
POLITECNICO DI TORINO

Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Sviluppo di un portale web per la gestione delle carriere
dei PhD del DAUIN

Supervisori

Prof. Fulvio VALENZA

Dott. Ric. Davide PIUMATTI

Candidato

Luca Daniele PREVATO

DICEMBRE 2025

Dedicato a Elisabetta, mia moglie e da sempre mia amica più cara.

ii

Sviluppo di un portale web per la gestione delle carriere dei
PhD del DAUIN

Luca Daniele Prevato

Abstract

Si vuole realizzare un portale web che consenta la gestione delle va-
lutazioni annuali dei PhD, raccogliendo le informazioni di interesse per
la valutazione (inserite dallo studente, dal tutore o dai database centrali
di ateneo) e gli esiti della valutazione della commissione. La visione
delle valutazioni agli studenti deve essere anonima, le valutazioni annuali
devono essere visibili per tutta la durata del PhD. Inoltre, il portale deve
gestire le commissioni di valutazione i cui membri possono variare nel
tempo.

iv

Sommario

Elenco delle figure ix

Elenco delle tabelle xi

1 Evoluzione e stato attuale dello sviluppo web (2025) 1
1.1 Introduzione . 1
1.2 Origini del Web . 2
1.3 Evoluzione Delle Applicazioni Web Dinamiche 4
1.4 ASP.NET e l’Ecosistema Microsoft 7
1.5 Gestione dei Dati nelle Applicazioni Web 8
1.6 SQL Server e il suo ruolo nello sviluppo web moderno . . 9
1.7 Tendenze Attuali e Prospettive Future nella Programma-

zione Web . 10
1.8 Conclusioni . 11

2 Tecnologie Usate 12
2.1 Introduzione . 12
2.2 La Piattaforma .NET 9 e il Linguaggio C# 13

2.2.1 Panoramica . 13
2.2.2 Architettura Runtime e componenti 13
2.2.3 Caratteristiche del linguaggio e modello di program-

mazione (C#) . 14
2.2.4 Considerazioni su prestazioni, compilazione AOT

e architetture cloud-native 16
2.2.5 Esperienza di sviluppo e strumenti 17

2.3 Blazor Server e architettura UI dell’applicazione 17
2.3.1 Perché Blazor Server? 17
2.3.2 Circuiti SignalR e gestione dello stato 18
2.3.3 Modello dei componenti, ciclo di vita e Razor . . 19

v

2.3.4 Integrazione di Sicurezza e Autenticazione 19
2.3.5 Compromessi tra performance e scalabilità 20

2.4 Microsoft SQL Server e il Livello Dati 21
2.4.1 Modello relazionale e garanzie transazionali . . . 21
2.4.2 Integrazione tramite Entity Framework Core . . . 21
2.4.3 Sicurezza, prestazioni e funzionalità operative . . 21

2.5 Internet Information Services (IIS) 23
2.5.1 Ruolo come Hosting e reverse proxy 23
2.5.2 Pool di applicazioni e isolamento 24
2.5.3 Monitoraggio e diagnostica 24

2.6 Shibboleth, SAML e Autenticazione Federata 25
2.6.1 SSO e identità federata 25
2.6.2 SAML 2.0 e Shibboleth 25
2.6.3 Integrazione in questo progetto 26
2.6.4 Privacy e rilascio degli attributi 26

2.7 API REST e REST APIs e Scambio Dati JSON 27
2.7.1 Principi REST e utilizzo HTTP 27
2.7.2 Payload JSON e deserializzazione tipizzata 27
2.7.3 Livello di servizio e associazione all’interfaccia utente 27

2.8 Conclusioni . 29

3 Specifiche funzionali dell’applicativo PhdMan v2 30
3.1 Introduzione e specifiche del progetto 30
3.2 Contesto Operazionale 31
3.3 Obiettivi Funzionali Principali 31

3.3.1 Centralizzazione delle Informazioni 31
3.3.2 Integrazione con Fonti Dati Istituzionali 32
3.3.3 Pagine Personalizzate e Accesso Basato sui Ruoli 32
3.3.4 Conservazione dei Dati 33
3.3.5 Configurabilità e Flessibilità 33
3.3.6 Miglioramento dell’Esperienza Utente 34

3.4 Attori e Responsabilità 34
3.4.1 Studente di Dottorato 35
3.4.2 Tutore e Co-tutori 35
3.4.3 Commissione . 35
3.4.4 Coordinatore del Corso di Dottorato 36
3.4.5 Collegio dei Docenti 36
3.4.6 Gestore del Sistema 37

vi

3.5 Descrizione del Processo di Revisione 37
3.5.1 Fase di Preparazione 37
3.5.2 Caricamento delle Relazioni e Valutazioni da Parte

dei Tutori . 37
3.5.3 Revisione da parte della Commissione 37
3.5.4 Delibera del Collegio di Docenti 38
3.5.5 Chiusura e Archiviazione 38

3.6 Requisiti Tecnici e di Sicurezza 39
3.7 Conclusioni . 39

4 Analisi Funzionale e Tecnica di PhDManV2 40
4.1 Panoramica . 40
4.2 Architettura dell’applicazione 40
4.3 Hosting e Routing . 41
4.4 Autenticazione e Autorizzazione 43

4.4.1 Gestione dell’Identità 44
4.4.2 Controllo degli Accessi Basato sui Ruoli 44

4.5 Funzionalità specifiche per ruolo 46
4.5.1 Studenti di Dottorato 46
4.5.2 Tutori e Cotutori 46
4.5.3 Commissione . 48
4.5.4 Collegio dei Docenti 48
4.5.5 Amministratori 49

CollegioAssegna.razor 49
commissioneAdmin.razor 49
dottorandiAdmin.razor 50
dottGiudiziComm.razor 51

4.6 Modello dei Dati e Persistenza 52
4.6.1 Entità Principali 52
4.6.2 Gestione dei documenti 52
4.6.3 Tutori e il loro Giudizio 54
4.6.4 Giudizio della Commissione 54
4.6.5 Giudizio del Collegio 56
4.6.6 Integrazione del ciclo di vita della valutazione . . 57

4.7 Middleware e Logging 58
4.7.1 Middleware personalizzato 58
4.7.2 Logging strutturato con Serilog 58

4.8 Distribuzione e Configurazione degli Ambienti 59

vii

4.8.1 Sviluppo vs. Produzione 59
4.8.2 Distribuzione su IIS e Hosting come Sottoapplicazione 59
4.8.3 Sicurezza e Configurazioni Avanzate 60

5 Risultati 61
5.1 Introduzione . 61
5.2 Risultati rispetto ai requisiti funzionali 61
5.3 Risultati rispetto ai requisiti tecnici e di sicurezza 63
5.4 Sintesi dei Risultati . 64

6 Sviluppi futuri 65
6.1 Introduzione . 65
6.2 Pagina di gestione delle comunicazioni 65
6.3 Gestione dei periodi di inserimento e revisione 66
6.4 Sistema di notifiche automatiche 66
6.5 Pagina di consultazione dei log 67
6.6 Ulteriori possibili sviluppi 67
6.7 Conclusioni . 68

Appendice A — Documentazione Tecnica 69

Bibliografia 81

Ringraziamenti 84

viii

Elenco delle figure

1.1 Tecnologie base nel Web (HTML, HTTP, URL) 3
1.2 Linea temporale dell’evoluzione del Web. 4
1.3 Modello MVC. 5
1.4 Schema del funzionamento di AJAX/XHR/fetch 6
1.5 Architettura di una SPA 7

2.1 Architettura logica di .NET 9 13
2.2 Schema della Toolchain Visual Studio/CLI/pipeline di build 15
2.3 Struttura di un componente Razor 19
2.4 Schema Entity Framework Core 21
2.5 Diagramma architettura di hosting IIS + Kestrel 23
2.6 Flusso SAML/Shibboleth 25
2.7 Schema di funzionamento delle API REST 28

4.1 Architettura a livelli: flusso tra i componenti dell’interfac-
cia utente, i servizi e il database. 42

4.2 Topologia di hosting: mostra IIS, la struttura della sot-
toapplicazione e il flusso di routing dalle richieste esterne
agli endpoint interni. 43

4.3 Flusso di autenticazione e autorizzazione. 45
4.4 Esempio di pagina di un dottorando. 47
4.5 Esempio di pagina dei tutori. 47
4.6 Esempio di pagina della Commissione. 48
4.7 Dettaglio della pagina del Collegio. 49
4.8 Esempio di pagina di assegnazione del Collegio. 49
4.9 Esempio di pagina di assegnazione delle Commissioni. . . 50
4.10 Esempio di pagina di gestione dei dottorandi. 51
4.11 Esempio di pagina di riepilogo delle valutazioni delle com-

missioni. 51

ix

4.12 Diagramma entità-relazione delle entità principali. 53
4.13 Diagramma entità-relazione della tabella dei documenti. 53
4.14 Diagramma entità-relazione delle tabelle dei Tutori. . . . 54
4.15 Diagramma entità-relazione delle tabelle delle Commissioni. 56
4.16 Diagramma entità-relazione delle tabelle del Collegio. . . 57

x

Elenco delle tabelle

1.1 Confronto tecnologie server-side storiche 3
1.2 Confronto tra pattern architetturali 5

2.1 Principali componenti dello stack .NET 9 16
2.2 Differenze tra Blazor Server e Blazor WebAssembly . . . 18
2.3 Funzionalità avanzate di Microsoft SQL Server 22

4.1 Esempi di Configurazione di Routing 43
4.2 Ruoli e Permessi . 45

5.1 Tracciamento dei requisiti, dell’implementazione e dei
risultati di PhDManV2 64

xi

Acronyms

AJAX Asynchronous JavaScript and XML.
API Application Programming Interface.
AOT Ahead-of-Time (Compilation).
ASP Active Server Pages.
ASP.NET Active Server Pages .NET.

BCL Base Class Library.

CGI Common Gateway Interface.
CLR Common Language Runtime.

DAUIN Dipartimento di Automatica e Informatica.
DTO Data Transfer Object.

EF Entity Framework.
EF Core Entity Framework Core.

HMVC Hierarchical Model-View-Controller.
HTML HyperText Markup Language.
HTTP HyperText Transfer Protocol.

IdP Identity Provider.
IIS Internet Information Services.
IRIS Institutional Research Information System.

JIT Just-In-Time (Compilation).
JSON JavaScript Object Notation.
JSP JavaServer Pages.

xiii

MVA Model-View-Adapter.
MVC Model-View-Controller.
MVP Model-View-Presenter.
MVVM Model-View-ViewModel.

ORM Object-Relational Mapping.

PhDManV2 PhD Manager Versione 2.

RDBMS Relational Database Management System.
REST Representational State Transfer.

SSMS SQL Server Management Studio.
SPA Single Page Application.
SP Service Provider.
SQL Structured Query Language.
SSO Single Sign-On.
SAML Security Assertion Markup Language.
SSOT Single Source of Truth.

T-SQL Transact-SQL.

URL Uniform Resource Locator.

WWW World Wide Web.

xiv

Capitolo 1

Evoluzione e stato
attuale dello sviluppo
web (2025)

1.1 Introduzione
Da quando venne inventato oltre 30 anni fa, il World Wide Web
(WWW) si è evoluto da un semplice sistema di condivisione di documenti
a un vasto ecosistema interconnesso che pervade quasi ogni aspetto
della vita moderna; la comunicazione, il commercio, l’intrattenimento e
l’enterprise computing sono oggigiorno radicati all’interno del web. Le sue
tecnologie e paradigmi di programmazione si sono fortemente evoluti per
soddisfare le sempre nuove richieste riguardo la scalabilità, l’interattività
e l’esperienza utente.

Questo capitolo fornirà dettagli riguardo l’evoluzione della pro-
grammazione web, partendo dalle sue origini di pagine ipertestuali
statiche fino a complesse applicazioni data-driven, complesse e dinamiche.
Si inizierà parlando delle origini del web, dei sui standard e tecnologie
iniziali che l’hanno reso possibile. Successivamente verranno analizzate
le principali transizioni tecnologiche, come lo scripting server-side, l’in-
troduzione di modelli di progettazione architetturale come MVC
(Model-View-Controller) e la proliferazione di framework e librerie
che permettono lo sviluppo di applicazioni web su larga scala.

1

1.2. ORIGINI DEL WEB

Un’attenzione particolare verrà data all’ecosistema web Microsoft,
in particolare ad ASP.NET e alla sua evoluzione moderna in Pagi-
ne Razor, che esemplifica le più moderne best practices relative alla
programmazione per componenti, alla produttività dello sviluppo e alla
separazione delle preoccupazioni. Questo capitolo, inoltre, introdurrà il
concetto di gestione dei dati e come si sia reso necessario lo sviluppo di
sistemi efficienti e consistenti.

Infine, il capitolo si conclude con un’analisi delle tecnologie attuali
come il cloud computing, i microservizi, Blazor e le integrazioni AI,
che plasmano la direzione della programmazione web moderna. Fornendo
questa panoramica questo capitolo pone l’applicazione web sviluppata in
un più ampio contesto storico e tecnologico del web.

1.2 Origini del Web

Le origini del web risalgono ai primi anni 90 quando Tim Berners-Lee,
un ricercatore del CERN, sviluppò un metodo per semplificare la condi-
visione di dati e informazioni scientifiche attraverso sistemi di computer.
[1] Il suo lavoro portò alla creazione del World Wide Web, un sistema
ipertestuale distribuito basato su tre tecnologie base: HTML (Hyper-
Text Markup Language), HTTP (HyperText Transfer Protocol)
e URL (Uniform Resource Locators). [2] Queste tecnologie hanno
fornito un framework universale e indipendente dalla piattaforma per
condividere documenti, permettendo uno scambio di informazioni su scala
globale. [3]

La prima generazione di siti web, comunemente riferiti come Web 1.0
consistevano di pagine statiche ed erano semplici documenti HTML
inviati dai web server senza alcun tipo di interazione da parte dell’utente.
Queste pagine dovevano essere aggiornate a mano ed erano quindi ineffi-
cienti per applicazioni che prevedevano operazioni da parte dell’utente
o modifiche frequenti. Nonostante queste limitazioni questi siti statici
hanno introdotto i concetti rivoluzionari di collegamento ipertestuale e
accesso universale alle informazioni.

Con l’espansione del web, la necessità di generazione di contenuti
dinamici diventò chiara. Gli utenti volevano inviare dati, fare ricerche e
avere risultati personalizzati; tutte cose che le pagine statiche in HTML
non permettevano di fare. Questo ha portato alla nascita di tecnologie

2

1.2. ORIGINI DEL WEB

di scripting lato server come CGI (Common Gateway Interfa-
ce) nel 1993 che permettevano ai server web di eseguire script esterni
(spesso scritti in Perl) e generare contenuti dinamici in tempo reale. Po-
co dopo vennero sviluppate altre tecnologie come PHP (Hypertext
Preprocessor) nel 1995, ASP (Active Server Pages) nel 1996 e
JSP (JavaServer Pages) nel 1999, introducendo ambienti integrati
di scripting che combinavano la logica server con dei template HTML.
Questo segnò il passaggio dal Web 1.0 al Web 2.0, focalizzato sull’inte-
rattività e partecipazione da parte dell’utente e generazione di contenuti
personalizzati.

Tecnologia Anno Caratteristiche Limiti
CGI 1993 Script esterni eseguiti dal server Poco efficiente
PHP 1995 Scripting embedded nell’HTML Codice poco strutturato
ASP 1996 Script lato server Microsoft Dipendenza da Windows
JSP 1999 Java + template HTML Verbosità Java

Tabella 1.1: Confronto tecnologie server-side storiche

Figura 1.1: Tecnologie base nel Web (HTML, HTTP, URL)

3

1.3. EVOLUZIONE DELLE APPLICAZIONI WEB DINAMICHE

1.3 Evoluzione Delle Applicazioni Web Di-
namiche

I contenuti web dinamici, nati nel periodo dai tardi anni 90 ai primi anni
2000, hanno profondamente modificato il modo in cui gli sviluppatori
dovevano concepire lo sviluppo web. Il web dinamico aumentava sia la
complessità che le dimensioni dei siti web, gli sviluppatori quindi neces-
sitavano di metodologie strutturate per organizzare il codice, separare
le preoccupazioni e gestire le connessioni tra i diversi componenti delle
applicazioni.

Figura 1.2: Linea temporale dell’evoluzione del Web.

Da queste necessità nacque l’architettura Model-View-Controller
(MVC) che separa l’applicazione in tre sezioni distinte: il Modello
(Model), responsabile dei dati e logica di business; la Vista (View)

4

1.3. EVOLUZIONE DELLE APPLICAZIONI WEB DINAMICHE

che governa l’interfaccia utente e la presentazione; e il Controllore
(Controller) che gestisce gli input e coordina tutte le interazioni tra la
Vista e il Modello. [4] Successivamente si è evoluto il modello MVC dando
vita a varianti come il Model-View-Controller gerarchico (HMVC),
il Model-View-Adapter (MVA), il Model-View-Presenter (MVP),
il Model-View-Viewmodel (MVVM) e altri che adattavano MVC a
contesti differenti. [5] Il modello MVC divenne la base concettuale per
molti framework web, permettendo di progettare applicazioni che fossero
scalabili e mantenibili.

Figura 1.3: Modello MVC.

Pattern Punti di forza Debolezze
MVC Separazione componenti Non ideale per UI complesse
MVP Testabilità elevata Molta logica nel Presenter
MVVM Ottimo per data binding Sovraccarico concettuale

Tabella 1.2: Confronto tra pattern architetturali

Per soddisfare queste nuove esigenze in quegli anni emersero dei nuovi
framework, atti a semplificare lo sviluppo delle applicazioni e a velocizzare
i tempi di consegna; Microsoft ASP.NET (2002), il framework open-
source Ruby on Rails (2005) e Django (2005) per Python adottarono
il paradigma MVC (o una sua variante come nel caso di Django[6]) con
lo scopo di rendere il codice più modulare e ridurre al minimo le attività
ripetitive.

Nel frattempo, JavaScript che in origine era utilizzato solo per in-
terazioni limitate client-side, si è evoluto ed è diventato un pilastro
fondamentale per lo sviluppo web moderno. Un momento cruciale fu
l’introduzione di AJAX (Asynchronous JavaScript and XML) nel
2005, che consentiva alle pagine web di aggiornare in maniera asincrona

5

1.3. EVOLUZIONE DELLE APPLICAZIONI WEB DINAMICHE

porzioni specifiche delle pagine senza dover ricaricare l’intero documento.
[7]

Figura 1.4: Schema del funzionamento di AJAX/XHR/fetch

Questa innovazione migliora sensibilmente la performance e l’esperien-
za utente, permettendo la realizzazione di interfacce web dinamiche e
elaborate. L’adozione di AJAX ha spianato la strada verso le Single
Page Applications (SPA) o applicazioni su singola pagina, nelle quali
il client e il server comunicano prevalentemente tramite API RESTful
scambiandosi dati strutturati in formati come il JSON. [8]

Questo cambiamento architetturale ha portato a un profondo cambia-
mento nella filosofia di sviluppo: il web non era più una mera raccolta di
pagine e documenti, ma si era trasformato in una piattaforma interattiva
capace di fornire applicazioni complesse. L’unione di potenti framework,
comunicazione asincrona e architetture orientate ai servizi sono le basi
del web interattivo, modulare e moderno che conosciamo oggi.

6

1.4. ASP.NET E L’ECOSISTEMA MICROSOFT

Figura 1.5: Architettura di una SPA

1.4 ASP.NET e l’Ecosistema Microsoft

Il contributo di Microsoft nell’evoluzione della programmazione web è
stato sicuramente ampio e importante. La prima tecnologia web di
rilievo, Active Server Pages (ASP), fu introdotta alla fine degli anni
90 e permise agli sviluppatori di includere script server-side direttamente
nelle pagine HTML. Sebbene questo semplificasse la creazione di pagine
dinamiche, dall’altro lato portava a un forte accoppiamento del codice
che diventava così più difficile da mantenere.

L’introduzione di ASP.NET nel 2002 rappresentò una completa ri-
considerazione dell’approccio usato in precedenza; sviluppato sul Fra-
mework .NET, ASP.NET era compilato, fortemente tipizzato e com-
pletamente integrato nel più ampio ecosistema .NET. [9] Questo cambia-
mento portò un nuovo livello di robustezza e scalabilità alle applicazioni
web, rendendo possibile lo sviluppo di soluzioni a livello aziendale più

7

1.5. GESTIONE DEI DATI NELLE APPLICAZIONI WEB

veloci, più sicure e più facili da gestire.
Negli anni seguenti ASP.NET continuò ad evolversi, introducendo

nuovi paradigmi come ASP.NET MVC e Web API per allinearsi
con le più moderne architetture di sviluppo software. Un traguardo
importante venne raggiunto con la pubblicazione di .NET Core, una
reimplementazione multipiattaforma e open-source del framework,
che ha reso le applicazioni sviluppate in ASP.NET portabili in diversi
sistemi operativi e ambienti cloud. [10]

In mezzo ai vari paradigmi ASP.NET, le Pagine Razor, introdotte
con ASP.NET Core, sono emerse come soluzione elegante per sviluppare
applicazioni focalizzate sulle pagine. La sintassi Razor, combinando il
codice HTML e quello C# in un singolo file, fornisce agli sviluppatori una
metodologia ordinata e produttiva per creare contenuti dinamici. [11] Se
confrontato col tradizionale Web Forms, le Pagine Razor presentano
una netta separazione tra logica e presentazione, facilitano la testabilità e
riducono significativamente il codice boilerplate (ovvero quelle sezioni di
codice che vengono ripetute in più punti con poche o nessuna variazione).

ASP.NET Razor al momento è tra i framework più sofisticati nell’am-
bito dello sviluppo web, ed è frutto di un lavoro di perfezionamento da
parte di Microsoft delle tecnologie web.

1.5 Gestione dei Dati nelle Applicazioni
Web

I dati sono sempre stati il cuore pulsante delle applicazioni web. Con
l’aumento della complessità dei sistemi una gestione efficiente dei dati
è diventata un componente essenziale delle architetture web. Prima
dell’avvento dei database relazionali, l’archiviazione dei dati veniva spesso
implementata utilizzando file di testo o strutture proprietarie, che erano
lenti, non strutturati e soggetti a errori.

L’introduzione del modello relazionale da parte di E. F. Codd nel
1970 ha rivoluzionato la gestione dei dati fornendo un sistema formale e
logico per organizzare e recuperare le informazioni. [12] I dati ora venivano
organizzati in tabelle e correlati tramite chiavi e vincoli e interrogati
usando SQL (Structured Query Language). [13] Questa innovazione
fu una pietra miliare nei moderni sistemi di database e ancora oggi è lo
standard.

8

1.6. SQL SERVER E IL SUO RUOLO NELLO SVILUPPO WEB MODERNO

Nell’ambiente web le applicazioni seguono tipicamente il modello
client-server, nel quale l’applicazione web funge da client che comu-
nica con il database sul server back-end. Scrivere query SQL diretta-
mente nel codice dell’applicativo divenne rapidamente macchinoso, e
per semplificare questo processo vennero introdotti i framework ORM
(Object-Relational Mapping).

Entity Framework (EF), la soluzione ORM di Microsoft, permette
agli sviluppatori di manipolare le entità dei database direttamente dal
codice dell’applicativo. [14] Questa astrazione permette di eliminare la
necessità di gestire manualmente SQL garantendo una migliore manu-
tenibilità, portabilità e sicurezza dei tipi. Entity Framework si integra
perfettamente con ASP.NET e le pagine Razor permettendo agli
sviluppatori di concentrarsi sulla logica di business piuttosto che sulle
complessità dell’accesso al database. Insieme, il modello relazionale, SQL
e le tecnologie ORM costituiscono la spina dorsale dello sviluppo web
basato sui dati, consentendo alle applicazioni di gestire e conservare le
informazioni in modo efficiente su sistemi su larga scala.

1.6 SQL Server e il suo ruolo nello sviluppo
web moderno

Microsoft SQL Server è uno dei sistemi di gestione di database
relazionali (RDBMS) più utilizzati in ambito aziendale, noto per le
sue prestazioni, affidabilità e profonda integrazione con le altre tecnologie
Microsoft.

Alla base SQL Server è composto da alcuni macro componenti: il
motore di database, responsabile dell’archiviazione dei dati e dall’e-
laborazione delle query, SQL Server Management Studio (SSMS),
strumento grafico per l’amministrazione del database, e Transact-SQL
(T-SQL), un’estensione proprietaria di SQL Sviluppata da Microsoft
che supporta la programmazione procedurale, le transazioni e operazioni
avanzate sui dati. [15]

L’architettura di SQL Server enfatizza la sicurezza, scalabilità e
ottimizzazione delle prestazioni. Funzionalità come la sicurezza a li-
vello di riga, la crittografia, le stored procedures e l’indicizzazione
consentono un controllo dettagliato sull’accesso ai dati e sulle prestazioni
del sistema. Inoltre, SQL Server si integra direttamente con Entity

9

1.7. TENDENZE ATTUALI E PROSPETTIVE FUTURE NELLA PROGRAMMAZIONE WEB

Framework, permettendo una comunicazione fluida tra il data layer e il
layer applicativo nel progetti ASP.NET.

L’incremento di utilizzo del cloud computing ha richiesto un nuovo
approccio nella gestione dei database; SQL Server, tramite Azure SQL
Database, ha fornito una versione basata sul cloud, completamente
gestita, e che offre scalabilità, disponibilità globale e elasticità. Per questi
motivi è una soluzione potente e flessibile per tutte quelle applicazioni
web che necessitano di elevata disponibilità e gestione sicura dei dati in
ambienti distribuiti.

1.7 Tendenze Attuali e Prospettive Future
nella Programmazione Web

L’ambito della programmazione web continua a evolversi rapidamente,
modificato da nuovi paradigmi e innovazioni tecnologiche. Uno dei più
importanti cambiamenti degli ultimi anni è stata l’adozione diffusa del
cloud computing. Piattaforme come Microsoft Azure, Amazon
Web Services (AWS) e Google Cloud Platform (GCP) ora ospita-
no una parte sostanziosa delle applicazioni web fornendo un’infrastruttura
scalabile e servizi avanzati per quanto riguarda l’archiviazione, la rete e i
calcoli. [16] L’incremento di popolarità dei microservizi e architetture
serverless ha ulteriormente modificato come vengono progettate e pub-
blicate le applicazioni web. Al posto di sistemi monolitici, gli sviluppatori
realizzano le applicazioni come una collezione di servizi più piccoli e
distribuiti indipendentemente gli uni dagli altri. Questo approccio miglio-
ra la resistenza ai guasti, la scalabilità, la manutenibilità, allineandosi
perfettamente con le metodologie DevOps e le pipeline di integrazione
continua/distribuzione continua (CI/CD).

Il framework Blazor ha introdotto un nuovo modo di sviluppare
applicazioni web usando C# invece di JavaScript. [17] Gli sviluppatori
con Blazor, sfruttando WebAssembly, possono scrivere applicazioni full-
stack in .NET con il front-end e il back-end unificati in un unico modello
di programmazione; questo approccio non solo aumenta la coerenza nello
sviluppo ma riduce anche la complessità.

In futuro ci si aspetta che l’intelligenza artificiale (AI) e il Machine
learning (ML) avranno un ruolo sempre più centrale nello sviluppo web.
[18] Le applicazioni possono essere oggi più consapevoli del contesto,

10

1.8. CONCLUSIONI

personalizzate e autonome, capaci di imparare dal comportamento
dell’utente e di adattarsi in tempo reale. Questi sviluppi, insieme alla
continua crescita dell’infrastruttura cloud e ai framework multi piatta-
forma, stanno plasmando una nuova era di sistemi web intelligenti e
adattivi che definiranno la prossima generazione delle esperienze digitali.

1.8 Conclusioni
La storia della programmazione web riflette una più ampia evoluzione
dell’informatica in generale: dalla mera rappresentazione di informazioni
statiche a sistemi interattivi, guidati dai dati e intelligenti. Ogni fase
di questo percorso ha introdotto nuovi paradigmi che hanno espanso le
potenzialità del web: l’HTML ha standardizzato la distribuzione dei con-
tenuti, lo scripting lato server ha introdotto un comportamento dinamico,
i framework MVC hanno strutturato le applicazioni e il cloud computing
ha ridefinito la scalabilità e l’accessibilità. Oggigiorno tecnologie come
ASP.NET Razor e SQL Server rappresentano il culmine di decenni di
progressi; combinano la robustezza di framework maturi con la flessibilità
richiesta dallo sviluppo moderno. L’applicazione sviluppata in questa
tesi sfrutta queste tecnologie per dimostrare dell’architettura modulare,
forte consistenza dei dati e un’efficiente interazione utente.

Comprendere questa evoluzione storica e tecnologica fornisce informa-
zioni su come sono nati gli attuali framework web, perché sono strutturati
in questo modo e come continuano a evolversi verso un ecosistema digitale
ancora più connesso, intelligente e fluido.

Per concludere la tesi è strutturata come segue: Nel Capitolo 2 descri-
verò nel dettaglio tutte le tecnologie usate per realizzare il portale. Il
Capitolo 3 analizzerò le specifiche funzionali dell’applicativo, descrivendo
il contesto, i desiderata e le funzionalità principali richieste. All’interno
del Capitolo 4 descriverò il progetto realizzato, descrivendo l’architettura
dell’applicazione, la tecnica di hosting, le tecniche di autenticazione e
autorizzazione, il modello dati e le funzionalità. Nel Capitolo 5 illustrerò
i risultati ottenuti rispetto sia ai requisiti funzionali che a quelli tecnici.
Infine il Capitolo 6 analizzerò i possibili sviluppi futuri e miglioramenti
del portale.

11

Capitolo 2

Tecnologie Usate

2.1 Introduzione

Lo sviluppo di un’applicazione web moderna dipende da una selezione
attenta di tecnologie moderne che garantiscano robustezza, scalabilità,
manutenibilità e sicurezza. L’applicazione sviluppata per questo progetto
di tesi è stata scritta usando una combinazione di tecnologie che appar-
tengono all’ecosistema Microsoft e standard aperti per l’autenticazione e
lo scambio di dati. Nello specifico è stato utilizzato .NET 9 come piat-
taforma di sviluppo, C# come linguaggio di programmazione principale,
Blazor Server per il livello dell’interfaccia utente, Microsoft SQL Ser-
ver per la gestione dei dati, IIS (Internet Information Services) per
l’hosting e la gestione operativa e Shibboleth per l’identità federata e il
single sign-on. Inoltre, l’applicazione utilizza API REST che restituiscono
payload JSON per dati dinamici (per esempio i dati degli studenti di
dottorato) che sono integrati tramite servizi asincroni e modelli tipizzati
in C#.

Ognuna di queste tecnologie contribuisce a un differente strato architet-
turale: .NET e C# forniscono il modello computazionale e il linguaggio,
Blazor Server gestisce la presentazione e il comportamento interattivo,
SQL Server fornisce capacità di archiviazione persistenti e transazionali,
IIS funge da piattaforma di hosting e superficie operativa, e Shibboleth
applica l’identità federata a livello di autenticazione. Questo capitolo
descriverà ogni elemento dello stack, spiegando i concetti chiave (per
esempio SSO e SAML) e descriverà come i componenti sono integrati tra
di loro.

12

2.2. LA PIATTAFORMA .NET 9 E IL LINGUAGGIO C#

2.2 La Piattaforma .NET 9 e il Linguaggio
C#

2.2.1 Panoramica

La piattaforma .NET si è evoluta da un framework escusivamente per
sistemi Windows a un runtime e SDK unificato, multi piattaforma e open-
source. .NET 9 rappresenta l’evoluzione a lungo termine più recente della
linea .NET unificata, apportando ottimizzazioni runtime, miglioramenti
cloud-native e un supporto più completo per carichi di lavoro moderni
come servizi containerizzati e componenti di base AI/ML [19, 20]

Figura 2.1: Architettura logica di .NET 9

La decisione di usare .NET 9 per questo progetto è stata presa a
causa di diverse motivazioni tecniche e pratiche: supporto degli strumenti
in Visual Studio e nella CLI (interfaccia della riga di comando), la
possibilità di pubblicare l’applicazione in diversi ambienti (Windows,
Linux, container, ecc...) e una totale integrazione con ASP.NET Core e
Entity Framework Core.

2.2.2 Architettura Runtime e componenti

Al centro della piattaforma si trova il Common Language Runtime
(CLR), che esegue codice gestito, fornisce la garbage collection, applica
la sicurezza dei tipi e supporta la gestione delle eccezioni e dei thread.

13

2.2. LA PIATTAFORMA .NET 9 E IL LINGUAGGIO C#

Complementare al CLR, la Base Class Library (BCL) espone un ricco
set di API per l’I/O, il networking, la crittografia, le raccolte, il threading
e la globalizzazione. Sopra queste fondamenta di poggia ASP.NET Core,
il framework web usato per ospitare gli endpoint HTML, i middleware e
le applicazioni web. Il SDK .NET e la toolchain del compilatore (Roslyn
per C#), forniscono servizi in fase di compilazione, come per esempio
gli analizzatori, la generazione di codice e la pipeline di pubblicazione.
.NET 9 potenzia ulteriormente questi componenti con le opzioni di
compilazione Ahead-of-Time (AOT), euristiche JIT a livelli migliorate e
runtime trimming che riducono le dimensioni dei binari per le distribuzioni
containerizzate. [21, 22]

2.2.3 Caratteristiche del linguaggio e modello di
programmazione (C#)

Il linguaggio C# è stato impiegato in modo estensivo all’interno del
progetto per l’implementazione dei servizi lato server, la definizione dei
layer di accesso ai dati e la costruzione dei componenti Blazor. C# è
un linguaggio di programmazione staticamente tipizzato e orientato agli
oggetti, con funzionalità moderne che supportano modelli di programma-
zione asincroni e reattive, caratteristiche fondamentali per applicazioni
web responsive.

Le funzionalità più rilevanti che sono state sfruttate in questo progetto
comprendono:

• Async/await: usato in modo estensivo per eseguire operazioni di
I/O non bloccanti, in particolare nelle chiamate HTTP verso API
REST e nell’accesso al database tramite EF Core, migliorando la
scalabilità e il throughput del sistema. [23]

• LINQ (Language Integrated Query): utilizzato per esprimere
trasformazioni e filtri su collezioni in memoria e query EF Core, au-
mentando la chiarezza del codice e riducendo la necessità di generare
SQL boilerplate.

• Records e immutabilità: gli oggetti di trasferimento dati (DTO)
e i view model sono stati modellati come record quando era richiesta
semantica di valore e immutabilità.

14

2.2. LA PIATTAFORMA .NET 9 E IL LINGUAGGIO C#

Figura 2.2: Schema della Toolchain Visual Studio/CLI/pipeline di build

• Dependency injection: ASP.NET Core integra il contenitore
DI che garantisce una gestione pulita delle risorse utilizzandolo
per registrare i servizi con diversi cicli di vita (singleton, scoped,
transient).

Tutte queste caratteristiche permettono l’adozione di uno stack mono
linguaggio che gestisca l’accesso ai dati, la logica di business e il com-
portamento dell’interfaccia utente, riducendo la complessità, il contesto
cognitivo necessario e la manutenibilità del progetto.

15

2.2. LA PIATTAFORMA .NET 9 E IL LINGUAGGIO C#

Tabella 2.1: Principali componenti dello stack .NET 9

Componente Descrizione Note
CLR Esecuzione codice ge-

stito, GC, JIT/AOT
Fondamentale per
performance e affida-
bilità

BCL Librerie di base per
I/O, networking, col-
lezioni, sicurezza

Riduce codice perso-
nalizzato

ASP.NET Core Middleware pipeline,
routing, API, Razor,
Blazor

Layer principale per
hosting dell’applica-
zione

EF Core ORM, migrazioni,
LINQ, tracking

Facilita accesso ai
dati, attenzione alle
query complesse

Toolchain (.NET SDK) Compilazione, analiz-
zatori, CLI, hot re-
load

Migliora produttività
e debugging

Kestrel / Hosting Server HTTP e inte-
grazione con IIS

Scelta consigliata per
ambienti enterprise

Dependency Injection Iniezione dipendenze,
gestione lifetimes

Migliora testabilità e
modularità

2.2.4 Considerazioni su prestazioni, compilazione
AOT e architetture cloud-native

.NET 9 introduce la compilazione AOT (Ahead-of-Time) e ulteriori
ottimizzazioni del runtime che migliorano sensibilmente i tempi di avvio
e riducono il consumo di memoria, vantaggi particolarmente rilevanti
per applicazioni Blazor Server ospitate lato server e microservizi eseguiti
sotto orchestrazione containerizzata. [20, 21].

La compilazione AOT può anche essere applicata in modo selettivo (per
esempio nel caso di carichi di lavoro sensibili al cold-start), mantenendo
contemporaneamente i vantaggi della compilazione Just-in-Time per il
codice più attivo.

Inoltre .NET 9 potenzia l’integrazione con gli strumenti di diagnostica
e telemetria (come EventCounters, OpenTelemetry) facilitando sia il mo-
nitoraggio dei sistemi in produzione che l’ottimizzazione delle prestazioni
nei deployment cloud.

16

2.3. BLAZOR SERVER E ARCHITETTURA UI DELL’APPLICAZIONE

2.2.5 Esperienza di sviluppo e strumenti

Visual Studio e l’interfaccia della riga di comando (CLI) di .NET costi-
tuiscono una toolchain integrata per lo sviluppo di applicazioni Blazor
Server; questi strumenti supportano in modo nativo attività fondamentali
come la modifica del codice, il debug interattivo, il supporto all’hot reload
e la pubblicazione su ambienti locali o in cloud.

In particolare, l’hot reload per componenti Razor e Blazor consen-
te di aggiornare l’interfaccia utente e la logica applicativa senza dover
ricompilare o riavviare l’intera applicazione; questo approccio accelera
notevolmente lo sviluppo applicativo favorendo iterazioni rapide e una
maggiore fluidità nel processo di design e refactoring, in quanto le mo-
difiche al progetto sono immediatamente riscontrabili nel browser senza
dover riavviare l’applicazione. [24].

L’interfaccia della riga di comando di .NET offre inoltre comandi
per la gestione del ciclo di vita dell’applicazione, inclusi dotnet build ,
dotnet run , dotnet publish e dotnet watch , facilitando l’integrazione
con ambienti di sviluppo automatizzati grazie anche alla creazione di
script.

2.3 Blazor Server e architettura UI dell’ap-
plicazione

2.3.1 Perché Blazor Server?

Blazor è un framework moderno per interfacce utente che consente agli
sviluppatori di creare interfacce web interattive e complesse utilizzando
C# e Razor al posto di JavaScript [25]. Esistono due principali modelli
di hosting: Blazor WebAssembly (client-side) e Blazor Server (server-
side).[26]

Per questa applicazione è stato scelto Blazor Server per i seguenti
motivi:

• Esecuzione centralizzata: la logica di business viene eseguita
sul server, dove ha accesso diretto alle risorse (database, servizi
enterprise), evitando l’esposizione di logica o segreti lato client.

17

2.3. BLAZOR SERVER E ARCHITETTURA UI DELL’APPLICAZIONE

• Requisiti minimi lato client: il carico iniziale sul client è ridotto
poiché non è necessario scaricare WebAssembly; è sufficiente disporre
di un browser moderno e una connessione compatibile con SignalR.

• Modello di sicurezza semplificato: le operazioni sensibili riman-
gono tutte lato server, riducendo così le possibilità d’attacco lato
client.

• Stack C# unificato: grazie allo stack tecnologico unificato gli
sviluppatori hanno la possibilità di riutilizzare modelli, logiche e
servizi tra i lato server e client.

Queste caratteristiche rispettano perfettamente i vincoli di progetto, il
deployment istituzionale, l’autenticazione forte (in questo caso Shibboleth)
e la centralizzazione dei dati, favorendo un’esecuzione lato server [27].

Caratteristica Blazor Server Blazor WebAssembly
Esecuzione Sul server Nel browser
Reattività Dipende da latenza Molto alta
Payload iniziale Basso Alto (WASM + DLL)
Sicurezza Molto alta Espone il codice al client
Scalabilità Richiede molte connessioni Scalabile lato client

Tabella 2.2: Differenze tra Blazor Server e Blazor WebAssembly

2.3.2 Circuiti SignalR e gestione dello stato
Blazor Server mantiene una connessione persistente e bidirezionale tra il
browser e il server tramite SignalR. Sul server ogni client connesso è asso-
ciato con un circuito che immagazzina lo stato dei componenti e gestisce
l’invio degli eventi. Mentre questo permette interattività in tempo reale,
sottintende che ogni utente consuma memoria sul server e potenzialmente
thread/risorse a seconda del carico di lavoro. L’applicazione per essere
scalabile deve:

• minimizzare lo stato del circuito e mantenere i componenti leggeri

• usare operazioni asincrone per le operazioni legate all’I/O per evitare
la saturazione dei thread

• delegare operazioni pesanti o di lunga durata a servizi in background
(IHostedService / code) invece di bloccare i gestori degli eventi
dell’interfaccia utente

18

2.3. BLAZOR SERVER E ARCHITETTURA UI DELL’APPLICAZIONE

Un uso attento dei servizi con ciclo di vita scoped e dei pattern di rilascio
delle risorse (disposal) previene la perdita di stato tra circuiti e riduce il
consumo non necessario di memoria. [27].

2.3.3 Modello dei componenti, ciclo di vita e Razor

L’interfaccia utente Blazor è composta da componenti Razor riutiliz-
zabili, file ’.razor’ che uniscono HTML e C# usando direttive Razor; per
citarne alcuni ’@page’ indica che il componente è una pagina, ’@inject’
per includere servizi esterni nel componente, ’@bind’ per associare una
variabile a un componente dell’interfaccia utente e ’@code’ che indica il
blocco che contiene il codice C#. [28] I componenti espongono parametri,
callback di eventi e metodi del ciclo di vita come OnInitializedAsync, On-
ParametersSetAsync e OnAfterRenderAsync, consentendo un controllo
preciso sull’inizializzazione, la gestione dei parametri e il comportamen-
to successivo al rendering. Nell’applicazione, i compiti della UI sono
frammentati in componenti piccoli e testabili (navigazione, liste, dettagli,
finestre modali) per migliorare la manutenibilità e la riusabilità. [29].

Figura 2.3: Struttura di un componente Razor

2.3.4 Integrazione di Sicurezza e Autenticazione

Blazor Server è perfettamente integrato con lo stack di autenticazione e
autorizzazione di ASP.NET Core; l’applicazione usa un middleware di
autenticazione per accettare le informazioni principali fornite dal livello di
hosting (IIS con integrazione con Shibboleth). L’autorizzazione viene poi
applicata tramite regole e attributi basati su ruoli e claim, sia sui singoli
componenti che sugli endpoint. Dato il fatto che Blazor Server esegue
tutta la logica lato server, i controlli di autorizzazione sono eseguiti prima
delle operazioni sensibili, contribuendo così a mantenere uno standard di
sicurezza elevato.

19

2.3. BLAZOR SERVER E ARCHITETTURA UI DELL’APPLICAZIONE

2.3.5 Compromessi tra performance e scalabilità
Blazor Server permette un’elevata produttività nello sviluppo e vantaggi
di sicurezza ma necessita di specifiche scelte architetturali per un alta
concorrenzialità:

• Densità di connessioni: ogni circuito SignalR ha associata un’im-
pronta di memoria; per gestire un elevato numero di utenti può essere
necessario adottare lo scaling orizzontale (istanze server multiple) e
configurare sessioni sticky o uno stato distribuito dei circuiti (tramite
backplane Redis).

• Sensibilità alla latenza: poiché gli eventi dell’interfaccia utente
comportano un round-trip verso il server, la latenza geografica può
influire negativamente sull’esperienza utente.

• Rendering ottimizzato: l’uso di override del metodo ShouldRender
e una granularità fine dei componenti riducono i diff dell’interfaccia
utente non necessari e il traffico di rete.

Nel caso d’uso specifico di questa applicazione, queste ottimizzazioni
architetturali non si sono rese necessarie; l’applicazione è di tipo istituzio-
nale ed è rivolta a un numero limitato di utenti, che per la maggior parte
è localizzata in una zona geografica ristretta. Questo ha permesso di
evitare configurazioni complesse come lo scaling orizzontale o i backplane,
mantenendo comunque un’esperienza utente reattiva e fluida.

20

2.4. MICROSOFT SQL SERVER E IL LIVELLO DATI

2.4 Microsoft SQL Server e il Livello Dati

2.4.1 Modello relazionale e garanzie transazionali

Microsoft SQL Server è un RDBMS maturo che supporta transazioni
ACID, query complesse, strategie di indicizzazione, stored procedure e
funzionalità avanzate di disponibilità (per esempio Always On Availability
Groups). È particolarmente adatto a deployment istituzionali che richie-
dono una robusta integrità dei dati, strumenti per il backup e ripristino
e un’amministrazione centralizzata. [30]

2.4.2 Integrazione tramite Entity Framework Core

L’applicazione usa Entity Framework Core (EF Core) come livello
ORM per mappare le entità C# in tabelle relazionali. EF Core fornisce
funzionalità di migrazione, tracciamento delle modifiche, query LINQ-
to-Entities e la possibilità di utilizzare query SQL pure quando si rende
necessario per operazioni critiche a livello prestazionale.[31]. I vantaggi
includono una tipizzazione forte nelle operazioni sul database, riduzione
del codice boilerplate e transazioni integrate con il ciclo di vita delle
richieste in ASP.NET Core.

Figura 2.4: Schema Entity Framework Core

2.4.3 Sicurezza, prestazioni e funzionalità operative

SQL Server offre supporto integrato per la crittografia (Transparent Data
Encryption, Always Encrypted), il controllo degli accessi basato sui ruoli,
l’auditing e la gestione granulare dei permessi. Per le prestazioni possono

21

2.4. MICROSOFT SQL SERVER E IL LIVELLO DATI

essere adottate delle strategie di indicizzazione (clustered, non-clustered,
columnstore) e di OLTP in-memory quando appropriato. Dal punto di
vista operativo i job di SQL Server Agent e i piani di manutenziona
automatizzano backup, indicizzazione e verifiche di consistenza, elementi
fondamentali per la preparazione per l’ambiente di produzione.

Tabella 2.3: Funzionalità avanzate di Microsoft SQL Server

Funzionalità Descrizione Vantaggi / Note
Transazioni ACID Integrità dei dati e ge-

stione concorrente
Essenziale nelle opera-
zioni critiche

T-SQL Estensione procedurale
del linguaggio SQL

Utile per stored proce-
dure e batch server-side

Sicurezza Row/column security,
TDE, Always Encryp-
ted

Supporta compliance e
protezione dati sensibili

Indicizzazione Indici rowstore/co-
lumnstore

Migliora drasticamente
performance di query

Query Optimizer Scelta automatica piani
di esecuzione

Fondamentale per per-
formance; usare EX-
PLAIN

In-memory OLTP Tabelle in memoria per
OLTP ad alte prestazio-
ni

Riduce latenza; utile
per carichi elevati

Availability Groups Replica e failover ad al-
ta disponibilità

Minimizza downtime e
protegge i dati

22

2.5. INTERNET INFORMATION SERVICES (IIS)

2.5 Internet Information Services (IIS)

2.5.1 Ruolo come Hosting e reverse proxy

IIS viene usato come front-end di hosting per l’applicazione Blazor Server.
Riceve il traffico HTTP(S) in ingresso, termina la connessione TLS,
applica eventualmente filtri alle richieste e inoltra le richieste al server
Kestrel tramite il modulo ASP.NET Core (ANCM). L’uso di IIS offre
vantaggi amministrativi come la gestione dei certificati e le funzionalità
avanzate di log e monitoraggio, particolarmente utili negli ambienti basati
su Windows.[32]

Figura 2.5: Diagramma architettura di hosting IIS + Kestrel

23

2.5. INTERNET INFORMATION SERVICES (IIS)

2.5.2 Pool di applicazioni e isolamento
IIS utilizza pool di applicazioni per isolare i processi; la configurazione dei
pool controlla la concorrenza, le politiche di riciclo e l’identità del processo
nel quale l’applicazione viene eseguita. Un’adeguata configurazione del
pool garantisce che un’istanza difettosa di un’applicazione non interferisca
con altri siti ospitati sullo stesso server.

2.5.3 Monitoraggio e diagnostica
La registrazione di IIS (log W3C), i log degli eventi di Windows e i
contatori delle prestazioni sono stati utilizzati per monitorare i pattern
delle richieste, l’utilizzo della CPU e della memoria. Inoltre, gli endpoint
di diagnostica di ASP.NET Core e il sistema di logging sono stati integrati
nella telemetria centralizzata per abilitare la manutenzione proattiva e la
pianificazione della capacità.

24

2.6. SHIBBOLETH, SAML E AUTENTICAZIONE FEDERATA

2.6 Shibboleth, SAML e Autenticazione
Federata

2.6.1 SSO e identità federata

Single Sign-On (SSO) significa che un utente si autentica una volta
e ottiene accesso a un certo numero di applicazioni senza il bisogno
di riautenticarsi. L’identità federata estende questo concetto oltre i
confini organizzativi, abilitando relazioni di fiducia tra provider di identità
(IdP) e provider di servizi (SP). Quando le identità vengono gestite
centralmente da un’istituzione, il Single Sign-On (SSO) e la federazione
riducono la proliferazione di credenziali, migliorano l’usabilità per l’utente
e favoriscono l’applicazione centralizzata delle policy.

Figura 2.6: Flusso SAML/Shibboleth

2.6.2 SAML 2.0 e Shibboleth

Il Security Assertion Markup Language (SAML) 2.0 è uno stan-
dard basato su XML per lo scambio di asserzioni di autenticazione e auto-
rizzazione tra IdP e SP. Shibboleth è un’implementazione open-source
di identità federata basata su SAML ampiamente usata in istituzioni
accademiche e di ricerca. Il flusso tipico di SAML consiste in:

25

2.6. SHIBBOLETH, SAML E AUTENTICAZIONE FEDERATA

1. Un utente richiede l’accesso a una risorsa protetta al Service Provider

2. IL Service Provider reindirizza l’utente all’IdP per l’autenticazione

3. L’IdP autentica l’utente, per esempio tramite credenziali istituzionali,
e emette un’asserzione SAML firmata

4. L’utente è reindirizzato al Service Provider, che valida la firma
dell’asserzione SAML ed estrae le claim (attributi)

5. Il Service Provider stabilisce una sessione locale oppure associa
l’asserzione a un account utente interno e concede l’accesso

Questo meccanismo garantisce che le credenziali siano gestite esclusi-
vamente dall’IdP autorevole, consentendo ai Service Provider di fidarsi
dell’esito dell’autenticazione e di utilizzare gli attributi utente secondo
necessità. [33]

2.6.3 Integrazione in questo progetto
Nell’architettura implementata, Shibboleth funge da ponte esterno SP/IdP
davanti all’applicazione ospitata su IIS. Il software Shibboleth Service
Provider, implementato a livello di ateneo, valida le asserzioni SAML e in-
serisce gli attributi utente nel contesto della richiesta (tramite intestazioni
HTTP). Il middleware di autenticazione di ASP.NET Core è configurato
per accettare queste intestazioni come principal e per mappare gli attri-
buti in claim utilizzati dall’applicazione per le decisioni di autorizzazione.
Questo approccio riduce al minimo la gestione diretta delle credenziali
da parte dell’applicazione e sfrutta la gestione centralizzata delle identità
istituzionali.

2.6.4 Privacy e rilascio degli attributi
La gestione dell’identità federata richiede politiche rigorose di rilascio degli
attributi per la tutela della privacy degli utenti. Il provider di identità
(IdP) emette solamente gli attributi necessari (per esempio matricola,
indirizzo email e ruolo istituzionale); le regole di mappatura e le policy
locali garantiscono che queste informazioni personali siano gestite in
conformità con le normative istituzionali.

26

2.7. API REST E REST APIS E SCAMBIO DATI JSON

2.7 API REST e REST APIs e Scambio
Dati JSON

2.7.1 Principi REST e utilizzo HTTP

L’applicazione utilizza endpoint RESTful che forniscono dati relativi
a dottorandi e informazioni istituzionali associate. REST è uno stile
architetturale basato su interazioni stateless e sull’uso di verbi HTTP
standard (GET, POST, PUT, DELETE) per manipolare risorse identifi-
cate da URI [34]. L’assenza di stato semplifica lo scaling orizzontale e
la cache, risultando ben allineata con l’infrastruttura HTTP. In questo
caso specifico le API utilizzate sono in sola lettura e forniscono in modo
asincrono i dati.

2.7.2 Payload JSON e deserializzazione tipizzata

Le API restituiscono payload JSON che vengono analizzati e deseria-
lizzati in modelli C# fortemente tipizzati utilizzando la libreria Sy-
stem.Text.Json. La tipizzazione rigorosa consente controlli in fase di
compilazione e semplifica la logica applicativa successiva. Ad esempio,
un record semplificato di dottorando può essere rappresentato come:

public DidDottorato(string titolo, string descrizione,
int cicloAppartenenza, int annoDott, string tematica,
Argomento arg, string dataInizioAttivita,
string dataPresuntaFineAttivita, string tipologiaBorsa,
int matricolaTutore, List<DidUtente> cotutori,
string corsoDiStudio, string dipartimento)

HttpClient viene utilizzato per inviare richieste asincrone; le risposte
vengono validate (codici di stato, gestione degli errori), deserializzate e
memorizzate nel database per ridurre il carico sulle API.

2.7.3 Livello di servizio e associazione all’interfaccia
utente

Nel modello Blazor Server, classi di servizio dedicate incapsulano le
chiamate alle API e la logica di caching. I servizi vengono iniettati nei
componenti e sono responsabili della trasformazione dei DTO in modelli

27

2.7. API REST E REST APIS E SCAMBIO DATI JSON

Figura 2.7: Schema di funzionamento delle API REST

di dominio o di visualizzazione per l’interfaccia. Questa separazione segue
i principi SOLID e rende semplice l’aggiunta di test unitari per la logica
di trasformazione dei dati.

28

2.8. CONCLUSIONI

2.8 Conclusioni
La combinazione di .NET 9, C#, Blazor Server, Microsoft SQL
Server, IIS, Shibboleth, e API REST costituisce una base moderna,
sicura e manutenibile per l’applicazione sviluppata in questa tesi. Ogni
tecnologia svolge un ruolo specifico: .NET 9 fornisce un runtime ad alte
prestazioni e un ecosistema linguistico avanzato; Blazor Server consente
un’interfaccia utente unificata in C# con interattività in tempo reale;
SQL Server offre persistenza transazionale dei dati; IIS garantisce ho-
sting e funzionalità operative di livello enterprise; Shibboleth supporta
il Single Sign-On federato nei contesti accademici; REST/JSON abilita
l’integrazione disaccoppiata con le fonti dati istituzionali. Insieme, queste
tecnologie permettono di costruire un’architettura di sistema sicura, te-
stabile e facilmente manutenibile, in linea con le migliori pratiche attuali
per ambienti enterprise e accademici.

29

Capitolo 3

Specifiche funzionali
dell’applicativo PhdMan
v2

3.1 Introduzione e specifiche del progetto

Il sistema PhDManV2 (abbreviazione di PhD Manager Versione 2) è
stato concepito per fornire una piattaforma per gestire l’intero processo
annuale di revisione degli studenti di dottorato.

Il processo attuale, nonostante sia ben collaudato, presenta diverse
limitazioni causate dall’uso di procedure manuali, uso di fogli Excel e
raccolta di dati da una serie di siti e piattaforme esterne; proprio questa
frammentazione di informazioni su più sistemi (portale della didattica,
cruscotto ScuDo, IRIS e PhDMan) crea inefficienze, duplicazione dei dati
e difficoltà nella gestione del processo nel suo complesso.

L’obiettivo principale del progetto è quindi digitalizzare e auto-
matizzare il ciclo di revisione garantendo la tracciabilità in ogni
stato, consistenza dei dati reperiti dalle varie fonti e visibilità dei dati
dipendente dal ruolo dell’utente.

PhDManV2 permetterà la gestione di tutte le attività legate al pro-
cesso di revisione, dalla raccolta delle presentazioni dei dottorandi e la
valutazione dei tutori alla valutazione della commissione e la preparazione
dei dati per la decisione finale del Collegio, in un ambiente unico, sicuro
e trasparente.

30

3.2. CONTESTO OPERAZIONALE

3.2 Contesto Operazionale
Il processo di revisione di un dottorando tipicamente ha luogo una volta
all’anno, ma le tempistiche possono variare in quanto la data di inizio
degli anni accademici dei dottorandi può essere diversa. In prossimità
della fine di ogni singolo anno accademico viene avviato il processo di
revisione che coinvolgerà più attori: lo studente di dottorato, il tutore e
gli eventuali cotutori, i membri delle Commissioni, i membri del Collegio
e il Coordinatore del Corso di Dottorato. Nel sistema inoltre deve essere
possibile gestire più revisioni in contemporanea, relative a dottorandi
di diversi cicli e/o anni, mantenendo la corretta associazione con la
commissione e le valutazioni assegnate.

3.3 Obiettivi Funzionali Principali
PhDManV2 è concepito come una piattaforma digitale integrata che
trasforma la gestione delle valutazioni degli studenti di Dottorato da
una procedura frammentata e coordinata manualmente in un processo
tracciabile e basato sui dati; i suoi obiettivi rispecchiano la necessità di
semplificare il flusso operativo e fornire informazioni affidabili e aggiornate
per il processo decisionale.

3.3.1 Centralizzazione delle Informazioni
Uno degli obiettivi principali di PhDManV2 è la centralizzazione di
tutti i dati e documenti legati al processo annuale di revisione dei
Dottorandi. Attualmente le informazioni sono contenute in sistemi dif-
ferenti (il portale della didattica, il cruscotto ScuDo, IRIS e Pauper)
e queste vengono estratte e combinate manualmente. Questo porta a
inconsistenze, duplicazione delle attività e a inefficienze.

Il nuovo sistema dovrà:

• Consolidare in un unico repository i dati di tutti gli attori coinvolti
(studenti, tutori, cotutori, commissari e membri del collegio) e di
tutte le valutazioni.

• Eliminare ogni richiesta di dati ridondanti, sfruttando invece sistemi
esistenti del Politecnico di Torino attraverso API o importazione di
dati da Database esterni.

31

3.3. OBIETTIVI FUNZIONALI PRINCIPALI

• Mantenere un record univoco (single source of truth o SSOT)
per ogni studente di Dottorato che evolverà nel tempo, mostrando
la progressione nel corso degli anni e dei cicli di revisione.

• Fornire agli utenti autorizzati informazioni aggiornate e consistenti
in qualsiasi momento senza la necessità di ricercare le informazioni
su altre piattaforme.

3.3.2 Integrazione con Fonti Dati Istituzionali
PhDManV2 dovrà operare come parte di un più largo ecosistema di
funzionalità del Politecnico di Torino. Lo scopo è leggere a aggiornare
le informazioni rilevanti da altri database istituzionali per assicurarsi
l’allineamento dei dati e evitare discrepanze.

Nello specifico:

• da Pauper/Gesd il sistema recupererà i dati anagrafici istituzionali
dello studente (matricola da studente, matricola da dottorando,
indirizzo email, tipologia di dottorato) e tutti i dati legati al dottorato
(come per esempio tutore, cotutori, anno, ciclo, argomento).

• da IRIS verranno importati i dati riguardo le pubblicazioni e gli
indicatori bibliometrici come le classifiche delle riviste e l’indicatore
R.

• dal sistema ScuDo otterrà i dati riguardo le ore di lezione seguite,
l’elenco dei corsi tenuti e le loro rispettive ore.

L’integrazione verrà effettuata tramite chiamate ad API REST o query a
database istituzionali nel rispetto di tutte le regole di sicurezza e accesso.

3.3.3 Pagine Personalizzate e Accesso Basato sui
Ruoli

Data la diversità di tipologie di utenti il sistema dovrà mostrare cruscotti
personalizzati che riflettano le necessità specifiche per ogni categoria.

• Il cruscotto del Dottorando mostrerà i risultati degli anni passati e
lo stato attuale del processo di revisione.

• Il cruscotto del tutore e dei cotutori mostrerà un elenco dei dotto-
randi assegnati con i dati relativi alle valutazioni passate, lo stato

32

3.3. OBIETTIVI FUNZIONALI PRINCIPALI

della valutazione attuale, la relazione caricata e eventuali note da
parte dello studente.

• Il cruscotto della Commissione mostrerà l’elenco degli studenti
assegnati, i loro dati (tutti quelli già visibili al tutore) e la valutazione
del tutore.

• Il cruscotto del Collegio mostra tutti i dati disponibili alle Commis-
sioni con in più le valutazioni delle stesse.

• Il Coordinatore del Corso di Dottorato e il suo vice avranno
accesso a tutta una serie di funzionalità per gestire il sistema come
creare le Commissioni e assegnar loro i dottorandi, gestire i membri
del Collegio e vedere i dati completi di tutti i dottorandi.

Ogni cruscotto dovrà mostrare i dati in modo conciso ed efficace, fornendo
solo le informazioni rilevanti per facilitare la lettura dei dati e il processo
decisionale.

3.3.4 Conservazione dei Dati
Il sistema sarà anche un archivio a lungo termine del percorso accade-
mico di ogni studente di dottorato. Questo significa che ogni valutazione,
giudizio e decisione dal primo all’ultimo anno, resterà accessibile nel
sistema.

La piattaforma:

• terrà traccia di tutte le valutazioni passate di ogni studente.

• mostrerà una panoramica delle prestazioni, permettendo sia allo
studente che ai revisori di valutare i progressi nel tempo.

• dovrà mettere a disposizione funzionalità per la reportistica e per
l’esportazione dei dati per facilitare la valutazione del dottorando.

Questa possibilità di controllare lo storico della carriera dello studente aiu-
terà ad individuare situazioni reiterate (per esempio "warning" frequenti)
e supporterà il processo di gestione del programma di dottorato.

3.3.5 Configurabilità e Flessibilità
Siccome i programmi di dottorato potrebbero cambiare, il processo di
valutazione e i criteri di giudizio potrebbero anch’essi modificarsi nel

33

3.4. ATTORI E RESPONSABILITÀ

tempo. PhDManV2 deve quindi offrire una configurabilità amministrativa,
permettendo agli utenti autorizzati di adattare il sistema senza la necessità
di interventi tecnici.

Alcuni di questi elementi sono:

• La composizione e i ruoli delle Commissioni (con date di validità dei
componenti).

• La composizione del Collegio.

• Le tempistiche delle varie fasi di valutazione con date di apertu-
ra e chiusura delle varie fasi, differenziate per dottorando e per
Commissione.

Questa flessibilità permette una gestione a lungo termine e un’a-
dattabilità della piattaforma a futuri cambiamenti organizzativi o di
regolamenti.

3.3.6 Miglioramento dell’Esperienza Utente

Infine, PhDManV2 sarà progettato in base a principi di usabilità e
accessibilità. Data la diversità dei suoi utenti, dallo studente di dottorato
ai docenti, l’interfaccia dovrà essere intuitiva, responsive e conforme agli
standard di accessibilità.

Gli obiettivi principali, in termini di usabilità, includono:

• Un layout chiaro e intuitivo, pensato per ridurre al minimo il tempo
necessario per apprenderne le funzionalità.

• Percorsi di navigazione chiari all’interno della piattaforma.

• Compatibilità con dispositivi mobili per consentire agli utenti di
operare sulla piattaforma con qualsiasi dispositivo.

3.4 Attori e Responsabilità

Il sistema prevede diverse tipologie di utenti, ognuno con un insieme
predefinito di permessi e attività da svolgere.

34

3.4. ATTORI E RESPONSABILITÀ

3.4.1 Studente di Dottorato
I dottorandi rappresentano il punto di partenza del processo. Attraverso
la piattaforma gli studenti potranno:

• Caricare la presentazione annuale (in formato pdf o PowerPoint).

• Indicare in un campo testuale eventuali commenti o annotazioni.

• Visualizzare e verificare la correttezza dei loro dati attuali riguardo
le ore di lezione seguite, i corsi tenuti e le pubblicazioni.

• Vedere tutte le valutazioni indicate come "pubbliche" e il responso
della valutazione finale.

• Leggere lo storico di tutte le valutazioni passate date sulla piattafor-
ma.

3.4.2 Tutore e Co-tutori
Il tutore e gli eventuali co-tutori sono i responsabili scientifici dello
studente di dottorato.

Le attività che possono svolgere all’interno del sistema sono:

• Inserire la loro valutazione testuale sulle prestazioni dell’anno dello
studente.

• Scaricare il materiale caricato e le annotazioni del dottorando.

• Visualizzare le valutazioni pubbliche e il responso finale per tutti gli
studenti supervisionati.

• Avere a portata di mano le valutazioni degli anni passati degli studenti
supervisionati.

È importante sottolineare che il tutore e i co-tutori non hanno accesso
alle valutazioni della Commissione, con l’eccezione di quelle indicate come
"pubbliche".

3.4.3 Commissione
Le Commissioni sono composte da tre membri (uno dei quali viene indicato
come presidente) e sono responsabili della valutazione dei dottorandi
basandosi sulla presentazione caricata dal dottorando e sui suoi dati.
Ogni Commissione potrà:

35

3.4. ATTORI E RESPONSABILITÀ

• Scaricare la presentazione del dottorando, leggere le eventuali anno-
tazioni e leggere la valutazione del tutore.

• Valutare l’operato annuale del dottorando sia tramite campi strut-
turati che di testo libero; questi campi riguardano vari aspetti del
lavoro atteso da parte del dottorando.

• Assegnare una raccomandazione finale per i membri del collegio
che può essere "ammesso", "ammesso con warning" o "respinto".

3.4.4 Coordinatore del Corso di Dottorato

Il coordinatore e il suo vice supervisionano l’intero processo di valutazione
dei dottorandi.

Attraverso la piattaforma hanno la possibilità di:

• Creare nuove commissioni, modificare quelle esistenti, modificare i
membri che le compongono e modificare l’assegnazione dei dottorandi
a ognuna.

• Assegnare nuovi membri al Collegio dei docenti o rimuoverne.

• Aprire o chiudere le fasi in cui i dottorandi possono caricare le loro
presentazioni annuali e quelle in cui i tutori, cotutori e commissioni
possono dare i loro giudizi.

• Visualizzare i dati di tutti i dottorati.

• Visualizzare e scaricare report.

3.4.5 Collegio dei Docenti

Il Collegio dei Docenti ha in carico la fase finale del processo. Dopo
aver ricevuto tutte le valutazioni, il Collegio discuterà e formalizzerà la
decisione finale per ognuno degli studenti. Con l’ausilio della piattaforma
i membri possono analizzare tutti i dati a disposizione e registrare la loro
decisione, la quale diventa parte integrante della storia permanente delle
valutazioni dello studente.

36

3.5. DESCRIZIONE DEL PROCESSO DI REVISIONE

3.4.6 Gestore del Sistema

Il gestore del sistema garantisce il corretto funzionamento della piattafor-
ma. Tra le sue responsabilità c’è la gestione dei ruoli utente, il controllo
la sicurezza informatica, delle prestazioni del sistema e mantenere i log e
i backup in linea con le normative sulla privacy.

3.5 Descrizione del Processo di Revisione
Il processo annuale di revisione è diviso in 5 fasi principali:

3.5.1 Fase di Preparazione

Il Coordinatore (o il vice) definisce i periodi per la revisione per ogni
gruppo di studenti basati sulle date di inizio di dottorato individuali.

Inoltre, definirà i membri delle commissioni e i dottorandi che dovranno
essere valutati da queste, basandosi su criteri specifici come l’affinità
tematica e su vincoli come l’assenza di pubblicazioni in comune tra il
docente e il dottorando.

3.5.2 Caricamento delle Relazioni e Valutazioni da
Parte dei Tutori

All’approssimarsi del periodo di revisione il Coordinatore comunica ai
dottorandi e ai relativi tutori il periodo di tempo in cui potranno procedere
con la loro parte del processo di revisione.

Nella data di inizio il Coordinatore abiliterà i dottorandi all’inserimento;
da quel momento questi potranno caricare le loro presentazioni e i tutori
potranno esprimere la loro valutazione.

Terminato il periodo per il caricamento, il Coordinatore provvederà
con l’eliminazione del permesso all’inserimento.

3.5.3 Revisione da parte della Commissione

Le Commissioni avranno a disposizione sul portale il materiale necessario
per poter organizzare le sessioni orali dei dottorandi. Al termine della
discussione un membro della commissione (tipicamente il presidente)
esprimerà il giudizio collettivo nel sistema.

Il form di valutazione dei revisori comprenderà:

37

3.5. DESCRIZIONE DEL PROCESSO DI REVISIONE

• Campi strutturati che riguardano i vari aspetti del lavoro del dot-
torando (Piano di ricerca, Slides, Presentazione Orale, Pubblicazio-
ni, Insegnamenti e Corsi) con valutazioni che possono avere valori
predefiniti (Ok, Problemi, Non applicabile).

• Due campi testuali: uno pubblico, che sarà visibile anche al dot-
torando e al tutore/cotutori, e l’altro privato, visibile solo dal
Collegio.

• Un campo strutturato con la valutazione globale (Scarso, Discreto,
Medio, Buono, Eccellente)

• Un campo con una valutazione finale consigliata (Ammesso, Ammesso
con Riserva, Respinto)

3.5.4 Delibera del Collegio di Docenti
Il Collegio dei Docenti avrà a disposizione una vista aggregata che
combina tutti i dati disponibili che includono per esempio pubblicazioni,
ore di insegnamento, corsi seguiti, presentazione caricata dal dottorando,
valutazione del tutore e quella della commissione. Durante questo incontro
il Collegio darà uno tra tre possibili responsi:

• Ammesso: lo studente può accedere all’anno successivo (se al primo
o secondo anno) o all’esame finale (se del terzo anno).

• Ammesso con Riserva: lo studente non avrà immediatamente ac-
cesso all’anno successivo ma sarà sottoposto a un’ulteriore valutazione
dopo 6 mesi.

• Respinto: lo studente non potrà accedere all’anno successivo ma
dovrà ripetere l’anno attuale.

La decisione finale verrà salvata nel sistema e sarà immediatamente
reperibile da tutte le parti in causa.

3.5.5 Chiusura e Archiviazione
Una volta terminato il ciclo di revisione, tutti i dati vengono resi di-
sponibili in base ai criteri di visibilità. Il sistema conserverà l’intera
cronologia delle valutazioni di ogni dottorando, offrendo una visione a
lungo termine dei progressi accademici e dei risultati ottenuti.

38

3.6. REQUISITI TECNICI E DI SICUREZZA

3.6 Requisiti Tecnici e di Sicurezza
Il sistema sarà un’applicazione web responsive, accessibile da pc e
mobile, con autenticazione tramite i sistemi di Single Sign-On dell’ate-
neo. Il sistema deve implementare un controllo degli accessi granulare,
garantendo che ciascun utente visualizzi solo le informazioni pertinenti al
proprio ruolo e al periodo di valutazione. Tutti i dati sensibili saranno pro-
tetti tramite crittografia e connessioni HTTPS sicure. Le revisioni chiuse
non possono essere modificate, ma restano accessibili per consultazione
e finalità statistiche. Tutti i trattamenti di dati personali devono essere
conformi al Regolamento Generale sulla Protezione dei Dati (GDPR)
dell’UE e alle politiche interne dell’Ateneo.

3.7 Conclusioni
PhDManV2 è progettato per modernizzare e semplificare la gestione delle
revisioni annuali dei progressi dei dottorandi. La piattaforma proposta
ridurrà significativamente il carico di lavoro manuale, migliorerà la qualità
e la reperibilità dei dati e fornirà al Collegio dei Docenti strumenti analitici
e di monitoraggio avanzati.

39

Capitolo 4

Analisi Funzionale e
Tecnica di PhDManV2

4.1 Panoramica

PhDManV2 (abbreviazione di PhD Manager Versione 2) è una piattafor-
ma web progettata per supportare la valutazione del rendimento annuale
dei dottorandi. Questa è realizzata usando Blazor Server nell’ecosistema
.NET, l’applicazione utilizza rendering lato server, la comunicazione in
tempo reale e un modello dati solido per offrire un’esperienza reattiva e
scalabile. Il sistema è progettato per operare all’interno dell’infrastruttura
istituzionale integrandosi con il provider di identità federata Shibboleth
e supportando il deployment come applicazione in IIS.

4.2 Architettura dell’applicazione

L’applicazione adotta un’architettura a livelli che separa le responsabilità
in tra domini. Questa separazione migliora la manutenibilità e consente
agli sviluppatori di operare sul sistema in termini modulari.

• Il livello di presentazione (presentation layer) è composto
da componenti Razor renderizzati tramite Blazor Server; questi
componenti, che incapsulano la logica dell’interfaccia utente, sono or-
ganizzati per ruolo e funzionalità. Ad esempio DottorandoPage.razor
gestisce le interazioni degli utenti, mentre RevisioneTutore.razor
quelle dei tutor.

40

4.3. HOSTING E ROUTING

• Il livello della logica di business (business logic layer) include
classi di supporto che astraggono operazioni comuni come la gestione
dei cookie, la lettura dei dati utente dai sistemi centrali di ateneo
o la gestione dei ruoli, per permettere la riusabilità e semplificare i
test.

• Il livello di accesso ai dati (data access layer) è implementata
tramite Entity Framework Core. La classe PhdReviewContext
definisce lo schema del database e fornisce accesso a entità come
Dottorando , AnnoDottorato , Commissione e Collegio

4.3 Hosting e Routing
PhDManV2 è progettata per essere pubblicata come sottoapplicazione
all’interno di una più ampia infrastruttura web del dipartimento. Questa
scelta riflette la necessità di integrare la piattaforma con servizi esistenti
(come per esempio il provider di autenticazione). L’hosting dell’applica-
zione nel sotto-percorso /PhDManV2 introduce diverse considerazioni
tecniche legate al routing, alla risoluzione delle risorse e alla compatibilità
con Internet Information Services (IIS).

Per supportare questo modello di pubblicazione, l’applicazione usa il
middleware UsePathBase fornito da ASP.NET Core. Questo middleware
permette all’applicazione di interpretare tutte le richieste in arrivo come
relative a uno specifico percorso base. In pratica questo significa che una ri-
chiesta a https://dauin-webapp.polito.it/phdmanv2/MainPage verrà in-
ternamente interpretata semplicemente come una chiamata a /MainPage ,
preservando l’integrità della logica di routing e al tempo stesso mante-
nendo la compatibilità con l’ambiente di hosting.

Questa configurazione non influisce solo sul routing delle pagine Razor
ma anche sulla risoluzione delle risorse statiche, come i file JavaScript, i
fogli di stile CSS e le immagini. Tutte le URL alle risorse devono essere
precedute col path base, per garantire un corretto funzionamento: per
esempio, l’hub Blazor SignalR, che abilita la comunicazione in tempo
reale tra client e server, viene mappato su /PhDManV2/_blazor invece
che sul percorso predefinito /_blazor . Nel caso in cui non venisse
tenuto in considerazione questo adattamento si verificherebbero errori di
connessione interrotta, stili mancanti e componenti non accessibili.

41

4.3. HOSTING E ROUTING

Figura 4.1: Architettura a livelli: flusso tra i componenti dell’interfaccia
utente, i servizi e il database.

Questa metodologia di hosting influenza anche il flusso di autentica-
zione; l’applicazione si affida a Shibboleth per la gestione federata delle
identità e per questo motivo deve essere raggiungibile tramite una struttu-
ra di URL coerente. La distribuzione come sotto-percorso garantisce che
i reindirizzamenti di autenticazione, gli ambiti dei cookie e l’analisi delle
intenzioni operino all’interno di uno spazio di nomi preciso, riducendo le
probabilità di conflitti con altre applicazioni ospitate sullo stesso dominio.

Dal punto di vista della distribuzione, l’hosting sotto IIS richiede una

42

4.4. AUTENTICAZIONE E AUTORIZZAZIONE

configurazione accurata del pool di applicazioni, dei binding del sito e
delle regole di riscrittura. La sottoapplicazione deve essere registrata
come applicazione all’interno del sito IIS con un percorso fisico che
faccia riferimento all’output pubblicato del progetto Blazor Server. È
inoltre necessario configurare i permessi di accesso alle risorse richieste
e personalizzare il file web.config per garantire la compatibilità con il
modello di rendering lato server di Blazor.

Path Logico URL Fisica Descrizione
/login /PhDManV2/login Punto di ingresso per l’autenticazione

/dottorandoPage /PhDManV2/dottorandoPage Cruscotto dottorando
/revisioneTutore /PhDManV2/revisioneTutore Interfaccia di valutazione del tutore

/revisioneCommissione /PhDManV2/revisioneCommissione Interfaccia di valutazione della Commissione
/revisioneCollegio /PhDManV2/revisioneCollegio Interfaccia di valutazione del Collegio
/dottorandiAdmin /PhDManV2/dottorandiAdmin Pannello amministratore per la gestione dei dottorandi

/_blazor /PhDManV2/_blazor Hub Blazor SignalR per la acomunicazione in real time
/css/app.css /PhDManV2/css/app.css Risorsa statica: foglio di stile principale

/imgs/logo.png /PhDManV2/imgs/logo.png Risorsa statica: Logo dell’applicazione

Tabella 4.1: Esempi di Configurazione di Routing

Figura 4.2: Topologia di hosting: mostra IIS, la struttura della sot-
toapplicazione e il flusso di routing dalle richieste esterne agli endpoint
interni.

4.4 Autenticazione e Autorizzazione

L’autenticazione e l’autorizzazione sono una parte cruciale dell’architettu-
ra di qualsiasi piattaforma per garantire che gli utenti siano correttamente
identificati e venga loro dato accesso solo alle risorse necessarie. PhD-
ManV2 adotta un approccio ibrido che combina la gestione federata delle
identità con un’autorizzazione basata sui claims, adatto alle esigenza sia
dell’ambiente di produzione che di quello di sviluppo.

43

4.4. AUTENTICAZIONE E AUTORIZZAZIONE

4.4.1 Gestione dell’Identità

In ambiente di produzione la piattaforma si integra con Shibboleth, un
sistema di autenticazione federata ampiamente usato in istituzioni univer-
sitarie. Quando un utente accede all’applicazione Shibboleth inserisce gli
attributi di identità negli header HTTP della richiesta; questi attributi
includono tipicamente dati istituzionali come la matricola e l’email, e
dati anagrafici come nome e cognome. Un componente middleware per-
sonalizzato legge questi header e costruisce un’identità basata sui claims,
che viene poi utilizzata per tutta la sessione per applicare i controlli di
accesso e personalizzare l’esperienza utente.

Nell’ambiente di sviluppo, dove gli header di Shibboleth non sono
disponibili, l’applicazione simula l’autenticazione tramite variabili di
sistema. Questo permette allo sviluppatore di testare comportamenti
specifici per un ruolo senza affidarsi all’infrastruttura esistente o a dati
reali. Le variabili vengono usate per emulare profili utente differenti,
inclusi gli studenti, tutori e amministratori.

Questa strategia di autenticazione duale permette di ottenere flessibilità
durante lo sviluppo e di mantenere un’elevata sicurezza e una solida
integrazione in produzione.

4.4.2 Controllo degli Accessi Basato sui Ruoli

Una volta che l’utente è autenticato la piattaforma applica autorizzazioni
basate sui ruoli per determinare quali componenti e quali azioni saranno
accessibili. I Ruoli sono definiti nella configurazione del sistema e inclu-
dono dottorando , tutore , commissario , collegio e amministratore .
Ogni ruolo è associato con un set di permessi che governano l’accesso ai
componenti Razor, gli endpoint delle API e gli elementi dell’interfaccia
utente.

L’autorizzazione viene applicata tramite l’attributo [Authorize(Roles = "...")]
di ASP.NET Core, utilizzato nei componenti Razor e nelle azioni dei
controller; questo garantisce che gli utenti non possano eseguire operazioni
o accedere a risorse che non siano comprese nel loro ambito assegnato.

Ad esempio solo gli utenti col ruolo commissario possono accedere alla
pagina /revisioneCommissione , mentre solo gli utenti amministratore
possono gestire le assegnazioni delle commissioni o esportare i dati di
valutazione.

44

4.4. AUTENTICAZIONE E AUTORIZZAZIONE

Il sistema supporta inoltre una risoluzione dinamica dei ruoli, operazio-
ne che viene fatta durante la fase di login. Dopo aver letto gli attributi di
identità, il middleware verifica sul database i ruoli dell’utente basandosi
sulla matricola; questi ruoli vengono poi eventualmente aggiunti come
claim al cookie di autenticazione, permettendo un’applicazione coerente
dei controlli di accesso in tutta l’applicazione.

Figura 4.3: Flusso di autenticazione e autorizzazione.

Tabella 4.2: Ruoli e Permessi
Ruolo Componenti e Pagine Accessibili Permessi Concessi

dottorando
/dottorandoPage

/login
/logout

Verificare i propri dati
Upload della presentazione
Vedere la valutazione finale

tutore /revisioneTutore
Sottomettere la valutazione,
Vedere i dati dello studente

Vedere la presentazione

cotutore1 /revisioneTutore
Sottomettere la valutazione,
Vedere i dati dello studente

Vedere la presentazione

commissario /revisioneCommissione
Vedere i dati e la presentazione dello studente

Leggere la valutazione del tutore
Compilare un form strutturato di valutazione

collegio /revisioneCollegio
Accedere a tutti i dati dello studente
Vedere tutte le valutazioni passate

Dare la valutazione finale

amministratore
/dottorandiAdmin
/commissioneAdmin

/collegioAdmin

Gestire gli utenti
assegnare i ruoli
esportare dati

abilitare e disabilitare le valutazionie

01Inizialmente il ruolo di Cotutore doveva avere accesso in sola lettura alla valuta-
zione del tutore. Nella versione finale dell’applicazione è stata data anche a loro la
possibilità di valutare, rendendo quindi i due ruoli solo nominalmente differenti.

45

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

4.5 Funzionalità specifiche per ruolo
La piattaforma è progettata nell’ottica di un modello multi ruolo, nella
quale a ciascun tipo di utente vengono concessi accesso a interfacce
dedicate e a un insieme specifico di funzionalità. Questo garantisce che gli
utenti visualizzino solo le informazioni e i controlli pertinenti, riducendo
il carico cognitivo e minimizzando il rischio di azioni non autorizzate.

L’applicazione supporta cinque ruoli principali: dottorandi, tu-
tore/cotutore, membri della Commissione, membri del Collegio e
amministratori.

4.5.1 Studenti di Dottorato

Gli studenti usando la piattaforma potranno consultare tutti i dati che
riguardano il loro dottorato, come il titolo del corso, il tutore e i cotutori,
l’anno attuale di corso e il ciclo di appartenenza. Inoltre potranno
verificare i loro dati per quanto riguarda le pubblicazioni, le ore di lezione
seguite (sia quelle riferite alle soft skill che alle hard skill) e i corsi tenuti
(con le relative ore). Questi dati possono essere aggiornati in modo
asincrono tramite un pulsante che effettua una richiesta a delle API
REST messe a disposizione dalla Direzione ISIAD del Politecnico. A
regime il cruscotto mostrerà l’elenco degli anni passati, ognuno con le
relazioni caricate, tutte le valutazioni e il giudizio finale. Per quanto
riguarda l’anno in corso, dal momento in cui il dottorando verrà abilitato
a farlo, l’interfaccia permetterà di caricare il file di relazione in formato
PDF o Powerpoint, con un limite di dimensione di 50MB; inoltre potranno
compilare un campo note per evidenziare eventuali discrepanze riscontrate
nei loro dati o fornire informazioni di contesto ai revisori.

Una volta terminate le valutazioni, gli studenti potranno vedere le
valutazioni della Commissione (configurate come pubbliche) e il responso
finale del Collegio.

4.5.2 Tutori e Cotutori

I Tutori e i cotutori sono responsabili della valutazione qualitativa del
lavoro dello studente; la loro valutazione si basa sul lavoro complessivo
svolto dal dottorando durante l’anno e la finestra temporale in cui po-
tranno valutarne il lavoro è la stessa che avrà lo studente per caricare

46

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

Figura 4.4: Esempio di pagina di un dottorando.

la relazione. La loro interfaccia comprende una lista filtrata di tutti gli
studenti assegnati, con relativi dati riguardanti il loro dottorato. Sono
visibili tutti i dati che già erano visibili al dottorando, con l’aggiunta del
proprio giudizio per gli anni passati. Per l’anno in corso inoltre è presente
un form per esprimere la propria valutazione; questa valutazione non è
visibile al dottorando e viene salvata nell’entità TutoriGiudizio . I tutori
e cotutori potranno aggiungere e modificare la loro valutazione durante
tutta la finestra temporale e la valutazione è unica.

Figura 4.5: Esempio di pagina dei tutori.

47

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

4.5.3 Commissione
I membri della Commissione, dal momento in cui vengono abilitati a
farlo, effettuano valutazioni utilizzando moduli generati dinamicamen-
te; questi moduli sono basati su template memorizzati nella tabella
CommissioneGiudizioDatiTemplate , che definiscono le etichette, i tipi
di input, i valori di default e le regole di validazione di ciascun campo.
L’interfaccia supporta sia valutazioni qualitative che categoriche, e i con-
trolli di validazione garantiscono che i campi configurati come obbligatori
siano compilati prima dell’invio. La valutazione è unica per tutta la
Commissione e ogni membro può, a valle del colloquio con lo studente,
modificare i giudizi. Le valutazioni inviate vengono salvate nella tabella
CommissioneGiudizioDati e sono collegate ai dati del rispettivo anno
del dottorando e alla commissione corrispondente. Questo approccio
strutturato garantisce coerenza tra le valutazioni e supporta analisi e
reportistica future.

Figura 4.6: Esempio di pagina della Commissione.

4.5.4 Collegio dei Docenti
Il Collegio dei Docenti, o più semplicemente Collegio, emette il giudizio
finale basato sulle valutazioni del tutore e della commissione. La loro
interfaccia include tutti i dati del dottorando, la presentazione caricata e
le annotazioni, il feedback del tutore e le valutazioni della commissione.
Il Collegio può dare la valutazione finale tramite un form strutturato che

48

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

include da data di riunione, la valutazione finale ("ammesso", "ammesso
con riserva" o "respinto") e le eventuali motivazioni. Queste informazioni
sono salvate nella tabella CollegioGiudizio e la valutazione finale sarà
visibile nel form dello studente e del tutore.

Figura 4.7: Dettaglio della pagina del Collegio.

4.5.5 Amministratori
Gli amministratori gestiscono e supervisionano l’intero processo di valu-
tazione. Vengono indicati come amministratori il Coordinatore del Corso
di Dottorato e il suo vice. Le loro interfacce includono:

CollegioAssegna.razor

Pagina per gestire i componenti del collegio. Ogni componente è assegnato
in una certa fascia temporale ed è abilitato come membro del collegio
solo tra quelle date.

Figura 4.8: Esempio di pagina di assegnazione del Collegio.

commissioneAdmin.razor

Pagina per la creazione delle commissioni, dell’assegnazione dei mem-
bri e dei dottorandi alla stessa. Ogni commissione ha un identificativo
(modificabile) e può essere abilitata o disabilitata ad esprimere il giu-
dizio. I componenti hanno un ruolo e date di validità in cui possono

49

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

operare. Gli amministratori possono modificare in qualsiasi momento
queste assegnazioni in ogni dettaglio. È inoltre possibile nascondere una
commissione nel caso in cui non serva più averla a disposizione in pagina;
rimane comunque possibile ripristinarle cliccando su "mostra commissioni
nascoste" e cliccando su "mostra commissione". Nella stessa pagina è
possibile esportare in un file csv l’elenco di tutti gli indirizzi email dei
membri attivi di tutte le commissioni, nel caso sia necessario inviare
comunicazioni.

Figura 4.9: Esempio di pagina di assegnazione delle Commissioni.

dottorandiAdmin.razor

In questa pagina gli amministratori hanno l’elenco completo dei dottorandi
attivi. Le informazioni immediatamente disponibili sono il nominativo, le
matricole, il ciclo di appartenenza, le date di inizio e fine ciclo, se è stato
già caricato la presentazione per l’anno attuale e se lo studente è abilitato
all’inserimento della presentazione. Nel dettaglio di ogni studente è
possibile vedere, per ogni anno di dottorato, il titolo del dottorato, il
tutore, i cotutori; poi, se presenti, è possibile vedere la presentazione con
le annotazioni, il giudizio del tutore, della commissione e del collegio. Alla
fine del dettaglio è possibile vedere, ed eventualmente aggiornare, i dati
riguardo le ore di didattica da studente, i corsi tenuti con le rispettive
ore e i dati sulle pubblicazioni. Inoltre, è possibile aggiornare in maniera
asincrona i dati di tutti i dottorandi tramite una API REST fornita dalla
direzione ISIAD; data la mole di dati letti l’operazione richiede un certo
tempo ed è stato necessario renderla un’operazione manuale eseguita
dagli amministratori.

50

4.5. FUNZIONALITÀ SPECIFICHE PER RUOLO

Figura 4.10: Esempio di pagina di gestione dei dottorandi.

dottGiudiziComm.razor

In questo cruscotto è disponibile un dettaglio di tutte le valutazioni date
dalle commissioni a ogni dottorando in un’unica tabella. Questo dettaglio
è esportabile in excel tramite una funzione apposita. Nel dettaglio di
ogni studente sono presenti gli stessi dati della pagina dottorandi.admin

Figura 4.11: Esempio di pagina di riepilogo delle valutazioni delle
commissioni.

51

4.6. MODELLO DEI DATI E PERSISTENZA

4.6 Modello dei Dati e Persistenza

La spina dorsale della piattaforma PhDManV2 è il suo modello dati, che è
stato accuratamente progettato per riflettere la complessità del processo
di valutazione dei dottorati. Implementato usando Entity Framework
Core, il modello rappresenta le relazioni tra i dottorandi, i loro cicli di
valutazione, i documenti caricati e tutti gli attori coinvolti nel processo
di revisione. Questa struttura garantisce coerenza dei dati, tracciabilità
e estensibilità. Il modello sfrutta il mapping object-relational (ORM) per
fornire un’interfaccia fortemente tipizzata e facilmente manutenibile al
database SQL Server sottostante.

4.6.1 Entità Principali

Al centro del modello c’è l’entità AnnoDottorato , che rappresenta un
singolo anno di valutazione dello studente di dottorato. Ogni record
include metadati come l’anno di riferimento, data di inizio e fine, le
annotazioni da parte dello studente e, una volta finalizzata, il giudizio
finale. L’entità tiene traccia anche se questo è l’anno attivo del dottorato
o è un anno precedente e se lo studente è abilitato all’inserimento della
relazione.

Ogni record di AnnoDottorato è associato a un singolo record di
Dottorando che contiene le informazioni anagrafiche (come nome e co-
gnome), accademiche (le matricole e l’email), il tema di ricerca, il numero
di ciclo e gli indicatori bibliometrici. Questa separazione tra i dati statici
dello studente (nell’entità Dottorando) e i dati legati alla valutazione
(nell’entità AnnoDottorato) consente al sistema di monitorare il progres-
so longitudinale mantenendo in maniera chiara i confini tra identità e
performance.

4.6.2 Gestione dei documenti

Le presentazioni caricate dagli studenti di dottorato sono archiviate nella
tabella AnnoDottoratoDocumenti , che supporta caricamenti multipli
per ciclo di valutazione. Ogni documento è salvato come blob binario
(byte[] Data) insieme a metadati come:

• NomeFile : il nome del file originale.

52

4.6. MODELLO DEI DATI E PERSISTENZA

Figura 4.12: Diagramma entità-relazione delle entità principali.

• MimeType : il tipo di contenuto (per esempio application/pdf).

• DataCaricamento : da data e ora di upload della presentazione.

Questa struttura garantisce che i documenti vengano archiviati in modo
sicuro all’interno del database, evitando la dipendenza da un file system
esterno o da servizi di cloud storage. Inoltre, semplifica le procedure di
backup e di ripristino poiché tutti i dati sono centralizzati all’interno
del contesto del database. Per prevenire abusi e garantire prestazioni
ottimali, il sistema impone una dimensione massima dei file di 50 MB e
limita i tipi di file accettati ai soli pdf e presentazioni Powerpoint. Questi
vincoli vengono applicati sia lato client tramite la validazione dell’input,
sia lato server tramite middleware e validazione del modello.

Figura 4.13: Diagramma entità-relazione della tabella dei documenti.

53

4.6. MODELLO DEI DATI E PERSISTENZA

4.6.3 Tutori e il loro Giudizio
La gestione dei tutori è modellata attraverso tre entità interconnesse:

• Tutori : contiene le anagrafiche di tutti i tutori e cotutori, ognuno
con la matricola, nominativo e indirizzo email.

• TutoriDottorando : una tabella di giunzione che collega i tutori ai
dottorandi, assegnando loro il ruolo specifico (tutore o cotutore).

• TutoriGiudizio : questa entità contiene il giudizio del tutore per uno
specifico record di AnnoDottorato .

Questa struttura garantisce che i feedback dei tutor siano contestua-
lizzati sia rispetto all’anno di valutazione sia alla specifica relazione
tutor–dottorando. Supporta inoltre la presenza di più tutor per ciascuno
studente e tiene traccia dei loro ruoli e delle responsabilità di valutazione
nel tempo.

Figura 4.14: Diagramma entità-relazione delle tabelle dei Tutori.

4.6.4 Giudizio della Commissione
Il processo di valutazione della commissione viene rappresentata da cinque
entità chiave:

• Commissione : definisce una specifica commissione assegnata a uno
o più dottorandi. Include il nome della commissione, un flag per
indicare se in questo momento è abilitata per dare i giudizi e un flag
per indicare se la è attiva o disattivata.

54

4.6. MODELLO DEI DATI E PERSISTENZA

• CommissioneMembri : la lista completa dei possibili membri delle
commissioni. Comprende la matricola e il nominativo.

• CommissioneComponenti : associa i singoli membri di CommissioneMembri
a una commissione. Ogni record comprende il ruolo del membro
(Presidente o Revisore) e le date di inizio e fine validità dell’incarico.

• CommissioneGiudizio : contiene i dati strutturati dei giudizi dati
da una commissione per uno specifico AnnoDottorato . Contiene
anche un flag che indica se il giudizio è stato salvato.

• CommissioneGiudizioDati : i record rappresentano i singoli campi
del form di valutazione della commissione. Ogni record include:

– CodiceDato : un codice che identifica univocamente un singolo
campo.

– Nome : nome del campo che verrà visualizzato.

– Descrizione : eventuale descrizione che comparirà sotto il campo
nel form.

– Tipologia : indica il tipo di campo che verrà visualizzato (per
esempio una campo di testo o una combo box).

– Valore : il valore salvato.

– ValoriCombo : contiene una lista dei possibili valori di campi
strutturati che prevedono delle scelte (come combo box, liste di
radio button o liste di checkbox)

– OrdineInPagina : indica la posizione in cui verrà visualizzato il
campo.

– LivelloVisibilita : un flag per impostare il campo come pubblico
(se uguale a 1) o privato (se uguale a 0). I campi indicati
come "privati" saranno visibili solo ad altri membri della stessa
commissione, ai membri del collegio e agli amministratori, quelli
"pubblici" saranno visibili anche ai dottorandi e ai tutori/cotutori.

– IsFinalRaccomandation : è un flag per indicare quale campo è
l’esito finale della commissione; è un campo con scopo funzionale
per alcuni report degli amministratori.

– Obbligatorio : questo flag permette di verificare se il campo è
obbligatorio oppure no.

55

4.6. MODELLO DEI DATI E PERSISTENZA

I record di CommissioneGiudizioDati vengono generati automatica-
mente basandosi sulla tabella CommissioneGiudizioDatiTemplate . Le
due tabelle condividono la struttura e questo tipo di gestione permette
di configurare il form di valutazione senza dover intervenire sul codice.

Figura 4.15: Diagramma entità-relazione delle tabelle delle Commissio-
ni.

4.6.5 Giudizio del Collegio

L’entità Collegio e le tabelle collegate modellano la fase finale del pro-
cesso di valutazione, in cui i membri del collegio dei docenti emettono una
raccomandazione formale. Questo comprende quattro entità principali:

• Collegio : rappresenta il collegio dei docenti assegnato ai giudizi dei
dottorandi.

• CollegioMembri : contiene l’elenco completo dei possibili membri
del collegio; ogni record è composto da matricola e nominativo.

• CollegioComponenti : collega i singoli membri di CollegioMembri
a un determinato collegio. Ogni record include anche le date di inizio
e fine dell’incarico.

• CollegioGiudizio : qui è salvato il giudizio finale del collegio relativa
a un determinato record di AnnoDottorato ; include:

– ValoreGiudizio : esito finale dell’anno di dottorato (Ammesso,
Ammesso con riserva, Non ammesso).

– MotivazioneGiudizio : eventuale motivazione del giudizio.
– DataRiunioneCollegio : data in cui si è riunito il collegio e ha

espresso la valutazione.

56

4.6. MODELLO DEI DATI E PERSISTENZA

– InsertDate : data e ora del salvataggio del record.

Questa struttura garantisce che le decisioni del collegio siano tracciabili,
datate e collegate al corretto ciclo di valutazione. Supporta inoltre il
controllo degli accessi basato sui ruoli e i meccanismi di protezione contro
modifiche concorrenti.

Figura 4.16: Diagramma entità-relazione delle tabelle del Collegio.

4.6.6 Integrazione del ciclo di vita della valutazione

I giudizi delle commissioni e del collegio sono collegate alla tabella
AnnoDottorato , formando un ciclo di valutazione completo:

1. Il dottorando carica la relazione sul suo lavoro nell’anno corrente di
dottorato (AnnoDottoratoDocumenti)

2. I tutor forniscono il loro feedback sull’operato del dottorando (TutoriGiudizio)

3. I membri della commissione basandosi sul colloquio, sulla presentazio-
ne e sul giudizio del tutore, esprimono il loro giudizio (CommissioneGiudizio)

4. Il collegio dei docenti emette la valutazione finale con l’ausilio di
tutti i dati raccolti durante il processo.(CollegioGiudizio)

Ogni fase è salvata con una datazione precisa, associata a un ruolo spe-
cifico e memorizzata in un’entità dedicata, garantendo piena tracciabilità
e la possibilità di ricostruire lo storico degli eventi.

57

4.7. MIDDLEWARE E LOGGING

4.7 Middleware e Logging

Per supportare l’autenticazione, la diagnostica e l’audit, la piattaforma
include un componente middleware personalizzato e un’infrastruttura di
logging strutturato; questi elementi svolgono un ruolo fondamentale nel
garantire trasparenza, tracciabilità e stabilità operativa.

4.7.1 Middleware personalizzato

Il middleware ha il compito di intercettare le richieste HTTP in arrivo ed
estrarre le informazioni di identità dagli header Shibboleth. In produzione,
legge attributi come email, nome, cognome e matricola, utilizzandoli
per costruire un’identità basata sui claims. In ambiente di sviluppo,
simula l’autenticazione tramite variabili d’ambiente, consentendo agli
sviluppatori di testare il comportamento specifico dei vari ruoli.

Oltre all’autenticazione, il middleware registra i metadati delle richieste,
tra cui i parametri di query, i percorsi richiesti e lo stato di autenticazione.
Gestisce inoltre i reindirizzamenti per gli utenti non autenticati e applica
le politiche di accesso basate sui claims di ruolo.

4.7.2 Logging strutturato con Serilog

L’applicazione utilizza Serilog per il logging strutturato; i log vengono
scritti giornalmente e includono timestamp, livello di gravità, messaggi
e dettagli delle eccezioni. Questa configurazione consente agli ammini-
stratori di monitorare il comportamento del sistema, rilevare anomalie
ed eseguire analisi approfondite in caso di errori critici.

Oltre ai log basati su file, gli errori critici vengono memorizzati nella
tabella LogErrori all’interno del database. Ciò garantisce che i record
degli errori vengano preservati anche nel caso in cui l’accesso ai file sia
limitato o non disponibile.

I log vengono inoltre utilizzati per tracciare le attività degli utenti, come
i tentativi di accesso, la risoluzione dei ruoli e il download dei documenti;
questi record supportano la conformità alle politiche istituzionali e possono
essere utilizzati a fini di audit.

58

4.8. DISTRIBUZIONE E CONFIGURAZIONE DEGLI AMBIENTI

4.8 Distribuzione e Configurazione degli
Ambienti

La piattaforma è progettata per operare in modo affidabile sia negli
ambienti di sviluppo che in quelli di produzione. La sua strategia di con-
figurazione garantisce che il comportamento specifico di ciascun ambiente
sia chiaramente definito e facilmente manutenibile.

4.8.1 Sviluppo vs. Produzione

In ambiente di sviluppo, l’applicazione utilizza variabili d’ambiente per
simulare identità e ruoli utente. Ciò consente agli sviluppatori di testare
i flussi di autenticazione, il controllo degli accessi basato sui ruoli e il
comportamento dell’interfaccia utente, senza dover dipendere da provider
di identità esterni. Sono inoltre abilitate informazioni di errore dettagliate
e strumenti di debugging per facilitare la risoluzione dei problemi.

In produzione, l’applicazione si integra con Shibboleth per l’autenti-
cazione federata e applica le politiche HTTPS e HSTS, utilizza cookie
sicuri e disattiva la visualizzazione dettagliata degli errori; i ruoli utente
vengono derivati dagli header Shibboleth e il controllo degli accessi è
applicato in modo rigoroso.

4.8.2 Distribuzione su IIS e Hosting come Sottoap-
plicazione

L’applicazione è distribuita sotto IIS come sotto-applicazione con il
percorso /PhDManV2 . Ciò richiede una configurazione specifica:

• La direttiva UsePathBase("/PhDManV2") garantisce che i percorsi
di routing e delle risorse vengano risolti correttamente.

• Le risorse statiche (CSS, JS, immagini) vengono servite dal sotto-
percorso.

• L’hub Blazor SignalR è mappato su /PhDManV2/_blazor .

Questo modello di distribuzione consente alla piattaforma di coesistere
con altri servizi preesistenti, mantenendo al tempo stesso una separazione
logica delle risorse e un routing indipendente.

59

4.8. DISTRIBUZIONE E CONFIGURAZIONE DEGLI AMBIENTI

4.8.3 Sicurezza e Configurazioni Avanzate
Sono state implementate diverse misure di sicurezza per proteggere i dati
degli utenti e garantire la conformità:

• Le politiche CORS limitano l’accesso ai domini considerati attendibili.

• I token antiforgery sono abilitati per prevenire gli attacchi CSRF.

• Sono imposti limiti alla dimensione delle richieste per evitare abusi
(ad es. attacchi denial-of-service tramite caricamenti eccessivamente
grandi).

• I cookie di autenticazione sono configurati con un flag di sicurezza e
politiche di scadenza.

Queste configurazioni vengono applicate in modo uniforme tra i vari
ambienti e sono documentate per garantire una manutenzione semplifica-
ta.

60

Capitolo 5

Risultati

5.1 Introduzione

Questo capitolo ha come obiettivo quello di illustrare i risultati ottenuti
nella realizzazione dell’applicazione PhDManV2, verificare la corrispon-
denza tra le specifiche tecniche e funzionali definite durante la fase di
progettazione e il progetto implementato. L’analisi non si limita a fornire
un elenco di funzionalità, ma mira a mostrare come ogni prerequisito è
stato tradotto in un risultato concreto, evidenziando la coerenza com-
plessiva dell’architettura e la qualità dell’esperienza utente offerta dal
sistema.

5.2 Risultati rispetto ai requisiti funzionali

Uno degli obiettivi principali del progetto era la centralizzazione delle
informazioni sulla carriera di dottorato degli studenti; il portale per-
mette di raccogliere e gestire in un unico ambiente i dati provenienti da
fonti eterogenee: inserimenti manuali da parte degli studenti, vari giudizi
durante le fasi del processo e informazioni da diverse fonti istituzionali.
Tutto questo ha ridotto la frammentazione dei dati e ha facilitato la
reperibilità degli stessi, garantendo una visione d’insieme coerente del
percorso accademico di ogni studente di dottorato.

Un altro requisito riguardava l’integrazione con le fonti dati isti-
tuzionali; questo obiettivo è stato raggiunto grazie all’uso di API REST
e servizi asincroni che consentono lo scambio di informazioni tra i sistemi
centrali e il portale tramite lo scambio sicuro di dati in formato JSON.

61

5.2. RISULTATI RISPETTO AI REQUISITI FUNZIONALI

L’integrazione è stata progettata in modo tipizzato, basandosi sulle poten-
zialità di Entity Framework Core di assicurare consistenza e affidabilità
nelle operazioni di lettura e scrittura. In questo modo il portale non si
limita ad essere un contenitore isolato ma può diventare parte integrante
del sistema informativo di ateneo.

La personalizzazione delle pagine e l’accesso basato sui ruoli
rappresentano un altro risultato; ogni attore coinvolto nel processo, stu-
denti, tutori, commissioni, collegio e amministratori, hanno interfacce
dedicate progettate per soddisfare le necessità specifiche del loro ruolo.
L’autenticazione federata, implementata tramite Shibboleth e SAML 2.0,
garantisce l’accesso sicuro in conformità con le policy del Politecnico di
Torino, mentre l’autorizzazione basata sui ruoli garantisce che ogni utente
abbia accesso solo alle funzionalità rilevanti alle proprie responsabilità.
Questo approccio ha reso l’applicazione non solamente sicura ma anche
intuitiva e adeguata alle pratiche operative.

La preservazione dei dati è stata implementata per garantire la
disponibilità delle valutazioni annuali lungo tutto il percorso di dottora-
to. Ogni valutazione rimane accessibile e consultabile, garantendo una
totale tracciabilità del percorso accademico. Il ciclo di valutazione, dalla
preparazione, al caricamento della presentazione, ai giudizi del tutore,
commissione e collegio e all’archiviazione finale, è stato implementato
in un flusso chiaro e ben strutturato che riflette appieno le procedure
istituzionali.

La configurabilità e flessibilità del sistema sono evidenziate dalla
possibilità di modificare la composizione delle commissioni e del collegio
nel tempo attraverso interfacce dedicate che permettono al Coordinatore
di assegnare o eliminare membri da esse. Questa caratteristica risponde
ad una necessità reale, in quanto le commissioni devono essere composte
ad-hoc per ogni dottorando rispettando criteri di pertinenza degli argo-
menti, per evitare conflitti di interesse, e possono cambiare nel tempo. Il
portale fornisce uno strumento semplice e immediato per gestire questi
cambiamenti, riducendo la complessità di gestione.

Infine, il requisito riguardo il miglioramento dell’esperienza utente
è stato raggiunto grazie all’adozione di Blazor Server e la sua gestione
dello stato con SignalR. Le interfacce sono interattive e fluide, con ag-
giornamenti in tempo reale che riducono i tempi di attesa percepita che
contribuiscono a rendere l’applicazione funzionale e semplice da usare.

62

5.3. RISULTATI RISPETTO AI REQUISITI TECNICI E DI SICUREZZA

5.3 Risultati rispetto ai requisiti tecnici e
di sicurezza

Dal punto di vista tecnico, l’applicazione ha soddisfatto gli obiettivi
nell’ottica dell’autenticazione e autorizzazione. L’integrazione con
Shibboleth e SAML 2.0 ha permesso di implementare un sistema Single
Sign-On pienamente conforme agli standard di identità federata, garan-
tendo contemporaneamente un controllo granulare degli accessi. Ogni
operazione è legata al ruolo dell’utente assicurando che le informazioni
sensibili siano protette e che tutte le funzionalità siano utilizzate soltanto
da chi ne ha il diritto.

La persistenza e gestione dei dati è garantita dall’utilizzo di Mi-
crosoft SQL Server, che assicura transazioni ACID e meccanismi avanzati
di sicurezza. L’uso di Entity Framework Core ha semplificato la gestione
delle entità e ha reso più agevole lo sviluppo, riducendo il rischio di errore
e aumentando la manutenibilità del codice. L’integrazione tra il livello
dati e quello applicativo è risultata coerente e fluida, confermando la
solidità dell’architettura scelta.

Il sistema di middleware e logging ha contribuito a migliorare la
robustezza complessiva dell’applicativo; l’uso di middleware personalizzati
permette di gestire eccezioni e flussi applicativi, mentre l’integrazione
con Serilog consente dei log strutturati e dettagliati. Grazie a questo
approccio è stato possibile monitorare il comportamento del sistema in
tempo reale e di tracciare eventuali anomalie, facilitando le attività di
manutenzione e garantendo elevati livelli di affidabilità.

Per quanto riguarda l’hosting e la distribuzione, l’applicativo è stato
pubblicato su Internet Information Services (IIS) come sottoapplicazione,
sfruttando i meccanismi di isolamento offerti dagli application pool.
La configurazione dell’ambiente di produzione ha incluso parametri di
sicurezza e monitoraggio assicurando che il sistema sia pronto a operare
in un contesto reale e a gestire carichi di lavoro significativi.

63

5.4. SINTESI DEI RISULTATI

5.4 Sintesi dei Risultati
In conclusione, lo sviluppo di PhDManV2 ha portato alla realizzazione
di un portale web che risponde pienamente ai requisiti funzionali e tecnici
definiti in fase di progettazione. L’applicativo consente una gestione
completa e integrata delle carriere dei dottorandi, garantendo sicurezza,
affidabilità e un’esperienza utente di qualità. La corrispondenza tra
specifiche e implementazione dimostra la validità delle scelte tecnologiche
effettuate e la coerenza dell’approccio progettuale, ponendo le basi per un
utilizzo efficace e duraturo del sistema all’interno del contesto accademico.

Tabella 5.1: Tracciamento dei requisiti, dell’implementazione e dei
risultati di PhDManV2

Requisito Implementazione Risultato
Centralizzazione delle
informazioni

Integrazione di dati dei dottora-
ti, degli studenti, dei tutori dai
database istituzionali tramite API
REST

Portale unico che raccoglie e pre-
senta in modo chiaro e coerente
tutte le informazioni necessarie

Integrazione con fonti
dati istituzionali

Servizi asincroni, payload JSON ti-
pizzati e sincronizzazione con viste
SQL Server

Aggiornamento on-demand e con-
sistenza dei dati con i sistemi
centrali di ateneo

Pagine personalizzate e
accesso basato sui ruoli

Autenticazione federata con Shib-
boleth/SAML 2.0; autorizzazione
tramite RBAC (Role-Based Access
Control)

Interfacce dedicate per studen-
ti, tutori, commissioni, collegio e
amministratori; accesso sicuro e
differenziato

Conservazione dei dati Gestione del ciclo di vita del-
la valutazione (preparazione, ca-
ricamento, revisione, delibera,
archiviazione)

Le valutazioni annuali sono dispo-
nibili e tracciabili per tutta la
durata del percorso di dottorato

Configurabilità e flessi-
bilità

Interfacce di amministrazione per
modificare composizione delle com-
missioni e assegnazioni del collegio

Sistema adattabile alle variazio-
ni organizzative e alle esigenze
istituzionali

Miglioramento dell’e-
sperienza utente

Blazor Server con gestione dello
stato tramite SignalR; interfacce
interattive e responsive

Navigazione fluida, aggiornamenti
in tempo reale e riduzione della
latenza percepita

Autenticazione e auto-
rizzazione

Single Sign-On con Shibboleth; ri-
lascio controllato degli attributi;
controlli granulari sui ruoli

Accesso sicuro e conforme alle po-
licy di ateneo; protezione delle
informazioni sensibili

Persistenza e gestione
dei dati

SQL Server con transazioni
ACID; integrazione con Entity
Framework Core

Affidabilità, sicurezza e manuteni-
bilità del livello dati

Middleware e logging Middleware personalizzati per ge-
stione eccezioni; logging struttura-
to con Serilog

Monitoraggio avanzato e tracciabi-
lità completa delle operazioni

Hosting e distribuzione Distribuzione su IIS come sot-
toapplicazione; configurazioni di
sicurezza e isolamento tramite
application pool

Ambiente di produzione stabile,
sicuro e pronto a gestire carichi
significativi

64

Capitolo 6

Sviluppi futuri

6.1 Introduzione
Lo sviluppo di PhDManV2 ha portato alla realizzazione di un portale
completo e funzionale per la gestione delle carriere dei dottorandi, tuttavia,
come ogni sistema informativo, l’applicativo può essere arricchito con
ulteriori funzionalità che ne aumentino l’efficacia, la flessibilità e il valore
operativo. In questo capitolo vengono delineati i possibili sviluppi futuri,
pensati per rispondere alle esigenze emergenti degli attori coinvolti e per
garantire una maggiore automazione e trasparenza dei processi.

6.2 Pagina di gestione delle comunicazioni
Un primo ambito di evoluzione riguarda la gestione delle comunica-
zioni interne; attualmente il portale centralizza i dati e i giudizi, ma
non offre strumenti integrati per l’invio di notifiche. Si propone quindi di
introdurre una pagina dedicata agli amministratori per l’invio di e-mail ai
diversi attori (studenti, tutori, commissioni, collegio). Tale funzionalità
dovrebbe consentire:

• la selezione del tipo di comunicazione (sollecito o semplice notifica).

• la verifica dello storico delle notifiche inviate in precedenza, così da
evitare duplicati.

• la possibilità di filtrare i destinatari in base a criteri specifici, ad
esempio:

– tutori e/o commissioni che non hanno ancora espresso un giudizio.

65

6.3. GESTIONE DEI PERIODI DI INSERIMENTO E REVISIONE

– dottorandi che non hanno caricato la presentazione in prossimità
della scadenza.

Questa evoluzione renderebbe il portale non solo uno strumento per
la gestione dei dati, ma anche un canale di comunicazione istituzionale,
riducendo la necessità di strumenti esterni e garantendo tracciabilità
completa.

6.3 Gestione dei periodi di inserimento e
revisione

Un ulteriore sviluppo riguarda la possibilità di impostare intervalli
temporali per l’apertura e la chiusura delle diverse fasi del processo. Gli
amministratori potrebbero definire, tramite interfacce dedicate, i periodi
in cui:

• gli studenti possono caricare le presentazioni.

• i tutori possono inserire le proprie revisioni.

• le commissioni possono esprimere i giudizi.

Questa funzionalità permetterebbe di automatizzare la gestione delle
scadenze, riducendo il rischio di errori e garantendo uniformità nelle
procedure. Inoltre, l’integrazione con il sistema di notifiche consentirebbe
di avvisare automaticamente gli attori all’apertura o alla chiusura dei
periodi.

6.4 Sistema di notifiche automatiche
Accanto alle notifiche manuali, si propone l’introduzione di un sistema
di e-mail automatiche. Il portale potrebbe inviare comunicazioni
predefinite in corrispondenza di eventi significativi, come:

• apertura di un nuovo periodo di inserimento.

• scadenza imminente per il caricamento delle presentazioni.

• mancata compilazione di giudizi da parte di tutori o commissioni.

• pubblicazione di una delibera del collegio.

66

6.5. PAGINA DI CONSULTAZIONE DEI LOG

Questa automazione ridurrebbe il carico amministrativo e garanti-
rebbe che tutti gli attori siano costantemente informati, migliorando la
puntualità e la trasparenza del processo.

6.5 Pagina di consultazione dei log

Un’altra evoluzione importante riguarda la consultazione dei log in
tempo reale. Attualmente, il sistema registra le operazioni tramite Serilog,
ma l’accesso ai log è pensato per fini tecnici. Una pagina dedicata,
accessibile agli amministratori, permetterebbe di:

• visualizzare in diretta le operazioni compiute dagli utenti.

• filtrare i log per tipologia di evento (accessi, caricamenti, giudizi,
notifiche).

• esportare i dati per analisi successive.

Questa funzionalità aumenterebbe la trasparenza e fornirebbe uno stru-
mento utile per monitorare l’andamento del sistema e individuare rapida-
mente eventuali anomalie.

6.6 Ulteriori possibili sviluppi

Oltre alle funzionalità sopra descritte, si possono immaginare ulteriori
evoluzioni coerenti con l’architettura del portale:

• Dashboard di sintesi: una pagina con grafici e indicatori che
mostrino lo stato complessivo delle valutazioni, il numero di giudizi
mancanti e le scadenze imminenti.

• Supporto multilingua: estensione dell’interfaccia per consentire
l’uso del portale anche da parte di utenti internazionali, migliorando
l’accessibilità.

• Sistema di versionamento documentale: gestione delle diverse
versioni delle presentazioni caricate dai dottorandi, con possibilità di
consultare lo storico delle modifiche.

67

6.7. CONCLUSIONI

6.7 Conclusioni
Gli sviluppi futuri delineati in questo capitolo mirano a trasformare
PhDManV2 da semplice portale di gestione delle valutazioni a piattaforma
completa di supporto ai processi accademici. L’introduzione di strumenti
di comunicazione, automazione delle scadenze, consultazione dei log
e funzionalità avanzate di monitoraggio renderebbe il sistema ancora
più efficace, riducendo il carico amministrativo e migliorando la qualità
dell’esperienza per tutti gli attori coinvolti.

68

Appendice A

A.1 Codice sorgente rilevante
In questa sezione verranno riportati frammenti significativi di codice per
la comprensione delle scelte architetturali e implementative effettuate
nello sviluppo dell’applicazione PhDManV2.

A.1.1 Esempio di componente Razor
Di seguito è mostrato un estratto semplificato della struttura di un
componente Razor utilizzato nel portale.

1 @page "/ dottorandoPage "
2 @injec t UserDataService UserData
3 @injec t Authent i ca t i onStateProv ide r

Authent i ca t ionStateProv ide r
4 @attr ibute [Author ize (Roles = " dottorando ")]
5 <PageTit le>Dottorato </PageTit le>
6

7 <Grid @ref="tabAnni "
8 TItem="AnnoDottorato "
9 Class=" tab l e "

10 Data="TabData "
11 Al l ow F i l t e r i n g =" f a l s e "
12 Responsive=" true "
13 AllowSort ing=" f a l s e "
14 lang=" i t "
15 AllowDetai lView=" f a l s e "
16 AllowRowClick=" f a l s e "
17 P a g e S i z e S e l e c t o r V i s i b l e =" true "
18 AllowPaging=" f a l s e "
19 PageSize ="100"
20 PageS i z eSe l e c to r I t ems ="@(new i n t [] { 10 ,25 ,50 ,75 ,100 }) "
21 PaginationItemsTextFormat ="{0} − {1} di {2} Dottorandi "

69

Appendice A

22 ItemsPerPageText="Elementi per pagina">
23

24 <GridColumns>
25 . . . c od i c e d e l l e co lonne d e l l a t a b e l l a . . .
26 </GridColumns>
27 </Grid>
28

29 @code {
30 pr i va t e PhdReviewContext dataContext = d e f a u l t ! ;
31

32 pr i va t e Grid<AnnoDottorato> tabAnni = d e f a u l t ! ;
33

34 pr i va t e Cla imsPr inc ipa l ? user ;
35 protec ted ov e r r i d e async Task OnIn i t i a l i z edAsync ()
36 {
37 dataContext = DbFactory . CreateDbContext () ;
38

39 var authState = await Authent i ca t ionStateProv ider .
GetAuthenticat ionStateAsync () ;

40 user = authState . User ;
41

42 Matrico laLoggata = user . F indFi r s t (" Matr i co la ") ? . Value
;

43 getTabData () ;
44

45 nome = " " ;
46 cognome = " " ;
47 i f (user . I d e n t i t y .Name . StartsWith (" S ") && i n t .

TryParse (user . I d e n t i t y .Name . Subst r ing (1) , out _))
48 {
49 Dottorando d = dataContext . Dottorando .

F i r s tOrDefau l t (d => d . Matr ico laStudente == user . I d e n t i t y .
Name) ;

50

51 i f (d != n u l l)
52 {
53 nome = d .Nome ;
54 cognome = d . Cognome ;
55 }
56 }
57 e l s e
58 {
59 nome = user . F indFi r s t (ClaimTypes . GivenName) ? .

Value ;

70

Appendice A

60 cognome = user . F indFi r s t (ClaimTypes . Surname) ? .
Value ;

61 }
62 nome = FunzioniGener iche . ToTitleCase (nome) ;
63 cognome = FunzioniGener iche . ToTitleCase (cognome) ;
64 }
65

66 pr i va t e void getTabData ()
67 {
68 TabData = dataContext . AnnoDottorato . Inc lude (i => i .

Dottorando)
69 . Where (w => w. Dottorando . Matr ico laDipendente ==

Matr ico laLoggata | | w. Dottorando . Matr ico laStudente ==
Matr ico laLoggata)

70 . Inc lude (i => i . Documenti)
71 . OrderByDescending (o => o . AnnoRiferimento)
72 . AsNoTracking ()
73 . ToList () ;
74 }
75 }

A.1.2 Estratto del servizio applicativo

Esempio di classe del Business Logic Layer :

1 pub l i c c l a s s DataRetr iever
2 {
3 i n t e r n a l enum TipoChiamataApi { dottorando , dottorato ,

ore_didatt ica_studente , ore_didatt i ca , p u b b l i c a z i o n i }
4

5 pr i va t e s t a t i c HttpCl ient ht tpCl i en t = new HttpCl ient () ;
6

7 i n t e r n a l s t a t i c async Task<s t r i ng > ChiamataApi (
TipoChiamataApi t ipo , s t r i n g matr i co la)

8 {
9 s t r i n g r e s = " " ;

10 t ry
11 {
12 var opt ions = new RestCl ientOpt ions (" https : //

d i d a t t i c a . p o l i t o . i t ")
13 {
14 ThrowOnAnyError = true ,
15 Timeout = new TimeSpan (0 , 0 , 10000)

71

Appendice A

16 } ;
17

18 var c l i e n t = new RestCl i ent (opt ions) ;
19 var r eque s t = new RestRequest (" https : // d i d a t t i c a .

p o l i t o . i t / p l s / por ta l 30 / sv i luppo . pkg_json_scudo . data " ,
Method . Post) ;

20 r eques t . AddHeader ("X−API−Key " ,
"∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗") ;

21 r eques t . AddHeader (" Content−Type " , " t ex t /x−json ") ;
22 r eques t . AddStringBody (" { \ " usecache \ " : \ "N\" , \" dip

\ " : \"DAUIN\" , \" data \ " : \ " " + t ipo . ToString () + " \ " , \"
utente \ " : \ " " + matr i co la + " \ " } " , DataFormat . None) ;

23

24 var response = await c l i e n t . ExecuteAsync (r eque s t)
;

25

26 // Leggo l a r i s p o s t a
27 s t r i n g responseContent = response . Content ;
28 Console . WriteLine ($ " Status Code : { re sponse .

StatusCode } ") ;
29 Console . WriteLine (" Response : ") ;
30 Console . WriteLine (responseContent) ;
31 r e s = responseContent ;
32 }
33 catch (Exception ex)
34 {
35 r e s = $ " Error : { ex . Message } :{ ex . InnerExcept ion } " ;
36 }
37 re turn r e s ;
38 }
39 }

72

Appendice A

A.1.3 Estratto middleware personalizzato (autentica-
zione Shibboleth)

1 pub l i c c l a s s UserContextServ ice
2 {
3 pr i va t e readonly IHttpContextAccessor

_httpContextAccessor ;
4 pr i va t e readonly IWebHostEnvironment _env ;
5

6 pub l i c UserContextServ ice (IHttpContextAccessor acce s so r ,
IWebHostEnvironment env)

7 {
8 _httpContextAccessor = a c c e s s o r ;
9 _env = env ;

10 }
11

12 pub l i c (s t r i n g Email , s t r i n g Name, s t r i n g Surname , s t r i n g
EmployeeNumber) GetUserData ()

13 {
14 var context = _httpContextAccessor . HttpContext ! ;
15 s t r i n g emai l = " " , eppn = " " , givenName = " " , surname

= " " , employeeNumber = " " , eppnp = " " ;
16

17 var headers = context . Request . Headers ;
18 eppn = headers . TryGetValue (" eppn " , out var eppnVal) ?

eppnVal . F i r s tOrDefau l t () ?? " " : " " ;
19 givenName = headers . TryGetValue (" givenName " , out var

gnVal) ? gnVal . F i r s tOrDefau l t () ?? " NoData " : " NoData " ;
20 surname = headers . TryGetValue (" sn " , out var snVal) ?

snVal . F i r s tOrDefau l t () ?? " NoData " : " NoData " ;
21 employeeNumber = headers . TryGetValue (" employeeNumber

" , out var enVal) ? enVal . F i r s tOrDefau l t () ?? " NoData " : "
NoData " ;

22 eppnp = headers . TryGetValue (" eppnp " , out var epVal) ?
epVal . F i r s tOrDefau l t () ?? " NoData " : " NoData " ;

23 emai l = s t r i n g . IsNullOrEmpty (eppn) ? eppnp : eppn ;
24

25 re turn (email , givenName , surname , employeeNumber) ;
26 }
27 }

73

Appendice A

A.2 Modello dei dati — Modelli principali

Di seguito sono riportati alcuni dei modelli dati utilizzati nell’applicazione.

1 pub l i c c l a s s Dottorando
2 {
3 [Key]
4 pub l i c i n t IdDottorando { get ; s e t ; }
5

6 [Required]
7 pub l i c s t r i n g Matr ico laDipendente { get ; s e t ; }
8 pub l i c s t r i n g Matr ico laStudente { get ; s e t ; }
9 pub l i c s t r i n g Nome { get ; s e t ; }

10 pub l i c s t r i n g Cognome { get ; s e t ; }
11

12 [NotMapped]
13 pub l i c s t r i n g Nominativo { get => (Cognome + " " + Nome) .

ToTitleCase () ; }
14 [NotMapped]
15 pub l i c s t r i n g Matr i co l e { get => Matr ico laDipendente + "

/ " + Matr ico laStudente ; }
16 pub l i c s t r i n g Tematica { get ; s e t ; }
17 pub l i c s t r i n g T i to l o { get ; s e t ; }
18 pub l i c s t r i n g ArgomentoIT { get ; s e t ; } = " " ;
19 pub l i c s t r i n g ArgomentoEN { get ; s e t ; } = " " ;
20 pub l i c s t r i n g Des c r i z i one { get ; s e t ; }
21 pub l i c i n t C ic l o { get ; s e t ; }
22 pub l i c DateTime D a t a I n i z i o A t t i v i t a { get ; s e t ; }
23 pub l i c DateTime DataFineAtt iv i ta { get ; s e t ; }
24 [NotMapped]
25 pub l i c DateOnly Data In i z i oC i c l o {
26 get {
27 re turn DateOnly . FromDateTime (D a t a I n i z i o A t t i v i t a) ;
28 }
29 }
30 [NotMapped]
31 pub l i c DateOnly DataFineCiclo
32 {
33 get
34 {
35 re turn DateOnly . FromDateTime (DataFineAtt iv i ta) ;
36 }
37 }

74

Appendice A

38

39 pub l i c s t r i n g Tipo log iaBorsa { get ; s e t ; }
40 pub l i c double IndicatoreN50 { get ; s e t ; } = 0 . 0 ;
41 pub l i c double Ind icatoreR { get ; s e t ; } = 0 . 0 ;
42 pub l i c s t r i n g Email { get ; s e t ; }
43 pub l i c s t r i n g Proroga { get ; s e t ; }
44

45 pub l i c IEnumerable<AnnoDottorato> AnnoDottorato { get ;
s e t ; } = new List <AnnoDottorato >() ;

46 pub l i c IEnumerable<TutoriDottorando> TutoriDottorando {
get ; s e t ; } = new List <TutoriDottorando >() ;

47

48 pub l i c IEnumerable<DottorandoDatiDaDidattica>
DatiDaDidatt ica { get ; s e t ; } = new List <
DottorandoDatiDaDidattica >() ;

49

50

51 pub l i c Dottorando ()
52 { }
53

54 pub l i c Dottorando (s t r i n g matr ico laDipendente , s t r i n g
matr ico laStudente , s t r i n g nome , s t r i n g cognome , s t r i n g
tematica , s t r i n g argomentoIta , s t r i n g argomentoEn , s t r i n g
t i t o l o , s t r i n g d e s c r i z i o n e , i n t c i c l o , DateTime
d a t a I n i z i o A t t i v i t a , DateTime dataFineAtt iv i ta , s t r i n g
t ipo l og i aBor sa , s t r i n g proroga , double n50 , double indiR ,
s t r i n g emai l)

55 {
56 Matrico laDipendente = matr ico laDipendente ;
57 Matr ico laStudente = matr i co laStudente ;
58 Nome = nome ;
59 Cognome = cognome ;
60 Tematica = tematica ;
61 ArgomentoIT = s t r i n g . IsNullOrEmpty (argomentoIta) ? " "

: argomentoIta ;
62 ArgomentoEN = s t r i n g . IsNullOrEmpty (argomentoEn) ? " "

: argomentoEn ;
63 Ti to l o = t i t o l o ;
64 Desc r i z i one = d e s c r i z i o n e ;
65 Cic lo = c i c l o ;
66 D a t a I n i z i o A t t i v i t a = d a t a I n i z i o A t t i v i t a ;
67 DataFineAtt iv i ta = dataF ineAtt iv i ta ;
68 Tipo log iaBorsa = t i p o l o g i a B o r s a ;
69 IndicatoreN50 = n50 ;
70 Ind icatoreR = indiR ;

75

Appendice A

71 Email = emai l ;
72 Proroga = proroga ;
73 }
74 }

1 pub l i c c l a s s AnnoDottorato
2 {
3 [Key]
4 pub l i c i n t Id { get ; s e t ; }
5 pub l i c s t r i n g AnnoRiferimento { get ; s e t ; }
6 pub l i c DateTime Data In i z i o { get ; s e t ; }
7 pub l i c DateTime DataFine { get ; s e t ; }
8

9 pub l i c s t r i n g Segna l a z i on i { get ; s e t ; } = s t r i n g . Empty ;
10

11 [Comment (" A b i l i t a t o a l l ’ i n s e r imento de i da t i /documenti
per l a r e v i s i o n e ")]

12 pub l i c bool Ab i l i t a t o In s e r imen to { get ; s e t ; }
13

14 [Comment (" Ind i ca se a un ce r t o punto è s t a to a b i l i t a t o
a l l ’ i n s e r imento ")]

15 pub l i c bool A b i l i t a t o I n s e r i m e n t o S t o r i c o { get ; s e t ; } =
f a l s e ;

16

17 [Comment (" Stato d e l l a r i c h i e s t a . TOSTART, CARICA_FILE,
VAL_TUTORE, VAL_COMMISSIONE, VAL_COLLEGIO, VAL_END")]

18 pub l i c s t r i n g StatoAttua le { get ; s e t ; } = s t r i n g . Empty ;
19

20 [Comment (" Admitted , Admitted with warning e Rejected ")]
21 pub l i c s t r i n g ? Va lutaz ioneF ina l e { get ; s e t ; }
22

23 // da qui s i dovrà f a r e r i f e r i m e n t o a i da t i de l
dottorando su pauper , a i da t i d e l l e p u b b l i c a z i o n i su i r i s
e i da t i d e l l a d i d a t t i c a da gesd

24

25 [Comment (" Solo uno deve e s s e r e a b i l i t a t o ad e s s e r e l ’ anno
a t t u a l e ")]

26 pub l i c bool AnnoAttuale { get ; s e t ; } = f a l s e ;
27

28 pub l i c Dottorando Dottorando { get ; s e t ; }
29 pub l i c i n t DottorandoId { get ; s e t ; }
30 pub l i c L i s t <AnnoDottoratoDocumenti> Documenti { get ; s e t ;

} = new List <AnnoDottoratoDocumenti >() ;

76

Appendice A

31

32 pub l i c L i s t <Tutor iGiudiz io > Tutor iGiud iz io { get ; s e t ; }
= new List <Tutor iGiudiz io >() ;

33

34 pub l i c Commissione? Commissione { get ; s e t ; }
35 pub l i c i n t ? CommissioneId { get ; s e t ; }
36

37 pub l i c C o l l e g i o ? C o l l e g i o { get ; s e t ; }
38 pub l i c i n t ? C o l l e g i o I d { get ; s e t ; }
39

40 pub l i c AnnoDottorato ()
41 {
42

43 }
44

45 pub l i c AnnoDottorato (s t r i n g annoRifer imento , DateTime
data In i z i o , DateTime dataFine , s t r i n g s e g na l a z i o n i , bool
a b i l i t a t o I n s e r i m e n t o , s t r i n g ? va lu taz i oneF ina l e , i n t
dottorandoId , bool annoAttuale)

46 {
47 AnnoRiferimento = annoRifer imento ;
48 Data In i z i o = d a t a I n i z i o ;
49 DataFine = dataFine ;
50 Segna l a z i on i = s e g n a l a z i o n i ;
51 Ab i l i t a t o In s e r imen to = a b i l i t a t o I n s e r i m e n t o ;
52 Valutaz ioneF ina l e = va lu ta z i oneF ina l e ;
53 DottorandoId = dottorandoId ;
54 AnnoAttuale = annoAttuale ;
55 }
56 }

1 pub l i c c l a s s TutoriDottorando
2 {
3 [Key]
4 pub l i c i n t Id { get ; s e t ; }
5

6 [Comment (" Tutore o co tuto r e ")]
7 pub l i c s t r i n g Ruolo { get ; s e t ; }
8 pub l i c Tutor i Tutor i { get ; s e t ; }
9

10 pub l i c i n t Tutor i Id { get ; s e t ; }
11

12 pub l i c Dottorando Dottorando { get ; s e t ; }

77

Appendice A

13 pub l i c i n t DottorandoId { get ; s e t ; }
14

15 pub l i c DateTime DataIn iz ioRuolo { get ; s e t ; } = DateTime .
Now;

16 pub l i c DateTime DataFineRuolo { get ; s e t ; } = DateTime .
MaxValue ;

17

18 pub l i c IEnumerable<Tutor iGiudiz io > Giud i z i { get ; s e t ; }
19

20 pub l i c TutoriDottorando () {
21 Ruolo = " " ;
22

23 }
24

25 pub l i c TutoriDottorando (RuoloTutCotut ruolo , i n t tu to r i I d
, i n t dottorandoId , DateTime dataIn iz ioRuo lo , DateTime
dataFineRuolo)

26 {
27 Ruolo = ruo lo . ToString () ;
28 Tutor i Id = t u t o r i I d ;
29 DottorandoId = dottorandoId ;
30 DataIn iz ioRuolo = data In i z i oRuo lo ;
31 DataFineRuolo = dataFineRuolo ;
32 }
33 }

78

Appendice A

A.3 Codice del DbContext: PhdReviewContext

1 pub l i c c l a s s PhdReviewContext : DbContext
2 {
3 pub l i c PhdReviewContext (DbContextOptions<

PhdReviewContext> opt ions)
4 : base (opt ions) {}
5

6 pub l i c DbSet<AnnoDottorato> AnnoDottorato { get ; s e t ; }
7 pub l i c DbSet<AnnoDottoratoDocumenti>

AnnoDottoratoDocumenti { get ; s e t ; }
8 pub l i c DbSet<Co l l eg i o > C o l l e g i o { get ; s e t ; }
9 pub l i c DbSet<Co l l e g i oG iud i z i o > C o l l e g i o G i u d i z i o { get ;

s e t ; }
10 pub l i c DbSet<CollegioComponenti> CollegioComponenti { get

; s e t ; }
11 pub l i c DbSet<CollegioMembri> CollegioMembri { get ; s e t ; }
12 pub l i c DbSet<Commissione> Commissione { get ; s e t ; }
13 pub l i c DbSet<CommissioneComponenti> CommissioneComponenti

{ get ; s e t ; }
14 pub l i c DbSet<CommissioneGiudizio> CommissioneGiudizio {

get ; s e t ; }
15 pub l i c DbSet<CommissioneGiudizioDati>

CommissioneGiudizioDati { get ; s e t ; }
16 pub l i c DbSet<CommissioneGiudizioDatiTemplate>

CommissioneGiudizioDatiTemplate { get ; s e t ; }
17 pub l i c DbSet<CommissioneMembri> CommissioneMembri { get ;

s e t ; }
18 pub l i c DbSet<Dottorando> Dottorando { get ; s e t ; }
19 pub l i c DbSet<DottorandoDatiDaDidattica>

DottorandoDatiDaDidattica { get ; s e t ; }
20 pub l i c DbSet<LogErrori> LogError i { get ; s e t ; }
21 pub l i c DbSet<Tutori> Tutor i { get ; s e t ; }
22 pub l i c DbSet<TutoriDottorando> TutoriDottorando { get ;

s e t ; }
23 pub l i c DbSet<Tutor iGiudiz io > Tutor iGiud iz io { get ; s e t ; }
24 pub l i c DbSet<Email> Email { get ; s e t ; } = d e f a u l t ! ;
25 pub l i c DbSet<Ruoli> Ruol i { get ; s e t ; }
26 pub l i c DbSet<Ruol iUtent i> Ruol iUtent i { get ; s e t ; }
27 pub l i c DbSet<UserData> UserData { get ; s e t ; }
28

29 protec ted ov e r r i d e void OnModelCreating (ModelBuilder
modelBui lder)

79

Appendice A

30 {
31 modelBui lder . Entity<AnnoDottorato >() . ToTable ("

AnnoDottorato ") ;
32 modelBui lder . Entity<AnnoDottoratoDocumenti >() . ToTable

(" AnnoDottoratoDocumenti ") ;
33 modelBui lder . Entity<Co l l eg i o >() . ToTable (" C o l l e g i o ") ;
34 modelBui lder . Entity<Co l l e g i oG iud i z i o >() . ToTable ("

C o l l e g i o G i u d i z i o ") . Property (e => e . Inser tDate) .
ValueGeneratedOnAdd () . HasDefaultValueSql ("GETDATE() ") ;

35 modelBui lder . Entity<CollegioComponenti >() . ToTable ("
Col legioComponenti ") ;

36 modelBui lder . Entity<CollegioMembri >() . ToTable ("
CollegioMembri ") ;

37 modelBui lder . Entity<Commissione >() . ToTable ("
Commissione ") ;

38 modelBui lder . Entity<CommissioneGiudizio >() . ToTable ("
CommissioneGiudizio ") ;

39 modelBui lder . Entity<CommissioneGiudizioDati >() .
ToTable (" CommissioneGiudizioDati ") ;

40 modelBui lder . Entity<CommissioneGiudizioDatiTemplate
>() . ToTable (" CommissioneGiudizioDatiTemplate ") ;

41 modelBui lder . Entity<CommissioneComponenti >() . ToTable
(" CommissioneComponenti ") ;

42 modelBui lder . Entity<CommissioneMembri >() . ToTable ("
CommissioneMembri ") ;

43 modelBui lder . Entity<Dottorando >() . ToTable (" Dottorando
") ;

44 modelBui lder . Entity<DottorandoDatiDaDidattica >() .
ToTable (" DottorandoDatiDaDidattica ") ;

45 modelBui lder . Entity<Tutori >() . ToTable (" Tutor i ") ;
46 modelBui lder . Entity<TutoriDottorando >() . ToTable ("

TutoriDottorando ") ;
47 modelBui lder . Entity<Tutor iGiudiz io >() . ToTable ("

Tutor iGiud iz io ") ;
48 modelBui lder . Entity<LogErrori >() . ToTable (" LogError i ")

;
49 modelBui lder . Entity<Ruoli >() . ToTable (" Ruol i ") ;
50 modelBui lder . Entity<Ruol iUtent i >() . ToTable ("

Ruol iUtent i ") ;
51 modelBui lder . Entity<UserData >() . ToTable (" UserData ") ;
52 }
53 }

80

Bibliografia

[1] Tim Berners-Lee, Robert Cailliau, Jean-François Groff e Berner
Luotonen. «The World-Wide Web». In: Computer Networks and
ISDN Systems 25.4-5 (1991), pp. 454–459. doi: 10.1016/0169-
7552(92)90005-V (cit. a p. 2).

[2] Roy T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. Dissertation. University of Cali-
fornia, Irvine, 2000 (cit. a p. 2).

[3] Tim Berners-Lee. Weaving the Web: The Original Design and Ulti-
mate Destiny of the World Wide Web. Harper San Francisco, 1999
(cit. a p. 2).

[4] Martin Fowler. Patterns of Enterprise Application Architecture.
Pearson Education, Inc, 2003. isbn: 0-321-12742-0 (cit. a p. 5).

[5] Martin Fowler. The evolution of MVC and other UI architectures.
2006. url: http://martinfowler.com/eaaDev/uiArchs.html
(cit. a p. 5).

[6] F. Marcone. Il paradiigma MVC in Django. 2009. url: https:
//www.html.it/pag/17904/il- paradigma- mvc- in- django/
(cit. a p. 5).

[7] Jesse James Garrett. «Ajax: A New Approach to Web Applications».
In: Adaptive Path Essays (2005). url: https://adaptivepath.
org / ideas / ajax - new - approach - web - applications/ (cit. a
p. 6).

[8] Leonard Richardson e Sam Ruby. «RESTful Web Services». In:
O’Reilly Media (2008) (cit. a p. 6).

[9] Dino Esposito. Programming Microsoft ASP.NET. Microsoft Press,
2002 (cit. a p. 7).

81

https://doi.org/10.1016/0169-7552(92)90005-V
https://doi.org/10.1016/0169-7552(92)90005-V
http://martinfowler.com/eaaDev/uiArchs.html
https://www.html.it/pag/17904/il-paradigma-mvc-in-django/
https://www.html.it/pag/17904/il-paradigma-mvc-in-django/
https://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://adaptivepath.org/ideas/ajax-new-approach-web-applications/

BIBLIOGRAFIA

[10] Adam Freeman. Pro ASP.NET Core 6. 9th. Apress, 2022 (cit. a
p. 8).

[11] Phil Haack e Scott Guthrie. «Introducing ASP.NET Razor». In:
Microsoft Developer Network (MSDN) (2010). url: https://learn.
microsoft.com/en-us/aspnet/core/mvc/views/razor (cit. a
p. 8).

[12] E. F. Codd. «A Relational Model of Data for Large Shared Data
Banks». In: Communications of the ACM 13.6 (1970), pp. 377–387.
doi: 10.1145/362384.362685 (cit. a p. 8).

[13] C. J. Date. An Introduction to Database Systems. 8th. Addison-
Wesley, 2004 (cit. a p. 8).

[14] Julia Lerman e Rowan Miller. Programming Entity Framework:
Code First. O’Reilly Media, 2019 (cit. a p. 9).

[15] Microsoft Corporation. SQL Server Documentation. 2023. url:
https://learn.microsoft.com/en-us/sql/sql-server/ (cit. a
p. 9).

[16] Thomas Erl. Cloud Computing: Concepts, Technology & Architecture.
Prentice Hall, 2016 (cit. a p. 10).

[17] Daniel Roth e Steve Sanderson. Blazor in Action. Manning Publica-
tions, 2022 (cit. a p. 10).

[18] Stuart Russell e Peter Norvig. «Artificial Intelligence: A Modern
Approach». In: Pearson (2021) (cit. a p. 10).

[19] Microsoft. What’s new in .NET 9: Overview. 2024. url: https://
learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-
9/overview (cit. a p. 13).

[20] Syncfusion. What’s New in .NET 9: A Developer’s Perspective. 2024.
url: https://www.syncfusion.com/blogs/post/whats-new-in-
dotnet-9 (cit. alle pp. 13, 16).

[21] Microsoft. What’s new in .NET 9: Runtime. 2024. url: https://
learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-
9/runtime (cit. alle pp. 14, 16).

[22] ByteHide. Everything New in .NET 9: The Ultimate Developer’s
Guide. 2024. url: https://www.bytehide.com/blog/everything-
new-in-net-9-the-ultimate-developers-guide (cit. a p. 14).

82

https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://doi.org/10.1145/362384.362685
https://learn.microsoft.com/en-us/sql/sql-server/
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/overview
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/overview
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/overview
https://www.syncfusion.com/blogs/post/whats-new-in-dotnet-9
https://www.syncfusion.com/blogs/post/whats-new-in-dotnet-9
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/runtime
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/runtime
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-9/runtime
https://www.bytehide.com/blog/everything-new-in-net-9-the-ultimate-developers-guide
https://www.bytehide.com/blog/everything-new-in-net-9-the-ultimate-developers-guide

BIBLIOGRAFIA

[23] Microsoft. C# Language Specification. 2023. url: https://learn.
microsoft.com/en-us/dotnet/csharp/language-reference/
language-specification/ (cit. a p. 14).

[24] A. Freeman. Pro ASP.NET Core 6. ASP.NET Core and Blazor
architecture and patterns. Apress, 2021 (cit. a p. 17).

[25] Microsoft. ASP.NET Core Blazor - Overview. 2024. url: https:
//learn.microsoft.com/en-us/aspnet/core/blazor/?view=
aspnetcore-9.0 (cit. a p. 17).

[26] N. Kramer. Blazor Basics for Beginners. 2024. url: https://
daily.dev/blog/blazor-basics-for-beginners (cit. a p. 17).

[27] Microsoft. Blazor Hosting Models. 2024. url: https://learn.
microsoft.com/en-us/aspnet/core/blazor/hosting-models?
view=aspnetcore-9.0 (cit. alle pp. 18, 19).

[28] Microsoft. Razor Pages architecture and concepts in ASP.NET Core.
2025. url: https://learn.microsoft.com/en-us/aspnet/core/
razor-pages/?view=aspnetcore-9.0&tabs=visual-studio (cit.
a p. 19).

[29] Microsoft. Project structure for Blazor apps. 2024. url: https:
//learn.microsoft.com/en-us/dotnet/architecture/blazor-
for-web-forms-developers/project-structure (cit. a p. 19).

[30] Microsoft. SQL Server Documentation. 2024. url: https://learn.
microsoft.com/en-us/sql/sql-server/?view=sql-server-
ver16 (cit. a p. 21).

[31] Microsoft. Entity Framework Core Documentation. 2024. url: htt
ps://learn.microsoft.com/ef/core (cit. a p. 21).

[32] Microsoft. Internet Information Services (IIS) Documentation. 2024.
url: https://learn.microsoft.com/en-us/iis/ (cit. a p. 23).

[33] Shibboleth Consortium. Shibboleth Documentation. 2024. url: htt
ps://shibboleth.net/documentation/ (cit. a p. 26).

[34] R. T. Fielding. «Architectural Styles and the Design of Network-
based Software Architectures». Defines REST architectural prin-
ciples. Tesi di dott. University of California, Irvine, 2000 (cit. a
p. 27).

83

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
https://learn.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-9.0
https://daily.dev/blog/blazor-basics-for-beginners
https://daily.dev/blog/blazor-basics-for-beginners
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-9.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-9.0&tabs=visual-studio
https://learn.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/project-structure
https://learn.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/project-structure
https://learn.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/project-structure
https://learn.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver16
https://learn.microsoft.com/ef/core
https://learn.microsoft.com/ef/core
https://learn.microsoft.com/en-us/iis/
https://shibboleth.net/documentation/
https://shibboleth.net/documentation/

Ringraziamenti

Questa tesi non sarebbe stata possibile senza l’aiuto e il supporto di
alcune persone: in primo luogo mia moglie Elisabetta, che mi ha spronato
a completare questo percorso e mi ha supportato (e sopportato) in questi
mesi di sviluppo dell’applicazione e di stesura della tesi; grazie amore
mio.
In secondo luogo i miei genitori, grazie ai quali ho potuto cominciare
questo percorso, per l’aiuto dato negli anni, e che hanno atteso fino ad
oggi per vedermelo terminare.
Un grazie anche ai miei suoceri per il sostegno e il supporto dato in questi
mesi di stesura della tesi.
Voglio anche ringraziare i miei colleghi del Labinf che hanno mostrato
disponibilità e collaborazione durante il mio lavoro sulla tesi, rendendo
possibile conciliare tutto questo con il lavoro.
Ringrazio anche Fulvio e Davide per il supporto fornito in questi mesi di
lavoro.
Infine, voglio ringraziare tutti gli amici e i compagni di studi con i quali
ho condiviso il percorso e tutti coloro che negli anni hanno reso tutto
questo possibile.

84

	Elenco delle figure
	Elenco delle tabelle
	Evoluzione e stato attuale dello sviluppo web (2025)
	Introduzione
	Origini del Web
	Evoluzione Delle Applicazioni Web Dinamiche
	ASP.NET e l'Ecosistema Microsoft
	Gestione dei Dati nelle Applicazioni Web
	SQL Server e il suo ruolo nello sviluppo web moderno
	Tendenze Attuali e Prospettive Future nella Programmazione Web
	Conclusioni

	Tecnologie Usate
	Introduzione
	La Piattaforma .NET 9 e il Linguaggio C#
	Panoramica
	Architettura Runtime e componenti
	Caratteristiche del linguaggio e modello di programmazione (C#)
	Considerazioni su prestazioni, compilazione AOT e architetture cloud-native
	Esperienza di sviluppo e strumenti

	Blazor Server e architettura UI dell’applicazione
	Perché Blazor Server?
	Circuiti SignalR e gestione dello stato
	Modello dei componenti, ciclo di vita e Razor
	Integrazione di Sicurezza e Autenticazione
	Compromessi tra performance e scalabilità

	Microsoft SQL Server e il Livello Dati
	Modello relazionale e garanzie transazionali
	Integrazione tramite Entity Framework Core
	Sicurezza, prestazioni e funzionalità operative

	Internet Information Services (IIS)
	Ruolo come Hosting e reverse proxy
	Pool di applicazioni e isolamento
	Monitoraggio e diagnostica

	Shibboleth, SAML e Autenticazione Federata
	SSO e identità federata
	SAML 2.0 e Shibboleth
	Integrazione in questo progetto
	Privacy e rilascio degli attributi

	API REST e REST APIs e Scambio Dati JSON
	Principi REST e utilizzo HTTP
	Payload JSON e deserializzazione tipizzata
	Livello di servizio e associazione all'interfaccia utente

	Conclusioni

	Specifiche funzionali dell'applicativo PhdMan v2
	Introduzione e specifiche del progetto
	Contesto Operazionale
	Obiettivi Funzionali Principali
	Centralizzazione delle Informazioni
	Integrazione con Fonti Dati Istituzionali
	Pagine Personalizzate e Accesso Basato sui Ruoli
	Conservazione dei Dati
	Configurabilità e Flessibilità
	Miglioramento dell'Esperienza Utente

	Attori e Responsabilità
	Studente di Dottorato
	Tutore e Co-tutori
	Commissione
	Coordinatore del Corso di Dottorato
	Collegio dei Docenti
	Gestore del Sistema

	Descrizione del Processo di Revisione
	Fase di Preparazione
	Caricamento delle Relazioni e Valutazioni da Parte dei Tutori
	Revisione da parte della Commissione
	Delibera del Collegio di Docenti
	Chiusura e Archiviazione

	Requisiti Tecnici e di Sicurezza
	Conclusioni

	Analisi Funzionale e Tecnica di PhDManV2
	Panoramica
	Architettura dell'applicazione
	Hosting e Routing
	Autenticazione e Autorizzazione
	Gestione dell'Identità
	Controllo degli Accessi Basato sui Ruoli

	Funzionalità specifiche per ruolo
	Studenti di Dottorato
	Tutori e Cotutori
	Commissione
	Collegio dei Docenti
	Amministratori
	CollegioAssegna.razor
	commissioneAdmin.razor
	dottorandiAdmin.razor
	dottGiudiziComm.razor

	Modello dei Dati e Persistenza
	Entità Principali
	Gestione dei documenti
	Tutori e il loro Giudizio
	Giudizio della Commissione
	Giudizio del Collegio
	Integrazione del ciclo di vita della valutazione

	Middleware e Logging
	Middleware personalizzato
	Logging strutturato con Serilog

	Distribuzione e Configurazione degli Ambienti
	Sviluppo vs. Produzione
	Distribuzione su IIS e Hosting come Sottoapplicazione
	Sicurezza e Configurazioni Avanzate

	Risultati
	Introduzione
	Risultati rispetto ai requisiti funzionali
	Risultati rispetto ai requisiti tecnici e di sicurezza
	Sintesi dei Risultati

	Sviluppi futuri
	Introduzione
	Pagina di gestione delle comunicazioni
	Gestione dei periodi di inserimento e revisione
	Sistema di notifiche automatiche
	Pagina di consultazione dei log
	Ulteriori possibili sviluppi
	Conclusioni

	Appendice A — Documentazione Tecnica
	Bibliografia
	Ringraziamenti

