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Abstract

The growing reliance on cloud-native technologies has made Kubernetes a cor-
nerstone of modern software infrastructures. However, deploying and managing
Kubernetes clusters directly in bare-metal environments still poses significant chal-
lenges. The lack of native provisioning mechanisms, the diversity of hardware
configurations, and the need to coordinate manually upgrades and scaling opera-
tions make these environments difficult to maintain. For organizations and research
institutions that depend on on-premise resources — whether for performance,
security, or data sovereignty reasons — achieving the same level of automation and
resilience found in public clouds remains an open problem.

This thesis proposes an automated and extensible framework that brings cloud-
grade manageability to bare-metal Kubernetes clusters. The framework follows
a declarative and reproducible design that integrates the traditionally separate
infrastructure and orchestration layers into a single, coherent workflow. Metal3
handles bare-metal provisioning, while KubeSpray leverages Ansible to automate
cluster deployment and lifecycle operations such as scaling and upgrading. The
networking layer is enhanced through the adoption of Cilium, providing advanced
observability and ensuring efficient communication across workloads. At the
operational level, Argo CD enables GitOps-based continuous delivery, ensuring
version-controlled deployments and consistent synchronization of environments.

The resulting system demonstrates a scalable and maintainable approach to
operating on-premise Kubernetes infrastructures while greatly reducing the need
for manual intervention. It shows that automation principles typically associated
with cloud providers can be effectively reproduced in self-managed settings, sub-
stantially decreasing administrative complexity while preserving flexibility and
performance. The framework also proves its extensibility by enabling the seamless
integration of additional functionalities, exemplified by the incorporation of GPU
workload management, which highlights its adaptability to evolving computational
requirements.
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Chapter 1

Introduction

Over the past decade, cloud-native technologies have reshaped the design and
operation of modern computing systems. Practices centered on containerization,
microservice architectures, and declarative configuration have enabled organizations
to build scalable and resilient services with a high degree of automation. Kubernetes
has emerged as the standard platform underpinning these developments, providing
mechanisms for orchestrating containerized workloads and abstracting infrastructure
complexity across a wide range of deployment environments.

Whereas cloud providers offer managed Kubernetes services with extensive
automation and well-integrated operational tooling, deploying Kubernetes on self-
managed bare-metal infrastructure presents substantial challenges. Operators must
provision physical machines, configure networking, standardize system settings, and
maintain cluster components without the automated support typically available
in cloud environments. Furthermore, lifecycle tasks such as upgrades, scaling
operations, and configuration changes — commonly referred to as Day-2 operations
- often receive comparatively less attention during initial cluster design, especially
in academic or research environments where long-term maintenance is not always
the primary focus. As a result, clusters tend to accumulate operational complexity
over time, making them harder to evolve or extend.

The CrownLabs platform at the Politecnico di Torino exemplifies this con-
text. CrownLabs is an on-premise Kubernetes-based solution designed to provide
students and researchers with remotely accessible virtualized environments. Its
architecture has proven to be effective for educational purposes; however, the un-
derlying Kubernetes cluster showed several areas where operational processes could
be streamlined or modernized. Upgrades required substantial manual intervention,
high-availability features were limited, and extensibility — such as the integra-
tion of GPU-accelerated workloads — was challenging within the existing setup.
While these limitations did not undermine the functionality of the platform, they
highlighted the need for a more automated and maintainable cluster foundation.

1



Introduction

This thesis addresses these challenges by designing and implementing an au-
tomated, scalable, and reproducible bare-metal Kubernetes environment tailored
to the operational needs of CrownLabs but generalizable to similar on-premise
clusters. The work draws on established open-source technologies — such as Metal3
for bare-metal provisioning, Kubespray for cluster automation, and Argo CD for
GitOps-based application delivery — to construct an infrastructure that reduces
manual overhead, improves consistency, and supports the long-term evolution of
the platform.

1.1 Goal
The objective of this thesis is to design and implement an automated bare-metal
Kubernetes cluster that addresses the operational limitations encountered in the
existing CrownLabs infrastructure. The new environment aims to:

• provide a reproducible and automated deployment workflow for bare-metal
servers,

• support a scalable and maintainable cluster architecture with improved opera-
tional consistency,

• streamline Day-2 operations such as upgrades, configuration changes, and
component lifecycle management,

• adopt a GitOps-based approach to ensure reliable, traceable, and declarative
management of cluster components and applications.

These goals reflect a broader intent to improve the long-term sustainability of
CrownLabs and to demonstrate how cloud-inspired operational practices can be
applied to on-premise Kubernetes environments.

1.2 Structure of this thesis
This thesis is structured as follows:

• Chapter 2 – Background introduces the fundamental concepts underlying this
work, including Kubernetes architecture, bare-metal infrastructure provisioning
challenges, and an overview of the CrownLabs platform.

• Chapter 3 – Design presents the architectural decisions that guided the de-
velopment of the new environment, covering bare-metal provisioning, cluster
topology, automation workflows, and GitOps integration.
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• Chapter 4 – Implementation describes the practical realization of the design,
including deployment automation with Kubespray, GitOps workflows with
Argo CD, and support for GPU-accelerated workloads.

• Chapter 5 – Results evaluates the effects of the proposed solution, discusses
operational improvements, and reflects on scalability and maintainability of
the system.

• Chapter 6 - Conclusion summarizes the contributions of the thesis and identifies
areas for future work.
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Chapter 2

Background

2.1 Kubernetes Fundamentals
Kubernetes has become the standard container orchestration platform for deploying
and managing containerized applications at scale. Originally developed by Google
and released open-source in 2014, it abstracts underlying infrastructure and pro-
vides a consistent API for managing workloads across diverse environments. This
section reviews Kubernetes architecture and operational characteristics essential to
understanding the challenges of bare-metal deployment.

2.1.1 Architecture Overview
Kubernetes separates concerns between cluster management and workload execution
through two node types: control plane nodes and worker nodes.

The control plane maintains cluster state and makes global decisions about
scheduling and scaling. Its core components include: the API server, which serves
as the central REST interface for all cluster interactions; etcd, a distributed key-
value store holding all cluster state; the scheduler, which assigns pods to nodes;
and the controller manager, which runs reconciliation loops to maintain desired
state.

Worker nodes execute containerized workloads through three essential com-
ponents: the kubelet, which communicates with the control plane and manages
pod lifecycle; the container runtime, which executes containers via the Container
Runtime Interface (CRI); and kube-proxy, which maintains network rules for service
routing.

This separation allows control plane optimization for management tasks while
worker nodes focus on application execution, with distinct security and resource
policies.
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2.1.2 High Availability
Production clusters require control plane high availability to prevent API unavail-
ability from blocking cluster management operations. This is typically achieved
by deploying multiple control plane nodes (three or five instances) behind a load
balancer, with all components running in active-active mode.

The etcd datastore uses Raft consensus across an odd number of members
(typically three or five) to maintain consistency and tolerate (n − 1)/2 member
failures while preserving quorum. For bare-metal deployments, implementing this
load balancing layer requires careful planning, adding complexity compared to
cloud-managed solutions.

2.1.3 Cluster Upgrades and Version Management
Kubernetes follows a version skew policy: control plane components should run
the same version, while worker kubelets can lag up to two minor versions behind
the API server. This provides flexibility but requires coordinated upgrades.

Upgrading clusters involves multiple steps with operational risk: control plane
components must be upgraded individually while maintaining API availability,
followed by coordinated worker node upgrades. Each node upgrade requires
draining pods to other nodes, potentially causing service interruptions. Beyond
core components, clusters include numerous add-ons (CNI plugins, storage drivers,
monitoring tools) with their own compatibility requirements, increasing upgrade
complexity and risk. Manual upgrade procedures are time-consuming and error-
prone, particularly in large clusters.

2.1.4 Bare-Metal vs Cloud-Managed Kubernetes
Cloud providers (GKE, EKS, AKS) abstract operational complexity: the provider
manages control plane deployment, high availability, security patching, and worker
node scaling automatically. Upgrades become simple API operations.

Bare-metal deployments require manual management of all lifecycle aspects: pro-
visioning servers, installing operating systems, deploying Kubernetes components,
implementing HA mechanisms, and managing networking and storage. Upgrades
must coordinate OS, Kubernetes, runtime, and software updates across multiple
machines. Scaling requires procuring and provisioning additional hardware.

The choice involves fundamental tradeoffs: bare-metal offers complete control and
customization for specific workloads and compliance requirements, with potential
cost advantages for existing hardware; cloud services provide operational simplicity
and predictable costs but less control and higher per-workload expenses. Certain
organizations require on-premise deployment for data sovereignty or regulatory
compliance.
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Understanding these differences motivates the thesis: bringing cloud-grade
automation and operational practices to bare-metal Kubernetes deployments,
thereby reducing the operational gap between deployment models.

2.2 Bare-Metal Provisioning
While cloud providers offer APIs for provisioning virtual machines and manag-
ing infrastructure programmatically, bare-metal servers lack such standardized
interfaces. Deploying Kubernetes on physical hardware requires addressing the
fundamental challenge of server lifecycle management: how to provision, configure,
and maintain physical machines in a repeatable and automated manner. This
section examines the most important challenges of bare-metal infrastructure and
the role of out-of-band management.

2.2.1 Challenges of Bare-Metal Infrastructure
Bare-metal operations lack many cloud conveniences: there is no unified provisioning
API, OS installs and low-level configuration are often manual or semi-automated
(e.g., PXE), and hardware varies across generations and vendors. These realities
make repeatable provisioning, fast scaling, and consistent configuration harder to
achieve. Common pain points are:

• Absence of a single programmatic interface for creating and preparing servers,
which complicates applying infrastructure-as-code practices.

• Per-server OS and firmware setup (network, partitions, drivers), which is
time-consuming and sensitive to small differences that cause drift.

• Hardware heterogeneity (CPU, memory, storage, firmware) that requires
flexible workflows and extra testing.

• Integration overhead for vendor-specific management interfaces and tooling,
which raises automation and security effort.

In practice, PXE and scripted installers reduce manual steps, but they do
not eliminate the need for reliable remote management, inventory, and health
instrumentation to build truly repeatable, scalable bare-metal fleets.

2.2.2 Out-of-Band Management
Out-of-band management provides the control plane needed to automate physical
servers independently of their OS. Modern servers expose these capabilities via a
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BMC (Baseboard Management Controller) and vendor interfaces; the most relevant
aspects are:

• IPMI: a long-standing standard for power control, console access, and sensor
reading. Widely available but dated — implementations and security vary by
vendor.

• Redfish: a newer, RESTful standard (JSON/HTTP) designed for automation
and better security. Increasingly the preferred interface for programmatic
hardware management.

• Typical BMC features used in automation: remote power on/off/reset, serial
or KVM console access, one-time boot selection or virtual media for OS
installation, and telemetry (temperature, fans, power).

These interfaces enable automated provisioning workflows (powering a node,
forcing PXE boot, installing an image, and inspecting hardware). However, differ-
ences in vendor behavior, firmware quirks, and security configurations (credentials,
network isolation) remain practical obstacles to fully hands-off bare-metal automa-
tion.

2.3 GitOps and Operational Automation
Once a Kubernetes cluster is running, operational consistency and safe change
management become primary concerns. GitOps is a practical model that brings
version control, review, and continuous reconciliation to both applications and
cluster components. The following subsections summarize the core principles and
how they apply to Kubernetes operations, including Day-2 tasks such as upgrades
and configuration changes.

2.3.1 GitOps Principles
GitOps treats Git as the canonical, auditable source of desired state. Operators
express cluster and application configuration as declarative manifests stored in
repositories; an automated agent continuously reconciles the live cluster to match
that repository.

Key ideas:
• Declarative source of truth: All desired state (apps, infrastructure, and cluster

components) is captured in Git. This makes intent explicit and reversible.

• Automated reconciliation: A controller in the cluster pulls repository state and
applies changes, detecting and correcting drift rather than relying on ad-hoc
pushes.
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• Review and audit: Changes go through the normal code review process (PRs),
providing peer review, CI validation, and a timestamped history of who
changed what and why.

• Safe rollbacks and reproducibility: Reverting to a previous commit restores
the prior desired state, enabling fast, reliable rollbacks and reproducible
environments for recovery or testing.

• Day-2 operations as code: Routine operational tasks—upgrades, configuration
updates, policy changes—are expressed and validated in Git. This reduces
manual steps, documents the intent, and enables coordinated rollouts across
components.

Practically, GitOps encourages separating concerns: CI builds and publishes
artifacts (images, charts), while the GitOps repository declares which artifacts and
configuration should run. The cluster-side agent requires appropriate access, but
credentials remain inside the cluster, improving security compared with externally
pushing changes.

2.3.2 Continuous Delivery for Kubernetes
Continuous delivery for Kubernetes is naturally pull-based in a GitOps model. The
pipeline commonly splits responsibilities:

• CI : Builds and tests code, produces immutable artifacts (container images),
and optionally updates a staged manifest or a metadata file (e.g., image tag)
in a Git branch.

• CD (pull-based): An in-cluster reconciler monitors Git and applies manifests
to reach the declared state; it performs health checks, reports drift, and can
be configured to require manual approval for risky changes.

Benefits of the pull model:

• Reduces distribution of cluster credentials — the reconciler holds credentials
inside the cluster.

• Improves reliability — if the reconciler restarts it will re-sync from Git and
restore intended state.

• Enables consistent multi-cluster deployments — multiple clusters can sync
from the same repository or branch structure to ensure consistent configuration
across environments.

Coordination patterns for complex changes:
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• Atomic change bundles: Use a single PR to update multiple related manifests
so changes roll out together.

• Phased rollout and health gates: Split changes into waves and require health
checks before proceeding to the next phase to avoid cascading failures.

• Mixing automated and manual approvals: Configure automated sync for low-
risk updates and manual approval for disruptive operations (major upgrades,
schema changes).

2.4 CrownLabs Platform
2.4.1 Purpose and Context
CrownLabs is an on-premise, Kubernetes-based platform developed at Politecnico di
Torino to provide remote access to preconfigured laboratory environments for teach-
ing and research. Originally created in 2020 to support remote education during
the COVID-19 emergency, the platform has since become a persistent service used
by students and researchers to access course labs, configure development sandboxes,
and create testbeds. Its design prioritizes reproducible, isolated environments and
easy provisioning of course-specific setups.

2.4.2 Existing Infrastructure
The initial CrownLabs deployment was on a best-efforts basis. The cluster was
bootstrapped with kubeadm and ran a single control-plane instance as a VM,
with six physical worker nodes providing user compute. Networking relied on
Calico configured for direct routing and MetalLB for service IP advertisement via
BGP. This composition enabled rapid delivery of lab environments but left many
operational responsibilities — provisioning, upgrades, and availability — to manual
processes and ad-hoc procedures.

Single Control Plane Configuration

The initial deployment used a single control plane node running as a virtual machine
on one of the physical worker nodes. This configuration simplified initial setup
and reduced resource overhead but introduced availability risks. During control
plane upgrades or maintenance, the Kubernetes API server would be temporarily
unavailable, preventing management operations and potentially affecting workload
scheduling. While running workloads remained operational during control plane
outages, any pods that needed to be rescheduled or any new instances that users
tried to create would fail until the control plane recovered.
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This single point of failure was a known limitation but represented a practical
tradeoff for a system developed quickly under resource constraints. As the platform
grew in importance and user base, improving control plane resilience became a
priority.

Networking Configuration

The cluster used Calico as its Container Network Interface (CNI) plugin. Calico
was configured to provide pod networking without overlay encapsulation. This
direct routing approach offers excellent performance and simplicity when all nodes
exist on the same layer-2 network segment.

For external service exposure and load balancing, the cluster deployed MetalLB,
which implemented BGP-based load balancer services. MetalLB announced service
external IPs through BGP, integrating with the existing network infrastructure to
make services accessible from outside the cluster.

Physical Infrastructure

The cluster consisted of six physical worker nodes, providing the compute resources
for running user workloads and cluster infrastructure components. These nodes,
along with the control plane VM, had served the platform well during its initial
years of operation.
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Chapter 3

Design

3.1 Requirements Analysis
3.1.1 Identified Limitations
As CrownLabs usage expanded and new pedagogical needs emerged, several struc-
tural limitations of the existing Kubernetes infrastructure became increasingly
evident. These issues spanned resource management, operational procedures, net-
working capabilities, and support for emerging workload types. The most significant
limitations can be summarised as follows:

• Resource constraints and limited scalability: Peak-period CPU utili-
sation regularly approached cluster capacity, and the absence of automated
provisioning prevented rapid expansion of compute resources.

• Complex and disruptive upgrade procedures: Manual Kubernetes
upgrades introduced prolonged maintenance windows, API downtime, and
elevated operational risk due to the lack of automated or validated upgrade
workflows.

• Insufficient high availability: A single control plane constituted a critical
single point of failure, compromising cluster operability during maintenance
or unplanned outages.

• Networking restrictions across subnets: The existing Calico configuration
did not support seamless cross-subnet communication, preventing integration
of additional servers located in other datacenter segments.

• Limited support for new capabilities: The introduction of GPU-accelerated
workloads required cluster-wide reconfiguration, which the current architecture
could not accommodate safely or efficiently.
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Collectively, these limitations demonstrated that the original architecture had
reached the boundaries of its scalability and operational maintainability. To sustain
CrownLabs’ continued growth, a re-design was necessary to establish a more
automated, resilient, and extensible foundation.

3.1.2 Requirements
The requirements for the new cluster were derived directly from the limitations
identified above and the operational needs of CrownLabs. The redesigned infrastruc-
ture must support automated provisioning of bare-metal servers while minimising
manual intervention, thereby enabling rapid expansion during periods of increased
demand. The deployment process must be reproducible and fully declarative to
ensure consistency across environments. To remove the single point of failure
inherent in the previous architecture, a highly available control plane is essential,
along with the ability to scale the cluster seamlessly by adding or removing nodes
without service disruption.

Given the operational challenges associated with previous upgrade procedures,
the new design must provide streamlined, low-risk upgrade mechanisms for both
Kubernetes and its supporting components. Furthermore, the networking archi-
tecture must enable cross-subnet communication so that resources distributed
across multiple datacenter segments can participate uniformly in the cluster. The
infrastructure must also support GPU-accelerated workloads, reflecting the evolving
academic use cases in machine learning and compute-intensive applications.

Operational management should transition toward a GitOps-based workflow,
ensuring version-controlled configuration, automated reconciliation, and comprehen-
sive auditability of changes. These requirements collectively define the foundation
upon which technology choices and architectural decisions in subsequent chapters
are built.

3.2 Architecture Overview
The architectural design of the new provisioning and management framework is
structured around a three-layer approach that separates the concerns of infras-
tructure preparation, Kubernetes cluster creation, and operational management.
This model provides a conceptual foundation that remains valid regardless of the
specific technologies ultimately selected during the design process.

3.2.1 Three-Layer Approach
The first layer focuses on preparing and configuring the underlying physical machines
that will form the cluster. At the time of designing the framework, different
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strategies were under evaluation. One option involved integrating infrastructure
provisioning directly into a unified control plane, while another treated provisioning
as an independent stage preceding cluster creation. Both approaches shared a
common goal: abstracting low-level interactions with server hardware and ensuring
that compute nodes are delivered in a consistent and predictable state prior to
cluster deployment.

The second layer encompasses the deployment and lifecycle management of the
Kubernetes cluster itself. Various tooling options were considered, some offering
tight integration with the provisioning layer and others operating independently
on an already prepared set of machines. Regardless of the eventual choice, this
layer is responsible for transforming provisioned hosts into a functional cluster
and for facilitating ongoing lifecycle tasks such as scaling or upgrading. While the
overarching design emphasises declarative specifications wherever feasible, it also
recognises that certain stages of cluster deployment—particularly those relying on
procedural automation—combine declarative intent with imperative execution.

The third layer introduces operational automation through a Git-driven workflow.
Here, configuration and application state are expressed declaratively and reconciled
automatically by a controller operating within the cluster. Although specific tooling
had not yet been formally introduced at this point in the design, the decision to
adopt a Git-centric operational model had already been made. This layer ensures
consistent, traceable, and version-controlled management of cluster resources and
system components.

3.2.2 Design Philosophy

Across all layers, the architecture is guided by the principle of explicit desired-state
definition. Wherever possible, configuration is expressed declaratively so that auto-
mated systems may reconcile actual state with the specified target. This approach
reduces the need for manual intervention and enhances both reproducibility and
operational safety.

Central to this philosophy is the use of Git as the authoritative source of truth.
All modifications to cluster configuration flow through version control, enabling
structured review processes, auditability, and straightforward rollback.

Another defining principle is reproducibility. The architecture aims to allow
the entire environment — from machine provisioning through application deploy-
ment — to be reconstructed deterministically from version-controlled specifications.
This facilitates disaster recovery, reduces configuration drift, and enables safe
experimentation and testing in isolated environments.
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3.2.3 Component Interaction
The interaction between the architectural layers follows a conceptual sequence.
First, the infrastructure layer prepares the nodes that will participate in the
cluster, regardless of whether this preparation is tightly integrated with the cluster
management system or performed as a separate step. The cluster lifecycle layer then
consumes these nodes to create and maintain a Kubernetes cluster, establishing
both control plane and worker roles as required. Once the cluster is operational,
the operational automation layer assumes responsibility for managing system
components and applications through declarative definitions stored in version
control.

While each layer builds upon the outputs of the previous one, the architecture
intentionally preserves clear boundaries between them. This separation enables
flexibility in selecting or replacing individual components without undermining the
overall design principles or workflow.

3.3 Bare-Metal Provisioning Layer
The bare-metal provisioning layer constitutes the foundation upon which the entire
cluster architecture is built. Its purpose is to prepare physical servers for inclusion in
the Kubernetes environment by abstracting heterogeneous hardware characteristics,
enforcing a consistent baseline configuration, and supplying the cluster-deployment
layer with machines that are fully initialized and ready for orchestration. Through
this layer, raw infrastructure is transformed into predictable and reproducible
compute nodes, ensuring that subsequent automation stages can operate reliably
and without manual intervention.

During the design phase, several tooling options for implementing this provi-
sioning layer were evaluated, with MAAS and Metal3 emerging as the two most
viable candidates. Both solutions support large-scale management of bare-metal
servers, but they differ significantly in their architectural integration models and
operational paradigms. The final design adopts Metal3 for two primary reasons.
First, Metal3 offers native compatibility with the Cluster API (CAPI), which at
the time was being investigated as a promising candidate for the cluster lifecycle
management layer due to its declarative and extensible design. Although CAPI was
ultimately not selected, its strong suitability during early evaluations made Metal3
a strategically aligned choice. Second, a Metal3-based environment was already
available within the university through a research group that had deployed and
validated the technology in a production-adjacent context. This prior institutional
experience provided both practical insights and operational confidence, further
motivating the decision.

The remainder of this section presents the architecture, workflow, and operational
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role of Metal3 within the provisioning layer, and explains how it integrates with
the overall automation pipeline established for the cluster.

3.3.1 Metal3 Overview

Metal3 integrates bare-metal provisioning directly into the Kubernetes control plane
by exposing physical servers as custom resources. This Kubernetes-native approach
allows operators to manage heterogeneous hardware using declarative workflows
that align with standard cluster operations. Instead of maintaining separate
provisioning systems, Metal3 enables bare-metal machines to participate in the
same reconciliation and version-controlled processes that govern other infrastructure
components.

At the center of Metal3 is its reliance on OpenStack Ironic, a mature and feature-
complete provisioning service responsible for low-level hardware management.
Metal3 acts as an abstraction layer that translates Kubernetes resource specifications
into Ironic operations, combining Ironic’s hardware support with Kubernetes’
declarative configuration model.

Provisioning Workflow

The primary resource introduced by Metal3 is the BareMetalHost, which defines
the metadata, power-management configuration, and provisioning parameters for
a single physical server. When such a resource is created, the Metal3 controllers
register the host with Ironic, perform optional hardware inspection, and initi-
ate the provisioning workflow. Throughout the process, the resource’s status
reflects progress and potential errors, making the entire lifecycle observable through
standard Kubernetes tools.

Provisioning typically proceeds through registration, inspection, OS image
deployment, configuration via mechanisms such as cloud-init, and a final transition
to a ready state. At that point, the server becomes suitable for integration into
a Kubernetes cluster or assignment to other roles. Deprovisioning reverses this
process, wiping the machine and returning it to an available state.

The Metal3 architecture consists of three main components: the Baremetal
Operator, which reconciles BareMetalHost resources; the Ironic services, which per-
form the actual provisioning actions; and the Ironic Python Agent, which executes
image deployment tasks on the server itself. Together, these components provide
a streamlined, reproducible, and Kubernetes-aligned mechanism for managing
bare-metal infrastructure.
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3.3.2 Metal3 Management Cluster

The Metal3 setup is illustrated in figure 3.1. It consists of a dedicated Proxmox
virtual machine that hosts a minimal single-node Kubernetes cluster. This man-
agement cluster runs the essential Metal3 components: the baremetal-operator
controller manager, which reconciles BareMetalHost resources, and the Ironic de-
ployment, which performs the actual provisioning operations. The setup includes
a custom Ironic Python Agent (IPA) developed by the research group to address
specific provisioning requirements. An nginx web server running on the same VM
serves as the image service, hosting operating system images that will be deployed
to bare-metal servers.

3.4 Cluster Deployment and Lifecycle
The cluster deployment layer is responsible for transforming provisioned bare-metal
servers into a functional, highly available Kubernetes cluster and for managing its
lifecycle through upgrades, scaling operations, and configuration changes. In this
section, two alternative solutions for implementing this layer — Kubespray and
Cluster API — are examined. Each is evaluated in terms of its architectural model,
operational workflow, and suitability for integration within the overall system
design.

3.4.1 Kubespray

Kubespray is an Ansible-based framework for deploying and managing production-
grade Kubernetes clusters. It combines Ansible’s mature configuration-management
capabilities with a modular and opinionated collection of playbooks that automate
all stages of cluster installation and lifecycle control.

Ansible-Based Deployment Model

Kubespray builds on Ansible’s agentless automation model, requiring only SSH
access and a Python environment on target machines. Its playbooks, written
in YAML, express desired system state declaratively while leveraging Ansible’s
idempotency, dependency handling, and parallel execution. Through a structured
set of roles, Kubespray automates the installation of container runtimes, system
prerequisites, etcd, control-plane components, worker-node services, and essential
add-ons. The modular organisation of these roles enables selective customisation
while maintaining well-tested defaults.
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Figure 3.1: Metal3 Management Plane Architecture

Declarative Configuration through Inventory

Cluster configuration in Kubespray is defined through Ansible inventory files, which
specify node roles (control-plane, worker, etcd) and encode key parameters such
as Kubernetes version, CNI selection, network CIDRs, and feature toggles. The
inventory thereby serves as a version-controlled declaration of cluster topology
and configuration intent. Applying configuration changes consists of modifying
inventory variables and re-executing the relevant playbooks, allowing Kubespray
to converge the system toward the updated desired state.
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Network Flexibility and CNI Support

Kubespray supports a wide set of CNI plugins, including Calico, Cilium, Flannel,
and Weave, configurable directly from inventory variables. Operators may customise
pod and service CIDR ranges, DNS backend options, and other network character-
istics, enabling deployments that adapt to diverse network environments—from
simple flat L2 networks to more complex segmented topologies.

Lifecycle Operations

Beyond initial provisioning, Kubespray provides robust Day-2 operational support:

• Scaling: Adding or removing nodes is achieved by editing the inventory and
running the corresponding scale or remove-node playbook.

• Upgrades: Kubernetes version upgrades follow a controlled workflow defined
in dedicated upgrade playbooks, respecting Kubernetes version-skew policies
and orchestrating control-plane and worker upgrades safely.

• Node replacement: Failed or retired nodes can be cleanly removed and substi-
tuted with freshly provisioned hosts using standard playbooks.

These capabilities provide repeatable, validated procedures for common cluster
maintenance tasks.

Execution Workflow

Operationally, Kubespray follows a standard Ansible workflow: an operator invokes
ansible-playbook with a chosen inventory and playbook, after which Ansible
connects to each target host via SSH, collects system facts, and executes the
necessary tasks to converge the node to the declared state. Tasks include package
installation, configuration file deployment, service management, and component
orchestration. Thanks to Ansible’s idempotent semantics, these playbooks can
be rerun safely, supporting verification and iterative configuration without risk of
unintended changes.

3.4.2 Cluster API
Cluster API (CAPI) adopts a fundamentally Kubernetes-native model for cluster
lifecycle management, shifting the entire process of creating, upgrading, and scaling
Kubernetes clusters into the Kubernetes control plane itself. Rather than invoking
external automation tools, Cluster API introduces a set of custom resources whose
reconciliation is handled by controllers running in a dedicated management cluster.
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Kubernetes-Native Lifecycle Management

CAPI extends the Kubernetes API with resources that describe complete clusters. A
management cluster hosts the Cluster API controllers, which watch these resources
and ensure that corresponding workload clusters match the declared specifications.
Operators interact with clusters through standard Kubernetes mechanisms —
kubectl and declarative YAML manifests — treating clusters as first-class API
objects analogous to deployments or stateful sets. This enables uniform GitOps
workflows, version-controlled state, and API-driven operations.

Reconciliation and Controller Logic

Cluster API follows the Kubernetes operator pattern: reconciliation loops continu-
ously compare desired state, expressed in custom resources, with the actual state
of workload clusters. The controllers provision nodes, adjust cluster size, replace
failed machines, and orchestrate version upgrades as required. This continuous
reconciliation provides robustness against failures, ensures automatic convergence
toward the declared topology, and yields fine-grained observability through events
and status fields. Standard Kubernetes RBAC and admission control apply directly
to cluster resources, enabling consistent governance.

Infrastructure Providers and Machine Abstractions

A key design feature of CAPI is its provider abstraction. Infrastructure providers
implement platform-specific logic for provisioning compute resources across a broad
range of environments, including major clouds (AWS, Azure, GCP), virtualization
platforms (vSphere, OpenStack), and bare-metal systems through Metal3. The
Machine custom resource serves as a platform-agnostic representation of a single
node, while higher-level abstractions such as MachineDeployment and MachineSet
provide rolling-update semantics analogous to Kubernetes workload controllers.
This layered architecture cleanly separates infrastructure concerns from cluster-level
orchestration.

Declarative Cluster Composition

Cluster API defines cluster state entirely through custom resource definitions:

• Cluster : declares cluster-wide properties such as networking configuration and
control-plane endpoint.

• Machine: represents an individual node, referencing an infrastructure-specific
template and desired Kubernetes version.
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• MachineDeployment and MachineSet: manage groups of machines with declar-
ative rolling updates.

• KubeadmControlPlane: manages control-plane nodes, including HA configura-
tion and the orchestration of upgrades.

Together, these resources compose full cluster specifications in a declarative, version-
controlled form. Updating cluster configuration consists simply of modifying
resource manifests, while the controllers handle the operational details required to
enact the new desired state.

3.4.3 Technology Selection: KubeSpray vs Cluster API
The choice of cluster deployment technology was a critical design decision. A
systematic comparison was conducted across multiple dimensions, listed in table
3.1.

Table 3.1: Properties Comparison

Features CAPI Kubespray
Metal3 Integration ✓ X
API-based Cluster Lifecycle Management ✓ X
Scalability and Extensibility ✓ ✓
Management Cluster Independence X ✓
Granular Control over Components X ✓
Multi-Platform Flexibility X ✓
In-place Upgrades for Bare Metal X ✓

Metal3 Integration: Cluster API offers native integration with Metal3 through
the Cluster API Provider for Metal3 (CAPM3). This integration allows clusters
to be managed entirely through Kubernetes custom resources, providing a unified
operational model. KubeSpray, in contrast, operates independently of Metal3,
treating provisioned servers as generic hosts accessible via SSH.

API-Based Cluster Lifecycle Management: Cluster API provides declarative
cluster management through Kubernetes APIs. Clusters are represented as custom
resources, and controllers continuously reconcile desired state with actual state.
This Kubernetes-native approach offers elegant conceptual consistency and enables
programmatic cluster management. KubeSpray uses an imperative execution model:
operators explicitly invoke Ansible playbooks to perform actions, though these
playbooks operate on declarative inventory.

Management Cluster Requirement: Cluster API requires a separate manage-
ment cluster to host the CAPI controllers that manage workload clusters. This
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management cluster must remain available and operational for cluster lifecycle
operations to function. KubeSpray has no such dependency: it runs from an
operator’s workstation or automation server and requires no persistent management
infrastructure. For a small-scale deployment, this additional management overhead
represents a significant consideration.

Granular Component Control: KubeSpray provides extensive configurability
through Ansible variables, allowing fine-grained control over Kubernetes component
flags, configuration file contents, and deployment procedures. The declarative
inventory can specify detailed settings for networking, security policies, feature
gates, and numerous other parameters. Cluster API, while configurable, provides
a more opinionated and abstracted interface. Its focus on standardization and
portability means less flexibility in customizing low-level component behavior.

Multi-Platform Flexibility: KubeSpray is platform-agnostic: as long as target
hosts are accessible via SSH and meet basic requirements (supported OS, Python
installation), KubeSpray can deploy Kubernetes. Mixing virtual machines and
bare-metal servers in the same cluster is straightforward. Cluster API’s provider
model expects homogeneous infrastructure within a cluster: all nodes come from
the same infrastructure provider (Metal3 for bare-metal, vSphere for VMs, etc.).
While technically possible to mix providers, this scenario is not well-supported and
introduces significant complexity.

In-Place Upgrade Strategy: KubeSpray performs in-place upgrades: a dedicated
Ansible playbook upgrades Kubernetes components on existing nodes without
reprovisioning them. Nodes remain operational throughout the upgrade, with
control plane components and kubelets updated sequentially. This approach is
straightforward and doesn’t require additional bare-metal capacity. Cluster API,
particularly when integrated with Metal3, follows a different paradigm: upgrades
typically involve provisioning new nodes with updated images and replacing old
nodes. This immutable infrastructure approach ensures clean upgrades but requires
either spare bare-metal capacity or tolerance for node reprovisioning time (depro-
vision old node, provision new node with updated image, join to cluster). While
Cluster API can be configured for in-place upgrades, this deviates from its typical
operational model and reduces some of its advantages.

Decision Rationale

Given the specific context of this deployment — a small cluster (under 10 nodes),
limited spare bare-metal capacity, and a team with Ansible experience — KubeSpray
emerged as the more pragmatic choice. The absence of management cluster
overhead reduces operational complexity. The in-place upgrade model aligns better
with the constraints of bare-metal provisioning times and available hardware.
The granular configurability provides flexibility to tune the cluster precisely to
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CrownLabs requirements. The platform-agnostic nature future-proofs against
potential architectural changes, such as mixing VM-based control planes with
bare-metal workers.

While Cluster API’s Kubernetes-native approach offers conceptual elegance,
particularly in large-scale or multi-cluster environments, the operational overhead
and architectural assumptions were less aligned with the immediate requirements.
For a larger deployment with dozens of nodes or multiple clusters, the balance
might shift in favor of Cluster API’s strengths in standardization and declarative
management.

Finalizing the choice of Kubespray unlocked several downstream design decisions
that depended on the deployment model. With the cluster management approach
established, it became possible to validate assumptions regarding control plane
topology, node allocation, and the feasibility of in-place versus rolling upgrade
strategies.

3.4.4 High Availability Control Plane

Kubespray’s support for heterogeneous, multi-platform cluster configurations made
it feasible to decouple the control plane from the bare-metal worker nodes. As a
result, the design strategically places the control plane on VMware virtual machines
provisioned by the university, ensuring they are hosted on robust and secure
infrastructure separate from the bare-metal worker nodes and allowing the physical
servers to be dedicated entirely to workload execution.

To eliminate the single point of failure present in the original CrownLabs
deployment, the architecture adopts a high-availability control plane with three
dedicated control plane nodes. Each node hosts the full suite of Kubernetes control
plane components — the API server, controller manager, scheduler, and an etcd
instance. Together, the three etcd members form a Raft-based consensus cluster,
ensuring data replication and enabling the system to tolerate the loss of one member
while preserving quorum and operational continuity.

API server traffic is balanced by an internal HAProxy instance deployed on
the worker nodes, which exposes a stable virtual endpoint for kubelet and other
system components. HAProxy monitors the health of the API servers and forwards
requests only to responsive control plane nodes, thereby maintaining connectivity
even in the presence of individual node failures.

This high-availability configuration ensures that the cluster can withstand the
loss of a control plane node without service disruption. It also enables planned main-
tenance to be performed sequentially across the control plane nodes, maintaining
uninterrupted cluster availability throughout the procedure.

22



Design

3.5 Network Architecture Design
The network architecture addresses the primary limitation that hindered the
expansion of the original CrownLabs infrastructure: the lack of cross-subnet pod
communication. The redesigned networking stack not only resolves this constraint
but also modernizes the cluster’s networking capabilities to support future growth
and operational flexibility.

3.5.1 CNI Plugin Selection: Cilium
Although the legacy infrastructure relied on Calico, the new design adopts Cilium
as the cluster’s Container Network Interface (CNI). While Calico with an overlay
configuration could have met the functional requirement, Cilium was selected for
its more modern architecture and its alignment with current industry direction.

Cilium is built on eBPF (extended Berkeley Packet Filter), a Linux kernel
technology enabling in-kernel packet processing and introspection without modifying
kernel code. This provides several advantages: lower CPU overhead compared to
iptables-based models, improved performance through efficient datapath execution,
and comprehensive observability via tools such as flow logs and per-pod network
metrics.

Beyond its performance characteristics, Cilium integrates functionality that
would otherwise require additional components. Native NetworkPolicy enforcement
offers fine-grained traffic control, while its built-in BGP support removes the
architectural need for MetalLB. Optional service-mesh capabilities, though not
required at present, offer a clear path for functional expansion without future CNI
migration.

The adoption of Cilium therefore serves both immediate and strategic goals: it
enables the required overlay networking while positioning the system for evolving
networking needs.

3.5.2 Overlay Networking for Cross-Subnet Communica-
tion

The central networking challenge was enabling seamless pod-to-pod communication
across nodes located in distinct datacenter subnets. Cilium addresses this require-
ment through the use of VXLAN (Virtual Extensible LAN) overlay networking.

In VXLAN mode, Cilium encapsulates pod traffic within UDP-based VXLAN
tunnels that span L3 network boundaries. When a pod on one node communicates
with a pod on a node in a different subnet, the Cilium agent encapsulates the
packet with a VXLAN header and transmits it across the underlay network. The
receiving node decapsulates the packet and forwards it to the destination pod. This
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process is fully transparent to workloads, effectively extending a virtual L2 network
across the datacenter’s heterogeneous network topology.

Because VXLAN operates over standard UDP, it requires only minimal accom-
modation from the physical network—namely, allowing the relevant UDP ports
through any intermediate firewalls or ACLs. No specialized routing configuration
is required.

This overlay-based approach provides the essential functionality missing from
the earlier deployment: nodes in different datacenter network segments can now
join the same cluster while supporting direct, reliable pod-to-pod communication.

3.5.3 BGP Configuration for Service Exposure

For exposing Kubernetes services externally, the design implements BGP-based
load balancing using Cilium’s integrated BGP support. This replaces the MetalLB
deployment used in the original infrastructure, reducing the number of separate
components to manage.

The cluster operates within a private service network for internal server manage-
ment and communication. External services are exposed using public IP addresses
specially alocated to the cluster. Cilium’s BGP Control Plane is configured to peer
with the datacenter’s router infrastructure and announce these service IPs.

The physical network topology includes a router with a point-to-point connection
to the datacenter’s NEXUS switch infrastructure. Cilium BGP speakers running
on designated nodes establish BGP sessions with this router, advertising routes for
LoadBalancer service IPs. The router, in turn, propagates these routes through
the datacenter’s network, enabling external clients to reach services running in the
cluster.

This BGP-based approach provides several benefits: traffic is distributed across
multiple nodes advertising the same service IP through ECMP (Equal-Cost Multi-
Path) routing, failed nodes are automatically removed from service as their BGP
advertisements withdraw, and the integration with existing datacenter routing
infrastructure is clean and standard.

3.6 GitOps and Operational Design
The operational layer of the new cluster infrastructure adopts a GitOps-based
workflow centered around ArgoCD. This design replaces the manual and error-
prone operational practices of the previous environment—where components were
deployed through ad-hoc Helm commands—and introduces a fully declarative,
auditable, and automated approach to managing cluster state.
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Figure 3.2: BGP Routing Topology

3.6.1 Introduction to ArgoCD and GitOps Workflow
ArgoCD is a Kubernetes-native continuous delivery system designed around GitOps
principles. It continuously monitors one or more Git repositories and ensures that
Kubernetes clusters match the desired state declared in version control. By treating
Git as the single source of truth, ArgoCD provides deterministic and reproducible
deployments, configuration transparency, and built-in drift detection.

Git as the Declarative Source of Truth

ArgoCD tracks the contents of Git repositories and reconciles them with the live
cluster state. Each ArgoCD Application defines a mapping between a repository

25



Design

path and a deployment destination (cluster + namespace). ArgoCD observes these
Applications and automatically applies any changes detected in Git. The system
supports multiple configuration formats—including plain YAML, Helm charts, and
Kustomize—allowing teams to retain established templating workflows.

Reconciliation and Drift Detection

The ArgoCD controller continuously compares desired state from Git with actual
cluster state. When discrepancies arise, it marks the Application as OutOfSync
and, depending on policy, automatically or manually restores alignment. This
automated drift detection is especially valuable in environments where manual
edits or external controllers may modify deployed resources.

Multi-Environment and Multi-Cluster Capabilities

A single ArgoCD installation can manage multiple clusters, each associated with
its own applications or environments. By structuring Git repositories into separate
directories or branches (e.g., staging and production), ArgoCD enables clean
separation of environments while retaining a unified operational workflow.

Together, these capabilities provide the foundation for the operational layer
described below.

3.6.2 Declarative Application Management

With ArgoCD deployed in the management cluster, all platform services and user
applications are declared in a dedicated GitOps repository. ArgoCD monitors this
repository and ensures that the cluster configuration continuously matches the
committed manifests.

Adding a new application requires only placing its manifest or Helm chart
reference into the appropriate directory. ArgoCD automatically creates or updates
the corresponding Application resource, synchronizing it with the live cluster.
Synchronization policies are configurable: foundational components may rely on
automatic reconciliation, while production workloads can require manual approval.

This model transforms Git into a complete and auditable representation of the
live system. Deployment reviews occur through pull requests, and any rollback can
be performed by reverting or amending commits. Configuration drift — formerly
a significant source of instability — is both easily detectable and automatically
correctable.
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3.6.3 CI/CD Integration Strategy
ArgoCD complements rather than replaces existing CI/CD pipelines. For the
CrownLabs application, development workflows continue to use GitHub Actions for
building container images and running tests. However, instead of the CI pipeline
directly deploying to Kubernetes, it updates the GitOps repository to reference
new image tags.

The planned workflow enhancement involves the CI pipeline committing image
tag updates to the GitOps repository for staging and production environments.
ArgoCD detects these commits and synchronizes the new versions to the appropriate
clusters or namespaces. This separation of concerns means the CI system handles
application building and testing, while ArgoCD handles deployment and state
management.

This integration model provides clear separation between code repositories (where
applications are developed) and configuration repositories (where deployments are
declared). Access controls can be different: developers have write access to code
repositories but may have read-only access to production configuration, with
deployments requiring approval from operations staff.

3.6.4 Operational Benefits and Extensibility
Adopting ArgoCD and GitOps principles substantially improves operational relia-
bility and maintainability:

• Transparency: the entire cluster state is stored in human-readable manifests
under version control.

• Auditability: changes are reviewed through pull requests and recorded as
commits.

• Consistency: development, staging, and production follow the same operational
pattern.

• Rollback safety: reverting to a previous system state requires only reverting
Git history.

• Extensibility: introducing new services or platform components requires no
custom scripts—only new manifests committed to the repository.

The GitOps model therefore reduces operational complexity, minimizes configu-
ration drift, and provides a scalable foundation for future growth of the CrownLabs
platform.
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Implementation

4.1 Cluster Deployment with Kubespray
Kubespray was selected as the automation framework for deploying the Kuber-
netes cluster due to its maturity, flexibility, and full support for highly available,
production-grade configurations. This section details the complete implementation
workflow, from repository preparation to inventory design and cluster configuration,
culminating in the final execution of the Kubespray playbooks.

4.1.1 Kubespray Deployment Workflow
The deployment process begins by retrieving the official Kubespray repository
and preparing an isolated Python environment for installing the required Ansible
dependencies. Kubespray is distributed as a collection of Ansible playbooks, and
therefore a controlled Python virtual environment ensures reproducibility and
prevents dependency conflicts with system-level Python packages.

The following commands were used to acquire Kubespray (version v2.28.0, the
latest release at the moment of implementation) and prepare the environment:

1 git clone https :// github .com/kubernetes -sigs/ kubespray .git
2 cd kubespray
3 git checkout release -2.28
4
5 python3 -m venv venv
6 source venv/bin/ activate
7 pip install -r requirements .txt

Once Kubespray and its dependencies are installed, an inventory workspace is
created by copying the bundled sample inventory directory:
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1 cp -rfp inventory / sample inventory /ha - cluster

All subsequent configuration is performed exclusively within the inventory/ha-cluster
directory, which becomes the working environment for defining cluster nodes, com-
ponent settings, and network parameters.

4.1.2 Configuring the Inventory
Kubespray uses an Ansible inventory to define the servers composing the Kubernetes
cluster and their assigned roles. According to the official documentation:1

“The inventory is composed of 3 groups:

• kube_node: list of Kubernetes nodes where the pods will run.
• kube_control_plane: list of servers where Kubernetes control

plane components (apiserver, scheduler, controller) will run.
• etcd: list of servers to compose the etcd server. You should have at

least 3 servers for failover purpose.”

Kubespray provides a default inventory.ini file, but YAML inventory format
is also supported and was adopted for clarity. The inventory created for this
deployment is shown below:

1 all:
2 hosts:
3 control_plane1 :
4 ansible_host : 192.168.10.11
5 ansible_user : root
6 etcd_member_name : k8s -01
7 control_plane2 :
8 ansible_host : 192.168.10.12
9 ansible_user : root

10 etcd_member_name : k8s -02
11 control_plane3 :
12 ansible_host : 192.168.10.13
13 ansible_user : root
14 etcd_member_name : k8s -03
15
16 worker1 :
17 ansible_host : 192.168.10.21

1Kubespray Documentation: Inventory Structure
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18 ansible_user : root
19 etcd_member_name : ""
20 worker2 :
21 ansible_host : 192.168.10.22
22 ansible_user : root
23 etcd_member_name : ""
24 worker3 :
25 ansible_host : 192.168.10.23
26 ansible_user : root
27 etcd_member_name : ""
28
29 children :
30 kube_control_plane :
31 hosts:
32 control_plane1 :
33 control_plane2 :
34 control_plane3 :
35
36 etcd:
37 hosts:
38 control_plane1 :
39 control_plane2 :
40 control_plane3 :
41
42 kube_node :
43 hosts:
44 worker1 :
45 worker2 :
46 worker3 :

Listing 4.1: Kubespray Inventory file

The all section defines SSH profiles for each server. When ansible_user is not
root, privilege escalation must be explicitly enabled. In such cases, the playbooks
must be executed using the –become flag, and if a password is required, additionally
–ask-become-pass.

4.1.3 Cluster Configuration Parameters
Cluster-specific configurations are defined within the group_vars directory of the
working inventory. Only a subset of parameters needs modification for a standard
highly available deployment. The relevant directory structure is:

inventory/ha-cluster
|---group_vars
| |---all
| | |---all.yml
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| |---k8s_cluster
| |---addons.yml
| |---k8s-cluster.yml
| |---k8s-net-cilium.yml
|---inventory.yml

The most important configuration groups are outlined below.

Global Parameters (all.yml).

Relevant options include:

• API server load balancer configuration (internal or external).

• Upstream DNS resolvers.

• Proxy settings (if required in the environment).

• Certificate management mode (script for automatic generation).

• RHEL subscription parameters (if applicable).

Cluster Parameters (k8s-cluster.yml).

Key settings include:

• OIDC integration, required for CrownLabs authentication.

• Network plugin selection (Cilium, Calico, Flannel, Weave, Kube-OVN, etc.).

• Pod and service CIDR blocks.

• Cluster name and DNS domain.

• Container runtime selection (default: containerd).

• Optional NVIDIA GPU acceleration (not used due to outdated implementa-
tion).

All the values adopted for the deployment are summarized below:
1 loadbalancer_apiserver_localhost : true
2 loadbalancer_apiserver_type : haproxy
3 upstream_dns_servers :
4 - 8.8.8.8
5 - 8.8.4.4
6 cert_management : script
7
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8 kube_network_plugin : cilium
9 kube_service_addresses : 10.1.0.0/16

10 kube_pods_subnet : 172.23.0.0/16
11 cluster_name : cluster .local
12 container_manager : containerd

These parameters provide the minimal necessary configuration required for
a fully functional Kubernetes cluster. Kubespray exposes numerous additional
variables for fine-grained customization, but these were outside the scope of the
deployment.

4.1.4 Configuring Cilium
Cilium functionality is configured in the k8s-net-cilium.yml file. For the purposes
of this work, several Cilium features were relevant:

• Overlay Networking: VXLAN encapsulation was enabled to support cross-
subnet pod communication.

• Kube-proxy replacement: Tested successfully but later disabled due to incom-
patibility with an external open-source component planned for integration.

• Hubble: Enabled to provide network observability, with the option for integra-
tion into Prometheus and Grafana.

• BGP Control Plane: A critical feature for integrating the cluster with the
datacenter router.

Cilium BGP Control Plane

Cilium provides two BGP integration mechanisms: the legacy BGP Peering Policy
and the modern BGP Control Plane. Although the legacy mechanism is simpler to
configure, it is deprecated and scheduled for removal; therefore, the BGP Control
Plane was used due to its long-term support and granular control.

According to Cilium’s documentation:2

“CiliumBGPClusterConfig: Defines BGP instances and peer configura-
tions that are applied to multiple nodes.
CiliumBGPPeerConfig: A common set of BGP peering settings. It can
be used across multiple peers.

2Cilium Documentation: BGP Control Plane
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CiliumBGPAdvertisement: Defines prefixes that are injected into the
BGP routing table.
CiliumBGPNodeConfigOverride: Defines node-specific BGP configuration
to provide a finer control.”

The deployment required no node-specific overrides; therefore, only the first three
resources were configured through Kubespray. The resulting Cilium configuration
is shown below:

1 cilium_enable_bgp_control_plane : true
2
3 cilium_loadbalancer_ip_pools :
4 - name: " public "
5 cidrs:
6 - " 130.192. XX.XX/2X"
7
8 cilium_bgp_cluster_configs :
9 - name: "cilium -bgp"

10 spec:
11 bgpInstances :
12 - name: "instance -64512 "
13 localASN : 64512
14 peers:
15 - name: "peer -64512 - tor1"
16 peerASN : 64512
17 peerAddress : "<bgp_router_ip_address >"
18 peerConfigRef :
19 name: "cilium -peer"
20 nodeSelector :
21 matchExpressions :
22 - {key: somekey , operator : NotIn , values : [’never -used -

value ’]}
23
24 cilium_bgp_peer_configs :
25 - name: cilium -peer
26 spec:
27 gracefulRestart :
28 enabled : true
29 restartTimeSeconds : 15
30 families :
31 - afi: ipv4
32 safi: unicast
33 advertisements :
34 matchLabels :
35 advertise : " public "
36
37 cilium_bgp_advertisements :
38 - name: bgp - advertisements
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39 labels :
40 advertise : public
41 spec:
42 advertisements :
43 - advertisementType : " Service "
44 service :
45 addresses :
46 - LoadBalancerIP
47 selector :
48 matchExpressions :
49 - {key: somekey , operator : NotIn , values : [’never -

used -value ’]}

Listing 4.2: Cilium BGP Control Plane Configuration

This configuration assigns a load balancer pool of publicly routable addresses,
defines the BGP instance and its peer (the datacenter edge router), specifies BGP
capabilities for the peer (IPv4 unicast), and advertises Kubernetes LoadBalancer
services into the upstream routing domain.

4.1.5 Executing the Deployment
Once the inventory and configuration files are fully defined, the cluster can be
provisioned by executing the main Kubespray playbook:

1 ansible - playbook -i inventory /ha - cluster / inventory .yml \
2 cluster .yml -b -v --private -key =~/. ssh/< private_ssh_key_file >

The deployment completes in approximately 30 minutes depending on node
count and network conditions. Upon completion, the new Kubernetes cluster is
operational, fully configured with high availability, Cilium networking, and BGP
integration through the Cilium control plane.

Kubespray also facilitates lifecycle operations through dedicated playbooks. To
scale the cluster by adding or removing nodes, the operator simply updates the
inventory file to reflect the desired set of servers and executes the same command
while substituting the playbook name with scale.yml or remove-node.yml. The
remove-node.yml playbook not only removes the node from the cluster membership
but also ensures that all Kubernetes components, services, and configurations
previously installed by Kubespray are thoroughly cleaned from the target machine.

Finally, if the intention is to dismantle the entire cluster, including all control
plane and worker nodes, Kubespray provides the reset.yml playbook. Executing
this playbook reverts all machines in the inventory to a clean state by removing
the full set of Kubernetes-related artifacts, thereby restoring the servers to a
pre-deployment condition.
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4.2 ArgoCD Setup

Following the successful deployment of the Kubernetes cluster using Kubespray, the
next step in establishing a fully automated and declarative management workflow
is the installation and configuration of ArgoCD. As the central component of the
GitOps model adopted in this thesis, ArgoCD is responsible for continuously recon-
ciling the cluster state against the manifests stored in a dedicated Git repository.
This section describes the deployment architecture of ArgoCD, the structure of the
GitOps repository created for this environment, and the process of populating the
repository with the full CrownLabs stack and supporting components.

4.2.1 ArgoCD Deployment Architecture

ArgoCD is deployed using Helm through a composed chart structure that includes
two subcharts: the official argo-cd chart, which installs the ArgoCD control
plane together with all required Custom Resource Definitions (CRDs), and the
argocd-apps chart, which bootstraps the initial set of ArgoCD Application re-
sources. This two-stage design ensures that the core ArgoCD installation becomes
available before the management of higher-level applications begins.

The values supplied to the argo-cd chart define the configuration of the Ar-
goCD instance installed in the cluster, including repository credentials, RBAC
policies, resource settings, and networking options. Crucially, this chart also installs
all ArgoCD CRDs, enabling the cluster to recognise and process Application,
AppProject, and related custom resource types before any such resources are
created.

In the second stage, the argocd-apps chart is deployed with a set of values
that describe ArgoCD Application resources representing both ArgoCD itself
and the argocd-apps bootstrap configuration. These definitions include references
to the GitOps repository created for this project, specifying the repository URL,
the directory paths containing configuration manifests, and the desired synchro-
nisation policies. As a result, immediately after installation, ArgoCD begins to
manage and continuously reconcile its own configuration. Updates to ArgoCD
functionality—such as changes to resource limits, RBAC, projects, or application
definitions—are therefore performed by modifying the manifests stored in the
Git repository, eliminating the need for external tooling to configure the GitOps
controller.
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GitOps Repository Structure

To support a self-managed GitOps workflow, a dedicated repository was designed
following a clear, hierarchical structure that separates concerns and enables pre-
dictable automation:

repository-root/
|---argocd/
| |---apps/
| | |---<project-name>/
| | | |---<application-manifests>.yaml
| | |---...
| |---install/
| |---<argocd-helm-chart-configuration>/
|---charts/

|---<application-name>/
| |---<helm-chart-or-values>/
|---...

The argocd/install directory contains the Helm chart configuration for deploy-
ing ArgoCD itself. This directory serves as the source for the argocd application,
enabling ArgoCD’s full self-management cycle: any modifications committed to
this directory are automatically detected and applied by ArgoCD.

The argocd/apps directory contains the manifests defining ArgoCD applications
and, optionally, their associated projects. Each subdirectory represents a logical
project grouping, such as infrastructure components, monitoring systems, or the
CrownLabs application stack. Each application manifest specifies the repository
path, Helm chart or values file to use, destination namespace, and synchronisation
policy governing its deployment. These manifests are consumed by the argocd-apps
bootstrap application, which tracks and synchronises all applications defined within
this structure.

The charts directory stores custom Helm charts or values files for applications
requiring configuration beyond upstream defaults. When an application needs
customised parameters, a directory is created here containing the corresponding
values file. Applications referencing unmodified upstream charts instead point
directly to the upstream Helm repository without requiring a local directory.
This hybrid design preserves flexibility while maintaining clarity regarding which
components are customised and which are deployed from vendor-maintained charts.
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4.2.2 Repository Population and CrownLabs Stack Migra-
tion

With the GitOps repository and ArgoCD bootstrap configuration in place, the
main implementation effort of this thesis involved migrating all CrownLabs com-
ponents into the new declarative management structure. Each existing service
was analysed individually—either by inspecting its previous deployment manifests
or by examining the values used in its Helm release—to reconstruct a complete
GitOps-compatible specification. During this process, several components were
upgraded to more recent versions, and others were reconfigured to better align with
the requirements of the new highly available cluster architecture.

All applications were added to the repository as ArgoCD Application re-
sources within the appropriate project directory. Their configuration was expressed
exclusively through Helm values files stored under the charts directory when
customisation was needed. This approach ensured consistency across applications
and simplified future maintenance.

As part of enhancing the capabilities of the new cluster, the NVIDIA GPU
Operator was introduced to support GPU-accelerated workloads. Its deployment
illustrates the simplicity and repeatability of adding new services under ArgoCD
management. The following Application resource was committed to the reposi-
tory:

1 apiVersion : argoproj .io/ v1alpha1
2 kind: Application
3 metadata :
4 name: gpu - operator
5 namespace : argocd
6 spec:
7 destination :
8 namespace : gpu - operator
9 server : https:// kubernetes . default .svc

10 project : cluster -base
11 source :
12 helm:
13 valueFiles : [./ Values .yaml]
14 path: charts /gpu - operator
15 repoURL : git@github .com:git -user/ gitRepo .git
16 targetRevision : HEAD
17 syncPolicy :
18 syncOptions :
19 - CreateNamespace =true
20 - ServerSideApply =true

Listing 4.3: GPU Operator Application Manifest

To deploy any new application, this manifest can be reused by adjusting the
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application name, destination namespace, and the path referencing the correct
Helm values file.

For the GPU Operator itself, only the parameters deviating from chart defaults
were specified:

1 gpu - operator :
2 nfd:
3 enabled : false
4
5 driver :
6 enabled : false
7
8 sandboxWorkloads :
9 enabled : true

10
11 toolkit :
12 env:
13 - name: CONTAINERD_CONFIG
14 value: /etc/ containerd / config .toml
15 - name: CONTAINERD_SOCKET
16 value: /run/ containerd / containerd .sock
17 - name: CONTAINERD_RUNTIME_CLASS
18 value: nvidia
19 - name: CONTAINERD_SET_AS_DEFAULT
20 value: "false"

Listing 4.4: GPU Operator Helm Values

Once these files were pushed to the repository, the argocd-apps bootstrap appli-
cation detected them and prepared the GPU Operator for deployment. If automatic
synchronisation were enabled, the operator would be deployed immediately without
requiring manual approval. This mechanism applies uniformly to all components in
the system, demonstrating the effectiveness and scalability of the GitOps workflow.

The final step in populating the repository consisted of deploying CrownLabs
itself as an ArgoCD application. Throughout the testing and validation phases,
CrownLabs was redeployed multiple times by simply updating the referenced
commit in the GitOps repository, rather than relying on fixed versioned releases.
This demonstrated both the flexibility of the GitOps setup and the ease of recovery
from misconfigurations or deployment failures: by resetting the commit reference,
the entire CrownLabs stack could be restored to any known-good state in a matter
of minutes.

This concludes the implementation chapter, having established the cluster
infrastructure, deployed ArgoCD with a fully self-managed configuration, and
migrated the entire CrownLabs ecosystem into a unified and declarative GitOps
repository.
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Results

This chapter presents the outcomes of the implementation described in the pre-
vious chapter. First, it evaluates the improvements in deployment, scaling, and
operational efficiency achieved by using KubeSpray and ArgoCD.

5.1 Deployment and Scaling Efficiency
Using the newly configured Kubespray-based cluster deployment workflow, several
concrete improvements in operational efficiency were observed:

Reproducible initial deployment. After performing the repository checkout,
virtual environment setup, inventory configuration, and parameterization, executing
the primary playbook produced a fully functional, HA-enabled Kubernetes cluster.
The process followed a repeatable, documented path — eliminating the ad hoc,
manual steps that characterised the previous infrastructure setup.

Reduced manual effort for node management. The same playbook machinery,
with minimal modifications to the inventory, was used to add and remove worker
nodes. The automation included installing necessary software, joining or draining
nodes, and cleaning up when nodes were removed.

Improved time-to-deployment. According to the recorded data (see Figures 5.1,
5.2, 5.3), cluster deployment, node addition, and node removal all completed in un-
der 20–40 minutes depending on the number of nodes — a major improvement over
the manual server provisioning and configuration process previously used. These
results demonstrate that frequent scaling operations (for example, to accommodate
concurrent lab sessions in CrownLabs) are now practical without extensive manual
labor or long waiting times.

This efficiency gain is essential for educational and research environments, where
hardware availability and peak loads can vary significantly and unpredictably.
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Figure 5.1: Cluster Deployment Playbook Boxplot

5.2 Operational Management: GitOps with Ar-
goCD

Once the cluster was deployed and operational, the introduction of ArgoCD as
the operational layer proved transformative for application and configuration
management:

• Immediate self-management of ArgoCD. Because ArgoCD manages its own
configuration, any change to its settings—such as RBAC, project definitions,
or helm chart values—can be made simply by updating manifests in the Git
repository and committing them. ArgoCD synchronises itself accordingly,
establishing a closed self-managed loop.

• Clear, reproducible deployment of applications. The GitOps repository struc-
ture (with separate directories for ArgoCD installation, applications, and
Helm charts/values) provided a clean separation of concerns and predictable
deployment mechanics. With this structure, deploying an application required
only committing its manifest (and optional Helm values) and letting ArgoCD
handle the rest.
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Figure 5.2: Scale Playbook Boxplot

• Simplified stack migration. All existing CrownLabs services, previously de-
ployed manually or via ad-hoc scripts, were migrated into the repository. Many
component versions were updated; others reconfigured for HA or compatibility
with the new cluster setup. Because all configuration is now version-controlled,
it is straightforward to track changes, roll back misconfigurations, and replicate
the setup in testing or staging clusters.

• Rapid deployment on fresh clusters. On a newly provisioned cluster, a single
commit of the GitOps repository sufficed to deploy the entire CrownLabs
stack — demonstrating that the combination of Kubespray and ArgoCD
effectively provides “cluster-as-code” + “infrastructure-as-code” for bare-metal
environments.

These operational improvements dramatically reduce administrative overhead,
minimize chances for configuration drift, and provide a reproducible, auditable,
and maintainable deployment model.
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Figure 5.3: Node Removal Playbook CDF

Figure 5.4: ArgoCD Applications

5.3 Introduction of GPU-Accelerated Workloads

A key objective of the redesign was to enable GPU-accelerated workloads for
courses related to machine learning, scientific computing, or graphics processing.
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Figure 5.5: ArgoCD Resource View

The implementation successfully demonstrated this capability:

• The NVIDIA GPU Operator was added to the GitOps repository and deployed
via ArgoCD like any other application, using a Helm chart with minimal
overrides.

• A GPU-enabled workspace was instantiated for the “AI-Enhanced Architec-
ture” course, providing students with access to virtualized environments with
access to NVIDIA GPUs and schedulable via Kubernetes.

5.4 Addressing Original Limitations
By combining a robust provisioning baseline, automated cluster deployment, and
declarative operational management, the new infrastructure successfully overcomes
the key limitations identified in the original CrownLabs setup:

• Scalability constraints have been alleviated: nodes can be added or removed
swiftly, enabling the platform to respond to varying demand without long
delays.

• Manual upgrade burden and maintenance windows have been replaced by
predictable and repeatable procedures, reducing downtime and operational
risk.

• Single point of failure in the control plane has been mitigated by deploying a
highly available control plane (on VMs), while worker nodes run on bare-metal
servers.
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• Networking inflexibility — particularly the previous inability for cross-subnet
pod communication — has been resolved via Cilium overlay + BGP configu-
ration, enabling distributed resources to join the same cluster.

• Lack of support for GPU workloads has been addressed by deploying the GPU
operator and verifying GPU-enabled environments.

• Configuration drift and inconsistent deployments have been replaced by GitOps-
based declarative management, ensuring reproducibility, auditability, and
version-controlled changes.
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Conclusions

The work presented in this thesis — “Automating the Deployment and Operation
of a Scalable Bare-Metal Kubernetes Cluster” — demonstrates that combining
mature open-source tools with a well-thought-out architecture can successfully
bring cloud-style automation to on-premise infrastructure in academic and research
environments.

By leveraging Kubespray for cluster deployment and lifecycle management, and
ArgoCD for operational GitOps workflows, the resulting solution provides:

• reproducible and efficient cluster provisioning;

• automated scaling and upgrade procedures;

• high availability and fault tolerance;

• a fully declarative, version-controlled, and auditable configuration management
process.

In the context of CrownLabs, the new infrastructure removes previous operational
bottlenecks and significantly reduces manual workload for administrators. The
ability to redeploy the full system from a clean slate by simply applying the GitOps
repository illustrates that bare-metal infrastructure can indeed achieve a level of
manageability and resilience comparable to public clouds.

Overall, this thesis shows that with appropriate tooling and architecture, on-
premise bare-metal environments can be managed efficiently, reliably, and flexibly

— making them a viable, and sometimes preferable, alternative for academic and
research institutions.

Future work may explore further enhancements such as automated bare-metal
provisioning integration (e.g., via cluster-API), dynamic scaling policies based on
workload metrics, tighter integration between GPU scheduling and user workflows,
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and multi-cluster or multi-region deployments. However, the results obtained here
constitute a strong foundation and prove the viability of the approach.
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