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Abstract

In urban studies, historic districts are often portrayed as inherently walkable because their street networks
emerged through organic development rather than planned design. These areas typically feature frequent
intersections, richer route choice, and more engaging streetscapes than the larger blocks and regular
alignments characteristic of many modern planned districts. Such interpretations often rely on the idea that
historic areas possess a form of geometric complexity described as “fractal-like”, yet this characteristic has

rarely been evaluated systematically or directly linked to measurable street-network indicators.

This thesis addresses this gap by examining whether differences in geometric complexity and street network
structure correspond to the walkability-related properties commonly attributed to fractal-like street form.
The analysis, therefore, focuses on whether fractal dimension, as a quantitative measure of this complexity,
captures variations in street morphology and how it correlates with key topological indicators of street-

network configuration.

The study covers 100 European cities, each represented by a pair of contrasting districts: an organically
evolved historic core and a typical planned modern extension. Geometric complexity is measured using
fractal dimension and two indicators of street grain: intersection density (nodes per km?) and average
segment length. Network structure is assessed using graph-based indicators, including meshedness
(redundancy of alternative paths), reachability index (number of intersections accessible within 600m),
route straightness (deviation from a straight line), and harmonic mean shortest path length (average

minimum travel distance).

The results show that historic areas generally exhibit a higher fractal dimension (D ~1.5, SD = 0.07) than
modern districts (D ~1.4, SD = 0.07), reflecting their more irregular and compact street structure. This
difference is accompanied by denser intersections (103 vs 87 per km?), shorter average street lengths (78
vs 88 m), and roughly 20% higher local reachability. However, both morphologies display similar route
straightness and shortest-path metrics, indicating that global-scale connectivity is less sensitive to

underlying geometric variation.

These findings demonstrate that fractal dimension captures consistent variations in both geometric and
topological properties of street networks across contrasting urban morphologies. By linking fractal
geometry with network-based measures, the research provides an empirically grounded framework for
examining street-network structure and clarifying the morphological foundations of walkability in different

urban contexts.

Keywords: street-network morphology, fractal dimension, topological indicators, walkability, urban form.
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Chapter 1: Introduction

1.1. Background

Understanding the city inevitably involves recognizing the multiple layers through which it operates
(Boeing, 2018; Merlo & Lavoratti, 2024). This intricate nature — commonly referred to as urban complexity
— manifests not only in the visible arrangement of streets, buildings, and public spaces, but also in the less
tangible systems of social, economic, and infrastructural flows that continuously shape the city’s evolution
(Lynch, 1960; Jacobs, 1961; Batty, 2005; Salingaros & Pagliardini, 2016). While these dimensions are
deeply interconnected, the physical form of the city provides a concrete and observable foundation for
study. By focusing on measurable spatial arrangements, researchers can translate the abstract concepts of

urban complexity into empirical comparisons across diverse urban settings (Strano et al., 2014).

Among all urban elements, the street network plays a uniquely foundational role in shaping city form and
experience (Marshall, 2004; Yoo & Lee, 2017). It serves as the primary “skeleton” of urban space, enabling
movement, and connecting diverse land uses (Jacobs, 1961; Marshall, 2004; Porta et al., 2006; Yoo & Lee,
2017). Its geometry and topology not only structure circulation and accessibility but also register the city’s
historical trajectories of growth (Hillier & Hanson, 1984; Shen, 2002). Whether organically evolved or
systematically designed, the configuration of street patterns directly shapes travel distance, navigability,
and the overall structure of urban environments. Thus, focusing on their geometry and connectivity offers
a practical and measurable basis for comparing the capacity of different street patterns to support or limit

potential pedestrian mobility and access (Louf & Barthélemy, 2014; Boeing, 2017; Reza et al., 2024).

Historic city centers often display
organically evolved street networks
characterized by narrow, winding streets,
and irregular intersections developed
incrementally over time. These patterns
evolve in response to local topography,
socio-economic demands, and historical
events (Jacobs, 1961; Salingaros, 2000).
Such adaptive growth produces highly B

intricate configurations, often accompanied Figure 1.1. Urban layout of Kotor, Montenegro (Tiefenbacher, 2022)

by irregular building footprints, mixed land uses, and non-uniform spatial patterns (Salingaros, 1998;
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Frankhauser, 2004). Cities like Rome and Kotor (Figure 1.1) exemplify how centuries of layered
development generate street systems deeply tied to cultural identity. These unplanned fabrics often reveal
fractal traits — structural patterns repeating across multiple spatial scales — forming nested layers, with major
routes branching into progressively smaller lanes (Salingaros & Pagliardini, 2016; Mehaffy et al., 2010;
Sreelekha et al., 2020).

In contrast, modern urban expansions frequently employ grid street patterns that exemplify a more
systematic and planned approach to city form. Rooted in rational design principles, grid layouts are
characterized by regular, orthogonal streets and uniform block sizes, which aim to maximize clarity, order,
and navigability (Southworth & Ben-Joseph, 2003; Sevtsuk et al., 2016). Such patterns emerged
prominently during periods of rapid urban expansion and modernization, often reflecting Enlightenment
ideals of efficiency and control over the urban environment (Scott, 1998; Alexander, 2001; Batty, 2005).
Iconic examples include the rectilinear streets of Barcelona’s Eixample and the extensive street grids of
Chicago and New York (Figure 1.2). While grids promote legibility and facilitate movement, they can also
impose a certain rigidity, often disregarding local topography or pre-existing circulation patterns (Monclus,
2003). Nonetheless, their simplicity and scalability have made grids a recurrent model in urban planning,

representing a contrasting yet equally significant approach to structuring street networks (Boeing, 2020).

Figure 1.2. Urban layout of New York, USA (Moreira, 2020)

These two types of urban patterns are sometimes seen as opposing forces, yet modern cities increasingly
blend both organic and grid elements. For instance, Barcelona (Figure 1.3) and Portland exemplify hybrid
urban structures, where a dense historical core is surrounded by gridded expansions (Marshall, 2004;
Mehaffy et al., 2010). This combination creates urban environments where multiple spatial logics —

understood as distinct principles shaping street layout and connectivity — coexist and interact within a single



city (Louf & Barthélemy, 2014; Yoo & Lee, 2017). Hybrid forms can be both historically rich and spatially
adaptable, but they also present unique challenges for urban design (Talen, 2003; Ewing & Handy; 2009).

Figure 1.3. Urban layout of Barcelona, Spain (Moreira, 2020)

This contrast between historic, organically developed districts and more systematically planned modern
grids within the same city offers a valuable lens for examining morphological variation. Comparing these
distinct zones side by side makes it possible to assess how differences in street-network structure impact
spatial properties such as connectivity, redundancy, and access — within a controlled urban context (Masucci
et al., 2009). Focusing on intra-city variation helps reduce the influence of external factors such as climate,

governance, or demographics, which often complicate cross-city comparisons.

One practical lens for interpreting these spatial patterns is urban grain — the typical size and arrangement of
blocks and parcels, determined by the underlying street layout (Sevtsuk et al., 2016; Zhao et al., 2023). It
captures the characteristic rhythm and scale of the built fabric: finer grain is frequently linked to
adaptability, permeability, and access, while coarser grain may support larger land uses or clearer
management boundaries (Pafka & Dovey, 2016; Zhao et al., 2023). This variation often follows a spatial
gradient, with block structures becoming coarser and less intricate toward the urban periphery (Sreelekha
et al., 2020). Though finer grain is generally associated with pedestrian accessibility, studies have shown
that the relationship between urban grain and walkability is not always linear, depending on context and
street-network structure (Sevtsuk et al., 2016). Accordingly, comparative analysis across diverse
morphologies requires a metric capable of capturing both fine-grained detail and broader structural order

across scales.

While urban grain captures the local texture of the built fabric, it lacks a mechanism to describe structural

complexity across spatial scales — a gap fractal geometry helps to fill. Introduced by Mandelbrot (1983), it



describes how spatial patterns extend and repeat across different scales. This property is quantified by the
fractal dimension (D) — a single value that expresses the degree to which a form fills space across multiple
levels of observation (Fankhauser, 1998; Chen, 2013; Jahanmiri & Parker, 2022). In urban studies, D has
been used to characterize irregular spatial structures and to complement conventional metrics such as
density or block size (Goodchild & Mark, 1987; Sreelekha et al., 2017). Recent work has also formalized
fractality in discrete street networks (networks composed of intersections and street segments), adapting
classical concepts to graph-theoretic framework that connect geometric form to network topology (Babic¢

et al., 2022; Bunimovich & Skums, 2024).

Beyond its value as a static descriptor, D has been linked to processes of urban transformation. According
to Chen and Huang (2019), changes in fractal dimension can indicate urban growth trajectories, including
patterns of expansion, densification, and infill development. These dynamics are often embedded in the
physical form of the city and become evident when comparing areas shaped in different historical periods.
In this context, fractal dimension provides a means to read morphological change within cities, offering a

more dynamic perspective than static morphological metrics alone.

Fractal dimension thus serves as a concise summary of the geometric side of urban complexity, capturing
both the density and spatial irregularity of the street network across scales (Hyseni et al., 2021). Street
patterns, however, are more than fixed geometries; their configuration defines the network’s structural
frame, shaping connectivity, route options, and resilience (Louf & Barthélemy, 2014; Masucci et al., 2009;
Boeing, 2018, 2021). This internal arrangement underpins accessibility and influences broader functional
outcomes, such as travel times, congestion patterns, and traffic demand (Marshall, 2004; Masucci et al.,
2009; Babic et al., 2022). At neighborhood scales, the literature calls for quantitative approaches that
integrate the analysis of design and configuration of urban street networks, linking geometry and topology
to assess their combined influence on connectivity and accessibility (Louf & Barthélemy, 2014; Boeing,

2017; Sharifi, 2019).

Taken together, these arguments suggest a dual perspective on street networks: one concerned with
geometric form, the other with topological configuration. The geometric or morphological dimension —
encompassing urban grain, density, and spatial irregularity — is measured by the fractal dimension (D), as
well as metric proxies such as intersection density and average edge length (Louf & Barthélemy, 2014;
Boeing, 2018). The topological dimension is described by connectivity indicators, including the
meshedness coefficient (route redundancy), reachability index (local access), mean straightness (route
directness), and harmonic mean shortest path length (average minimum trip length). Framed this way, the
analysis establishes a shared basis for assessing diverse European morphologies and directly informs the

problem statement that follows.



1.2. Problem statement

Despite frequent references to the fractal characteristics of urban street networks (Lu & Tang, 2004;
Mehaffy et al., 2010; Daniel et al., 2021), the empirical relationship between fractal dimension (D) and core
network properties — particularly connectivity and accessibility — remains unclear. While existing studies
suggest that higher D values may correspond to more continuous and integrated street structures
(Salingaros, 1998; Lu et al., 2016), most analyses have focused on comparisons between different cities,
where social, economic, demographic, and spatial contexts vary (Chen & Luo; 1998; Fankhauser, 2004;

Strano, 2014; Boeing, 2018; Lagarias & Prastacos, 2021).

This cross-city approach, however, lacks sensitivity to the intra-city variation of street-network structure,
where differing historical trajectories, urban policies, and design logics frequently produce sharp contrasts
within the same metropolitan area. For example, districts such as Ciutat Vella and Eixample in Barcelona
are shaped by entirely different planning logics and exhibit distinct spatial structures, despite existing within
a single administrative context (Monclus, 2003). A focused, intra-city analysis thus offers a controlled
framework to better isolate the relationship between D and street network indicators while minimizing

external variability.

As aresult, the core problem emerges: does fractal dimension serve only as a geometric descriptor, or can
it also reflect deeper structural differences in street-network configuration? Building on this, the study
explores whether D can function as a conceptual bridge between morphological indicators and topological
network measures. To do so, it adopts a comparative, intra-city framework, focusing on pronounced
contrasts between organically evolved and planned grid districts within the same metropolitan context. By
testing the relationship between fractal dimension and street-network indicators at the neighborhood scale,
this thesis contributes both to theoretical work on urban morphology and to the development of empirical

tools for evaluating street-network configuration across diverse urban forms.

1.3. Research Scope and Objectives

This study focuses on European cities that contain clearly differentiated historic (organic) districts and
planned grid expansions. By analyzing such contrasts within a single urban context, this research minimizes
confounding influences such as climate, governance, or regional economics. Establishing relationships in
these sharply contrasting cases also lays a methodological foundation for future work on hybrid and

transitional urban areas.

All measurements are taken from the present-day network at the neighborhood scale, where planning
decisions are typically implemented. The analysis is framed by two complementary perspectives:
1. A cross-sectional comparison looks across several cities to ask how historic and modern districts

differ on average.



2. Within-city pairings examine how divergent planning logics manifest side-by-side in a shared
geographic context.

The research links morphological indicators (fractal dimension and urban grain measures) to topological

indicators that capture connectivity, route directness, and travel efficiency. These metrics, specified in the

Methods chapter, allow a unified assessment of street form and structure. Accordingly, the overarching aim

is to examine whether fractal dimension offers a consistent numerical basis for distinguishing street-

network types, based on its relationship with key topological indicators within contrasting urban contexts.

The objectives of the study are:

O1 — To quantify and compare the geometric complexity of historic-core and modern districts within each
city using fractal dimension (D), intersection density, and average edge length.

02 - To assess and compare topological structure through selected connectivity indicators, including
meshedness coefficient, reachability index, mean straightness, & harmonic mean shortest path length.

03 - To examine intra-city correlations between fractal dimension (D) and selected topological indicator,
evaluating whether fractality corresponds with variations in street network connectivity as widely

claimed in the literature.

Research questions:

RQ1: How do historic and modern districts differ in street-network morphology and structure across
European cities?

RQ2: To what extent does fractal dimension (D) capture the geometric differences observed between
these contrasting urban forms?

RQ3: How does fractal dimension relate to key topological indicators of street-network configuration

commonly associated with walkability?

Hypotheses:

H1 — Historic street networks will exhibit significantly higher geometric complexity, as expressed through
fractal dimension, than modern planned networks.

H2 — Historic districts will demonstrate higher pedestrian-scale reachability and redundancy due to their
finer urban grain, supporting the claim that fractal-like morphologies enhance local accessibility.

H3 — Fractal dimension will show a positive association with local-scale connectivity indicators
(meshedness and reachability index), but a weaker or inconsistent association with global network

measures (route straightness and harmonic mean shortest path length).



1.4. Thesis Structure
The thesis is structured into a series of interrelated chapters that collectively address the central research
questions and support a systematic analysis of geometric and topological properties of street networks in

European cities.

__________________

' Chapter One introduces the research context, outlines the motivation for the
I
CHAPTER 1 ' study, and defines the scope and analytical focus. It presents the main aim,
I
4

N e mme___- objectives, and research questions, and sets out the hypotheses.

__________________

, Chapter Two provides a review of relevant literature, establishing the

CHAPTER II ' theoretical basis for reading urban form through street networks. It explores
1

N / key concepts and debates on the physical dimension of urban complexity, the

historical evolution of street patterns, urban grain, fractal geometry, and indicators of street-network

structure. The chapter concludes by identifying gaps that motivate the empirical analysis.

Chapter Three outlines the methodological framework. It describes the

selection of study areas and data sources, explains how physical complexity

@
s
>
=
=
=1
~
=
=
—

graph-theory metrics. It further details the analytical approach at both the cross-sectional and intra-city

levels, including procedures to assess associations and interpret typological variations.

v Chapter Four presents the results derived from the applied methodology. It
CHAPTER IV i includes a comparative analysis of street-network patterns, reports the
N e e e / distribution of fractal dimension (D) values in historical and modern urban
areas, examines variations in topological indicators, and analyzes relationships between D and street

network indicators.

Chapter Five interprets the findings in relation to the research questions and

—————

\
1
CHAPTERYV existing literature. It discusses the results, reflects on their implications for
1
1

+ understanding urban morphology and street-network analysis, and

——————————————————

! ; Chapter Six concludes the thesis by synthesizing the key findings in relation
i CHAPTER VI i to the research aim and questions. It highlights the contribution of the study,
| I

outlines directions for future research.



Chapter 2: Literature review

This chapter reviews key literature on urban complexity with a specific focus on its spatial and structural
dimensions as they relate to street networks. It begins by outlining the theoretical foundations that frame
cities as complex systems, emphasizing the shift from descriptive interpretations of urban form to
quantitative approaches that measure geometric and structural variation. The chapter then traces the
historical evolution of urban patterns, contrasting organically developed historic fabrics with systematically

planned modern layouts, and examining the assumptions commonly associated with each.

Particular attention is given to methods for quantifying spatial complexity, with a focus on fractal geometry
and the use of street networks as proxies for urban form. The chapter critically evaluates the conceptual
basis and empirical application of fractal dimension in urban studies, highlighting both its analytical value
and methodological limitations. Subsequent sections explore the relationship between street morphology
and network structure through graph-theoretic approaches, addressing how different configurations shape

structural connectivity and accessibility potential.

Rather than conflating spatial form with observed behavior or subjective perception, this review centers on
the structural conditions that enable or constrain movement within the urban fabric. By synthesizing debates
across urban morphology, network science, and fractal analysis, this chapter establishes the theoretical
foundation for examining whether fractal dimension captures structural variation in street-network form

across contrasting urban contexts.

2.1. Urban complexity: conceptual foundations

Cities develop through many small adjustments rather than a single design moment (Alexander, 1965; Batty,
2005; Boeing, 2018). Their street layouts, block structures, and built fabric accumulate through repeated
actions such as plot subdivision, route extension, infill construction, and incremental densification. These
processes are shaped by everyday practices, regulatory decisions, and physical constraints, which together

leave a long-term imprint on spatial form (Salingaros, 2000; Batty, 2005).

Over time, these numerous minor interventions produce spatial patterns that are far more irregular and
differentiated than those arising from a single coordinated plan (Batty, 2005; Boeing, 2018; Merlo &
Lavoratti, 2024). Complexity theory describes this cumulative evolution by viewing cities as systems in

which spatial configuration results from the interplay of many heterogeneous actors and conditions, each



influencing the built environment in partial and often indirect ways (Batty, 2005; Strano et al., 2014;

Boeing, 2018).

The concept of urban complexity is commonly discussed through four ideas: self-organization, emergence,
nonlinearity, and multi-scale structure. These ideas help explain why urban morphology often shows

irregular geometry, layered subdivision, and substantial variation across scales.

2.1.1. Self-organization and emergence
A defining mechanism of such systems is self-organization, which refers to the formation of spatial patterns
through local adjustments rather than coordinated design. For instance, Alexander’s (1965) essay “A City
is Not a Tree” illustrates this concept by comparing traditional urban neighborhoods to semi-lattice
structures: places where streets, buildings, and public spaces overlap and interconnect organically, rather
than following a rigid, hierarchical “tree-like” plan. This demonstrates how urban form can be the product
of local adaptation and collective negotiation, which are often regarded as signatures of self-organized

development.

Closely related to self-organization is the concept of emergence, defined by Goldstein (1999) as the
appearance of new spatial patterns that cannot be attributed to any single local intervention. In urban
contexts, this may include hierarchical street arrangements (i.e. primary, secondary, tertiary streets),
recurrent block proportions, or distinctive neighborhood structures that result from long sequences of the
bottom-up interactions (Batty, 2005). Boeing (2018) shows that such emergent forms arise from

decentralized negotiations rather than formal planning.

2.1.2. Nonlinearity in urban processes
Urban systems often exhibit nonlinear behavior: small local changes often trigger large systemic effects
(Batty, 2005; Boeing, 2018). For instance, adding a single connecting street can reduce travel distances
across a neighborhood, while closing a short link may reroute movement across a wide area. Similarly, a
minor shift in intersection placement can alter block size, street continuity, or local connectivity (Crucitti

et al., 2006; Porta et al., 2006).

These effects are not always intuitive or proportional, and they challenge the assumptions behind traditional
linear planning models, which tend to expect predictable, incremental outcomes. A classic example of
where such models fall short is the phenomenon of induced demand, where increasing road capacity
unintentionally intensify traffic volumes rather than relieve them. Figure 2.1 illustrates how lane additions

may fail to resolve congestion.
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Figure 2.1. Example of Induced demand: more lanes, same problem (Verkade, 2020)

2.1.3. From nonlinearity to self-similarity
The recognition of nonlinear change introduces the concept of self-similarity, referring to the recurrence of
related spatial patterns across different scales. Fankhauser (1998) observes that small elements of the built
fabric — such as local branching or subdivision — often mirror larger structural arrangements, producing a
multi-scale coherence associated with fractal geometry. This suggests that cities, much like natural systems,
tend to develop through repeated subdivision processes that generate irregular but internally consistent

spatial arrangements (Batty & Longley, 1994; Salingaros, 1998; Jiang, 2007).

Rather than implying visual repetition, self-similarity in urban structures reflects a consistent mode of
spatial subdivision in parcels, blocks, and street segments vary systematically with scale (Batty, 2008).
These variations cannot be captured by Euclidean measures alone, which focus on single dimensions of
size or distance. Self-similar structure therefore provides the conceptual basis for describing urban
morphology through measures such as the fractal dimension, which evaluates how intensively the built

environment occupies space across multiple scales.

2.1.4. Complexity as a basis for analyzing urban form

The ideas discussed above provide a general foundation for interpreting cities as products of cumulative,
multi-scale spatial processes. They highlight how incremental adjustments — such as parcel reshaping, path
extension, or gradual densification — can generate built environments marked by irregular geometry, nested
subdivisions, and considerable variation in grain and orientation. These characteristics appear not only in
historic districts but also in peripheral settlements, informal expansions, and certain planned extensions
where the built fabric has been modified repeatedly over long periods (Thomas et al., 2007; Sreelekha et
al., 2020).

Understanding urban complexity therefore requires attention to how different morphological settings
express these processes. Some urban areas show dense layers of incremental change, producing fine-
grained blocks, irregular alignments, and mixed-use structures. Others reflect more consolidated or

coordinated interventions, which may generate regular street grids, larger parcels, and predictable block
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patterns (Boeing, 2021). Even within a single city, these contrasting conditions can coexist, illustrating how
varied historical trajectories, governance structures, and developmental pressures shape the spatial

outcome.

Complexity perspectives also underline that no single geometric or structural property captures the full
range of variation found in urban form (Batty, 2005). Instead, built environments combine multiple layers
of subdivision, circulation, and land use that have accumulated at different moments and rates (Hillier,
1996; Fankhauser, 1998). This accumulation produces urban fabrics that differ not only in their visible
structure but also in their depth of adaptation, meaning the extent to which their present-day layout reflects

long sequences of change (Salingaros, 1998; Mehaffy et al., 2010).

These distinctions provide the conceptual bridge to the next section. If cities evolve through heterogeneous
and path-dependent processes, then different urban typologies — such as organically developed districts and
planned extensions — will exhibit distinct forms of complexity. Section 2.2 therefore examines these
typological differences and outlines how contrasting generative processes shape the spatial characteristics

observed in contemporary urban environments.

2.2. Typological transitions in urban form

Urban form is not static; it evolves through an ongoing interplay of technological change, economic forces,
cultural practices, and geographic context (Hillier, 1996; Wang et al., 2024; Merlo & Lavoratti, 2024). Over
time, this interaction has produced a wide spectrum of spatial arrangements, ranging from irregular,
organically developed fabrics to highly regular grid-based schemes. Each configuration reflects the
planning norms, construction methods, and social expectations dominant at the time of its formation

(Jacobs, 1961; Kostof, 1991; Marshall, 2009; Strano et al., 2014).

2.2.1. Organic patterns: Bottom-up spatial intelligence
Settlements that developed before the industrial age typically display irregular parcels, sinuous streets, and
nested public spaces. Their geometry emerged incrementally through day-to-day decisions rather than a
single blueprint, resulting in compact, pedestrian-scaled quarters where social exchange and local

commerce were woven into the street fabric (Salingaros, 2000; Knowles, 2006).

Pagliardini et al. (2010) observe that such morphologies follow implicit, context-specific rules grounded in
climate, topography, and building practice. In Mediterranean towns, for example, narrow streets and shaded
passages correspond to climatic moderation strategies, while in hill settlements, terraced routes frequently

conform to slope terrain (Hakim, 1986; Marshall, 2009). Alexander (1965) describes these morphologies
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as example of organized complexity, characterized by the diversity of elements held together by recurrent

spatial relationships that emerge through local negotiation.

Although such environments often originated in pre-industrial contexts, their spatial configurations
continued to evolve through continuous modification in response to shifting needs (Batty, 2005). Even in
formally planned settlements, such as Roman military camps, the initial geometric order was frequently
reconfigured through subsequent subdivision and iterative development. This results in hybrid
morphologies that combine imposed structure with incremental adaptation, where small plots repurposed

and streets realigned without large-scale disruption (Bertuglia & Staricco, 2000; Salingaros, 2000).

2.2.2. Transition to grid-based and modernist planning
The rapid urbanization of the 19th and 20th centuries marked a decisive shift in planning paradigms. As the
global urban population expanded dramatically — growing thirtyfold between 1800 and 1960 — the informal
growth patterns of earlier settlements were replaced by more standardized layouts designed to

accommodate large-scale development and infrastructural coordination (Kostof, 1991).

Grid plans became central tools of modernization. Their regular geometry supported coordinated
infrastructure, administrative control, and predictable land subdivision (Le Corbusier, 1935; Scott, 1998;
Marshall, 2004). These schemes also aligned with emerging transport technologies, especially tram and rail
systems that required clear axial routes (Duany et al., 2000). In many contexts, the grid reflected broader
political objectives: colonial governance, state-building, or rationalized land management (Kostof, 1991;

King, 2004).

2.2.3. Grid patterns: Top-down spatial intelligence
Grid-based environments are characterized by repeated block modules, linear corridors, and uniform
intersection spacing (Kostof, 1991; Scott, 1998; Boeing, 2021). Their appeal lies in their administrative
clarity and scalability, making them suitable for large-scale development and real estate markets
(Southworth & Ben-Joseph, 2003; Sennett, 2018). By establishing predictable parcels and circulation
routes, grid layouts enable coordinated infrastructure delivery, clear land valuation, and standardized

building procedures (Kostof, 1991; Boeing, 2020; Sreelekha et al., 2020).

The simplicity of the grid pattern also supports extension: its geometry can be expanded in any direction
without altering the internal logic of blocks or streets. This quality made it attractive in colonial, industrial,
and frontier contexts, where rapid land allocation and governance required easily reproducible spatial
templates (Scott, 1998; Kostof, 1991; King, 2004). The regular spacing of intersections further facilitates
the introduction of modern utilities, including tramlines, sewerage systems, and electricity networks, all of

which benefit from linear and predictable routing.
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In modernist planning discourse, the grid was reimagined as a tool for utopian design, with models like the
Ville Radieuse envisioning zoned, geometrically clear cities optimized for the efficient use of transport and
sunlight (Le Corbusier, 1935; Holston, 1989; Mumford, 1961). Although rarely implemented in full, this
model deeply influenced urban renewal strategies and reinforced the association between rationalized
spatial order and modernization efforts across Europe, North America, and parts of the Global South (see
Figure 2.2).
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Figure 2.2. Grid street networks in different regional contexts

For example, Barcelona’s Eixample demonstrates how a rational grid can undergo significant adaptation.
Originally designed by Ildefons Cerda, the district exhibits a regular orthogonal structure combined with
chamfered intersections and internally subdivided blocks. While the underlying geometry is strictly
ordered, later phases of development introduced variations in block occupation, intersection treatment, and
building intensities. These changes produced a hybrid condition in which planned structure persists

alongside local divergences generated by piecemeal development.

2.2.4. Hybrid and alternative structuring principles
Beyond the binary distinction between organic and grid-based patterns, many cities exhibit hybrid
configurations shaped by overlapping phases of development. Medieval settlements with Roman origins
often combine a core grid overlaid by later organic growth. Radial-concentric systems (e.g., Moscow),
curvilinear garden-city plans (e.g., Letchworth), and star-shaped fortifications (e.g Palmanova) represent
alternative structuring principles aimed at fusing order with symbolic meaning or natural forms (Howard,

1902; Holston, 1989; King, 2004; Batty & Longley, 1994; Sennett, 2018).

These patterns illustrate that urban form is frequently the product of layered transformation, where
successive interventions introduce new ordering systems without erasing prior structures (Batty, 2005;
King, 2004; Marshall, 2004). Although such morphologies are significant within broader urban
morphological discourse, their detailed analysis lies outside the specific comparative focus of this study

and is therefore not discussed further.
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2.2.5. Contemporary relevance of typological differences
The distinction between organic and grid-based patterns continues to inform debates about urban
development. These patterns differ not only in appearance, but also in the type of complexity they exhibit.
Traditional urban forms display “organized complexity” —a coherent yet diverse structure of interdependent
elements — though may pose challenges in infrastructure provision and formal governance (Alexander,
1965). In contrast, grid plans often tend toward mechanical order or “organized simplicity” when their
design does not sufficiently accommodate the unpredictable needs of everyday social life (Jacobs, 1961;

Salingaros, 2000; Pagliardini et al., 2010; Portugali, 2011).

Both logics continue to inform contemporary planning discourse. Movements such as New Urbanism,
Smart Growth, and sustainable urbanism draw on lessons from both organic and grid-based traditions
(Duany et al., 2000; Alexander, 2001). A clear example is the Vauban district in Freiburg, where an initially
regular street framework has been altered by car-free internal routes and small courtyards that subdivide
larger blocks within a planned layout (Coates, 2013; Pafka & Dovey, 2016). From a structural perspective,
this ongoing dialogue reinforces the relevance of examining how different morphological principles encode

distinct development processes.

Typological differences also matter because they shape the underlying spatial framework inherited by later
interventions. As the next section discusses, street networks form the primary structural layer through which
these typological conditions become spatially legible. Section 2.3 therefore examines how different
development processes influence the arrangement of circulation routes and the structural backbone of the

built environment.

2.3. Street network configuration as the structural backbone

Street networks constitute the most persistent and analytically tractable component of urban form. As
continuous arrangements of routes and intersections, they structure how blocks, parcels, and public spaces
are organized and connected (Jiang & Claramunt, 2004; Porta et al., 2006; Marshall, 2009; Boeing, 2018).
Their visible geometry records accumulated decisions made through historical development, infrastructural
intervention, and incremental modification, thereby encoding the spatial structure of the city in a legible

and quantifiable form (Zhao et al., 2023).

Because development processes differ across urban typologies, their street networks express contrasting
spatial conditions. Incrementally formed districts tend to produce fine-grained, irregular alignments and
varied junction spacing, while planned extensions often introduce more regular block modules, straighter
routes, and consistent intersection patterns (Marshall, 2004; Salingaros, 2000). These differences make
street networks the primary layer through which the generative processes discussed in Section 2.2 become

spatially legible.
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Despite their apparent diversity, street systems often display recognizable structural tendencies. Local
adjustments and historical layering can produce coherent arrangements even within networks that appear
irregular (Pagliardini et al., 2010; Boeing, 2021). These patterns reflect core elements of spatial organization
—junction density, block subdivision, and segment orientation — that together shape urban geometry (Hillier,
1996; Salingaros, 2000; Southworth & Ben-Joseph, 2003). Because these features arise from long-term
processes, street networks offer a consistent entry point for analyzing how different morphological settings

encode their development histories.

The analytical value of street networks extends beyond their visible geometry. Network-science approaches
conceptualize streets as interconnected systems, allowing examination of how spatial relations — not only
distances — structure access across the urban fabric (Porta et al., 2006; Barthelemy, 2011; Strano et al.,
2014). Variations in block size, intersection density, and segment orientation influence the number of
available paths, the ease of movement between locations, and the distribution of connectivity within a given
area (Hillier, 1996; Crucitti et al., 2006). Fine-grained networks with shorter segments and frequent
junctions often support multiple route options and short pedestrian paths, whereas coarser arrangements
with larger blocks tend to reduce local permeability (Patka & Dovey, 2016). Yet empirical evidence shows
that these relationships vary across contexts and scales, highlighting the need for comparative, context-

sensitive analysis (Hillier, 1996; Porta et al., 2006; Boeing, 2018).

These structural characteristics also follow scale-dependent organization, aligning with broader theories of
urban complexity. Studies show that local street patterns often relate to larger spatial arrangements,
producing forms of multi-scalar coherence even where visual regularity is absent (Jiang, 2007; Wang et al.,
2024). This makes street networks particularly suited for quantitative analysis, since their geometric and

topological properties can be examined consistently across multiple spatial extents.

Because street networks are persistent, legible, and structurally explicit, they serve as a robust proxy for
examining geometric complexity in this study. Their configuration can be analyzed using established
techniques from fractal geometry and graph theory, providing a systematic basis for comparing paired
districts shaped by different developmental trajectories. The following sections introduce the analytical
tools used to measure these properties: Section 2.4 introduces the concepts of urban grain and permeability
as a means to describe fine-scale morphological variation; Section 2.5 reviews fractal approaches to urban
morphology; and Section 2.6 introduces the indicators used to characterize street-network structure. The

final subsection then synthesizes these strands to define the research gap addressed in this thesis.

2.4. Urban grain, permeability, and street-network patterns
As discussed in Section 2.3, the configuration of street networks shapes not only geometric form but also

the structural conditions that enable or constrain spatial access, route diversity, and navigational choices

15



within the built environment. A critical aspect of this structural variation lies in the concepts of urban grain
and permeability, which together offer insight into how different street-network patterns affect accessibility,

connectivity, and spatial legibility — particularly at the pedestrian scale (Pafka & Dovey, 2016).

Urban grain refers to the size, regularity, and arrangement of the physical units that compose the built fabric
— most commonly parcels and blocks (Bentley et al., 2003). Grain is typically conceptualized as a spectrum
ranging from fine to coarse, depending on block size, street spacing, and subdivision patterns. Fine-grained
networks are characterized by small blocks, short street segments, and high intersection density (Figure
2.3a). Conversely, coarse-grained structure (Figure 2.3b) tend to result from car-oriented or large-scale
planned development, exhibiting longer street segments, larger parcels, and wider intersection spacing

(Southworth & Ben-Joseph, 2003; Sennett, 2018).

Figure 2.3. Representative block configurations illustrating a continuum from fine (a) to coarse (b) grain (EPOA, 2018)

Closely related — but conceptually distinct — is the concept permeability, which refers to the degree of
movement potential within a street network. It captures how connected the street layout is, how many
alternative paths exist between locations, and how direct those routes are (Hillier, 1996; Patka & Dovey,
2016). A highly permeable street network supports multiple route choices and shorter detours, whereas low
permeability restricts access to a few major routes, often increasing walking distances, even when origins

and destinations are physically close.

While fine grain often contributes to high permeability, the relationship is not absolute. Some coarse-grain
grids (e.g., Manhattan) maintain high permeability due to consistent spacing and through-connections,
while some fine-grain historical areas may include cul-de-sacs or fragmented segments that reduce local
connectivity. These distinctions underscore the importance of disaggregating geometric layout from

topological aspect: grain and permeability are correlated but capture different aspects of network structure.

2.5. Fractal geometry and urban street form
Quantifying the physical dimension of urban complexity requires moving beyond descriptive or purely

conceptual interpretations of urban form. This section outlines why quantitative approaches are necessary
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for studying irregular, layered spatial structures, and introduces fractal dimension as a tool for

characterizing geometric complexity in urban street networks.

2.5.1. Why and How we quantify urban form
Urban form has traditionally been examined through qualitative interpretation and typological analysis.
While these approaches provide valuable insight, they are limited in their capacity to capture the
irregularity, variation, and layered organization characteristic of urban systems (Batty & Longley, 1994;
Talen, 2003; Boeing, 2018). In response to this limitation, researchers have increasingly emphasized the
need for quantitative approaches capable of translating complex urban patterns into analyzable and

comparable metrics.

As Talen (2003, p. 203) asserts, meaningful urban analysis must move beyond visual description to
measurable structure:
“...without the tools to effectively measure and represent these [i.e., spatial and structural aspects of
urban form] ideas — essential for implementation — the concepts prove intangible...”
This opinion echoes Batty and Longley’s (1994) call for moving from description to quantification when
studying cities as evolving systems. Similarly, Boeing (2018, p. 285) similarly emphasizes the need to
measure urban complexity formally, asking how complexity in urban form might be “assessed” rather than
only described. These arguments reflect a broader disciplinary shift toward metrics that can compare urban

structures consistently across space and time.

Formal quantitative approaches enable researchers to characterize spatial patterns — such as dispersion,
fragmentation, continuity, and grain — in a systematic and replicable manner. Such measures help
distinguish configurations that may appear similar visually but differ in their underlying organization
(Clifton et al., 2008; Yuan et al., 2018). The growth of spatial datasets and computational methods has
further strengthened the feasibility of applying such metrics in comparative studies spanning large

geographical areas (Boeing, 2018).

Within this broader shift, fractal analysis offers a particularly relevant framework for studying urban form.
Developed in mathematics to describe scale-dependent and irregular shapes, fractal geometry provides
concepts and techniques for examining patterns that recur across multiple spatial extents (Batty & Longley,
1994; Batty, 2005). Its relevance to urban morphology stems from repeated observations that cities tend to
exhibit hierarchical subdivision, nested structures, and scale-rich variation — properties that conventional

Euclidean measures cannot adequately capture.

Applications of fractal geometry in urban studies have examined the branching structure of street networks,

the subdivision of blocks, and the dispersal of built form, demonstrating how these elements often display
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characteristic degrees of irregularity and scaling (Chen & Luo, 1998; Shen, 2002; Lu & Tang, 2004). This
aligns with broader theories of urban complexity, in which built fabric emerges through incremental

processes that generate both diversity and coherence across scales.

While various quantitative approaches exist — such as simulation models or cellular automata that replicate
urban growth dynamics (Batty, 1997, 2005; van Vliet et al., 2012) — fractal analysis provides a static yet
structurally expressive means of examining existing spatial patterns. Rather than modelling temporal
change, it focuses on the geometric properties of form itself, offering a way to describe how spatial detail

accumulates and how urban form fills space at different levels of measurement (Batty & Longley, 1994).

In summary, quantifying urban form allows researchers to move from descriptive characterization to
systematic comparison. Fractal analysis, in particular, offers tools for interpreting the scale-rich, irregular,
and multi-layered geometry that typifies urban street networks. The next section introduces fractal
dimension as a specific metric derived from this framework, used to quantify geometric complexity in a

consistent and comparable way.

2.5.2. Fractal geometry in urban studies
The application of fractal theory in urban studies has significantly advanced the understanding of spatial
organization and urban form. The concept of a fractal, first introduced by Benoit B. Mandelbrot, describe
a geometric object formed through an iterative process, producing complex shapes composed of repeated
elements at progressively finer resolutions (Mandelbrot, 1983; Terzidis 2006). This property — known as
scale invariance — implies that patterns remain consistent regardless of the level of magnification

(Salingaros, 2003; Jevric et al., 2016; Jahanmiri & Parker, 2022).

A classic example of this principle is
the coastline paradox (Figure 2.4),
which illustrates how measurements of
length vary with scale, reflecting the
increasing detail observed at finer
resolutions (Mandelbrot, 1983).
Initially, geographers recorded a certain
length for the British coastline, but as

measurement methods became more

precise, the recorded length changed =2 s poe
(Salingaros, 2003, p.5). Each time the Figure 2.4. Coastline paradox (Jahanmiri & Parker, 2022)

coastline was measured with greater accuracy — the length appeared to increase. This puzzling phenomenon
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was later explained by fractal geometry: the ‘length’ of a coastline is not fixed, but scale-dependent

(Salingaros, 2003).

This paradox demonstrates that some forms cannot be adequately described by conventional Euclidean
measures and instead follow fractal characteristics in which complexity increases with resolution. As one
zooms in, finer details often mirror the larger structure — a characteristic seen in natural forms like trees and
rivers, as well as in urban systems where neighborhoods or street layouts reflect broader city patterns

(Salingaros, 2000; Lorenz, 2003; Kartal & Inceoglu, 2023).

While these features are broadly observed in natural and technological systems, they are particularly useful
for interpreting the built environment. Cities frequently display fractal characteristics in their street
networks, block arrangements, and built densities, depending on the scale of observation (Batty & Longley,
1994; Lu et al., 2016; Kartal & Inceoglu, 2023). By applying fractal geometry to urban morphology,
researchers can reveal the generative processes shaping spatial organization and describe how complex

forms emerge from repeated local transformations (Jevric et al., 2014; Zhang & Li, 2012; Jin et al., 2017).

Fractal geometry and Urban form

Urban growth is a dynamic process that results from the collective activities of individuals and communities
over time, leading to the development of complex, layered structures (Ben-Hamouche, 2009; Kartal &
Inceoglu, 2023). These processes generate forms that are difficult to describe using Euclidean geometry,
which relies on rigid shapes and fixed dimensions (e.g., 1 for lines, 2 for areas, 3 for volumes). Instead,

many urban layouts often require the use of rational numbers to express their inherent complexity.

Fractal geometry, unlike Euclidean geometry, provides a means to quantify and analyze the irregularity and
self-organizing nature of urban environments. Figure 2.5 presents three distinct fractal patterns: a leaf vein,
the Sierpinski Carpet, and an urban pattern. While these forms differ in their context and scale, they share

a common recursive logic in which smaller components reproduce aspects of the larger structure (Lorenz,

2003; Jiang, 2007, 2021).
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Figure 2.5. Examples of fractal pattern.

a) a leaf vein (Jiang, 2021) b) the Sierpinski Carpet (Jiang, 2021) c) street network of Larnaca (Cyprus)
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The leaf vein demonstrates recursive branching patterns that distribute nutrients efficiently across the leaf's
surface (Figure 2.5a). This structure resembles flow distribution in urban street networks (Figure 2.5¢)
(Wang et al, 2017). Regarding the Sierpinski Carpet (Figure 2.5b), it is often referenced since mirrors the
scaling and void patterns seen in cities (Jiang, 2021). This fractal is formed by recursively subdividing a
square and removing certain sections, creating a pattern that appears similar regardless of the scale at which
it is examined. Therefore, the concept of fractals, initially studied in mathematical contexts, has become

increasingly relevant in understanding the geometry of urban landscapes.

The presence of fractal patterns in urban structures is not limited to visual similarities; it also reflects
underlying spatial dynamics shaping cities (Batty, 1997; Encarnacao et al, 2012). For instance, building
and street-network densities typically decline progressively outward from the center to the periphery,
forming a self-replicating spatial gradient (Lu & Tang, 2004; Kalapala et al., 2006; Zhang & Li, 2012; Lu
et al, 2016). These findings highlight the self-organizing nature of urban form, reinforcing the idea that
fractal principles not only describe physical structures but also capture the underlying dynamics of urban

development and spatial organization.

Fractal Dimension as a measurement tool

A central metric in fractal analysis is the fractal dimension (D), which quantifies how space is filled or
occupied as one zoom into finer scales (Mandelbrot, 1983; Batty, 2012; Wang et al., 2017; Jahanmiri &
Parker, 2022). It typically ranges between 1 and 2 (Figure 2.6), reflecting the intermediate complexity of
urban forms - more intricate than a simple line (D = 1) but not fully occupying a plane (D = 2) (Batty &
Xie, 1996; Jevric et al., 2016).

G Z -\--'\\
. Fh__ _,]
'\,____/
fl) 1| Dimension D 2 3
T Y T / i 7 1

Figure 2.6. Comparison between the dimensions of traditional and fractal geometries (Batty&Longley, 1994)

This metric helps differentiate between compact and dispersed urban patterns and has been widely applied
in the analysis of road networks, building distributions, land-use configurations, and urban sprawl (Lu et
al., 2016). Beyond static structure, changes in fractal dimension over time have been used to indicate urban

growth dynamics (Chen & Huang, 2019).
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An intuitive way to understand this concept is through the example of a fractal tree, where each branch
splits into smaller ones, following a consistent ratio (Figure 2.7). At each iteration, the number of

branches increases, but their lengths decrease proportionally.

(@) (b) (c) (d) (e)

Figure 2.7. Example of a simplified formation process of a fractal tree (Jahanmiri & Parker, 2022)

The fractal dimension can be estimated using the relation:
log N
D= &
log S
where t refers to iteration stage, N is the number of branching at each iteration, and S is the scaling factor

by which the branches shrink. For example, if each branch splits into two smaller branches, each half the
length of the previous, then N = 2 and § = 2, yielding D = log 2 /log 2 = 1, which corresponds to a one-
dimensional line. However, if the branching pattern is more intricate, filling more space, D approaches

value toward 2, indicating a structure more complex than a line but less than a fully filled plane.

Scientific debates and Methodological challenges

While fractal analysis offers a quantitative perspective, its interpretation has been the subject of sustained
debate. One recurring critique concerns the reduction of complex urban environments to a single numerical
value. Skeptics such as Mulligan (1997) argue that aggregated fractal measures may oversimplify the
richness of urban systems and provide limited new insight into their formation. This critique is especially
relevant when cities are divided into discrete zones or parcels to calculate a single fractal dimension, as

such aggregation may overlook the integrated and holistic nature of urban structure.

Related concerns focus on the explanatory limits of fractal metrics. Although fractal dimension can describe
how spatial detail accumulates across scales, it does not inherently account for the socio-institutional
processes that shape urban form or explain why cities exhibit fractal-like patterns in the first place (Batty,
2008; Tannier & Pumain, 2005). In this sense, fractal measures quantify outcomes of urban development

rather than the mechanisms that generate them.
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A second set of challenges arises from the variability of fractal properties across different components of
the built environment. Fractal characteristics are well documented in street networks, urban boundaries,
and land-use distributions, yet each component may display distinct scaling behaviors (Frankhauser, 1998).
As Chen (2013) notes, a single fractal dimension may therefore be insufficient to represent the entire urban
fabric. This observation has prompted discussions about the need to complement fractal dimension with
additional morphological indicators to improve the accuracy and interpretability of urban analysis (Batty

& Longley, 1994; Batty, 2012; Jahanmiri & Parker, 2022).

A key theoretical link between fractal dimension and urban structure concerns density, since fractal
dimension formally expresses how a form fills available space (Batty, 1991; Longley & Mesev, 2002).
Higher fractal dimensions indicate more heterogeneous arrangements, with greater diversity in the size and
distribution of elements. Yet fractal dimension is not a proxy for density: urban areas with similar density
values may exhibit markedly different fractal characteristics (Thomas et al., 2007; Jahanmiri & Parker,
2022). Instead, it complements traditional density-based analysis by distinguishing between compactness
arising from uniform structure and compactness emerging from heterogeneous subdivision (Lu et al., 2016;

Jahanmiri & Parker, 2022).

Beyond general morphology, fractal analysis has also been applied to land-use configurations and zoning
(Batty et al., 2008; Yu & Zhao, 2021; Jahanmiri & Parker, 2022). Studies show that different urban systems
often display distinct fractal signatures (Thomas et al., 2007; Batty et al., 2008). For example, research on
London’s built environment indicates that commercial and industrial areas tend to exhibit higher fractal
dimensions due to their irregular layouts, whereas residential districts — typically shaped by more uniform
planning — tend to display lower values (Batty et al., 2008). These findings demonstrate how fractal analysis
can illuminate spatial inconsistencies or reveal how different zoning practices contribute to variations in

urban complexity.

Taken together, these debates underscore that while fractal analysis enriches the study of urban form, its
interpretation requires contextual understanding. Cities are shaped by multiple factors, including planning
regulations, transportation networks, and historical development trajectories, all of which influence their
fractal properties (Batty, 2005; Lu et al., 2016; Jahanmiri & Parker, 2022). A high fractal dimension does
not necessarily indicate desirable spatial qualities, nor does a low value imply inadequacy. As Batty and
Longley (1994, p. 333) emphasize, the central challenge is to “explore the relationship between city size,
fractal dimension, changing densities and changing form”, while ensuring that fractal measures complement

— not oversimplify — the dynamic and interconnected nature of urban environments.
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The role of fractal analysis in contemporary urban studies

Fractal principles underpin computational models designed to simulate urban growth and land-use changes.
Since the early 1990s, models like Cellular Automata (CA) and Agent-Based Models (ABM) have
employed fractal-based algorithms to replicate urban spatial patterns (Jahanmiri & Parker, 2022). These
models apply fractal rules to recreate complex urban structures emerging from simple local interactions
(White & Engelen, 1993; van Vliet et al., 2012). For example, White and Engelen’s CA model of Berlin’s
urban growth demonstrated that the fractal dimension of their simulated city closely mirrored real-world
measurements (White & Engelen, 1993). These models provide valuable predictive insights for urban
planners, allowing them to test various “what-if”” scenarios and forecast potential urban developments based
on historical trends. However, while effective at simulating iterative urban processes, these models are best
suited for exploring hypothetical urban outcomes rather than predicting actual urban dynamics (Batty, 2012;

Batty & Milton, 2021).

In recent years, fractal analysis has become more integrated with GIS and remote sensing technologies,
expanding its applications in contemporary urban research. This integration has been crucial for predicting
urban expansion and evaluating resilience to disruptions like climate change and infrastructure failures.
Additionally, machine learning algorithms have started to incorporate fractal analysis to better understand
urban dynamics. For instance, convolutional neural networks (CNNs) are used to detect fractal patterns in
satellite imagery or street network data. These tools help researchers model urban growth trajectories,
identify areas at risk of sprawl, and assess how cities might respond to changes in population or

environmental conditions.

Despite these advancements, the core value of fractal analysis within urban morphology remains
underexplored in terms accessible to both academics and practitioners. Understanding its limitations,
particularly in relation to planning policies and socio-economic dynamics, is crucial for making meaningful
contributions to urban studies. Future research should integrate fractal measures with other urban metrics
to develop a more comprehensive framework for urban analysis and planning. Combining fractal analysis
with measures of connectivity and accessibility, could offer deeper insights into urban systems, bridging
the gap between mathematical abstraction and practical planning needs. As cities evolve, refining these

methodologies will be crucial for designing more resilient and adaptable urban spaces.

2.5.3. Relevance for this study
In this research, the adoption of fractal analysis is grounded in the recognition that urban street networks
often exhibit fractal characteristics (Batty & Longley, 1994; Badhrudeen et al., 2022). Instead of relying on
qualitative descriptions of irregularity, fractal dimension provides a formal metric to quantify how densely

and unevenly urban space is filled (Jahanmiri & Parker, 2022). This makes it particularly well suited for
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the comparative purposes of this research, which examines whether differences in street-network

configuration correspond to systematic variations in their underlying spatial structure.

2.6. Network-based measures of street structure

Urban form cannot be fully understood through geometric or morphometric attributes alone. While block
size, parcel subdivision, and spatial layout express the physical grain of the built environment, the relational
structure of streets emerges from the connections among individual segments and junctions. These
interdependencies create structural properties that are not visible from geometry alone and often reveal
deeper organizational logics embedded in the network (Hillier & Hanson, 1984; Jiang & Claramunt, 2004;
Boeing, 2018; Merlo & Lavoratti, 2024). Street networks therefore provide a critical lens through which

the configurational dimension of urban form becomes legible.

Street configuration reflects the cumulative actions that shape how places connect, separate, or integrate
across scales. Even networks that appear visually similar may differ substantially in their underlying
relational structure — whether through variations in junction arrangement, degree distribution, or path
redundancy (Porta et al., 2006; Cardillo et al., 2006). For this reason, network-based indicators have become
central to contemporary urban morphological research, complementing geometric measures by revealing

how spatial elements relate to one another within the broader system.

This section reviews key literature on the use of graph-theoretical and spatial-network indicators in
understanding street-structure complexity. It situates these measures within urban morphology rather than

treating them as proxies for mobility or performance, aligning with the analytic goals of this study.

2.6.1. From morphological form to structure capacity
Urban form is often described and analyzed through its morphological typologies — whether organic, grid-
based, or hybrid — captured through metrics such as block size, street spacing, and fractal dimension. These
measures describe what the physical structure looks like. However, they do not describe ~ow the elements

relate or how the network is organized as a system (Marshall, 2004; Boeing, 2018).

Network analysis addresses this gap by conceptualizing street systems as graphs composed of nodes and
edges. This allows the structure to be examined in terms of:

e Connectivity — how many links exist and where;

e Reach — how far one can walk within a certain number of steps;

¢ Redundancy — how many alternative paths are available;

e Continuity — how street alignments extend across space;

e Granularity — how evenly connections are distributed;
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These properties reveal systemic structure independent of geometric appearance. A street network may
appear dense but its internal connections are fragmented, or it may appear coarse yet maintain strong
coherence through efficient connections (Crucitti et al., 2006; Porta et al., 2006; Hillier, 1996). The shift
from morphological form to structural capacity therefore extends the analysis of urban complexity from
shape to relations. As Jiang & Claramunt (2004) note, street networks are “both geometric entities and

relational structures”, and their dual nature requires analytical tools capable of capturing both dimensions.

2.6.2. Topological indicators of street networks
To provide a structural reading of street networks, a wide range of indicators has been developed (Wu et
al., 2021). These measures vary in scope - some are topological, describing how elements are connected
regardless of geometry, while others are spatial, capturing the physical distribution and density of street
components (Xie & Levinson, 2006). Together, they provide complementary insights into how well a

network supports movement, access, and internal flow.

This study draws upon both graph-theoretical concepts and spatial network analysis to select relevant
metrics. While indicators such as average path length describe the topological structure of connectivity,
others like intersection density reflect the spatial intensity of the network. The most relevant measures
within the context of street-network analysis are presented in Table 2.1.

Table 2.1. Core indicators for accessibility and connectivity

Level Type Measure What it describes Key reference(s)
Topological | Degree centrality Number 9f e.dges (streets) connejct.ed to | Porta et al. (2006);
a node — indicates local connectivity. Barthelemy, 2011;
Topological Betweenness How often a node/edges lies on shortest | Porta et al. (2006);

Node-level Centrality paths — control over flows. Wasserman & Faust (1994)
. . Mean distance from a node to all other | Porta et al. (2006);
Topological | Closeness Centrality . o

ones — indicates accessibility. Barthelemy, 2011;

Nodes reachable within a set network Sevtsuk & Mekonnen

Spatial Reachability index radius (e.g., 600m) — walk-scale access. | (2012);

Average shortest Mean shortest-path distance between Cardillo et al. (2006);

Spatial path length (ASPL) | all node pairs in the network.
. Average edge The mean physical length of all edges Marshall (2004);
Edge-level tial
dge-level | Spatia length (street segments) in the network. Boeing (2018);
Spatial Intersection Number of junctions per km? — proxy Marshall (2004);
. density for permeability and spatial intensity. Boeing (2018);
. . Total street length per km? — indicates Marshall (2004);
Spatial Road density overall network provision/availability. Boeing (2018);
Network- Topological Meshedness Normalized loop richness — captures Strano et al. (2012);
level POi08 coefficient redundancy and alternative routes. Fleischmann et al. (2025);
The inverse of the detour ratio, i.e. Vragovi¢ et al. (2005);

Topological | M traight
opologica ean stralghtness | | easure of how direct a route is. Labatut (2018);

In what follows, this study adopts a focused set of indicators. Two core metrics — Average shortest path
length (spatial) and Reachability index (spatial) — are used to assess relational compactness and

accessibility, without requiring large territorial coverage. Conversely, indicators such as betweenness
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centrality and global closeness — commonly used to assess through-movement or flow concentration — are
excluded due to the limited spatial coverage of the sample areas. In compact study zones, global centrality
values tend to be skewed or uninformative, as most nodes lie within proximity and the network lacks larger-
scale structure for meaningful path differentiation (Barthélemy, 2011). Instead, the focus is placed on
metrics that are sensitive to local variation and urban granularity, aligning with the goals of evaluating

spatial heterogeneity and adaptability within compact urban settings.

Recent work has emphasized the value of combining geometric and topological indicators when assessing
urban complexity (Boeing, 2018; Zhao et al., 2023). While fractal dimension captures the degree of
geometric subdivision and irregularity, network measures reveal how those subdivisions translate into
relational structure. Together, they provide a more complete understanding of how street networks differ in
form, particularly in cases where visual or historical distinctions alone do not fully explain underlying

structural variation.

In this thesis, graph-based metrics are used to compare paired districts shaped by contrasting typological
trajectories. These measures are not treated as proxies for movement, functioning, or livability but as
structural descriptors that allow differences in network configuration to be identified and assessed. When
considered alongside fractal dimension, they form a consistent analytical framework for evaluating

geometric complexity within the built environment.

2.7. Synthesis & Research Gap

Across the diverse strands of urban morphology research, several gaps remain unresolved. First, studies of
geometric complexity and network structure tend to evolve along parallel but weakly connected trajectories.
Work on fractal geometry emphasizes spatial subdivision, scale-dependency, and irregularity (Batty &
Longley, 1994; Lu et al., 2016), while graph-theoretical research focuses on connectivity, hierarchy, and
topological performance (Porta et al., 2006; Barthélemy, 2011). Only limited research examines how
geometric complexity and relational structure interact, particularly within street networks shaped by
different development processes. As a result, the relationship between fractal richness and structural

accessibility remains empirically underexplored.

A second gap concerns the scale of analysis. Many network-based studies rely on global centrality
indicators optimized for metropolitan or citywide networks. However, these measures often lose
discriminatory power in compact districts, where nodes lie in proximity and the network lacks larger-scale
differentiation (Barthélemy, 2011). This creates a methodological blind spot for understanding variation
within historic centers, fine-grained morphologies, or small-area comparative studies. There is a clear need

for local-scale, structure-sensitive indicators that reveal internal heterogeneity in dense urban networks.
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A third gap is the lack of controlled comparative research. Existing literature often examines single cases
or cross-city comparisons where contextual variables differ substantially. Few studies adopt paired-district
designs that hold socio-spatial context constant while isolating morphological differences. Consequently,
it remains unclear whether contrasts between incremental and planned morphologies produce measurable

differences in geometric complexity or topological structure.

Finally, there is limited work that explicitly links fractal measures with graph-based indicators in a unified
analytical framework. While fractal dimension captures the geometric richness of urban form, it does not
explain how that form structures movement or accessibility. Conversely, network metrics reveal relational
properties but do not quantify how the underlying geometry varies. Integrating these two perspectives offers
a more comprehensive basis for identifying structural differences that are not evident through visual or

historical analysis alone.

Taken together, these gaps justify the dual-method approach adopted in this thesis. By combining fractal
dimension with selected local-scale network indicators, and applying them to paired districts shaped by
contrasting developmental trajectories, the study provides new empirical evidence on how geometric and

topological complexity correspond within the built environment.

27



Chapter 3: Methodology

This chapter presents the methodological framework developed to investigate how contrasting street

network patterns — particularly those observed in historical (organically evolved) and modern (planned grid)

urban zones — relate to the spatial configuration of street form across selected European cities. The analysis

is grounded in the recognition that street networks display varying degrees of internal complexity, which is

captured not only through their visual geometry but also through their organizational connectivity. The

chapter is organized as follows:

Section 3.1 outlines the analytical framework and rationale guiding the methodological choices;
Section 3.2 explains the criteria used for selecting study areas and compiling spatial datasets;
Section 3.3 details computations of fractal dimension as a geometric measure;

Section 3.4 specifies graph-based indicators used to characterize street-network structure.

3.1. Overview of Methodological Approach

The analytical strategy adopted in this study centers on examining the geometric and structural properties

of urban street networks through two primary dimensions:

Geometric texture, referring to the degree of spatial irregularity and multi-scale variation observed
in a street pattern. This aspect is evaluated through fractal dimension analysis, which expresses how
fragmented or continuous street geometry is across spatial scales.

Street network structure is characterized by a set of graph-theoretic indicators, including
intersection density, average edge length, meshedness coefficient, reachability index, mean
straightness, and harmonic mean shortest path length. These metrics describe how street networks

are connected, how direct paths are, and the extent of route redundancy.

Rather than classifying urban forms into rigid typologies (e.g., “organic” vs. “grid”), the study uses a paired,

intra-city comparative design: for each city, one organically evolved historic core and one planned modern

district are analyzed within a common spatial extent. This design controls for local context (e.g., culture,

topography, policy) and allows a direct structural comparison between distinct spatial configurations.

The methodological approach integrates:

GIS-based preprocessing of spatial vector data,
Fractal analysis using box-counting methods,

Computation of morphological and topological indicators using Python-based tools.
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Throughout, the study is careful to distinguish between structural properties (i.e., the geometric and
topological features of the street network) and actual urban “function” or use (i.e. walkability). All
indicators measure physical or structural potential for pedestrian accessibility and connectivity, not
observed movement, traffic flow, or behavioral outcomes. Any reference to accessibility or connectivity in
the following chapters refers to the network’s structural capacity — the extent to which its configuration

could support pedestrian movement.

This integrated methodological approach enables a systematic comparison of how historic and modern
street networks differ in their geometric complexity and structural arrangement, laying the groundwork for

subsequent analysis and interpretation.

3.2. Study Area and Data Sources

3.2.1. Study Area Selection
This study encompasses 100 European cities, selected to capture a broad spectrum of urban contexts across
the continent. To ensure balanced geographical coverage, Europe was divided into four macro-regions —
North, West, South, and East - within each, a balanced set of countries was chosen (Figure 3.1). From each
country, five cities were included, giving equal weight to each macro-region. The full list of countries and

cities is presented in Appendix A-1.
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Figure 3.1. Map of countries included in the analysis
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Within each city, two distinct zones were identified (Figure 3.2):

o Historic district: Characterized by organically evolved, irregular, and fine-grained street patterns.

e Modern district: Defined by systematically planned, regular, and grid-like layouts.
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Figure 3.2. a) Road network boundaries in Seville; (b) Zoomed-in view of the historical area; (c) Zoomed-in view of the modern area

The primary selection criterion was the presence of a visually and structurally distinct contrast between
these two district types. Cities were included only if they exhibited this clear dichotomy (Figure 3.3); cases
lacking a meaningful organic-planned distinction (such as Turin, with a predominantly grid-based fabric)
were excluded to maintain analytical rigor (Figure 3.4). The focus was further narrowed to residential or
mixed-use neighborhoods representing everyday urban life, with industrial areas and zones fragmented by

major infrastructure (e.g., highways, railways, rivers) excluded to avoid spatial discontinuities.
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Figure 3.3. Thessaloniki (Greece) — mixed grid and organic layout Figure 3.4. Turin (Italy) — Predominantly grid-based layout
To standardize comparisons, each zone was delineated as a 1.2 km x 1.2 km area, reflecting a typical
walkable neighborhood scale (about 10—15 minutes on foot). This fixed spatial extent controls for
differences in city size and ensures that all metrics are comparable across cases. Zones were selected and

mapped at a consistent working scale (1:10,000) to capture relevant detail while minimizing edge effects.

The overall selection approach prioritized morphological clarity — distinct patterns that could be
consistently analyzed using fractal methods. In this context, while hybrid and alternative morphologies -
such as radial-concentric forms or curvilinear garden city layouts — represent important aspects of urban
morphology, they were excluded from this study. This is due to the methodological constraints of fractal
dimension techniques, which are more effective when applied to patterns that exhibit geometric regularity

or scale-invariance — characteristics that hybrid forms often lack.

3.2.2. Dataset Compilation
Spatial data for the street networks were primarily sourced from OpenStreetMap (OSM) and ArcGIS
Online, supplemented by national or regional geoportals where available geoportals (e.g., Geoportale
Regione Siciliana for Southern Italy). The OSMnx Python library (Boeing, 2017) was used to automate the
extraction, formatting, and initial cleaning of street network data. Graph topology was simplified to merge
contiguous sub-segments into single edges between “true” nodes (i.e., intersections and dead-ends) while
preserving edge geometry and lengths attributes (Figure 3.5). This ensured a consistent structural basis for

subsequent network indicators.
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Figure 3.5. Topological correction via graph simplification.
Left: Original OSM graph. Right: Simplified graph, producing the true topological skeleton.

While this process produced topologically consistent networks, it did not address limitations in the
underlying OSM data, such as incomplete coverage or generalization. In cities where OSM coverage was
incomplete — particularly within historic cores — georeferenced historical cartographic maps were used to

validate street layouts and ensure accurate reconstruction of legacy street structures (Figure 3.6)

As aresult, historic cores required special

treatment to ensure spatial authenticity.
Scanned cartographic maps dated from
the 17th to 19th centuries (Figure 3.6)
were collected and georeferenced using
known control points to align with

modern spatial coordinates. These
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network structures. Figure 3.6. Seville (Spain) city map (Wagner & Debes, 1899)

To further validate both historic and modern zones, high-resolution imagery from Google Earth Pro was
employed. This visual cross-referencing confirmed phases of urban growth, differentiated pre-industrial

organic development from planned post-industrial expansions, and flagged any inconsistencies in the raw
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data. Google Earth’s historical imagery feature proved especially valuable in verifying the temporal

accuracy of the selected zones.

Next, with validated datasets in place, preprocessing was undertaken to prepare the data for fractal geometry
analysis using Fractalyse 3.0 software. This included dissolving multipart lines, correcting disconnected
segments, removing duplicates, and consolidating parallel features such as sidewalks and carriageways into
single lines (Figure 3.7). These steps prevented inflated density values and ensured robust measures of

geometric texture.
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Figure 3.7. Example of network preprocessing in Trnava (Slovakia):
(a) original OSM road data; (b) cleaned and unified street network

Finally, all cleaned and validated datasets were exported in shapefile format for use in both fractal

dimension analysis (Section 3.3) and graph-theoretic assessment (Section 3.4).

3.2.3. Workflow and Limitations
The entire geoprocessing workflow is summarized in Figure 3.8, illustrating each stage from data extraction

to street network cleaning and export as shapefiles for analysis.

Despite these measures, minor uncertainties remain — particularly in cities with limited open-source data
coverage or variable-quality historical maps. However, these are mitigated by cross-validation and visual
inspection, making relative comparisons robust and minimizing the likelihood of systematic bias. These

limitations and their implications are discussed in the Research Limitations section.

Full Python scripts are included in Appendix A-2 to support methodological transparency and enable future

replication of the approach.
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Figure 3.8. Geoprocessing workflow diagram

3.3. Fractal lens on urban street texture

Fractal analysis provides a robust framework for capturing geometric irregularity and hierarchical
organization in road networks (Batty & Longley, 1994; Salingaros, 1998). This section details the
methodological approach for estimating the fractal dimension (D) of each study area’s street network,

justifying the selected technique, and outlining the analytical workflow.

3.3.1. Method Selection and Software
Fractal dimension (D) can be estimated through several techniques, all grounded in logarithmic scaling
relationships (Jevric€ et al., 2016). These methods capture how an object’s spatial detail varies across scales
(Jahanshiri & Parker, 2022). Among the available options, the box-counting method was selected for its

conceptual simplicity and adaptability to spatial network data (Frankhauser, 2004; Jevri¢ et al., 2016; Babi¢
etal., 2022).

The D calculations were performed using Fractalyse 3.0 software, which implements the box-counting

algorithm in a user-friendly environment designed for spatial analysis.
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3.3.2. Computational Procedure
Data Preparation
Fractalyse supports both vector and raster formats, providing flexibility for urban form analysis. In this
study, the road network data were maintained in vector format as line features extracted from ArcGIS (see
Section 3.2). These shapefiles were loaded into Fractalyse, forming the basis for the fractal analysis while

preserving geometric detail.

Counting Procedure

Once the data were imported, the box-counting procedure was automatically applied by the software. This
involves overlaying a quadratic grid of varying cell sizes (¢) onto the vector network. At each iteration, the
number of grid cells (N) intersected by the road segments was recorded, while systematically reducing the
grid size. As the box size decreases, the level of geometric detail captured by the analysis increases,
enabling analysis of multi-scale irregularity (Figure 3.9).
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Figure 3.9. Schematic overview of the box-counting method for fractal analysis (Piera et al, 2005, p. 808)
The relationship between the number of occupied boxes (N) and the grid size (¢) follows a linear trend in
logarithmic space, expressed as:
logN =—D=xloge+b (1)
where the slope of the fitted line represents the fractal dimension (D) and the intercept (b) is a constant. In
this way, the D quantifies how the structural detail of the street network evolves across scales, acting as a

geometric metric that expresses how thoroughly a pattern fills two-dimensional space.

Estimation
After the counting process, Fractalyse generates an empirical curve based on equation (1) and displays the

results in the Estimation frame. The software also calculates the goodness-of-fit (R?) to assess the goodness
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of fit between the empirical data points and the fitted line. A higher R? indicates a stronger linear
relationship, confirming the fractality of the urban pattern (Caglioni & Giovanni, 2004; Sreelekha et al,
2017). Conversely, a low correlation coefficient may suggest that the pattern does not exhibit fractal
properties or that it is multifractal, in which case the data can be subdivided into separate scale ranges. In
addition, Fractalyse reports the p-value for the regression, which should be below 0.001 to confirm

statistical significance that the obtained relationship is unlikely to have occurred by chance.

Figure 3.10 illustrates the stages of this process, from data import to the estimation output.
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Figure 3.10. Calculation of fractal dimension using Fractalyse 3.0 software (Daniel et al, 2021)

This procedure was applied to 100 cities to analyze and compare their urban road network patterns. Any
differences in the fractal dimension values (D) were interpreted as indicators of variations in road network

space-filling density and multi-scale detail between the different urban zones.

3.3.3. Output and Interpretation
For every sampled district, the software generates a log—log plot of the number of occupied grid cells (V)
against the box size (g). As discussed earlier, the slope of the fitted line represents the estimated fractal
dimension (D), which is displayed alongside the goodness-of-fit (R?) of the log—log regression, p-value,
and confidence intervals (Figure 3.10). The resulting D values typically fall within the expected range
between 1 and 2, indicating varying degrees of branching or fragmentation present in street network (see
Section 2.4). Values closer to 1 correspond to structures with more linear or directionally consistent
configurations, while values approaching 2 reflect forms that spread more irregularly and occupy more of
the two-dimensional space. Intermediate values indicate geometries that are more complex than a line but
do not fully cover the plane. Thus, the recorded D serves as a central indicator for comparing the geometric
character of historic and modern urban zones, forming the foundation for later analysis of their street

network structure and potential for pedestrian accessibility.
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3.4. Unpacking street network structure

Following the fractal analysis of spatial texture (Section 3.3), this section examines the structural dimension
of urban street networks. Whereas fractal dimension captures the degree of geometric irregularity, the
indicators introduced here quantify the morphological and topological organization of the network.
Together, they reflect how street systems are organized to support pedestrian accessibility, connectivity,

and travel efficiency.

To this end, the network is examined through two complementary lenses:
o Morphological indicators, which describe the physical arrangement of street pattern, focusing on
urban grain and overall density. These measures reflect the tangible configuration of street networks
— whether they form dense, walkable grids or more irregular, organic patterns.
o Topological indicators, which assess the relational properties of the street network by measuring
how efficiently nodes are connected, how direct routes are, and how resilient the system is to

disruption.

By bridging urban morphology with network science, this typology enables a multi-dimensional reading of
street systems that goes beyond geometric description to include their structural logic. All indicators were
computed using automated Python scripts (OSMnx, NetworkX, momepy), with consistent spatial
preprocessing applied to each of the 200 urban samples (100 cities x 2 zones). All spatial data were

projected to a local metric coordinate system to ensure valid computation of distances and areas.

The resulting indicators were then compiled into a unified database in the form of a master DataFrame,
where each row corresponds to a specific urban sample and each column represents a quantified metric.
This structure supports statistical comparison across cases and zones, and supports subsequent correlation
and clustering analysis. The following subsections present the selected indicators grouped according to their

conceptual focus — morphological (Section 3.4.1) and topological (Section 3.4.2) categories.

3.4.1. Morphological Indicators: Form-Focused Metrics
To examine the spatial grain of street networks, this study first considers a set of morphological indicators
that describe the local geometric configuration of the street fabric. These include average street (edge)
length, which measures the mean length of all street segments (edges) and acts as a proxy for block size
and urban granularity; and intersection density, which reflects how tightly nodes are packed within the

study area, indicating the overall intensity of the street network.

Each indicator is defined mathematically and linked to the Python libraries used for automated computation
across the dataset of 100 cities (Table 3.1). Given the fixed spatial extent of each sample (1.2 x 1.2 km?),

the selected metrics emphasize local configuration rather than global connectivity.
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Table 3.1. Morphological indicators used to characterize street network texture

D

E Indicator Formula Units Python’s function
75

= | A E 2 Edge lengths

3 verage Edge AEL = g g meters momepy .Statistics
4 | Length Number of edges

< | Intersection Number of intersections

8 . D = f 8 intersection/km? osmnx.basic_stats()
3 | Density Area in km?

Note: All computations were performed on projected spatial networks to ensure metric accuracy.

Together, these measures provide a quantitative account of the physical configuration of street networks,
allowing for the distinction between compact grid-like systems and more irregular organic structures
without relying on categorical typologies. While morphological indicators emphasize surface-level
geometric descriptors, they provide an essential baseline for the more structural analyses developed later in

the chapter.

3.4.2. Topological Indicators: Structure-Focused Metrics
While geometric and fractal measures describe the visible spatial form of a street network, they do not
reveal how street segments are arranged in relation to one another. To capture this internal organization,
the analysis incorporates a set of graph-theoretic indicators that quantify structural properties such as
reachability, compactness, route detour, and redundancy (Table 3.2). These measures do not describe
movement or flow, but they provide a structural basis for comparing how different street layouts organize

spatial connections.

Such differences become especially relevant when geometric indicators alone suggest similar spatial
characteristics. Two street networks may share comparable intersection density or block size, yet differ
substantially in how segments link, branch, or form loops. Topological measures therefore allow
distinctions in connectivity and route options that may not be evident from geometric analysis alone,

offering a deeper understanding of how street networks are configured.

Table 3.2. Topological indicators are used to assess street network connectivity and structure

D
?cg Indicator Formula Units Python’s function
75
- For each node i, count nodes j such that t(;ustqm Py‘Fhon
S e F ) < . unction using
g Reachability index 6111(%, ) < 600 m; nodes |\ oy (Diikstra
average across a L. algorlthm)
_E-N+C
§ Meshed.ness 2N —-5C unitless momepy .Meshedness ()
3 | Coefficient where E = No edges, N = Ne nodes, [0,1]
C = Ne components.
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S = 2 Z Euclidy Custom Python
E Mean straightness nn—1) Lz  dy unitless | function using
o ..
5] with Euclidean distances from node coordinates | [0,1] NetworkX (Dijkstra
and d;; shortest paths by metric length. algorithm)
_N(N-1)
L= —T Custom Python
& | Harmonic-mean Dixj a4 function using
= | shortest path Y meters NetworkX (Dijkstra
o | sho p where d;; is the shortest path length between loorith )
nodes i and j along the network. algorithm)

Note: Calculations are based on undirected, simplified (near-planar) graphs constructed from OpenStreetMap data.
All graphs were projected to a local metric CRS before computing distances; no planarization is applied.

The following interpretive summary clarifies the role of each metric in capturing structural properties of

the street network:

Reachability index quantifies local access potential by counting the number of nodes that can be
reached within a 600-meter radius. The threshold is commonly associated with a 7-8-minute
walking distance in urban studies, but here it functions strictly as a fixed spatial parameter for graph
sampling, independent of any modelled behavior.

Harmonic-mean shortest path length represents the average shortest distance between all pairs
of nodes in the network. Lower values correspond to more compact and closely connected layout,
whereas higher values suggest more sprawling or fragmented structures. For instance, if the
harmonic mean is around 490 meters, this can be interpreted as a typical navigation length within
the street system.

Mean straightness captures route directness, defined as the average ratio of Euclidean (straight-
line) distance to actual path length. Values range from 0 to 1, with 0.75 meaning that routes are on
average 33% longer (detour) than a direct line (i.e., 1/0.75=1.333). This offers a tangible way to
assess legibility and alignment in the street structure: a higher value implies less detour, while
lower values indicate more circuitous route.

Meshedness coefficient measures how looped or redundant the street structure is — a proxy for
choice (i.e., presence of alternative paths and redundancy) in the network. A tree-like (dendritic)
system yields values near 0, while more interconnected planar graphs approach 1. Higher
meshedness represents greater structural redundancy, which indicates the presence of alternative

links and multiple ways to connect different parts of the network.

Together, these indicators complement the geometric and fractal measures introduced earlier by describing

how connectivity is structured rather than merely how it is distributed in space. They provide the basis for

assessing variation in network organization across different urban contexts.
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3.5. Statistical analysis of Metric relationships

To examine how the fractal dimension (D) relates to the structural properties of street networks, two
complementary statistical approaches were used. The first - the paired within-city design — assesses changes
within individual cities by comparing historic and modern districts directly. The second, a groupwise cross-
sectional design, analyzes the broader associations between D and other network measures separately
within the full sets of historic and modern samples. These approaches provide both a city-level view on

changes in street network structure and a group-level perspective on street patterns.

3.5.1. Paired within-city correlation analysis
This approach focuses on urban transformation at the city level by directly comparing each city’s historic
and modern districts. For each city and for each metric, the difference (A) is calculated as:
AM = Mg — Myew
where M represents any network indicator, such as fractal dimension, intersection density, or reachability

index.

The relationship between changes in fractal dimension (AD) and changes in other network indicators
(AMetric) is then assessed across all cities using both:
e Pearson’s r to detect linear relationships:
. 2 (Ax; — Ax)(Ay; — AY)
VE(Ax; — AX)? * [T (Ay; — Ay)?
e Spearman’s p to capture monotonic associations independent of distribution shape:

6 d;*
" n(n?-1)

p=1
where d; is the difference between the ranks of paired values.

1.0 This method reveals whether increases or
decreases in fractal dimension within cities are
systematically associated with changes in other

1™ aspects of the street network. The results are

presented as a correlation matrix (Figure 3.11),

100  which visualizes the strength and direction of

these paired relationships for all metrics.

1-0.5
Note: Cells represent pairwise correlations, colored
from blue (—1) to red (+1); axes list indicators as
Lo s placeholders (M;— M;). Actual coefficients and

M M2 Ms Ma Ms Me M

labels will appear in the Results chapter.
Figure 3.11. Heatmap of the correlation matrix
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3.5.2. Groupwise correlation analysis
Groupwise analysis reveals the typical structural relationships that exist within historic and modern types
of street system, independent of urban transformation processes. It shows whether, for example, higher
fractal dimension is generally associated with finer network grain or greater meshedness within either
group, regardless of city-specific change. In this analysis, all historic samples are combined into one group,

and all modern samples into another.

For each group, both Pearson’s and Spearman’s correlation coefficients are calculated for D and the relevant
network indicators. Results are summarized in correlation matrices (see Figure 3.11), and supported by

scatterplots where relevant.

3.5.3. Reconciling the two methods
The two approaches can yield divergent outcomes, which is informative. For instance, a metric may
correlate with fractal dimension in both samples, yet show weak A-correlation if historic and modern
districts move in parallel within cities (i.e., there is little internal contrast). Conversely, A-correlations can
be strong even when within-sample coefficients are modest, indicating systematic shifts in modern districts

relative to their historic counterparts.

By comparing these results, the analysis clarifies whether relationships between fractal dimension and street
network properties remain consistent across historic and modern settings, or if distinct patterns emerge in
each context. Considering both views mitigates risks such as Simpson’s paradox and scale effects: cross-
sectional patterns may be driven by inter-city composition, whereas A highlights genuine within-city

transformation.

Interpretation strategy. The A analysis is regarded as the main test of co-movement during urban
transformation, while the within-sample analysis acts as a diagnostic that clarifies how D aligns with
network structure across historic and modern landscapes. Convergent evidence across both designs is
interpreted as robust; discrepancies are examined to determine whether associations are context-driven

(between cities) or genuinely tied to intra-urban change.

Together, these statistical protocols complete the methodological framework. By linking fractal dimension
with structural indicators through paired and cross-sectional correlations, the study establishes a rigorous
analytical bridge between the measures of geometric texture (Section 3.3) and street network structure
(Section 3.4). This integrated design provides the foundation for the Results chapter, where the empirical

relationships will be evaluated and interpreted across Europe’s historic and modern urban landscapes.
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Chapter 4: Results and Analysis

4.1. Fractal dimensions analysis

Following the procedure detailed in Chapter 3, fractal dimension values (D) were computed for the street
networks of 100 European metropolitan areas. Each city was analyzed in two distinct urban contexts: the
historical urban core and a modern expansion zone. This comparative structure enables a consistent

assessment of morphological differences associated with different phases of urban development.

To observe broader geographical patterns, the cities were grouped into four macro-regions: Northern,
Southern, Western, and Eastern Europe. Within each region, the median fractal dimensions of historical
(Dy1q) and modern (D,,,,,) districts are reported, as well as the intra-city differences (AD = D,;5 — Dypew)-
Using medians, rather than averages, minimizes the influence of outliers that might otherwise distort the

general tendencies. The following subsections present results for each region.

4.1.1. Northern Europe
The table below summarizes the fractal dimensions for 20 cities across Northern Europe.

Table 4.1. Numeric value of the fractal dimension of Northern European cities

Europe Country City D,ia s AD
Odense 1.502 1.428 0.074
Esbjerg 1.490 1.445 0.045
North Denmark Aalborg 1.498 1.395 0.103
Aarhus 1.468 1.403 0.065
Copenhagen 1.500 1.474 0.026
Helsinki 1.392 1.349 0.043
Tampere 1.365 1.333 0.032
North Finland Mikkeli 1.350 1.321 0.029
Turku 1.390 1.362 0.028
Pori 1.393 1.397 -0.004
Hamar 1.438 1.433 0.005
Bergen 1.512 1.504 0.008
North Norway Stavanger 1.457 1.452 0.005
Tonsberg 1.437 1.388 0.049
Oslo 1.479 1.439 0.040
Stockholm 1.419 1.373 0.046
Gothenburg 1.409 1.390 0.019
North Sweden Helsingborg 1.413 1.414 -0.001
Malmo 1.390 1.354 0.036
Vasteras 1.400 1.377 0.023
Dyig = 1428 | Dy, =1.396 | AD = 0.031
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As shown in Table 4.1, historical city cores in this region have a typical fractal dimension of
Doiq = 1.428, slightly higher than their modern counterparts (D,,.,, = 1.396). While these values reflect the
median fractal dimension per district type, the reported difference AD = 0.031, is not derived from
subtracting the two medians. Instead, it represents the median of the city-level differences (AD = D,;q —
Dy,ew), offering a more robust indicator of the typical direction and magnitude of intra-city change across

the region.

Among all cities, Bergen (Norway) displays the highest fractal dimensions for both historical and modern
parts, with values of 1.512 and 1.504, respectively. This suggests a high degree of continuity in spatial
structure across time. In contrast, Aalborg (Denmark) shows the largest intra-city contrast (AD = 0.103),

indicating a clear morphological shift between its old and new districts.

Notably, cities such as Pori (Finland) and Helsingborg (Sweden) show negligible or slightly negative AD
values, implying that their modern areas are nearly as (or slightly more) geometrically complex in terms of

street layout than their historical counterparts — an atypical pattern within the broader regional trend.

To better visualize these patterns, Figure 4.1 compares the historical and modern fractal dimension values
for each city. This graphical representation reinforces the overall trend — older areas are generally more

complex — but also makes local deviations more immediately visible.
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Figure 4.1. Fractal dimension by city: historic vs. modern districts (Northern Europe)
This shift from tabular to graphical representation enhances the interpretability of the results by making
contrasts and continuities between historical and modern street forms more apparent. Presenting the data
both numerically and visually enables precise comparisons, while also revealing broader pattern

recognition, providing a stronger basis for deeper interpretation in later sections.
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4.1.2. Western Europe
Western Europe presents a wider range of fractal dimension values than Northern Europe, reflecting greater
diversity in urban histories and planning. Many cities with well-preserved medieval cores display relatively
high fractal dimensions in their historical areas. For example, Béziers (D,;4 = 1.606) and Augsburg

(Dy14 = 1.551) have the most fractal street layouts in the dataset — that is, their patterns are notably irregular.

At the same time, modern expansion areas generally show lower values, as seen in Ghent (D, = 1.364)
and Bruges (D, = 1.382), though some variation persists across cities. This trend matches expectations
for areas shaped by post-war planning, which often favored more regular and standardized block structures.
Nevertheless, some cities, such as Toulouse (4D = 0.002) and Klagenfurt (AD = —0.001), exhibit near-
parity between historical and modern districts, suggesting a continuity in street configuration across

different historical periods.

To ground these patterns in the broader dataset, Table 4.2 reports the full set of values for cities in Western

Europe, including both D,;4, Dyew, and intra-city difference (4D).

Table 4.2. Numeric value of the fractal dimension of Western European cities

Europe Country City D,ia 1Dy AD
Graz 1.525 1.443 0.082
Linz 1.463 1.458 0.005
Western Austria Innsbruck 1.471 1.462 0.009
Klagenfurt 1.452 1.453 -0.001
Vienna 1.527 1.498 0.029
Ghent 1.429 1.364 0.065
Antwerp 1.417 1.392 0.025
Western Belgium Bruges 1.440 1.382 0.058
Brussels 1.429 1.418 0.011
Ostend 1.408 1.399 0.009
Hamburg 1.456 1.390 0.066
Diisseldorf 1.453 1.425 0.028
Western Germany Nuremberg 1.503 1.475 0.028
Augsburg 1.551 1.462 0.089
Cologne (Koln) 1.482 1.449 0.033
Bordeaux 1.502 1.461 0.041
Toulouse 1.513 1.511 0.002
Western France Dijon 1.512 1.497 0.015
Rouen 1.542 1.501 0.041
Beziers 1.606 1.546 0.060
Nijmegen 1.443 1.455 -0.012
Eindhoven 1.445 1.438 0.007
Western Netherlands Tilburg 1.445 1.469 -0.024
Zoetermeer 1.498 1.475 0.023
Breda 1.429 1.476 -0.047
Dyig = 1.463 Dyew = 1.458 | AD = 0.025
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The regional medians (D, = 1.463, D,,,, = 1.458) indicate a modest but consistent decrease in
morphological richness from historical to modern districts. However, cities such as Tilburg, Breda, and
Nijmegen display slightly negative AD values, where the modern sample is marginally more articulated
than the historical cores. This may point to recent urban regeneration initiatives or design approaches that
incorporate greater variability in block size and street alignment, as well as increased irregularity in the

overall street pattern.

To better capture the distribution of values and highlight intra-city contrasts, Figure 4.2 visualizes the

historical and modern fractal dimensions for each city.
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Figure 4.2. Fractal dimension by city: historic vs. modern districts (Western Europe)

This graphical representation enhances pattern recognition by making contrasts between cities more
intuitive. It reveals cities with consistently high values of D (e.g., Béziers, Augsburg, Toulouse), as well as
those with larger gaps between historical (old) and modern (new) areas, such as Graz or Augsburg. The
relatively small spread in modern districts reinforces the impact of a more standardized urban planning

approach in post-1950 development across much of Western Europe.

In summary, Western European cities reflect a mix of preserved historical intricacy and modern
rationalization. While fractal dimension effectively captures morphological variation, further interpretation
should be supported by complementary metrics (e.g., street length distribution or meshedness coefficient)
to better understand the implications of these differences for street network configuration and urban form.
This diversity in intra-city and regional patterns underscores the importance of historical context, planning

ideologies, and socio-political factors in shaping urban form.
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4.1.3. Eastern Europe
Preliminary analysis shows that Eastern Europe displays one of the most internally varied distributions of
fractal dimension values. While a fuller comparison with all regions follows, the diversity — already
apparent within this group — highlights how contrasting planning ideologies have shaped urban form over

time (Table 4.3).

Table 4.3. Numeric value of the fractal dimension of Eastern European cities

Europe Country City Dia 1D AD
Haskovo 1.527 1.522 0.005
Yambol 1.555 1.493 0.062
East Bulgaria Varna 1.578 1.571 0.007
Plovdiv 1.555 1.523 0.032
Ruse 1.540 1.531 0.009
Brno 1.351 1.395 -0.044
Prague 1.395 1.352 0.043
East Czech Republic | Pilsen 1.414 1.387 0.027
Liberec 1.389 1.385 0.004
Ostrava 1.402 1.402 0
Debrecen 1.492 1.477 0.015
Gyongyos 1.532 1.522 0.010
East Hungary Nyiregyhaza 1.485 1.445 0.040
Budapest 1.484 1.474 0.010
Pecs 1.532 1.528 0.004
Poznan 1.391 1.322 0.069
Czestochowa 1.331 1.365 -0.034
East Poland Lodz 1.358 1.354 0.004
Wroclaw 1.351 1.330 0.021
Warsaw 1.368 1.363 0.005
Bucharest 1.575 1.530 0.045
Craiova 1.551 1.474 0.077
East Romania Oradea 1.435 1.420 0.015
Satu Mare 1.416 1.387 0.029
Timisoara 1.445 1.352 0.093
Bratislava 1.402 1.384 0.018
Kosice 1.363 1.318 0.045
East Slovakia Nove Zamky 1.383 1.392 -0.009
Trnava 1.362 1.398 -0.036
Nitra 1.416 1.384 0.032
Dyig = 1445 | Dy, = 1426 | AD = 0.015

While not reaching the highest extremes seen in Western Europe (e.g., Béziers or Augsburg), several cities
in this region — such as Varna, Plovdiv, and Yambol — recorded D,;4 values exceeding 1.550, indicating
considerable morphological richness. These figures reflect a patchwork of traditional urban structures

shaped by a mix of Ottoman, Austro-Hungarian, and Soviet planning legacies (Stanilov, 2007; Hirt, 2012).

At the other end of the spectrum, cities like Brno, Cz¢stochowa, and Wroclaw showed relatively low fractal
dimensions in their historical cores (near or below 1.350), more aligned with the compact grid-like forms

noted earlier in some Northern European cities (cf. Section 4.1.1). This range — from 1.331 to 1.578 —
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highlights the intricate urban trajectories of post-socialist cities, where preservation, stagnation, and rapid

redevelopment have coexisted (Tsenkova, 2006; Sykora & Bouzarovski, 2012).

Interestingly, the variation between historical and modern areas is less predictable than in Western Europe.
While a general trend of lower D,,,, values is apparent, the intra-city difference (4D) is not uniformly
positive. Budapest and Nyiregyhaza, for example, show moderate but expected drops (4D = 0.04), while
cities like Gyongyods, Pécs, and Satu Mare exhibit almost no change — suggesting either an organic

continuity in urban form or the integration of historical street patterns into more recent expansions.

In contrast, Brno, Czegstochowa, and Trnava display negative AD values, with modern areas surpassing their
historical cores in spatial intricacy. Whether due to post-war restructuring, socialist infill, or deliberate non-
orthogonal planning, these reversals set Eastern Europe apart from the more consistent trends identified in

both Sections 4.1.1 and 4.1.2.

Although the regional median values (D,;q = 1.445, D,,,, = 1.426) suggest a mild overall decline in urban
complexity, the small average gap masks significant internal heterogeneity. Romania, for instance, shows
sustained high fractality in street configuration across both historical and modern districts. In contrast, the
Czech Republic includes cities with low pattern differentiation (e.g., Brno), as well as tightly preserved
ones (e.g., Pilsen). The presence of negative AD values, also seen occasionally in the Netherlands (see
Section 4.1.2), reinforces the idea that morphological simplification is not a universal feature of modern

development.

Rather than presenting a singular regional narrative, the Eastern European data reflects an ongoing tension
between inherited street layouts and imposed spatial orders. This interplay is especially apparent in
graphical form: Figure 4.3 traces the parallel trajectories of historical and modern D values, making visible

the internal contrasts — some gradual, others abrupt.
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Figure 4.3. Fractal dimension by city: historic vs. modern districts (Eastern Europe)
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Unlike the visual outputs for Northern and Western Europe, where the differences between bars followed
a clearer pattern, the graph for Eastern Europe resists easy simplification. It draws attention to the region’s
varied local histories and differing interpretations of “modern” planning. In cities like Timisoara or KoSice,
the close alignment of values suggests planning that retained or mimicked traditional urban approaches. In
others, like Trnava, the sharp drop may reflect post-war demolition or large-scale restructuring under

centralized planning regimes.

In sum, the case of Eastern Europe reveals that fractal dimension — when viewed not as a singular indicator
but as a distribution across cities — can expose both continuity and rupture. It invites closer attention to the
political and cultural contexts shaping street morphology, and it cautions against assuming uniform patterns

of spatial simplification in modernity.

4.1.4. Southern Europe
Among all macro-regions, Southern Europe exhibits the highest typical fractal dimension values in
historical urban cores. Cities such as Palermo (D,;4 = 1.645) and Naples (D,;4 = 1.587) stand out for their
intricate and organically evolved street networks — patterns commonly associated with older Mediterranean

cities shaped by centuries of informal growth, constrained topography, and layers of cultural influence.

Similarly, cities such as Granada and Seville demonstrate relatively high fractal values in both their
historical and modern districts, suggesting a continuity in morphological structure over time. This contrasts
with the patterns observed in most Western and Eastern European cities (see Sections 4.1.2 and 4.1.3),
where modern areas typically display a marked reduction in morphological richness, especially in terms of

street network irregularity and density.

Frankhauser’s work on the Bergamo region helps contextualize these findings, noting that Southern
European towns often integrated surrounding rural settlements as they expanded, forming dendritic,
interconnected patterns with moderate to high fractal dimensions. In that study, values ranged from 1.430
to 1.460, significantly higher than in more regulated urban forms like German Stuttgart with D = 1.270 or
Lorrach with D = 1.370 (Frankhauser, 2004). Such contrasts reflect different spatial logics: gradual, layered

urbanization in the south versus more centralized, planned growth in central and northern regions.

Another factor contributing to the distinctive street network patterns of Southern European cities is their
coastal and leisure-oriented geography (Frankhauser, 2004). Cities along the Mediterranean — such as
Naples, Setubal, and Malaga — display highly articulated street layouts shaped by trade, climate, tourism,
and cultural exchange. While modern developments tend to adopt more regular, planned street

arrangements, the median of fractal dimension (D,,,, = 1.501) remains higher than the corresponding
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modern medians in the other three regions. This indicates a persistent tendency toward dense, finely

subdivided, and irregular street networks even in newer districts.

Despite this, the shift from historical to modern street layouts remains evident. The typical intra-city
difference in this region is A = 0.030, slightly higher than in Western or Eastern Europe, indicating a
gradual but consistent transition in street network structure over time. However, cities like Padua

(Dy1g = 1.514; Dy, = 1.513) deviate from this pattern, showing minimal change — likely due to limited

urban expansion or design choices that preserved the historical street arrangement.

The diversity of these patterns is reflected in Table 4.4, which summarizes the historical and modern fractal

dimensions for all Southern European cities in the study, along with intra-city differences.

Table 4.4. Numeric value of the fractal dimension of Southern European cities

Europe Country City D,ia [ AD

Thessaloniki 1.543 1.538 0.005

Katerini 1.480 1.461 0.019

South Greece Larissa 1.518 1.506 0.012
loannina 1.490 1.482 0.008

Lamia 1.527 1.504 0.023

Florence 1.535 1.486 0.049

Naples 1.587 1.540 0.047

South Italy Palermo 1.645 1.548 0.097
Bologna 1.534 1.466 0.068

Padua 1.514 1.513 0.001

Porto 1.450 1.433 0.017

Lisbon 1.494 1.447 0.047

South Portugal Castelo Branco 1.471 1.416 0.055
Setubal 1.512 1.481 0.031

Evora 1.527 1.483 0.044

Nicosia 1.509 1.495 0.014

Republic of Paphos 1.486 1.480 0.006

South Cyprus Limassol 1.523 1.491 0.032
Larnaca 1.494 1.477 0.017

Famagusta 1.500 1.464 0.036

Granada 1.643 1.577 0.066

Seville 1.600 1.565 0.035

South Spain Cordoba 1.588 1.578 0.010
Zaragoza 1.572 1.566 0.006

Malaga 1.526 1.496 0.030

Dyq = 1.531 Dpew = 1.501 | AD = 0.030

The data confirm that a high degree of fractality remains a defining characteristic of street form in Southern
Europe, even as planning becomes more structured. However, this continuity is not evenly distributed
across the region. For example, while cities such as Bologna and Florence exhibit notable drops in D, others

— like Seville, Zaragoza, and Cordoba — maintain very high values in both historical and modern samples.
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Figure 4.4 presents this data visually, making the consistency of elevated fractal dimension values across

Southern European cities more apparent. Unlike Eastern Europe, where bar pairs fluctuate dramatically, or

Northern Europe, where modern areas are consistently lower, the Southern pattern is more balanced — yet

still subtly declining.
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Figure 4.4. Fractal dimension by city: historic vs. modern districts (Southern Europe)

The overall picture is one of gradual transformation rather than abrupt change. While Southern Europe

shares with other regions the general pattern of lower fractal dimension values in newer developments, it

also demonstrates a stronger resistance to morphological simplification. This may reflect a planning culture

that values historical continuity, or the geographic and cultural constraints that limit standardization. Either

way, the region’s fractal signature remains among the most consistently high in the entire dataset.

4.1.5. Observations in unraveling Europe s Street DNA

Having explored regional patterns in detail, it
becomes crucial to step back and examine how
these local dynamics translate into broader
continental trends. This synthesis moves beyond
individual case studies to draw out cross-
regional regularities and divergences in the
morphological evolution of European cities. This
broader perspective is underscored by the spatial
distribution of fractal dimension values across
European historic cores (Figure 4.5), which
illustrates regional clustering and inter-city

variation at a continental scale.
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Figure 4.5.

Fractal dimension city-level values across Europe
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To this end, Table 4.5 presents a comparative summary of typical values of fractal dimensions for historical

and modern samples across the four macro-regions.

Table 4.5. Regional summary of median fractal dimensions

Region D,ia D,ew AD

Northern Europe 1.428 1.396 0.031

Western Europe 1.463 1.458 0.025

Eastern Europe 1.445 1.426 0.015

Southern Europe 1.531 1.501 0.030
Dyiqg = 1.488 Dyiq = 1.445

Note: Values reflect the median fractal dimension across all sampled cities per region. The reported difference (Aﬁ)
is not the difference between the two medians but rather the median of city-level differences (AD = D,;4 — Dpew)-
This approach provides a robust estimate of the typical intra-city change in spatial complexity.

These results provide a regional overview of changes in street network geometry over time. For example,
Southern Europe maintains high levels of fractality in both historical and modern areas, suggesting
continuity in morphological richness. Meanwhile, Eastern Europe appears as the most heterogeneous, with

smaller differences but variable trajectories across cities.

To visualize these dynamics, Figure 4.6 presents a line plot of regional medians for D,;; and D,,,,. This
format was selected to compress data from over 100 city samples into eight summary values (4 regions x 2
urban types), thereby making directional trends and regional differences more immediately apparent in a
compact visual format.

154 s— Historical (D_old)

Modern (D_new)
152 e

15
148 +

146 ¢

Average fractal dimension

Northern Western Eastern Southern

Figure 4.6. Line plot of the average D per region (historical vs. modern)

As shown in the figure, the two lines remain nearly parallel, indicating that across all four regions, historical
urban cores are consistently more fractal than their modern counterparts. However, the magnitude of this
gap varies:

o Northern Europe exhibits the steepest drop in fractal dimension, reinforcing earlier observations of

distinct shifts in planning ideologies between periods (see Section 4.1.1).
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o Eastern Europe, while internally diverse (Section 4.1.3), shows the smallest average AD, possibly
indicating continuity or the persistence of inherited street network features in modern extensions.

e Southern Europe stands out not for the difference between values, but for the overall elevation of
both historical and modern levels. This suggests that modern growth often inherited or reproduced
richness of historical street patterns (see 4.1.4).

o Western Europe falls in between, reflecting a moderate degree of change, yet still retaining a clear

distinction between organic and planned urban typologies (as discussed in 4.1.2).

Thus, the line plot not only confirms key findings from the previous sections but also provides a
comparative lens for framing the subsequent, more detailed analyses — those which will consider not just
typical values for each region, but also city-level variability, distribution overlap, and underlying spatial

regimes.

To complement this regional overview, Figure 4.7 introduces a violin plot. Unlike standard boxplots, violin
plots display both the full range and the underlying distribution shape of the data, enabling the observation
of differences in medians as well as variation in spread (interquartile range) and skewness between

historical and modern cores.

Fractal Dimension Distribution: Old vs New
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Figure 4.7. Violin plot comparing FD distributions for historical vs. modern core samples

As the plot demonstrates, historical areas exhibit both a higher median and greater dispersion of fractal
dimension values (Figure 4.7). This reflects the diversity of older urban cores — ranging from highly
intricate medieval fabrics to more regularized but still organic pre-modern forms. In contrast, modern areas
cluster more tightly within a narrower band of D values, a pattern consistent with the more regularized

street layouts commonly observed in planned developments. This reinforces the idea that, although cities

52



differ in their absolute level of fractality, modernization often brings a reduction in morphological diversity,

likely due to functionalist or grid-oriented expansion models.

To move beyond regional medians, a more nuanced understanding of urban morphological shifts emerges

by examining the variation within each group, both in terms of magnitude and direction of change. The full

distribution of AD values for all 100 cities is included in Appendix A-3. This allows for:

o ranking cities from greatest to smallest change, visually separating those that retain spatial richness

from those that undergo significant simplification;

o highlighting outliers — both positive and negative — enabling identification of atypical cases where

modern areas exceed or nearly match the fractality of their historical cores;

o and mapping the broader landscape of morphological transitions across Europe, providing insight

into how local planning ideologies may have shifted at the local scale;

While this ranked chart provides the full picture,
Figure 4.8 narrows the focus to the extremes of the
spectrum. It highlights the ten cities with the largest
positive and negative 4D values, offering a sharper
analytical lens into cases where urban growth either
substantially diverged from historical structure or

remained remarkably consistent.

In the chart, green bars represent cities where modern
areas are significantly less fractal than historical
cores (large positive 4D), whereas red bars indicate
cities where modern areas closely match or even
surpass the fractality of older districts (negative AD).
This visual contrast helps identify planning cultures

that actively reshaped street form.
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Figure 4.8. 10 Highest and 10 Lowest AD shifts in cityscapes

To assess whether deeper structural tendencies underlie the observed differences in fractal dimension,

Figure 4.9 plots each city’s historical versus modern D values in a two-dimensional scatterplot. Cities are

grouped using K-means clustering to detect latent structural similarities among cities without imposing

predefined regional boundaries.
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Figure 4.9. Scatter plot of D4 vs. D¢, grouped via K-means

The resulting visual classification yields several key insights. First, most cities fall below the 1:1 diagonal
line (y = x), indicating that, in most cases, the fractal richness of street networks tends to diminish in
modern extensions. It is defined that AD = D,;; — Dy, and positive values of AD denote a reduction in

fractality over time — that is, a decline in the degree of space-filling structure.

Second, cities cluster into three broad morphological groups:

- High—High (blue) — cities whose historic cores exhibit the highest D values remain fractally rich in
their modern areas. However, nearly all observations in this group lie beneath the 1:1 line, suggesting
a systematic reduction in fractal properties in the transition from old to new districts.

- Mid-Mid (green) — the modal cluster, comprising cities with intermediate D values in both historical
and modern areas. Here, the reduction in fractality is more moderate and variable, with most cities
showing slight declines and a smaller subset exhibiting stability or mild gains.

- Mixed/Inverted (orange) — a distinct minority of cases where the modern extension equals or exceeds
the complexity of the historical core (AD < 0). These cases, previously highlighted in Figure 4.8,
challenge the presumption of inevitable simplification and instead suggest conditions under which

newer districts may evolve or be planned with comparable or even greater multi-scale richness.

Taken together, historic cores exhibit slightly higher average fractal dimension than modern expansions,
though the difference is modest. Yet, the presence of inverted or stable cases implies that this trend is neither
universal nor structurally deterministic. Instead, it calls for closer examination of the spatial, regulatory,

and cultural mechanisms that can preserve or even foster fractal richness in contemporary urban extensions.

In sum, the observed variation in fractal dimension (D) between historical and modern areas highlights

meaningful shifts in how street form is organized. These shifts raise practical questions about the spatial
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implications of different planning paradigms — for instance, whether the pursuit of geometric clarity in
modern layouts has reduced walkable complexity, or whether grid patterns can achieve legibility without

diminishing the spatial diversity of the street network.

While the present analysis focuses on form, even small shifts in geometric order can coincide with wider
changes in planning logic. To explore these possibilities, the next section turns to network-based indicators,
examining how variations in street configuration relate to properties such as connectivity, route directness,

and spatial integration.

4.2. Network Metrics Analysis

Building on the fractal-based assessment in §4.1, this section shifts focus to structural and connective
attributes of street network using graph-theoretical measures. Here, each street layout is reinterpreted as a
graph, allowing exploration of internal configuration — how connections enable or constrain movement,

and where alternative routes arise. The dataset remains unchanged; only the analytic framework is modified.

To operationalize this approach, each polyline trace is converted into a primal graph (Figure 4.10), where
intersections correspond to nodes and street segments to edges. This graph-based model underpins all
subsequent metrics and ensures consistency when comparing historical and modern districts. The figure

below is provided to concretize the analytic representation.

Road Network (nodes red, edges gray)

Figure 4.10. Graph model of the street network: intersections = nodes (red); segments = edges (gray)

Building on this common framework, six indicators serve as complementary perspectives on street network
structure:

o Urban grain: intersection density and average edge length;
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o Pedestrian-scale access potential: reachability index within 600 meters;
e Distance efficiency: harmonic mean of shortest path lengths
e Route directness: mean straightness of routes

e Redundancy: meshedness coefficient (cycle-based connectivity)

These metrics are derived through a common processing pipeline using OSMnx and NetworkX, ensuring
methodological consistency for both the historic and modern areas. The same graph objects are used for
both visual and quantitative analysis to ensure alignment between representations. The following analysis

interprets these metrics across the entire dataset as well as in within-city comparisons.

4.2.1. Corpus Overview: distributions by district type
Before exploring regional and city-level differences, it is useful to establish how key street network
indicators vary across the entire sample of 200 urbanized samples. This section focuses on broad
distinctions between historic cores and modern districts, without yet considering differences between

countries or urban regions.

Table 4.6 summarizes each indicator’s descriptive statistics: mean, median, minimum, maximum, and
standard deviation. This overview serves two main purposes. First, it gives a sense of the central tendency
and variability across the entire dataset, without privileging any specific city or region. Second, by
organizing the results by district type — historic versus modern — it enables a preliminary contrast between

inherited and planned urban forms.
Table 4.6. Summary statistics for six street-network indicators by district type

Historic district (Old part of the city) Modern district (new part of the city)

EUROPE
URO Mean Max Min | Median o Mean Max Min | Median g
Intersecti
plesection 1139 | 302.8 | 521 | 102.8 | 4563 | 963 | 2431 | 314 | 868 | 39.22
Density, km
Avg. Edge

7935 | 1256 | 441 | 7801 | 1618 | 90.6 | 1628 | 52.8 | 87.5 | 21.41
Length, m
HM shortest 170 1 | 6057 | 3711 | 4789 | 4541 | 4771 | 6591 | 3337 | 4772 | 5420
path, m
Reachability

68.62 193.4 24.4 63.09 32.64 | 59.83 209.6 16.31 53.11 | 31.94
Index, nodes

Mea'm 0.753 0.841 0.60 0.756 0.043 0.749 0.835 0.56 0.756 | 0.053
straightness
Meshedness

; 0.197 0.285 0.06 0.200 0.038 0.191 0.287 0.03 0.189 | 0.051
Coefficient

A close look at Table 4.6 yields several interpretive insights:
1. Intersection density declines in modern districts (median~86.8 per km?), reflecting a shift toward

larger blocks and fewer junctions compared to historic cores (=103 per km?).
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2. Edge lengths increase, indicating longer street segments and wider spacing between intersections in
modern layouts.
3. Local reachability declines by ~15-20% in most cases, suggesting that contemporary layouts tend
to limit the number of destinations reachable within one walkable radius (600 m).
These observations suggest a general movement away from compact, fine-grained street structures toward

more spacious, less connected arrangements.

Complementing this, Figure 4.11 visualizes the same data using boxplots. Each plot displays the
interquartile range (IQR), median (horizontal line), and mean (triangle) for each indicator, along with
outliers shown as individual points. Taken together, these visualizations enable rapid, side-by-side
assessment of not only the typical values (i.e., medians) but also the distributional shapes and variability

associated with each type of urban district.
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Figure 4.11. Distributions of six street network indicators across historic and modern districts (n = 200)
Note. Top row — Morphology (network grain & cyclicity): intersection density, average edge length, and meshedness (redundancy via
cycles).
Bottom row — Topology (local accessibility & routing efficiency): harmonic-mean shortest paths (aggregate efficiency), mean
straightness (route directness), and reachability within 600 m.
Boxplots show the interquartile range (IQR); green lines indicate medians; dots represent statistical outliers.
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Meanwhile, some indicators show little distinction between district types:

o Harmonic-Mean Shortest Path and Mean Straightness vary only modestly. While both district types
share similar central values, historic areas tend to support shorter and slightly more direct routes —
reflecting greater compactness and integrated street layout.

o Meshedness coefficient reveals a small but consistent advantage in route redundancy for historic

areas, implying greater resilience to traffic disruption and better support for route choice.

This comparative, corpus-wide analysis serves as a benchmark before disaggregating results by region. By
framing broad differences between historic and modern districts, it becomes easier to interpret whether
specific regional trends reinforce or diverge from these general patterns. For example, does Southern
Europe consistently reflect the historic model? Do modern districts in Eastern Europe resemble their

Western counterparts, or not?

The regional breakdowns that follow — Northern, Western, Eastern, and Southern Europe — build directly
on this foundation, tracing which morphological and connectivity traits recur, and which diverge across the

European urban landscape.

4.2.2. Street Network Signatures: Northern European cities
To introduce the regional dynamics of street network structure, Northern Europe provides a natural starting
point. Drawing on cities from Denmark, Sweden, Norway, and Finland, the analysis below synthesizes six
key network indicators to examine variations in spatial configuration, connectivity, and block structure

between historical and modern districts (Table 4.7). Full city-level metrics are included in Appendix A-4.

Table 4.7. Six Street Network Metrics: Northern Europe Summary

NORTHERN Historic district (Old part of the city) Modern district (new part of the city)
EUROPE Mean Max Min | Median 1 Mean Max Min | Median o

Intersecti
DerSeCton | 9929 | 129.9 | 59.17 | 93.44 | 18.67 | 7621 | 1250 | 314 | 77.09 | 22.25
Density, km
Avg. Edge
84.65 | 109.1 | 65.13 | 81.6 | 11.00 | 9641 | 157.9 | 71.7 | 91.69 | 20.83

Length, m
HMishortest 120 3 | 5464 | 4026 | 4737 | 4139 | 4812 | 6392 | 3489 | 4774 | 63.47
path, m
Reachability | o311 | 1001 | 24.04 | 5587 | 1728 | 4678 | 7752 | 1631 | 43.80 | 16.66
Index, nodes
Mean

. 0.754 | 0.809 | 0.661 | 0.766 | 0.039 | 0.718 | 0.814 | 0.565 | 0.717 | 0.069
straightness
Meshedness

. 0203 | 0276 | 0.137 | 0204 | 0.032 | 0162 | 0265 | 0.027 | 0.156 | 0.057
Coefficient

Across Northern Europe, historic districts typically feature 93 intersections per square kilometer, with street

segments averaging 81.6 meters in length. Within a 600-meter walking distance, the average resident can
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access approximately 56 junctions — a useful proxy for pedestrian-scale connectivity. In contrast, modern
districts exhibit reduced intersection density (77 nodes/km?) and longer average segment lengths (91.7 m),

reflecting planning trends favoring larger blocks and more streamlined layouts.

Despite these geometric shifts, the harmonic mean shortest path remains essentially stable between
historical and modern districts (473.7 m vs. 477.4 m). This suggests that while routes may lengthen and
nodes become sparser, overall accessibility does not substantially decline. This impression is reinforced by
mean straightness values: modern areas exhibit around 71.7% route directness (straightness = 0.717),
compared to 76.6% in historic cores. In practical terms, this indicates that routes in modern districts deviate
more from the Euclidean distance between two points. This reflects reduced permeability, whereas historic

networks enable more direct routing despite their irregular geometries.

The reachability index is perhaps more revealing, showing a noticeable decline in modern areas: from a
median of 56 reachable nodes to just 43, capturing the cumulative effect of fewer junctions and longer
segments. Meanwhile, meshedness coefficients drop modestly, from 0.204 in historical districts to 0.156 in
modern ones. This indicates a slightly less looped and potentially less resilient street network, though the

change is less dramatic than in other regions.

Taken together, these findings point to a moderately pronounced spatial divergence in street network
structure between older and newer districts in Northern Europe. While modern zones feature fewer
intersections and slightly longer routes, overall performance in terms of path efficiency and route directness
remains relatively high. This continuity suggests that recent expansions, despite a greater emphasis on
vehicular access and zoning, preserve elements of human-scaled coherence — especially in comparison to

more fragmented patterns observed elsewhere.

A few cities exemplify these dynamics. Stockholm, for instance, maintains high connectivity in both
historic and modern sectors, with minimal differences in reachability and path length, reinforcing its
polycentric, transit-integrated street form (Figure 4.12). Helsinki, on the other hand, exhibits one of the
sharpest contrasts in meshedness between old and new sectors (0.25 vs. 0.14), suggesting a transition
toward more tree-like road systems (see Appendix A-3). These exceptions highlight the value of

maintaining disaggregated analyses even within otherwise coherent regional trends.
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Figure 4.12. City-level variation in street network characteristics across Northern Europe

4.2.3. Street Network Signatures: Western European cities
To capture the structural tendencies of street networks in Western Europe, this analysis examines 25 cities
across five countries — Austria, Belgium, Germany, France, and the Netherlands. As detailed in Section 3.4,
six key indicators were computed using OSMnx, providing a consistent framework for comparing street
network configuration and topology between historic and modern districts. Summary statistics for each

indicator are presented in Table 4.8, while full city-by-city data can be found in Appendix A-4.

Table 4.8. Six Street Network Metrics: Western Europe Summary

WESTERN Historic district (Old part of the city) Modern district (new part of the city)
EUROPE Mean Max Min Median o Mean Max Min Median I}
Int ti
MIrSeCton 1179 | 2486 | 7150 | 1159 | 37.83 | 924 | 1646 | 39.62 | 88.93 | 26.42
Density, km
Avg. Edge
766 | 1113 | 5051 | 745 | 1337 | 889 | 1282 | 63.54 | 8541 | 14.68
Length, m
HM shortest | o3 | 6057 | 3711 | 4785 | 5174 | 4796 | 5707 | 393.9 | 4779 | 3420
path, m
Reachability | 000 | 1558 | 3054 | 65.1 | 2526 | 54.52 | 93.6 | 22.83 | 50.03 | 19.08
Index, nodes
Mean
) 0758 | 0.841 | 0.643 | 0759 | 0.05 | 0.753 | 0.835 | 0.608 | 0.752 | 0.050
straightness
Meshedness
) 0200 | 0285 | 0.097 | 0203 | 0.04 | 0.189 | 0287 | 0.104 | 0.184 | 0.041
Coefficient

The resulting patterns reflect a region shaped by centuries of gradual transformation, moving from irregular,

often organic medieval cores to the more rational geometries of post-industrial expansion. The selected
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indicators enable a comparative understanding of how morphology and topology shift over time —

facilitating analysis without relying on typological assumptions.

Based on regional medians, a typical historic district in Western Europe contains approximately 116
intersections per square kilometer, with an average segment length of 74.5 meters, and supports access to
65 nodes within a 600-meter walk. This combination indicates a fine-grained, compact street network with
high local accessibility. In contrast, modern districts exhibit a coarser structure: 89 intersections/km?, 85.4
meters average segment length, and a reachability index of 50 nodes — all suggesting larger blocks and less

favorable conditions for walkability.

Notably, although modern districts contain longer street segments and fewer intersections, mean
straightness remains relatively high (0.752). This indicates that many streets follow continuous,
geometrically aligned paths, allowing relatively direct movement despite a sparser network structure.
Meanwhile, the meshedness coefficient — a measure of street network redundancy — declines slightly from

0.203 to 0.184, indicating fewer alternative paths in newer developments.

Overall, these results are in line with expectations: historical districts are characterized by a finer street
network structure and stronger support for pedestrian movement, whereas modern layouts are sparser and
more oriented toward efficient vehicular flows. Nonetheless, the relatively modest differences across most
indicators suggest a smoother morphological transition between historic cores and the outer districts shaped

by modern planning principles in this region.

4.2.4. Street Network Signatures: Eastern European cities
Eastern European cities provide an important dimension to the regional comparison, due in large part to the
diversity of urban trajectories observed across the subcontinent. From compact centers rooted in pre-
industrial layouts to peripheral zones shaped by planned expansion and infrastructure-led growth, this
region reflects a spectrum of spatial development patterns formed over time. The dataset covers 30 cities
across Bulgaria, the Czech Republic, Hungary, Poland, Romania, and Slovakia, capturing representative
contrasts between central and peripheral districts. Table 4.9 summarizes the distribution of six core street

network indicators for both district types, with more detailed results are available in Appendix A-4.

Historic districts in this group tend to balance moderate intersection density (~79/km?) with relatively long
segments (88.5 m), reflecting compact layouts that were nonetheless shaped by grand axes or planning
traditions. Interestingly, this spatial structure does not diverge dramatically in modern districts: intersection
density drops only slightly (to ~73/km?), and segment length increases modestly (~99 m). At first glance,

this suggests a conservative evolution in block structure — more a recalibration than a rupture.
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Table 4.9. Six Street Network Metrics: Eastern Europe Summary

EASTERN Historic district (Old part of the city) Modern district (new part of the city)
EUROPE Mean Max Min | Median o Mean Max Min | Median o
Intersecti
DESECtoOn | gs01 | 155.6 | 52.08 | 79.17 | 24.50 | 7937 | 190.9 | 41.67 | 7292 | 30.85
Density, km
Avg. Edge

9170 | 125.6 | 69.09 | 8853 | 13.77 | 102.1 | 1628 | 6530 | 98.86 | 23.14
Length, m
pHal\t/IIlen‘meSt 47236 | 590.9 | 380.1 | 470.6 | 45.69 | 470.7 | 629.6 | 333.7 | 4809 | 61.26
Reachability

50.38 | 93.57 | 24.15 45.49 1843 | 48.29 115.9 1990 | 4047 | 23.02
Index, nodes

Mean 0.755 | 0.831 | 0.635 | 0.755 | 0.037 | 0753 | 0.816 | 0.620 | 0.767 | 0.041
straightness
Meshedness

. 0.196 | 0264 | 0.061 | 0198 | 0.041 | 0.195 | 0286 | 0.048 | 0.192 | 0.047
Coefficient

Yet, a more nuanced reading emerges when geometric characteristics are considered alongside topological
measures. The harmonic mean shortest path reveals near-parity between historical and modern districts
(470.6 m vs 480.9 m), and straightness index improves marginally in modern districts — from 0.755 to
0.767, or roughly 76.7% of a straight-line route. In essence, newer districts attain similar levels of perceived
legibility while simplifying street alignment. This combination — longer blocks paired with straighter routes

— suggests an optimization logic: fewer intersections, but more continuous movement paths.

However, this geometric streamlining comes with trade-offs. Reachability drops from 45 to 40 nodes,
indicating that spatial legibility does not guarantee proximity. This subtle decoupling between local
walkability and junction density reflects a shift in planning intent — less emphasis on closely-knit
accessibility, more on streamlined circulation. The meshedness coefficient, serving as a proxy for
redundancy and fallback options, also declines slightly (from 0.198 to 0.192), reinforcing the idea that while

detour routes remain, their overall density may be diminishing.

A closer look at individual cases anchors these trends. Warsaw’s modern district, for example, combines
extremely low intersection density (49.3/km?) and long edge lengths (131.9 m) with a reachability value of
just 27.7, exemplifying a landscape of large superblocks and limited connectivity. Meanwhile, Timisoara’s
modern sector stands out for its high straightness (0.826), suggesting fewer detours and more direct routing

between points, even though looping alternatives are limited.

Altogether, the Eastern European sample reflects a quiet but perceptible reconfiguration of urban street
form. While changes in geometry are clear — especially in block size and junction frequency — the continuity
in accessibility and route directness tempers their overall impact. The region offers a case where structural

evolution does not entirely sever ties with inherited street patterns, but rather, reinterprets them within new
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socio-political and planning frameworks. This restrained transition stands out, particularly when viewed

against sharper divergences observed in other regions.

4.2.5. Street Network Signatures: Southern European cities
Among the regions examined, Southern Europe displays the strongest morphological continuity between
historic cores and modern expansions, while also revealing some of the most distinctive patterns in street
network grain and redundancy. Spanning cities across Greece, Italy, Portugal, Spain, and Cyprus, this
sample presents a nuanced interplay of organic legacies and geometric interventions — shaped by centuries

of incremental growth and post-war transformations.

As summarized in Table 4.10, Southern European cities stand out for their fine-grained historical layouts.
Historic districts here show high central tendency in intersection density (median = 164.6 nodes/km?) — by
far the densest among all four regions — paired with the shortest mean edge lengths (64.3 m). Together,
these values reinforce the presence of a compact, pedestrian-oriented street network. Even in their modern
counterparts, intersection density remains comparatively elevated (131.3/km?), indicating that subsequent

urban development did not fully abandon the dense, permeable structure of earlier periods.

Table 4.10. Six Street Network Metrics: Southern Europe Summary

SOUTHERN Historic district (Old part of the city) Modern district (new part of the city)
EUROPE Mean Max Min | Median o Mean Max Min | Median o

Intersection

Density, km~2 1642 | 302.8 | 88.89 164.6 | 4434 | 1349 | 243.1 | 54.17 1313 | 41.54

Avg. Edge
Length, m
HM shortest
path, m
Reachability
Index, nodes

62.96 | 7645 | 44.11 64.31 8.539 | 73.73 1203 | 52.82 | 72.89 | 13.87

487.2 | 593.6 | 415.0 | 4852 | 43.68 | 478.8 | 659.1 | 380.7 | 473.4 | 56.12

101.4 | 1934 | 4478 | 9494 | 37.66 | 89.45 | 209.6 | 21.07 | 81.17 | 42.11

Mea.m 0.747 0.819 0.601 0.753 0.048 0.763 0.824 0.616 0.779 | 0.048
straightness
Meshedness

i 0.191 0.271 0.125 0.200 0.036 0.212 0.286 0.095 0.215 | 0.049
Coefficient

This relative consistency in granularity helps explain the minimal difference in harmonic mean shortest
path values across the two periods (485.2 m in historic cores vs. 473.4 m in newer districts). In fact, modern
areas slightly outperform older ones on this indicator — an inversion of the usual trend seen in other regions.
At first glance, this appears counterintuitive, since longer blocks and lower intersection densities typically
lengthen travel distances. However, when considered alongside a 2.6% increase in mean straightness (from
0.753 to 0.779), a clearer picture emerges: modern districts offset lower permeability through linear, well-
aligned street geometries. In practical terms, this means that movement remains relatively direct even in

sparser networks, with routes deviating from the straight-line distance by ~22% in modern districts
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compared with ~26% in historic cores. Together, these findings suggest that routing efficiency in modern

layouts is achieved through continuity of alignment that limit angular deviation.

these results suggest that modern districts compensate for fewer junctions through more linear and
continuous street alignments. In practical terms, routing in modern areas remains close to the geometric
shortest path — where approximately 22% detour is required on average — compared with about 26% in
historic areas. This indicates that directness in modern networks is achieved through long, aligned corridors

rather than through dense local permeability.

This subtle shift suggests a strategic reconfiguration rather than outright simplification. Longer street
segments, if arranged in well-aligned routes, may help preserve or even enhance route efficiency. The city
of Florence offers a notable example: its modern district improves both straightness and meshedness
compared to the historic center, despite a drop in intersection density — pointing to a coherent, if more top-

down, spatial approach (see Appendix A-4).

Meshedness coefficients, often reflective of redundancy and alternative routing options, show one of the
rare increases in modern districts across all regions (from 0.200 to 0.215). This outcome, observed in several
Portuguese cities such as Lisbon and Settbal, hints at deliberate planning for looped or hierarchical grid
structures — potentially blending historic permeability with newer, traffic-calming layouts. Nonetheless,
regional variability is substantial. In some cases (e.g., Larissa or loannina), modern districts maintain or
even surpass the meshedness of historic cores; in others (e.g., Larnaca), simplification is more evident (see

Appendix A-4).

If reachability serves as a final lens on navigability, the street pattern in Southern Europe is more muted
than elsewhere. From a median of 95 reachable nodes in older areas, modern zones decline to about 81, still
high relative to other regions, and reflective of the enduring compactness of Southern European urbanism.
This soft decline contrasts with the more abrupt reachability drops seen in Northern and Eastern Europe,
further reinforcing the impression that, in this region, modern expansion often retained core aspects

accessibility rooted in earlier morphologies.

Taken together, these indicators point to a planning tradition in Southern Europe that, while accommodating
modern demands, remains structurally tied to a deep culture of walkability and connectivity. Unlike the
sharp contrasts seen in other contexts, the distinction between old and new districts here is more porous —

shaped by both inherited street forms and selective adaptation, rather than by radical restructuring.
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4.2.6. Within-city contrasts: A Values of street network metrics
While earlier sections examined differences between historic and modern districts both at the European
scale (Section 4.2.1) and across macro-regions (Sections 4.2.2—4.2.5), this section presents a more focused

and formalized comparison by computing within-city differences across all six network indicators.

For each city in the corpus, delta values (A = M,;4 — M,,.,,,) Were calculated to capture both the magnitude
and direction of change in street network structure. This approach allows for consistent interpretation:
positive A values indicate a decline in the given metric in modern areas (e.g., lower intersection density),
while negative values suggest an increase (e.g., longer average street segments). In this way, the analysis

systematically assesses how internal spatial configurations have evolved over time.

The values in Table 4.11 represent the median intra-city differences for each indicator, aggregated by
macro-region. That is, for every city, a pairwise metric difference was computed, and regional medians
were then derived to summarize the most typical internal shifts per region. While the resulting table displays
regional tendencies (see Table 4.11), the analysis remains grounded in city-level contrasts, ensuring that

the interpretation reflects micro-scale structural changes rather than broad generalizations.

Table 4.11. Overview of regional median A in structural indicators

Region A Intersection | A Avg. Edge | A Reachability A HM A Straightness | A Meshedness
Density Length index Shortest Path index coefficient

Northern 12.15 -8.77 6.18 -8.49 0.046 0.034
Europe

Western 19.45 -10.64 14.48 -2.83 0.006 0.021
Europe

Eastern 4.86 -6.44 0.025 -1.74 0.007 0.007
Europe

Southern | p¢ 47 6.77 1227 7.60 0.019 -0.005
Europe

Note: City-level A values are detailed in Appendix A-5.

Building on these results, Figure 4.13 illustrates the indicators showing the most pronounced intra-city

variation: Intersection Density, Average Edge Length, Reachability, and Harmonic Mean Shortest Path.
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Figure 4.13. Regional median A values in network indicators with the strongest historic-modern contrasts
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These metrics were selected not only for their statistical variability but also for their conceptual relevance:
together, they describe key aspects of street network grain, continuity, and accessibility — all of which are
essential for understanding spatial organization. The chart illustrates a set of contrasting dynamics between
historical and modern districts:
o Intersection Density consistently declines (positive A), most strongly in Southern and Western
Europe, pointing to coarser street grids in newer areas.
o Average Edge Length increases (negative A), reinforcing the pattern of longer street segments and
larger block structures.
o Reachability index generally drops, suggesting reduced access to the broader street network in
many modern districts.
o Harmonic Mean Shortest Path displays a more mixed pattern: positive A in the North and West
indicates shorter path values in modern areas (suggesting more direct routing, typical of planned
grids), while negative A in the South reflects longer paths, possibly associated with fragmented

growth or suburban sprawl.

These shifts reveal common morphological tendencies and region-specific trajectories. They also illustrate
how cities have moved away from the fine-grained, irregular street patterns of historic cores toward modern
layouts defined by longer blocks, straighter streets, and more predictable geometry — yet offering fewer

junctions and less spatial variety at the local scale.

Two other indicators, Straightness Index and Meshedness Coefficient, were excluded from the visual
summary due to low intra-city variation and minimal regional contrast. While conceptually important, these
metrics did not demonstrate sufficient divergence to justify comparative visualization, and are instead
referenced descriptively in other sections. Their exclusion sharpens the focus of the chart, allowing clearer

visual emphasis on structurally dynamic variables.

Overall, these results underscore the significance of intra-city contrasts, showing that modern districts tend
to lose street density, reduce accessibility horizons, and lengthen routes structures relative to their historic
counterparts. By highlighting the four indicators with the most dynamic shifts, the analysis isolates the
variables most likely to explain regional differences in urban street structure. This, in turn, sets the stage
for the correlation analysis in Section 4.3, where these metrics are analyzed in relation to fractal dimension

to reveal potential interdependencies.

4.3. Fractal Dimension and Network Indicators: Correlation Analysis
This section investigates whether the fractal dimension (D) of street networks is aligned with, or adds

explanatory value beyond key indicators from graph theory. The analysis follows the two-step design
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introduced in Section 3.5. First, a paired within-city comparison tests whether changes in fractal dimension
(4AD) co-move with changes in street network metrics when shifting from historic to modern districts.
Second, groupwise cross-sectional analyses are conducted separately for historic cores and modern areas,
revealing how these relationships manifest without differencing. Together, these complementary views
distinguish internal transformations within cities from broader cross-sectional patterns across the European

sample.

4.3.1. From Paired Differences to Correlation
To understand how changes in street morphology relate to changes in structural properties across time, the
analysis begins by examining the paired differences (A) between historic and modern districts. Here, A
refers to the difference between historic and modern values (AM = AM,,;; — AM,,,,,), such that positive

values indicate a higher value in the historic district.

Figure 4.14 visualizes these pairwise correlations as a A-matrix heatmap, where positive or negative
associations between the metrics are expressed in both sign and magnitude. The matrix offers an initial
overview of the relative direction and strength of each association across the 100 city pairs, with darker
shades denoting stronger linear relationships.
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Figure 4.14. Heatmap correlation matrix (AFD vs. AMetrics)

Table 4.12 reports the same correlations numerically and confirms which of these associations are
statistically significant under both Pearson’s » and Spearman’s p. This dual reporting addresses potential
non-linearity in the bivariate relationships while also revealing which findings are robust to rank-based

comparison.
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Table 4.12. Paired Comparative Analysis (AD vs. AMetric)

Pearson’s r p-value Spearman’s p p-value
A Intersection Density 0.53 4.23%10°8 0.64 6.27%107°
A Average Edge Length -0.61 8.71%10°1> -0.52 3.04*10717
A Reachability Index (600m) 0.58 2.14*107 11 0.65 1.88*10712
A Harmonic Mean Shortest Path -0.08 0.074 -0.16 0.128
A Mean Straightness -0.03 0.002 -0.02 0.057
A Meshedness Coefficient 0.18 0.038 0.27 0.094

The clearest relationships appear in the first column, where AD shows strong, significant alignment with
three other differences: average edge length, intersection density, and the reachability index. Higher AD
values (where historic districts have higher fractal dimension than their modern counterparts) tend to
coincide with shorter street segments, more intersections per hectare, and denser local connectivity. Taken
together, these trends suggest that shifts toward more articulated, fine-grained geometries are strongly

associated with increased local-scale structural connectivity within the 600 m network radius.

By contrast, changes in harmonic mean shortest path length (HMSP), straightness, and meshedness
coefficient do not exhibit consistently strong associations with AD or with one another. In several cases,
their relationships are weak, statistically insignificant, or context-dependent, indicating that these indicators

capture more localized aspects of connectivity that are less tightly coupled to geometric scaling.

As an interim reading, these findings suggest that transitions toward longer segments and sparser junctions
are generally linked to declines in fractal dimension, whereas densification and improved local access
accompany its increases. In this sense, D functions here as a geometric signal of how finely the network is

subdivided and how densely it embeds local connections, especially when these patterns shift over time.

The next step is to test whether these alignments persist when historic and modern districts are analyzed

separately, without differencing.

4.3.2. Groupwise correlation analysis
While the paired-difference analysis in Section 4.3.1 highlights how fractal dimension (AD) co-varies with
shifts in street-network structure, this section examines whether the same relationships hold when historic
and modern districts are analyzed separately. This perspective clarifies whether geometric scaling is
systematically aligned with other structural properties across districts of the same type, and whether

planning regimes shape these alignments in distinct ways.

Historic districts

In the historic sample (Table 4.13), fractal dimension is strongly associated with several indicators of
morphological articulation and local-scale connectivity. Higher D values correspond to shorter average

street segment lengths and higher intersection density, indicating that finer-grained networks exhibit greater
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geometric subdivision. This alignment also extends to the reachability index, where denser local
connections within 600 meters co-occur with more articulated street geometries. These relationships are
statistically strong across the sample, indicating that historic street networks tend to link finer geometric

grain with higher local reachability.

Table 4.13. Statistical representation for historic cores (D vs. Metric)

Pearson’s r p-value Spearman’s p p-value
Intersection Density 0.56 1.95%107° 0.59 5.86%107°
Average Edge Length -0.63 2.87¥10712 -0.58 1.72#10~ 11
Reachability Index 0.51 4.77%10°8 0.53 9.53*107®
Harmonic Mean Shortest Path 0.26 0.009 0.20 0.011
Mean Straightness -0.27 0.007 -0.14 0.011
Meshedness Coefficient -0.18 0.067 -0.11 0.067

By contrast, measures such as straightness, meshedness coefficient, and harmonic mean shortest path length
(HMSP) show weak or inconsistent correlations with D among historic districts. These indicators are more
sensitive to path continuity across larger portions of the street network, and their weak alignment here
suggests that fractal dimension is more closely linked to local geometric intensity than to properties related

to global route continuity or looped structure.
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Figure 4.15. Heatmap of correlation matrix for historic cores

Modern Districts

Turning to the modern sample (Table 4.14), the structural relationships involving fractal dimension follow
a similar general pattern but are notably more compact. Higher D values are again associated with shorter
segment lengths and higher intersection densities, reflecting the same structural principle as in historic
districts. However, these relationships fall within a narrower statistical range, consistent with the more

standardized design norms and block layouts characteristic of contemporary planning.
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Table 4.14. Statistical representation for modern districts (D vs. Metric)

Pearson’s r p-value Spearman’s p p-value
Intersection Density 0.748 3.87%¥1071° 0.771 6.06¥10721
Average Edge Length -0.714 7.35%10717 -0.709 1.52¥10716
Reachability Index 0.691 1.71%10715 0.755 1.07*¥1071°
Harmonic Mean Shortest Path 0.072 0.475 0.037 0.717
Mean Straightness 0.251 0.012 0.260 0.009
Meshedness Coefficient 0.354 2.99%10~* 0.337 6.13 *107*

Notably, the relationship between D and reachability remains significant, though slightly weaker than in
historic districts. This suggests that while geometric and connective detail co-vary in newer areas, the
strength of this alignment may be moderated by regularized spatial templates, zoning constraints, or other
factors. As in the historic sample, indicators such as straightness, HMSP, and meshedness show weak or
inconsistent alignment with fractal dimension, pointing to their more independent or context-dependent

behavior.

Figure 4.16 visually reinforces this pattern: the matrix cells linking fractal dimension to indicators of grain
and local accessibility intensify, while those tied to network-scale path efficiency remain subdued. Read
side by side, the two matrices show continuity in direction and greater magnitude in the modern pattern —
consistent with a wider dispersion of block sizes and junction densities, to which fractal dimension responds
accordingly.
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Figure 4.16. Heatmap of correlation matrix for modern districts

Taken together, these patterns indicate that fractal dimension consistently tracks variations in geometric
granularity and local-scale access across both historic and modern street networks, but with stronger
expression and greater variability in central districts. Modern networks cluster within a tighter band of

morphometric and topological values, pointing to a reduction in diversity driven by regulations. Yet the
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underlying structural principle holds: where streets are more finely subdivided and intersections denser,

fractal dimension increases, and so does the potential for short-range movement.

Because correlation matrices compress information into compact form, two scatterplots are included as
visual interpretation. Panel (a) shows the relationship between fractal dimension and average segment
length, while panel (b) displays fractal dimension versus the reachability index. These illustrate the
consistent inverse and positive associations, respectively, in both district groups, reinforcing the tendency

for finer-grained geometries to coincide with higher fractal dimensions.

The full list of scatterplots — fractal dimension plotted against each of the six-network metrics — is provided

in Appendix A-6 for reference.

Taken together with the paired-difference analysis in Section 4.3.1, these findings provide a second line of
evidence for the interpretive role of fractal dimension as an integrative geometric indicator. It consistently

captures how planar subdivision and local-scale connectivity co-vary within distinct typological groups.
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Figure 4.17. Scatter plots of Fractal dimension vs. Metric (modern districts)
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Chapter 5: Discussion

This chapter interprets the results presented in Chapter 4 in relation to the thesis aim: to clarify the extent
to which fractal dimension (D) provides a quantitative basis for differentiating street-network structures
through its relationship with selected topological indicators. Rather than restating numerical outcomes, the
focus is on examining how the observed relationships between fractal dimension and selected network

metrics refine current understandings of street-network morphology.

Accordingly, this chapter is structured around four main aspects.
- First, it considers how fractal dimension relates to measurable features of street form;
- Second, it discusses the relationships between fractal dimension and local-scale connectivity
indicators
- Third, it identifies the limits of what fractal dimension can capture — in particular, in relation to
alignment and directional structure;
- Fourth, it synthesizes these results in relation to the research questions and hypotheses, highlighting

the scope and limits of fractal dimension as an indicator of street-network structure.

5.1. Fractal Dimension as a descriptor of street-network structure

The results demonstrate that fractal dimension is systematically associated with certain geometric
characteristics of street layouts in both historic and modern districts, though the strength and direction of
these relationships vary between the two urban contexts. Across the sample, higher values of fractal
dimension generally coincide with denser intersections, shorter street segments, and more articulated block

structures, indicating that D reflects variation in the spatial grain of street-network structure.

This pattern becomes particularly evident when comparing historic cores with modern extensions. On
average, historic districts exhibit higher fractal dimensions and a broader distribution of values, whereas
modern districts cluster within a narrower band (Sections 4.1 and 4.2). Median differences in fractal
dimension (AD) between historic and modern areas range from approximately 0.015 to 0.031 across the
four macro-regions (Figure 4.5; Table 4.5), indicating a consistent tendency for older districts to display
more finely articulated street structures. These observations align with the first objective of the study (O1)
and provide overall support for Hypothesis H1, which anticipated higher geometric complexity in historic

street networks.
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However, the results also reveal that this pattern is not uniform across all cities. While most cases follow
the expected direction, several cities display negligible differences in fractal dimension between historic
and modern areas, and in a small number of cases modern districts exhibit marginally higher values (e.g.
Pori, Brno, Tilburg, Breda; see Figure 4.7). These exceptions indicate that geometric complexity is not
determined solely by urban age. Instead, it also reflects specific development strategies and subdivision

practices, particularly where modern planning has retained or reintroduced fine-grain configurations.

Regional analysis further clarifies these differences. In Northern Europe, historic districts consistently
display higher fractal dimensions than their modern counterparts, reflecting a slight shift from intricate
historic fabrics to relatively regularized modern extensions (Figure 4.1; Table 4.1). Western Europe exhibits
a similar tendency but with greater internal variation, including cities where modern districts approach the
fractal values of historic cores (Figure 4.2; Table 4.2). Eastern Europe is characterized by a wider dispersion
and less consistent directional change, suggesting divergent trajectories of urban development (Table 4.3).
In Southern Europe, both historic and modern districts maintain relatively high fractal dimensions,

indicating a continuity in subdivision patterns rather than a sharp structural transition (Section 4.1.4).

These regional patterns refine the response to RQ1 by demonstrating that historic and modern districts
differ systematically in street-network morphology, while also showing that the magnitude and expression
of this difference are shaped by local development histories and planning traditions. The results therefore
support the general tendency toward higher geometric complexity in historic cores, while confirming that

modern development does not follow a singular spatial model.

Additional insight is provided by the paired-difference analysis presented in Section 4.3.1. The correlations
between changes in fractal dimension and changes in intersection density and average edge length (Table
4.12; Figure 4.13) demonstrate that increases in D within cities are closely associated with shorter segments
and denser junction patterns. Where historic districts exhibit higher fractal dimension than their modern
counterparts, corresponding difference in street grain are more pronounced; where AD is small or negative,

variation in these geometric measures is reduced.

Taken together, these findings address RQ2 by showing that fractal dimension captures a substantial portion
of the geometric contrast between historic and modern street layouts. While D does not impose a rigid
dichotomy between “historic” and “modern” forms, it identifies systematic variations in subdivision density
and spatial irregularity across urban contexts, providing a credible basis for comparison at the mapped

scale.

At the same time, these results also suggest that geometric complexity alone does not fully define structural

differentiation. The extent to which fractal dimension relates to broader aspects of street-network
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configuration — particularly connectivity and detour structure — requires further examination. This forms

the focus of the following sections.

5.2. Fractal dimension and local-scale connectivity patterns

Where Section 5.1 examined fractal dimension primarily as an indicator of geometric complexity, this
section turns to its relationship with selected topological indicators associated with local-scale connectivity,
addressing Objectives O2 & O3 and Research Question RQ3. The focus here is on meshedness coefficient,
reachability index, and their correspondence with variations in fractal dimension within and between

historic and modern districts.

These indicators were selected because fractal dimension describes how finely space is subdivided, and
meshedness and reachability reflect how that subdivision affects movement and local connectivity. If
fractality meaningfully captures the structural grain of the street network, then higher values should relate

to more route options and improved short-range accessibility.

At the scale of individual districts, higher values of fractal dimension generally coincide with increased
levels of local-scale connectivity. This tendency is visible in the paired-difference analysis, where positive
changes in fractal dimension (AD) are accompanied by increases in both meshedness coefficient and
reachability index within a 600 m radius (Table 4.12; Figure 4.13). Districts exhibiting higher geometric
subdivision therefore tend to show denser and more interlinked local networks, characterized by a greater
number of alternative connections and shorter access distances between nodes. In this respect, the results
lend support to Hypothesis H2, which anticipated higher pedestrian-scale reachability and structural

redundancy in districts with finer urban grain.

This alignment also corresponds with the theoretical expectation that finer fractal subdivision should relate
positively to local permeability and redundancy: if fractal dimension reflects the degree of spatial
granularity, then higher values would reasonably be associated with more cross-linkages, alternative route

choices, and shorter access distances at the pedestrian scale.

This relationship is further clarified by the groupwise correlation matrices presented in Tables 4.13 and
4.14. In historic districts, fractal dimension shows a weak negative association with meshedness (r =-0.18)
while maintaining a positive association with reachability index, indicating that higher levels of geometric
subdivision are not necessarily accompanied by increased network redundancy in organic street patterns.
In modern districts, by contrast, fractal dimension displays a positive association with both reachability and
meshedness, suggesting that in these contexts finer subdivision more frequently coincides with denser local

interconnections. These contrasting patterns indicate that the relationship between geometric subdivision
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and local street-network structure differs between historic and modern contexts, and that increases in D do

not translate into the same configuration of connectivity across periods.

At the same time, the results indicate that the association between fractal dimension and local-scale
connectivity is not perfectly linear or universal. Several districts display moderate to high fractal dimension
values without a corresponding increase in meshedness, reflecting configurations in which dense
subdivision coexists with limited cross-connections. This pattern is particularly apparent in certain modern
districts where fine-grain subdivision is combined with selective permeability rather than a fully

interconnected grid.

Taken together, these findings refine the interpretation of H2 and the local-scale component of H3. Fractal
dimension does not merely reflect visual intricacy or block density in abstract terms; it corresponds in many
cases to tangible differences in how densely local street segments are interconnected and how readily short-
distance movement can occur. However, the variability observed across cities and between historic and
modern contexts indicates that fractal dimension alone cannot fully account for the diversity of local

connectivity structures.

Importantly, the results also reveal that the strongest correspondence between fractal dimension and
connectivity measures occurs at the local scale. This supports the third hypothesis that structural differences
between historic and modern districts are more strongly expressed through local indicators than through
global network measures. The next section therefore turns to the alignment-related indicators, examining

where and why these relationships weaken when broader-scale network characteristics are considered.

5.3. Fractal dimension and global-scale network characteristics

While the preceding section demonstrated a patterned association between fractal dimension and local-
scale connectivity, the relationship becomes markedly weaker when examined in relation to alignment-
related and global-scale indicators. Because fractal dimension reflects the degree of geometric irregularity
and fine-grain subdivision, a negative association with alignment-oriented measures was initially expected:
higher fractality was presumed to correspond with more winding geometries, lower directional coherence,
and therefore reduced route directness. This section examines whether such a relationship materializes by
evaluating the correspondence between fractal dimension and mean straightness, as well as harmonic mean
shortest-path length, thereby addressing the alignment-oriented component of RQ3 and the broader

implications of H3.

The paired-difference analysis presented in Table 4.12 and Figure 4.13 indicates that changes in fractal
dimension across historic and modern districts are only weakly associated with changes in straightness

index and harmonic mean shortest path length. In several cases, districts displaying higher fractal dimension
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show little change, or even an opposite trend, in these alignment-related measures. This contrasts with the
clearer pattern observed for reachability index and confirms that increases in geometric subdivision do not

systematically coincide with more direct or cohesive route structures.

This divergence is further evident in the groupwise correlation matrices (Tables 4.13 and 4.14). In historic
districts, the relationship between fractal dimension and mean straightness is weak and inconsistent, while
its association with harmonic mean shortest path length remains negligible. In modern districts, these
relationships become only marginally stronger, yet still highly variable, indicating that finer geometric
subdivision is not a reliable marker of improved route directness or reduced detour. In other words,

fractality may increase spatial texture without meaningfully influencing directional alignment.

These findings provide partial confirmation of H3, which anticipated a weaker association between fractal
dimension and global network measures than with local connectivity indicators. While D aligns in many
cases with short-range accessibility and local interconnectedness, it does not track the structural properties
that shape longer-range route geometry and directional coherence. In practical terms, this suggests that
districts with intricate, fine-grain layouts may still exhibit circuitous movement patterns or segmented route
progression, particularly where street orientation, continuity, and overall network layout structure limit

direct travel paths.

The contrast between Sections 5.2 and 5.3 therefore clarifies an important boundary in the interpretive
scope of fractal dimension. While D reflects variations in geometric subdivision and, in many instances,
local-scale interconnection, it does not sufficiently describe how clearly street networks guide movement
across wider spatial extents. Accordingly, fractal dimension should be understood as an indicator of spatial

texture rather than of directional structure within the network.

This distinction plays a central role in evaluating the overarching aim of the thesis. The following section
synthesizes these findings by revisiting the research questions and hypotheses, clarifying where fractal
dimension provides a meaningful basis for differentiating street-network structures and where its

explanatory relevance remains limited.

5.4. Synthesis and Implications

This section integrates the findings discussed in Sections 5.1-5.3 and considers their broader implications
for interpreting fractal dimension as a basis for describing street-network structures. Rather than repeating
the detailed analyses, it consolidates the central patterns and clarifies their significance within the

framework of the study’s aims and hypotheses.
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Across the sample, finer street grain — expressed through higher intersection densities and shorter average
street segments — is systematically associated with higher fractal dimension and expanded short-range
accessibility. This relationship affirms the theoretical expectation that organically evolved fabrics tend to
produce denser local structures than planned modern grids. At the same time, the results demonstrate that
higher fractal dimension alone does not ensure more direct or coherent route structures. The weak and
inconsistent relationships observed with straightness and harmonic mean shortest path length indicate that
additional subdivision yields diminishing returns for route geometry unless it is accompanied by clearer

continuity across the street network.

The paired design further clarifies that ‘modernization’ is not synonymous with simplification. While many
modern districts exhibit reduced subdivision and extended block structures, others retain or reintroduce
finer-grain characteristics that approach those of historic cores. Regional narratives further confirm that
context — from planning ideology to topography and land assembly — shapes how structural change unfolds.
Not all modern development reduces complexity, and not all visual order translates into stronger local

accessibility.

Importantly, the relatively narrow dispersion of fractal dimension values within each group (D,;q = 1.50 £
0.07; Doy = 1.40 £ 0.07) indicates that these differences are systematic rather than incidental. Although
the absolute numerical difference may appear modest, fractal dimension operates within a constrained
theoretical range for planar networks, meaning such shifts reflect meaningful variation in subdivision
density and spatial organization. In this sense, D does not merely restate visual distinctions but formalises

them into a quantifiable structure capable of cross-city comparison.

Overall, the findings demonstrate that the longstanding assumption in the literature — that organically
evolved, fractal-like street networks enhance local accessibility relative to more regular grids — is partially
supported. Higher D aligns clearly with local-scale accessibility and street network grain, yet it does not
consistently predict global-scale topological measures. Fractal dimension therefore differentiates street-
network structures most effectively in terms of geometric texture and local articulation, while its

explanatory reach remains bounded with respect to broader network geometry.

In relation to the research design, this synthesis confirms that the selected contrast between organic historic
cores and planned modern districts provides a valid theoretical testing ground. The results affirm the value
of fractal dimension as a meaningful analytical tool, while also clarifying the limits within which such

interpretation remains defensible.
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Conclusion

This thesis set out to examine whether fractal dimension (D) provides a reliable quantitative basis for
differentiating street-network structures through its relationship with selected geometric and topological
indicators across contrasting urban contexts. By applying a consistent paired design to historic and modern
districts in 100 European cities, the study has demonstrated that fractal dimension captures systematic
variation in the spatial subdivision of street layouts, particularly in relation to intersection density and

average segment length.

The results show that historic districts generally exhibit higher fractal dimensions than their modern
counterparts, confirming a persistent tendency toward finer-grain subdivision in organically evolved urban
fabrics. These differences, while numerically modest, are consistent across the majority of cases and operate
within a constrained theoretical range, indicating that even small shifts in D reflect meaningful variation in
spatial structure. At the same time, the analysis reveals that this pattern is not universal. In several contexts,
modern districts display levels of geometric complexity comparable to, or exceeding, those of historic
cores, illustrating that subdivision intensity is shaped not only by age but also by planning strategies and

development regimes.

The study further demonstrates that fractal dimension aligns most clearly with local-scale characteristics of
street networks. Higher values of D correspond in many cases with increased reachability and, in certain
contexts, with meshedness, indicating an association with denser short-range interconnections. By contrast,
its relationship with alignment-related indicators such as straightness and harmonic mean shortest path
length is weak and inconsistent. This confirms that fractal dimension does not represent broader route
geometry or directional structure and should not be interpreted as a comprehensive descriptor of overall

network configuration.

Taken together, these findings indicate that fractal dimension provides a meaningful, but bounded,
analytical lens for comparing urban street networks. Its primary value lies in representing geometric
subdivision and aspects of local articulation, allowing the systematic comparison of spatial texture across
cities and urban periods. At the same time, its interpretive scope remains limited with respect to alignment-
related characteristics, reinforcing the necessity of combining fractal measures with complementary

topological indicators when examining street-network structure.
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Overall, the thesis contributes to the literature by offering an empirically grounded evaluation of fractal
dimension in relation to widely cited claims about the structural advantages of organically developed street
networks. It demonstrates that such claims are partially supported, particularly at the local scale, while also
clarifying the limits of fractal metrics in capturing broader network organization. These conclusions
establish a clear foundation for the subsequent discussion of methodological constraints and potential

directions for further research.
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Research limitations

This chapter outlines the principal constraints that shape the scope and interpretation of the findings
presented in this thesis. These limitations do not undermine the validity of the analysis; rather, they clarify
the precise conditions under which the results should be understood and the boundaries beyond which direct

generalization is not warranted.

Methodological and scale-related constraints

Fractal dimension is conceptually grounded in scale-dependent analysis, as its theoretical formulation
concerns how spatial patterns change across varying levels of observation. In this study, however, fractal
dimension was estimated from street-network representations at a fixed cartographic scale (1:10,000). As
a result, the reported values reflect geometric subdivision at this resolution rather than explicitly tested
multi-scale behavior. The analysis therefore does not examine how fractal properties might vary under
different levels of spatial aggregation. Consequently, the findings should not be interpreted as

characterizing true scale invariance, but rather as relative differences under a consistent mapping scale.

Additionally, the fixed spatial sampling window of 1.2 km X 1.2 km ensured comparability but introduces
constraints. While suitable for neighborhood-level analysis, this frame does not capture wider urban
infrastructure patterns, regional connectivity, or peripheral network structures. Large-scale structural

dynamics beyond the selected grid therefore fall outside the analytical scope of the study.

A further methodological limitation concerns the absence of road-type differentiation within the analysis.
Streets were not categorized according to functional hierarchy (e.g. arterial, collector, local), primarily due
to inconsistent tagging across cities, particularly in newer urban areas. As a result, the analysis does not
distinguish between different functional roles within the network and therefore cannot address how

hierarchical street organization may influence the structural indicators examined.

In addition, the analytical framework is based entirely on structural indicators derived from graph
representations of street networks. Measures such as reachability index, meshedness coefficient, mean
straightness, and harmonic mean shortest path length describe potential accessibility and network
configuration, not observed mobility or pedestrian behavior. No empirical data on movement patterns,
travel frequencies, or user experience were incorporated. Therefore, the results pertain to the structural

conditions that shape possible movement rather than to actual patterns of use or perceived walkability.
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Data, selection, and scope-related constraints

The study adopts a paired design based on the comparison of historic cores and modern planned extensions
within the same city. This selection strategy strengthens internal comparability by isolating structural
differences attributable to development period and planning logic while holding broader contextual factors
constant. However, it also limits the scope of generalization to urban forms that clearly display this dual
morphology. The results therefore apply most directly to cities characterized by a discernible contrast
between organically evolved historic areas and formally planned modern districts. Other configurations,
such as suburban sprawl or hybrid transitional fabrics, are not directly represented and may exhibit different

structural relationships between fractal dimension and network configuration.

The study relies on spatial data derived from publicly available cartographic sources and standardized
preprocessing procedures. Although care was taken to ensure consistency in data preparation, minor
variations in mapping detail or digitization practices may persist, particularly in older or fragmented urban
fabrics. These factors may introduce small deviations in the calculation of certain indicators, although the

overall comparative patterns observed across the sample remain robust.

Analytical and interpretive constraints

The analysis is based on a defined set of geometric and topological indicators, including intersection
density, average edge length, meshedness coefficient, reachability index, mean straightness, and harmonic
mean shortest path length. While these measures capture key aspects of street-network structure, they do
not exhaust the range of possible analytical perspectives. Alternative metrics such as betweenness
centrality, closeness, or angular integration may reveal additional structural dimensions not addressed in
this study. The interpretive conclusions therefore reflect the adopted analytical frame rather than a

comprehensive representation of all possible network properties.

The statistical approach adopted in this study identifies associations between fractal dimension and selected
street-network indicators through correlation-based analysis. While these relationships provide insight into
structural co-variation, they do not establish causal mechanisms. Observed correlations should therefore
not be interpreted as evidence that changes in fractal dimension directly produce specific connectivity
outcomes or vice versa. The findings describe patterned relationships within the sampled networks, not

deterministic or predictive rules governing street form.

Taken together, these limitations define the analytical boundaries of the thesis. The results provide a
consistent and empirically grounded assessment of how fractal dimension relates to particular aspects of
street-network structure within a controlled methodological framework. At the same time, they highlight
the importance of maintaining conceptual precision and avoiding the overextension of fractal interpretation

beyond the scale, data, and indicator set employed in the present analysis.
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Recommendations and Future research

This thesis examined street-network form and configuration by situating fractal dimension as a central
descriptor of geometric subdivision and structural organization. A focused direction for future research is
to extend this line of inquiry toward movement-based and perceptual dimensions interpreted through fractal

variation.

Future studies should therefore examine whether districts exhibiting higher or lower fractal dimension
display systematic differences in pedestrian flow, vehicle circulation, congestion patterns, and travel time
distributions. The use of traffic counts, GPS traces, mobile positioning data, or pedestrian sensors would
enable direct comparison between fractal-based structural characteristics and movement patterns, clarifying
the extent to which fractal-like street configurations align with modes or intensities of use under real-world

conditions.

Beyond movement volume, future work should incorporate temporal dynamics into the analysis. Evaluating
how street networks accommodate under varying conditions — such as peak versus off-peak periods,
weekday versus weekend patterns, or seasonal fluctuations — would further clarify how fractal street
structure interacts with time-dependent operational pressures. This would shift analysis from static

representation toward process-oriented understanding of street network behavior.

A parallel line of research should address perceptual and cognitive aspects of navigability in relation to
fractal geometry. Future research could explore whether higher levels of geometric subdivision, as
expressed through fractal dimension, influence perceived legibility, orientation, and wayfinding ease.
Methods such as cognitive mapping, controlled navigation experiments, or survey-based assessments

would allow evaluation of whether fractal complexity supports or hinders intuitive spatial comprehension.

Together, these approaches would enable a more comprehensive framework for interpreting street
networks, situating fractal dimension within a broader set of structural, operational, and experiential

indicators that describe how urban form shapes movement and navigation.
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Appendix

A-1. The list of cities by region and country

Europe Country City Europe Country City
Odense Graz
Esbjerg Linz
North Denmark Aalborg Western Austria Innsbruck
Aarhus Klagenfurt
Copenhagen Vienna
Helsinki Ghent
Tampere Antwerp
North Finland Mikkeli Western Belgium Bruges
Turku Brussels
Pori Ostend
Hamar Hamburg
Bergen Diisseldorf
North Norway Stavanger Western Germany Nuremberg
Tonsberg Augsburg
Oslo Cologne (Koln)
Stockholm Bordeaux
Gothenburg Toulouse
North Sweden Helsingborg Western France Dijon
Malmo Rouen
Vasteras Beziers
Europe Country City Nijmegen
Haskovo Eindhoven
Yambol Western Netherlands Tilburg
East Bulgaria Varna Zoetermeer
Plovdiv Breda
Ruse Europe Country City
Brno Thessaloniki
Prague Katerini
East Czech Republic Pilsen South Greece Larissa
Liberec loannina
Ostrava Lamia
Debrecen Florence
Gyongyos Naples
East Hungary Nyiregyhaza South Italy Palermo
Budapest Bologna
Pecs Padua
Poznan Porto
Czestochowa Lisbon
East Poland Lodz South Portugal Castelo Branco
Wroclaw Setubal
Warsaw Evora
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Bucharest Nicosia
Craiova ) Paphos
East Romania Oradea South Republic of Limassol
Satu Mare Cyprus Larnaca
Timisoara Famagusta
Bratislava Granada
Kosice Seville
East Slovakia Nove Zamky South Spain Cordoba
Trnava Zaragoza
Nitra Malaga

A-2. Python scripts for downloading and projecting street network data

The following Python script reads a road network shapefile from a local directory, reprojects it to the
appropriate  city-specific = projected coordinate system (CRS), and plots the result.
To adapt the script for different cities, it is necessary to change the values of shapefile path (the file

location) and 1ocal crs (EPSG code).

import geopandas as gpd
import matplotlib.pyplot as plt
import neatnet

# User-defined variables
shapefile_path
local crs

# Loading streets from a shapefile
roads = gpd shapefile_path

# Ensuring it is in a local projected CRS
if roads.crs.is_geographic:

roads roads epsg

# Plot streets

ax roads.plot(figsize linewidth
ax

plt f"{place} Road Network"

plt

# Neatify

simplified neatnet roads

color="black"

r"PATH/TO/FILE.shp" # <-- Change to shapefile path for desired city
# <-- Change to appropriate CRS (EPSG code)
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A-3. Differences in fractal dimension between Historic and Modern samples across 100 Cities

Note: Positive AD values indicate that historic areas are more complex, negative values, vice versa.

Breda

Brno

Trnava
Czestochowa
Tilburg
Nijmegen
Nove Zamky
Pori
Klagenfurt
Helsingborg
Ostrava
Padua
Toulouse
Liberec
Pecs

Lodz

Hamar
Haskovo
Thessaloniki
Linz
Warsaw
Stavanger
Zaragoza
Paphos
Varna
Eindhoven
Bergen
loannina
Ostend
Ruse
Innsbruck
Gyongyos
Budapest
Cordoba
Brussels
Larissa
Nicosia
Debrecen
Dijon
Oradea
Porto
Larnaca
Bratislava
Katerini
Gothenburg
Wroclaw
Lamia
Vasteras
Zoetermeer
Antwerp
Copenhagen
Pilsen
Nuremberg
Turku
Diisseldort
Satu Mare
Vienna
Mikkeli
Malaga
Setubal
Limassol
Nitra
Tampere
Plovdiv
Cologne
Seville
Malmo
Famagusta
Oslo
Nyiregyhaza
Bordeaux
Rouen
Helsinki
Prague
Evora
Esbjerg
Kosice
Bucharest
Stockholm
Lisbon
Naples
Florence
Tonsberg
Castelo Branco
Bruges
Beziers
Yambol
Aarhus
Ghent.
Hamburg
Granada
Bologna
Poznan
Odense
Craiova
Graz
Augsburg
Timisoara
Palermo
Aslborg

AFD by City

~0.04 ~0.02

°
°

.00 0.02 0.04
Delta FD (Old - New)
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A-4. Descriptive statistics of network indicators for historic and modern districts by regions.

Northern Europe
z . Avg. Reach. Harmonic
g City District Ingrsegtlon Edge Index Mean Mian Meshedpess
8 ensity Length (600m) shortest path straightness | coefficient
Odense Oold 70.1 81.2 35.66 452.5 0.785 0.208
New 86.8 108.4 39.69 639.2 0.565 0.027
Esbjerg Old 68.1 93.8 39.65 493.9 0.766 0.234
~ New 65.9 102.6 33.95 489.9 0.758 0.148
g Aalbor Old 75.0 93.8 36.94 513.5 0.746 0.157
5 £ New 59.7 102.6 22.03 594.2 0.653 0.066
A Aarhus Oold 74.3 85.5 36.33 504.6 0.685 0.137
New 61.8 112.8 33.17 478.4 0.802 0.154
Copenhagen Old 90.9 81.47 56.75 451.1 0.774 0.186
New 83.3 97.1 44.90 464.0 0.801 0.216
Helsinki Oold 84.7 91.9 50.30 464.8 0.804 0.251
New 314 157.9 16.31 546.1 0.679 0.146
Tampere Old 69.2 93.5 42.58 515.5 0.733 0.210
= New 70.3 71.7 53.70 543.2 0.641 0.193
5 Mikkeli Old 59.2 106.9 31.19 533.3 0.738 0.198
.E New 46.2 113.2 34.68 462.1 0.712 0.122
Turku Old 61.5 109.1 24.04 515.0 0.765 0.183
New 44.4 127.5 34.23 348.9 0.814 0.175
Pori Old 97.2 79.1 58.13 422.5 0.799 0.276
New 106.9 72.4 77.52 420.5 0.745 0.265
Hamar Oold 99.3 79.8 63.08 479.8 0.770 0.199
New 66.7 98.8 39.72 496.5 0.722 0.155
Bergen Old 113.2 65.1 54.99 5334 0.661 0.154
o New 79.2 77.2 62.00 431.7 0.612 0.122
% Stavanger Oold 129.8 69.1 100.09 402.6 0.767 0.206
2 New 125.0 74.6 77.22 478.9 0.695 0.177
Tonsberg Old 95.8 76.4 72.28 425.0 0.750 0.217
New 84.7 83.3 53.07 456.6 0.726 0.157
Oslo Old 103.5 81.7 65.21 442.0 0.809 0.223
New 81.9 87.7 55.73 434.0 0.805 0.224
Stockholm Old 100.7 84.9 48.84 546.4 0.709 0.186
New 88.9 88.0 55.34 455.9 0.752 0.260
Gothenburg Old 88.2 76.6 61.49 459.8 0.754 0.208
. New 102.1 80.6 54.84 480.8 0.712 0.172
—% Helsingborg Oold 95.8 78.1 56.93 435.2 0.779 0.199
% New 93.8 90.1 68.04 431.8 0.788 0.194
Malmo Old 106.3 85.2 64.96 467.5 0.778 0.225
New 70.1 88.5 42.70 476.4 0.710 0.127
Vasteras Oold 102.8 78.9 62.76 486.6 0.710 0.201
New 75.0 93.3 36.80 494.8 0.660 0.145
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Western Europe

I A A
3 Density Length | (600m) | shortest path straightness | coefficient
Graz old 81.3 80.2 51.54 446.2 0.746 0.175
New 63.2 1172 | 35.79 481.4 0.784 0.217

Lo old 722 1005 | 3242 518.6 0.756 0.200

} New 91.7 92.3 45.59 508.7 0.745 0.179
5 | ebrack old 81.9 74.0 53.17 4478 0.772 0.219
E New 72.2 83.2 49.96 427.9 0.812 0.258
Klagenfut old 71.5 1113 | 3053 525.8 0.737 0.158
New 77.8 104.6 | 47.86 459.1 0.789 0.218

Vienna Old 121.5 70.5 57.17 568.9 0.662 0.152
New 102.8 87.8 62.06 483.7 0.795 0.287

Ghent old 163.2 62.3 108.72 462.4 0.780 0.203
New 86.1 92.0 43.1 500.3 0.726 0.135

Antwerp old 125.0 68.3 72.55 371.1 0.771 0.193

. New 92.4 81.2 89.19 488.6 0.822 0.235
£ | Bruges old 152.8 69.7 90.88 491.4 0.746 0.179
o New 75.0 88.3 26.86 570.7 0.608 0.104
A Brusscls old 118.1 83.2 77.86 449.0 0.841 0.285
New 98.6 93.9 55.69 459.7 0.835 0.263

Ostend old 113.9 77.8 83.51 429.5 0.826 0.251

New 86.8 83.0 40.49 497.4 0.651 0.116

Homburg old 743 1025 | 4121 476.6 0.739 0.212
New 39.6 1282 | 22.83 455.0 0.752 0.152

Disseldort old 78.5 79.3 62.46 380.6 0.836 0.272

- New 75.0 85.4 46.54 467.0 0.748 0.172
= | Nuremberg old 99.3 90.1 51.44 530.5 0.766 0.208
5 New 68.8 1049 | 36.96 509.9 0.756 0.158
° | Avasbur old 123.6 69.0 75.71 430.3 0.701 0.166
£sbuIg New 81.3 97.8 4221 483.6 0.772 0.189
Cologne old 102.8 77.9 63.01 433.8 0.797 0.242
New 66.7 103.5 | 3425 471.5 0.747 0.137

Bordeax old 143.1 72.0 83.31 4785 0.805 0.241

New 78.50 91.7 43.91 490.2 0.750 0.176

Toulouse old 121.5 74.9 7231 450.4 0.784 0.215

) New 102.1 85.0 59.32 454.9 0.766 0.184
2 | Diion old 113.2 66.2 65.06 503.2 0.695 0.207
g New 127.8 76.6 75.41 471.1 0.790 0.220
Rouen old 116.0 77.0 68.32 472.9 0.788 0.226
New 111.1 83.3 65.75 472.4 0.770 0.186

Besicrs old 248.6 505 | 155.82 500.9 0.749 0.235
New 164.6 63.5 93.62 533.0 0.750 0.164

Nijmegen old 109.7 74.5 63.22 468.8 0.769 0.176
New 137.5 71.8 87.76 470.0 0.781 0.200

| Bindhoven old 117.4 74.1 63.10 519.9 0.739 0.168
8 New 95.1 80.5 60.74 393.9 0.745 0.199
=N old 131.3 71.8 80.73 506.8 0.759 0.150
2 | s New 125.7 68.2 71.88 509.7 0.702 0.175
2 | Joctermenr old 161.8 58.8 85.43 605.7 0.643 0.097
New 88.9 84.7 53.16 477.9 0.735 0.180

Breda old 106.3 79.5 64.37 486.7 0.744 0.178
New 100.0 754 71.23 451.6 0.701 0.214
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Eastern Europe

I A A
3 Density Length | (600m) | shortest path straightness | coefficient
Haskovo Old 155.6 70.7 93.57 509.7 0.747 0.202
New 147.2 80.9 76.94 539.7 0.715 0.193

Yambol Old 96.5 87.6 78.3 422.4 0.831 0.254
= New 97.9 92.8 55.85 511.7 0.773 0.225
;&:‘0 Varna Old 120.1 69.1 77.95 499.5 0.705 0.196
= New 191.0 65.3 115.96 479.5 0.816 0.286
A [Plovdiv Old 121.5 81.6 70.40 528.8 0.748 0.195
New 113.9 81.2 71.21 489.5 0.761 0.213

Ruse Old 121.5 84.9 68.52 517.3 0.797 0.228
New 97.2 76.3 67.84 430.0 0.774 0.231

Brno Old 61.8 98.0 31.93 467.5 0.733 0.171
New 73.6 101.6 40.03 468.6 0.788 0.255

.2 | Prague Old 93.8 93.5 42.9 514.4 0.767 0.264
35 New 56.3 114.8 29.98 484.9 0.713 0.179
§ Pilsen Old 77.8 91.8 54.68 452.0 0.782 0.198
= New 72.2 95.1 37.57 537.8 0.706 0.155
;]'3 Liberec Old 79.2 100.6 40.01 493.4 0.740 0.163
© New 77.8 95.2 43.20 499.9 0.716 0.186
Ostrava Old 89.6 88.5 50.51 492.4 0.755 0.208
New 93.8 83.5 60.73 453.0 0.769 0.167

Pecs Old 98.6 83.9 56.01 481.1 0.706 0.155
New 75.0 96.1 43.76 500.2 0.755 0.173

Budapest Old 88.2 95.8 44.84 505.5 0.782 0.198
> New 73.6 109.9 40.90 482.4 0.805 0.286
§o Debrecen Old 55.6 114.8 24.15 533.1 0.719 0.158
g New 57.7 119.1 33.62 525.0 0.782 0.232
= Gyongyos Old 88.2 82.3 67.59 399.0 0.809 0.219
New 113.9 69.9 82.40 423.8 0.786 0.215

Nyiregyhaza Old 72.2 98.7 39.44 461.0 0.734 0.165
New 47.2 162.8 19.90 488.8 0.718 0.191

Poznan Old 61.8 102.3 33.90 449.0 0.757 0.204
New 62.5 112.8 34.97 437.6 0.754 0.201

Czgstochowa Old 55.6 112.5 29.20 469.6 0.763 0.201
5 New 55.6 119.6 38.68 464.4 0.717 0.116
S | Lodz Old 52.1 125.6 29.87 471.5 0.743 0.155
E New 62.5 122.6 30.5 513.0 0.734 0.185
Wroclaw Old 70.1 97.7 45.17 428.0 0.796 0.237
New 48.6 130.1 28.08 435.5 0.773 0.228

Warsaw Old 53.5 113.0 32.00 461.3 0.775 0.174
New 49.3 131.9 27.67 472.4 0.765 0.188

Bucharest Old 127.8 69.1 90.59 461.2 0.773 0.223
New 134.7 78.2 96.37 469.3 0.769 0.178

Craiova Old 84.0 86.5 45.81 484.8 0.749 0.187
© New 92.4 87.2 55.43 487.2 0.776 0.185
§ | Oradea Old 99.3 86.5 63.85 450.7 0.783 0.233
% New 924 71.2 70.90 333.7 0.799 0.214
~ [ Satu Mare Old 73.6 94.6 38.54 4793 0.740 0.176
New 66.7 103.9 46.67 356.6 0.784 0.220

Timisoara Old 73.6 107.4 36.95 500.9 0.776 0.260
New 47.9 147.9 24.97 462.8 0.808 0.238
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Bratislava Old 83.3 84.7 54.79 464.0 0.755 0.225
New 74.3 108.0 33.16 511.3 0.711 0.195

Kosice Old 78.5 76.2 46.95 389.6 0.767 0.224

© New 41.7 115.9 24.15 350.3 0.717 0.140
< | Nove Zamky Old 68.8 79.0 47.96 380.1 0.727 0.168
E New 66.0 106.1 35.83 506.3 0.725 0.155
“ | Trnava Old 75.0 88.5 40.49 412.9 0.748 0.187
New 72.2 89.7 48.73 375.8 0.774 0.174

Nitra Old 79.2 87.6 34.67 590.9 0.635 0.061
New 70.1 93.5 32.80 629.6 0.620 0.048

Southern Europe

£ iy | bisr Momssion | (% | R | e | ey | st
3 Density Length (600m) shortest path straightness | coefficient
Thessaloniki Old 302.8 47.8 146.65 523.1 0.760 0.207
New 243.1 54.1 209.55 493.3 0.792 0.247

Katerini Old 170.1 65.4 103.7 512.1 0.783 0.210

o New 150.0 66.2 93.34 488.1 0.791 0.206
§ Larissa Old 216.0 59.4 105.66 474.2 0.819 0.271
%) New 179.9 62.5 120.87 518.2 0.708 0.221
Joannina Old 167.4 66.4 123.05 4443 0.781 0.202
New 153.5 72.0 95.55 488.1 0.807 0.286

Lamia Old 204.2 59.2 116.47 518.9 0.747 0.198
New 171.5 60.5 130.62 4734 0.773 0.195

Florence Old 116.7 65.7 84.87 424.7 0.795 0.236
New 102.1 80.9 74.96 429.0 0.808 0.226

Naples Old 146.5 64.3 94.49 465.7 0.750 0.200
New 131.3 65.7 81.17 491.1 0.743 0.177

2 Palermo Old 164.6 56.5 86.58 593.6 0.601 0.129
= New 138.2 75.3 74.31 501.6 0.782 0.277
Bologna Old 88.9 76.5 44.78 498.2 0.673 0.140
New 81.3 91.4 47.43 450.0 0.789 0.236

Padua Old 99.3 69.9 59.71 491.0 0.674 0.125
New 131.3 72.0 77.84 551.1 0.693 0.114

Porto Old 129.9 68.1 73.08 485.2 0.753 0.179
New 84.0 83.3 60.02 399.0 0.824 0.255

Lisbon Old 169.4 64.0 103.35 484.6 0.759 0.208
= New 86.1 87.9 51.10 473.6 0.724 0.168
% | Castelo Old 141.0 56.6 110.15 4414 0.772 0.200
5 | Branco New 54.2 120.3 21.07 380.7 0.813 0.235
- Setubal Old 169.4 62.7 115.38 517.6 0.733 0.162
New 106.3 74.0 61.71 460.7 0.732 0.167

Evora Old 2153 44.1 191.62 429.6 0.756 0.222
New 147.2 59.4 114.73 440.7 0.723 0.205

2 | Nicosia Old 161.1 75.5 72.81 572.8 0.740 0.151
g New 129.9 75.5 88.72 453.7 0.817 0.215
6} Paphos Old 129.9 73.7 78.61 497.7 0.744 0.153
3 New 132.6 76.6 73.78 515.1 0.747 0.172
2 Limassol Old 187.5 70.2 93.08 536.5 0.758 0.203
3 New 159.0 74.7 73 544.1 0.713 0.176
§ Larnaca Old 173.6 68.3 95.57 509.0 0.780 0.202
New 126.4 79.0 46.48 659.1 0.616 0.095
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Famagusta Old 157.6 68.2 84.05 474.4 0.809 0.192

New 104.2 84.2 52.40 523.6 0.759 0.193

Malaga Old 204.2 57.7 154.63 447.1 0.791 0.252
New 129.9 72.9 82.62 465.5 0.748 0.188

Granada Old 175.7 443 193.37 499.0 0.741 0.191
New 221.5 52.8 178.28 447.6 0.788 0.230

'g Seville Old 158.6 60.5 73.57 415.0 0.683 0.144
%) New 146.8 61.1 140.84 429.8 0.805 0.278
Cordoba Old 111.1 63.7 69.13 459.2 0.753 0.185
New 134.7 70.5 103.9 434.9 0.779 0.273

Zaragoza Old 144.9 65.4 59.97 466.0 0.709 0.206
New 129.0 70.4 82.03 4584 0.794 0.272

A-5. City-level differences (A= old — new) between historic and modern districts for six street-
network indicators.

Northern Europe

g City A Ir]g:;ssfistion A %\éeg:ge A Hl\ajlrgznic A .Mean Alizzih' A Meshedness

g y Length shortest path straightness (600m) coefficient
Odense -16.67 -27.20 -186.70 0.220 -4.03 0.182

. | Esbjerg 2.09 -8.80 4.01 0.008 5.700 0.086

g Aalborg 15.28 -8.74 -80.65 0.093 14.91 0.091

5

A | Aarhus 12.50 -27.34 26.11 -0.117 3.16 -0.017
Copenhagen 7.64 -15.66 -12.86 -0.027 11.85 -0.030
Helsinki 53.36 -66.04 -81.29 0.125 33.99 0.105

- Tampere -1.02 21.81 -27.69 0.092 -11.12 0.016

;E Mikkeli 13.02 -6.27 71.14 0.026 -3.49 0.076

= | Turku 17.16 -18.41 166.11 -0.049 -10.19 0.008
Pori -9.72 6.66 2.00 0.054 -19.39 0.011
Hamar 32.64 -18.94 -16.71 0.048 23.36 0.044

. Bergen 34.02 -12.09 101.63 0.049 -7.01 0.033

g | Stavanger 4.86 -5.54 -76.27 0.072 22.87 0.029

z Tonsberg 11.11 -6.87 -31.56 0.024 19.21 0.060
Oslo 21.53 -6.00 8.00 0.004 9.48 -0.001
Stockholm 11.80 -3.09 90.49 -0.044 -6.50 -0.074

» Gothenburg -13.89 -4.04 -20.94 0.043 6.65 0.035

% Helsingborg 2.08 -12.02 3.42 -0.009 -11.11 0.005

& Malmo 36.11 -3.33 -8.82 0.068 22.26 0.098
Vasteras 27.78 -14.44 -8.17 0.050 25.96 0.056

X=1215 | X¥=-877 | ¥=-849 | ¥x=0.046 | ¥ =6.18 X =0.034
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Western Europe

E| Gy | ommeion| S | SHamon | g | AR |5 ot
g y Length path straightness (600m) coefficien
Graz 18.06 -37.01 -35.20 -0.037 15.75 -0.042
- Linz -19.45 8.21 9.91 0.012 -13.17 0.021
*§ Innsbruck 9.72 -9.20 19.89 -0.040 3.21 -0.039
< Klagenfurt -6.25 6.64 66.65 -0.052 -17.33 -0.060
Vienna 18.75 -17.31 85.23 -0.133 -4.89 -0.134
Ghent 77.08 -29.77 -37.85 0.055 65.62 0.068
g Antwerp 32.64 -12.91 -117.50 -0.052 -16.64 -0.043
go Bruges 77.78 -18.68 -79.27 0.138 64.02 0.075
A Brussels 19.45 -10.64 -10.67 0.006 22.17 0.022
Ostend 27.08 -5.19 -67.93 0.175 43.02 0.135
Hamburg 34.73 -25.71 21.61 -0.013 18.38 0.061
-, | Diisseldorf 3.47 -6.15 -86.46 0.088 15.92 0.100
g Nuremberg 30.56 -14.74 20.63 0.010 14.48 0.050
8 Augsburg 42.36 -28.82 -3.32 -0.071 33.50 -0.023
Cologne 36.11 -25.58 -37.72 0.050 28.76 0.104
Bordeaux 64.59 -19.64 -11.71 0.055 39.40 0.065
Toulouse 19.45 -10.09 -4.58 0.018 12.99 0.032
g Dijon -14.59 -10.34 32.14 -0.095 -10.35 -0.013
2 Rouen 4.86 -6.33 0.55 0.018 2.570 0.040
Beziers 84.03 -12.94 -32.13 -0.001 62.20 0.071
Nijmegen -27.78 2.71 -1.15 -0.012 -24.54 -0.024
—g Eindhoven 22.22 -6.45 126.04 -0.006 2.36 -0.031
= | Tilburg 5.56 3.62 -2.83 0.057 8.85 -0.026
§ Zoetermeer 72.92 -25.94 127.87 -0.092 32.27 -0.084
Breda 6.25 4.16 35.09 0.043 -6.86 -0.036
X =19.45 X=-106| xX=-2.83 X =0.006 | Xx =14.48 X =0.021
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Eastern Europe

A Average

A Harmonic

A Reach.

g City A Ir]g:;ssfistion Edge Mean tA.l\/{;[an Index A Me;?edniss

3 y Length shortest path SHAIghiness (600m) coctiicien
Haskovo 8.34 -10.15 -30.00 0.033 16.63 0.009

< | Yambol -1.39 -5.13 -89.30 0.057 22.45 0.029

E" Varna -70.83 3.80 20.06 -0.111 -38.01 -0.089

A Plovdiv 7.64 0.48 39.32 -0.013 -0.81 -0.018
Ruse 24.31 8.61 87.30 0.023 0.68 -0.003
Brno -11.80 -3.69 -1.09 -0.055 -8.10 -0.085

é Prague 37.50 -21.30 29.52 0.054 12.92 0.085

a,

~ | Pilsen 5.56 -3.23 -85.79 0.076 17.11 0.043

g Liberec 1.39 5.39 -6.48 0.024 -3.19 -0.023

© [Ostrava -4.17 4.97 39.43 -0.014 -10.22 0.041
Pecs 23.61 -12.16 -19.12 -0.050 12.25 -0.018

> Budapest 14.58 -14.19 23.12 -0.023 3.94 -0.088

§0 Debrecen -2.09 -4.36 8.05 -0.062 -9.47 -0.074

E Gyongyos -25.70 12.38 -24.81 0.023 -14.81 0.004
Nyiregyhaza 25.00 -64.06 -27.78 0.016 19.54 -0.026
Poznan -0.69 -10.45 11.38 0.003 -1.07 0.003
Czestochowa 0 -7.06 5.14 0.046 -9.48 0.085

E Lodz -10.42 2.96 -41.44 0.009 -0.63 -0.031

= Wroclaw 21.53 -32.43 -7.54 0.023 17.09 0.009
Warsaw 4.16 -18.88 -11.06 0.010 433 -0.014
Bucharest -6.94 -9.09 -8.10 0.005 -5.78 0.045

< | Craiova -8.34 -0.69 -2.38 -0.028 -9.62 0.002

é Oradea 6.95 15.32 117.04 -0.016 -7.05 0.019

]

& | Satu Mare 6.94 -9.27 122.71 -0.044 -8.13 -0.044
Timisoara 25.69 -40.53 38.07 -0.032 11.98 0.022
Bratislava 9.02 -23.27 -47.33 0.044 21.63 0.030

< | Kosice 36.80 -39.73 39.28 0.050 22.80 0.084

g Nove Zamky 2.78 -27.05 -126.18 0.002 12.13 0.014

% Trnava 2.78 -1.14 37.09 -0.026 -8.24 0.013
Nitra 9.03 -5.81 -38.66 0.015 1.87 0.014

X =486 ¥=-644 | ¥=-174 | ¥x=0.007 | ¥ =0.025 X = 0.007
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Southern Europe

£y | amemenion | S | Bl | gyt | SRS g ptuins
e y Length path straightness (600m) coefficien
Thessaloniki 59.72 631 29.71 -0.031 -62.90 -0.041
Katerini 20.14 -0.83 24.02 -0.008 10.36 0.004
g Larissa 36.11 3.10 -43.98 0.111 1521 0.050
© [Moannina 13.89 -5.66 -43.79 -0.026 27.50 -0.085
Lamia 32.64 -1.25 45.53 -0.027 -14.15 0.002
Florence 14.59 -15.17 431 -0.013 9.91 0.011
Naples 15.28 -1.39 -25.40 0.007 13.32 0.023
% | Palermo 26.39 -18.79 92.01 -0.182 12.27 -0.148
" [Bologna 7.64 -14.97 48.14 -0.115 -2.65 -0.096
Padua -31.94 -2.09 -60.14 -0.019 -18.13 0.011
Porto 45.83 1522 86.23 -0.071 13.06 -0.076
_ | Lisbon 83.33 -23.88 11.05 0.034 5225 0.040
g" Castelo Branco 86.80 -63.71 60.72 -0.041 89.08 -0.035
o
& | Setubal 63.19 -11.23 56.89 0.001 53.67 -0.005
Evora 68.06 -15.27 1113 0.033 76.89 0.017
2 | Nicosia 31.25 -0.01 119.10 0.077 -15.91 -0.065
5 Paphos 2.78 2.97 -17.40 -0.003 4.83 -0.019
S | Limassol 28.47 -4.50 -7.55 0.045 20.08 0.027
é Larnaca 47.22 -10.67 -150.13 0.164 49.09 0.107
S Famagusta 53.47 -16.04 -49.24 0.050 31.65 -0.001
Malaga 7431 -15.20 -18.37 0.043 72.01 0.065
Granada -45.84 -8.48 51.38 -0.047 15.09 -0.039
§ Seville 11.77 -0.64 -14.82 -0.121 6727 -0.133
N
Cordoba -23.61 -6.77 2430 -0.026 -34.77 -0.088
Zaragoza 15.89 -5.07 7.60 -0.085 -22.06 -0.066
¥x=2847 |x=-677| x=76 |x%=-002|%=1227| %=—0.005
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A-6. Extended Correlation Results for Fractal Dimension and Network Indicators

Fractal Dimension (D) Fractal Dimension (D)

Fractal Dimension (D)

A-6.1. Fractal dimension vs 6 network indicators in the historic part of the city (across 100

European cities)
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A-6.2. Fractal dimension vs 6 network indicators in the modern part of the city (across 100

European cities)
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