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Abstract 

In urban studies, historic districts are often portrayed as inherently walkable because their street networks 

emerged through organic development rather than planned design. These areas typically feature frequent 

intersections, richer route choice, and more engaging streetscapes than the larger blocks and regular 

alignments characteristic of many modern planned districts. Such interpretations often rely on the idea that 

historic areas possess a form of geometric complexity described as “fractal-like”, yet this characteristic has 

rarely been evaluated systematically or directly linked to measurable street-network indicators. 

This thesis addresses this gap by examining whether differences in geometric complexity and street network 

structure correspond to the walkability-related properties commonly attributed to fractal-like street form. 

The analysis, therefore, focuses on whether fractal dimension, as a quantitative measure of this complexity, 

captures variations in street morphology and how it correlates with key topological indicators of street-

network configuration. 

The study covers 100 European cities, each represented by a pair of contrasting districts: an organically 

evolved historic core and a typical planned modern extension. Geometric complexity is measured using 

fractal dimension and two indicators of street grain: intersection density (nodes per km2) and average 

segment length. Network structure is assessed using graph-based indicators, including meshedness 

(redundancy of alternative paths), reachability index (number of intersections accessible within 600m), 

route straightness (deviation from a straight line), and harmonic mean shortest path length (average 

minimum travel distance). 

The results show that historic areas generally exhibit a higher fractal dimension (𝐷෩ ≈1.5, SD = 0.07) than 

modern districts (𝐷෩ ≈1.4, SD = 0.07), reflecting their more irregular and compact street structure. This 

difference is accompanied by denser intersections (103 vs 87 per km²), shorter average street lengths (78 

vs 88 m), and roughly 20% higher local reachability. However, both morphologies display similar route 

straightness and shortest-path metrics, indicating that global-scale connectivity is less sensitive to 

underlying geometric variation. 

These findings demonstrate that fractal dimension captures consistent variations in both geometric and 

topological properties of street networks across contrasting urban morphologies. By linking fractal 

geometry with network-based measures, the research provides an empirically grounded framework for 

examining street-network structure and clarifying the morphological foundations of walkability in different 

urban contexts. 

Keywords: street-network morphology, fractal dimension, topological indicators, walkability, urban form. 
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1. Chapter 1: Introduction 

 

1.1. Background 

Understanding the city inevitably involves recognizing the multiple layers through which it operates 

(Boeing, 2018; Merlo & Lavoratti, 2024). This intricate nature – commonly referred to as urban complexity 

– manifests not only in the visible arrangement of streets, buildings, and public spaces, but also in the less 

tangible systems of social, economic, and infrastructural flows that continuously shape the city’s evolution 

(Lynch, 1960; Jacobs, 1961; Batty, 2005; Salingaros & Pagliardini, 2016). While these dimensions are 

deeply interconnected, the physical form of the city provides a concrete and observable foundation for 

study. By focusing on measurable spatial arrangements, researchers can translate the abstract concepts of 

urban complexity into empirical comparisons across diverse urban settings (Strano et al., 2014). 

Among all urban elements, the street network plays a uniquely foundational role in shaping city form and 

experience (Marshall, 2004; Yoo & Lee, 2017). It serves as the primary “skeleton” of urban space, enabling 

movement, and connecting diverse land uses (Jacobs, 1961; Marshall, 2004; Porta et al., 2006; Yoo & Lee, 

2017). Its geometry and topology not only structure circulation and accessibility but also register the city’s 

historical trajectories of growth (Hillier & Hanson, 1984; Shen, 2002). Whether organically evolved or 

systematically designed, the configuration of street patterns directly shapes travel distance, navigability, 

and the overall structure of urban environments. Thus, focusing on their geometry and connectivity offers 

a practical and measurable basis for comparing the capacity of different street patterns to support or limit 

potential pedestrian mobility and access (Louf & Barthélemy, 2014; Boeing, 2017; Reza et al., 2024). 

Historic city centers often display 

organically evolved street networks 

characterized by narrow, winding streets, 

and irregular intersections developed 

incrementally over time. These patterns 

evolve in response to local topography, 

socio-economic demands, and historical 

events (Jacobs, 1961; Salingaros, 2000). 

Such adaptive growth produces highly 

intricate configurations, often accompanied       Figure 1.1. Urban layout of Kotor, Montenegro (Tiefenbacher, 2022) by 

by irregular building footprints, mixed land uses, and non-uniform spatial patterns (Salingaros, 1998; 
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Frankhauser, 2004). Cities like Rome and Kotor (Figure 1.1) exemplify how centuries of layered 

development generate street systems deeply tied to cultural identity. These unplanned fabrics often reveal 

fractal traits – structural patterns repeating across multiple spatial scales – forming nested layers, with major 

routes branching into progressively smaller lanes (Salingaros & Pagliardini, 2016; Mehaffy et al., 2010; 

Sreelekha et al., 2020). 

In contrast, modern urban expansions frequently employ grid street patterns that exemplify a more 

systematic and planned approach to city form. Rooted in rational design principles, grid layouts are 

characterized by regular, orthogonal streets and uniform block sizes, which aim to maximize clarity, order, 

and navigability (Southworth & Ben-Joseph, 2003; Sevtsuk et al., 2016). Such patterns emerged 

prominently during periods of rapid urban expansion and modernization, often reflecting Enlightenment 

ideals of efficiency and control over the urban environment (Scott, 1998; Alexander, 2001; Batty, 2005). 

Iconic examples include the rectilinear streets of Barcelona’s Eixample and the extensive street grids of 

Chicago and New York (Figure 1.2). While grids promote legibility and facilitate movement, they can also 

impose a certain rigidity, often disregarding local topography or pre-existing circulation patterns (Monclús, 

2003). Nonetheless, their simplicity and scalability have made grids a recurrent model in urban planning, 

representing a contrasting yet equally significant approach to structuring street networks (Boeing, 2020). 

 
Figure 1.2. Urban layout of New York, USA (Moreira, 2020) 

These two types of urban patterns are sometimes seen as opposing forces, yet modern cities increasingly 

blend both organic and grid elements. For instance, Barcelona (Figure 1.3) and Portland exemplify hybrid 

urban structures, where a dense historical core is surrounded by gridded expansions (Marshall, 2004; 

Mehaffy et al., 2010). This combination creates urban environments where multiple spatial logics – 

understood as distinct principles shaping street layout and connectivity – coexist and interact within a single 
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city (Louf & Barthélemy, 2014; Yoo & Lee, 2017). Hybrid forms can be both historically rich and spatially 

adaptable, but they also present unique challenges for urban design (Talen, 2003; Ewing & Handy; 2009). 

 
Figure 1.3. Urban layout of Barcelona, Spain (Moreira, 2020) 

This contrast between historic, organically developed districts and more systematically planned modern 

grids within the same city offers a valuable lens for examining morphological variation. Comparing these 

distinct zones side by side makes it possible to assess how differences in street-network structure impact 

spatial properties such as connectivity, redundancy, and access – within a controlled urban context (Masucci 

et al., 2009). Focusing on intra-city variation helps reduce the influence of external factors such as climate, 

governance, or demographics, which often complicate cross-city comparisons. 

One practical lens for interpreting these spatial patterns is urban grain – the typical size and arrangement of 

blocks and parcels, determined by the underlying street layout (Sevtsuk et al., 2016; Zhao et al., 2023). It 

captures the characteristic rhythm and scale of the built fabric: finer grain is frequently linked to 

adaptability, permeability, and access, while coarser grain may support larger land uses or clearer 

management boundaries (Pafka & Dovey, 2016; Zhao et al., 2023). This variation often follows a spatial 

gradient, with block structures becoming coarser and less intricate toward the urban periphery (Sreelekha 

et al., 2020). Though finer grain is generally associated with pedestrian accessibility, studies have shown 

that the relationship between urban grain and walkability is not always linear, depending on context and 

street-network structure (Sevtsuk et al., 2016). Accordingly, comparative analysis across diverse 

morphologies requires a metric capable of capturing both fine-grained detail and broader structural order 

across scales. 

While urban grain captures the local texture of the built fabric, it lacks a mechanism to describe structural 

complexity across spatial scales – a gap fractal geometry helps to fill. Introduced by Mandelbrot (1983), it 
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describes how spatial patterns extend and repeat across different scales. This property is quantified by the 

fractal dimension (D) – a single value that expresses the degree to which a form fills space across multiple 

levels of observation (Fankhauser, 1998; Chen, 2013; Jahanmiri & Parker, 2022). In urban studies, D has 

been used to characterize irregular spatial structures and to complement conventional metrics such as 

density or block size (Goodchild & Mark, 1987; Sreelekha et al., 2017). Recent work has also formalized 

fractality in discrete street networks (networks composed of intersections and street segments), adapting 

classical concepts to graph-theoretic framework that connect geometric form to network topology (Babič 

et al., 2022; Bunimovich & Skums, 2024).  

Beyond its value as a static descriptor, D has been linked to processes of urban transformation. According 

to Chen and Huang (2019), changes in fractal dimension can indicate urban growth trajectories, including 

patterns of expansion, densification, and infill development. These dynamics are often embedded in the 

physical form of the city and become evident when comparing areas shaped in different historical periods. 

In this context, fractal dimension provides a means to read morphological change within cities, offering a 

more dynamic perspective than static morphological metrics alone. 

Fractal dimension thus serves as a concise summary of the geometric side of urban complexity, capturing 

both the density and spatial irregularity of the street network across scales (Hyseni et al., 2021). Street 

patterns, however, are more than fixed geometries; their configuration defines the network’s structural 

frame, shaping connectivity, route options, and resilience (Louf & Barthélemy, 2014; Masucci et al., 2009; 

Boeing, 2018, 2021). This internal arrangement underpins accessibility and influences broader functional 

outcomes, such as travel times, congestion patterns, and traffic demand (Marshall, 2004; Masucci et al., 

2009; Babič et al., 2022). At neighborhood scales, the literature calls for quantitative approaches that 

integrate the analysis of design and configuration of urban street networks, linking geometry and topology 

to assess their combined influence on connectivity and accessibility (Louf & Barthélemy, 2014; Boeing, 

2017; Sharifi, 2019). 

Taken together, these arguments suggest a dual perspective on street networks: one concerned with 

geometric form, the other with topological configuration. The geometric or morphological dimension – 

encompassing urban grain, density, and spatial irregularity – is measured by the fractal dimension (D), as 

well as metric proxies such as intersection density and average edge length (Louf & Barthélemy, 2014; 

Boeing, 2018). The topological dimension is described by connectivity indicators, including the 

meshedness coefficient (route redundancy), reachability index (local access), mean straightness (route 

directness), and harmonic mean shortest path length (average minimum trip length).  Framed this way, the 

analysis establishes a shared basis for assessing diverse European morphologies and directly informs the 

problem statement that follows. 
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1.2. Problem statement 

Despite frequent references to the fractal characteristics of urban street networks (Lu & Tang, 2004; 

Mehaffy et al., 2010; Daniel et al., 2021), the empirical relationship between fractal dimension (D) and core 

network properties – particularly connectivity and accessibility – remains unclear. While existing studies 

suggest that higher D values may correspond to more continuous and integrated street structures 

(Salingaros, 1998; Lu et al., 2016), most analyses have focused on comparisons between different cities, 

where social, economic, demographic, and spatial contexts vary (Chen & Luo; 1998; Fankhauser, 2004; 

Strano, 2014; Boeing, 2018; Lagarias & Prastacos, 2021).  

This cross-city approach, however, lacks sensitivity to the intra-city variation of street-network structure, 

where differing historical trajectories, urban policies, and design logics frequently produce sharp contrasts 

within the same metropolitan area. For example, districts such as Ciutat Vella and Eixample in Barcelona 

are shaped by entirely different planning logics and exhibit distinct spatial structures, despite existing within 

a single administrative context (Monclús, 2003). A focused, intra-city analysis thus offers a controlled 

framework to better isolate the relationship between D and street network indicators while minimizing 

external variability. 

As a result, the core problem emerges: does fractal dimension serve only as a geometric descriptor, or can 

it also reflect deeper structural differences in street-network configuration? Building on this, the study 

explores whether D can function as a conceptual bridge between morphological indicators and topological 

network measures. To do so, it adopts a comparative, intra-city framework, focusing on pronounced 

contrasts between organically evolved and planned grid districts within the same metropolitan context. By 

testing the relationship between fractal dimension and street-network indicators at the neighborhood scale, 

this thesis contributes both to theoretical work on urban morphology and to the development of empirical 

tools for evaluating street-network configuration across diverse urban forms. 

1.3. Research Scope and Objectives 

This study focuses on European cities that contain clearly differentiated historic (organic) districts and 

planned grid expansions. By analyzing such contrasts within a single urban context, this research minimizes 

confounding influences such as climate, governance, or regional economics. Establishing relationships in 

these sharply contrasting cases also lays a methodological foundation for future work on hybrid and 

transitional urban areas. 

All measurements are taken from the present-day network at the neighborhood scale, where planning 

decisions are typically implemented. The analysis is framed by two complementary perspectives: 

1. A cross-sectional comparison looks across several cities to ask how historic and modern districts 

differ on average.  
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2. Within-city pairings examine how divergent planning logics manifest side-by-side in a shared 

geographic context.  

The research links morphological indicators (fractal dimension and urban grain measures) to topological 

indicators that capture connectivity, route directness, and travel efficiency. These metrics, specified in the 

Methods chapter, allow a unified assessment of street form and structure. Accordingly, the overarching aim 

is to examine whether fractal dimension offers a consistent numerical basis for distinguishing street-

network types, based on its relationship with key topological indicators within contrasting urban contexts. 

 

The objectives of the study are: 

O1 – To quantify and compare the geometric complexity of historic-core and modern districts within each 

city using fractal dimension (D), intersection density, and average edge length. 

O2 – To assess and compare topological structure through selected connectivity indicators, including  

meshedness coefficient, reachability index, mean straightness, & harmonic mean shortest path length.  

O3 – To examine intra-city correlations between fractal dimension (D) and selected topological indicator, 

evaluating whether fractality corresponds with variations in street network connectivity as widely 

claimed in the literature. 

 

Research questions: 

RQ1: How do historic and modern districts differ in street-network morphology and structure across  

           European cities? 

RQ2: To what extent does fractal dimension (D) capture the geometric differences observed between  

           these contrasting urban forms? 

RQ3: How does fractal dimension relate to key topological indicators of street-network configuration  

           commonly associated with walkability? 

 

Hypotheses: 

H1 – Historic street networks will exhibit significantly higher geometric complexity, as expressed through  

         fractal dimension, than modern planned networks. 

H2 – Historic districts will demonstrate higher pedestrian-scale reachability and redundancy due to their 

finer urban grain, supporting the claim that fractal-like morphologies enhance local accessibility. 

H3 – Fractal dimension will show a positive association with local-scale connectivity indicators  

(meshedness and reachability index), but a weaker or inconsistent association with global network 

measures (route straightness and harmonic mean shortest path length). 
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1.4. Thesis Structure 

The thesis is structured into a series of interrelated chapters that collectively address the central research 

questions and support a systematic analysis of geometric and topological properties of street networks in 

European cities. 

Chapter One introduces the research context, outlines the motivation for the 

study, and defines the scope and analytical focus. It presents the main aim, 

objectives, and research questions, and sets out the hypotheses. 

Chapter Two provides a review of relevant literature, establishing the 

theoretical basis for reading urban form through street networks. It explores 

key concepts and debates on the physical dimension of urban complexity, the 

historical evolution of street patterns, urban grain, fractal geometry, and indicators of street-network 

structure. The chapter concludes by identifying gaps that motivate the empirical analysis. 

Chapter Three outlines the methodological framework. It describes the 

selection of study areas and data sources, explains how physical complexity 

is assessed, including the computation of fractal dimension and derivation of 

graph-theory metrics. It further details the analytical approach at both the cross-sectional and intra-city 

levels, including procedures to assess associations and interpret typological variations. 

Chapter Four presents the results derived from the applied methodology. It 

includes a comparative analysis of street-network patterns, reports the 

distribution of fractal dimension (D) values in historical and modern urban 

areas, examines variations in topological indicators, and analyzes relationships between D and street 

network indicators.  

Chapter Five interprets the findings in relation to the research questions and 

existing literature. It discusses the results, reflects on their implications for 

understanding urban morphology and street-network analysis, and 

acknowledges study limitations. 

Chapter Six concludes the thesis by synthesizing the key findings in relation 

to the research aim and questions. It highlights the contribution of the study, 

discuss broader implications for urban design and morphological analysis, and 

outlines directions for future research. 

 

 

 

 

 CHAPTER I 

CHAPTER III 

CHAPTER IV 

CHAPTER V 

 CHAPTER II 

 CHAPTER VI 
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2. Chapter 2: Literature review 

 

This chapter reviews key literature on urban complexity with a specific focus on its spatial and structural 

dimensions as they relate to street networks. It begins by outlining the theoretical foundations that frame 

cities as complex systems, emphasizing the shift from descriptive interpretations of urban form to 

quantitative approaches that measure geometric and structural variation. The chapter then traces the 

historical evolution of urban patterns, contrasting organically developed historic fabrics with systematically 

planned modern layouts, and examining the assumptions commonly associated with each. 

Particular attention is given to methods for quantifying spatial complexity, with a focus on fractal geometry 

and the use of street networks as proxies for urban form. The chapter critically evaluates the conceptual 

basis and empirical application of fractal dimension in urban studies, highlighting both its analytical value 

and methodological limitations. Subsequent sections explore the relationship between street morphology 

and network structure through graph-theoretic approaches, addressing how different configurations shape 

structural connectivity and accessibility potential. 

Rather than conflating spatial form with observed behavior or subjective perception, this review centers on 

the structural conditions that enable or constrain movement within the urban fabric. By synthesizing debates 

across urban morphology, network science, and fractal analysis, this chapter establishes the theoretical 

foundation for examining whether fractal dimension captures structural variation in street-network form 

across contrasting urban contexts. 

2.1. Urban complexity: conceptual foundations 

Cities develop through many small adjustments rather than a single design moment (Alexander, 1965; Batty, 

2005; Boeing, 2018). Their street layouts, block structures, and built fabric accumulate through repeated 

actions such as plot subdivision, route extension, infill construction, and incremental densification. These 

processes are shaped by everyday practices, regulatory decisions, and physical constraints, which together 

leave a long-term imprint on spatial form (Salingaros, 2000; Batty, 2005).  

Over time, these numerous minor interventions produce spatial patterns that are far more irregular and 

differentiated than those arising from a single coordinated plan (Batty, 2005; Boeing, 2018; Merlo & 

Lavoratti, 2024). Complexity theory describes this cumulative evolution by viewing cities as systems in 

which spatial configuration results from the interplay of many heterogeneous actors and conditions, each 
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influencing the built environment in partial and often indirect ways (Batty, 2005; Strano et al., 2014; 

Boeing, 2018). 

The concept of urban complexity is commonly discussed through four ideas: self-organization, emergence, 

nonlinearity, and multi-scale structure. These ideas help explain why urban morphology often shows 

irregular geometry, layered subdivision, and substantial variation across scales.  

2.1.1. Self-organization and emergence 

A defining mechanism of such systems is self-organization, which refers to the formation of spatial patterns 

through local adjustments rather than coordinated design. For instance, Alexander’s (1965) essay “A City 

is Not a Tree” illustrates this concept by comparing traditional urban neighborhoods to semi-lattice 

structures: places where streets, buildings, and public spaces overlap and interconnect organically, rather 

than following a rigid, hierarchical “tree-like” plan. This demonstrates how urban form can be the product 

of local adaptation and collective negotiation, which are often regarded as signatures of self-organized 

development. 

Closely related to self-organization is the concept of emergence, defined by Goldstein (1999) as the 

appearance of new spatial patterns that cannot be attributed to any single local intervention. In urban 

contexts, this may include hierarchical street arrangements (i.e. primary, secondary, tertiary streets), 

recurrent block proportions, or distinctive neighborhood structures that result from long sequences of the 

bottom-up interactions (Batty, 2005). Boeing (2018) shows that such emergent forms arise from 

decentralized negotiations rather than formal planning. 

2.1.2. Nonlinearity in urban processes 

Urban systems often exhibit nonlinear behavior: small local changes often trigger large systemic effects 

(Batty, 2005; Boeing, 2018). For instance, adding a single connecting street can reduce travel distances 

across a neighborhood, while closing a short link may reroute movement across a wide area. Similarly, a 

minor shift in intersection placement can alter block size, street continuity, or local connectivity (Crucitti 

et al., 2006; Porta et al., 2006). 

These effects are not always intuitive or proportional, and they challenge the assumptions behind traditional 

linear planning models, which tend to expect predictable, incremental outcomes. A classic example of 

where such models fall short is the phenomenon of induced demand, where increasing road capacity 

unintentionally intensify traffic volumes rather than relieve them. Figure 2.1 illustrates how lane additions 

may fail to resolve congestion. 
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     If this is a problem…                                                               then this is not a solution… 

             
Figure 2.1. Example of Induced demand: more lanes, same problem (Verkade, 2020) 

2.1.3. From nonlinearity to self-similarity 

The recognition of nonlinear change introduces the concept of self-similarity, referring to the recurrence of 

related spatial patterns across different scales. Fankhauser (1998) observes that small elements of the built 

fabric – such as local branching or subdivision – often mirror larger structural arrangements, producing a 

multi-scale coherence associated with fractal geometry. This suggests that cities, much like natural systems, 

tend to develop through repeated subdivision processes that generate irregular but internally consistent 

spatial arrangements (Batty & Longley, 1994; Salingaros, 1998; Jiang, 2007). 

Rather than implying visual repetition, self-similarity in urban structures reflects a consistent mode of 

spatial subdivision in parcels, blocks, and street segments vary systematically with scale (Batty, 2008). 

These variations cannot be captured by Euclidean measures alone, which focus on single dimensions of 

size or distance. Self-similar structure therefore provides the conceptual basis for describing urban 

morphology through measures such as the fractal dimension, which evaluates how intensively the built 

environment occupies space across multiple scales. 

2.1.4. Complexity as a basis for analyzing urban form 

The ideas discussed above provide a general foundation for interpreting cities as products of cumulative, 

multi-scale spatial processes. They highlight how incremental adjustments – such as parcel reshaping, path 

extension, or gradual densification – can generate built environments marked by irregular geometry, nested 

subdivisions, and considerable variation in grain and orientation. These characteristics appear not only in 

historic districts but also in peripheral settlements, informal expansions, and certain planned extensions 

where the built fabric has been modified repeatedly over long periods (Thomas et al., 2007; Sreelekha et 

al., 2020). 

Understanding urban complexity therefore requires attention to how different morphological settings 

express these processes. Some urban areas show dense layers of incremental change, producing fine-

grained blocks, irregular alignments, and mixed-use structures. Others reflect more consolidated or 

coordinated interventions, which may generate regular street grids, larger parcels, and predictable block 
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patterns (Boeing, 2021). Even within a single city, these contrasting conditions can coexist, illustrating how 

varied historical trajectories, governance structures, and developmental pressures shape the spatial 

outcome. 

Complexity perspectives also underline that no single geometric or structural property captures the full 

range of variation found in urban form (Batty, 2005). Instead, built environments combine multiple layers 

of subdivision, circulation, and land use that have accumulated at different moments and rates (Hillier, 

1996; Fankhauser, 1998). This accumulation produces urban fabrics that differ not only in their visible 

structure but also in their depth of adaptation, meaning the extent to which their present-day layout reflects 

long sequences of change (Salingaros, 1998; Mehaffy et al., 2010). 

These distinctions provide the conceptual bridge to the next section. If cities evolve through heterogeneous 

and path-dependent processes, then different urban typologies – such as organically developed districts and 

planned extensions – will exhibit distinct forms of complexity. Section 2.2 therefore examines these 

typological differences and outlines how contrasting generative processes shape the spatial characteristics 

observed in contemporary urban environments. 

 

2.2. Typological transitions in urban form 

Urban form is not static; it evolves through an ongoing interplay of technological change, economic forces, 

cultural practices, and geographic context (Hillier, 1996; Wang et al., 2024; Merlo & Lavoratti, 2024). Over 

time, this interaction has produced a wide spectrum of spatial arrangements, ranging from irregular, 

organically developed fabrics to highly regular grid-based schemes. Each configuration reflects the 

planning norms, construction methods, and social expectations dominant at the time of its formation 

(Jacobs, 1961; Kostof, 1991; Marshall, 2009; Strano et al., 2014). 

2.2.1. Organic patterns: Bottom-up spatial intelligence 

Settlements that developed before the industrial age typically display irregular parcels, sinuous streets, and 

nested public spaces. Their geometry emerged incrementally through day-to-day decisions rather than a 

single blueprint, resulting in compact, pedestrian-scaled quarters where social exchange and local 

commerce were woven into the street fabric (Salingaros, 2000; Knowles, 2006).  

Pagliardini et al. (2010) observe that such morphologies follow implicit, context-specific rules grounded in 

climate, topography, and building practice. In Mediterranean towns, for example, narrow streets and shaded 

passages correspond to climatic moderation strategies, while in hill settlements, terraced routes frequently 

conform to slope terrain (Hakim, 1986; Marshall, 2009). Alexander (1965) describes these morphologies 
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as example of organized complexity, characterized by the diversity of elements held together by recurrent 

spatial relationships that emerge through local negotiation.  

Although such environments often originated in pre-industrial contexts, their spatial configurations 

continued to evolve through continuous modification in response to shifting needs (Batty, 2005). Even in 

formally planned settlements, such as Roman military camps, the initial geometric order was frequently 

reconfigured through subsequent subdivision and iterative development. This results in hybrid 

morphologies that combine imposed structure with incremental adaptation, where small plots repurposed 

and streets realigned without large-scale disruption (Bertuglia & Staricco, 2000; Salingaros, 2000). 

2.2.2. Transition to grid-based and modernist planning 

The rapid urbanization of the 19th and 20th centuries marked a decisive shift in planning paradigms. As the 

global urban population expanded dramatically – growing thirtyfold between 1800 and 1960 – the informal 

growth patterns of earlier settlements were replaced by more standardized layouts designed to 

accommodate large-scale development and infrastructural coordination (Kostof, 1991).  

Grid plans became central tools of modernization. Their regular geometry supported coordinated 

infrastructure, administrative control, and predictable land subdivision (Le Corbusier, 1935; Scott, 1998; 

Marshall, 2004). These schemes also aligned with emerging transport technologies, especially tram and rail 

systems that required clear axial routes (Duany et al., 2000). In many contexts, the grid reflected broader 

political objectives: colonial governance, state-building, or rationalized land management (Kostof, 1991; 

King, 2004). 

2.2.3. Grid patterns: Top-down spatial intelligence 

Grid-based environments are characterized by repeated block modules, linear corridors, and uniform 

intersection spacing (Kostof, 1991; Scott, 1998; Boeing, 2021). Their appeal lies in their administrative 

clarity and scalability, making them suitable for large-scale development and real estate markets 

(Southworth & Ben-Joseph, 2003; Sennett, 2018). By establishing predictable parcels and circulation 

routes, grid layouts enable coordinated infrastructure delivery, clear land valuation, and standardized 

building procedures (Kostof, 1991; Boeing, 2020; Sreelekha et al., 2020). 

The simplicity of the grid pattern also supports extension: its geometry can be expanded in any direction 

without altering the internal logic of blocks or streets. This quality made it attractive in colonial, industrial, 

and frontier contexts, where rapid land allocation and governance required easily reproducible spatial 

templates (Scott, 1998; Kostof, 1991; King, 2004). The regular spacing of intersections further facilitates 

the introduction of modern utilities, including tramlines, sewerage systems, and electricity networks, all of 

which benefit from linear and predictable routing. 
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In modernist planning discourse, the grid was reimagined as a tool for utopian design, with models like the 

Ville Radieuse envisioning zoned, geometrically clear cities optimized for the efficient use of transport and 

sunlight (Le Corbusier, 1935; Holston, 1989; Mumford, 1961). Although rarely implemented in full, this 

model deeply influenced urban renewal strategies and reinforced the association between rationalized 

spatial order and modernization efforts across Europe, North America, and parts of the Global South (see 

Figure 2.2).  

          New Orleans, USA                                  Avola, Italy                              Buenos Aires, Argentina 

        
Figure 2.2. Grid street networks in different regional contexts 

For example, Barcelona’s Eixample demonstrates how a rational grid can undergo significant adaptation. 

Originally designed by Ildefons Cerdà, the district exhibits a regular orthogonal structure combined with 

chamfered intersections and internally subdivided blocks. While the underlying geometry is strictly 

ordered, later phases of development introduced variations in block occupation, intersection treatment, and 

building intensities. These changes produced a hybrid condition in which planned structure persists 

alongside local divergences generated by piecemeal development. 

2.2.4. Hybrid and alternative structuring principles  

Beyond the binary distinction between organic and grid-based patterns, many cities exhibit hybrid 

configurations shaped by overlapping phases of development. Medieval settlements with Roman origins 

often combine a core grid overlaid by later organic growth. Radial-concentric systems (e.g., Moscow), 

curvilinear garden-city plans (e.g., Letchworth), and star-shaped fortifications (e.g Palmanova) represent 

alternative structuring principles aimed at fusing order with symbolic meaning or natural forms (Howard, 

1902; Holston, 1989; King, 2004; Batty & Longley, 1994; Sennett, 2018).  

These patterns illustrate that urban form is frequently the product of layered transformation, where 

successive interventions introduce new ordering systems without erasing prior structures (Batty, 2005; 

King, 2004; Marshall, 2004). Although such morphologies are significant within broader urban 

morphological discourse, their detailed analysis lies outside the specific comparative focus of this study 

and is therefore not discussed further. 
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2.2.5. Contemporary relevance of typological differences 

The distinction between organic and grid-based patterns continues to inform debates about urban 

development. These patterns differ not only in appearance, but also in the type of complexity they exhibit. 

Traditional urban forms display “organized complexity” – a coherent yet diverse structure of interdependent 

elements – though may pose challenges in infrastructure provision and formal governance (Alexander, 

1965). In contrast, grid plans often tend toward mechanical order or “organized simplicity” when their 

design does not sufficiently accommodate the unpredictable needs of everyday social life (Jacobs, 1961; 

Salingaros, 2000; Pagliardini et al., 2010; Portugali, 2011).  

Both logics continue to inform contemporary planning discourse. Movements such as New Urbanism, 

Smart Growth, and sustainable urbanism draw on lessons from both organic and grid-based traditions 

(Duany et al., 2000; Alexander, 2001). A clear example is the Vauban district in Freiburg, where an initially 

regular street framework has been altered by car-free internal routes and small courtyards that subdivide 

larger blocks within a planned layout (Coates, 2013; Pafka & Dovey, 2016). From a structural perspective, 

this ongoing dialogue reinforces the relevance of examining how different morphological principles encode 

distinct development processes. 

Typological differences also matter because they shape the underlying spatial framework inherited by later 

interventions. As the next section discusses, street networks form the primary structural layer through which 

these typological conditions become spatially legible. Section 2.3 therefore examines how different 

development processes influence the arrangement of circulation routes and the structural backbone of the 

built environment. 

 

2.3. Street network configuration as the structural backbone 

Street networks constitute the most persistent and analytically tractable component of urban form. As 

continuous arrangements of routes and intersections, they structure how blocks, parcels, and public spaces 

are organized and connected (Jiang & Claramunt, 2004; Porta et al., 2006; Marshall, 2009; Boeing, 2018). 

Their visible geometry records accumulated decisions made through historical development, infrastructural 

intervention, and incremental modification, thereby encoding the spatial structure of the city in a legible 

and quantifiable form (Zhao et al., 2023). 

Because development processes differ across urban typologies, their street networks express contrasting 

spatial conditions. Incrementally formed districts tend to produce fine-grained, irregular alignments and 

varied junction spacing, while planned extensions often introduce more regular block modules, straighter 

routes, and consistent intersection patterns (Marshall, 2004; Salingaros, 2000). These differences make 

street networks the primary layer through which the generative processes discussed in Section 2.2 become 

spatially legible. 
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Despite their apparent diversity, street systems often display recognizable structural tendencies. Local 

adjustments and historical layering can produce coherent arrangements even within networks that appear 

irregular (Pagliardini et al., 2010; Boeing, 2021). These patterns reflect core elements of spatial organization 

– junction density, block subdivision, and segment orientation – that together shape urban geometry (Hillier, 

1996; Salingaros, 2000; Southworth & Ben-Joseph, 2003). Because these features arise from long-term 

processes, street networks offer a consistent entry point for analyzing how different morphological settings 

encode their development histories. 

The analytical value of street networks extends beyond their visible geometry. Network-science approaches 

conceptualize streets as interconnected systems, allowing examination of how spatial relations – not only 

distances – structure access across the urban fabric (Porta et al., 2006; Barthelemy, 2011; Strano et al., 

2014). Variations in block size, intersection density, and segment orientation influence the number of 

available paths, the ease of movement between locations, and the distribution of connectivity within a given 

area (Hillier, 1996; Crucitti et al., 2006). Fine-grained networks with shorter segments and frequent 

junctions often support multiple route options and short pedestrian paths, whereas coarser arrangements 

with larger blocks tend to reduce local permeability (Pafka & Dovey, 2016). Yet empirical evidence shows 

that these relationships vary across contexts and scales, highlighting the need for comparative, context-

sensitive analysis (Hillier, 1996; Porta et al., 2006; Boeing, 2018). 

These structural characteristics also follow scale-dependent organization, aligning with broader theories of 

urban complexity. Studies show that local street patterns often relate to larger spatial arrangements, 

producing forms of multi-scalar coherence even where visual regularity is absent (Jiang, 2007; Wang et al., 

2024). This makes street networks particularly suited for quantitative analysis, since their geometric and 

topological properties can be examined consistently across multiple spatial extents. 

Because street networks are persistent, legible, and structurally explicit, they serve as a robust proxy for 

examining geometric complexity in this study. Their configuration can be analyzed using established 

techniques from fractal geometry and graph theory, providing a systematic basis for comparing paired 

districts shaped by different developmental trajectories. The following sections introduce the analytical 

tools used to measure these properties: Section 2.4 introduces the concepts of urban grain and permeability 

as a means to describe fine-scale morphological variation; Section 2.5 reviews fractal approaches to urban 

morphology; and Section 2.6 introduces the indicators used to characterize street-network structure. The 

final subsection then synthesizes these strands to define the research gap addressed in this thesis. 

 

2.4. Urban grain, permeability, and street-network patterns 

As discussed in Section 2.3, the configuration of street networks shapes not only geometric form but also 

the structural conditions that enable or constrain spatial access, route diversity, and navigational choices 
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within the built environment. A critical aspect of this structural variation lies in the concepts of urban grain 

and permeability, which together offer insight into how different street-network patterns affect accessibility, 

connectivity, and spatial legibility – particularly at the pedestrian scale (Pafka & Dovey, 2016). 

Urban grain refers to the size, regularity, and arrangement of the physical units that compose the built fabric 

– most commonly parcels and blocks (Bentley et al., 2003). Grain is typically conceptualized as a spectrum 

ranging from fine to coarse, depending on block size, street spacing, and subdivision patterns. Fine-grained 

networks are characterized by small blocks, short street segments, and high intersection density (Figure 

2.3a). Conversely, coarse-grained structure (Figure 2.3b) tend to result from car-oriented or large-scale 

planned development, exhibiting longer street segments, larger parcels, and wider intersection spacing 

(Southworth & Ben-Joseph, 2003; Sennett, 2018). 

 

Figure 2.3. Representative block configurations illustrating a continuum from fine (a) to coarse (b) grain (EPOA, 2018) 

Closely related – but conceptually distinct – is the concept permeability, which refers to the degree of 

movement potential within a street network. It captures how connected the street layout is, how many 

alternative paths exist between locations, and how direct those routes are (Hillier, 1996; Pafka & Dovey, 

2016). A highly permeable street network supports multiple route choices and shorter detours, whereas low 

permeability restricts access to a few major routes, often increasing walking distances, even when origins 

and destinations are physically close. 

While fine grain often contributes to high permeability, the relationship is not absolute. Some coarse-grain 

grids (e.g., Manhattan) maintain high permeability due to consistent spacing and through-connections, 

while some fine-grain historical areas may include cul-de-sacs or fragmented segments that reduce local 

connectivity. These distinctions underscore the importance of disaggregating geometric layout from 

topological aspect: grain and permeability are correlated but capture different aspects of network structure. 

2.5. Fractal geometry and urban street form 

Quantifying the physical dimension of urban complexity requires moving beyond descriptive or purely 

conceptual interpretations of urban form. This section outlines why quantitative approaches are necessary 

(a) (b) 
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for studying irregular, layered spatial structures, and introduces fractal dimension as a tool for 

characterizing geometric complexity in urban street networks. 

2.5.1. Why and How we quantify urban form 

Urban form has traditionally been examined through qualitative interpretation and typological analysis. 

While these approaches provide valuable insight, they are limited in their capacity to capture the 

irregularity, variation, and layered organization characteristic of urban systems (Batty & Longley, 1994; 

Talen, 2003; Boeing, 2018). In response to this limitation, researchers have increasingly emphasized the 

need for quantitative approaches capable of translating complex urban patterns into analyzable and 

comparable metrics. 

As Talen (2003, p. 203) asserts, meaningful urban analysis must move beyond visual description to 

measurable structure:  

“…without the tools to effectively measure and represent these [i.e., spatial and structural aspects of 

urban form] ideas – essential for implementation – the concepts prove intangible…”  

This opinion echoes Batty and Longley’s (1994) call for moving from description to quantification when 

studying cities as evolving systems. Similarly, Boeing (2018, p. 285) similarly emphasizes the need to 

measure urban complexity formally, asking how complexity in urban form might be “assessed” rather than 

only described. These arguments reflect a broader disciplinary shift toward metrics that can compare urban 

structures consistently across space and time. 

Formal quantitative approaches enable researchers to characterize spatial patterns – such as dispersion, 

fragmentation, continuity, and grain – in a systematic and replicable manner. Such measures help 

distinguish configurations that may appear similar visually but differ in their underlying organization 

(Clifton et al., 2008; Yuan et al., 2018). The growth of spatial datasets and computational methods has 

further strengthened the feasibility of applying such metrics in comparative studies spanning large 

geographical areas (Boeing, 2018). 

Within this broader shift, fractal analysis offers a particularly relevant framework for studying urban form. 

Developed in mathematics to describe scale-dependent and irregular shapes, fractal geometry provides 

concepts and techniques for examining patterns that recur across multiple spatial extents (Batty & Longley, 

1994; Batty, 2005). Its relevance to urban morphology stems from repeated observations that cities tend to 

exhibit hierarchical subdivision, nested structures, and scale-rich variation – properties that conventional 

Euclidean measures cannot adequately capture. 

Applications of fractal geometry in urban studies have examined the branching structure of street networks, 

the subdivision of blocks, and the dispersal of built form, demonstrating how these elements often display 
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characteristic degrees of irregularity and scaling (Chen & Luo, 1998; Shen, 2002; Lu & Tang, 2004). This 

aligns with broader theories of urban complexity, in which built fabric emerges through incremental 

processes that generate both diversity and coherence across scales. 

While various quantitative approaches exist – such as simulation models or cellular automata that replicate 

urban growth dynamics (Batty, 1997, 2005; van Vliet et al., 2012) – fractal analysis provides a static yet 

structurally expressive means of examining existing spatial patterns. Rather than modelling temporal 

change, it focuses on the geometric properties of form itself, offering a way to describe how spatial detail 

accumulates and how urban form fills space at different levels of measurement (Batty & Longley, 1994). 

In summary, quantifying urban form allows researchers to move from descriptive characterization to 

systematic comparison. Fractal analysis, in particular, offers tools for interpreting the scale-rich, irregular, 

and multi-layered geometry that typifies urban street networks. The next section introduces fractal 

dimension as a specific metric derived from this framework, used to quantify geometric complexity in a 

consistent and comparable way. 

2.5.2. Fractal geometry in urban studies 

The application of fractal theory in urban studies has significantly advanced the understanding of spatial 

organization and urban form. The concept of a fractal, first introduced by Benoît B. Mandelbrot, describe 

a geometric object formed through an iterative process, producing complex shapes composed of repeated 

elements at progressively finer resolutions (Mandelbrot, 1983; Terzidis 2006). This property – known as 

scale invariance – implies that patterns remain consistent regardless of the level of magnification 

(Salingaros, 2003; Jevric et al., 2016; Jahanmiri & Parker, 2022).  

A classic example of this principle is 

the coastline paradox (Figure 2.4), 

which illustrates how measurements of 

length vary with scale, reflecting the 

increasing detail observed at finer 

resolutions (Mandelbrot, 1983). 

Initially, geographers recorded a certain 

length for the British coastline, but as 

measurement methods became more 

precise, the recorded length changed 

(Salingaros, 2003, p.5). Each time the            Figure 2.4. Coastline paradox (Jahanmiri & Parker, 2022) coastline 

coastline was measured with greater accuracy – the length appeared to increase. This puzzling phenomenon 



19 
 

was later explained by fractal geometry: the ‘length’ of a coastline is not fixed, but scale-dependent 

(Salingaros, 2003). 

This paradox demonstrates that some forms cannot be adequately described by conventional Euclidean 

measures and instead follow fractal characteristics in which complexity increases with resolution. As one 

zooms in, finer details often mirror the larger structure – a characteristic seen in natural forms like trees and 

rivers, as well as in urban systems where neighborhoods or street layouts reflect broader city patterns 

(Salingaros, 2000; Lorenz, 2003; Kartal & Inceoglu, 2023).  

While these features are broadly observed in natural and technological systems, they are particularly useful 

for interpreting the built environment. Cities frequently display fractal characteristics in their street 

networks, block arrangements, and built densities, depending on the scale of observation (Batty & Longley, 

1994; Lu et al., 2016; Kartal & Inceoglu, 2023). By applying fractal geometry to urban morphology, 

researchers can reveal the generative processes shaping spatial organization and describe how complex 

forms emerge from repeated local transformations (Jevric et al., 2014; Zhang & Li, 2012; Jin et al., 2017). 

Fractal geometry and Urban form 

Urban growth is a dynamic process that results from the collective activities of individuals and communities 

over time, leading to the development of complex, layered structures (Ben-Hamouche, 2009; Kartal & 

Inceoglu, 2023). These processes generate forms that are difficult to describe using Euclidean geometry, 

which relies on rigid shapes and fixed dimensions (e.g., 1 for lines, 2 for areas, 3 for volumes). Instead, 

many urban layouts often require the use of rational numbers to express their inherent complexity.  

Fractal geometry, unlike Euclidean geometry, provides a means to quantify and analyze the irregularity and 

self-organizing nature of urban environments. Figure 2.5 presents three distinct fractal patterns: a leaf vein, 

the Sierpinski Carpet, and an urban pattern. While these forms differ in their context and scale, they share 

a common recursive logic in which smaller components reproduce aspects of the larger structure (Lorenz, 

2003; Jiang, 2007, 2021).  

           
Figure 2.5. Examples of fractal pattern. 

a) a leaf vein (Jiang, 2021) b) the Sierpinski Carpet (Jiang, 2021) c) street network of Larnaca (Cyprus) 

(a) (b) (c)
00
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The leaf vein demonstrates recursive branching patterns that distribute nutrients efficiently across the leaf's 

surface (Figure 2.5a). This structure resembles flow distribution in urban street networks (Figure 2.5c) 

(Wang et al, 2017). Regarding the Sierpinski Carpet (Figure 2.5b), it is often referenced since mirrors the 

scaling and void patterns seen in cities (Jiang, 2021). This fractal is formed by recursively subdividing a 

square and removing certain sections, creating a pattern that appears similar regardless of the scale at which 

it is examined. Therefore, the concept of fractals, initially studied in mathematical contexts, has become 

increasingly relevant in understanding the geometry of urban landscapes.  

The presence of fractal patterns in urban structures is not limited to visual similarities; it also reflects 

underlying spatial dynamics shaping cities (Batty, 1997; Encarnacao et al, 2012). For instance, building 

and street-network densities typically decline progressively outward from the center to the periphery, 

forming a self-replicating spatial gradient (Lu & Tang, 2004; Kalapala et al., 2006; Zhang & Li, 2012; Lu 

et al, 2016). These findings highlight the self-organizing nature of urban form, reinforcing the idea that 

fractal principles not only describe physical structures but also capture the underlying dynamics of urban 

development and spatial organization. 

Fractal Dimension as a measurement tool 

A central metric in fractal analysis is the fractal dimension (D), which quantifies how space is filled or 

occupied as one zoom into finer scales (Mandelbrot, 1983; Batty, 2012; Wang et al., 2017; Jahanmiri & 

Parker, 2022). It typically ranges between 1 and 2 (Figure 2.6), reflecting the intermediate complexity of 

urban forms - more intricate than a simple line (D = 1) but not fully occupying a plane (D = 2) (Batty & 

Xie, 1996; Jevric et al., 2016).  

 
Figure 2.6. Comparison between the dimensions of traditional and fractal geometries (Batty&Longley, 1994) 

This metric helps differentiate between compact and dispersed urban patterns and has been widely applied 

in the analysis of road networks, building distributions, land-use configurations, and urban sprawl (Lu et 

al., 2016). Beyond static structure, changes in fractal dimension over time have been used to indicate urban 

growth dynamics (Chen & Huang, 2019).  
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An intuitive way to understand this concept is through the example of a fractal tree, where each branch 

splits into smaller ones, following a consistent ratio (Figure 2.7). At each iteration, the number of 

branches increases, but their lengths decrease proportionally. 

 
Figure 2.7. Example of a simplified formation process of a fractal tree (Jahanmiri & Parker, 2022) 

The fractal dimension can be estimated using the relation: 

𝐷 =
log 𝑁

log 𝑆
   

where t refers to iteration stage, N is the number of branching at each iteration, and S is the scaling factor 

by which the branches shrink. For example, if each branch splits into two smaller branches, each half the 

length of the previous, then 𝑁 = 2 and 𝑆 = 2, yielding 𝐷 = log 2 / log 2 = 1, which corresponds to a one-

dimensional line. However, if the branching pattern is more intricate, filling more space, D approaches 

value toward 2, indicating a structure more complex than a line but less than a fully filled plane.  

Scientific debates and Methodological challenges 

While fractal analysis offers a quantitative perspective, its interpretation has been the subject of sustained 

debate. One recurring critique concerns the reduction of complex urban environments to a single numerical 

value. Skeptics such as Mulligan (1997) argue that aggregated fractal measures may oversimplify the 

richness of urban systems and provide limited new insight into their formation. This critique is especially 

relevant when cities are divided into discrete zones or parcels to calculate a single fractal dimension, as 

such aggregation may overlook the integrated and holistic nature of urban structure. 

Related concerns focus on the explanatory limits of fractal metrics. Although fractal dimension can describe 

how spatial detail accumulates across scales, it does not inherently account for the socio-institutional 

processes that shape urban form or explain why cities exhibit fractal-like patterns in the first place (Batty, 

2008; Tannier & Pumain, 2005). In this sense, fractal measures quantify outcomes of urban development 

rather than the mechanisms that generate them. 
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A second set of challenges arises from the variability of fractal properties across different components of 

the built environment. Fractal characteristics are well documented in street networks, urban boundaries, 

and land-use distributions, yet each component may display distinct scaling behaviors (Frankhauser, 1998). 

As Chen (2013) notes, a single fractal dimension may therefore be insufficient to represent the entire urban 

fabric. This observation has prompted discussions about the need to complement fractal dimension with 

additional morphological indicators to improve the accuracy and interpretability of urban analysis (Batty 

& Longley, 1994; Batty, 2012; Jahanmiri & Parker, 2022). 

A key theoretical link between fractal dimension and urban structure concerns density, since fractal 

dimension formally expresses how a form fills available space (Batty, 1991; Longley & Mesev, 2002). 

Higher fractal dimensions indicate more heterogeneous arrangements, with greater diversity in the size and 

distribution of elements. Yet fractal dimension is not a proxy for density: urban areas with similar density 

values may exhibit markedly different fractal characteristics (Thomas et al., 2007; Jahanmiri & Parker, 

2022). Instead, it complements traditional density-based analysis by distinguishing between compactness 

arising from uniform structure and compactness emerging from heterogeneous subdivision (Lu et al., 2016; 

Jahanmiri & Parker, 2022). 

Beyond general morphology, fractal analysis has also been applied to land-use configurations and zoning 

(Batty et al., 2008; Yu & Zhao, 2021; Jahanmiri & Parker, 2022). Studies show that different urban systems 

often display distinct fractal signatures (Thomas et al., 2007; Batty et al., 2008). For example, research on 

London’s built environment indicates that commercial and industrial areas tend to exhibit higher fractal 

dimensions due to their irregular layouts, whereas residential districts – typically shaped by more uniform 

planning – tend to display lower values (Batty et al., 2008). These findings demonstrate how fractal analysis 

can illuminate spatial inconsistencies or reveal how different zoning practices contribute to variations in 

urban complexity. 

Taken together, these debates underscore that while fractal analysis enriches the study of urban form, its 

interpretation requires contextual understanding. Cities are shaped by multiple factors, including planning 

regulations, transportation networks, and historical development trajectories, all of which influence their 

fractal properties (Batty, 2005; Lu et al., 2016; Jahanmiri & Parker, 2022). A high fractal dimension does 

not necessarily indicate desirable spatial qualities, nor does a low value imply inadequacy. As Batty and 

Longley (1994, p. 333) emphasize, the central challenge is to “explore the relationship between city size, 

fractal dimension, changing densities and changing form”, while ensuring that fractal measures complement 

– not oversimplify – the dynamic and interconnected nature of urban environments. 
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The role of fractal analysis in contemporary urban studies 

Fractal principles underpin computational models designed to simulate urban growth and land-use changes. 

Since the early 1990s, models like Cellular Automata (CA) and Agent-Based Models (ABM) have 

employed fractal-based algorithms to replicate urban spatial patterns (Jahanmiri & Parker, 2022). These 

models apply fractal rules to recreate complex urban structures emerging from simple local interactions 

(White & Engelen, 1993; van Vliet et al., 2012). For example, White and Engelen’s CA model of Berlin’s 

urban growth demonstrated that the fractal dimension of their simulated city closely mirrored real-world 

measurements (White & Engelen, 1993). These models provide valuable predictive insights for urban 

planners, allowing them to test various “what-if” scenarios and forecast potential urban developments based 

on historical trends. However, while effective at simulating iterative urban processes, these models are best 

suited for exploring hypothetical urban outcomes rather than predicting actual urban dynamics (Batty, 2012; 

Batty & Milton, 2021). 

In recent years, fractal analysis has become more integrated with GIS and remote sensing technologies, 

expanding its applications in contemporary urban research. This integration has been crucial for predicting 

urban expansion and evaluating resilience to disruptions like climate change and infrastructure failures. 

Additionally, machine learning algorithms have started to incorporate fractal analysis to better understand 

urban dynamics. For instance, convolutional neural networks (CNNs) are used to detect fractal patterns in 

satellite imagery or street network data. These tools help researchers model urban growth trajectories, 

identify areas at risk of sprawl, and assess how cities might respond to changes in population or 

environmental conditions. 

Despite these advancements, the core value of fractal analysis within urban morphology remains 

underexplored in terms accessible to both academics and practitioners. Understanding its limitations, 

particularly in relation to planning policies and socio-economic dynamics, is crucial for making meaningful 

contributions to urban studies. Future research should integrate fractal measures with other urban metrics 

to develop a more comprehensive framework for urban analysis and planning. Combining fractal analysis 

with measures of connectivity and accessibility, could offer deeper insights into urban systems, bridging 

the gap between mathematical abstraction and practical planning needs. As cities evolve, refining these 

methodologies will be crucial for designing more resilient and adaptable urban spaces. 

2.5.3. Relevance for this study 

In this research, the adoption of fractal analysis is grounded in the recognition that urban street networks 

often exhibit fractal characteristics (Batty & Longley, 1994; Badhrudeen et al., 2022). Instead of relying on 

qualitative descriptions of irregularity, fractal dimension provides a formal metric to quantify how densely 

and unevenly urban space is filled (Jahanmiri & Parker, 2022). This makes it particularly well suited for 
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the comparative purposes of this research, which examines whether differences in street-network 

configuration correspond to systematic variations in their underlying spatial structure. 

2.6. Network-based measures of street structure 

Urban form cannot be fully understood through geometric or morphometric attributes alone. While block 

size, parcel subdivision, and spatial layout express the physical grain of the built environment, the relational 

structure of streets emerges from the connections among individual segments and junctions. These 

interdependencies create structural properties that are not visible from geometry alone and often reveal 

deeper organizational logics embedded in the network (Hillier & Hanson, 1984; Jiang & Claramunt, 2004; 

Boeing, 2018; Merlo & Lavoratti, 2024). Street networks therefore provide a critical lens through which 

the configurational dimension of urban form becomes legible. 

Street configuration reflects the cumulative actions that shape how places connect, separate, or integrate 

across scales. Even networks that appear visually similar may differ substantially in their underlying 

relational structure – whether through variations in junction arrangement, degree distribution, or path 

redundancy (Porta et al., 2006; Cardillo et al., 2006). For this reason, network-based indicators have become 

central to contemporary urban morphological research, complementing geometric measures by revealing 

how spatial elements relate to one another within the broader system. 

This section reviews key literature on the use of graph-theoretical and spatial-network indicators in 

understanding street-structure complexity. It situates these measures within urban morphology rather than 

treating them as proxies for mobility or performance, aligning with the analytic goals of this study. 

2.6.1. From morphological form to structure capacity 

Urban form is often described and analyzed through its morphological typologies – whether organic, grid-

based, or hybrid – captured through metrics such as block size, street spacing, and fractal dimension. These 

measures describe what the physical structure looks like. However, they do not describe how the elements 

relate or how the network is organized as a system (Marshall, 2004; Boeing, 2018). 

Network analysis addresses this gap by conceptualizing street systems as graphs composed of nodes and 

edges. This allows the structure to be examined in terms of:  

 Connectivity – how many links exist and where; 

 Reach – how far one can walk within a certain number of steps; 

 Redundancy – how many alternative paths are available; 

 Continuity – how street alignments extend across space; 

 Granularity – how evenly connections are distributed; 
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These properties reveal systemic structure independent of geometric appearance. A street network may 

appear dense but its internal connections are fragmented, or it may appear coarse yet maintain strong 

coherence through efficient connections (Crucitti et al., 2006; Porta et al., 2006; Hillier, 1996). The shift 

from morphological form to structural capacity therefore extends the analysis of urban complexity from 

shape to relations. As Jiang & Claramunt (2004) note, street networks are “both geometric entities and 

relational structures”, and their dual nature requires analytical tools capable of capturing both dimensions. 

2.6.2. Topological indicators of street networks 

To provide a structural reading of street networks, a wide range of indicators has been developed (Wu et 

al., 2021). These measures vary in scope - some are topological, describing how elements are connected 

regardless of geometry, while others are spatial, capturing the physical distribution and density of street 

components (Xie & Levinson, 2006). Together, they provide complementary insights into how well a 

network supports movement, access, and internal flow. 

This study draws upon both graph-theoretical concepts and spatial network analysis to select relevant 

metrics. While indicators such as average path length describe the topological structure of connectivity, 

others like intersection density reflect the spatial intensity of the network. The most relevant measures 

within the context of street-network analysis are presented in Table 2.1. 
 

Table 2.1. Core indicators for accessibility and connectivity 

Level Type Measure What it describes Key reference(s) 

Node-level 

Topological Degree centrality 
Number of edges (streets) connected to 
a node – indicates local connectivity. 

Porta et al. (2006); 
Barthelemy, 2011; 

Topological 
Betweenness 
Centrality 

How often a node/edges lies on shortest 
paths – control over flows. 

Porta et al. (2006); 
Wasserman & Faust (1994) 

Topological Closeness Centrality 
Mean distance from a node to all other 
ones – indicates accessibility. 

Porta et al. (2006); 
Barthelemy, 2011; 

Spatial Reachability index 
Nodes reachable within a set network 
radius (e.g., 600m) – walk-scale access. 

Sevtsuk & Mekonnen 
(2012); 

Edge-level 

Spatial 
Average shortest 
path length (ASPL) 

Mean shortest-path distance between 
all node pairs in the network. 

Cardillo et al. (2006); 

Spatial 
Average edge 
length 

The mean physical length of all edges 
(street segments) in the network. 

Marshall (2004);  
Boeing (2018); 

Spatial 
Intersection 
density 

Number of junctions per km² – proxy 
for permeability and spatial intensity. 

Marshall (2004);  
Boeing (2018); 

Network-
level 

Spatial Road density 
Total street length per km² – indicates 
overall network provision/availability. 

Marshall (2004);  
Boeing (2018); 

Topological 
Meshedness 
coefficient 

Normalized loop richness – captures 
redundancy and alternative routes. 

Strano et al. (2012); 
Fleischmann et al. (2025); 

Topological Mean straightness 
The inverse of the detour ratio, i.e. 
measure of how direct a route is. 

Vragović et al. (2005); 
Labatut (2018); 

In what follows, this study adopts a focused set of indicators. Two core metrics – Average shortest path 

length (spatial) and Reachability index (spatial) – are used to assess relational compactness and 

accessibility, without requiring large territorial coverage. Conversely, indicators such as betweenness 
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centrality and global closeness – commonly used to assess through-movement or flow concentration – are 

excluded due to the limited spatial coverage of the sample areas. In compact study zones, global centrality 

values tend to be skewed or uninformative, as most nodes lie within proximity and the network lacks larger-

scale structure for meaningful path differentiation (Barthélemy, 2011). Instead, the focus is placed on 

metrics that are sensitive to local variation and urban granularity, aligning with the goals of evaluating 

spatial heterogeneity and adaptability within compact urban settings. 

Recent work has emphasized the value of combining geometric and topological indicators when assessing 

urban complexity (Boeing, 2018; Zhao et al., 2023). While fractal dimension captures the degree of 

geometric subdivision and irregularity, network measures reveal how those subdivisions translate into 

relational structure. Together, they provide a more complete understanding of how street networks differ in 

form, particularly in cases where visual or historical distinctions alone do not fully explain underlying 

structural variation. 

In this thesis, graph-based metrics are used to compare paired districts shaped by contrasting typological 

trajectories. These measures are not treated as proxies for movement, functioning, or livability but as 

structural descriptors that allow differences in network configuration to be identified and assessed. When 

considered alongside fractal dimension, they form a consistent analytical framework for evaluating 

geometric complexity within the built environment. 

 

2.7. Synthesis & Research Gap 

Across the diverse strands of urban morphology research, several gaps remain unresolved. First, studies of 

geometric complexity and network structure tend to evolve along parallel but weakly connected trajectories. 

Work on fractal geometry emphasizes spatial subdivision, scale-dependency, and irregularity (Batty & 

Longley, 1994; Lu et al., 2016), while graph-theoretical research focuses on connectivity, hierarchy, and 

topological performance (Porta et al., 2006; Barthélemy, 2011). Only limited research examines how 

geometric complexity and relational structure interact, particularly within street networks shaped by 

different development processes. As a result, the relationship between fractal richness and structural 

accessibility remains empirically underexplored. 

A second gap concerns the scale of analysis. Many network-based studies rely on global centrality 

indicators optimized for metropolitan or citywide networks. However, these measures often lose 

discriminatory power in compact districts, where nodes lie in proximity and the network lacks larger-scale 

differentiation (Barthélemy, 2011). This creates a methodological blind spot for understanding variation 

within historic centers, fine-grained morphologies, or small-area comparative studies. There is a clear need 

for local-scale, structure-sensitive indicators that reveal internal heterogeneity in dense urban networks. 
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A third gap is the lack of controlled comparative research. Existing literature often examines single cases 

or cross-city comparisons where contextual variables differ substantially. Few studies adopt paired-district 

designs that hold socio-spatial context constant while isolating morphological differences. Consequently, 

it remains unclear whether contrasts between incremental and planned morphologies produce measurable 

differences in geometric complexity or topological structure. 

Finally, there is limited work that explicitly links fractal measures with graph-based indicators in a unified 

analytical framework. While fractal dimension captures the geometric richness of urban form, it does not 

explain how that form structures movement or accessibility. Conversely, network metrics reveal relational 

properties but do not quantify how the underlying geometry varies. Integrating these two perspectives offers 

a more comprehensive basis for identifying structural differences that are not evident through visual or 

historical analysis alone. 

Taken together, these gaps justify the dual-method approach adopted in this thesis. By combining fractal 

dimension with selected local-scale network indicators, and applying them to paired districts shaped by 

contrasting developmental trajectories, the study provides new empirical evidence on how geometric and 

topological complexity correspond within the built environment. 
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3. Chapter 3: Methodology 

 

This chapter presents the methodological framework developed to investigate how contrasting street 

network patterns – particularly those observed in historical (organically evolved) and modern (planned grid) 

urban zones – relate to the spatial configuration of street form across selected European cities. The analysis 

is grounded in the recognition that street networks display varying degrees of internal complexity, which is 

captured not only through their visual geometry but also through their organizational connectivity. The 

chapter is organized as follows: 

 Section 3.1 outlines the analytical framework and rationale guiding the methodological choices;  

 Section 3.2 explains the criteria used for selecting study areas and compiling spatial datasets; 

 Section 3.3 details computations of fractal dimension as a geometric measure; 

 Section 3.4 specifies graph-based indicators used to characterize street-network structure. 

3.1. Overview of Methodological Approach 

The analytical strategy adopted in this study centers on examining the geometric and structural properties 

of urban street networks through two primary dimensions: 

 Geometric texture, referring to the degree of spatial irregularity and multi-scale variation observed 

in a street pattern. This aspect is evaluated through fractal dimension analysis, which expresses how 

fragmented or continuous street geometry is across spatial scales. 

 Street network structure is characterized by a set of graph-theoretic indicators, including 

intersection density, average edge length, meshedness coefficient, reachability index, mean 

straightness, and harmonic mean shortest path length. These metrics describe how street networks 

are connected, how direct paths are, and the extent of route redundancy. 

Rather than classifying urban forms into rigid typologies (e.g., “organic” vs. “grid”), the study uses a paired, 

intra-city comparative design: for each city, one organically evolved historic core and one planned modern 

district are analyzed within a common spatial extent. This design controls for local context (e.g., culture, 

topography, policy) and allows a direct structural comparison between distinct spatial configurations. 

The methodological approach integrates: 

 GIS-based preprocessing of spatial vector data, 

 Fractal analysis using box-counting methods, 

 Computation of morphological and topological indicators using Python-based tools. 
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Throughout, the study is careful to distinguish between structural properties (i.e., the geometric and 

topological features of the street network) and actual urban “function” or use (i.e. walkability). All 

indicators measure physical or structural potential for pedestrian accessibility and connectivity, not 

observed movement, traffic flow, or behavioral outcomes. Any reference to accessibility or connectivity in 

the following chapters refers to the network’s structural capacity – the extent to which its configuration 

could support pedestrian movement. 

This integrated methodological approach enables a systematic comparison of how historic and modern 

street networks differ in their geometric complexity and structural arrangement, laying the groundwork for 

subsequent analysis and interpretation. 

 

3.2. Study Area and Data Sources 

3.2.1. Study Area Selection  

This study encompasses 100 European cities, selected to capture a broad spectrum of urban contexts across 

the continent. To ensure balanced geographical coverage, Europe was divided into four macro-regions – 

North, West, South, and East - within each, a balanced set of countries was chosen (Figure 3.1). From each 

country, five cities were included, giving equal weight to each macro-region. The full list of countries and 

cities is presented in Appendix A-1. 

 
Figure 3.1. Map of countries included in the analysis 
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Within each city, two distinct zones were identified (Figure 3.2): 

 Historic district: Characterized by organically evolved, irregular, and fine-grained street patterns. 

 Modern district: Defined by systematically planned, regular, and grid-like layouts. 

 

                    
Figure 3.2. a) Road network boundaries in Seville; (b) Zoomed-in view of the historical area; (c) Zoomed-in view of the modern area 

The primary selection criterion was the presence of a visually and structurally distinct contrast between 

these two district types. Cities were included only if they exhibited this clear dichotomy (Figure 3.3); cases 

lacking a meaningful organic-planned distinction (such as Turin, with a predominantly grid-based fabric) 

were excluded to maintain analytical rigor (Figure 3.4). The focus was further narrowed to residential or 

mixed-use neighborhoods representing everyday urban life, with industrial areas and zones fragmented by 

major infrastructure (e.g., highways, railways, rivers) excluded to avoid spatial discontinuities. 

(c)

(a) 

(b) 
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   Figure 3.3. Thessaloniki (Greece) – mixed grid and organic layout              Figure 3.4. Turin (Italy) – Predominantly grid-based layout     

To standardize comparisons, each zone was delineated as a 1.2 km × 1.2 km area, reflecting a typical 

walkable neighborhood scale (about 10–15 minutes on foot). This fixed spatial extent controls for 

differences in city size and ensures that all metrics are comparable across cases. Zones were selected and 

mapped at a consistent working scale (1:10,000) to capture relevant detail while minimizing edge effects. 

The overall selection approach prioritized morphological clarity – distinct patterns that could be 

consistently analyzed using fractal methods. In this context, while hybrid and alternative morphologies -

such as radial-concentric forms or curvilinear garden city layouts – represent important aspects of urban 

morphology, they were excluded from this study. This is due to the methodological constraints of fractal 

dimension techniques, which are more effective when applied to patterns that exhibit geometric regularity 

or scale-invariance – characteristics that hybrid forms often lack. 

3.2.2. Dataset Compilation 

Spatial data for the street networks were primarily sourced from OpenStreetMap (OSM) and ArcGIS 

Online, supplemented by national or regional geoportals where available geoportals (e.g., Geoportale 

Regione Siciliana for Southern Italy). The OSMnx Python library (Boeing, 2017) was used to automate the 

extraction, formatting, and initial cleaning of street network data. Graph topology was simplified to merge 

contiguous sub-segments into single edges between “true” nodes (i.e., intersections and dead-ends) while 

preserving edge geometry and lengths attributes (Figure 3.5). This ensured a consistent structural basis for 

subsequent network indicators. 
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Figure 3.5. Topological correction via graph simplification. 

Left: Original OSM graph. Right: Simplified graph, producing the true topological skeleton. 

While this process produced topologically consistent networks, it did not address limitations in the 

underlying OSM data, such as incomplete coverage or generalization. In cities where OSM coverage was 

incomplete – particularly within historic cores – georeferenced historical cartographic maps were used to 

validate street layouts and ensure accurate reconstruction of legacy street structures (Figure 3.6) 

As a result, historic cores required special 

treatment to ensure spatial authenticity. 

Scanned cartographic maps dated from 

the 17th to 19th centuries (Figure 3.6) 

were collected and georeferenced using 

known control points to align with 

modern spatial coordinates. These 

georeferenced maps were overlaid with 

OSM-derived road data to validate the 

presence and configuration of legacy 

street patterns, ensuring accurate 

identification and extraction of historic 

network structures.                                              Figure 3.6. Seville (Spain) city map (Wagner & Debes, 1899) 

To further validate both historic and modern zones, high-resolution imagery from Google Earth Pro was 

employed. This visual cross-referencing confirmed phases of urban growth, differentiated pre-industrial 

organic development from planned post-industrial expansions, and flagged any inconsistencies in the raw 
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data. Google Earth’s historical imagery feature proved especially valuable in verifying the temporal 

accuracy of the selected zones. 

Next, with validated datasets in place, preprocessing was undertaken to prepare the data for fractal geometry 

analysis using Fractalyse 3.0 software. This included dissolving multipart lines, correcting disconnected 

segments, removing duplicates, and consolidating parallel features such as sidewalks and carriageways into 

single lines (Figure 3.7). These steps prevented inflated density values and ensured robust measures of 

geometric texture. 

                  
Figure 3.7. Example of network preprocessing in Trnava (Slovakia):  
(a) original OSM road data; (b) cleaned and unified street network 

Finally, all cleaned and validated datasets were exported in shapefile format for use in both fractal 

dimension analysis (Section 3.3) and graph-theoretic assessment (Section 3.4).  

3.2.3. Workflow and Limitations 

The entire geoprocessing workflow is summarized in Figure 3.8, illustrating each stage from data extraction 

to street network cleaning and export as shapefiles for analysis. 

Despite these measures, minor uncertainties remain – particularly in cities with limited open-source data 

coverage or variable-quality historical maps. However, these are mitigated by cross-validation and visual 

inspection, making relative comparisons robust and minimizing the likelihood of systematic bias. These 

limitations and their implications are discussed in the Research Limitations section.  

Full Python scripts are included in Appendix A-2 to support methodological transparency and enable future 

replication of the approach. 

 

(a) (b) 
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Figure 3.8. Geoprocessing workflow diagram 

 
3.3. Fractal lens on urban street texture 

Fractal analysis provides a robust framework for capturing geometric irregularity and hierarchical 

organization in road networks (Batty & Longley, 1994; Salingaros, 1998). This section details the 

methodological approach for estimating the fractal dimension (D) of each study area’s street network, 

justifying the selected technique, and outlining the analytical workflow. 

3.3.1. Method Selection and Software 

Fractal dimension (D) can be estimated through several techniques, all grounded in logarithmic scaling 

relationships (Jevrić et al., 2016). These methods capture how an object’s spatial detail varies across scales 

(Jahanshiri & Parker, 2022). Among the available options, the box-counting method was selected for its 

conceptual simplicity and adaptability to spatial network data (Frankhauser, 2004; Jevrić et al., 2016; Babič 

et al., 2022).  

The D calculations were performed using Fractalyse 3.0 software, which implements the box-counting 

algorithm in a user-friendly environment designed for spatial analysis.  
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3.3.2. Computational Procedure 

Data Preparation 

Fractalyse supports both vector and raster formats, providing flexibility for urban form analysis. In this 

study, the road network data were maintained in vector format as line features extracted from ArcGIS (see 

Section 3.2). These shapefiles were loaded into Fractalyse, forming the basis for the fractal analysis while 

preserving geometric detail. 

Counting Procedure 

Once the data were imported, the box-counting procedure was automatically applied by the software. This 

involves overlaying a quadratic grid of varying cell sizes (ε) onto the vector network. At each iteration, the 

number of grid cells (N) intersected by the road segments was recorded, while systematically reducing the 

grid size. As the box size decreases, the level of geometric detail captured by the analysis increases, 

enabling analysis of multi-scale irregularity (Figure 3.9).  

 
Figure 3.9. Schematic overview of the box-counting method for fractal analysis (Piera et al, 2005, p. 808) 

The relationship between the number of occupied boxes (N) and the grid size (ε) follows a linear trend in 

logarithmic space, expressed as: 

𝑙𝑜𝑔 𝑁 = − 𝐷 ∗ 𝑙𝑜𝑔 𝜀 + 𝑏                                                             (1) 

where the slope of the fitted line represents the fractal dimension (D) and the intercept (b) is a constant. In 

this way, the D quantifies how the structural detail of the street network evolves across scales, acting as a 

geometric metric that expresses how thoroughly a pattern fills two-dimensional space. 

Estimation 

After the counting process, Fractalyse generates an empirical curve based on equation (1) and displays the 

results in the Estimation frame. The software also calculates the goodness-of-fit (𝑅ଶ) to assess the goodness 

𝜀ଵ 

𝜀ଶ lo
g

𝑁
 

log 𝜀 

D 
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of fit between the empirical data points and the fitted line. A higher 𝑅ଶ indicates a stronger linear 

relationship, confirming the fractality of the urban pattern (Caglioni & Giovanni, 2004; Sreelekha et al, 

2017). Conversely, a low correlation coefficient may suggest that the pattern does not exhibit fractal 

properties or that it is multifractal, in which case the data can be subdivided into separate scale ranges. In 

addition, Fractalyse reports the p-value for the regression, which should be below 0.001 to confirm 

statistical significance that the obtained relationship is unlikely to have occurred by chance. 

Figure 3.10 illustrates the stages of this process, from data import to the estimation output. 

   
 

                                                             

Figure 3.10. Calculation of fractal dimension using Fractalyse 3.0 software (Daniel et al, 2021) 

This procedure was applied to 100 cities to analyze and compare their urban road network patterns. Any 

differences in the fractal dimension values (D) were interpreted as indicators of variations in road network 

space-filling density and multi-scale detail between the different urban zones.  

3.3.3. Output and Interpretation 

For every sampled district, the software generates a log–log plot of the number of occupied grid cells (N) 

against the box size (ε). As discussed earlier, the slope of the fitted line represents the estimated fractal 

dimension (D), which is displayed alongside the goodness-of-fit (𝑅ଶ) of the log–log regression, p-value, 

and confidence intervals (Figure 3.10). The resulting D values typically fall within the expected range 

between 1 and 2, indicating varying degrees of branching or fragmentation present in street network (see 

Section 2.4). Values closer to 1 correspond to structures with more linear or directionally consistent 

configurations, while values approaching 2 reflect forms that spread more irregularly and occupy more of 

the two-dimensional space. Intermediate values indicate geometries that are more complex than a line but 

do not fully cover the plane. Thus, the recorded D serves as a central indicator for comparing the geometric 

character of historic and modern urban zones, forming the foundation for later analysis of their street 

network structure and potential for pedestrian accessibility. 

 Input vector 
data 

Counting 
module 

Estimation 
module 
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3.4. Unpacking street network structure 

Following the fractal analysis of spatial texture (Section 3.3), this section examines the structural dimension 

of urban street networks. Whereas fractal dimension captures the degree of geometric irregularity, the 

indicators introduced here quantify the morphological and topological organization of the network. 

Together, they reflect how street systems are organized to support pedestrian accessibility, connectivity, 

and travel efficiency.  

To this end, the network is examined through two complementary lenses: 

 Morphological indicators, which describe the physical arrangement of street pattern, focusing on 

urban grain and overall density. These measures reflect the tangible configuration of street networks 

– whether they form dense, walkable grids or more irregular, organic patterns. 

 Topological indicators, which assess the relational properties of the street network by measuring 

how efficiently nodes are connected, how direct routes are, and how resilient the system is to 

disruption. 

By bridging urban morphology with network science, this typology enables a multi-dimensional reading of 

street systems that goes beyond geometric description to include their structural logic. All indicators were 

computed using automated Python scripts (OSMnx, NetworkX, momepy), with consistent spatial 

preprocessing applied to each of the 200 urban samples (100 cities × 2 zones). All spatial data were 

projected to a local metric coordinate system to ensure valid computation of distances and areas. 

The resulting indicators were then compiled into a unified database in the form of a master DataFrame, 

where each row corresponds to a specific urban sample and each column represents a quantified metric. 

This structure supports statistical comparison across cases and zones, and supports subsequent correlation 

and clustering analysis. The following subsections present the selected indicators grouped according to their 

conceptual focus – morphological (Section 3.4.1) and topological (Section 3.4.2) categories. 

3.4.1. Morphological Indicators: Form-Focused Metrics 

To examine the spatial grain of street networks, this study first considers a set of morphological indicators 

that describe the local geometric configuration of the street fabric. These include average street (edge) 

length, which measures the mean length of all street segments (edges) and acts as a proxy for block size 

and urban granularity; and intersection density, which reflects how tightly nodes are packed within the 

study area, indicating the overall intensity of the street network.  

Each indicator is defined mathematically and linked to the Python libraries used for automated computation 

across the dataset of 100 cities (Table 3.1). Given the fixed spatial extent of each sample (1.2 × 1.2 km2), 

the selected metrics emphasize local configuration rather than global connectivity. 
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Table 3.1. Morphological indicators used to characterize street network texture 
Sc

al
e 

Indicator Formula Units Python’s function 

L
oc

al
 

Average Edge 
Length 

𝐴𝐸𝐿 =
𝛴 𝐸𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠
 meters momepy.Statistics 

L
oc

al
 

Intersection 
Density 

𝐼𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑟𝑒𝑎 𝑖𝑛 𝑘𝑚ଶ
 intersection/km2 osmnx.basic_stats() 

Note: All computations were performed on projected spatial networks to ensure metric accuracy. 

Together, these measures provide a quantitative account of the physical configuration of street networks, 

allowing for the distinction between compact grid-like systems and more irregular organic structures 

without relying on categorical typologies. While morphological indicators emphasize surface-level 

geometric descriptors, they provide an essential baseline for the more structural analyses developed later in 

the chapter.  

3.4.2. Topological Indicators: Structure-Focused Metrics 

While geometric and fractal measures describe the visible spatial form of a street network, they do not 

reveal how street segments are arranged in relation to one another. To capture this internal organization, 

the analysis incorporates a set of graph-theoretic indicators that quantify structural properties such as 

reachability, compactness, route detour, and redundancy (Table 3.2). These measures do not describe 

movement or flow, but they provide a structural basis for comparing how different street layouts organize 

spatial connections.  

Such differences become especially relevant when geometric indicators alone suggest similar spatial 

characteristics. Two street networks may share comparable intersection density or block size, yet differ 

substantially in how segments link, branch, or form loops. Topological measures therefore allow 

distinctions in connectivity and route options that may not be evident from geometric analysis alone, 

offering a deeper understanding of how street networks are configured. 

Table 3.2. Topological indicators are used to assess street network connectivity and structure 

Sc
al

e 

Indicator Formula Units Python’s function 

L
oc

al
 

Reachability index 

For each node 𝑖, count nodes 𝑗 such that 
𝑑(𝑖, 𝑗) ≤  600 𝑚; 

average across all 𝑖. 
nodes 

Custom Python 
function using 
NetworkX (Dijkstra 
algorithm) 

L
oc

al
 

Meshedness 
Coefficient 

𝑀 =
𝐸 − 𝑁 + 𝐶

2𝑁 − 5𝐶
 

where E = № edges, N = № nodes,  
C = № components. 

unitless 
[0,1] 

momepy.Meshedness() 
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G
lo

ba
l 

Mean straightness 

𝑆 =
2

𝑛(𝑛 − 1)
෍

𝐸𝑢𝑐𝑙𝑖𝑑௜௝

𝑑௜௝௜ஷ௝
 

with Euclidean distances from node coordinates 
and 𝑑௜௝  shortest paths by metric length. 

unitless 
[0,1] 

Custom Python 
function using 
NetworkX (Dijkstra 
algorithm) 

G
lo

ba
l 

Harmonic-mean 
shortest path 

𝐿 =
𝑁(𝑁 − 1)

∑
1

𝑑௜௝
௜ஷ௝

 

where 𝑑௜௝ is the shortest path length between 

nodes 𝑖 and 𝑗 along the network. 

meters 

Custom Python 
function using 
NetworkX (Dijkstra 
algorithm) 

Note: Calculations are based on undirected, simplified (near-planar) graphs constructed from OpenStreetMap data. 
All graphs were projected to a local metric CRS before computing distances; no planarization is applied. 

The following interpretive summary clarifies the role of each metric in capturing structural properties of 

the street network: 

 Reachability index quantifies local access potential by counting the number of nodes that can be 

reached within a 600-meter radius. The threshold is commonly associated with a 7–8-minute 

walking distance in urban studies, but here it functions strictly as a fixed spatial parameter for graph 

sampling, independent of any modelled behavior. 

 Harmonic-mean shortest path length represents the average shortest distance between all pairs 

of nodes in the network. Lower values correspond to more compact and closely connected layout, 

whereas higher values suggest more sprawling or fragmented structures. For instance, if the 

harmonic mean is around 490 meters, this can be interpreted as a typical navigation length within 

the street system. 

 Mean straightness captures route directness, defined as the average ratio of Euclidean (straight-

line) distance to actual path length. Values range from 0 to 1, with 0.75 meaning that routes are on 

average 33% longer (detour) than a direct line (i.e., 1/0.75=1.333). This offers a tangible way to 

assess legibility and alignment in the street structure: a higher value implies less detour, while 

lower values indicate more circuitous route. 

 Meshedness coefficient measures how looped or redundant the street structure is – a proxy for 

choice (i.e., presence of alternative paths and redundancy) in the network. A tree-like (dendritic) 

system yields values near 0, while more interconnected planar graphs approach 1. Higher 

meshedness represents greater structural redundancy, which indicates the presence of alternative 

links and multiple ways to connect different parts of the network. 

Together, these indicators complement the geometric and fractal measures introduced earlier by describing 

how connectivity is structured rather than merely how it is distributed in space. They provide the basis for 

assessing variation in network organization across different urban contexts. 
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3.5. Statistical analysis of Metric relationships 

To examine how the fractal dimension (D) relates to the structural properties of street networks, two 

complementary statistical approaches were used. The first - the paired within-city design – assesses changes 

within individual cities by comparing historic and modern districts directly. The second, a groupwise cross-

sectional design, analyzes the broader associations between D and other network measures separately 

within the full sets of historic and modern samples. These approaches provide both a city-level view on 

changes in street network structure and a group-level perspective on street patterns. 

3.5.1. Paired within-city correlation analysis 

This approach focuses on urban transformation at the city level by directly comparing each city’s historic 

and modern districts. For each city and for each metric, the difference (∆) is calculated as:  

∆𝑀 = 𝑀௢௟ௗ − 𝑀௡௘௪ 

where 𝑀 represents any network indicator, such as fractal dimension, intersection density, or reachability 

index.  

The relationship between changes in fractal dimension (∆𝐷) and changes in other network indicators 

(∆Metric) is then assessed across all cities using both: 

 Pearson’s 𝒓 to detect linear relationships: 

𝑟 =
∑(∆𝑥௜ − ∆𝑥̅)(∆𝑦௜ − ∆𝑦ത)

ඥ∑(∆𝑥௜ − ∆𝑥̅)ଶ ∗ ඥ∑(∆𝑦௜ − ∆𝑦ത)ଶ
 

 Spearman’s 𝝆 to capture monotonic associations independent of distribution shape: 

𝜌 = 1 −
6 ∑ 𝑑௜

ଶ

𝑛(𝑛ଶ − 1)
 

            where 𝑑௜ is the difference between the ranks of paired values. 

This method reveals whether increases or 

decreases in fractal dimension within cities are 

systematically associated with changes in other 

aspects of the street network. The results are 

presented as a correlation matrix (Figure 3.11), 

which visualizes the strength and direction of 

these paired relationships for all metrics. 

 
 
Note: Cells represent pairwise correlations, colored 
from blue (−1) to red (+1); axes list indicators as 
placeholders (𝑀ଵ– 𝑀଻). Actual coefficients and 
labels will appear in the Results chapter. 

                   Figure 3.11. Heatmap of the correlation matrix  
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3.5.2. Groupwise correlation analysis 

Groupwise analysis reveals the typical structural relationships that exist within historic and modern types 

of street system, independent of urban transformation processes. It shows whether, for example, higher 

fractal dimension is generally associated with finer network grain or greater meshedness within either 

group, regardless of city-specific change. In this analysis, all historic samples are combined into one group, 

and all modern samples into another. 

For each group, both Pearson’s and Spearman’s correlation coefficients are calculated for D and the relevant 

network indicators. Results are summarized in correlation matrices (see Figure 3.11), and supported by 

scatterplots where relevant. 

3.5.3. Reconciling the two methods 

The two approaches can yield divergent outcomes, which is informative. For instance, a metric may 

correlate with fractal dimension in both samples, yet show weak Δ-correlation if historic and modern 

districts move in parallel within cities (i.e., there is little internal contrast). Conversely, Δ-correlations can 

be strong even when within-sample coefficients are modest, indicating systematic shifts in modern districts 

relative to their historic counterparts.  

By comparing these results, the analysis clarifies whether relationships between fractal dimension and street 

network properties remain consistent across historic and modern settings, or if distinct patterns emerge in 

each context. Considering both views mitigates risks such as Simpson’s paradox and scale effects: cross-

sectional patterns may be driven by inter-city composition, whereas Δ highlights genuine within-city 

transformation. 

Interpretation strategy. The Δ analysis is regarded as the main test of co-movement during urban 

transformation, while the within-sample analysis acts as a diagnostic that clarifies how D aligns with 

network structure across historic and modern landscapes. Convergent evidence across both designs is 

interpreted as robust; discrepancies are examined to determine whether associations are context-driven 

(between cities) or genuinely tied to intra-urban change. 

Together, these statistical protocols complete the methodological framework. By linking fractal dimension 

with structural indicators through paired and cross-sectional correlations, the study establishes a rigorous 

analytical bridge between the measures of geometric texture (Section 3.3) and street network structure 

(Section 3.4). This integrated design provides the foundation for the Results chapter, where the empirical 

relationships will be evaluated and interpreted across Europe’s historic and modern urban landscapes. 
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4. Chapter 4: Results and Analysis 

 

4.1. Fractal dimensions analysis 

Following the procedure detailed in Chapter 3, fractal dimension values (D) were computed for the street 

networks of 100 European metropolitan areas. Each city was analyzed in two distinct urban contexts: the 

historical urban core and a modern expansion zone. This comparative structure enables a consistent 

assessment of morphological differences associated with different phases of urban development. 

To observe broader geographical patterns, the cities were grouped into four macro-regions: Northern, 

Southern, Western, and Eastern Europe. Within each region, the median fractal dimensions of historical 

(𝐷௢௟ௗ) and modern (𝐷௡௘௪) districts are reported, as well as the intra-city differences (∆𝐷 = 𝐷௢௟ௗ − 𝐷௡௘௪). 

Using medians, rather than averages, minimizes the influence of outliers that might otherwise distort the 

general tendencies. The following subsections present results for each region. 

4.1.1. Northern Europe 

The table below summarizes the fractal dimensions for 20 cities across Northern Europe.  

Table 4.1. Numeric value of the fractal dimension of Northern European cities 

Europe Country City 𝑫𝒐𝒍𝒅 𝑫𝒏𝒆𝒘 ∆𝑫 

North Denmark 

Odense 1.502 1.428 0.074 
Esbjerg 1.490 1.445 0.045 
Aalborg 1.498 1.395 0.103 
Aarhus 1.468 1.403 0.065 
Copenhagen 1.500 1.474 0.026 

North Finland 

Helsinki 1.392 1.349 0.043 
Tampere 1.365 1.333 0.032 
Mikkeli 1.350 1.321 0.029 
Turku 1.390 1.362 0.028 
Pori 1.393 1.397 -0.004 

North Norway 

Hamar 1.438 1.433 0.005 
Bergen 1.512 1.504 0.008 
Stavanger 1.457 1.452 0.005 
Tonsberg 1.437 1.388 0.049 
Oslo 1.479 1.439 0.040 

North Sweden 

Stockholm 1.419 1.373 0.046 
Gothenburg 1.409 1.390 0.019 
Helsingborg 1.413 1.414 -0.001 
Malmo 1.390 1.354 0.036 
Vasteras 1.400 1.377 0.023 

   𝐷෩௢௟ௗ = 1.428 𝐷෩௡௘௪ = 1.396 ∆𝐷෩ =  0.031 
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As shown in Table 4.1, historical city cores in this region have a typical fractal dimension of 

𝐷෩௢௟ௗ = 1.428, slightly higher than their modern counterparts (𝐷ഥ௡௘௪ = 1.396). While these values reflect the 

median fractal dimension per district type, the reported difference ∆𝐷෩ =  0.031, is not derived from 

subtracting the two medians. Instead, it represents the median of the city-level differences (∆𝐷 = 𝐷௢௟ௗ −

𝐷௡௘௪), offering a more robust indicator of the typical direction and magnitude of intra-city change across 

the region. 

Among all cities, Bergen (Norway) displays the highest fractal dimensions for both historical and modern 

parts, with values of 1.512 and 1.504, respectively. This suggests a high degree of continuity in spatial 

structure across time. In contrast, Aalborg (Denmark) shows the largest intra-city contrast (∆𝐷 = 0.103), 

indicating a clear morphological shift between its old and new districts. 

Notably, cities such as Pori (Finland) and Helsingborg (Sweden) show negligible or slightly negative 𝛥𝐷 

values, implying that their modern areas are nearly as (or slightly more) geometrically complex in terms of 

street layout than their historical counterparts – an atypical pattern within the broader regional trend. 

To better visualize these patterns, Figure 4.1 compares the historical and modern fractal dimension values 

for each city. This graphical representation reinforces the overall trend – older areas are generally more 

complex – but also makes local deviations more immediately visible. 

 
Figure 4.1. Fractal dimension by city: historic vs. modern districts (Northern Europe) 

This shift from tabular to graphical representation enhances the interpretability of the results by making 

contrasts and continuities between historical and modern street forms more apparent. Presenting the data 

both numerically and visually enables precise comparisons, while also revealing broader pattern 

recognition, providing a stronger basis for deeper interpretation in later sections. 
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4.1.2. Western Europe 

Western Europe presents a wider range of fractal dimension values than Northern Europe, reflecting greater 

diversity in urban histories and planning. Many cities with well-preserved medieval cores display relatively 

high fractal dimensions in their historical areas. For example, Béziers (𝐷௢௟ௗ  = 1.606) and Augsburg  

(𝐷௢௟ௗ = 1.551) have the most fractal street layouts in the dataset – that is, their patterns are notably irregular. 

At the same time, modern expansion areas generally show lower values, as seen in Ghent (𝐷௡௘௪ = 1.364) 

and Bruges (𝐷௡௘௪ = 1.382), though some variation persists across cities. This trend matches expectations 

for areas shaped by post-war planning, which often favored more regular and standardized block structures. 

Nevertheless, some cities, such as Toulouse (𝛥𝐷 = 0.002) and Klagenfurt (𝛥𝐷 = –0.001), exhibit near-

parity between historical and modern districts, suggesting a continuity in street configuration across 

different historical periods. 

To ground these patterns in the broader dataset, Table 4.2 reports the full set of values for cities in Western 

Europe, including both 𝐷௢௟ௗ, 𝐷௡௘௪, and intra-city difference (𝛥𝐷). 

Table 4.2. Numeric value of the fractal dimension of Western European cities 

Europe Country City 𝑫𝒐𝒍𝒅 𝑫𝒏𝒆𝒘 ∆𝑫 

Western Austria 

Graz 1.525 1.443 0.082 
Linz 1.463 1.458 0.005 
Innsbruck 1.471 1.462 0.009 
Klagenfurt 1.452 1.453 -0.001 
Vienna 1.527 1.498 0.029 

Western Belgium 

Ghent 1.429 1.364 0.065 
Antwerp 1.417 1.392 0.025 
Bruges 1.440 1.382 0.058 
Brussels 1.429 1.418 0.011 
Ostend 1.408 1.399 0.009 

Western Germany 

Hamburg 1.456 1.390 0.066 
Düsseldorf 1.453 1.425 0.028 
Nuremberg 1.503 1.475 0.028 
Augsburg 1.551 1.462 0.089 
Cologne (Koln) 1.482 1.449 0.033 

Western France 

Bordeaux 1.502 1.461 0.041 
Toulouse 1.513 1.511 0.002 
Dijon 1.512 1.497 0.015 
Rouen 1.542 1.501 0.041 
Beziers 1.606 1.546 0.060 

 
 

Western Netherlands 

Nijmegen 1.443 1.455 -0.012 
Eindhoven 1.445 1.438 0.007 
Tilburg 1.445 1.469 -0.024 
Zoetermeer 1.498 1.475 0.023 
Breda 1.429 1.476 -0.047 

   𝐷෩௢௟ௗ = 1.463 𝐷෩௡௘௪ = 1.458 ∆𝐷෩ =   0.025 
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The regional medians (𝐷෩௢௟ௗ = 1.463, 𝐷෩௡௘௪ = 1.458) indicate a modest but consistent decrease in 

morphological richness from historical to modern districts. However, cities such as Tilburg, Breda, and 

Nijmegen display slightly negative 𝛥𝐷 values, where the modern sample is marginally more articulated 

than the historical cores. This may point to recent urban regeneration initiatives or design approaches that 

incorporate greater variability in block size and street alignment, as well as increased irregularity in the 

overall street pattern. 

To better capture the distribution of values and highlight intra-city contrasts, Figure 4.2 visualizes the 

historical and modern fractal dimensions for each city. 

 
Figure 4.2. Fractal dimension by city: historic vs. modern districts (Western Europe) 

This graphical representation enhances pattern recognition by making contrasts between cities more 

intuitive. It reveals cities with consistently high values of D (e.g., Béziers, Augsburg, Toulouse), as well as 

those with larger gaps between historical (old) and modern (new) areas, such as Graz or Augsburg. The 

relatively small spread in modern districts reinforces the impact of a more standardized urban planning 

approach in post-1950 development across much of Western Europe. 

In summary, Western European cities reflect a mix of preserved historical intricacy and modern 

rationalization. While fractal dimension effectively captures morphological variation, further interpretation 

should be supported by complementary metrics (e.g., street length distribution or meshedness coefficient) 

to better understand the implications of these differences for street network configuration and urban form. 

This diversity in intra-city and regional patterns underscores the importance of historical context, planning 

ideologies, and socio-political factors in shaping urban form. 
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4.1.3. Eastern Europe 

Preliminary analysis shows that Eastern Europe displays one of the most internally varied distributions of 

fractal dimension values. While a fuller comparison with all regions follows, the diversity – already 

apparent within this group – highlights how contrasting planning ideologies have shaped urban form over 

time (Table 4.3). 

Table 4.3. Numeric value of the fractal dimension of Eastern European cities 

Europe Country City 𝑫𝒐𝒍𝒅 𝑫𝒏𝒆𝒘 ∆𝑫 

East Bulgaria 

Haskovo 1.527 1.522 0.005 
Yambol 1.555 1.493 0.062 
Varna 1.578 1.571 0.007 
Plovdiv 1.555 1.523 0.032 
Ruse 1.540 1.531 0.009 

East Czech Republic 

Brno 1.351 1.395 -0.044 
Prague 1.395 1.352 0.043 
Pilsen 1.414 1.387 0.027 
Liberec 1.389 1.385 0.004 
Ostrava 1.402 1.402 0 

East Hungary 

Debrecen 1.492 1.477 0.015 
Gyongyos 1.532 1.522 0.010 
Nyiregyhaza 1.485 1.445 0.040 
Budapest 1.484 1.474 0.010 
Pecs 1.532 1.528 0.004 

East Poland 

Poznan 1.391 1.322 0.069 
Częstochowa 1.331 1.365 -0.034 
Lodz 1.358 1.354 0.004 
Wroclaw 1.351 1.330 0.021 
Warsaw 1.368 1.363 0.005 

 
 

East 

 
 

Romania 

Bucharest 1.575 1.530 0.045 
Craiova 1.551 1.474 0.077 
Oradea 1.435 1.420 0.015 
Satu Mare 1.416 1.387 0.029 
Timisoara 1.445 1.352 0.093 

 
 

East 

 
 

Slovakia 

Bratislava 1.402 1.384 0.018 
Košice 1.363 1.318 0.045 
Nove Zamky 1.383 1.392 -0.009 
Trnava 1.362 1.398 -0.036 
Nitra 1.416 1.384 0.032 

   𝐷෩௢௟ௗ = 1.445 𝐷෩௡௘௪ = 1.426 ∆𝐷෩ =   0.015 

While not reaching the highest extremes seen in Western Europe (e.g., Béziers or Augsburg), several cities 

in this region – such as Varna, Plovdiv, and Yambol – recorded 𝐷௢௟ௗ  values exceeding 1.550, indicating 

considerable morphological richness. These figures reflect a patchwork of traditional urban structures 

shaped by a mix of Ottoman, Austro-Hungarian, and Soviet planning legacies (Stanilov, 2007; Hirt, 2012). 

At the other end of the spectrum, cities like Brno, Częstochowa, and Wroclaw showed relatively low fractal 

dimensions in their historical cores (near or below 1.350), more aligned with the compact grid-like forms 

noted earlier in some Northern European cities (cf. Section 4.1.1). This range – from 1.331 to 1.578 – 
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highlights the intricate urban trajectories of post-socialist cities, where preservation, stagnation, and rapid 

redevelopment have coexisted (Tsenkova, 2006; Sýkora & Bouzarovski, 2012). 

Interestingly, the variation between historical and modern areas is less predictable than in Western Europe. 

While a general trend of lower 𝐷௡௘௪ values is apparent, the intra-city difference (𝛥𝐷) is not uniformly 

positive. Budapest and Nyíregyháza, for example, show moderate but expected drops (𝛥𝐷 ≈  0.04), while 

cities like Gyöngyös, Pécs, and Satu Mare exhibit almost no change – suggesting either an organic 

continuity in urban form or the integration of historical street patterns into more recent expansions. 

In contrast, Brno, Częstochowa, and Trnava display negative 𝛥𝐷 values, with modern areas surpassing their 

historical cores in spatial intricacy. Whether due to post-war restructuring, socialist infill, or deliberate non-

orthogonal planning, these reversals set Eastern Europe apart from the more consistent trends identified in 

both Sections 4.1.1 and 4.1.2.  

Although the regional median values (𝐷෩௢௟ௗ = 1.445, 𝐷෩௡௘௪ = 1.426) suggest a mild overall decline in urban 

complexity, the small average gap masks significant internal heterogeneity. Romania, for instance, shows 

sustained high fractality in street configuration across both historical and modern districts. In contrast, the 

Czech Republic includes cities with low pattern differentiation (e.g., Brno), as well as tightly preserved 

ones (e.g., Pilsen). The presence of negative 𝛥𝐷 values, also seen occasionally in the Netherlands (see 

Section 4.1.2), reinforces the idea that morphological simplification is not a universal feature of modern 

development. 

Rather than presenting a singular regional narrative, the Eastern European data reflects an ongoing tension 

between inherited street layouts and imposed spatial orders. This interplay is especially apparent in 

graphical form: Figure 4.3 traces the parallel trajectories of historical and modern 𝐷 values, making visible 

the internal contrasts – some gradual, others abrupt.  

 
Figure 4.3. Fractal dimension by city: historic vs. modern districts (Eastern Europe) 
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Unlike the visual outputs for Northern and Western Europe, where the differences between bars followed 

a clearer pattern, the graph for Eastern Europe resists easy simplification. It draws attention to the region’s 

varied local histories and differing interpretations of “modern” planning. In cities like Timișoara or Košice, 

the close alignment of values suggests planning that retained or mimicked traditional urban approaches. In 

others, like Trnava, the sharp drop may reflect post-war demolition or large-scale restructuring under 

centralized planning regimes. 

In sum, the case of Eastern Europe reveals that fractal dimension – when viewed not as a singular indicator 

but as a distribution across cities – can expose both continuity and rupture. It invites closer attention to the 

political and cultural contexts shaping street morphology, and it cautions against assuming uniform patterns 

of spatial simplification in modernity. 

4.1.4. Southern Europe 

Among all macro-regions, Southern Europe exhibits the highest typical fractal dimension values in 

historical urban cores. Cities such as Palermo (𝐷௢௟ௗ = 1.645) and Naples (𝐷௢௟ௗ = 1.587) stand out for their 

intricate and organically evolved street networks – patterns commonly associated with older Mediterranean 

cities shaped by centuries of informal growth, constrained topography, and layers of cultural influence. 

Similarly, cities such as Granada and Seville demonstrate relatively high fractal values in both their 

historical and modern districts, suggesting a continuity in morphological structure over time. This contrasts 

with the patterns observed in most Western and Eastern European cities (see Sections 4.1.2 and 4.1.3), 

where modern areas typically display a marked reduction in morphological richness, especially in terms of 

street network irregularity and density. 

Frankhauser’s work on the Bergamo region helps contextualize these findings, noting that Southern 

European towns often integrated surrounding rural settlements as they expanded, forming dendritic, 

interconnected patterns with moderate to high fractal dimensions. In that study, values ranged from 1.430 

to 1.460, significantly higher than in more regulated urban forms like German Stuttgart with 𝐷 = 1.270 or 

Lörrach with 𝐷 = 1.370 (Frankhauser, 2004). Such contrasts reflect different spatial logics: gradual, layered 

urbanization in the south versus more centralized, planned growth in central and northern regions. 

Another factor contributing to the distinctive street network patterns of Southern European cities is their 

coastal and leisure-oriented geography (Frankhauser, 2004). Cities along the Mediterranean – such as 

Naples, Setúbal, and Málaga – display highly articulated street layouts shaped by trade, climate, tourism, 

and cultural exchange. While modern developments tend to adopt more regular, planned street 

arrangements, the median of fractal dimension (𝐷෩௡௘௪ = 1.501) remains higher than the corresponding 
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modern medians in the other three regions. This indicates a persistent tendency toward dense, finely 

subdivided, and irregular street networks even in newer districts. 

Despite this, the shift from historical to modern street layouts remains evident. The typical intra-city 

difference in this region is Δ =  0.030, slightly higher than in Western or Eastern Europe, indicating a 

gradual but consistent transition in street network structure over time. However, cities like Padua  

(𝐷௢௟ௗ = 1.514; 𝐷௡௘௪ = 1.513) deviate from this pattern, showing minimal change – likely due to limited 

urban expansion or design choices that preserved the historical street arrangement. 

The diversity of these patterns is reflected in Table 4.4, which summarizes the historical and modern fractal 

dimensions for all Southern European cities in the study, along with intra-city differences. 

Table 4.4. Numeric value of the fractal dimension of Southern European cities 

Europe Country City 𝑫𝒐𝒍𝒅 𝑫𝒏𝒆𝒘 ∆𝑫 

South Greece 

Thessaloniki 1.543 1.538 0.005 
Katerini 1.480 1.461 0.019 
Larissa 1.518 1.506 0.012 
Ioannina 1.490 1.482 0.008 
Lamia 1.527 1.504 0.023 

South Italy 

Florence 1.535 1.486 0.049 
Naples 1.587 1.540 0.047 
Palermo 1.645 1.548 0.097 
Bologna 1.534 1.466 0.068 
Padua 1.514 1.513 0.001 

South Portugal 

Porto 1.450 1.433 0.017 
Lisbon 1.494 1.447 0.047 
Castelo Branco 1.471 1.416 0.055 
Setubal 1.512 1.481 0.031 
Evora 1.527 1.483 0.044 

South 
Republic of 

Cyprus 

Nicosia 1.509 1.495 0.014 
Paphos 1.486 1.480 0.006 
Limassol 1.523 1.491 0.032 
Larnaca 1.494 1.477 0.017 
Famagusta 1.500 1.464 0.036 

 
 

South 

 
 

Spain 

Granada 1.643 1.577 0.066 
Seville 1.600 1.565 0.035 
Cordoba 1.588 1.578 0.010 
Zaragoza 1.572 1.566 0.006 
Malaga 1.526 1.496 0.030 

   𝐷෩௢௟ௗ = 1.531 𝐷෩௡௘௪ = 1.501 ∆𝐷෩ =   0.030 

The data confirm that a high degree of fractality remains a defining characteristic of street form in Southern 

Europe, even as planning becomes more structured. However, this continuity is not evenly distributed 

across the region. For example, while cities such as Bologna and Florence exhibit notable drops in D, others 

– like Seville, Zaragoza, and Cordoba – maintain very high values in both historical and modern samples. 
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Figure 4.4 presents this data visually, making the consistency of elevated fractal dimension values across 

Southern European cities more apparent. Unlike Eastern Europe, where bar pairs fluctuate dramatically, or 

Northern Europe, where modern areas are consistently lower, the Southern pattern is more balanced – yet 

still subtly declining. 

 
Figure 4.4. Fractal dimension by city: historic vs. modern districts (Southern Europe) 

The overall picture is one of gradual transformation rather than abrupt change. While Southern Europe 

shares with other regions the general pattern of lower fractal dimension values in newer developments, it 

also demonstrates a stronger resistance to morphological simplification. This may reflect a planning culture 

that values historical continuity, or the geographic and cultural constraints that limit standardization. Either 

way, the region’s fractal signature remains among the most consistently high in the entire dataset. 

4.1.5. Observations in unraveling Europe’s Street DNA 

Having explored regional patterns in detail, it 

becomes crucial to step back and examine how 

these local dynamics translate into broader 

continental trends. This synthesis moves beyond 

individual case studies to draw out cross-

regional regularities and divergences in the 

morphological evolution of European cities. This 

broader perspective is underscored by the spatial 

distribution of fractal dimension values across 

European historic cores (Figure 4.5), which 

illustrates regional clustering and inter-city 

variation at a continental scale. 

                                                                                                           Figure 4.5. Fractal dimension city-level values across Europe 
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To this end, Table 4.5 presents a comparative summary of typical values of fractal dimensions for historical 

and modern samples across the four macro-regions.  

Table 4.5. Regional summary of median fractal dimensions 

Region 𝑫෩ 𝒐𝒍𝒅 𝑫෩ 𝒏𝒆𝒘 ∆𝑫෩  
Northern Europe 1.428 1.396 0.031 
Western Europe 1.463 1.458 0.025 
Eastern Europe 1.445 1.426 0.015 
Southern Europe 1.531 1.501 0.030 

 𝐷෩௢௟ௗ = 1.488 𝐷෩௢௟ௗ = 1.445  

Note: Values reflect the median fractal dimension across all sampled cities per region. The reported difference (∆𝑫෩ ) 
is not the difference between the two medians but rather the median of city-level differences (∆𝐷 = 𝐷௢௟ௗ − 𝐷௡௘௪). 
This approach provides a robust estimate of the typical intra-city change in spatial complexity. 

These results provide a regional overview of changes in street network geometry over time. For example, 

Southern Europe maintains high levels of fractality in both historical and modern areas, suggesting 

continuity in morphological richness. Meanwhile, Eastern Europe appears as the most heterogeneous, with 

smaller differences but variable trajectories across cities.   

To visualize these dynamics, Figure 4.6 presents a line plot of regional medians for 𝐷௢௟ௗ and 𝐷௡௘௪. This 

format was selected to compress data from over 100 city samples into eight summary values (4 regions × 2 

urban types), thereby making directional trends and regional differences more immediately apparent in a 

compact visual format. 

 
Figure 4.6. Line plot of the average 𝑫෩  per region (historical vs. modern) 

As shown in the figure, the two lines remain nearly parallel, indicating that across all four regions, historical 

urban cores are consistently more fractal than their modern counterparts. However, the magnitude of this 

gap varies: 

 Northern Europe exhibits the steepest drop in fractal dimension, reinforcing earlier observations of 

distinct shifts in planning ideologies between periods (see Section 4.1.1). 
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 Eastern Europe, while internally diverse (Section 4.1.3), shows the smallest average ∆𝐷, possibly 

indicating continuity or the persistence of inherited street network features in modern extensions. 

 Southern Europe stands out not for the difference between values, but for the overall elevation of 

both historical and modern levels. This suggests that modern growth often inherited or reproduced 

richness of historical street patterns (see 4.1.4). 

 Western Europe falls in between, reflecting a moderate degree of change, yet still retaining a clear 

distinction between organic and planned urban typologies (as discussed in 4.1.2). 

Thus, the line plot not only confirms key findings from the previous sections but also provides a 

comparative lens for framing the subsequent, more detailed analyses – those which will consider not just 

typical values for each region, but also city-level variability, distribution overlap, and underlying spatial 

regimes. 

To complement this regional overview, Figure 4.7 introduces a violin plot. Unlike standard boxplots, violin 

plots display both the full range and the underlying distribution shape of the data, enabling the observation 

of differences in medians as well as variation in spread (interquartile range) and skewness between 

historical and modern cores. 

 
Figure 4.7. Violin plot comparing FD distributions for historical vs. modern core samples 

As the plot demonstrates, historical areas exhibit both a higher median and greater dispersion of fractal 

dimension values (Figure 4.7). This reflects the diversity of older urban cores – ranging from highly 

intricate medieval fabrics to more regularized but still organic pre-modern forms. In contrast, modern areas 

cluster more tightly within a narrower band of D values, a pattern consistent with the more regularized 

street layouts commonly observed in planned developments. This reinforces the idea that, although cities 
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differ in their absolute level of fractality, modernization often brings a reduction in morphological diversity, 

likely due to functionalist or grid-oriented expansion models. 

To move beyond regional medians, a more nuanced understanding of urban morphological shifts emerges 

by examining the variation within each group, both in terms of magnitude and direction of change. The full 

distribution of 𝛥𝐷 values for all 100 cities is included in Appendix A-3. This allows for: 

 ranking cities from greatest to smallest change, visually separating those that retain spatial richness 

from those that undergo significant simplification; 

 highlighting outliers – both positive and negative – enabling identification of atypical cases where 

modern areas exceed or nearly match the fractality of their historical cores; 

 and mapping the broader landscape of morphological transitions across Europe, providing insight 

into how local planning ideologies may have shifted at the local scale; 

While this ranked chart provides the full picture, 

Figure 4.8 narrows the focus to the extremes of the 

spectrum. It highlights the ten cities with the largest 

positive and negative 𝛥𝐷 values, offering a sharper 

analytical lens into cases where urban growth either 

substantially diverged from historical structure or 

remained remarkably consistent. 

In the chart, green bars represent cities where modern 

areas are significantly less fractal than historical 

cores (large positive 𝛥𝐷), whereas red bars indicate 

cities where modern areas closely match or even 

surpass the fractality of older districts (negative 𝛥𝐷). 

This visual contrast helps identify planning cultures 

that actively reshaped street form.                                    Figure 4.8. 10 Highest and 10 Lowest ΔD shifts in cityscapes 

To assess whether deeper structural tendencies underlie the observed differences in fractal dimension, 

Figure 4.9 plots each city’s historical versus modern 𝐷 values in a two-dimensional scatterplot. Cities are 

grouped using K-means clustering to detect latent structural similarities among cities without imposing 

predefined regional boundaries. 
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Figure 4.9. Scatter plot of 𝑫𝒐𝒍𝒅 vs. 𝑫𝒏𝒆𝒘, grouped via K-means 

The resulting visual classification yields several key insights. First, most cities fall below the 1:1 diagonal 

line (𝑦 =  𝑥), indicating that, in most cases, the fractal richness of street networks tends to diminish in 

modern extensions. It is defined that ∆𝐷 = 𝐷௢௟ௗ − 𝐷௡௘௪, and positive values of ∆𝐷 denote a reduction in 

fractality over time – that is, a decline in the degree of space-filling structure. 

Second, cities cluster into three broad morphological groups: 

- High–High (blue) – cities whose historic cores exhibit the highest 𝐷 values remain fractally rich in 

their modern areas. However, nearly all observations in this group lie beneath the 1:1 line, suggesting 

a systematic reduction in fractal properties in the transition from old to new districts. 

- Mid–Mid (green) – the modal cluster, comprising cities with intermediate 𝐷 values in both historical 

and modern areas. Here, the reduction in fractality is more moderate and variable, with most cities 

showing slight declines and a smaller subset exhibiting stability or mild gains. 

- Mixed/Inverted (orange) – a distinct minority of cases where the modern extension equals or exceeds 

the complexity of the historical core (∆𝐷 ≤ 0). These cases, previously highlighted in Figure 4.8, 

challenge the presumption of inevitable simplification and instead suggest conditions under which 

newer districts may evolve or be planned with comparable or even greater multi-scale richness. 

Taken together, historic cores exhibit slightly higher average fractal dimension than modern expansions, 

though the difference is modest. Yet, the presence of inverted or stable cases implies that this trend is neither 

universal nor structurally deterministic. Instead, it calls for closer examination of the spatial, regulatory, 

and cultural mechanisms that can preserve or even foster fractal richness in contemporary urban extensions. 

In sum, the observed variation in fractal dimension (D) between historical and modern areas highlights 

meaningful shifts in how street form is organized. These shifts raise practical questions about the spatial 
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implications of different planning paradigms – for instance, whether the pursuit of geometric clarity in 

modern layouts has reduced walkable complexity, or whether grid patterns can achieve legibility without 

diminishing the spatial diversity of the street network. 

While the present analysis focuses on form, even small shifts in geometric order can coincide with wider 

changes in planning logic. To explore these possibilities, the next section turns to network-based indicators, 

examining how variations in street configuration relate to properties such as connectivity, route directness, 

and spatial integration. 

 

4.2. Network Metrics Analysis  

Building on the fractal-based assessment in §4.1, this section shifts focus to structural and connective 

attributes of street network using graph-theoretical measures. Here, each street layout is reinterpreted as a 

graph, allowing exploration of internal configuration – how connections enable or constrain movement, 

and where alternative routes arise. The dataset remains unchanged; only the analytic framework is modified. 

To operationalize this approach, each polyline trace is converted into a primal graph (Figure 4.10), where 

intersections correspond to nodes and street segments to edges. This graph-based model underpins all 

subsequent metrics and ensures consistency when comparing historical and modern districts. The figure 

below is provided to concretize the analytic representation. 

 
Figure 4.10. Graph model of the street network: intersections = nodes (red); segments = edges (gray) 

Building on this common framework, six indicators serve as complementary perspectives on street network 

structure: 

 Urban grain: intersection density and average edge length; 
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 Pedestrian-scale access potential: reachability index within 600 meters; 

 Distance efficiency: harmonic mean of shortest path lengths 

 Route directness: mean straightness of routes 

 Redundancy: meshedness coefficient (cycle-based connectivity) 

These metrics are derived through a common processing pipeline using OSMnx and NetworkX, ensuring 

methodological consistency for both the historic and modern areas. The same graph objects are used for 

both visual and quantitative analysis to ensure alignment between representations. The following analysis 

interprets these metrics across the entire dataset as well as in within-city comparisons. 

4.2.1. Corpus Overview: distributions by district type 

Before exploring regional and city-level differences, it is useful to establish how key street network 

indicators vary across the entire sample of 200 urbanized samples. This section focuses on broad 

distinctions between historic cores and modern districts, without yet considering differences between 

countries or urban regions. 

Table 4.6 summarizes each indicator’s descriptive statistics: mean, median, minimum, maximum, and 

standard deviation. This overview serves two main purposes. First, it gives a sense of the central tendency 

and variability across the entire dataset, without privileging any specific city or region. Second, by 

organizing the results by district type – historic versus modern – it enables a preliminary contrast between 

inherited and planned urban forms. 

Table 4.6. Summary statistics for six street-network indicators by district type 

EUROPE 
Historic district (Old part of the city) Modern district (new part of the city) 

Mean Max Min Median 𝜎 Mean Max Min Median 𝜎 

Intersection 
Density, 𝑘𝑚ିଶ 

113.9 302.8 52.1 102.8 45.63 96.3 243.1 31.4 86.8 39.22 

Avg. Edge 
Length, m 

79.35 125.6 44.1 78.01 16.18 90.6 162.8 52.8 87.5 21.41 

HM shortest 
path, m 

479.1 605.7 371.1 478.9 45.41 477.1 659.1 333.7 477.2 54.20 

Reachability 
Index, nodes 

68.62 193.4 24.4 63.09 32.64 59.83 209.6 16.31 53.11 31.94 

Mean 
straightness 

0.753 0.841 0.60 0.756 0.043 0.749 0.835 0.56 0.756 0.053 

Meshedness 
Coefficient 

0.197 0.285 0.06 0.200 0.038 0.191 0.287 0.03 0.189 0.051 

A close look at Table 4.6 yields several interpretive insights: 

1. Intersection density declines in modern districts (median≈86.8 per km2), reflecting a shift toward 

larger blocks and fewer junctions compared to historic cores (≈103 per km2). 
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2. Edge lengths increase, indicating longer street segments and wider spacing between intersections in 

modern layouts. 

3. Local reachability declines by ~15–20% in most cases, suggesting that contemporary layouts tend 

to limit the number of destinations reachable within one walkable radius (600 m). 

These observations suggest a general movement away from compact, fine-grained street structures toward 

more spacious, less connected arrangements. 

Complementing this, Figure 4.11 visualizes the same data using boxplots. Each plot displays the 

interquartile range (IQR), median (horizontal line), and mean (triangle) for each indicator, along with 

outliers shown as individual points. Taken together, these visualizations enable rapid, side-by-side 

assessment of not only the typical values (i.e., medians) but also the distributional shapes and variability 

associated with each type of urban district. 

      

     
Figure 4.11. Distributions of six street network indicators across historic and modern districts (n = 200) 

Note. Top row – Morphology (network grain & cyclicity): intersection density, average edge length, and meshedness (redundancy via  
          cycles).  

Bottom row – Topology (local accessibility & routing efficiency): harmonic-mean shortest paths (aggregate efficiency), mean 
straightness (route directness), and reachability within 600 m.  
Boxplots show the interquartile range (IQR); green lines indicate medians; dots represent statistical outliers. 
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Meanwhile, some indicators show little distinction between district types: 

 Harmonic-Mean Shortest Path and Mean Straightness vary only modestly. While both district types 

share similar central values, historic areas tend to support shorter and slightly more direct routes – 

reflecting greater compactness and integrated street layout. 

 Meshedness coefficient reveals a small but consistent advantage in route redundancy for historic 

areas, implying greater resilience to traffic disruption and better support for route choice. 

This comparative, corpus-wide analysis serves as a benchmark before disaggregating results by region. By 

framing broad differences between historic and modern districts, it becomes easier to interpret whether 

specific regional trends reinforce or diverge from these general patterns. For example, does Southern 

Europe consistently reflect the historic model? Do modern districts in Eastern Europe resemble their 

Western counterparts, or not? 

The regional breakdowns that follow – Northern, Western, Eastern, and Southern Europe – build directly 

on this foundation, tracing which morphological and connectivity traits recur, and which diverge across the 

European urban landscape. 

4.2.2. Street Network Signatures: Northern European cities 

To introduce the regional dynamics of street network structure, Northern Europe provides a natural starting 

point. Drawing on cities from Denmark, Sweden, Norway, and Finland, the analysis below synthesizes six 

key network indicators to examine variations in spatial configuration, connectivity, and block structure 

between historical and modern districts (Table 4.7). Full city-level metrics are included in Appendix A-4.  

Table 4.7. Six Street Network Metrics: Northern Europe Summary 

NORTHERN 
EUROPE 

Historic district (Old part of the city) Modern district (new part of the city) 

Mean Max Min Median 𝜎 Mean Max Min Median 𝜎 

Intersection 
Density, 𝑘𝑚ିଶ 

89.29 129.9 59.17 93.44 18.67 76.21 125.0 31.4 77.09 22.25 

Avg. Edge 
Length, m 

84.65 109.1 65.13 81.6 11.00 96.41 157.9 71.7 91.69 20.83 

HM shortest 
path, m 

477.3 546.4 402.6 473.7 41.39 481.2 639.2 348.9 477.4 63.47 

Reachability 
Index, nodes 

53.11 100.1 24.04 55.87 17.28 46.78 77.52 16.31 43.80 16.66 

Mean 
straightness 

0.754 0.809 0.661 0.766 0.039 0.718 0.814 0.565 0.717 0.069 

Meshedness 
Coefficient 

0.203 0.276 0.137 0.204 0.032 0.162 0.265 0.027 0.156 0.057 

Across Northern Europe, historic districts typically feature 93 intersections per square kilometer, with street 

segments averaging 81.6 meters in length. Within a 600-meter walking distance, the average resident can 



59 
 

access approximately 56 junctions – a useful proxy for pedestrian-scale connectivity. In contrast, modern 

districts exhibit reduced intersection density (77 nodes/km²) and longer average segment lengths (91.7 m), 

reflecting planning trends favoring larger blocks and more streamlined layouts. 

Despite these geometric shifts, the harmonic mean shortest path remains essentially stable between 

historical and modern districts (473.7 m vs. 477.4 m). This suggests that while routes may lengthen and 

nodes become sparser, overall accessibility does not substantially decline. This impression is reinforced by 

mean straightness values: modern areas exhibit around 71.7% route directness (straightness = 0.717), 

compared to 76.6% in historic cores. In practical terms, this indicates that routes in modern districts deviate 

more from the Euclidean distance between two points. This reflects reduced permeability, whereas historic 

networks enable more direct routing despite their irregular geometries.  

The reachability index is perhaps more revealing, showing a noticeable decline in modern areas: from a 

median of 56 reachable nodes to just 43, capturing the cumulative effect of fewer junctions and longer 

segments. Meanwhile, meshedness coefficients drop modestly, from 0.204 in historical districts to 0.156 in 

modern ones. This indicates a slightly less looped and potentially less resilient street network, though the 

change is less dramatic than in other regions. 

Taken together, these findings point to a moderately pronounced spatial divergence in street network 

structure between older and newer districts in Northern Europe. While modern zones feature fewer 

intersections and slightly longer routes, overall performance in terms of path efficiency and route directness 

remains relatively high. This continuity suggests that recent expansions, despite a greater emphasis on 

vehicular access and zoning, preserve elements of human-scaled coherence – especially in comparison to 

more fragmented patterns observed elsewhere. 

A few cities exemplify these dynamics. Stockholm, for instance, maintains high connectivity in both 

historic and modern sectors, with minimal differences in reachability and path length, reinforcing its 

polycentric, transit-integrated street form (Figure 4.12). Helsinki, on the other hand, exhibits one of the 

sharpest contrasts in meshedness between old and new sectors (0.25 vs. 0.14), suggesting a transition 

toward more tree-like road systems (see Appendix A-3). These exceptions highlight the value of 

maintaining disaggregated analyses even within otherwise coherent regional trends.  
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Figure 4.12. City-level variation in street network characteristics across Northern Europe 

4.2.3. Street Network Signatures: Western European cities 

To capture the structural tendencies of street networks in Western Europe, this analysis examines 25 cities 

across five countries – Austria, Belgium, Germany, France, and the Netherlands. As detailed in Section 3.4, 

six key indicators were computed using OSMnx, providing a consistent framework for comparing street 

network configuration and topology between historic and modern districts. Summary statistics for each 

indicator are presented in Table 4.8, while full city-by-city data can be found in Appendix A-4. 

Table 4.8. Six Street Network Metrics: Western Europe Summary 

WESTERN 
EUROPE 

Historic district (Old part of the city) Modern district (new part of the city) 

Mean Max Min Median 𝜎 Mean Max Min Median 𝜎 

Intersection 
Density, 𝑘𝑚ିଶ 

117.9 248.6 71.50 115.9 37.83 92.4 164.6 39.62 88.93 26.42 

Avg. Edge 
Length, m 

76.6 111.3 50.51 74.5 13.37 88.9 128.2 63.54 85.41 14.68 

HM shortest 
path, m 

480.3 605.7 371.1 478.5 51.74 479.6 570.7 393.9 477.9 34.20 

Reachability 
Index, nodes 

70.24 155.8 30.54 65.1 25.26 54.52 93.6 22.83 50.03 19.08 

Mean 
straightness 

0.758 0.841 0.643 0.759 0.05 0.753 0.835 0.608 0.752 0.050 

Meshedness 
Coefficient 

0.200 0.285 0.097 0.203 0.04 0.189 0.287 0.104 0.184 0.041 

The resulting patterns reflect a region shaped by centuries of gradual transformation, moving from irregular, 

often organic medieval cores to the more rational geometries of post-industrial expansion. The selected 
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indicators enable a comparative understanding of how morphology and topology shift over time – 

facilitating analysis without relying on typological assumptions. 

Based on regional medians, a typical historic district in Western Europe contains approximately 116 

intersections per square kilometer, with an average segment length of 74.5 meters, and supports access to 

65 nodes within a 600-meter walk. This combination indicates a fine-grained, compact street network with 

high local accessibility. In contrast, modern districts exhibit a coarser structure: 89 intersections/𝑘𝑚ଶ, 85.4 

meters average segment length, and a reachability index of 50 nodes – all suggesting larger blocks and less 

favorable conditions for walkability. 

Notably, although modern districts contain longer street segments and fewer intersections, mean 

straightness remains relatively high (0.752). This indicates that many streets follow continuous, 

geometrically aligned paths, allowing relatively direct movement despite a sparser network structure. 

Meanwhile, the meshedness coefficient – a measure of street network redundancy – declines slightly from 

0.203 to 0.184, indicating fewer alternative paths in newer developments. 

Overall, these results are in line with expectations: historical districts are characterized by a finer street 

network structure and stronger support for pedestrian movement, whereas modern layouts are sparser and 

more oriented toward efficient vehicular flows. Nonetheless, the relatively modest differences across most 

indicators suggest a smoother morphological transition between historic cores and the outer districts shaped 

by modern planning principles in this region.  

4.2.4. Street Network Signatures: Eastern European cities 

Eastern European cities provide an important dimension to the regional comparison, due in large part to the 

diversity of urban trajectories observed across the subcontinent. From compact centers rooted in pre-

industrial layouts to peripheral zones shaped by planned expansion and infrastructure-led growth, this 

region reflects a spectrum of spatial development patterns formed over time. The dataset covers 30 cities 

across Bulgaria, the Czech Republic, Hungary, Poland, Romania, and Slovakia, capturing representative 

contrasts between central and peripheral districts. Table 4.9 summarizes the distribution of six core street 

network indicators for both district types, with more detailed results are available in Appendix A-4. 

Historic districts in this group tend to balance moderate intersection density (∼79/km²) with relatively long 

segments (88.5 m), reflecting compact layouts that were nonetheless shaped by grand axes or planning 

traditions. Interestingly, this spatial structure does not diverge dramatically in modern districts: intersection 

density drops only slightly (to ∼73/km²), and segment length increases modestly (∼99 m). At first glance, 

this suggests a conservative evolution in block structure – more a recalibration than a rupture. 
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Table 4.9. Six Street Network Metrics: Eastern Europe Summary 

EASTERN 
EUROPE 

Historic district (Old part of the city) Modern district (new part of the city) 

Mean Max Min Median 𝜎 Mean Max Min Median 𝜎 

Intersection 
Density, 𝑘𝑚ିଶ 

85.21 155.6 52.08 79.17 24.50 79.37 190.9 41.67 72.92 30.85 

Avg. Edge 
Length, m 

91.70 125.6 69.09 88.53 13.77 102.1 162.8 65.30 98.86 23.14 

HM shortest 
path, m 

472.36 590.9 380.1 470.6 45.69 470.7 629.6 333.7 480.9 61.26 

Reachability 
Index, nodes 

50.38 93.57 24.15 45.49 18.43 48.29 115.9 19.90 40.47 23.02 

Mean 
straightness 

0.755 0.831 0.635 0.755 0.037 0.753 0.816 0.620 0.767 0.041 

Meshedness 
Coefficient 

0.196 0.264 0.061 0.198 0.041 0.195 0.286 0.048 0.192 0.047 

Yet, a more nuanced reading emerges when geometric characteristics are considered alongside topological 

measures. The harmonic mean shortest path reveals near-parity between historical and modern districts 

(470.6 m vs 480.9 m), and straightness index improves marginally in modern districts – from 0.755 to 

0.767, or roughly 76.7% of a straight-line route. In essence, newer districts attain similar levels of perceived 

legibility while simplifying street alignment. This combination – longer blocks paired with straighter routes 

– suggests an optimization logic: fewer intersections, but more continuous movement paths. 

However, this geometric streamlining comes with trade-offs. Reachability drops from 45 to 40 nodes, 

indicating that spatial legibility does not guarantee proximity. This subtle decoupling between local 

walkability and junction density reflects a shift in planning intent – less emphasis on closely-knit 

accessibility, more on streamlined circulation. The meshedness coefficient, serving as a proxy for 

redundancy and fallback options, also declines slightly (from 0.198 to 0.192), reinforcing the idea that while 

detour routes remain, their overall density may be diminishing. 

A closer look at individual cases anchors these trends. Warsaw’s modern district, for example, combines 

extremely low intersection density (49.3/km²) and long edge lengths (131.9 m) with a reachability value of 

just 27.7, exemplifying a landscape of large superblocks and limited connectivity. Meanwhile, Timisoara’s 

modern sector stands out for its high straightness (0.826), suggesting fewer detours and more direct routing 

between points, even though looping alternatives are limited. 

Altogether, the Eastern European sample reflects a quiet but perceptible reconfiguration of urban street 

form. While changes in geometry are clear – especially in block size and junction frequency – the continuity 

in accessibility and route directness tempers their overall impact. The region offers a case where structural 

evolution does not entirely sever ties with inherited street patterns, but rather, reinterprets them within new 
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socio-political and planning frameworks. This restrained transition stands out, particularly when viewed 

against sharper divergences observed in other regions. 

4.2.5. Street Network Signatures: Southern European cities 

Among the regions examined, Southern Europe displays the strongest morphological continuity between 

historic cores and modern expansions, while also revealing some of the most distinctive patterns in street 

network grain and redundancy. Spanning cities across Greece, Italy, Portugal, Spain, and Cyprus, this 

sample presents a nuanced interplay of organic legacies and geometric interventions – shaped by centuries 

of incremental growth and post-war transformations. 

As summarized in Table 4.10, Southern European cities stand out for their fine-grained historical layouts. 

Historic districts here show high central tendency in intersection density (median = 164.6 nodes/𝑘𝑚ଶ) – by 

far the densest among all four regions – paired with the shortest mean edge lengths (64.3 m). Together, 

these values reinforce the presence of a compact, pedestrian-oriented street network. Even in their modern 

counterparts, intersection density remains comparatively elevated (131.3/km²), indicating that subsequent 

urban development did not fully abandon the dense, permeable structure of earlier periods. 

Table 4.10. Six Street Network Metrics: Southern Europe Summary 

SOUTHERN 
EUROPE 

Historic district (Old part of the city) Modern district (new part of the city) 

Mean Max Min Median 𝜎 Mean Max Min Median 𝜎 

Intersection 
Density, 𝑘𝑚ିଶ 

164.2 302.8 88.89 164.6 44.34 134.9 243.1 54.17 131.3 41.54 

Avg. Edge 
Length, m 

62.96 76.45 44.11 64.31 8.539 73.73 120.3 52.82 72.89 13.87 

HM shortest 
path, m 

487.2 593.6 415.0 485.2 43.68 478.8 659.1 380.7 473.4 56.12 

Reachability 
Index, nodes 

101.4 193.4 44.78 94.94 37.66 89.45 209.6 21.07 81.17 42.11 

Mean 
straightness 

0.747 0.819 0.601 0.753 0.048 0.763 0.824 0.616 0.779 0.048 

Meshedness 
Coefficient 

0.191 0.271 0.125 0.200 0.036 0.212 0.286 0.095 0.215 0.049 

This relative consistency in granularity helps explain the minimal difference in harmonic mean shortest 

path values across the two periods (485.2 m in historic cores vs. 473.4 m in newer districts). In fact, modern 

areas slightly outperform older ones on this indicator – an inversion of the usual trend seen in other regions. 

At first glance, this appears counterintuitive, since longer blocks and lower intersection densities typically 

lengthen travel distances. However, when considered alongside a 2.6% increase in mean straightness (from 

0.753 to 0.779), a clearer picture emerges: modern districts offset lower permeability through linear, well-

aligned street geometries. In practical terms, this means that movement remains relatively direct even in 

sparser networks, with routes deviating from the straight-line distance by ~22% in modern districts 
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compared with ~26% in historic cores. Together, these findings suggest that routing efficiency in modern 

layouts is achieved through continuity of alignment that limit angular deviation.  

these results suggest that modern districts compensate for fewer junctions through more linear and 

continuous street alignments. In practical terms, routing in modern areas remains close to the geometric 

shortest path – where approximately 22% detour is required on average – compared with about 26% in 

historic areas. This indicates that directness in modern networks is achieved through long, aligned corridors 

rather than through dense local permeability. 

This subtle shift suggests a strategic reconfiguration rather than outright simplification. Longer street 

segments, if arranged in well-aligned routes, may help preserve or even enhance route efficiency. The city 

of Florence offers a notable example: its modern district improves both straightness and meshedness 

compared to the historic center, despite a drop in intersection density – pointing to a coherent, if more top-

down, spatial approach (see Appendix A-4). 

Meshedness coefficients, often reflective of redundancy and alternative routing options, show one of the 

rare increases in modern districts across all regions (from 0.200 to 0.215). This outcome, observed in several 

Portuguese cities such as Lisbon and Setúbal, hints at deliberate planning for looped or hierarchical grid 

structures – potentially blending historic permeability with newer, traffic-calming layouts. Nonetheless, 

regional variability is substantial. In some cases (e.g., Larissa or Ioannina), modern districts maintain or 

even surpass the meshedness of historic cores; in others (e.g., Larnaca), simplification is more evident (see 

Appendix A-4). 

If reachability serves as a final lens on navigability, the street pattern in Southern Europe is more muted 

than elsewhere. From a median of 95 reachable nodes in older areas, modern zones decline to about 81, still 

high relative to other regions, and reflective of the enduring compactness of Southern European urbanism. 

This soft decline contrasts with the more abrupt reachability drops seen in Northern and Eastern Europe, 

further reinforcing the impression that, in this region, modern expansion often retained core aspects 

accessibility rooted in earlier morphologies. 

Taken together, these indicators point to a planning tradition in Southern Europe that, while accommodating 

modern demands, remains structurally tied to a deep culture of walkability and connectivity. Unlike the 

sharp contrasts seen in other contexts, the distinction between old and new districts here is more porous – 

shaped by both inherited street forms and selective adaptation, rather than by radical restructuring. 
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4.2.6. Within-city contrasts: Δ Values of street network metrics 

While earlier sections examined differences between historic and modern districts both at the European 

scale (Section 4.2.1) and across macro-regions (Sections 4.2.2–4.2.5), this section presents a more focused 

and formalized comparison by computing within-city differences across all six network indicators. 

For each city in the corpus, delta values (Δ = 𝑀௢௟ௗ − 𝑀௡௘௪) were calculated to capture both the magnitude 

and direction of change in street network structure. This approach allows for consistent interpretation: 

positive Δ values indicate a decline in the given metric in modern areas (e.g., lower intersection density), 

while negative values suggest an increase (e.g., longer average street segments). In this way, the analysis 

systematically assesses how internal spatial configurations have evolved over time. 

The values in Table 4.11 represent the median intra-city differences for each indicator, aggregated by 

macro-region. That is, for every city, a pairwise metric difference was computed, and regional medians 

were then derived to summarize the most typical internal shifts per region. While the resulting table displays 

regional tendencies (see Table 4.11), the analysis remains grounded in city-level contrasts, ensuring that 

the interpretation reflects micro-scale structural changes rather than broad generalizations. 

Table 4.11. Overview of regional median Δ in structural indicators 

Region ∆ Intersection 
Density 

∆ Avg. Edge 
Length 

∆ Reachability 
index 

∆ HM 
Shortest Path 

∆ Straightness 
index 

∆ Meshedness 
coefficient 

Northern 
Europe 

12.15 -8.77 6.18 -8.49 0.046 0.034 

Western 
Europe 

19.45 -10.64 14.48 -2.83 0.006 0.021 

Eastern 
Europe 

4.86 -6.44 0.025 -1.74 0.007 0.007 

Southern 
Europe 

28.47 -6.77 12.27 7.60 -0.019 -0.005 

Note: City-level Δ values are detailed in Appendix A-5. 

Building on these results, Figure 4.13 illustrates the indicators showing the most pronounced intra-city 

variation: Intersection Density, Average Edge Length, Reachability, and Harmonic Mean Shortest Path.  

 
Figure 4.13. Regional median Δ values in network indicators with the strongest historic–modern contrasts 
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These metrics were selected not only for their statistical variability but also for their conceptual relevance: 

together, they describe key aspects of street network grain, continuity, and accessibility – all of which are 

essential for understanding spatial organization. The chart illustrates a set of contrasting dynamics between 

historical and modern districts: 

 Intersection Density consistently declines (positive Δ), most strongly in Southern and Western 

Europe, pointing to coarser street grids in newer areas. 

 Average Edge Length increases (negative Δ), reinforcing the pattern of longer street segments and 

larger block structures. 

 Reachability index generally drops, suggesting reduced access to the broader street network in 

many modern districts. 

 Harmonic Mean Shortest Path displays a more mixed pattern: positive Δ in the North and West 

indicates shorter path values in modern areas (suggesting more direct routing, typical of planned 

grids), while negative Δ in the South reflects longer paths, possibly associated with fragmented 

growth or suburban sprawl. 

These shifts reveal common morphological tendencies and region-specific trajectories. They also illustrate 

how cities have moved away from the fine-grained, irregular street patterns of historic cores toward modern 

layouts defined by longer blocks, straighter streets, and more predictable geometry — yet offering fewer 

junctions and less spatial variety at the local scale. 

Two other indicators, Straightness Index and Meshedness Coefficient, were excluded from the visual 

summary due to low intra-city variation and minimal regional contrast. While conceptually important, these 

metrics did not demonstrate sufficient divergence to justify comparative visualization, and are instead 

referenced descriptively in other sections. Their exclusion sharpens the focus of the chart, allowing clearer 

visual emphasis on structurally dynamic variables. 

Overall, these results underscore the significance of intra-city contrasts, showing that modern districts tend 

to lose street density, reduce accessibility horizons, and lengthen routes structures relative to their historic 

counterparts. By highlighting the four indicators with the most dynamic shifts, the analysis isolates the 

variables most likely to explain regional differences in urban street structure. This, in turn, sets the stage 

for the correlation analysis in Section 4.3, where these metrics are analyzed in relation to fractal dimension 

to reveal potential interdependencies. 

 

4.3. Fractal Dimension and Network Indicators: Correlation Analysis  

This section investigates whether the fractal dimension (𝐷) of street networks is aligned with, or adds 

explanatory value beyond key indicators from graph theory. The analysis follows the two-step design 
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introduced in Section 3.5. First, a paired within-city comparison tests whether changes in fractal dimension 

(𝛥𝐷) co-move with changes in street network metrics when shifting from historic to modern districts. 

Second, groupwise cross-sectional analyses are conducted separately for historic cores and modern areas, 

revealing how these relationships manifest without differencing. Together, these complementary views 

distinguish internal transformations within cities from broader cross-sectional patterns across the European 

sample. 

4.3.1. From Paired Differences to Correlation 

To understand how changes in street morphology relate to changes in structural properties across time, the 

analysis begins by examining the paired differences (Δ) between historic and modern districts. Here, Δ 

refers to the difference between historic and modern values (∆𝑀 = ∆𝑀௢௟ௗ − ∆𝑀௡௘௪), such that positive 

values indicate a higher value in the historic district. 

Figure 4.14 visualizes these pairwise correlations as a Δ-matrix heatmap, where positive or negative 

associations between the metrics are expressed in both sign and magnitude. The matrix offers an initial 

overview of the relative direction and strength of each association across the 100 city pairs, with darker 

shades denoting stronger linear relationships. 

 
Figure 4.14. Heatmap correlation matrix (ΔFD vs. ΔMetrics) 

Table 4.12 reports the same correlations numerically and confirms which of these associations are 

statistically significant under both Pearson’s r and Spearman’s ρ. This dual reporting addresses potential 

non-linearity in the bivariate relationships while also revealing which findings are robust to rank-based 

comparison. 
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Table 4.12. Paired Comparative Analysis (∆D vs. ∆Metric) 

 Pearson’s r p-value Spearman’s 𝝆 p-value 
Δ Intersection Density 0.53 4.23*10ି଼ 0.64 6.27*10ିହ 

Δ Average Edge Length -0.61 8.71*10ିଵହ -0.52 3.04*10ିଵ଻ 

Δ Reachability Index (600m) 0.58 2.14*10ିଵଵ 0.65 1.88*10ିଵଶ 
Δ Harmonic Mean Shortest Path -0.08 0.074 -0.16 0.128 
Δ Mean Straightness -0.03 0.002 -0.02 0.057 
Δ Meshedness Coefficient 0.18 0.038 0.27 0.094 

The clearest relationships appear in the first column, where ΔD shows strong, significant alignment with 

three other differences: average edge length, intersection density, and the reachability index. Higher ΔD 

values (where historic districts have higher fractal dimension than their modern counterparts) tend to 

coincide with shorter street segments, more intersections per hectare, and denser local connectivity. Taken 

together, these trends suggest that shifts toward more articulated, fine-grained geometries are strongly 

associated with increased local-scale structural connectivity within the 600 m network radius. 

By contrast, changes in harmonic mean shortest path length (HMSP), straightness, and meshedness 

coefficient do not exhibit consistently strong associations with ΔD or with one another. In several cases, 

their relationships are weak, statistically insignificant, or context-dependent, indicating that these indicators 

capture more localized aspects of connectivity that are less tightly coupled to geometric scaling. 

As an interim reading, these findings suggest that transitions toward longer segments and sparser junctions 

are generally linked to declines in fractal dimension, whereas densification and improved local access 

accompany its increases. In this sense, D functions here as a geometric signal of how finely the network is 

subdivided and how densely it embeds local connections, especially when these patterns shift over time.  

The next step is to test whether these alignments persist when historic and modern districts are analyzed 

separately, without differencing. 

4.3.2. Groupwise correlation analysis 

While the paired-difference analysis in Section 4.3.1 highlights how fractal dimension (ΔD) co-varies with 

shifts in street-network structure, this section examines whether the same relationships hold when historic 

and modern districts are analyzed separately. This perspective clarifies whether geometric scaling is 

systematically aligned with other structural properties across districts of the same type, and whether 

planning regimes shape these alignments in distinct ways. 

Historic districts 

In the historic sample (Table 4.13), fractal dimension is strongly associated with several indicators of 

morphological articulation and local-scale connectivity. Higher D values correspond to shorter average 

street segment lengths and higher intersection density, indicating that finer-grained networks exhibit greater 
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geometric subdivision. This alignment also extends to the reachability index, where denser local 

connections within 600 meters co-occur with more articulated street geometries. These relationships are 

statistically strong across the sample, indicating that historic street networks tend to link finer geometric 

grain with higher local reachability. 

Table 4.13. Statistical representation for historic cores (D vs. Metric) 

 Pearson’s r p-value Spearman’s 𝝆 p-value 
Intersection Density 0.56 1.95*10ିଽ 0.59 5.86*10ିଽ 

Average Edge Length -0.63 2.87*10ିଵଶ -0.58 1.72*10ିଵଵ 

Reachability Index 0.51 4.77*10ି଼ 0.53 9.53*10ି଼ 
Harmonic Mean Shortest Path 0.26 0.009 0.20 0.011 
Mean Straightness -0.27 0.007 -0.14 0.011 
Meshedness Coefficient -0.18 0.067 -0.11 0.067 

By contrast, measures such as straightness, meshedness coefficient, and harmonic mean shortest path length 

(HMSP) show weak or inconsistent correlations with D among historic districts. These indicators are more 

sensitive to path continuity across larger portions of the street network, and their weak alignment here 

suggests that fractal dimension is more closely linked to local geometric intensity than to properties related 

to global route continuity or looped structure.  

 
Figure 4.15. Heatmap of correlation matrix for historic cores 

Modern Districts 

Turning to the modern sample (Table 4.14), the structural relationships involving fractal dimension follow 

a similar general pattern but are notably more compact. Higher D values are again associated with shorter 

segment lengths and higher intersection densities, reflecting the same structural principle as in historic 

districts. However, these relationships fall within a narrower statistical range, consistent with the more 

standardized design norms and block layouts characteristic of contemporary planning. 
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Table 4.14. Statistical representation for modern districts (D vs. Metric) 

 Pearson’s r p-value Spearman’s 𝝆 p-value 
Intersection Density 0.748 3.87*10ିଵଽ 0.771 6.06*10ିଶଵ 

Average Edge Length -0.714 7.35*10ିଵ଻ -0.709 1.52*10ିଵ଺ 

Reachability Index 0.691 1.71*10ିଵହ 0.755 1.07*10ିଵଽ 
Harmonic Mean Shortest Path 0.072 0.475 0.037 0.717 
Mean Straightness 0.251 0.012 0.260 0.009 
Meshedness Coefficient 0.354 2.99*10ିସ 0.337 6.13 *10ିସ 

Notably, the relationship between D and reachability remains significant, though slightly weaker than in 

historic districts. This suggests that while geometric and connective detail co-vary in newer areas, the 

strength of this alignment may be moderated by regularized spatial templates, zoning constraints, or other 

factors. As in the historic sample, indicators such as straightness, HMSP, and meshedness show weak or 

inconsistent alignment with fractal dimension, pointing to their more independent or context-dependent 

behavior. 

Figure 4.16 visually reinforces this pattern: the matrix cells linking fractal dimension to indicators of grain 

and local accessibility intensify, while those tied to network-scale path efficiency remain subdued. Read 

side by side, the two matrices show continuity in direction and greater magnitude in the modern pattern – 

consistent with a wider dispersion of block sizes and junction densities, to which fractal dimension responds 

accordingly. 

 
Figure 4.16. Heatmap of correlation matrix for modern districts 

Taken together, these patterns indicate that fractal dimension consistently tracks variations in geometric 

granularity and local-scale access across both historic and modern street networks, but with stronger 

expression and greater variability in central districts. Modern networks cluster within a tighter band of 

morphometric and topological values, pointing to a reduction in diversity driven by regulations. Yet the 
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underlying structural principle holds: where streets are more finely subdivided and intersections denser, 

fractal dimension increases, and so does the potential for short-range movement. 

Because correlation matrices compress information into compact form, two scatterplots are included as 

visual interpretation.  Panel (a) shows the relationship between fractal dimension and average segment 

length, while panel (b) displays fractal dimension versus the reachability index. These illustrate the 

consistent inverse and positive associations, respectively, in both district groups, reinforcing the tendency 

for finer-grained geometries to coincide with higher fractal dimensions.  

The full list of scatterplots – fractal dimension plotted against each of the six-network metrics – is provided 

in Appendix A-6 for reference. 

Taken together with the paired-difference analysis in Section 4.3.1, these findings provide a second line of 

evidence for the interpretive role of fractal dimension as an integrative geometric indicator. It consistently 

captures how planar subdivision and local-scale connectivity co-vary within distinct typological groups. 

    
Figure 4.17. Scatter plots of Fractal dimension vs. Metric (modern districts) 
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5. Chapter 5: Discussion 

 

This chapter interprets the results presented in Chapter 4 in relation to the thesis aim: to clarify the extent 

to which fractal dimension (D) provides a quantitative basis for differentiating street-network structures 

through its relationship with selected topological indicators. Rather than restating numerical outcomes, the 

focus is on examining how the observed relationships between fractal dimension and selected network 

metrics refine current understandings of street-network morphology.  

Accordingly, this chapter is structured around four main aspects.  

- First, it considers how fractal dimension relates to measurable features of street form; 

- Second, it discusses the relationships between fractal dimension and local-scale connectivity 

indicators  

- Third, it identifies the limits of what fractal dimension can capture – in particular, in relation to 

alignment and directional structure; 

- Fourth, it synthesizes these results in relation to the research questions and hypotheses, highlighting 

the scope and limits of fractal dimension as an indicator of street-network structure. 

5.1. Fractal Dimension as a descriptor of street-network structure  

The results demonstrate that fractal dimension is systematically associated with certain geometric 

characteristics of street layouts in both historic and modern districts, though the strength and direction of 

these relationships vary between the two urban contexts. Across the sample, higher values of fractal 

dimension generally coincide with denser intersections, shorter street segments, and more articulated block 

structures, indicating that D reflects variation in the spatial grain of street-network structure. 

This pattern becomes particularly evident when comparing historic cores with modern extensions. On 

average, historic districts exhibit higher fractal dimensions and a broader distribution of values, whereas 

modern districts cluster within a narrower band (Sections 4.1 and 4.2). Median differences in fractal 

dimension (∆D̃) between historic and modern areas range from approximately 0.015 to 0.031 across the 

four macro-regions (Figure 4.5; Table 4.5), indicating a consistent tendency for older districts to display 

more finely articulated street structures. These observations align with the first objective of the study (O1) 

and provide overall support for Hypothesis H1, which anticipated higher geometric complexity in historic 

street networks. 
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However, the results also reveal that this pattern is not uniform across all cities. While most cases follow 

the expected direction, several cities display negligible differences in fractal dimension between historic 

and modern areas, and in a small number of cases modern districts exhibit marginally higher values (e.g. 

Pori, Brno, Tilburg, Breda; see Figure 4.7). These exceptions indicate that geometric complexity is not 

determined solely by urban age. Instead, it also reflects specific development strategies and subdivision 

practices, particularly where modern planning has retained or reintroduced fine-grain configurations. 

Regional analysis further clarifies these differences. In Northern Europe, historic districts consistently 

display higher fractal dimensions than their modern counterparts, reflecting a slight shift from intricate 

historic fabrics to relatively regularized modern extensions (Figure 4.1; Table 4.1). Western Europe exhibits 

a similar tendency but with greater internal variation, including cities where modern districts approach the 

fractal values of historic cores (Figure 4.2; Table 4.2). Eastern Europe is characterized by a wider dispersion 

and less consistent directional change, suggesting divergent trajectories of urban development (Table 4.3). 

In Southern Europe, both historic and modern districts maintain relatively high fractal dimensions, 

indicating a continuity in subdivision patterns rather than a sharp structural transition (Section 4.1.4). 

These regional patterns refine the response to RQ1 by demonstrating that historic and modern districts 

differ systematically in street-network morphology, while also showing that the magnitude and expression 

of this difference are shaped by local development histories and planning traditions. The results therefore 

support the general tendency toward higher geometric complexity in historic cores, while confirming that 

modern development does not follow a singular spatial model. 

Additional insight is provided by the paired-difference analysis presented in Section 4.3.1. The correlations 

between changes in fractal dimension and changes in intersection density and average edge length (Table 

4.12; Figure 4.13) demonstrate that increases in D within cities are closely associated with shorter segments 

and denser junction patterns. Where historic districts exhibit higher fractal dimension than their modern 

counterparts, corresponding difference in street grain are more pronounced; where ∆D is small or negative, 

variation in these geometric measures is reduced. 

Taken together, these findings address RQ2 by showing that fractal dimension captures a substantial portion 

of the geometric contrast between historic and modern street layouts. While D does not impose a rigid 

dichotomy between “historic” and “modern” forms, it identifies systematic variations in subdivision density 

and spatial irregularity across urban contexts, providing a credible basis for comparison at the mapped 

scale. 

At the same time, these results also suggest that geometric complexity alone does not fully define structural 

differentiation. The extent to which fractal dimension relates to broader aspects of street-network 



74 
 

configuration – particularly connectivity and detour structure – requires further examination. This forms 

the focus of the following sections. 

 

5.2. Fractal dimension and local-scale connectivity patterns 

Where Section 5.1 examined fractal dimension primarily as an indicator of geometric complexity, this 

section turns to its relationship with selected topological indicators associated with local-scale connectivity, 

addressing Objectives O2 & O3 and Research Question RQ3. The focus here is on meshedness coefficient, 

reachability index, and their correspondence with variations in fractal dimension within and between 

historic and modern districts. 

These indicators were selected because fractal dimension describes how finely space is subdivided, and 

meshedness and reachability reflect how that subdivision affects movement and local connectivity. If 

fractality meaningfully captures the structural grain of the street network, then higher values should relate 

to more route options and improved short-range accessibility. 

At the scale of individual districts, higher values of fractal dimension generally coincide with increased 

levels of local-scale connectivity. This tendency is visible in the paired-difference analysis, where positive 

changes in fractal dimension (∆D) are accompanied by increases in both meshedness coefficient and 

reachability index within a 600 m radius (Table 4.12; Figure 4.13). Districts exhibiting higher geometric 

subdivision therefore tend to show denser and more interlinked local networks, characterized by a greater 

number of alternative connections and shorter access distances between nodes. In this respect, the results 

lend support to Hypothesis H2, which anticipated higher pedestrian-scale reachability and structural 

redundancy in districts with finer urban grain. 

This alignment also corresponds with the theoretical expectation that finer fractal subdivision should relate 

positively to local permeability and redundancy: if fractal dimension reflects the degree of spatial 

granularity, then higher values would reasonably be associated with more cross-linkages, alternative route  

choices, and shorter access distances at the pedestrian scale. 

This relationship is further clarified by the groupwise correlation matrices presented in Tables 4.13 and 

4.14. In historic districts, fractal dimension shows a weak negative association with meshedness (r = -0.18) 

while maintaining a positive association with reachability index, indicating that higher levels of geometric 

subdivision are not necessarily accompanied by increased network redundancy in organic street patterns. 

In modern districts, by contrast, fractal dimension displays a positive association with both reachability and 

meshedness, suggesting that in these contexts finer subdivision more frequently coincides with denser local 

interconnections. These contrasting patterns indicate that the relationship between geometric subdivision 
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and local street-network structure differs between historic and modern contexts, and that increases in D do 

not translate into the same configuration of connectivity across periods. 

At the same time, the results indicate that the association between fractal dimension and local-scale 

connectivity is not perfectly linear or universal. Several districts display moderate to high fractal dimension 

values without a corresponding increase in meshedness, reflecting configurations in which dense 

subdivision coexists with limited cross-connections. This pattern is particularly apparent in certain modern 

districts where fine-grain subdivision is combined with selective permeability rather than a fully 

interconnected grid. 

Taken together, these findings refine the interpretation of H2 and the local-scale component of H3. Fractal 

dimension does not merely reflect visual intricacy or block density in abstract terms; it corresponds in many 

cases to tangible differences in how densely local street segments are interconnected and how readily short-

distance movement can occur. However, the variability observed across cities and between historic and 

modern contexts indicates that fractal dimension alone cannot fully account for the diversity of local 

connectivity structures. 

Importantly, the results also reveal that the strongest correspondence between fractal dimension and 

connectivity measures occurs at the local scale. This supports the third hypothesis that structural differences 

between historic and modern districts are more strongly expressed through local indicators than through 

global network measures. The next section therefore turns to the alignment-related indicators, examining 

where and why these relationships weaken when broader-scale network characteristics are considered. 

 

5.3. Fractal dimension and global-scale network characteristics 

While the preceding section demonstrated a patterned association between fractal dimension and local-

scale connectivity, the relationship becomes markedly weaker when examined in relation to alignment-

related and global-scale indicators. Because fractal dimension reflects the degree of geometric irregularity 

and fine-grain subdivision, a negative association with alignment-oriented measures was initially expected: 

higher fractality was presumed to correspond with more winding geometries, lower directional coherence, 

and therefore reduced route directness. This section examines whether such a relationship materializes by 

evaluating the correspondence between fractal dimension and mean straightness, as well as harmonic mean 

shortest-path length, thereby addressing the alignment-oriented component of RQ3 and the broader 

implications of H3. 

The paired-difference analysis presented in Table 4.12 and Figure 4.13 indicates that changes in fractal 

dimension across historic and modern districts are only weakly associated with changes in straightness 

index and harmonic mean shortest path length. In several cases, districts displaying higher fractal dimension 
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show little change, or even an opposite trend, in these alignment-related measures. This contrasts with the 

clearer pattern observed for reachability index and confirms that increases in geometric subdivision do not 

systematically coincide with more direct or cohesive route structures. 

This divergence is further evident in the groupwise correlation matrices (Tables 4.13 and 4.14). In historic 

districts, the relationship between fractal dimension and mean straightness is weak and inconsistent, while 

its association with harmonic mean shortest path length remains negligible. In modern districts, these 

relationships become only marginally stronger, yet still highly variable, indicating that finer geometric 

subdivision is not a reliable marker of improved route directness or reduced detour. In other words, 

fractality may increase spatial texture without meaningfully influencing directional alignment. 

These findings provide partial confirmation of H3, which anticipated a weaker association between fractal 

dimension and global network measures than with local connectivity indicators. While D aligns in many 

cases with short-range accessibility and local interconnectedness, it does not track the structural properties 

that shape longer-range route geometry and directional coherence. In practical terms, this suggests that 

districts with intricate, fine-grain layouts may still exhibit circuitous movement patterns or segmented route 

progression, particularly where street orientation, continuity, and overall network layout structure limit 

direct travel paths. 

The contrast between Sections 5.2 and 5.3 therefore clarifies an important boundary in the interpretive 

scope of fractal dimension. While D reflects variations in geometric subdivision and, in many instances, 

local-scale interconnection, it does not sufficiently describe how clearly street networks guide movement 

across wider spatial extents. Accordingly, fractal dimension should be understood as an indicator of spatial 

texture rather than of directional structure within the network. 

This distinction plays a central role in evaluating the overarching aim of the thesis. The following section 

synthesizes these findings by revisiting the research questions and hypotheses, clarifying where fractal 

dimension provides a meaningful basis for differentiating street-network structures and where its 

explanatory relevance remains limited. 

 

5.4. Synthesis and Implications  

This section integrates the findings discussed in Sections 5.1–5.3 and considers their broader implications 

for interpreting fractal dimension as a basis for describing street-network structures. Rather than repeating 

the detailed analyses, it consolidates the central patterns and clarifies their significance within the 

framework of the study’s aims and hypotheses. 
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Across the sample, finer street grain – expressed through higher intersection densities and shorter average 

street segments – is systematically associated with higher fractal dimension and expanded short-range 

accessibility. This relationship affirms the theoretical expectation that organically evolved fabrics tend to 

produce denser local structures than planned modern grids. At the same time, the results demonstrate that 

higher fractal dimension alone does not ensure more direct or coherent route structures. The weak and 

inconsistent relationships observed with straightness and harmonic mean shortest path length indicate that 

additional subdivision yields diminishing returns for route geometry unless it is accompanied by clearer 

continuity across the street network. 

The paired design further clarifies that ‘modernization’ is not synonymous with simplification. While many 

modern districts exhibit reduced subdivision and extended block structures, others retain or reintroduce 

finer-grain characteristics that approach those of historic cores. Regional narratives further confirm that 

context – from planning ideology to topography and land assembly – shapes how structural change unfolds. 

Not all modern development reduces complexity, and not all visual order translates into stronger local 

accessibility. 

Importantly, the relatively narrow dispersion of fractal dimension values within each group (𝐷෩௢௟ௗ ≈ 1.50 ± 

0.07; 𝐷෩௡௘௪ ≈ 1.40 ± 0.07) indicates that these differences are systematic rather than incidental. Although 

the absolute numerical difference may appear modest, fractal dimension operates within a constrained 

theoretical range for planar networks, meaning such shifts reflect meaningful variation in subdivision 

density and spatial organization. In this sense, D does not merely restate visual distinctions but formalises 

them into a quantifiable structure capable of cross-city comparison. 

Overall, the findings demonstrate that the longstanding assumption in the literature – that organically 

evolved, fractal-like street networks enhance local accessibility relative to more regular grids – is partially 

supported. Higher D aligns clearly with local-scale accessibility and street network grain, yet it does not 

consistently predict global-scale topological measures. Fractal dimension therefore differentiates street-

network structures most effectively in terms of geometric texture and local articulation, while its 

explanatory reach remains bounded with respect to broader network geometry. 

In relation to the research design, this synthesis confirms that the selected contrast between organic historic 

cores and planned modern districts provides a valid theoretical testing ground. The results affirm the value 

of fractal dimension as a meaningful analytical tool, while also clarifying the limits within which such 

interpretation remains defensible. 
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6. Conclusion 

 

This thesis set out to examine whether fractal dimension (D) provides a reliable quantitative basis for 

differentiating street-network structures through its relationship with selected geometric and topological 

indicators across contrasting urban contexts. By applying a consistent paired design to historic and modern 

districts in 100 European cities, the study has demonstrated that fractal dimension captures systematic 

variation in the spatial subdivision of street layouts, particularly in relation to intersection density and 

average segment length. 

The results show that historic districts generally exhibit higher fractal dimensions than their modern 

counterparts, confirming a persistent tendency toward finer-grain subdivision in organically evolved urban 

fabrics. These differences, while numerically modest, are consistent across the majority of cases and operate 

within a constrained theoretical range, indicating that even small shifts in D reflect meaningful variation in 

spatial structure. At the same time, the analysis reveals that this pattern is not universal. In several contexts, 

modern districts display levels of geometric complexity comparable to, or exceeding, those of historic 

cores, illustrating that subdivision intensity is shaped not only by age but also by planning strategies and 

development regimes. 

The study further demonstrates that fractal dimension aligns most clearly with local-scale characteristics of 

street networks. Higher values of D correspond in many cases with increased reachability and, in certain 

contexts, with meshedness, indicating an association with denser short-range interconnections. By contrast, 

its relationship with alignment-related indicators such as straightness and harmonic mean shortest path 

length is weak and inconsistent. This confirms that fractal dimension does not represent broader route 

geometry or directional structure and should not be interpreted as a comprehensive descriptor of overall 

network configuration. 

Taken together, these findings indicate that fractal dimension provides a meaningful, but bounded, 

analytical lens for comparing urban street networks. Its primary value lies in representing geometric 

subdivision and aspects of local articulation, allowing the systematic comparison of spatial texture across 

cities and urban periods. At the same time, its interpretive scope remains limited with respect to alignment-

related characteristics, reinforcing the necessity of combining fractal measures with complementary 

topological indicators when examining street-network structure. 
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Overall, the thesis contributes to the literature by offering an empirically grounded evaluation of fractal 

dimension in relation to widely cited claims about the structural advantages of organically developed street 

networks. It demonstrates that such claims are partially supported, particularly at the local scale, while also 

clarifying the limits of fractal metrics in capturing broader network organization. These conclusions 

establish a clear foundation for the subsequent discussion of methodological constraints and potential 

directions for further research. 
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Research limitations 

 

This chapter outlines the principal constraints that shape the scope and interpretation of the findings 

presented in this thesis. These limitations do not undermine the validity of the analysis; rather, they clarify 

the precise conditions under which the results should be understood and the boundaries beyond which direct 

generalization is not warranted. 

Methodological and scale-related constraints 

Fractal dimension is conceptually grounded in scale-dependent analysis, as its theoretical formulation 

concerns how spatial patterns change across varying levels of observation. In this study, however, fractal 

dimension was estimated from street-network representations at a fixed cartographic scale (1:10,000). As 

a result, the reported values reflect geometric subdivision at this resolution rather than explicitly tested 

multi-scale behavior. The analysis therefore does not examine how fractal properties might vary under 

different levels of spatial aggregation. Consequently, the findings should not be interpreted as 

characterizing true scale invariance, but rather as relative differences under a consistent mapping scale. 

Additionally, the fixed spatial sampling window of 1.2 km × 1.2 km ensured comparability but introduces 

constraints. While suitable for neighborhood-level analysis, this frame does not capture wider urban 

infrastructure patterns, regional connectivity, or peripheral network structures. Large-scale structural 

dynamics beyond the selected grid therefore fall outside the analytical scope of the study. 

A further methodological limitation concerns the absence of road-type differentiation within the analysis. 

Streets were not categorized according to functional hierarchy (e.g. arterial, collector, local), primarily due 

to inconsistent tagging across cities, particularly in newer urban areas. As a result, the analysis does not 

distinguish between different functional roles within the network and therefore cannot address how 

hierarchical street organization may influence the structural indicators examined. 

In addition, the analytical framework is based entirely on structural indicators derived from graph 

representations of street networks. Measures such as reachability index, meshedness coefficient, mean 

straightness, and harmonic mean shortest path length describe potential accessibility and network 

configuration, not observed mobility or pedestrian behavior. No empirical data on movement patterns, 

travel frequencies, or user experience were incorporated. Therefore, the results pertain to the structural 

conditions that shape possible movement rather than to actual patterns of use or perceived walkability.  
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Data, selection, and scope-related constraints 

The study adopts a paired design based on the comparison of historic cores and modern planned extensions 

within the same city. This selection strategy strengthens internal comparability by isolating structural 

differences attributable to development period and planning logic while holding broader contextual factors 

constant. However, it also limits the scope of generalization to urban forms that clearly display this dual 

morphology. The results therefore apply most directly to cities characterized by a discernible contrast 

between organically evolved historic areas and formally planned modern districts. Other configurations, 

such as suburban sprawl or hybrid transitional fabrics, are not directly represented and may exhibit different 

structural relationships between fractal dimension and network configuration. 

The study relies on spatial data derived from publicly available cartographic sources and standardized 

preprocessing procedures. Although care was taken to ensure consistency in data preparation, minor 

variations in mapping detail or digitization practices may persist, particularly in older or fragmented urban 

fabrics. These factors may introduce small deviations in the calculation of certain indicators, although the 

overall comparative patterns observed across the sample remain robust. 

Analytical and interpretive constraints 

The analysis is based on a defined set of geometric and topological indicators, including intersection 

density, average edge length, meshedness coefficient, reachability index, mean straightness, and harmonic 

mean shortest path length. While these measures capture key aspects of street-network structure, they do 

not exhaust the range of possible analytical perspectives. Alternative metrics such as betweenness 

centrality, closeness, or angular integration may reveal additional structural dimensions not addressed in 

this study. The interpretive conclusions therefore reflect the adopted analytical frame rather than a 

comprehensive representation of all possible network properties. 

The statistical approach adopted in this study identifies associations between fractal dimension and selected 

street-network indicators through correlation-based analysis. While these relationships provide insight into 

structural co-variation, they do not establish causal mechanisms. Observed correlations should therefore 

not be interpreted as evidence that changes in fractal dimension directly produce specific connectivity 

outcomes or vice versa. The findings describe patterned relationships within the sampled networks, not 

deterministic or predictive rules governing street form. 

Taken together, these limitations define the analytical boundaries of the thesis. The results provide a 

consistent and empirically grounded assessment of how fractal dimension relates to particular aspects of 

street-network structure within a controlled methodological framework. At the same time, they highlight 

the importance of maintaining conceptual precision and avoiding the overextension of fractal interpretation 

beyond the scale, data, and indicator set employed in the present analysis. 
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Recommendations and Future research 

 

This thesis examined street-network form and configuration by situating fractal dimension as a central 

descriptor of geometric subdivision and structural organization. A focused direction for future research is 

to extend this line of inquiry toward movement-based and perceptual dimensions interpreted through fractal 

variation.  

Future studies should therefore examine whether districts exhibiting higher or lower fractal dimension 

display systematic differences in pedestrian flow, vehicle circulation, congestion patterns, and travel time 

distributions. The use of traffic counts, GPS traces, mobile positioning data, or pedestrian sensors would 

enable direct comparison between fractal-based structural characteristics and movement patterns, clarifying 

the extent to which fractal-like street configurations align with modes or intensities of use under real-world 

conditions. 

Beyond movement volume, future work should incorporate temporal dynamics into the analysis. Evaluating 

how street networks accommodate under varying conditions – such as peak versus off-peak periods, 

weekday versus weekend patterns, or seasonal fluctuations – would further clarify how fractal street 

structure interacts with time-dependent operational pressures. This would shift analysis from static 

representation toward process-oriented understanding of street network behavior. 

A parallel line of research should address perceptual and cognitive aspects of navigability in relation to 

fractal geometry. Future research could explore whether higher levels of geometric subdivision, as 

expressed through fractal dimension, influence perceived legibility, orientation, and wayfinding ease. 

Methods such as cognitive mapping, controlled navigation experiments, or survey-based assessments 

would allow evaluation of whether fractal complexity supports or hinders intuitive spatial comprehension.  

Together, these approaches would enable a more comprehensive framework for interpreting street 

networks, situating fractal dimension within a broader set of structural, operational, and experiential 

indicators that describe how urban form shapes movement and navigation. 
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Appendix 

 

A-1. The list of cities by region and country 

Europe Country City 

 

Europe Country City 

North Denmark 

Odense 

Western Austria 

Graz 
Esbjerg Linz 
Aalborg Innsbruck 
Aarhus Klagenfurt 

Copenhagen Vienna 

North Finland 

Helsinki 

Western Belgium 

Ghent 
Tampere Antwerp 
Mikkeli Bruges 
Turku Brussels 
Pori Ostend 

North Norway 

Hamar 

Western Germany 

Hamburg 
Bergen Düsseldorf 

Stavanger Nuremberg 
Tonsberg Augsburg 

Oslo Cologne (Koln) 

North Sweden 

Stockholm 

Western France 

Bordeaux 
Gothenburg Toulouse 
Helsingborg Dijon 

Malmo Rouen 
Vasteras Beziers 

Europe Country City 

Western Netherlands 

Nijmegen 

East Bulgaria 

Haskovo Eindhoven 
Yambol Tilburg 
Varna Zoetermeer 

Plovdiv Breda 
Ruse Europe Country City 

East Czech Republic 

Brno 

South Greece 

Thessaloniki 
Prague Katerini 
Pilsen Larissa 

Liberec Ioannina 
Ostrava Lamia 

East Hungary 

Debrecen 

South Italy 

Florence 
Gyongyos Naples 

Nyiregyhaza Palermo 
Budapest Bologna 

Pecs Padua 

East Poland 

Poznan 

South Portugal 

Porto 
Częstochowa Lisbon 

Lodz Castelo Branco 
Wroclaw Setubal 
Warsaw Evora 
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East Romania 

Bucharest 

South 
Republic of 

Cyprus 

Nicosia 
Craiova Paphos 
Oradea Limassol 

Satu Mare Larnaca 
Timisoara Famagusta 

East Slovakia 

Bratislava 

South Spain 

Granada 
Košice Seville 

Nove Zamky Cordoba 
Trnava Zaragoza 
Nitra Malaga 

 

 

A-2.  Python scripts for downloading and projecting street network data 

The following Python script reads a road network shapefile from a local directory, reprojects it to the 
appropriate city-specific projected coordinate system (CRS), and plots the result. 
To adapt the script for different cities, it is necessary to change the values of shapefile_path (the file 
location) and local_crs (EPSG code). 

import geopandas as gpd 
import matplotlib.pyplot as plt 
import neatnet 
 
# User-defined variables 
shapefile_path = r"PATH/TO/FILE.shp"  # <-- Change to shapefile path for desired city 
local_crs = EPSG_CODE                # <-- Change to appropriate CRS (EPSG code) 
 
# Loading streets from a shapefile 
roads = gpd.read_file(shapefile_path) 
 
# Ensuring it is in a local projected CRS 
if roads.crs.is_geographic: 
    roads = roads.to_crs(epsg=local_crs) 
 
# Plot streets 
ax = roads.plot(figsize=(15, 15), linewidth=0.5, color='black') 
ax.set_axis_off() 
plt.title(f"{place} Road Network") 
plt.show() 
 
# Neatify 
simplified = neatnet.neatify(roads) 
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A-3. Differences in fractal dimension between Historic and Modern samples across 100 Cities 

Note: Positive ΔD values indicate that historic areas are more complex; negative values, vice versa. 
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A-4. Descriptive statistics of network indicators for historic and modern districts by regions. 

Northern Europe 
C

ou
nt

ry
 

City District 
Intersection 

Density 

Avg. 
Edge 

Length 

Reach. 
Index 

(600m) 

Harmonic 
Mean 

shortest path 

Mean 
straightness 

Meshedness 
coefficient 

D
en

m
ar

k 

Odense 
Old 70.1 81.2 35.66 452.5 0.785 0.208 
New 86.8 108.4 39.69 639.2 0.565 0.027 

Esbjerg 
Old 68.1 93.8 39.65 493.9 0.766 0.234 
New 65.9 102.6 33.95 489.9 0.758 0.148 

Aalborg 
Old 75.0 93.8 36.94 513.5 0.746 0.157 
New 59.7 102.6 22.03 594.2 0.653 0.066 

Aarhus 
Old 74.3 85.5 36.33 504.6 0.685 0.137 
New 61.8 112.8 33.17 478.4 0.802 0.154 

Copenhagen 
Old 90.9 81.47 56.75 451.1 0.774 0.186 
New 83.3 97.1 44.90 464.0 0.801 0.216 

Fi
nl

an
d 

Helsinki 
Old 84.7 91.9 50.30 464.8 0.804 0.251 
New 31.4 157.9 16.31 546.1 0.679 0.146 

Tampere 
Old 69.2 93.5 42.58 515.5 0.733 0.210 
New 70.3 71.7 53.70 543.2 0.641 0.193 

Mikkeli 
Old 59.2 106.9 31.19 533.3 0.738 0.198 
New 46.2 113.2 34.68 462.1 0.712 0.122 

Turku 
Old 61.5 109.1 24.04 515.0 0.765 0.183 
New 44.4 127.5 34.23 348.9 0.814 0.175 

Pori 
Old 97.2 79.1 58.13 422.5 0.799 0.276 
New 106.9 72.4 77.52 420.5 0.745 0.265 

N
or

w
ay

 

Hamar 
Old 99.3 79.8 63.08 479.8 0.770 0.199 
New 66.7 98.8 39.72 496.5 0.722 0.155 

Bergen 
Old 113.2 65.1 54.99 533.4 0.661 0.154 
New 79.2 77.2 62.00 431.7 0.612 0.122 

Stavanger 
Old 129.8 69.1 100.09 402.6 0.767 0.206 
New 125.0 74.6 77.22 478.9 0.695 0.177 

Tonsberg 
Old 95.8 76.4 72.28 425.0 0.750 0.217 
New 84.7 83.3 53.07 456.6 0.726 0.157 

Oslo 
Old 103.5 81.7 65.21 442.0 0.809 0.223 
New 81.9 87.7 55.73 434.0 0.805 0.224 

Sw
ed

en
 

Stockholm 
Old 100.7 84.9 48.84 546.4 0.709 0.186 
New 88.9 88.0 55.34 455.9 0.752 0.260 

Gothenburg 
Old 88.2 76.6 61.49 459.8 0.754 0.208 
New 102.1 80.6 54.84 480.8 0.712 0.172 

Helsingborg 
Old 95.8 78.1 56.93 435.2 0.779 0.199 
New 93.8 90.1 68.04 431.8 0.788 0.194 

Malmo 
Old 106.3 85.2 64.96 467.5 0.778 0.225 
New 70.1 88.5 42.70 476.4 0.710 0.127 

Vasteras 
Old 102.8 78.9 62.76 486.6 0.710 0.201 
New 75.0 93.3 36.80 494.8 0.660 0.145 
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Western Europe 
C

ou
nt

ry
 

City District 
Intersection 

Density 

Avg. 
Edge 

Length 

Reach. 
Index 

(600m) 

Harmonic 
Mean 

shortest path 

Mean 
straightness 

Meshedness 
coefficient 

A
us

tr
ia

 

Graz 
Old 81.3 80.2 51.54 446.2 0.746 0.175 
New 63.2 117.2 35.79 481.4 0.784 0.217 

Linz 
Old 72.2 100.5 32.42 518.6 0.756 0.200 
New 91.7 92.3 45.59 508.7 0.745 0.179 

Innsbruck 
Old 81.9 74.0 53.17 447.8 0.772 0.219 
New 72.2 83.2 49.96 427.9 0.812 0.258 

Klagenfurt 
Old 71.5 111.3 30.53 525.8 0.737 0.158 
New 77.8 104.6 47.86 459.1 0.789 0.218 

Vienna 
Old 121.5 70.5 57.17 568.9 0.662 0.152 
New 102.8 87.8 62.06 483.7 0.795 0.287 

B
el

gi
um

 

Ghent 
Old 163.2 62.3 108.72 462.4 0.780 0.203 
New 86.1 92.0 43.1 500.3 0.726 0.135 

Antwerp 
Old 125.0 68.3 72.55 371.1 0.771 0.193 
New 92.4 81.2 89.19 488.6 0.822 0.235 

Bruges 
Old 152.8 69.7 90.88 491.4 0.746 0.179 
New 75.0 88.3 26.86 570.7 0.608 0.104 

Brussels 
Old 118.1 83.2 77.86 449.0 0.841 0.285 
New 98.6 93.9 55.69 459.7 0.835 0.263 

Ostend 
Old 113.9 77.8 83.51 429.5 0.826 0.251 
New 86.8 83.0 40.49 497.4 0.651 0.116 

G
er

m
an

y 

Hamburg 
Old 74.3 102.5 41.21 476.6 0.739 0.212 
New 39.6 128.2 22.83 455.0 0.752 0.152 

Düsseldorf 
Old 78.5 79.3 62.46 380.6 0.836 0.272 
New 75.0 85.4 46.54 467.0 0.748 0.172 

Nuremberg 
Old 99.3 90.1 51.44 530.5 0.766 0.208 
New 68.8 104.9 36.96 509.9 0.756 0.158 

Augsburg 
Old 123.6 69.0 75.71 480.3 0.701 0.166 
New 81.3 97.8 42.21 483.6 0.772 0.189 

Cologne 
Old 102.8 77.9 63.01 433.8 0.797 0.242 
New 66.7 103.5 34.25 471.5 0.747 0.137 

Fr
an

ce
 

Bordeaux 
Old 143.1 72.0 83.31 478.5 0.805 0.241 
New 78.50 91.7 43.91 490.2 0.750 0.176 

Toulouse 
Old 121.5 74.9 72.31 450.4 0.784 0.215 
New 102.1 85.0 59.32 454.9 0.766 0.184 

Dijon 
Old 113.2 66.2 65.06 503.2 0.695 0.207 
New 127.8 76.6 75.41 471.1 0.790 0.220 

Rouen 
Old 116.0 77.0 68.32 472.9 0.788 0.226 
New 111.1 83.3 65.75 472.4 0.770 0.186 

Beziers 
Old 248.6 50.5 155.82 500.9 0.749 0.235 
New 164.6 63.5 93.62 533.0 0.750 0.164 

N
et

he
rl

an
ds

 

Nijmegen 
Old 109.7 74.5 63.22 468.8 0.769 0.176 
New 137.5 71.8 87.76 470.0 0.781 0.200 

Eindhoven 
Old 117.4 74.1 63.10 519.9 0.739 0.168 
New 95.1 80.5 60.74 393.9 0.745 0.199 

Tilburg 
Old 131.3 71.8 80.73 506.8 0.759 0.150 
New 125.7 68.2 71.88 509.7 0.702 0.175 

Zoetermeer 
Old 161.8 58.8 85.43 605.7 0.643 0.097 
New 88.9 84.7 53.16 477.9 0.735 0.180 

Breda 
Old 106.3 79.5 64.37 486.7 0.744 0.178 
New 100.0 75.4 71.23 451.6 0.701 0.214 
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Eastern Europe 
C

ou
nt

ry
 

City District 
Intersection 

Density 

Avg. 
Edge 

Length 

Reach. 
Index 

(600m) 

Harmonic 
Mean 

shortest path 

Mean 
straightness 

Meshedness 
coefficient 

B
ul

ga
ri

a 

Haskovo 
 

Old 155.6 70.7 93.57 509.7 0.747 0.202 
New 147.2 80.9 76.94 539.7 0.715 0.193 

Yambol 
 

Old 96.5 87.6 78.3 422.4 0.831 0.254 
New 97.9 92.8 55.85 511.7 0.773 0.225 

Varna 
 

Old 120.1 69.1 77.95 499.5 0.705 0.196 
New 191.0 65.3 115.96 479.5 0.816 0.286 

Plovdiv 
 

Old 121.5 81.6 70.40 528.8 0.748 0.195 
New 113.9 81.2 71.21 489.5 0.761 0.213 

Ruse Old 121.5 84.9 68.52 517.3 0.797 0.228 
New 97.2 76.3 67.84 430.0 0.774 0.231 

C
ze

ch
 R

ep
ub

lic
 

Brno 
 

Old 61.8 98.0 31.93 467.5 0.733 0.171 
New 73.6 101.6 40.03 468.6 0.788 0.255 

Prague 
 

Old 93.8 93.5 42.9 514.4 0.767 0.264 
New 56.3 114.8 29.98 484.9 0.713 0.179 

Pilsen 
 

Old 77.8 91.8 54.68 452.0 0.782 0.198 
New 72.2 95.1 37.57 537.8 0.706 0.155 

Liberec 
 

Old 79.2 100.6 40.01 493.4 0.740 0.163 
New 77.8 95.2 43.20 499.9 0.716 0.186 

Ostrava Old 89.6 88.5 50.51 492.4 0.755 0.208 
New 93.8 83.5 60.73 453.0 0.769 0.167 

H
un

ga
ry

 

Pecs 
 

Old 98.6 83.9 56.01 481.1 0.706 0.155 
New 75.0 96.1 43.76 500.2 0.755 0.173 

Budapest 
 

Old 88.2 95.8 44.84 505.5 0.782 0.198 
New 73.6 109.9 40.90 482.4 0.805 0.286 

Debrecen 
 

Old 55.6 114.8 24.15 533.1 0.719 0.158 
New 57.7 119.1 33.62 525.0 0.782 0.232 

Gyongyos 
 

Old 88.2 82.3 67.59 399.0 0.809 0.219 
New 113.9 69.9 82.40 423.8 0.786 0.215 

Nyiregyhaza Old 72.2 98.7 39.44 461.0 0.734 0.165 
New 47.2 162.8 19.90 488.8 0.718 0.191 

Po
la

nd
 

Poznan 
 

Old 61.8 102.3 33.90 449.0 0.757 0.204 
New 62.5 112.8 34.97 437.6 0.754 0.201 

Częstochowa 
 

Old 55.6 112.5 29.20 469.6 0.763 0.201 
New 55.6 119.6 38.68 464.4 0.717 0.116 

Lodz 
 

Old 52.1 125.6 29.87 471.5 0.743 0.155 
New 62.5 122.6 30.5 513.0 0.734 0.185 

Wroclaw 
 

Old 70.1 97.7 45.17 428.0 0.796 0.237 
New 48.6 130.1 28.08 435.5 0.773 0.228 

Warsaw Old 53.5 113.0 32.00 461.3 0.775 0.174 
New 49.3 131.9 27.67 472.4 0.765 0.188 

R
om

an
ia

 

Bucharest 
 

Old 127.8 69.1 90.59 461.2 0.773 0.223 
New 134.7 78.2 96.37 469.3 0.769 0.178 

Craiova 
 

Old 84.0 86.5 45.81 484.8 0.749 0.187 
New 92.4 87.2 55.43 487.2 0.776 0.185 

Oradea 
 

Old 99.3 86.5 63.85 450.7 0.783 0.233 
New 92.4 71.2 70.90 333.7 0.799 0.214 

Satu Mare 
 

Old 73.6 94.6 38.54 479.3 0.740 0.176 
New 66.7 103.9 46.67 356.6 0.784 0.220 

Timisoara Old 73.6 107.4 36.95 500.9 0.776 0.260 
New 47.9 147.9 24.97 462.8 0.808 0.238 
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Sl
ov

ak
ia

 
Bratislava 
 

Old 83.3 84.7 54.79 464.0 0.755 0.225 
New 74.3 108.0 33.16 511.3 0.711 0.195 

Košice 
 

Old 78.5 76.2 46.95 389.6 0.767 0.224 
New 41.7 115.9 24.15 350.3 0.717 0.140 

Nove Zamky 
 

Old 68.8 79.0 47.96 380.1 0.727 0.168 
New 66.0 106.1 35.83 506.3 0.725 0.155 

Trnava 
 

Old 75.0 88.5 40.49 412.9 0.748 0.187 
New 72.2 89.7 48.73 375.8 0.774 0.174 

Nitra Old 79.2 87.6 34.67 590.9 0.635 0.061 
New 70.1 93.5 32.80 629.6 0.620 0.048 

 

Southern Europe 

C
ou

nt
ry

 

City District 
Intersection 

Density 

Avg. 
Edge 

Length 

Reach. 
Index 

(600m) 

Harmonic 
Mean 

shortest path 

Mean 
straightness 

Meshedness 
coefficient 

G
re

ec
e 

Thessaloniki 
Old 302.8 47.8 146.65 523.1 0.760 0.207 
New 243.1 54.1 209.55 493.3 0.792 0.247 

Katerini 
Old 170.1 65.4 103.7 512.1 0.783 0.210 
New 150.0 66.2 93.34 488.1 0.791 0.206 

Larissa 
Old 216.0 59.4 105.66 474.2 0.819 0.271 
New 179.9 62.5 120.87 518.2 0.708 0.221 

Ioannina 
Old 167.4 66.4 123.05 444.3 0.781 0.202 
New 153.5 72.0 95.55 488.1 0.807 0.286 

Lamia 
Old 204.2 59.2 116.47 518.9 0.747 0.198 
New 171.5 60.5 130.62 473.4 0.773 0.195 

It
al

y 

Florence 
Old 116.7 65.7 84.87 424.7 0.795 0.236 
New 102.1 80.9 74.96 429.0 0.808 0.226 

Naples 
Old 146.5 64.3 94.49 465.7 0.750 0.200 
New 131.3 65.7 81.17 491.1 0.743 0.177 

Palermo 
Old 164.6 56.5 86.58 593.6 0.601 0.129 
New 138.2 75.3 74.31 501.6 0.782 0.277 

Bologna 
Old 88.9 76.5 44.78 498.2 0.673 0.140 
New 81.3 91.4 47.43 450.0 0.789 0.236 

Padua 
Old 99.3 69.9 59.71 491.0 0.674 0.125 
New 131.3 72.0 77.84 551.1 0.693 0.114 

Po
rt

ug
al

 

Porto 
Old 129.9 68.1 73.08 485.2 0.753 0.179 
New 84.0 83.3 60.02 399.0 0.824 0.255 

Lisbon 
Old 169.4 64.0 103.35 484.6 0.759 0.208 
New 86.1 87.9 51.10 473.6 0.724 0.168 

Castelo 
Branco 

Old 141.0 56.6 110.15 441.4 0.772 0.200 
New 54.2 120.3 21.07 380.7 0.813 0.235 

Setubal 
Old 169.4 62.7 115.38 517.6 0.733 0.162 
New 106.3 74.0 61.71 460.7 0.732 0.167 

Evora 
Old 215.3 44.1 191.62 429.6 0.756 0.222 
New 147.2 59.4 114.73 440.7 0.723 0.205 

R
ep

ub
lic

 o
f 

C
yp

ru
s Nicosia 
Old 161.1 75.5 72.81 572.8 0.740 0.151 
New 129.9 75.5 88.72 453.7 0.817 0.215 

Paphos 
Old 129.9 73.7 78.61 497.7 0.744 0.153 
New 132.6 76.6 73.78 515.1 0.747 0.172 

Limassol 
Old 187.5 70.2 93.08 536.5 0.758 0.203 
New 159.0 74.7 73 544.1 0.713 0.176 

Larnaca 
Old 173.6 68.3 95.57 509.0 0.780 0.202 
New 126.4 79.0 46.48 659.1 0.616 0.095 
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Famagusta 
Old 157.6 68.2 84.05 474.4 0.809 0.192 
New 104.2 84.2 52.40 523.6 0.759 0.193 

Sp
ai

n 

Malaga 
Old 204.2 57.7 154.63 447.1 0.791 0.252 
New 129.9 72.9 82.62 465.5 0.748 0.188 

Granada 
Old 175.7 44.3 193.37 499.0 0.741 0.191 
New 221.5 52.8 178.28 447.6 0.788 0.230 

Seville 
Old 158.6 60.5 73.57 415.0 0.683 0.144 
New 146.8 61.1 140.84 429.8 0.805 0.278 

Cordoba 
Old 111.1 63.7 69.13 459.2 0.753 0.185 
New 134.7 70.5 103.9 434.9 0.779 0.273 

Zaragoza 
Old 144.9 65.4 59.97 466.0 0.709 0.206 
New 129.0 70.4 82.03 458.4 0.794 0.272 

 

 

A-5. City-level differences (Δ= 𝒐𝒍𝒅 − 𝒏𝒆𝒘) between historic and modern districts for six street-
network indicators. 

Northern Europe 

C
ou

nt
ry

 

City 
∆ Intersection 

Density 

∆ Average 
Edge 

Length 

∆ Harmonic 
Mean 

shortest path 

∆ Mean 
straightness 

∆ Reach. 
Index 

(600m) 

∆ Meshedness 
coefficient 

D
en

m
ar

k 

Odense -16.67 -27.20 -186.70 0.220 -4.03 0.182 

Esbjerg 2.09 -8.80 4.01 0.008 5.700 0.086 

Aalborg 15.28 -8.74 -80.65 0.093 14.91 0.091 

Aarhus 12.50 -27.34 26.11 -0.117 3.16 -0.017 

Copenhagen 7.64 -15.66 -12.86 -0.027 11.85 -0.030 

Fi
nl

an
d 

Helsinki 53.36 -66.04 -81.29 0.125 33.99 0.105 

Tampere -1.02 21.81 -27.69 0.092 -11.12 0.016 

Mikkeli 13.02 -6.27 71.14 0.026 -3.49 0.076 

Turku 17.16 -18.41 166.11 -0.049 -10.19 0.008 

Pori -9.72 6.66 2.00 0.054 -19.39 0.011 

N
or

w
ay

 

Hamar 32.64 -18.94 -16.71 0.048 23.36 0.044 

Bergen 34.02 -12.09 101.63 0.049 -7.01 0.033 

Stavanger 4.86 -5.54 -76.27 0.072 22.87 0.029 

Tonsberg 11.11 -6.87 -31.56 0.024 19.21 0.060 

Oslo 21.53 -6.00 8.00 0.004 9.48 -0.001 

Sw
ed

en
 

Stockholm 11.80 -3.09 90.49 -0.044 -6.50 -0.074 

Gothenburg -13.89 -4.04 -20.94 0.043 6.65 0.035 

Helsingborg 2.08 -12.02 3.42 -0.009 -11.11 0.005 

Malmo 36.11 -3.33 -8.82 0.068 22.26 0.098 

Vasteras 27.78 -14.44 -8.17 0.050 25.96 0.056 

  𝑥෤ = 12.15 𝑥෤ = −8.77 𝑥෤ = −8.49 𝑥෤ = 0.046 𝑥෤ = 6.18 𝑥෤ = 0.034 
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Western Europe 
C

ou
nt

ry
 

City 
∆ Intersection 

Density 

∆ Average 
Edge 

Length 

∆ Harmonic 
Mean shortest 

path 

∆ Mean 
straightness 

∆ Reach. 
Index 

(600m) 

∆ Meshedness 
coefficient 

A
us

tr
ia

 

Graz 18.06 -37.01 -35.20 -0.037 15.75 -0.042 

Linz -19.45 8.21 9.91 0.012 -13.17 0.021 

Innsbruck 9.72 -9.20 19.89 -0.040 3.21 -0.039 

Klagenfurt -6.25 6.64 66.65 -0.052 -17.33 -0.060 

Vienna 18.75 -17.31 85.23 -0.133 -4.89 -0.134 

B
el

gi
um

 

Ghent 77.08 -29.77 -37.85 0.055 65.62 0.068 

Antwerp 32.64 -12.91 -117.50 -0.052 -16.64 -0.043 

Bruges 77.78 -18.68 -79.27 0.138 64.02 0.075 

Brussels 19.45 -10.64 -10.67 0.006 22.17 0.022 

Ostend 27.08 -5.19 -67.93 0.175 43.02 0.135 

G
er

m
an

y 

Hamburg 34.73 -25.71 21.61 -0.013 18.38 0.061 

Düsseldorf 3.47 -6.15 -86.46 0.088 15.92 0.100 

Nuremberg 30.56 -14.74 20.63 0.010 14.48 0.050 

Augsburg 42.36 -28.82 -3.32 -0.071 33.50 -0.023 

Cologne 36.11 -25.58 -37.72 0.050 28.76 0.104 

Fr
an

ce
 

Bordeaux 64.59 -19.64 -11.71 0.055 39.40 0.065 

Toulouse 19.45 -10.09 -4.58 0.018 12.99 0.032 

Dijon -14.59 -10.34 32.14 -0.095 -10.35 -0.013 

Rouen 4.86 -6.33 0.55 0.018 2.570 0.040 

Beziers 84.03 -12.94 -32.13 -0.001 62.20 0.071 

N
et

he
rl

an
ds

 

Nijmegen -27.78 2.71 -1.15 -0.012 -24.54 -0.024 

Eindhoven 22.22 -6.45 126.04 -0.006 2.36 -0.031 

Tilburg 5.56 3.62 -2.83 0.057 8.85 -0.026 

Zoetermeer 72.92 -25.94 127.87 -0.092 32.27 -0.084 

Breda 6.25 4.16 35.09 0.043 -6.86 -0.036 

  𝑥෤ = 19.45 𝑥෤ = −10.6 𝑥෤ = −2.83 𝑥෤ = 0.006 𝑥෤ = 14.48 𝑥෤ = 0.021 
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Eastern Europe 
C

ou
nt

ry
 

City 
∆ Intersection 

Density 

∆ Average 
Edge 

Length 

∆ Harmonic 
Mean 

shortest path 

∆ Mean 
straightness 

∆ Reach. 
Index 

(600m) 

∆ Meshedness 
coefficient 

B
ul

ga
ri

a 

Haskovo 8.34 -10.15 -30.00 0.033 16.63 0.009 

Yambol -1.39 -5.13 -89.30 0.057 22.45 0.029 

Varna -70.83 3.80 20.06 -0.111 -38.01 -0.089 

Plovdiv 7.64 0.48 39.32 -0.013 -0.81 -0.018 

Ruse 24.31 8.61 87.30 0.023 0.68 -0.003 

C
ze

ch
 R

ep
ub

lic
 Brno -11.80 -3.69 -1.09 -0.055 -8.10 -0.085 

Prague 37.50 -21.30 29.52 0.054 12.92 0.085 

Pilsen 5.56 -3.23 -85.79 0.076 17.11 0.043 

Liberec 1.39 5.39 -6.48 0.024 -3.19 -0.023 

Ostrava -4.17 4.97 39.43 -0.014 -10.22 0.041 

H
un

ga
ry

 

Pecs 23.61 -12.16 -19.12 -0.050 12.25 -0.018 

Budapest 14.58 -14.19 23.12 -0.023 3.94 -0.088 

Debrecen -2.09 -4.36 8.05 -0.062 -9.47 -0.074 

Gyongyos -25.70 12.38 -24.81 0.023 -14.81 0.004 

Nyiregyhaza 25.00 -64.06 -27.78 0.016 19.54 -0.026 

Po
la

nd
 

Poznan -0.69 -10.45 11.38 0.003 -1.07 0.003 

Częstochowa 0 -7.06 5.14 0.046 -9.48 0.085 

Lodz -10.42 2.96 -41.44 0.009 -0.63 -0.031 

Wroclaw 21.53 -32.43 -7.54 0.023 17.09 0.009 

Warsaw 4.16 -18.88 -11.06 0.010 4.33 -0.014 

R
om

an
ia

 

Bucharest -6.94 -9.09 -8.10 0.005 -5.78 0.045 

Craiova -8.34 -0.69 -2.38 -0.028 -9.62 0.002 

Oradea 6.95 15.32 117.04 -0.016 -7.05 0.019 

Satu Mare 6.94 -9.27 122.71 -0.044 -8.13 -0.044 

Timisoara 25.69 -40.53 38.07 -0.032 11.98 0.022 

Sl
ov

ak
ia

 

Bratislava 9.02 -23.27 -47.33 0.044 21.63 0.030 

Košice 36.80 -39.73 39.28 0.050 22.80 0.084 

Nove Zamky 2.78 -27.05 -126.18 0.002 12.13 0.014 

Trnava 2.78 -1.14 37.09 -0.026 -8.24 0.013 

Nitra 9.03 -5.81 -38.66 0.015 1.87 0.014 

  𝑥෤ = 4.86 𝑥෤ = −6.44 𝑥෤ = −1.74 𝑥෤ = 0.007 𝑥෤ = 0.025 𝑥෤ = 0.007 
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Southern Europe 
C

ou
nt

ry
 

City 
∆ Intersection 

Density 

∆ Average 
Edge 

Length 

∆ Harmonic 
Mean shortest 

path 

∆ Mean 
straightness 

∆ Reach. 
Index 

(600m) 

∆ Meshedness 
coefficient 

G
re

ec
e 

Thessaloniki 59.72 -6.31 29.71 -0.031 -62.90 -0.041 

Katerini 20.14 -0.83 24.02 -0.008 10.36 0.004 

Larissa 36.11 -3.10 -43.98 0.111 -15.21 0.050 

Ioannina 13.89 -5.66 -43.79 -0.026 27.50 -0.085 

Lamia 32.64 -1.25 45.53 -0.027 -14.15 0.002 

It
al

y 

Florence 14.59 -15.17 -4.31 -0.013 9.91 0.011 

Naples 15.28 -1.39 -25.40 0.007 13.32 0.023 

Palermo 26.39 -18.79 92.01 -0.182 12.27 -0.148 

Bologna 7.64 -14.97 48.14 -0.115 -2.65 -0.096 

Padua -31.94 -2.09 -60.14 -0.019 -18.13 0.011 

Po
rt

ug
al

 

Porto 45.83 -15.22 86.23 -0.071 13.06 -0.076 

Lisbon 83.33 -23.88 11.05 0.034 52.25 0.040 

Castelo Branco 86.80 -63.71 60.72 -0.041 89.08 -0.035 

Setubal 63.19 -11.23 56.89 0.001 53.67 -0.005 

Evora 68.06 -15.27 -11.13 0.033 76.89 0.017 

R
ep

ub
lic

 o
f 

C
yp

ru
s Nicosia 31.25 -0.01 119.10 -0.077 -15.91 -0.065 

Paphos -2.78 -2.97 -17.40 -0.003 4.83 -0.019 

Limassol 28.47 -4.50 -7.55 0.045 20.08 0.027 

Larnaca 47.22 -10.67 -150.13 0.164 49.09 0.107 

Famagusta 53.47 -16.04 -49.24 0.050 31.65 -0.001 

Sp
ai

n 

Malaga 74.31 -15.20 -18.37 0.043 72.01 0.065 

Granada -45.84 -8.48 51.38 -0.047 15.09 -0.039 

Seville 11.77 -0.64 -14.82 -0.121 -67.27 -0.133 

Cordoba -23.61 -6.77 24.30 -0.026 -34.77 -0.088 

Zaragoza 15.89 -5.07 7.60 -0.085 -22.06 -0.066 

  𝑥෤ = 28.47 𝑥෤ = −6.77 𝑥෤ = 7.6 𝑥෤ = −0.02 𝑥෤ = 12.27 𝑥෤ = −0.005 
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A-6. Extended Correlation Results for Fractal Dimension and Network Indicators 

A-6.1. Fractal dimension vs 6 network indicators in the historic part of the city (across 100 
European cities) 
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A-6.2. Fractal dimension vs 6 network indicators in the modern part of the city (across 100 
European cities) 

     

     

     

 


