vista3D".
Firstly it has been made a selection of the visible objects throughout the visibility
filter, hiding the categories we don't want to see in the view, according to what's
declared in "3.2. Planning phase". It's very important to admit the visualization
of the masses since they have a key role in the final visualization.
Once we made this step, it may be necessary to do an additional filtering by
selecting single instances in the view and hiding them by the "Hide in view"
function, accessible by right-clicking on the element.

Fig. 3–38 - Revit's browser view of the 3D IFC-
dedicated view

This procedure it's useful to take under control the elements visible and then
exportable contained in the view, in order to check the absence of certain
objects or the unnecessary presence of other ones. This involve the creation of a
IFC model containing only useful elements, simplified and lightened for a easier

Views setting

78

manageability.

The second step in the preliminary part of the IFC exportation is the creation
of many project-dedicated schedule views in Revit. This choice is due to the
necessity of having a better control over the properties exportation and a
lightening of the informations load of the IFC model. These schedules have all
the same codification, which includes in order:

• The "IFC_abaco" identifier;

• The specification of the Level of Detail (LoD) for which that schedule it
was made;

• The category of objects to which the schedule is dedicated.

This procedure is due to the necessity of easing the reading of the IFC file,
making a preliminary selection of which parameters we want to export for each
category of objects and a classification focused on declaring the LoD to which
those attributes are dedicated.
The possibility of gathering in schedules just the attributes we want to export,
gives the opportunity to pore only over the information useful for the exportation
model, checking in this way if all the fields in the schedule are correctly filled.
The exclusion of the unnecessary attributes is allowed by the correct setting of
the IFC export parameters, as explained later in the following paragraphs.

#6348= IFCPROPERTYSINGLEVALUE('Famiglia',$,IFCLABEL('Muro di base: INT10'),$);
#6349= IFCPROPERTYSINGLEVALUE('Tipo',$,IFCLABEL('Muro di base: INT10'),$);
#6350= IFCPROPERTYSINGLEVALUE('Area',$,IFCAREAMEASURE(53.0250000000041),$);
#6351= IFCPROPERTYSINGLEVALUE('Volume',$,IFCVOLUMEMEASU-

RE(5.27487899999875),$);
#6352= IFCPROPERTYSINGLEVALUE('Vincolo di base',$,IFCLABEL('Livello: XPTE'),$);
#6353= IFCPROPERTYSINGLEVALUE('Vincolo parte superiore',$,IFCLABEL('Livello:

XP01(-1)'),$);
#6354= IFCPROPERTYSINGLEVALUE('Altezza non collegata',$,IFCLENGTHMEASU-

RE(3.5),$);
#6355= IFCPROPERTYSET('2rVmLy71PEzvENrR026qaD',#41,'IFC_abaco_LoD2_muri',

$,(#6348,#6349,#6350,#6351,#6352,#6353,#6354));

Schedules setting

Example of customized schedule exportation as IfcPropertySet

79

Fig. 3–39 - Revit's browser view of the list
of schedules

 3.3.3.2.2. “IFC export options” manage-
ment

Once we have set correctly the view and the schedules we can start customizing
the exportation parameters, starting from the creation of a IFC Mapping file. The
file is a simple tabbed text file that contains three entries per line:

• Revit category: declares the Revit family contained in the model;

• IFC class name: declares the class to which convert the Revit family;

• IFC type: declares the subcategory of the previously mentioned IFC
class.

For standard building elements, an assigned class name appears in the IFC Class
Name column. For building elements that do not have automatic mapping to
IFC export classes, the value displayed in the IFC Class Name column is "Not
Exported". If the values for a category or subcategory are blank, Revit will try to
determine the appropriate category. If a match cannot be found for an object
that has geometry, it is exported as a proxy object.

IFC Mapping file

80

Fig. 3–40 -  IFC Export Classes dialog panel

The first thing to do is so to map the generic family instances to IFC containers,
making a selection of the element we want to export and assigning them to the
most convenient IFC class, taking care about the list of the IFC classes supported
by Revit. At the same time we can fill with "Not exported" if we don't want to
export those Revit elements.
This procedure may seem redundant if we look at the procedures made in the
creation of the "IFC_vista3D" view, because we already did in that moment
a selection of exportable and non exportable objects. But in that case the
operation was made in order to have a graphical result of the geometries we
want to convert.
In this case the IFC Export Classes dialog panel doesn't give a graphical
representation of the final result, but it allows to make a greater step in the
creation of a standardised exportation. In fact, once we have completed the
assignment procedure, we can save all the changes into a new IFC Mapping file
and this file will work as a fundamental document in this context, since it can be
shared between different users and applied to multiple projects, which will be
exported in the same way.
In this case all the changes have been saved in the "Set_esportazione" IFC
mapping file.

 IFC Export Classes dia-
log panel

Fig. 3–41 - IFC
mapping file

81

 3.3.3.2.3. "IFC export parameters" man-
agement

Once we made all the association between Revit families and IFC containers, we
can start customizing the exportation parameters. To do this it's necessary to
make a selection of many features offered by the IFC Export plug-in software.
In the interests of providing fuller information, we must notice that the Revit
software itself has a IFC export feature, but it doesn't offer a great choice of
personalization.
The plug-in, even if it was already installed with the standard Revit package,
downloaded from the Autodesk site, it has been replaced with a newer version,
more updated, since there were different features added in the newer one which
are very useful for the scope of the project. The current version used is the IFC
for Revit 2016 (v16.5).
The plug-in is accessible by clicking in the "R" home icon of Revit and then on
"Export". Clicking on "IFC" the plug-in window, visible in the image below, opens
automatically.

Fig. 3–42 - IFC Export main panel

In the left-upper part it's possible to chose between many standard setups.
These built-in setups, when selected, involve a pre defined selection of the
different options editable, and they cannot be modified or deleted, but they
can be duplicated in order to create a modified version. The “In-Session Setup”
is a modifiable setup which will not be saved between sessions but it admits a
complete and free configuration of the options. We can add additional named
setups using the "Setup Configuration" dialog box using the New or Duplicate
options. These configurations will be added to the active document and saved

82

with the document. We can also rename and delete named setups from this
dialog.
According to this, it is evident the potentiality of this tool in the perspective
of the creation of a standardized exportation. For this reason we made some
cautious choices in the editing of the different options that are visible in the
images below. All these customised configurations are all gathered and saved in
a project-dedicated new setup called "Setup_TESI", in order to attach it to the
Revit project and share it between different similar projects.

Fig. 3–43 - IFC export-setup panel, tab 1

The tab represented above is very important for the management of the
geometries. It's important first of all to choose the correct IFC version and file
type. The IFC standard selected is the "IFC 2x3 Coordination View 2.0", since it
is the most accurate version of the IFC 2x3 native standard, while the file type
selected is obviously "IFC", which corresponds to the creation of a IFC-SPF ("IFC
Step File").
Its important to select the first box "Export only elements visible in view", and
for this reason in also fundamental to open the IFC Export plug in only after we
have opened and visualized the "IFC_vista3D" view we've created as described
in the previous paragraph.

83

Fig. 3–44 - IFC export-setup panel, tab 2

This second tab is fundamental in order to manage the exportation of the
informations included in the Revit model. In fact, since we made the preliminary
operation of editing schedules described in the previous paragraph, we are
interested in exporting only the informations included in these ones. For this
reason we must check the "Export schedules as property sets" and the "Export
only schedules containing IFC, PSet or Common in the title". By this way, the
only information that will be exported are those contained in the schedule views
created expressly for this scope and those described as "Base quantities". Base
quantities are generated from model geometry to reflect actual physical quantity
values, independent of measurement rules or methods.

Fig. 3–45 - IFC export-setup panel, tab 3

Once we have created and saved the correct exportation setup, returning to the
IFC Export main panel, we can see in the lower part the "Assignements..." Box.
Clicking on it its possible to attach some fundamental informations to the IFC file.
These informations are not internal to the IFC Model but are simply exported
with it, attached as notes.

84

Fig. 3–46 - IFC export-assignments panel

 3.3.3.3. IFC model analysis

 3.3.3.3.1. Geometry monitoring with BIM-
Vision

The result of this exportation can be checked using a IFC viewer. This step allows
to check the effective and correct exportation of the geometric representation
and the properties attached to the object.
On internet there is a diverse choice between different IFC viewers, some
freeware, other with property formats.
In this case we chose BIMVision, a freeware IFC model viewer. It allows to
view the virtual models coming from CAD systems like Revit, without necessity
of having commercial licenses of these systems or having each of particular
vendor’s viewer. It has also many built-in features and is the first viewer with
plugin interface. BIM Vision visualizes the BIM models created in IFC format 2×3
and his successive upgrades such as the "Coordination view 2.0" used among

85

this project.
In the main frame its there is the 3D viewer and in the right side we have the file
browser and below the property viewer. In the upper part, different tabs allows
to edit the object visualization or customize the user interface.

Fig. 3–47 - BIMVision interface

 3.3.3.3.2. Properties monitoring with Ifc-
QuickBrowser

Once checked the geometrical exportation of the IFC model we can start analysing
it by a data point of view.
The IFC exchange file exported is a simple text document and so it is very easy to
open and read it. But, due to its high complexity and the difficulty to understand
the relations and the hierarchies between the different entities, we have to use
a software called IfcQuickBrowser which allows to face these difficulties.
The software looks divided in two halves:

• Main window: the upper half displays the IFC model as it's exported.
Double clicking on a string, if there any subtype attached to this line, these
will appear on a tree disposition;

• Inverse window: the lower half displays the supertypes relative to the
line selected in the main window. Double clicking on a string in the inverse
window, if there any subtype attached to this line, these will appear on a
tree disposition. Double right-clicking on a string, it will be highlighted the
same entity but in the main window.

86

IfcQuickBrowser offers also a simple "Search" feature useful to control the
effective exportation of a specific element or to navigate in the model filtering it
with a specific keyword.

Fig. 3–48 - IfcQuickBrowser interface

The use of this specific software has proved to be fundamental to understand
the great complexity and variety of elements exported from Revit to the IFC. The
IFC standard used to exchange files in this project is the "IFC 2x3 Coordination
view 2.0" which presents itself a remarkable reduction and simplification of the
IFC entities number from 653 to 329, compared to the IFC 2x3 original standard.
Beyond that, IFC is a very intricate exchange format and we must have well in
mind his structure in order to not get lost between his code lines and to not
waste time analysing useless informations.
To impose a filter over the multitude of IFC's informations of the building
model, is also needed a general knowledge of the Revit model structure ad
its nomenclature, in order to easily recognise in the IFC exchange format
some specific entities and their relevance in the development of the standard
definitions.

87

 3.3.4. Connections between Revit mod-
el and exchange models

 3.3.4.1. Elements' identifiers

A GUID is a 128 bit number, commonly split up into several fields of varying
lengths and written in groups of 8-4-4-4-12 hexadecimal characters, i.e. 32
characters to represent the 16 bytes or 128 bits.
On the other hand, we have the Revit UniqueId. Every element has such a
unique identifier, which is returned through the model as a string. This string is
formatted in groups of 8-4-4-4-12-8 hexadecimal characters. It is thus similar to
the standard GUID format, but has 8 additional characters at the end. These 8
additional hexadecimal characters are large enough to store 4 bytes or a 32 bit
number, which is exactly the size of a Revit Element ID.

In the gbXML tree structure, the CADObjectId element is used to map unique
CAD object identifiers to gbXML elements. Since every Surface element own a
CadObjectId sub-element, it allows external tools to read results from a gbXML
file and map them to their Revit objects.
This element contains a text string reporting the name of the Revit's type of
object and, at the end, into square brackets, a sequence of 8 decimal characters
representing the Revit element ID.

According to a detailed analysis of the IFC model made through IfcQuickBrowser,
it is possible to individuate many connections between the objects contained in
the Revit model and the IFC entities.
Once an IFC instance is created, it's fundamental that it can be uniquely identified
for its entire lifecycle, in order to guarantee the ability to both exchange and
archive data in the IFC model.
The IfcGloballyUniqueId is an IFC defined type that is a fixed length string value,
created to contain this value as a compressed Globally Unique Identifier (GUID).
The IFC2x specifications contains a public domain algorithm that can be used to
create, compress and decompress these values.
For file-based data exchange, a methodology was devised to compress these
GUIDs to conserve space when physically exchanging IFC models through various
media. Given that each IFC object instance required a unique identifier containing
a 128-bit number, a base 64 character encoding was devised as shown below:

Revit's GUID, UniqueID
and Element ID

gbXML's CadObjectId
element

IfcGloballyUniqueId
attribute and element ID
in the IFC model

88

Fig. 3–49 - IFC-GUID Base-64 character encoding mapping

The resulting IFC-GUID is a fixed 22 character length string. Software
implementations will need to use an algorithm that converts standard GUIDs to
and from this encoding for compliance with the IFC specifications.

That said, the IFC GUID is also unique across sessions. This is one of the
requirements of IFC. If I export a wall in one session via IFC, close the session,
reopen the document, and reexport, the GUID remains the same for that wall,
and should be different from any other wall's GUID.
Every time an IFC instance is created, this algorithm must be used to create a
new IfcGloballyUniqueId. Re-use of an IfcGloballyUniqueId, even if the local
instance is deleted, is strongly discouraged due to the inability to ensure that
remote instances do not exist.

In the IFC model, it's also possible to have a reference about the Revit Element
ID, which is contained two times in the attributes' set of every IfcBuildingElement
entity in the model: once contained in the Revit's name string attribute after
commas and suddenly as a specific standalone attribute.

 3.3.4.2. ID references' checking

To begin this procedure we can start picking from the gbXML file a generic
Surface element and extrapolate, from its CadObjectId, the 8 characters number
contained into square brackets. In this case it has been selected a InteriorFloor
type of surface and its CadObjectId declares the link with the "Pavimento:INT35"
family and type of ceiling created on Revit.

<Surface surfaceType="InteriorFloor" constructionIdRef="aim7262" id="aim8841">
 <AdjacentSpaceId spaceIdRef="aim0854" />
 <AdjacentSpaceId spaceIdRef="aim3643" />
 <RectangularGeometry id="aim8842">
 (...)
 </RectangularGeometry>
 <PlanarGeometry>
 <PolyLoop>
 (...)
 </PolyLoop>
 </PlanarGeometry>
 <CADObjectId>Pavimento: INT35 [866472]</CADObjectId>
 <Name>T-9-52-I-F-73</Name>
 </Surface>

Direct checking through
the exchange models

89

The 8 characters number highlighted in red is the Revit Element ID described in
the previous paragraph. Now we can check if this code is declared also in the IFC
exchange model and to do this we can make a simple search operation, opening
the IFC model as a text file with Ifc Quick Browser.

#59127= IFCSLAB('3FcsL$BIf1uvPP9o0OO$tS',#41,'Pavimento:INT35:866472',$,'Pa-
vimento:INT35',#59056,#59125,'866472',.FLOOR.);

The result is positive since it gives us the correspondence with a IfcSlab entity,
belonging to the same Revit family declared in the gbXML's CadObjectId.
Furthermore, the IfcSlab entity class declares firstly an attribute, highlighted
in green above, which coincides with the IfcGuid described in the previous
paragraph.

The next step is to verify the presence and the coherence of these ID in the BIM
model using the Revit application.
We must first of all open the "IFC_vista3D" view created as described in "3.3.3.2.1.
Preliminary operations on Revit". Then, opening the Manage tab, we must click
on the "Select Elements by ID" tool.
A window will open, where it'd be possible to paste in the empty field, the
Element ID observed in the gbXML and IFC text files.

Fig. 3–50 - Revit's Select Elements by ID window

Automatically, the quested object is selected and, in order to highlight it from
the multitude of other elements present in the view, we can use the "Isolate
element" function selectable in the View Control Bar placed above in the main
window. The result will be the following.

Checking on Revit

90

Fig. 3–51 - Revit's Element ID checking using the Select Elements by ID command

In this way, we can verify that the object previously selected and analysed in the
gbXML and IFC models, is in fact a ceiling.
Looking at the Property panel of the selected object, we can check that it belongs
to the "Floor" family and to the specific "INT35" type, as declared in the previous
steps. In addition, we can also find in the panel the presence of a "IfcGUID"
parameter, automatically created in the "IFC Parameter" once the exportation
is done, which declares exactly the same 22 characters number, previously
highlighted with green text, corresponding to the IFC GUID analysed before.

Fig. 3–52 - IfcGUID checking in the Revit element's property

91

Once we have analysed the IFC model as a text file, we can verify graphically,
using BIMVision, if these ID references correspond and are correctly reported.
Taking in mind the position in the model of the ceiling involved and using the
tree map offered by the application, we can easily find and select the object in
question.
In the property panel in the right-bottom corner, we can find under the "Element
specific" grouping two properties, "Guid" and "Tag", which declares respectively
the IfcGUID and the Element ID.
Once we have isolated the selected object using the View controls, the interface
would appear like this.

Fig. 3–53 - IfcGUID and Element ID checking on BIMVision

 3.3.4.3. Advantages for the interop-
erability

These ID encodings and then the connections between the entities in the
different exchange models have been discovered and developed while mapping
the gbXML and IFC formats, and it was immediately clear that this aspect could
have a leading role in improving the communication and the interoperability
during along the workflow.
The importance of these sequences of letters, numbers and symbols stands in
the capability of representing, even if in various way, the same object with unique
and univocal names. While the Revit objects' naming declares only the family
or the type which the entity belongs, the previously analysed encoding refers

Checking on BIMVision

92

to specific objects inserted in the 3D model, enabling to track single building
elements and data along the interoperability process.
In this way it's possible con combine the information in the various models, in
order to attach them to the same single entity, giving it a limitless data richness
in the hypothesis of sharing a infinite BIM compatible exchange models.

In the limited case of the present project only two exchange models have been
used and analysed, but this give us the possibility of combine them in order to
find the more satisfying combination of geometries and data visualization.
The chart illustrated below represents a summary of the different ID numbers
used to allow the communication between the models.

Fig. 3–54 - Overview of the communication between Revit model and exchange models

93

 3.4. DIM phase

This final phase of this methodological workflow includes all the operations
necessary to import the BIM models to the GIS platform and finally reach the
proposed objectives.
The name of this phase refers to what introduced in "1.1. BIM/GIS interoperability",
because it is in this phase that we will finally combine the BIM models with the
GIS world, represented in this case by a virtual globe visualization, and verify the
effective interoperability between the two systems.
The starting point of this stage, is to define which virtual globe use as GIS platform
for this research. This decision, fallen upon the Cesium virtual globe, lead us in
addition to specify a particular way of 3D rendering specification (3DTiles) and
to adopt a specific 3D data exchange format (glTF) which are analysed more
accurately in the next paragraphs.

Fig. 3–55 - DIM environment definition

 3.4.1. Visualization on Cesium

 3.4.1.1. Introducing Cesium

Cesium is a JavaScript library for creating 3D globes and 2D maps in a web
browser, based on WebGL.
Cesium was founded by AGI (Analytical Graphics, Inc.) in 2011 as a cross-platform
virtual globe for dynamic-data visualization in the space and defense industries.
Since then, Cesium has grown into a 3D globe serving industries from geospatial
and oil and gas to agriculture, real estate, entertainment, and sports.
In 2017, Bentley Systems joined AGI, creating in this way the Cesium Consortium,
an organization where these two enterprises work arm in arm in the development
of the Cesium universe, accelerating and supporting its development and
sustainability.

Thanks to its WebGL foundation, Cesium is cross-platform and cross-browser,

Fig. 3–56 - Cesium logo

94

since it can be used from different devices, OS and web browsers. Cesium is
also open-source, so is free for commercial and non-commercial use, making
it completely different from a 3D globe like Google Earth based on proprietary
source codes. It differs from it also because it is not a complete application
targeted at end users. It requires programming to use and has a lot of potential
for customisation and user added content.

As specified in "1.2. Virtual globes", there are many virtual globes that could
theoretically satisfy our requirements. First of all, referring to what imposed when
we fixed our objectives, is the need to utilize a web based platform, in order to
work in a hardware free environment, obtaining in this way great improvement
in terms of visualization and sharing capabilities.
Secondly, we need to use a open source environment, in order to be application
free and allowed to customize the GIS environment for our purposes.
According to [34] these are the exclusive reasons to choose Cesium among the
other web based and open source contenders:

• Extensive collections of libraries: Cesium includes an extensive
collections of libraries, related to import data from multiple sources,
mathematical computations, creation of 3D geometries, camera and flight
control. Overall, it makes easier to work with complex 3D city models.

• Improved performance: Cesium works directly over WebGL, providing
hardware-accelerated graphics. Due to this reason, performance can be
significantly improved while handling large complex 3D city models.

• Ease of use: The development on Cesium is comparatively easy due
to well structured codebase and documentation. Each library is very well
explained with examples and tutorials. Cesium also includes an interesting
application called "Sandcastle" which provides live coding on the browser.

• Open source: Cesium is an open-source Javascript library. As it is free
for commercial and non-commercial use, it is possible to add new features
modify the existing features as per research's requirements.

• Active community: Cesium involves an active discussion forum,
discussing and working on several issues and improvement suggestions.
It also ensures a release every month, incorporating the issues and
suggestions, making it an up to-date tool.

• 3D GIS capabilities: Although the primary intention to develop Cesium
was the visualization of geo-spatial data, its wide collection of libraries
enables to perform various GIS analyses on the globe. Additionally, with
the help of WebGL, it is also possible to perform computationally intensive
algorithms on the globe.

95

 3.4.1.2. 3DTiles

 3.4.1.2.1. Introduction

3DTiles is an open specification for streaming massive heterogeneous 3D
geospatial datasets.
3D Tiles define a spatial data structure and a set of tile formats designed for 3D
and optimized for streaming and rendering. Tiles for 3D models use glTF, the
WebGL runtime asset format developed by Khronos, which the Cesium team
heavily contributes to. 3DTiles has been created for streaming massive geospatial
datasets where a single glTF model would be prohibitive, as for the current case
of representing a district with hundreds or thousands of building.

The name of this specification refers to the concept of
"tile", which represents its innovative core. 3DTiles has in
fact radically changed the way 3D scenes were buffered
and rendered in 3D GIS environment.
The concept of tile take its origins from the 2D
visualization, since it is the way maps are decomposed
in square regions that, according to the elevation of the
view, are loaded with different levels of detail.
3Dtiles is the innovative transposition of this concept
in the 3D visualization, in the sense that it's no longer a
simple plane square object, but has a 3D representation,
which can include inside several objects and "child" tiles.
The concept of subdivision of a 3D scene in tiles of different levels of detail, as
simplified in Fig. 3–58, is the real powerful engine of the 3DTiles specification,
since it's not strictly connected only to a pre defined parameter, for example,
of elevation but has inside a intelligence. In other words, we can customize the
3D scene's rendering dividing it in several tiles and child tiles, according to the
concepts of relevance and density of objects.

Fig. 3–59 - Subdivision of the scene in tiles and child tiles

Fig. 3–57 - 3DTiles
logo.png

Fig. 3–58 - Tiles' tree structure

96

In the image below it's possible to see in the Cesium 3D context the application of
this concept: when a tile is contained in the view, then the set of all the elements
contained inside it are streamed and loaded in the scene. When the tile can't be
included in the window, the 3DTiles specification ignore it and suddenly looks for
smaller tile, loading them as made before.

Fig. 3–60 - Tiles' representation on Cesium

This rendering mechanism can in this way bring many benefits in terms of
memory usage and loading time spreading.

Besides this important innovation, 3DTiles bring other attractive features which
allows a wide range of customization for interaction, such as highlighting on
mouse over, or removing a 3D building. Tiles can contain metadata for each
model to allow additional interaction, such as querying third-party web services
using a building ID.

 3.4.1.2.2. Syntax and structure

Syntax

JSON, or "JavaScript Object Notation", is a lightweight text-based open standard
designed for human-readable data interchange.
JSON's data organization is based on two data structures, which are fundamental
to support communicability and interoperability between the different
programming languages supported by JSON (C, C++, Javascript...):

JSON inheritance

97

• A collection of name/value pairs;

• An ordered list of values.

The first kind of structure, in JSON is represented by an entity called "object". An
object is an unordered serie of names / values; it starts with "{" and ends with
"}" symbols. Each name is followed by ":" preceding the "value" attribute and
different name-value pairs are separated by a comma.
A value can be of different kind: string in double quotes, or a number, or true or
false or null, or an object or an array. A string is a sequence of Unicode characters
wrapped in double quotes.
The second kind of structure is represented in JSON by "array" entities which
consists in a sequence of values separated by commas.
Here follows an example of a sequence of data storage in JSON's syntax.

{
 "book": [

 {
 "id":"01",
 "language": "Java",
 "edition": "third",
 "author": "Herbert Schildt",
 },

 {
 "id":"07",
 "language": "C++",
 "edition": "second",
 "author": "E.Balagurusamy",
 }

]
}

98

Fig. 3–61 - JSON's main entities definition

Structure

The structure of a 3DTiles scene's streaming is regulated first of all by a JSON
based text file called tileset.json.
This file is composed by a set of sub-objects which defines the tiles' visualization
and content. In particular, the "root" object specifies the characteristics of the
upper tile, describing with the "region" attribute its 3D perimeter and with the
"content" attribute the list of child objects contained inside. These objects can
be sub-tile objects (under the "child" attribute) or be referred, through the "url"
attribute to specific 3D models to be loaded when the current tile has to be
rendered.

These models are imported in the tileset.json file with the .b3bd extension, that
describes a particular 3D data asset for gathering in the same batch geometrical
informations and specific model metadata.
Analysing its byte-structured layout, it's possible to divide it in two sections:

• a "Header" part, where the "batchTableJSONByteLength" and the
"batchTableJSONByteLength" sections contains, respectively in JSON and
binary format, the metadata associated to the geometric entitites;

• a "Body" part, where the "Binary glTF" section gathers the 3D geometric
model.

This asset is very useful for representing in 3DTiles BIM based exchange models
as those we have exported from Revit in gbXML and IFC formats, so that we

tileset.json

Batched 3D model

99

can maintain the duality geometry-attribute, very important in terms of final
assesment of the interoperability process.

Fig. 3–62 - 3DTiles' files organization

 3.4.1.3. glTF format

 3.4.1.3.1. Introduction

glTF, which stands for "GL Transmission Format", is a 3D model exchange format
developed by Kronos Group.
Kronos Group is a non-profit consortium formed in 2000 that deals, among other
things, with the development of open 3D standards and specifications.

Its structure is based upon the COLLADA transmission format, which is
considered as one of the most advanced 3D asset interchange format, and it is
also distributed by Kronos Group.
COLLADA is a XML database schema for 3D assets and it can hold everything to
do with a virtual scene: geometries, animations, advanced materials and visual
effects, physical properties, etc.
glTF was born from the necessity of creating a asset transmission format for
rich native and Web 3D applications, which could connect the world of 3D
data exchange formats (which belongs to COLLADA) and that of 3D execution
platforms, in particular all the GL APIs (represented in this research by Cesium,
which is WebGL based).

glTF is considered as the "JPEG of the 3D" [43] for its great versatility and
compressibility, making it a more and more diffused format among GL API. In
short, its main advantages are the followings:

• Compact to transmit;

• Fast to load;

• Describes full scenes;

Fig. 3–63 - glTF logo

Bridge upon 3D asset
interchange formats and
GL APIs

glTF's advantages

100

• Runtime neutral;

• Open and extensible.

Beyond these benefits, the choice of this exchange format is clearly subdued to
the decision made upstream (as described in "3.4.1.1. Introducing Cesium") to
choose Cesium as virtual globe for this project.
glTF is in fact, together with 3DTiles, the native supported format in Cesium,
and this means that the implementation is constantly supported by the Cesium
Consortium, in order to guarantee its performances in their virtual globe.
Other alternatives have been considered, including KML, which has been for years
the leading file format in the virtual globes market following the development of
Google Earth and Google Maps.
KML is a XML based language, and this makes it a prolix standard compared to
glTF: KML is in fact a high level of abstraction language, in which data are packed
in a sophisticated and heavy structure, while glTF is based, apart from the JSON
header file (see next paragraph) on a binary format meant to mirror the GPU
APIs as closely as possible, and this feature allows not to require conformance
requirements for an implementation to stream data versus downloading it
in its entirety before rendering. glTF is this way immediately "ready" for use,
obtaining great advantages in terms of implementation and of time and memory
employment, while KML, who was developed for Google exclusive application,
has difficulties in terms of global implementation and WebGL application.

Tab. 3–3 - KML and glTF comparison

KML glTF

XML based

High abstraction

Heavy format

WebGL low compatible

Binary

GPU APIs alike

Light format

WebGL high compatible

KML has become in the last period a supported format by Cesium, but its
implementation isn't at the same advanced level as for glTF [33].

 3.4.1.3.2. Syntax and structure

Syntax

A glTF asset is a combination of different files; specifically, it is represented by:

• A JSON-formatted file (.gltf) containing a full scene description: node

101

hierarchy, materials, cameras, as well as descriptor information for meshes,
animations, and other constructs;

• Binary files (.bin) containing geometry and animation data, and other
buffer-based data;

• Image files (.jpg, .png, etc.) for textures.

Fig. 3–64 - glTF asset's composition

The core of glTF is the JSON file that describes the structure and the composition
of a scene containing 3D models.

Structure

Focusing only on the glTF asset, we can make a description of how the informations
and the geometries are organized inside it.

Above all, every glTF asset must contain one and only "asset" object. This element
allows to find information about the glTF version, which specifies the target glTF
version of the asset.

{
 "asset": {
 "version": "2.0",
 "generator": "collada2gltf@f356b99aef8868f74877c7ca545f2cd206b9d3b7",
 "copyright": "2017 (c) Khronos Group"
 }
}

After this element is declared, the .gltf file is organized in a tree structure in

"asset" object

102

which the top-level element are listed and connected each other as it follows.

Fig. 3–65 - glTF asset's structure

The "scene" object declares the set of visual objects to render, organized in a
"array" structure.
Each scene may contain one or more "nodes" object, which represent the single
object contained in the correspondent "scenes" entity. Object are organized in a
parent-child hierarchy known informally as the node hierarchy, in which the sub-
level object "children" links the child nodes to the parent node.

{
 "nodes": [
 {
 "name": "Car",
 "children": [1, 2, 3, 4]
 },
 {
 "name": "wheel_1"
 },
 {
 "name": "wheel_2"
 },
 {
 "name": "wheel_3"
 },
 {
 "name": "wheel_4"
 }
]
 "scenes": [
 {
 "name": "singleScene",
 "nodes": [
 0
]
 }
],
 "scene": 0
}

Scene and nodes: basic
structure of the scene

103

Any node can contain one "mesh" object, defined in its mesh property. Mesh can
be skinned using a information provided in referenced "skin" object.
In glTF, meshes are defined as arrays of primitives, which specify one or more
"attributes" object, corresponding to the vertex attributes. Indexed primitives
also define an "indices" property. Attributes and indices are defined as references
to accessors containing corresponding data. The material that should be used for
rendering is also given, by the index of the material.
Each attribute is defined by mapping the attribute name to the index of the
"accessor" object that contains the attribute data. This data will be used as the
vertex attributes when rendering the mesh. The attributes may, for example,
define the POSITION and the NORMAL of the vertices.

"meshes": [
 {
 "primitives": [
 {
 "mode": 4,
 "indices": 0,
 "attributes": {
 "POSITION": 1,
 "NORMAL": 2
 },
 "material": 2
 }
]
 }
],

Fig. 3–66 - glTF geometries' representation

Geometries

104

 3.4.2. Conversion to glTF format

 3.4.2.1. Converter software use

Once the gbXML and the IFC exchange models are loaded in the Middleware,
they must be converted in order to be exported on Cesium.
This is made through the use of a software developed in parallel to this thesis
according to the indication received by the analysis made on the exportation
format used.
This software is composed of three parts:

• IFC parser: converts the IFC model in a 3D mesh surfaces with associate
attributes;

• gbXML parses: converts the gbXML model in 3D mesh surfaces with
associate attributes;

• 3DTiles generator: creates a tileset.json file and a B3DM asset for each
model we want to render in the tile.

The Ifc Parser, gbXML parser and 3D Tile Generator are implemented with Oracle
Java Platform, Enterprise Edition 8 (Java EE 8) technology [46]. The names are
actually in alpha status and are part of a code base named actually "webglobes.
org".

Fig. 3–67 - Overall conversion process schema

105

 3.4.2.1.1. Ifc Parser algorithm

The Ifc Parser is a set of methods that parses an Ifc model and produces a generic
3D representation:

1) The IFC file is parsed with the help of the JSDAI library in a set of object
oriented Java classes. The Java classes represent as a tree of properties the
original structure of data of the original file

2) The tree of properties is queried to extract the subset of data needed:
 · General properties of the model, for example reference system,

coordinate type, geodetic coordinates;
 · The entity of type IfcSite, and the tree in the form of deeper lists

of IfcBuilding, IfcStorey and IfcProduct (see Fig. 3–33).

Actually the supported classes of IfcProduct are IfcWall,
IfcWallStandardCase, IfcOpeningElement, IfcDoor, IfcWindow, IfcRoof,
IfcSlab, IfcBuildingElementProxy and IfcFlowTerminal

3) For every IfcProduct supported is verified if is present in the model
a suitable representation, mainly of type IfcShapeRepresentation. If the
representation found is supported, the 3D geometry of the product is built
according to the definition of the geometric model standard in CSG form
(by means of the JCSG library) or as a list of surfaces with or without holes,
according to the original geometry;
The supported representations of the product are IfcMappedItem, Ifc-
FacetedBrep, IfcClosedShell, IfcFace, IfcFaceouterBound, IfcFaceBound,
IfcLoop, IfcPolyLoop, IfcCartesianPoint, IfcExtrudedAreaSolid, IfcBounding-
Box, IfcPolyline, IfcBooleanClippingResult, IfcPolygonalBoundedHalfSpace,
IfcHalfSpaceSolid, IfcGeometricSet, IfcPlane, IfcCurve, IfcTrimmedCurve,
IfcBoundedCurve, IfcCompositeCurve, IfcTrimmedCurve, IfcCircle, IfcTrim-
mingSelect, IfcProfileDef, IfcRectangleProfileDef, IfcArbitraryClosedProfile-
Def and IfcCircleProfileDef.
To every product is associated the list of IfcMaterial(s) as a set of colours,
transparencies and material definitions as sizes and construction defini-
tions, and related alphanumeric attributes.

4) Every surface is then subjected to a list of ordered coordinate
transformation according to the IFC spec;

At the end of this step the model geometry is fully reconstructed in the original
coordinate system and every element has a set of alphanumeric attributes
associated.
The work of the Ifc Parser is done and the control flow goes to the 3D Tiles
Generator

106

 3.4.2.1.2. GbXML Parser algorithm

The GbXML Parser is a set of methods that parses a model in GbXML format and
produces a generic 3D representation:

1) The GbXML file is parsed with the help of the JAXB library in a set of object
oriented Java classes. The Java classes represent as a tree of properties the
original structure of data of the original file;

2) The tree of properties is queried to extract the subset of data needed:
 · General properties of the model, for example reference system,

coordinate type, geodetic coordinates;
 · The entities of type Wall (external and/or internal), Roof and

Opening.

3) For every entity supported the correspondent 3D geometry is built
according to the definition of the geometric model as a list of surfaces
with or without holes. To every product is associated the list of Material(s)
as a set of colours, transparencies and material definitions as sizes and
construction definitions, and related alphanumeric attributes (very limited
in number and definition with respect to the IFC case).

At the end of this step the model geometry is fully reconstructed in the original
coordinate system and every element has a set of alphanumeric attributes
associated.
The work of the GbXML Parser is done and the control flow goes to the 3D Tiles
Generator.

 3.4.2.1.3. 3D Tile Generator algorithm

This module has the aim to build a structure of text (tileset.json index file) and
binary (Batched 3D Model files) according to the 3D Tiles specification:

1) The Tile Generator receives in input a list of 3D surfaces associated
with attributes and materials. The first step is to clean the surfaces from
eventually duplicated points and to perform a rotation of the model on the
z axis;

2) The surfaces are organized and indexed by material for optimized
visualization purposes;

3) The 2D surfaces (eventually with holes) are triangulated by the Poly2Tri
library to obtain a list of triangles suitable for the visualization, every
triangle is indexed and the vertex normal are computed;

4) The triangles are transformed from the local coordinate system of the
model to the final geodetic position on the globe in terms of latitude and

107

longitude (and eventually rotation) according to the Cesium RTC extension;

5) The attributes of every surface are packed in a Batch Table suitable to be
stored in the Batched 3D Model;

6) Indexes, positions and normals are stored in a GlTf structure and the
final B3Dm model is built;

The steps from 2) to 6) are repeated according to the LoDs logic and definition
requested

7) The tileset.json index file is generated according to the number of
models produced.

108

 3.4.3. Importation and visualization

 3.4.3.1. Importation of the model in
Cesium

After the exportation is done, in a directory folder we will find the tileset.json
and the b3dm files generated by the software.

Fig. 3–68 - Folder contating the tileset.json and the b3dm files

Opening the tileset.json file it's possible to see how the 3DTile generator has
set the rules of visualization of the 3DTiles scene, defining progressive child and
children tiles which, through the "url" objects, call a specific b3dm file to be
loaded when the tile in question is rendered

{
 "asset": {
 "version": "0.0"
 },
 "geometricError": 40,
 "root": {
 "boundingVolume": {
 "region": [
 0.13556779355972096,
 0.7877132234975514,
 0.13558027911822904,
 0.7877255569982139,
 -3.1498439812512053,
 3.8503479407402343
]
 },
 "geometricError": 16,
 "refine": "replace",
 "content": {
 "url": "Scuola_Rodari_IFC_LoD1.b3dm"

109

 },
 "children": [
 {
 "boundingVolume": {
 "region": [
 0.13556779355972096,
 0.7877132234975514,
 0.13558027911822904,
 0.7877255569982139,
 -3.1498439812512053,
 3.8503479407402343
]
 },
 "geometricError": 8,
 "content": {
 "url": "Scuola_Rodari_IFC_LoD2.b3dm"
 },
 "children": [
 {
 "geometricError": 4,
 "content": {
 "url": "Scuola_Rodari_IFC_LoD3.b3dm"
 },
 "boundingVolume": {
 "region": [
 0.13556779355972096,
 0.7877132234975514,
 0.13558027911822904,
 0.7877255569982139,
 -3.1498439812512053,
 3.8503479407402343
]
 }
 }
]
 }
]
 }
}

This 3DTiles asset can now be loaded on the Cesium application, thanks to a
HTML calls which load all the files to a specific web server.

 3.4.3.2. Overall visualization

When opening the web link, we are directed to a new browser window, where
after a short time loading the scene is rendered.
The interface appears as it follows.

110

Fig. 3–69 - Dashboard interface

In the top-right corner it's possible to see the view's navigation tools.
First on the left we have a "Search" button, where we can type an address or
a set of coordinates to go to a specific corner in the globe. Then, on its right,
a "Home" button that, when clicked, shows directly a scene from a predefined
camera. Suddenly, with the next button we can skip from different scene modes:
3D, 2D or Columbus view (which can be described as a "2,5D" perspective). With
the following button we can instead choose between several maps layers and
terrains. The last "Help" ("?") button opens a tab which gives instructions about
the mouse and touch screen controls for navigate in the scene.
Pointing the mouse over an object, this will be highlighted and after a few seconds
it will appear a cloud panel showing the properties attached to the object.
In bottom part of the main window it's possible to use a particular toolbar which
allows to skip from a "real time" default visualization, changing hour or day of
visualization. This is useful especially in order to change the shading appearance
over the model.

But the most important aspect, except the loaded BIM model, is the visualization
of the surrounding buildings which are created following the same procedure
made for import the BIM model in Cesium as Batched 3d Models.
This was made firstly by recovering, from the Piedmont Region's website, the
Municipality Technical Map as a shapefile (.shp). This format, which is the
standard one for GIS software, is composed by a set of georeferenced geometries,
especially polylines, and attributes attached to these.

Surrounding buildings
visualization

111

This file has been converted to a B3DM asset after a shapefile parsing procedure,
similar to that used for IFC and gbXML models: the buildings volumes have been
created using the shapefile's polylines as base for extrusions, which eights have
been referred to the "Eight" attribute attached to them. Other attributes, that
are visible pointing the mouse to single buildings, have been gathered in Batch
Table files.

We can finally notice the capability of the dashboard to be visualized from a
smartphone, using a mobile web browser.

Fig. 3–70 - Dashboard visualization from smartphone

Smartphone compati-
bility

112

113

4. Results
analysis

114

 4.1. Visualization

 4.1.1. Objects and attributes rep-
resentation from gbXML and IFC models

 4.1.1.1. From gbXML model

LoD visualization

Fig. 4–1 - LoD visualization of the gbXML based model

• LoD1 visualization: The object represented doesn't derive from the
gbXML model but it's a simple extrusion derived from the district shapefile.
This is due to the inability of gbXML to include a simplified representation
of the model;

• LoD2 visualization: Only the ExteriorWall, Opening and Roof type of
gbXML surface are represented;

• LoD3 visualization: the Roof surfaces are excluded, so that we can
visualize the building in the inside. We can't include more objects for a
more detailed rendering.

Positioning on the virtual globe

The positioning of the model had positive results since the
model is automatically placed on the imprint of the building
showed by the satellite view layer.
The dimensions and the orientation also corresponds to the
real building.

115

Visualization issues

Fig. 4–2 - gbXML visualization issues

As shown in the images above, this visualization presents some issues:

• Transparent surfaces: As we can see in the left picture, some exterior
walls seem to be not represented. In reality they are included in the scene
but with certain perspective appears like transparent surfaces. If we turn
the camera, the wall in fact appears as a normal opaque surface. This issue
is probably due to the manageability of the NORMAL attribute object of
the glTF model of the building;

• Discontinuity between surfaces: As they are not properly building
elements, the analytical surfaces are not required to have physical
connections between them. This imply that in the 3D visualization these
surfaces can appear disconnected.

 4.1.1.2. From IFC model

LoD visualization

Fig. 4–3 - LoD visualization of the IFC based model

• LoD1 visualization: The object represented is exported from the IFC

116

model as a Revit mass, which correspond to the IFC's IfcBuildingElementProxy
class. This class allow us to use a single but realistic volume for representing
the whole building with low detail;

• LoD2 visualization: The Building Elements represented belong to the
IfcWall and IfcRoof classes; only the external walls are rendered, according
to filter algorithm based on the IsExternal attribute, exported from the
Revit model with the PSet property set.

• LoD3 visualization: the IfcRoof instances are excluded, so that we can
visualize the building in the inside. Also the interior walls are now rendered.

Positioning on the virtual globe

The positioning of the model had positive results since the model
is automatically placed on the imprint of the building showed

by the satellite view layer.
The dimensions and the orientation also corresponds to the
real building.

Properties and colours attachment

As shown in the side picture, the
dashboard allows to get informations
about the object highlighted
pointing the mouse over it and
visualizing then a cloud panel.
These informations correspond to
the Revit parameters defined LoD
per LoD previously.
Also the colours used for the rendering
derive from the Revit model, stored in
the IFC model in the IfcColor class as RGB
coordinates.

117

Visualization issues

Fig. 4–4 - IFC visualization issues

• Transparent surfaces: As for the gbXML model, also in this case many
geometries are represented as transparent surfaces in certain points of
view. The problem is here accentuated by the fact that the objects derived
from the IFC model are more complex and are composed of lots of planar
surfaces.

• Difficulty in representing complex objects: Taking as a reference the
example of the windows, the dashboard is currently unable to represent
this kind of object, since it's composed by different element (glass, infix,
etc.), each with a particular representation and its own reference system.

• Geometric errors: As we can see in the right picture, the represented
model shows many errors in the generation of certain objects, due to a
current incorrect reading of its Shape Representation.

•

118

 4.1.2. Comparison and best case choice

 4.1.2.1. IFC and gbXML's strengths
and weaknesses

Once we analysed case by case basis the two final outputs, we can discern about
the issues faced and highlighted above and make a comparison between them
in order to find the most performing options.
But before analysing specific strengths and weaknesses of each option, it can be
useful to make a introductive generic comparison between the IFC and gbXML
formats, which can implicitly explain and justify the showed results.

Firstly, IFC adopts a comprehensive and generic approach to represent an
entire building project, covering domains from building construction to building
operation. IFC representation was also extended in the building commission
domain and implemented in several cases studies. On the other hand, the
application of gbXML, officially deployed by Green Building Studio Inc., is currently
only on the energy simulation domain and this limits obviously its interchange's
capabilities.
Secondly, IFC uses a "top-down" and relational approach, which yields in a
relative complex data representation schema and a large data file size. gbXML
adopts a "bottom-up" approach, which is flexible, open source, and a relatively
straightforward data schema. The "top-down" approach can trace back all the
semantic changes when one value of the element in the schema changed.
Ideally, it has the ability to maintain semantic integrity automatically. However, it
is very complex to program and be implemented in software. The "bottom-up"
approach has less layer of complexity.
In other words, with a comprehensive "top-down" data schema, IFC shows
potential benefits in its highly organized and relational data representation. In
contrast, the "bottom-up" gbXML schema is simpler and easier to understand,
and this facilitates quicker implementation of schema extension for different
design purposes [36].

Once said this generalities about the two formats, the first assessment to make
is the consideration of the difference between the geometries exported. While
gbXML only exports rectangular shapes, which is enough for energy simulation,
the IFC may export different kinds of representation. As analysed accurately in
"3.3.3.1.2. Syntax and structure", also the same object in the IFC file may include
different representation instances, both 2D and 3D. In shorts, on one hand we
have only simple rectangular plane surfaces, on the other hand we can manage

IFC vs gbXML practical
and theoretical compar-
ison

Planar surfaces vs de-
tailed volumes

119

less or more accurate tridimensional models: from simple extrusion to detailed
bounding volumes.

Another important remark in this optic is the fact that the geometries generated
in the gbXML model doesn't correspond globally to the original object modelled
in Revit, but they can be just portions that adjacent rooms come in contact to.
As a example, if a wall is shared by two rooms, this wall will be exported as two
separated surfaces for each room involved.
The IFC classes generated, instead, all correspond entirely to a object modelled
in Revit, preserving in this way the elements composition of the original model
also in Cesium.

Another important observation involve the difference in the exportation
manageability for the two formats. While the IFC conversion can be accurately
customized and filtered through the exportation panel and it can be view's
dependent, for the gbXML we have few options to imperceptibly modify the
outputting geometric model. We can't chose which category we want to include
and either select single surfaces to not be exported.
The exportation to IFC can be managed object by object, and every physical
instance in the Revit model can be exported: from the walls to the furnitures,
from the structural elements to the mechanical. The planar surfaces which
compose the gbXML model are instead automatically generated, as they are the
bounding surfaces of the thermal zones, the elementary parts of the energetic
model at the base of the gbXML. These planar elements are then organized in
categories of surfaces (ExteriorWall, Roof, etc...) on the basis of their orientation
towards the concerned thermal zone and their adjacency with the exterior or
not. This automated generation, beside the fact that can't be manually managed,
is also a continuous source of issues, like the failed generation due to a imprecise
delimitation of the rooms or the assignment to a erroneous category of surfaces.

For what involve the exportation of the Revit families parameters, the dissertation
doesn't even exist since in the gbXML exportation procedure there is no way to
manage, either include, this kind of information. The only attributes exported
are those expected by the gbXML schema, and we can't even use these "slots"
to insert a particular attribute, since all the exported information in gbXML are
metadata, that doesn't comes from a manually edited text field in Revit.
In IFC, on the contrary, we can store all the information we want, adding to
automatically generated parameters also personalized. During the exportation
procedure, we have previously explained the possibility of organize and filter the
information to be transferred as we made with the exportation of the project
dedicated schedules as exclusive Property Sets.

Correspondence with
the original Revit object

Customized exportation

Properties exportation

120

gbXML has however some advantages, deriving from its above mentioned
"bottom-up" schema, which implies a simpler and easier job in terms of geometry
parsing and conversion. Unlike most of the IFC's Shape Representations, which
involve several reference system rotations and complex parameters of extrusion,
addiction, etc, the gbXML describes its planar geometries as a sequence of
cartesian points which describes the vertex of these polygons in their X,Y,Z local
coordinates.
IFC geometries conversion requires instead a case by case deepened analysis,
considering that every shape representation and every class has a different
methodological approach.

 4.1.2.2. Best case choice

In light of these characteristics typical of each exchange format considered, we
can now take a position selecting the most suitable and performing configuration,
whereby we can further develop this project.
On the basis of its light and ease geometrical structure, gbXML could be an
interesting way to represent BIM models on a GIS platform. But this must be
limited for a low detail visualization, since its structure based on planar surfaces
is inadequate for the visualization and interrogation of detailed building elements
as for the present project.
We can consider the possibility of using the gbXML, maybe only for the medium
detailed LoD2 visualization, combining its geometrical representation with
the support of the properties deriving from the IFC exportation. This could be
possible thanks to the univocal connections between gbXML elements and IFC
entities described in "3.3.4. Connections between Revit model and exchange
models". But beyond this opportunity, we have to consider the fact mentioned
above that the gbXML elements doesn't describe effectively the original building
model, but instead they are fragments of a energetic model.

In the light of recorded performances at the end of this project, the most
satisfying option is without a doubt the IFC only combination, where we can
show geometries and attributes contained in this format. The issues recorded
must be so implemented in order to make this visualization more and more
complete.

gbXML's geometries
ease of conversion

gbXML only visualization

Mixed visualization

The final decision: IFC
only visualization

121

 4.2. Methodology

Once we have analysed the final output of the procedure, we can make
assessments about the methodological approach, evaluating how the progressive
stages and the decisions made approached us step by step to the final target, in
terms of integration of the BIM model in the GIS environment.

The first assessment is about the standardised operations involved across the
methodological process.
The definition of a standardised nomenclature had an important role in the
development of the work. As a reminder, this procedure has been faced in two
different moments of the process:

• During the definition of the attributes to be shown LoD per LoD;

• During the definition of the Revit schedules.

In the first case, the standardisation was supported by the creation and then the
use of Shared Parameter file containing all those attributes, so that we had to use
them along the BIM phase, modeling the building and managing the property
schedules. The result is a uniformity in the informations' content of every object
placed into the model, avoiding in this way redundancy and lexical errors which
could implicate errors during the parsing procedures.
In the second case, the naming of the Revit schedules had an important role
also in terms of final visualization on Cesium. In fact, the specific encoding used
allowed the conversion software to find in the IFC exchange model the properties
attached to the different exported objects in a complete and univocal way.
More precisely, as represented in Fig. 4–5, the software is implemented with a
decoding tool that, once it finds in the model a IfcPropertySet, is able to analyse
its "name" string attribute and recognize, in particular, in which visualization
level this set of parameters must be shown. Once individuated and analysed
the Property Set, the software can suddenly parse the IfcSingleValue contained
inside and extrapolate from them their "Name" and "Value" attribute. In this
way, the same object of the model can show different attributes according to the
LoD represented on Cesium.

Standardisation has involved also the definition of specific export setups, with
the creation and saving of ready to use conversion settings file, that can be
shared and included by different users. This implicates a wide uniformity of the
exported models and reduces the presence of issues due to individual errors.

Importance of the
standardisation of the
process

122

Fig. 4–5 - Nomenclature decoding

The preliminary operations of georeferencing and rotation of the Revit model,
described in "3.3.1.3. Georeferencing and rotation of the model", had also
satisfying results at the end of the process. Those procedures gave in fact to
the BIM model a connotation which allows it to communicate with the GIS
technology and to be loaded automatically in the Cesium platform.
The coordinates obtained and then attached to a specific Survey Point in the
Revit model, are in fact exported both in the gbXML model both in the IFC.
Here below, they are shown as they are exported in the gbXML format, as a 6
characters based geographic coordinates, inside the Location element.

<Campus id="aim0002">
 <Location>
 <StationId IDType="WMO">160478_2006</StationId>
 <ZipcodeOrPostalCode>00000</ZipcodeOrPostalCode>
 <Longitude>7.76864</Longitude>
 <Latitude>45.1382</Latitude>
 <Elevation>709.8792</Elevation>
 <CADModelAzimuth>0</CADModelAzimuth>
 <Name>Settimo Torinese, Piem., Italy</Name>
 </Location>
...
</Campus>

In the IFC model, the IfcSite class contains, in the RefLatitude and RefLongitude
attributes, the same coordinates but in DMS ("Degree,minutes,seconds")
coordinates.

#73000= IFCSITE('0mOudRzQbENhci0rpJDPJS',#41,'Default',$,'',#72999,$,$,.ELEMENT.,(
45,7,59,484558),(7,46,5,758323),0.,$,$);

Georefencing and rota-
tion of the Revit model

123

In this way, the conversion software can extrapolate informations about the
placement of the object in the globe and attach them to the B3DM file generated
by the 3DTiles Generator.
Since the model is georeferenced, we can load it to the Cesium application without
manually editing the coordinates. This aspect allow us to improve the automation
of the process, since this procedure can be executed by the Middleware, without
user control, making it an important advantage when several building models
must be loaded as in a district scale project like this.

Another relevant observation is about the capability of the dashboard to perform
a visualization based on Level of Detail. This result was one of the expectations
which lead us to address the conversion output towards the glTF format and,
above all, the 3DTiles streaming system.
This combination of tools creates a structure able to collect under the same batch
different versions of the same model, characterized by increasing complexity of
geometries, that are loaded separately on the virtual globe according to specific
criteria of elevation and viewpoint.
This allow to not have a static representation of the scene, gaining instead a
customizable "smart" 3D streaming where we can experience great advantages
in terms of rendering speed and fruition and interrogation of the represented
objects and properties attached to them.

Visualization based on
Level of Details

124

125

5. Conclusions

126

 5.1. Final assessments

The final assessments can be made on two levels. The first focused on the
outcomes showed in the "4.1. Visualization" paragraph; the second oriented
towards an analysis of the methodological approach adopted during the project
and studied in its final results in "4.2. Methodology".

If we observe the outcomes in terms of final visualization we have to notice a
evident discrepancy between the attended results supposed in "2.2.3. Attended
results" and what we finally got.
The DIM dashboard has in fact a more primitive interface as the expected one,
the navigation is limited to the main window and it hasn't been developed the
tree structure panel for selecting and show/hiding the elements. Geometries
aren't well exported and many entities aren't yet supported in the visualization.
We can assert that, in this case, we are in a deep "work in progress" situation,
with so many issues to be faced and implemented.

But, more than the actual and immediate results, it's more important to
concentrate on the methodological approach and compare the results obtained
and showed in "4.2. Methodology" with the proposed objectives theorized in
"2.2.2. Objectives' definition".
In this optic, we can confirm the previously listed satisfying results, because the
whole interoperability and integration process started from the BIM model has
found a way, from the starting point to the end, which gave us the expected
outcomes.
Even if the apparent results in the DIM interface show many issues, the aspect we
have to consider and take as a greater success is the fact that the methodology
works. The geometries can be exported, converted and visualized. The properties
are also parsed, gathered and then attached again to the original object. A way
it has been found and now we must only blaze this trail and make it come a
completely automated and integrated highway between the BIM and the GIS
worlds.
In the wake of this kind of assessment, it's possible to make a wider discussion,
facing those aspects that could be the future developments.

Assessment on the re-
sults in the visualization

Assessment on the re-
sults in the methodology

127

 5.2. Future developments

This paragraph gain great perspectives of development thanks to the theoretical
basis of the proposed project, which has been structured around the concepts
of "open" and "integration". These concepts gave to the project a dynamic and
borderless structure, that can draw inspiration from the limitless universe of the
open source universe.
The philosophy at the base of the open source is that everything must be shared
and, adopting it, we'll be allowed to not be constrained by a software vendor,
which will limit our possibilities and creativity.
The development of a process based on this premises, allows to draw a
methodology and a software able to satisfy precisely and accurately our needs:
if user and developer collaborate the result is something that will clearly please
both. But the development doesn't start from nothing, is instead a customization
and implementation of an existing product or specification, made using libraries
and tools available in the free market.
Also in terms of interoperability, which is a milestone of this project, we must
notice that open source softwares are much better at adhering to open standards
than proprietary softwares are.

According to these premises, we can assume that the future developments of
this project can't be limited to the reaching of the proposed objectives, but it can
and must be implemented for greater performance and utilities.
Once the connection between BIM and GIS is resolved also in terms of
visualization, the DIM platform must be implemented with contributes of energy
analysis tools for simulations and ICT, in order to apply it to the same purposes
of projects like DIMMER and EeB.

128

129

Acknowledgements

130

131

I would like to express my deep gratitude to Professor Anna Osello, my research
supervisors, for the great opportunity she gave me to start this stimulating search
path, from the stage experience till the development of this thesis.
I would also like to thank Matteo del Giudice and Francesca Ugliotti, my tutors
and supervisors of this research, for their great willingness and extraordinary
support showed during this thesis process.
This work would not have been possible without the fundamental support from
Fabrizio Massara, which accompanied me throughout this work, contributing
with immense dedication and efforts to this thesis.
I would like to thank also my friends who supported me during this laborious
times, encouraging me and letting me pass wonderful moments of happiness.
Finally, I wish to thank from the bottom of my heart my parents for their support
and encouragement, and their love daily demonstrated to me throughout my
study years.

132

133

BIBLIOGRAPHY

 [1] Kang T. W., Hong C. H., "A study on software architecture for effective BIM/GIS-based facility
management data integration", March 2015;

 [2] Karan P., Irizarry J., Haymaker J., "BIM and GIS Integration and Interoperability Based on
Semantic Web Technology",

 [3] Trubka R., Glackin S., Lade O., Pettit C., "A web-based 3D visualisation and assessment system
for urban precinct scenario modelling", December 2015;

 [4] Deng Y., Cheng C. P., Anumba C., "Mapping between BIM and 3D GIS in different levels of
detail using schema mediation and instance comparison", July 2016;

 [5] Deng Y., Moumita D., "A cloud computing approach to partial exchange of bim models",
2013;

 [6] Brovelli M. A., Kilsedar C. E., Hogan P., Prestifilippo G., Zamboni G., "NASA World Wind virtual
globe for an open smart city", March 2017;

 [7] Elvidgea C. D., Tuttle B. T., "How virtual globes are revolutionizing earth observation data
access and integration", 2008;

 [8] Osello A., "District Information Modeling: implementation and standard definition",
September 2016;

 [9] Succar B., "The Five Components of BIM Performance Measurement", January 2010;

 [10] Succar B., "Building Information Modelling Maturity Matrix", January 2010;

 [11] Succar B., " Building information modelling framework A research and delivery foundation
for industry stakeholders", 10 October 2008;

 [12] Succar B., Kassem M., "Building Information Modelling: Point of Adoption", CIB World
Congress, Tampere Finland, May 30 - June 3, 2016;

 [13] Chamila D. D. Ramanayakaa, Senthilkumar Venkatachalamb, "Reflection on BIM development
practices at the pre-maturity" in Procedia Engineering 123 (2015), 462 – 470;

 [14] British Standards Institution, PAS 1192-2:2013 Incorporating Corrigendum No. 1 -
Specification for information management for the capital/delivery phase of construction projects
using building information modelling, February 2013;

 [15] Haron A. T., Marshall-Ponting A. J., Aouad G., "Building information modelling: Literature
review on model to determine the level of uptake by the organisation", 2010;

 [16] Cabinet Office, Government Construction Strategy, July 2012;

134

 [17] EDSL, EDSL Guide for Revit gbXML Files;

 [18] Karl-Heinz Häfele, IFC and gbXML, 2 Building Information Models for Building Performance
Simulation, Institut für Angewandte Informatik, Karlsruher Institut für Technologie;

 [19]  Introduzione a XML, Università di Bologna;

 [20] Lagüela S., Díaz-Vilariño L., Martínez, J. Armesto J., " Automatic thermographic and RGB
texture of as-built BIM for energy rehabilitation purposes", 14 December 2012;

 [21] Sokolov I., John Crosby J., Utilizing gbXML with AECOsim Building Designer and speedikon -
Building Performance Analysis Using Bentley Products, October 2011;

 [22]  DesignBuilder Revit – gbXML Tutorial, Design Builder Software;

 [23] Jianping Zhang, Fangqiang Yu & Ding Li, Zhenzhong Hu, " Development and Implementation
of an IndustryFoundation Classes-Based Graphic Information Model for Virtual Construction" in
Computer-Aided Civil and Infrastructure Engineering 29 (2014), 60 – 74;

 [24] Stanford University, Data Modelling Using EXPRESS-G for IFC Development;

 [25] Robert W. Schuler, "The Application of ISO 10303-11 (the EXPRESS Language) in Defining
Data Models for Software Design and Implementation", April 2001;

 [26] Kull A., Compatibility issues wi th BIM, Royal Institute of Technology (KTH) Department of
Civil and Architectural Engineering, Stockholm, Sweden, 2012;

 [27] Liebich T., IFC 2x Edition 3: Model Implementation Guide, May 18, 2009;

 [28] British Standards Institution, ISO 10303-11 :1994 - Industrial automation systems and
integration - Product data representation and exchange. Part 11.Description methods: the EXPRESS
language reference manual, 1994;

 [29] Kiviniemi A., Tarandi V., Karlshøj J., Bell H., Karud O. J., Review of the Development and
Implementation of IFC compatible BIM, Erabuild, 2008;

 [30] Wix J., What is IFC?, AEC 3, Building Smart;

 [31] Dong B., Lam K. P., Huang Y. C., Dobbs G. M., "A comparative study of the IFC and gbXML
informational infrastructures for data exchange in computational design support environments",
Carnegie Mellon University, 2007;

 [32] Hyunjoo K., Zhenhua S., Inhan K., Karam K., Annette S., Jungho Y., "BIM IFC information
mapping to building energy analysis (BEA) model with manually extended material information",
3 April 2016;

 [33] Pinkos H, Migrating from Google Earth to Cesium;

 [34] Chaturvedi K., "Web based 3D analysis and visualization using HTML5 and WebGL", March

135

2014;

 [35] Keysers J., Review of digital globes 2015, March 2015;

 [36] Dong B., Lam K. P., Huang Y. C., Dobbs G. M, "A comparative study of the IFC and gbXML
informational infrastructures for data exchange in computational design support environments",
2007;

136

137

WEBSITES' REFERENCES

 [37] https://www.graphisoft.com/it/soluzioni/open_bim/;

 [38] https://www.thenbs.com/knowledge/bim-levels-explained;

 [39] http://www.bimthinkspace.com/2009/12/episode-13-the-bim-maturity-index.html;

 [40] http://www.bimthinkspace.com/bim-maturity/;

 [41] https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md;

 [42] http://www.json.org/json-it.html;

 [43] https://www.khronos.org/gltf;

 [44] http://www.dimmerproject.eu/;

 [45] http://www.drawingtothefuture.polito.it/projects/seempubs/;

 [46] http://www.oracle.com/technetwork/java/javaee/tech/index.html;

138

139

ANNEXES

140

A. gbXML geometries' representa-
tion

In this attachment it will be analysed the exportation gbXML file of a Revit room,
in order to analyse ho the geometries are described in the XML structure of this
format.
In particular we will focus on the X, Y, Z coordinates used by the gbXML
"CartesianPoint" attribute to describe the different kind of geometries generated,
and we will each time represent the vertex in question with an inherent 3D
representation.
As described during the dissertation, the gbXML coordinates are local coordinates,
relative to a 0, 0, 0 point which derives from the Revit Survey Point geographic
placement. These geographic coordinates are contained in the "location"
element as it follows.

<Location>
 <StationId IDType="WMO">160478_2006</StationId>
 <ZipcodeOrPostalCode>00000</ZipcodeOrPostalCode>
 <Longitude>12.6</Longitude>
 <Latitude>41.8</Latitude>
 <Elevation>100.8888</Elevation>
 <CADModelAzimuth>0</CADModelAzimuth>
 <Name>Roma, Italia</Name>
 </Location>

All the gbXML vertex coordinates are so express as meters of distance from this
point which has been represented in the following images with the Revit
symbol.

Space element

The first geometry defined in the gbXML model is the "Space" element, the 3D
global representation of the room, which is represented with 3 kind of element:

• 1 PlanarGeometry: which defines the planar imprint of the space;

• 1 ShellGeometry: a list of cartesian point, that describes the vertex of
the surfaces which defines the room;

• 6 SpaceBoundary: each defining a surface of the 3D volume.

Planar geometry

<PlanarGeometry>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>

141

 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 </PlanarGeometry>

Shell geometry

<ShellGeometry id="aim0034">
 <ClosedShell>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>

142

 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 </PolyLoop>

The above schematized surface is the first of the 6 polyloop that
defines the ClosedShell element, in other words, the bounding
box of the room.
Suddenly are reported the other polyloops and finally it will
represented the ClosedShell entirely.

 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>

143

 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>

144

 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 </ClosedShell>
 </ShellGeometry>

Space boundary

<SpaceBoundary isSecondLevelBoundary="false" surfaceIdRef="aim0086">
 <PlanarGeometry>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>

145

 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>17</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 </PolyLoop>
 </PlanarGeometry>
 </SpaceBoundary>
 <SpaceBoundary isSecondLevelBoundary="false" surfaceIdRef="aim0097">
 ...
 </SpaceBoundary>
....

Surface elements

These elements describe single planar geometries, so they correspond to the 6
polygons which close the room. But, unlike the SpaceBoundary elements, the
Surfaces have an analytical and physical connotation, since they can be related
to a SurfaceType attribute and to Construction elements.
Here is reported the XML schema of one surface, a ExteriorWall.

<Surface surfaceType="ExteriorWall" exposedToSun="true" id="aim0108">
 <AdjacentSpaceId spaceIdRef="aim0024" />
 <RectangularGeometry id="aim0109">
 <Azimuth>270</Azimuth>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <Tilt>90</Tilt>
 <Width>10</Width>
 <Height>8</Height>
 </RectangularGeometry>
 <PlanarGeometry>
 <PolyLoop>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>3</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>10</Coordinate>
 </CartesianPoint>
 <CartesianPoint>
 <Coordinate>2</Coordinate>
 <Coordinate>13</Coordinate>
 <Coordinate>2</Coordinate>
 </CartesianPoint>
 </PolyLoop>

146

 </PlanarGeometry>
 <CADObjectId>Muro di base: Generico - 30 cm [128876]</CADObjectId>
 <Name>W-1-E-W-3</Name>
</Surface>

		Politecnico di Torino
	2017-12-11T11:10:40+0000
	Politecnico di Torino
	Anna Osello
	Tesi 227157

