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California’s natural gas infrastructure is essential to the state’s energy system yet 
it still remains highly vulnerable to the combined effects of seismic events and fire 
activity. Traditional assessment approaches often overlook these interactions, limiting 
themselves to resilience planning. To bridge this gap, this thesis develops a quantitative, 
performance-based framework that integrates seismic hazard characterization, 
infrastructure vulnerability, and fire behavior into a unified multi-hazard analysis.

Applied to the San Francisco Bay Area through QGIS and the OpenSRA platform, the 
framework highlights where vulnerabilities concentrate and how cascading impacts 
may develop across interconnected systems. The findings show that compound risks 
are shaped by the convergence of physical conditions, infrastructure characteristics, 
and surrounding urban environments.

By establishing a more rigorous and transparent method for evaluating these 
dynamics, the research provides utilities and public agencies with a practical tool 
capable of informing targeted mitigation, investment prioritization, and integrated 
resilience strategies. The framework is broadly transferable and offers a path toward 
more robust multi-hazard assessment practices across California and the United 
States.

ABSTRACT
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California faces an increasingly complex and dynamic hazard environment shaped 
by the convergence of seismic activity, wildfire dynamics, climate change, population 
expansion, and aging infrastructure systems. As one of the most hazard-prone 
states in the United States, California has experienced significant evolution in its 
risk landscape over the last century. Historically, earthquakes have played the most 
defining role in shaping both public understanding and institutional approaches to 
disaster management. Landmark events such as the 1906 San Francisco earthquake 
and the 1989 Loma Prieta earthquake were pivotal in advancing seismic design, 
refining emergency response systems, and deepening scientific knowledge of crustal 
deformation and ground motion (Fielding Reid 1910; Lee et al. 2008). However, in 
recent decades, wildfires have eclipsed earthquakes as the state’s most frequent 
and economically destructive hazard. Driven by persistent drought, vegetation stress, 
and intensifying development pressures in fire-prone regions, wildfire disasters have 
grown larger, more severe, and more costly (Li and Banerjee 2021; Westerling 2016; 
Keeley and Syphard 2019; Syphard et al. 2019).

Although earthquakes and wildfires are often analyzed as distinct hazard categories, 
their physical processes and societal impacts intersect in critical ways. These 
interactions exist within what disaster scholars increasingly describe as a multi-
hazard or compounding hazard environment, one in which the occurrence of one 
hazard alters the probability, intensity, or consequence of another. In California, these 
interactions frequently involve infrastructure systems that bridge hazard domains, 
such as gas pipelines, electric power networks, and transportation corridors. When 
such systems fail during major earthquakes, compound, also known as cascading, 
effects can initiate secondary hazards that significantly magnify disaster impacts. 
Among the most consequential of these cascading processes is the phenomenon 
called fire following earthquake (FFE), also known as post-earthquake fire (PEF), which 
has historically been responsible for some of the most severe urban disasters in the 
state (Scawthorn 1986).

The San Francisco Bay Area provides a particularly compelling context for examining 
these interconnected risks. The region is situated atop one of the most active and 
geometrically complex sections of the boundary between the Pacific and North 
American tectonic plates, with the San Andreas, Hayward, Rodgers Creek, and Calaveras 
faults, each capable of producing high-magnitude events, cutting directly through 
densely populated urban corridors (Aagaard et al. 2016). Probabilistic assessments 
such as UCERF3 project a high likelihood of at least one major earthquake affecting 
the region in the coming decades (Field et al. 2014). Simultaneously, the Bay Area’s 
Mediterranean climate, steep topography, diverse vegetation, and expanding 
wildland-urban interface (WUI) create conditions conducive to large, fast-moving 
wildfires. WUI growth places residential neighborhoods, infrastructure networks, and 
gas distribution systems in closer proximity to ignition-prone landscapes, increasing 
exposure and complicating emergency management.

Climate change further intensifies these risks by altering the environmental conditions 
that govern wildfire behavior. Rising temperatures, prolonged heat waves, declining 
snowpack, and increasing fuel aridity have extended the fire season well beyond its 
historical bounds (Keeley and Syphard 2016). These climatic shifts coincide with long-
term vegetation stress, tree mortality, and hazardous fuel accumulation resulting from 
both ecological change and land-management practices. As a result, the Bay Area, and 
California more broadly, faces wildfire risks that are more extreme, more widespread, 
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and more difficult to manage than at any time in the past century (Westerling et al. 
2011).

Despite this convergence of seismic and wildfire threats, hazard assessment practices 
continue to rely primarily on single-hazard frameworks. Seismic analysis typically 
focuses on ground-motion forecasting, structural response, liquefaction, lateral spread 
and landslide susceptibility, permanent ground deformation, and lifeline fragility. 
Wildfire research, in contrast, focuses on vegetation characteristics, ignition patterns, 
WUI expansion, meteorological drivers, and fuel dynamics to create fire-spread models 
(IUFRO and PROFOR 2020; Syphard et al. 2007). Neither take each other into careful 
consideration. While each field has developed advanced tools and methodologies 
to tackle their individual hazards, analytical separation obscures how earthquakes 
may create conditions favorable for fire ignition or how fire-prone environments may 
amplify the consequences of infrastructure failures triggered by seismic activity.

One of the most consequential yet understudied intersections between these hazard 
domains involves gas transmission and distribution pipelines. Many of California’s gas 
pipelines were constructed decades ago, before modern seismic design standards 
were established (Bain 2023; Fournier et al. 2025). These systems, often composed of 
older or brittle materials and located in geologically complex terrain, are vulnerable 
to rupture, buckling, joint separation, or leakage when subjected to intense shaking 
or ground deformation such as liquefaction, lateral spreading, landslides, or surface 
fault rupture (O’Rourke and Liu 1999; Pitilakis et al. 2006). In the aftermath of a major 
earthquake, escaping natural gas can be easily ignited by downed electrical lines, 
damaged equipment, sparks, open flames, or static discharge. In dense urban areas 
where pipelines intersect buildings, transportation routes, and electrical infrastructure, 
multiple ignition events may occur simultaneously. If such ignition points arise within 
or near WUI zones, they may propagate into wildfires under severe fuel and weather 
conditions.

Historically, these cascading hazards have produced significant devastation. During 
the 1906 San Francisco earthquake, ruptured gas lines were a dominant source of 
ignition for the fires that ultimately destroyed more than 80% of the city’s urban core 
(Fielding Reid 1910). Although firefighting capacity and infrastructure resilience have 
improved greatly since then, new vulnerabilities, including aging pipeline materials, 
population densification, and increasingly volatile fuel conditions, create renewed risk, 
especially following a major seismic event when water supply disruptions, roadway 
blockages, and emergency resource shortages may severely constrain fire response.
In the contemporary Bay Area, additional risk emerges from continued residential 
and infrastructural expansion into WUI landscapes. Housing expansion along ridge 
tops, in narrow valleys, and on densely vegetated slopes creates environments with 
high ignition potential and limited evacuation capacity. These constraints hinder 
fire suppression even under normal conditions; after an earthquake, when access 
routes may be compromised and water systems disrupted, containment becomes 
exponentially more difficult. Understanding where seismic vulnerability and wildfire 
potential overlap spatially is therefore essential for strengthening regional resilience 
and reducing compound hazard risk.

Despite mounting evidence of these interactions, significant analytical gaps remain 
unexplored in wildfire and earthquake research. While seismic studies have explored 
pipeline fragility under a range of hazard scenarios, and wildfire studies have 

advanced high-resolution spatial models of ignition and spread, few efforts integrate 
these approaches to identify where earthquake-pipeline-fire interactions are most 
likely to cascade. For regional planners, emergency managers, and utility operators, 
the absence of such integrated assessments limits the ability to identify and prioritize 
multi-hazard hotspots, namely, locations where earthquake-induced pipeline damage 
is likely to coincide with landscapes predisposed to rapid fire spread.

This thesis responds directly to these gaps by developing a spatially explicit, multi-
hazard assessment of the San Francisco Bay Area that integrates seismic pipeline 
vulnerability modeling with wildfire risk analysis. Using a combination of GIS-based 
Multi-Criteria Decision Analysis (MCDA), the Analytic Hierarchy Process (AHP), and 
the OpenSRA seismic risk framework, the study produces a detailed spatial model 
of earthquake-pipeline-fire interactions. OpenSRA provides probabilistic estimates 
of pipeline damage under UCERF3 earthquake scenarios, incorporating parameters 
such as ground motion intensity, soil conditions, pipeline material, and installation 
characteristics. In parallel, a wildfire hazard surface is constructed using environmental, 
infrastructural, and historical ignition variables such as vegetation cover, proximity to 
roads, and past ignition locations (Syphard et al. 2007; Radeloff et al. 2018; CAL FIRE, 
n.d.). Integrating these layers reveals spatial patterns of compounding risk that remain 
obscured under single-hazard approaches.

The study has four primary objectives:

1. To develop a clear and understandable wildfire-risk surface for the Bay Area 
using environmental, infrastructural, and historical data.

2. To model pipeline-damage probability under UCERF3 earthquake scenarios 
using the OpenSRA framework.

3. To integrate the resulting hazard surfaces to identify combined hazard hotspots 
where earthquake-induced pipeline damage and wildfire potential intersect.

4. To evaluate the implications of these findings for hazard mitigation, emergency 
preparedness, and infrastructure planning across the region.

By situating this analysis in the Bay Area, a region defined by tectonic complexity, 
diverse ecosystems, and extensive infrastructure networks, this thesis offers insights 
relevant to other metropolitan regions facing similar multi-hazard dynamics. As 
climate extremes intensify and critical infrastructure continues to age, the urgency 
of developing integrated hazard assessments grows. Understanding where and 
how these risks intersect is essential not only for reducing disaster losses but also for 
supporting long-term planning, sustainable development, and community resilience. 
The chapters that follow therefore examine California’s climate-driven wildfire context, 
its seismic hazard landscape, key theories of compounding hazards, the Bay Area’s 
regional characteristics, and the methodological framework employed to evaluate 
earthquake–pipeline–fire interactions across the region.
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2. CLIMATE CHANGE One of the biggest and most pressing environmental concerns of the modern time 
is climate change. This phenomenon has, much quicker than expected, become a 
defining force that is constantly reshaping environmental, ecological, and societal 
conditions across the world, impacting countless lives. In response to that, a new 
trend in behavior has emerged among the youth, with constant protests and 
demonstrations demanding actions to counter the phenomenon, while governments 
and international bodies are beginning to rise up to the challenge by creating new 
policies, goals and increasing cross-border cooperation initiatives.

One of the countries highly affected by climate change, and the main focus of this 
research, is the United States, with California standing at the forefront of its accelerating 
impacts. Scientific evidence has been consistently demonstrating that anthropogenic 
greenhouse gas emissions have driven unprecedented global warming over the past 
century, resulting in climate shifts that are already altering hydrological systems, 
vegetation regimes, atmospheric dynamics, and the frequency and severity of 
natural hazards. Studies conducted in the beginning of 2025 have shown that global 
temperatures in 2024 exceeded over 1.5°C above pre-industrial levels, a considerable 
feat, making it the hottest year on record and the culmination of an uninterrupted 
series of extreme heat anomalies going back more than a decade (Schaeffer et al. 2025). 
NASA similarly confirms that humans are now observing climate-driven changes such 
as more intense heatwaves, shrinking ice sheets, sea-level rise, and increased drought 
faster than previously anticipated, with some of these changes being completely 
irreversible (NASA 2024). A University Corporation for Atmospheric Research (UCAR) 
scientific assessment further corroborates these findings, projecting additional 
warming of up to 4 or 5°C by the end of the century if emissions remain high. This 
considerable increase in temperature could fundamentally alter precipitation regimes, 
extreme weather patterns, ocean chemistry, and ecosystem structures (UCAR 2025). 
In sum, the evidence is strong in illustrating that climate change is not a distant risk 
but a present reality, one that is greatly affecting every region of the United States.

Across the country, the manifestations of a warming climate are most prominently 
evident in the intensification of climate‐related disasters. Hurricanes striking the 
Atlantic and Gulf coasts have become stronger due to warmer ocean waters (Vernick 
2025), extreme rainfall events have increased in both frequency and magnitude, 
and major flooding has devastated many communities from the Midwest to the 
Southeast (US EPA 2024). Heatwaves have grown longer, hotter, and more widespread, 
contributing to significant mortality rates and placing added stress on energy systems 
and public health infrastructures that are already in high-demand (Schaeffer et al. 
2025). Water resources are under similar stress, being more limited each day. The 
severity of droughts in the Southwest has gotten much worse as warming has led to a 
decline in snowpack, which is melting earlier and earlier each year, threatening water 
supply reliability and even food production, increasing human vulnerability (NASA 
2024). These national trends help form the backdrop against which California’s unique 
climate vulnerabilities have become especially pronounced.

The state of California is widely recognized as one of the United States’ most climate-
sensitive regions. This is due to many factors, including its rapidly rising temperatures, 
atmospheric aridity, recurrent droughts, and complex topography. In recent decades, 
these factors have converged to dramatically intensify wildfire behavior across 
the state. Research by Abatzoglou and Williams (2016) further corroborates that 
anthropogenic warming is one of the main causes behind increased fuel aridity across 
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the western United States. It has accounted for more than half of observed increases 
in vapor pressure deficit, a key variable controlling forest flammability. Building 
on this work, Williams et al. (2019) show that climate change has also doubled the 
cumulative forest area burned in the western U.S. since the 1980s. More recently, Turco 
et al. (2023) measured how much climate change has affected California’s wildfire 
trends. They found that almost all of the fivefold increase in summer burned area 
between 1971-1995 and 1996-2021 is linked to human-caused warming. Their results 
show a 172% increase in burned area directly connected to rising temperatures, which 
confirms that heat-driven vegetation drying, rather than natural climate variation, is 
the main force behind California’s current wildfire behavior. State-level records also 
reinforce these conclusions. The California climate indicators report shows that annual 
burned area has increased sharply since the early 2000s, with 2020 alone burning 
an unprecedented 4.2 million acres followed by 2.6 million acres in 2021, making 
both years some of the worst in California’s recorded history (Sapsis et al. 2022). The 
number of very large fires (taken to be over 10,000 acres in area) has risen dramatically, 
with nearly all of the state’s largest fires occurring since 2000. These megafires have 
caused widespread destruction, with two of its most infamous fires being the 2018 
Camp Fire, the deadliest and most destructive in California history, and the 2020 
August Complex Fire, the state’s first “gigafire” exceeding one million acres (Sapsis et 
al. 2022). However, the fires alone are not the only problem to be considered. Postfire 
impacts are equally worthy of discussion and investigation, as they cascade across 
communities, ecosystems, and critical infrastructure systems, resulting in horrible and 
at times dangerous air-quality periods of time, extensive economic damages to both 
the population and the government, habitat loss, tree mortality, and, most important 
for this research, severe disruption of public services systems and networks.

Climate-driven wildfire escalation in California is also tightly connected to weakened 
forest resilience and elevated vegetation stress (NASA 2024). Vegetation modeling by 
Ackerly et al. (2015) shows that climate change is causing major changes in the types and 
locations of plant communities in the San Francisco Bay Area, even in places that were 
once thought to be protected from climate impacts. These transitions significantly 
influence fuel loads, setting the stage for more extreme fire seasons. Atmospheric 
research further demonstrates that warming-induced increases in vapor pressure 
deficit intensify the speed at which fuels dry, producing more days of extreme fire 
weather and lengthening the fire season into months that previously had little fire 
activity (Schaeffer et al. 2025).

Apart from the growing threat of wildfires, climate change in California is increasingly 
reshaping people’s lives, with extreme heat emerging as one of the most concerning 
hazards. Recent scientific reviews indicate that a rising share of the global population 
is being pushed outside the historical “human climate niche,” which is described as 
the range of climatic conditions in which human societies have traditionally settled in 
(Schaeffer et al. 2025). As heat extremes surpass levels that are physiologically tolerable 
in some regions, more communities are being forced to reconsider where and how 
they live. This shift is already contributing to patterns of displacement, as households 
relocate in search of safer temperatures, reliable livelihoods, and more stable living 
conditions. In addition to that, rising temperatures put an added strain on vulnerable 
populations such as outdoor workers, the elderly, and low-income communities, 
exacerbating health and socioeconomic disparities (Do et al. 2023).

These social effects are further intensified when climate-driven hazards interact 
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with critical service systems. Research on infrastructure interdependencies shows 
that wildfires, heatwaves, and extreme weather can trigger cascading disruptions 
across energy, transportation, communication, and water networks (Sfetsos et al. 
2021). In California, wildfires have repeatedly damaged transmission lines, prompted 
preemptive grid shutdowns, and hindered emergency response, with national 
analyses indicating that extreme weather accounts for over 60% of prolonged power 
outages affecting medically vulnerable populations (Do et al. 2023), illustrating how 
climate hazards compound existing social inequalities. These patterns mirror global 
trends documenting that socially and economically marginalized communities bear 
disproportionate burdens from climate disasters (Ibarrarán Viniegra et al. 2009; Vernick 
2025).

In addition to these more immediate hazards, climate change has also been linked 
to the change in long-term geophysical processes. Studies in Alaska by Sauber and 
Ruppert (2013) and Sauber et al. (2021) show that rapid ice mass loss can influence crustal 
stress fields and modulate seismicity. While these processes are most pronounced in 
regions undergoing significant deglaciation, they illustrate broader principles linking 
climate processes to geological hazards. Similar research in East Asia demonstrates 
that interglacial warming periods have historically aligned with elevated intraplate 
seismicity (Kim and Lee 2023), suggesting that climate-induced mass redistribution 
may influence seismic risk in certain contexts. Though this phenomenon is certainly 
less significant in California than its dominant tectonic forces, it is still an interesting 
point of research. As sea levels continue to rise and alter coastal mass distribution, 
future changes in ocean loading along California’s coast could, at least in principle, 
have subtle effects on regional stress fields, making this a topic worth monitoring as 
climate change progresses.

In summary, the literature paints a coherent and urgent picture: climate change is 
intensifying environmental hazards and California is paying a high price as one of 
the most acutely affected regions. Wildfires have become larger, more destructive, 
and more frequent; heatwaves are growing more intense; droughts are deepening; 
and critical infrastructure systems are increasingly vulnerable. These impacts interact 
with socioeconomic inequalities, increasing risks for marginalized communities and 
amplifying the costs of inaction. Climate change in California represents not a singular 
threat but a system-wide transformation affecting ecosystems, human life and health, 
infrastructure, governance, and long-term environmental stability. The trajectory of 
these impacts will depend heavily on near-term mitigation and adaptation strategies, 
as emphasized by NASA (2024), UCAR (2025), and the Intergovernmental Panel on 
Climate Change (IPCC) (Schaeffer et al. 2025). Immediate reductions in greenhouse 
gas emissions, combined with coordinated adaptation planning, will determine the 
extent to which California and the nation can preserve a livable future in a rapidly 
changing climate prone more and more to more devastating natural disasters.
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3. NATURAL DISASTERS Natural disasters are severe natural events that exceed a community’s capacity to 
respond, shaped by both physical processes and societal vulnerability (Quarantelli 
2000). Their frequency and impact have grown due to urbanization, environmental 
degradation, and climate change (Saunders et al. 2025). In 2024 alone, 393 natural 
hazard-related disasters caused 16,753 fatalities, affected 167 million people, and 
generated US$242 billion in losses (CRED 2025). Despite advances in forecasting and 
management, disasters continue to reveal global inequalities, often harming low-
income communities the most (Botzen et al. 2019; Kharb et al. 2022; Rentschler et al. 
2022).

Floods, storms, droughts, heatwaves, and earthquakes remain the most common 
disasters globally. Floods caused the highest number of fatalities in Africa and Asia in 
2024, while tropical cyclones such as Typhoon Yagi and Cyclone Remal affected millions 
across Southeast Asia. At the same time, severe droughts in southern Africa and the 
Amazon damaged ecosystems and agricultural systems (Delforge et al. 2025). Extreme 
heat events are also becoming a major threat, illustrated by the 2024 Saudi Arabia 
heatwave that killed over 1,300 Hajj pilgrims (CRED 2025). These trends underscore 
the links between climate change, population growth, and hazard exposure.

Disaster impacts are mediated by governance and infrastructure quality. Wealthier 
nations experience high economic losses but lower mortality due to stronger 
emergency systems, while lower-income regions face disproportionate fatalities and 
slower recovery (Botzen et al. 2019; Kharb et al. 2022). Weak data systems further 
exacerbate risk: EM-DAT, the most widely used disaster database, lacks consistent 
reporting in low-income regions and underrepresents smaller events (Delforge et al. 
2025; Gall et al. 2009; Mazhin et al. 2021). This limits accurate assessments for policy 
and investment.

Improving resilience requires better data integration and communication. Research 
emphasizes that effective early-warning systems depend not only on accurate 
forecasts but also on public understanding, trust, and communication clarity 
(Saunders et al. 2025; Twigg 2003; Golding 2022). Emerging technologies, like satellite 
imagery, crowdsourced observations, and machine-learning models, enable more 
localized and timely warnings (Kaku 2019). These innovations align with global policy 
frameworks like the Hyogo and Sendai Frameworks, which promote data-driven, 
preventive approaches to disaster risk reduction (UNISDR 2015; Delforge et al. 2025). 
Yet implementation gaps persist, especially where institutional capacity is limited.

Overall, natural disasters are no longer isolated natural phenomena; they are systemic 
challenges shaped by social inequality, climate change, and infrastructure vulnerability. 
Data quality, communication, and governance remain central to improving resilience 
and reducing future losses (CRED 2025; Delforge et al. 2025; Saunders et al. 2025).

3.1 Earthquakes

Earthquakes occur when accumulated stress in the Earth’s crust is released along 
faults, generating seismic waves and surface shaking (Kanamori and Brodsky 2004). 
The elastic rebound process explains how stress builds gradually and is suddenly 
released when rock strength is exceeded (Hardebeck and Okada 2018). Although 
tectonic motion is the primary driver, environmental factors such as glacial retreat, 
permafrost thaw, groundwater depletion, and human activities can influence fault 
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stress.

Climate-related surface changes are particularly significant in Alaska. Rapid glacier 
melt has reduced crustal loading, increasing stress on nearby faults. Sauber and 
Ruppert (2013) found that ice loss brought faults between the coast and the 1979 
aftershock zone closer to failure by roughly 0.2-1.2 MPa. Subsequent research showed 
that seasonal snow loading, deglaciation, and permafrost thaw alter stress fields in 
ways that promote seismicity on upper-crustal faults (Sauber et al. 2021). These findings 
build on earlier work by Plafker (1969), whose mapping of uplift and subsidence patterns 
after the 1964 Alaska earthquake established the basis for linking glacial mass change 
and crustal deformation.

Similar processes occur in California through human-induced hydrological change. 
Groundwater pumping in the Central Valley has caused crustal uplift and reduced 
normal stress on the San Andreas Fault. Amos et al. (2014) demonstrated that this 
unburdening helps explain the seasonal pattern of microearthquakes near Parkfield. 
Such studies show that seismicity responds to changes at Earth’s surface, not just 
deep tectonic forces.

Earthquakes create profound and lasting societal impacts. The 1994 Northridge 
earthquake damaged over 114,000 structures and caused US$41.8 billion in losses, 
making it one of the costliest disasters in U.S. history (Petak and Elahi 2001). Fires 
ignited by gas and electrical failures further increased destruction (Eguchi et al. 1998). 
Similarly, the 1964 Alaska earthquake caused major coastal uplift and subsidence, 
drastically altering shorelines, damaging ports, and affecting nearshore ecosystems 
(Plafker 1969).

Furthermore, earthquakes often trigger secondary hazards, including tsunamis, 
landslides, liquefaction, and urban fires. The 1906 San Francisco earthquake illustrates 
this interaction: roughly 80% of total destruction resulted from fires that ignited after 
gas and electrical systems failed. More recent research highlights that earthquake-
related fire remains one of the most significant compounding urban hazards (Vitorino 
et al. 2024).

In sum, earthquakes are not isolated geological events but dynamic interactions 
between tectonic processes, climate-driven mass changes, human activities, and 
infrastructure vulnerability. It is, therefore, imperative to learn how to analyze these 
factors together for better planning in a changing environment.

3.2 Wildfires

Wildfires are uncontrolled fires that burn vegetation across forests, shrublands, and 
grasslands, with their spread governed by fuel conditions, weather, and topography 
(Keane et al. 2008; McLauchlan et al. 2020). They propagate through surface fuels, 
ladder fuels, and tree canopies, and their intensity increases under dry, hot, and windy 
conditions that promote rapid combustion. Although lightning and other natural 
processes can ignite fires, human activities now account for the majority of ignitions, 
including power-line malfunctions, equipment sparks, and accidental or negligent 
behavior (Balch et al. 2017; Farid et al. 2024). This mixture of natural and anthropogenic 
drivers establishes wildfires as both ecological processes and socio-environmental 
hazards.

Natural Disasters

The ecological impacts of fire are multifaceted. Many western U.S. ecosystems 
evolved with periodic low-intensity burning, which facilitates nutrient recycling, 
opens habitat, and stimulates regeneration (McLauchlan et al. 2020). Yet the benefits 
of fire are increasingly overshadowed by the prevalence of high-severity events. 
When fire frequency or intensity exceeds ecological thresholds, vegetation loss, soil 
hydrophobicity, and shifts in species composition become widespread (Keane et al. 
2008). These degradative effects extend beyond the burn perimeter as post-fire erosion 
and sedimentation impair water quality in rivers and reservoirs (Farid et al. 2024). Thus, 
contemporary wildfires destabilize landscape processes in ways that differ markedly 
from pre-suppression fire regimes.

A major source of modern wildfire risk is long-term fuel accumulation, driven primarily 
by twentieth-century fire suppression. After catastrophes like the 1910 Great Fire, 
U.S. land agencies adopted suppression policies that minimized the role of natural 
burning (Marlon et al. 2012). Although intended to protect timber and settlements, 
these policies produced denser forests and heavier fuel loads, making current fires 
larger, faster, and more intense. Scientific recognition of fire ecology has since shifted 
management toward prescribed burning and managed fire (Huffman et al. 2020), but 
the scale of accumulated fuels far exceeds current treatment capacity. This historical 
backdrop helps explain why recent fires behave in ways uncharacteristic of many fire-
adapted ecosystems.

Climate change is now amplifying these structural vulnerabilities. Warmer 
temperatures, earlier snowmelt, and prolonged drought reduce fuel moisture and 
lengthen fire seasons across the western United States (Keane et al. 2008; McLauchlan 
et al. 2020). Quantitative attribution studies estimate that between 33% and 82% 
of the burned area in several western ecoregions from 1992–2020 is attributable to 
anthropogenic climate change, along with roughly 49% of smoke exposure (Feng 
et al. 2024). Wildfires themselves contribute to further warming through the release 
of carbon dioxide, methane, and black carbon (Farid et al. 2024). This feedback loop, 
warming that fuels fires, and fires that in turn reinforce warming, illustrates the deep 
interconnection between climatic and ecological processes.

Another critical component shaping wildfire impacts is human settlement in the 
wildland-urban interface (WUI). WUI expansion has increased ignition likelihood 
and placed millions of homes and residents at direct risk (Balch et al. 2017). The 
juxtaposition of flammable vegetation with dispersed housing, limited road access, 
and inadequate defensible space complicates both suppression and evacuation 
efforts. Smoke exposure further magnifies the human cost, contributing to respiratory 
and cardiovascular health effects across wide regions (Feng et al. 2024; Edgeley et al. 
2025). As such, the WUI transforms wildfire from a largely ecological phenomenon 
into a complex socio-technical hazard.

Collectively, these factors have produced a wildfire regime in California that is 
fundamentally different from previous decades. Although ignition frequency has not 
dramatically increased, the area burned and severity of fires have risen significantly, 
straining suppression resources and complicating post-fire recovery (Farid et al. 2024). 
Addressing these challenges requires integrated approaches that combine ecological 
fuel management, climate adaptation, land-use planning, and the hardening of 
communities and infrastructure. Only with such multi-dimensional strategies can 
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California move toward a more sustainable coexistence with wildfire in an era of 
accelerating environmental change.
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4. COMPOUND HAZARDS Compound hazards occur when multiple drivers or events interact, producing impacts 
greater than the sum of their individual effects (Zscheischler et al. 2018; Brett et al. 2025). 
These interactions are especially critical in urban environments where infrastructure 
systems, like water, power, gas, and transportation, are tightly interconnected. When 
one system fails, cascading disruptions can propagate quickly and non-linearly 
(Alexander and Pescaroli 2019). Earthquakes combined with fires represent one of the 
clearest and most destructive examples of such compound behavior: seismic shaking 
damages buildings and lifelines, ruptures utilities, and impairs emergency response, 
while fires ignite and spread under compromised conditions (Scawthorn et al. 2006).

Historical earthquakes around the world consistently illustrate that fire is a major 
contributor to total losses. The 1906 San Francisco and 1923 Great Kantō events 
demonstrate that when ignition rates are high and water systems are damaged, fires, 
not the shaking, dominate fatalities and property destruction (Scawthorn et al. 2006; 
Schencking 2013). More recent events such as Northridge (1994), Kobe (1995), and the 
2011 Great East Japan earthquake also reaffirm the strong coupling between seismic 
impacts, gas infrastructure failure, and urban fire spread (Cruz and Suarez-Paba 2019).
Compound-hazard research has traditionally focused on climate-related pairs (e.g., 
heat-drought, flood-storm-surge), leaving technologically mediated events, such 
as earthquake-triggered fires or NaTech disasters, comparatively underexamined 
(Zscheischler et al. 2018; Brett et al. 2025). Yet the urban and technological dimensions 
of these hazard cascades are increasingly relevant as cities densify, infrastructure ages, 
and climate change alters baseline stressors on energy systems.

Against this backdrop, understanding how earthquakes interact with fire dynamics 
and gas networks is essential for anticipating catastrophic outcomes and addressing 
remaining gaps in multi-hazard modeling.

4.1 Post-Earthquake Fires

Post-earthquake fires (PEFs) are among the most devastating secondary hazards in 
seismic regions. Historical earthquakes show that fires can surpass shaking-related 
losses when lifelines fail and ignition sources proliferate. In the 1906 San Francisco 
earthquake, more than 80% of total destruction resulted from fires that burned for 
days after gas and water systems were damaged (Vitorino et al. 2024; Baquedano 
Juliá et al. 2021). A similar pattern occurred in the 1923 Great Kantō earthquake, where 
over 110,000 fatalities, most fire-related, were caused by widespread ignitions and the 
collapse of response capabilities (Vitorino et al. 2024).

Despite these precedents, PEFs remain insufficiently integrated into seismic design 
standards. Building codes generally prioritize structural resistance but rarely account 
for fire following earthquake (FFE) conditions, leaving buildings vulnerable once 
fireproofing, connections, or partitions are compromised (Vitorino et al. 2024; Mousavi 
et al. 2008). This gap is particularly pronounced for steel moment frames and reinforced 
concrete structures, where seismic damage can sharply reduce fire resistance (Alasiri 
et al. 2021; Dashti et al. 2025).

Ignition patterns in PEF scenarios follow strong empirical trends. A global review of 
49 events shows that fires correlate more closely with shaking intensity and time of 
day than with earthquake magnitude (Vitorino et al. 2024). Mealtime hours generate 
higher ignition rates due to appliance use. Common ignition sources include ruptured 
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gas lines, electrical faults, and open flames, often triggered or exposed by structural 
collapse (Hua et al. 2025). These fires then spread more readily when roads are blocked, 
water networks are damaged, or communications fail, as seen in Northridge (1994) 
and Kobe (1995) (Scawthorn 1986; Tian et al. 2025; Nishino 2023).

Modeling capabilities for PEFs have advanced substantially, with early geometric 
approaches having been replaced by probabilistic, GIS-based, and physics-informed 
methods (Baquedano Juliá et al. 2021). Ren and Xie (2004) incorporated Huygens’ 
Principle to simulate urban fire spread under varying winds and densities. More 
recently, Nishino et al. (2023) developed Monte Carlo and hierarchical Bayesian 
frameworks that integrate ignition uncertainty, urban morphology, firefighter mobility, 
and infrastructure fragility, allowing realistic scenario generation even in data-limited 
contexts. These tools help planners test interventions, evaluate worst-case outcomes, 
and prioritize investments.

Mitigation strategies span building-level, urban, and regional scales. At the structure 
level, maintaining active fire systems (sprinklers, alarms), securing utilities, and 
upgrading passive fire protection are essential (Mousavi et al. 2008). At the city scale, 
flexible gas connections, water system redundancy, alternative water sources, firebreak 
corridors, and coordinated emergency communication networks are crucial (Kürüm 
Varolgüneş and Varolgüneş 2025; Vitorino et al. 2024). BIM-based simulations further 
support evacuation planning by showing how smoke can render corridors impassable 
within minutes (Lofti et al. 2021).

Even with improved science, significant gaps remain. Social behavior, delayed 
evacuations, and community-led response are rarely modeled; most analyses rely 
on U.S. and Japanese case studies, leaving large parts of the world without tailored 
assessments (Vitorino et al. 2024). European historical districts, for example, pose 
unique challenges, as highlighted by Baquedano Juliá et al. (2021), due to narrow 
streets, combustible materials, and limited fire separations.

PEFs therefore represent a decisive component of earthquake risk, requiring integrated, 
multi-scale planning and recognition of their central role in urban disaster outcomes.

4.2 Earthquake-Gas Pipeline-Fire Relationship

Earthquakes and urban fires are tightly linked through the vulnerability of natural gas 
infrastructure. Buried pipelines experience deformation from fault rupture, liquefaction, 
lateral spreading, and wave-propagation strain. Older systems, particularly cast-iron 
pipes and brittle joints, are highly susceptible to breakage, with failure probabilities 
increasing sharply once peak accelerations exceed ~0.7g (Ueno et al. 2004). When 
leaks ignite due to electrical faults, sparks, or open flames, cascading urban fires can 
develop and quickly overwhelm limited suppression capabilities (Lee et al. 2008).

Historical events repeatedly illustrate this pattern. In the 1906 San Francisco earthquake, 
gas mains ruptured across the city, contributing to dozens of simultaneous ignitions 
(Scawthorn et al. 2006). The 1994 Northridge earthquake produced around 110 post-
quake fires, many linked to natural gas failures, including the Balboa Boulevard fire 
that destroyed multiple homes (Cruz and Suarez-Paba 2019). During the 1995 Kobe 
earthquake, damage to buried gas facilities and joint failures led to over 200 gas-
leak fires and disrupted service to roughly 857,000 customers (Cruz and Suarez-Paba 
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2019). NaTech incidents, such as the refinery fires during the 2011 Great East Japan 
earthquake, further illustrate how technological systems amplify earthquake impacts.
Modeling the earthquake-gas-fire chain remains challenging. Fragility functions for 
pipelines are limited and often derived from small datasets, urban fire models seldom 
integrate lifeline failure, and proximity effects, such as clustering of gas corridors and 
dense housing, are difficult to represent accurately (Piccinelli et al. 2013; Krausmann et 
al. 2019). Yet the mechanisms are well understood: ground deformation causes leaks, 
ignition likelihood rises with interaction between utilities, and compromised water 
systems reduce suppression capacity (Jones et al. 2008).

This nonlinearity matters because small changes in ignition probability or response 
delay can shift outcomes from isolated fires to block-level conflagrations. Co-location of 
faults, liquefaction zones, and densely built neighborhoods creates hazard “hot spots” 
where gas infrastructure and population exposure overlap. Fires can also feed back into 
infrastructure failure by damaging power lines, substations, and telecommunications 
equipment.

Targeted interventions offer substantial risk reduction. Automatic shutoff valves, 
excess-flow limiters, sectionalized mains, and prioritized replacement of brittle 
pipes all reduce leak likelihood. Water system redundancy, like firefighting cisterns, 
fireboats, and emergency hydrants, improves suppression under lifeline failure. San 
Francisco’s Marina District during the 1989 Loma Prieta earthquake is a notable 
example: liquefaction destroyed hydrants, but the fireboat Phoenix provided critical 
water supply that prevented widespread conflagration.

In summary, the interaction between earthquakes, gas networks, and fire is a classic 
cascading hazard. Damage to pipelines increases ignitions, water network failures 
limit suppression, and urban density accelerates fire spread. Addressing this requires 
integrated, multi-hazard data, coupled simulations, and infrastructure-aware planning 
that reflects the realities of interconnected urban systems (Zscheischler et al. 2018; 
Piccinelli et al. 2013; Jones et al. 2008).
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5. CALIFORNIA HAZARD 
LANDSCAPE

California’s hazard landscape has grown increasingly complex due to climate change, 
aging infrastructure, and continued development in high-risk areas. While earthquakes 
have traditionally shaped statewide preparedness, wildfires now occur more frequently 
and impose greater socioeconomic impacts. From 1953 to 2024, the state experienced 
386 federal disaster declarations, with nearly one-third since 2015 and 289 linked to 
wildfire (Ermagun et al. 2025). Burned area has increased nearly fivefold between 1971-
1995 and 1996-2021 (Turco et al. 2023), driven largely by anthropogenic climate change 
(Dahl et al. 2023; Turco et al. 2023). In contrast, earthquakes accounted for only 7% of 
emergency declarations from 1950 to 2017 (Legislative Analyst’s Office 2019), though 
their potential for cascading failures remains severe (Li et al. 2024; Comfort 2021).

The current problem of climate change only amplifies risk across hazard types. Warmer 
conditions increase vapor pressure deficits, drying vegetation and intensifying fire 
seasons (Turco et al. 2023). At the same time, critical infrastructure, designed for 
historical climate conditions, struggles to withstand modern extremes (Moftakhari 
and AghaKouchak 2019). Compound events such as wildfire-rainfall sequences also 
pose growing threats, exemplified by the 2018 Montecito debris flows following severe 
wildfire (Moftakhari and AghaKouchak 2019). As temperatures rise, these multi-hazard 
sequences are expected to increase (Nemeth et al. 2024).

Energy systems face elevated exposure to compound hazards. Wildfire, landslide, 
erosion, and runoff threaten both above- and below-ground pipeline infrastructure, 
particularly in Northern and Central California (Moftakhari and AghaKouchak 2019). 
Above-ground gas facilities melt or fail under wildfire conditions, while underground 
lines are damaged by flooding, sedimentation, and ground movement. Projections 
suggest that even currently low-risk regions, such as the Mojave and Sonoran Deserts, 
will experience increased compound hazard exposure in coming decades.

Social vulnerability further intensifies this bleak hazardscape. More than 2.9 million 
Californians live within one kilometer of oil and gas infrastructure in wildfire-prone 
areas, disproportionately affecting Black, Hispanic, and Native American communities 
(González et al. 2024), with many lacking access to mitigation resources, insurance, 
or resilient infrastructure (MacCarthy et al. 2024; Thomas 2024). Meanwhile, aging 
networks amplify risks: gas systems face safety and compliance challenges as 
midstream networks deteriorate (Saran et al. 2024), and electricity systems suffer 
escalating outage potential as assets exceed design lifespans (Lo et al. 2019; Do et al. 
2023).

Risk communication systems also lag behind these evolving threats. Public frameworks 
often treat hazards in isolation, failing to convey the interconnected nature of wildfire, 
infrastructure vulnerability, and post-earthquake risks (Nemeth et al. 2024). This 
communication gap disproportionately harms socially vulnerable communities and 
complicates emergency response.

Mitigation requires integrating land management, infrastructure upgrades, and 
inclusive planning. Fuel treatments (prescribed burns, thinning, grazing) reduce 
wildfire severity when applied systematically (Oliveira et al. 2016; Murray et al. 2023). 
Transportation and utility networks need safe-to-fail design with redundancy to 
withstand cascading events (Fraser et al. 2022). Zoning reforms, updated building 
codes, and community-centered resilience planning are crucial for long-term 
adaptation (Shives et al. 2025; Bondi and Kaewwilai 2020; MacCarthy et al. 2024).
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California’s hazard environment is thus defined by the convergence of climate 
pressures, infrastructure fragility, and social inequity. Understanding this context is 
essential for assessing risk to critical systems such as gas networks and for advancing 
resilience across diverse communities.

5.1 WUI Zones

The wildland-urban interface (WUI), where homes meet or intermingle with flammable 
vegetation, is one of the fastest-growing and most hazardous landscapes in California 
(Radeloff et al. 2005; 2018). Over one-third of California households now reside in WUI 
areas, with nearly 1.5 million new homes built there from 1990 to 2020 (Greenberg et al. 
2024). This expansion places millions at heightened wildfire risk due to direct exposure 
to flames, radiant heat, and wind-driven embers (Wilkin et al. 2025). California’s fire-
adapted ecosystems and steep topography further intensify this threat (Thapa et al. 
2023).

Most WUI fires are human-caused, by accidents, infrastructure failures, or negligence, 
raising ignition likelihood as development expands (Radeloff et al. 2018; Calviño-
Cancela et al. 2016). Firefighting is further complicated by dispersed housing, narrow 
roads, and limited water supply, making evacuations dangerous. The 2018 Camp 
Fire showed how bottlenecks and limited exit routes can turn evacuations into life-
threatening events, especially for elderly or mobility-limited residents (Thapa et al. 
2023).

Compliance with defensible space and fire-resistant construction codes remains 
inconsistent. Inspections show that a majority of WUI homes fail to meet vegetation 
clearance or ember-resistant standards (Wilkin et al. 2025). Meanwhile, WUI growth 
disrupts ecosystems, fragments habitats, and introduces invasive species (Radeloff et 
al. 2005; 2018). Fire suppression to protect homes further alters natural fire regimes, 
increasing fuel accumulation (Thapa et al. 2023). Smoke from burning structures also 
produces toxic pollution with regional health impacts (Qiu et al. 2025).

Socioeconomic dynamics intensify vulnerability. Wealthier residents often seek scenic 
WUI locations, benefiting from insurance and political resources, while California’s 
housing shortage pushes lower-income households into more isolated, high-risk WUI 
areas (Debats Garrison and Huxman 2020; Greenberg et al. 2024). Recovery after fires 
often follows inequitable trajectories: affluent households rebuild more easily, while 
vulnerable groups experience permanent displacement (Amiri et al. 2025).

Advances in WUI mapping and modeling provide better tools for managing risk. 
Gong et al. (2024) incorporate housing density, vegetation cover, and fire occurrence 
to delineate high-risk zones. Masoudvaziri et al. (2021) integrate wildfire hazard, 
exposure, and demographic vulnerability to identify hotspot communities, particularly 
useful for regions like the Sierra Nevada foothills. These methods support planning for 
evacuation routes, fuel treatments, and zoning restrictions.

Recent events underscore the urgency of better governance. The 2025 Los Angeles 
fires caused US$250 billion in damages and destroyed over 16,000 structures, largely 
in WUI neighborhoods (Qiu et al. 2025). Such fires illustrate that WUI disasters are not 
simply ecological problems but socio-technical crises shaped by settlement patterns, 

building practices, and infrastructure limitations.

Policy solutions must combine fuel management, resilient building standards, 
equitable insurance models, and land-use planning. Without coordinated intervention, 
ongoing WUI expansion and climate change will deepen California’s wildfire crisis and 
increase exposure to cascading hazards.

5.2 Gas Networks

California’s natural gas networks, comprising high-pressure transmission pipelines, 
local distribution lines, and underground storage, form a critical energy lifeline. They 
support heating, electricity generation, and industrial operations while interacting 
with water, electricity, and transportation systems. Their complexity makes them 
particularly vulnerable to disruption during natural hazards, especially earthquakes.
Seismic damage to pipelines arises from fault rupture, liquefaction, lateral spreading, 
and differential settlement. The 1994 Northridge earthquake ruptured both 
transmission and distribution lines along Balboa Boulevard, igniting fires that destroyed 
five homes (O’Rourke and Palmer 1994; Bain et al. 2024). Older oxy-acetylene welds 
performed poorly compared to modern electric arc welds (Bain 2023). The 1989 Loma 
Prieta earthquake caused liquefaction-induced failures in San Francisco’s Marina 
District, where ruptured gas mains ignited fires and hydrant failure forced reliance on 
the fireboat Phoenix (Schmidt et al. 2014; O’Rourke and Palmer 1994; Scawthorn et al. 
1992).

Minor ground deformation can also cause significant pipeline damage, as documented 
by Schmidt et al. (2014). Similar vulnerabilities are observed in global incidents such 
as the 2004 Ghislenghien explosion in Belgium and the 2010 Dalian disaster in China. 
U.S. events, including the 2018 Merrimack Valley explosions and the 1965 Natchitoches 
pipeline tragedy, highlight failures related to over-pressurization, mismanagement, 
corrosion, and outdated materials (Ly 2019).

California’s system has faced high-profile failures, such as the 2015 Aliso Canyon blowout, 
the largest methane release in U.S. history, caused by corrosion and inadequate 
maintenance. These cases underscore that pipeline risk arises not only from natural 
hazards but also from aging infrastructure, operational errors, and regulatory gaps.
Multi-hazard perspectives are essential for understanding pipeline vulnerability. 
Wildfire can melt above-ground equipment; floods, landslides, and erosion can 
expose or rupture buried lines; and earthquakes can generate widespread leaks that 
lead to urban fires. Integrated GIS-based models that combine seismicity, liquefaction 
susceptibility, WUI expansion, infrastructure age, and population exposure can guide 
targeted retrofits and risk mitigation.

In this context, strengthening California’s gas networks requires replacing brittle 
materials, improving corrosion monitoring, enhancing shutoff and pressure-control 
technologies, and prioritizing upgrades in geohazard-prone zones. As climate 
pressures and urban expansion continue, the resilience of these systems is central to 
reducing the severity of future disasters.

California Hazard Landscape California Hazard Landscape20 21



6. CASE STUDY: SAN 
FRANCISCO BAY AREA

This section of the thesis brings together all the elements discussed in previous chapters 
in order to frame the San Francisco Bay Area as the case study investigated in this work. 
Commonly referred to as the Bay Area, the location is one of the most dynamic and 
complex regions in California, both socially and environmentally. It encompasses nine 
counties (San Francisco, Alameda, Contra Costa, Marin, Napa, San Mateo, Santa Clara, 
Solano, and Sonoma - see Figure 1) and includes a diverse mix of urban, suburban, and 
rural environments. The region is centered around the San Francisco Bay, an estuarine 
system that significantly influences the area’s climate, ecology, and development 
patterns. The Bay Area’s delimitation as a distinct geographic and socio-economic 
unit is rooted in its interconnected infrastructure, shared environmental systems, 
and integrated economy. Its boundaries are not merely administrative but reflect a 
cohesive region tied together by daily commuting flows, regional planning agencies 
such as the Metropolitan Transportation Commission (MTC) and the Association of 
Bay Area Governments (ABAG), and shared vulnerabilities to natural hazards.

Socially, the Bay Area is home to over 7.7 million residents and stands as one of the 
most densely populated and economically significant regions in the United States 
(Bay Area Census 2020). It is characterized by a strong concentration of technological 
industries, particularly in Silicon Valley, which contributes to both regional affluence 
and socio-spatial inequality. The region’s infrastructure, comprising dense 
transportation networks, energy systems, and extensive urban settlements, makes 
it particularly sensitive to compounding hazards. The proximity between residential 
areas and critical lifelines, such as gas transmission networks operated by Pacific Gas 
and Electric (PG&E), increases the potential for multi-hazard interactions, especially in 
the aftermath of earthquakes.

Natural characteristics further heighten the Bay Area’s complexity and vulnerability. 
The region is defined by its position along the Pacific coast and its proximity to major 
active fault systems, including the San Andreas and Hayward faults. These faults 
have historically generated significant seismic events, such as the 1906 San Francisco 
earthquake and the 1989 Loma Prieta earthquake, both of which caused widespread 
infrastructure damage and secondary fires (Scawthorn et al. 2006). The presence of 
these faults, combined with a dense gas pipeline network, creates conditions under 
which earthquakes can easily trigger compounding hazards like gas leaks and fires, 
making the area an ideal case study for research on earthquake impacts on gas 
infrastructure and subsequent fire activity.

Environmental diversity is another defining feature of the Bay Area. The region’s 
Mediterranean climate supports a mix of vegetation types, ranging from coastal 
scrublands and grasslands to dense chaparral and oak woodlands. These ecosystems 
are highly flammable during the dry summer and fall months, when prolonged 
droughts, low humidity, and high winds amplify wildfire risks (Keeley and Syphard 
2018). The region also contains extensive wildland-urban interface (WUI) zones. These 
areas, found prominently in the East Bay Hills, Marin County, and parts of Santa Clara 
and Sonoma counties, represent some of the highest fire risk zones in California, as 
the combination of fuel continuity, steep topography, and human presence facilitates 
ignition and rapid fire spread (Radeloff et al. 2018).

The proximity of the ocean further influences the Bay Area’s microclimates and 
vegetation distribution. Coastal fog and marine breezes help moderate temperatures 
and occasionally provide moisture that can delay the onset of fire season in some 
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locations. However, these same meteorological conditions can also transport smoke 
and pollutants from inland fires toward coastal communities, amplifying air quality 
issues and regional health impacts. The ocean’s moderating effect also contrasts with 
the dry inland valleys, creating sharp climatic gradients that influence vegetation 
flammability and hydrological patterns across short distances (Martin 2008; Weiss et 
al. 2013; Chow et al. 2022).

The Bay Area’s significance extends beyond its own boundaries, as its infrastructure, 
economy, and environmental systems are deeply interconnected with those of 
surrounding regions. Energy transmission lines, transportation corridors, and supply 
chains link the Bay Area with Central and Northern California, meaning that any 
disruption, such as a large earthquake or widespread fire, could have cascading 
consequences at the state and national level. The region’s ports, financial institutions, 
and technological industries are vital to California’s and the U.S. economy, reinforcing 
the importance of safeguarding its critical infrastructure from multi-hazard events 
(Tam and Johnson 2020; Cal OES 2023).

For these reasons, the Bay Area is a highly significant study area for investigating the 
relationship between earthquake-induced damage to gas networks and subsequent 
fire activity. Its unique combination of dense population, active fault lines, aging 
energy infrastructure, and extensive WUI zones provides a natural laboratory for 
understanding compounding and cascading hazards. Research in this region not 
only contributes to local disaster resilience but also offers insights applicable to other 
seismically active urban regions worldwide. The Bay Area’s social, infrastructural, and 
environmental vulnerabilities, when analyzed together, highlight the urgent need 
for integrated risk assessment approaches capable of addressing the intersection 
between seismic and fire hazards in an era of increasing urbanization and climate 
stress.

Case Study: San Francisco Bay Area Case Study: San Francisco Bay Area

Figure 1 State of California and Bay Area counties.
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7. METHODOLOGY The methodology developed for this study combines geospatial analysis, multi-criteria 
decision-making, and seismic risk modeling in order to evaluate compound hazards 
in the San Francisco Bay Area. The first component of the analysis involved the use of 
Geographic Information System (GIS) data processed in QGIS to create a detailed fire 
risk index map. This map was developed through spatial analysis techniques and the 
application of Multi-Criteria Decision Analysis (MCDA) using the Analytic Hierarchy 
Process (AHP), which allowed the weighting and integration of several fire-related 
parameters selected by the author. The second component focused on seismic 
activity modeling performed in OpenSRA, applying the Uniform California Earthquake 
Rupture Forecast, Version 3 (UCERF3) model, to assess potential ground failure and 
its effects on gas transmission infrastructure. Finally, the results from both analyses 
were combined to examine how earthquake-induced pipeline damage may interact 
with fire susceptible zones, providing an integrated perspective on the interaction 
and progression of compound hazards across the region.
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7.1 GIS-MCDA-AHP

Geographic Information Systems (GIS) have become an indispensable tool in natural 
hazard research, providing the capacity to integrate, analyze, and visualize complex 
datasets within a spatial framework. Their value lies in the ability to unify diverse 
information into coherent models that capture the dynamics of risk across both 
natural and built environments. Unlike purely statistical or engineering approaches, 
GIS situates hazards within their geographic and socio-ecological contexts, enabling 
a more complete understanding of where multiple threats converge. This integrative 
capability is particularly relevant in multi-hazard assessments, where compounding 
risks frequently emerge at the intersection of seismic activity, wildfire exposure, and 
infrastructure vulnerability (Burrough and McDonnell, 1998; Goodchild, 2006).

Within this framework, Multi-Criteria Decision Analysis (MCDA) represents a prominent 
application of GIS, allowing multiple spatial criteria to be combined according to their 
relative importance. The method enables the construction of composite indices that 
represent spatial variations in hazard susceptibility and has been widely adopted 
for wildfire risk mapping. Malczewski (1999) established the theoretical basis for 
integrating MCDA within GIS, emphasizing its ability to incorporate both expert 
judgment and empirical evidence. Among MCDA methods, the Analytic Hierarchy 
Process (AHP) has become one of the most widely used due to its structured pairwise 
comparison approach, which provides a transparent and consistent mechanism for 
assigning weights to different factors (Saaty 1987; 1990). Studies have shown that AHP 
effectively balances qualitative and quantitative criteria, reduces subjectivity through 
consistency checks, and allows replication across diverse spatial. For these reasons, 
the AHP method was selected for this study as the most appropriate approach to 
systematically weight and integrate the parameters influencing wildfire susceptibility 
in the Bay Area.

The effectiveness of GIS-based MCDA-AHP has been demonstrated in numerous 
wildfire assessments. In California, Chuvieco et al. (2014) and Keeley and Syphard (2018) 
applied weighted overlay techniques to map wildfire risk and prioritize management 
zones, while other studies used similar approaches to support post-fire restoration 
planning. Beyond California, studies in Greece, Turkey, and Iran have applied GIS-AHP 
to model wildfire hazard under future climate scenarios, integrating biophysical and 
social factors to identify areas of highest vulnerability. At a finer scale, Li et al.(2021) 
enhanced Wildland-Urban Interface (WUI) mapping in California by combining 
building footprint and vegetation data, illustrating the adaptability of AHP-based 
GIS frameworks to detailed landscape analysis. These studies collectively support the 
reliability and transferability of GIS-AHP methods for regional hazard assessment.

Although GIS-based wildfire assessments are widely developed, relatively few studies 
have explicitly addressed the interaction between fire risks and pipeline vulnerability. 
This represents a significant gap in hazard research, as gas transmission infrastructure 
can play a critical role in amplifying the impacts of natural disasters. Gas leaks and 
explosions are known to intensify fire behavior and complicate suppression efforts, 
particularly when they occur alongside seismic events. Post-earthquake fires are a well-
documented secondary hazard, often resulting from ruptured pipelines or damaged 
gas distribution systems. Historical examples such as the 1994 Northridge earthquake, 
which triggered multiple fires following pipeline ruptures, illustrate the potential for 
infrastructure damage to escalate into large-scale fire incidents (Yegian et al. 1995; 
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Seismic Safety Commission 1995). Despite the precedents, the spatial relationship 
between seismic-induced pipeline damage and wildfire exposure has rarely been 
examined through an integrated modeling framework. Addressing this gap offers 
an opportunity to advance vulnerability assessment by revealing new pathways of 
cascading risk in seismically active and fire-prone regions.

California provides an ideal setting for exploring this interconnection. The state 
combines some of the most severe wildfire recurrence patterns in the world with 
an extensive and aging gas transmission network that traverses active fault systems 
and densely populated Wildland-Urban Interface (WUI) zones (Radeloff et al. 2018). 
Its complex topography, Mediterranean climate, and history of both large wildfires 
and damaging earthquakes make it an unparalleled case study for evaluating the 
overlap of seismic and fire hazards. Furthermore, California’s regulatory and data-rich 
environment provides the necessary foundation for implementing a comprehensive, 
GIS-based multi-hazard analysis.

Table 1 Selected parameters and their sources.
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Parameters Description Publication Website

Wildland-Urban 
Interface (WUI) GIS data integrating U.S. 

Census information and 
USGS National Land Cover 
Data (NLCD) to spatially 
represent the Wildland-Ur-
ban Interface (WUI) as 
defined by the Federal 
Register (66:751, 2001).

Radeloff, Volker C., Da-
vid P. Helmers, H. Anu 
Kramer, et al. 2018. 
“Rapid Growth of the 
US Wildland-Urban 
Interface Raises Wildfire 
Risk.” Proceedings of the 
National Academy of 
Sciences 115 (13): 3314–19. 
https://doi.org/10.1073/
pnas.1718850115.

https://silvis.forest.wisc.
edu/data/wui-change/

Vegetation
Coverage

Housing Density

Historical Ignition 
Points

GIS data containing a 
spatial database of wildfire 
ignition points in the Unit-
ed States from 1992–2020, 
compiled from federal, 
state, and local fire agency 
reports.

Short, K. C. 2014. “A Spa-
tial Database of Wildfires 
in the United States, 
1992-2011.” Earth System 
Science Data 6 (1): 1–27. 
https://doi.org/10.5194/
essd-6-1-2014.

https://www.fs.usda.
gov/rds/archive/cata-
log/RDS-2013-0009.6

Road Network

GIS data depicting road 
networks in the San Fran-
cisco Bay Region, compiled 
from county-level shape-
files by the Metropolitan 
Transportation Commis-
sion.

-

https://opendata.
mtc.ca.gov/datasets/
MTC::san-francis-
co-bay-region-road-
ways/about

Fire Hazard
Severity Zones 

(FHSZ)

GIS data from CAL FIRE 
delineating Fire Hazard 
Severity Zones (FHSZ), 
based on datasets from 
CAL FIRE FRAP, CANSAC, 
the U.S. Census Bureau, the 
U.S. Geological Survey, and 
other public GIS databases.

-

https://osfm.fire.ca.gov/
what-we-do/commu-
nity-wildfire-prepared-
ness-and-mitigation/
fire-hazard-severi-
ty-zones
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Building on the strengths of earlier GIS-based wildfire assessments and addressing 
the clear research gap in multi-hazard modeling, this study develops a Fire Risk Index 
for the San Francisco Bay Area by integrating six spatial parameters identified as key 
drivers of wildfire susceptibility: Wildland-Urban Interface (WUI) zones, Fire Hazard 
Severity Zones, vegetation coverage, housing density, historical ignition point density, 
and road proximity to ignition sources. These layers were processed and standardized 
in QGIS to ensure comparability and were later combined into a single composite 
map that represents the spatial distribution of fire risk across the region. This index 
then serves as the foundation for linking wildfire susceptibility with seismic pipeline 
damage, enabling a detailed assessment of cascading hazard potential.

To establish how much each parameter contributes to overall fire risk, the study 
applied the Analytic Hierarchy Process (AHP) developed by Saaty (1987). AHP was 
chosen because it provides a structured way to transform literature-based evidence 
and expert judgment into numerical weights through pairwise comparisons. This 
approach is widely used in wildfire susceptibility studies due to its transparent and 
repeatable method for ranking multiple interacting factors (Adaktylou et al. 2020; 
Greene et al. 2011; Gigović et al. 2018).

7.1.1 Definition of the Parameters

The first step of the MCDA-AHP analysis was to define the goal of the model and 
identify the criteria that influence wildfire susceptibility in the Bay Area. The objective 
was to create a single wildfire risk map that represents the combined effect of several 
environmental and human-related factors. Six parameters were selected based on 
their relevance in wildfire research: Wildland-Urban Interface (WUI) zones, Fire Hazard 
Severity Zones (FHSZ), vegetation coverage, housing density, historical ignition density, 
and road proximity to ignition sources.

The datasets used for each parameter were collected from established and reliable 
sources, which are summarized in Table 1. After gathering the data, each parameter 
was processed in QGIS to ensure consistency across the entire study area. Because the 
datasets came in different formats and units, they were first converted into a raster 
format, allowing the landscape to be represented as a uniform grid of cells that can be 
compared directly across layers. Each raster was then normalized to a 1-5 scale, with 
the risks being classified as:

1 = Very Low
2 = Low
3 = Moderate
4 = High
5 = Very High

This normalization step ensures that all parameters contribute proportionally to the 
final model and prevents differences in measurement units from influencing the 
results. Once standardized, each parameter produced its own risk map, and these 
individual layers were later overlapped and combined using the AHP-derived weights 
to generate the final integrated wildfire risk map.
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7.1.1.1 Wildland-Urban Interface (WUI)

The wildland-urban interface (WUI) constitutes a zone of particular concern for 
wildfire risk, because it combines human ignition sources, built infrastructure, and 
combustible fuels. Research demonstrates that both interface zones (where structures 
meet wildland) and intermix zones (where structures and fuels intermingle) carry 
elevated risk compared to developed areas isolated from fuel (Taccaliti et al. 2023; Mell 
et al. 2010).

For that reason, WUI was selected as a parameter. The WUI map developed by 
Radeloff et al. (2018) was selected for this study, imported into QGIS and reclassified 
into three categories: non-WUI (areas beyond or separated from wildland fuel), 
interface WUI and intermix WUI. Recognizing that intermix zones typically present 
the greatest vulnerability (fires can ignite in vegetation and transition into structures, 
while structural fuels can also contribute to spread), values of 1, 3 and 5 were assigned 
respectively (see Figure 3), within the established 1-5 scoring framework, to map 
relative risk contributions. The choice of 1-3-5 (rather than a linear 1-2-3) reflects the 
need to preserve meaningful separation between low, moderate and high risk, and 
to maintain compatibility with other criteria in the composite overlay risk calculation.

In doing so, the WUI parameter is ensured to contribute appropriately to the overall 
fire-risk map, directing attention and resources toward those zones (especially intermix 
WUI) which, according to empirical studies, are at greatest risk of ignition, fire spread 
and built-environment damage (Taccaliti et al. 2023).

Figure 3 Intermix and interface WUI zones in the Bay Area.
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7.1.1.2 Fire Hazard Severity Zones (FHSZ)

Fire hazard severity zones were integrated into the fire risk model using official data 
from the California Department of Forestry and Fire Protection (CAL FIRE), which 
classifies all areas of the state into three risk categories: moderate, high, and very high. 
Using this dataset ensures consistency with state-level fire management and hazard 
assessment frameworks while providing a scientifically validated basis for further 
spatial analysis. The map was clipped to fit the Bay Area, focusing the assessment on 
the study region’s local geographic and environmental conditions.

To maintain consistency across all fire risk parameters, the CAL FIRE map was 
reclassified. The original three categories were aligned with values 3, 4, and 5. A buffer 
zone was created around the CAL FIRE severity zones to represent transitional areas 
with lower but still relevant exposure to wildfire hazard. This buffer was assigned a 
value of 2, acknowledging that fire risk does not decrease abruptly outside mapped 
hazard boundaries, as ignition and spread often extend beyond these zones (Chuvieco 
et al. 2014).

All remaining areas in the Bay Area not covered by either the official severity zones 
or the buffer were assigned the value 1. This ensures full spatial coverage while 
maintaining proportional differentiation of hazard across the study area. The resulting 
five-class map (see Figure 4) allows for finer granularity and comparability across 
parameters, which is consistent with established methodologies for multi-criteria fire 
risk mapping (Fiorucci et al. 2024).

Methodology

Figure 4 Fire Hazard Severity Zones in the Bay Area.
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7.1.1.3 Vegetation Coverage

Vegetation was selected as a core parameter due to its fundamental role in both 
the ignition and propagation of fires. Vegetation represents the primary source of 
combustible material within a landscape, directly influencing the likelihood, intensity, 
and spread of wildfires. Areas with higher proportions of vegetation, particularly those 
containing dry or continuous fuel loads, are more prone to ignition and sustain faster 
rates of fire spread once ignited.

The role of vegetation as a determinant of fire behavior has been extensively 
documented in wildfire ecology and risk modelling literature. Loudermilk et al. (2022) 
describe vegetation as not only the fuel for fires but also a structural element that 
shapes how fires behave across the landscape, influencing factors such as flame 
height, heat release, and rate of spread. Similarly, Thonicke et al. (2010) demonstrate 
through global vegetation-fire modelling that vegetation characteristics, including 
composition, structure, and continuity, are among the primary controls of fire dynamics 
and burned area extent. The composition and dryness of vegetation therefore have 
direct implications for the probability of ignition and the potential severity of a fire 
event.

Fires originating in vegetated areas behave differently from those in urban or built 
environments. In vegetated regions, the continuity of fuel allows fires to spread rapidly, 
driven by abundant biomass and the presence of ladder fuels that facilitate vertical 
fire movement. The presence of shrubs, grasslands, and forested areas contributes 
to higher heat release rates and broader spatial propagation compared to ignition in 
built-up areas, where fire spread is generally constrained by breaks in fuel continuity. 
According to Chuvieco et al. (2014), the spatial configuration of vegetation cover is one 
of the key determinants of wildfire propagation, as continuous vegetation provides 
the necessary connectivity for fire expansion across the landscape.

In this study, vegetation was incorporated as a quantitative variable expressed as the 
percentage of vegetation cover. Data were extracted from available census and land 
cover datasets, comprising categories such as forests, grasslands, and wetlands. This 
approach allowed for the spatial representation of fuel availability, providing a basis 
for comparison among regions with varying vegetation densities. Areas with higher 
vegetation percentages were assigned higher risk values, on a scale of 1 to 5, as they 
represent environments with greater combustible potential and, consequently, a 
higher probability of fire ignition and spread. The raw data used for classification of 
the vegetation patterns can be seen in Table 2.

Methodology

Figure 5 Vegetation coverage in the Bay Area.
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Table 2 Wildland vegetation cover and the hazard classes 
assigned to each range. Data refers to 2019 surveys.

Hazard Class Wildland vegetation in %

1 0 - 9.5

2 9.5 - 31.2

3 31.2 - 56.7

4 56.7 - 82.6

5 82.6 - 100
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7.1.1.4 Housing Density

Housing density was included because it influences both the likelihood of ignition 
and the vulnerability of people and structures during wildfire events. Areas with many 
homes have more human activity and more potential ignition sources, and they also 
contain larger populations and a greater number of buildings that may be threatened. 
High housing density therefore reflects elevated exposure for residents as well as a 
higher potential for loss of homes.

The relevance of this parameter is well established in wildfire research, especially in 
the Wildland Urban Interface (WUI), where residential areas directly border flammable 
vegetation. Homes in these zones are highly exposed to embers, radiant heat, and 
advancing flames (Radeloff et al. 2018; Cohen 2000). In California, continued growth 
within the WUI has substantially increased structure loss and risks to human life during 
wildfire events (Syphard et al. 2019).

Typical construction practices also add to the importance of this factor. Approximately 
90 to 94% of homes in the United States are built with light wood framing and drywall, 
which ignite easily and allow fire to spread once exposed to heat or embers. Wind-
driven embers can ignite structures far ahead of the flame front, and burning homes 
can ignite others nearby, especially in dense developments (Alexandre et al. 2016).

This map, like the others, was assigned values of risk between 1 and 5 in order to 
maintain continuity between datasets (see Figure 6). It is possible to see a clear pattern 
of urbanization in the areas in closest proximity to the San Francisco Bay, with housing 
density decreasing in areas where vegetation is most prevalent. Table 3 shows the 
original dataset of housing density (units/km2) in the Bay Area, 2020, before it was 
converted into hazard classes. The table also shows what hazard value each range was 
assigned to.

Methodology

Figure 6 Housing density in the Bay Area. The urban corridors are very obviously located around the Bay, be-

Methodology

Table 3 Housing density in the Bay Area and the hazard classes 
assigned to each range. Data refers to 2020 surveys.

Hazard Class Housing density (units/km2)

1 0 - 868

2 868 - 4014

3 4014 - 13217

4 13217 - 41291

5 41291 - 99649
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7.1.1.5 Ignition Density

Another fundamental parameter was the spatial distribution of historical ignition 
points. These represent the geographical locations where fires have been recorded in 
the past and therefore constitute a direct indicator of areas with demonstrated sus-
ceptibility to fire ignition (Costafreda-Aumedes et al. 2016). The ignition point dataset 
was imported into QGIS for spatial analysis and visualization. The first analytical step 
consisted of generating a kernel density heatmap, which converts discrete ignition 
points into a continuous surface representing ignition density. This process allows the 
identification of hotspots of fire activity, where ignition events are spatially clustered 
and thus indicate areas of heightened ignition likelihood. The heatmap was subse-
quently rasterized to ensure compatibility with other layers. However, because some 
areas contained no ignition points, portions of the Bay Area fell outside the resulting 
raster coverage. To maintain consistency across layers, all of which must share the 
same spatial extent to allow accurate calculation of summed raster values, these gaps 
were filled with cells assigned a value of 0. This preserves the ability to overlay the 
heatmap with the other datasets while ensuring that the added cells do not influence 
the final analysis, as they represent a separate, non-impactful class.

Using historical ignition data as a primary fire-risk criterion is well established in the 
literature. Historical ignitions have been demonstrated to be strong predictors of fu-
ture fire occurrence, since they capture the combined effect of environmental, cli-
matic, and human factors influencing fire likelihood over time (Chuvieco et al. 2014). 
Furthermore, kernel density estimation (KDE) has been widely adopted in wildfire risk 
mapping as an effective means of transforming point occurrences into continuous 
probability surfaces that facilitate spatial modeling and comparison (Guo et al. 2024; 
Oliveira et al. 2016). By rasterizing this layer, the analysis ensured methodological con-
sistency among all datasets and allowed for weighted overlay analysis in subsequent 
steps.

Methodology

Figure 7 Historical ignition 
point data. Sourced from 

Short (2014).  Data shown be-
fore being transformed into a 
heatmap. The large amount 

of points makes compre-
hension difficult, therefore, a 
close-up of the San Francisco 

County is provided in order 
to add perspective to the 

dataset.

Figure 9 Ignition density in the Bay Area.

Methodology

Figure 8 Initial ignition density pattern. It 
is possible to see how the county of Sola-

no has large sparse areas of no data. That 
region was assigned a value of 0 so the map 
could have the same resolution and spatial 
boundaries as the others, ensuring a proper 

overlay later on in the analysis.
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7.1.1.6 Road Proximity to Ignition Sources

The road network was also chosen as a key parameter due to its strong association 
with human-caused ignitions and its critical role in both the onset and management 
of wildfires. Roads represent one of the most influential forms of human infrastructure 
in relation to ignition probability, particularly where they intersect vegetated or 
non-urbanized areas. Numerous studies have demonstrated that wildfires are 
disproportionately ignited near roads, primarily as a result of human activities such as 
smoking, mechanical sparks, and vehicle malfunctions (Ricotta et al. 2018; Narayanaraj 
and Wimberly 2012). These anthropogenic causes are especially frequent along 
highways and rural routes that traverse or border natural landscapes, where fuel 
continuity allows small ignition sources to develop into larger fires.

Beyond direct human influence, roads modify their surrounding environment 
by increasing sunlight exposure and wind flow along roadside edges, which can 
reduce fuel moisture and promote ignition (Ricotta et al. 2018). Moreover, the close 
spatial relationship between major roads and other critical infrastructure, such as 
gas transmission lines, can amplify the consequences of potential ignitions through 
cascading failures or explosions.

In this study, a buffer of 200 meters was applied to each road segment to capture the 
adjacent vegetated zones likely affected by road-related ignition risks. These buffered 
zones were intersected with historical ignition point data from the Bay Area to quantify 
the relationship between roads and fire occurrences. Roads that overlapped with 
one or more ignition points were classified on a five-level risk scale, where a higher 
number of intersections indicated greater risk. This approach follows evidence from 
fire science literature showing that ignition likelihood decreases exponentially with 
distance from roads. The cells that fell outside the scope of the roads were assigned a 
value of 0 so as to not interfere with the final product of the overlapped layers.

Methodology

Figure 10 Road Network 
in the Bay Area. The lines 

representing the streets and 
highways form clusters diffi-
cult to visualize, therefore, a 
close-up of the San Francis-
co county was drawn to help 

understand the dynamics 
of transportation systems in 

the region.

Figure 12 Road Proximity to Ignition Sources in the Bay Area.

Methodology

Figure 11 Road network intersected with 
ignition sources. Streets were buffered 
and overlapped with historical ignition 
points. This created a map where the 

roads were classified by how many times 
each segment overlapped with different 
ignition points. Because this data left a 
big gap in area not covered by the net-
work (seen as white in the map), it was 

necessary to manually add a value to all 
“no data” pixels within the boundary used 
for the analysis. The value assigned was 0, 
so as to not interfere with actual relevant 

spatial data during the multi-hazard 
analysis performed later in the study. 

Figure 12 shows all classes (1-5) alongside 
the 0 class.

44 45



Methodology

7.1.2 Construction of the Pairwise Comparison Matrix

A pairwise comparison matrix A = [aij] was constructed to assess the relative importance 
of each parameter with respect to the main goal (see Table 5). Each element aij 
represents the importance of factor i compared to factor j, with reciprocal relationships 
defined as aji = 1/aij. The scale proposed by Saaty (1990) was used to assign comparative 
values between 1 and 9, where 1 denotes equal importance and 9 denotes extreme 
importance of one parameter over another. Saaty’s Fundamental Scale, where these 
values are explained, can be seen in Table 4.

Table 4 Saaty’s Fundamental Scale. Adapted from Saaty (1990).

In this study, the WUI zones and Fire Hazard Severity Zones were assigned the highest 
relative importance, as these represent areas of both high fuel availability and high 
human exposure. The next most important parameter was Vegetation Coverage, 
followed by Housing Density, Ignition Density, and Road Proximity to Ignition Sources, 
which exert secondary but still relevant influence on fire dynamics.

Table 5 The final 6×6 pairwise comparison matrix A. Constructed based on the 
author’s judgments, forming the foundation for weight calculation. The recipro-

cal structure of the matrix ensured internal consistency and symmetry.

7.1.3 Derivation of Weights

After constructing the pairwise comparison matrix, the next step involved the 
calculation of the relative weights of each criterion, which represent their proportional 
contribution to the overall wildfire risk. The process followed the normalization and 
averaging method proposed by Saaty (1987).

First, the sum of each column of the pairwise comparison matrix was calculated. Then, 

every element in each column (aij) was divided by the total of its respective column. 
This operation normalizes the data and produces a new normalized matrix (N), shown 
in Table 6, ensuring that the sum of each column equals 1:

Table 6 Normalized matrix N.

Once the matrix was normalized, each row of this new matrix was averaged to obtain 
the weight vector (w), which expresses the mean relative importance of each factor 
across all comparisons:

The resulting vector w = [w1, w2, …, wn] contains the normalized weights of the criteria, 
where the sum of all weights equals 1.

Table 7 Weight vector w. The two highest weights (WUI and FHSZ) reflect the predominance of 
these factors in determining fire susceptibility. Vegetation and housing density also play rele-

vant roles, followed by historical ignition points and road proximity to past ignition sources.

To verify the consistency of the matrix and to prepare for the subsequent step, the 
original comparison matrix (A) was then multiplied by the weight vector (w) to obtain 
the product vector Aw:
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Each resulting element of Aw represents a weighted sum of the judgments for each 
parameter.

Subsequently, each element of the vector Aw was divided by the corresponding 
element of the weight vector (w) to obtain a set of ƛi values:

This operation yields one eigenvalue (ƛi) per parameter. In this case, there are six 
resulting values corresponding to the six selected factors, as seen in Table 8.

Table 8 All eigenvalues computed.

The maximum eigenvalue (ƛmax) was then estimated as the average of these six 
eigenvalues, calculated with the formula:

Given that n = 6, the computation produced a result of ƛmax = 6.305.

7.1.4 Consistency Verification

To ensure that the pairwise comparisons were logically coherent, the Consistency 
Index (CI) and Consistency Ratio (CR) were calculated using the principal eigenvalue 
ƛmax. The formulas proposed by Saaty (1987) are:

where n is the number of parameters used and RI is the random index for a matrix of 
that order. In this case, n = 6. The RI values, as proposed by Saaty (1987), are as follows:

Table 9 Random Consistency Index adapted from Saaty (1987).

Methodology

The maximum eigenvalue obtained was ƛmax = 6.305, leading to:

The resulting Consistency Ratio (CR = 0.049) is well below the accepted threshold of 
0.10, indicating that the matrix judgments are highly consistent and no adjustments 
were necessary.

7.1.5 Weighted Linear Combination (WLC)

After the weights were validated, they were applied to the standardized raster layers 
of each criterion to compute the Fire Risk Index (FRI) through a weighted linear com-
bination model. The general equation used was:

where wi is the weight of each criterion and Xi is the normalized spatial layer. The 
equation computed into the QGIS Raster Calculator was as follows:

Each raster was multiplied by its corresponding weight and then summed to generate 
the continuous fire risk surface. The results can be seen in Figure 13. The outcome 
was validated by overlapping the Fire Risk Index map with historical fire perimeters 
in the Bay Area, creating a new output where it is possible to see a strong correlation 
between the moderate to very high categories and the areas burned in previous fires. 
Figure 14 shows these results.
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Figure 13 Fire Risk Index in the Bay Area.
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Figure 14 Fire Risk Index validated by historical fire perimeters.
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7.2 OpenSRA

OpenSRA is an open-source software tool designed to provide a more quantitative 
and transparent understanding of how natural gas infrastructure behaves during 
earthquakes in California. Its development responds to a long-standing issue in utility 
risk assessment, where many existing approaches rely on subjective scoring systems 
that do not fully represent the uncertainties or the physical fragility of pipelines and 
storage systems (Largent et al. 2023). By integrating updated scientific models of 
earthquake occurrence, ground deformation, and infrastructure response within 
the Performance-Based Earthquake Engineering (PBEE) framework, developed by 
the Pacific Earthquake Engineering Research Center (PEER), OpenSRA offers a more 
rigorous and reproducible basis for evaluating seismic risk. The tool was developed 
through a collaboration among UC Berkeley, Lawrence Berkeley National Laboratory, 
UC San Diego, the University of Nevada Reno, the NHERI SimCenter, and Slate 
Geotechnical Consultants, with support from the California Energy Commission 
(Largent et al. 2024).

A fundamental part of OpenSRA is its representation of the earthquake environment 
in California. The tool relies on the Uniform California Earthquake Rupture Forecast 
Version 3 (UCERF3), the official long-term earthquake probability model for the state. 
UCERF3 synthesizes data from geology, GPS-based crustal deformation, paleoseismic 
trench records, and historical seismicity to estimate the likelihood of earthquakes across 
a wide range of magnitudes (Field et al. 2014; USGS Fact Sheet 2015-3009 2015). One 
notable advancement in UCERF3 is its allowance for multi-fault ruptures, which better 
reflect the cascading nature of real earthquake events. As a result, UCERF3 anticipates 
fewer small isolated events and a greater prevalence of large, multi-segment ruptures 
capable of producing strong, widespread shaking (USGS Fact Sheet 2015-3009 2015). 
With probabilities exceeding 99% for at least one magnitude 6.7 or greater earthquake 
within the next 30 years, and a 7% probability of a magnitude 8 event, UCERF3 
underscores the need for detailed seismic risk assessments of gas transmission 
infrastructure, particularly in regions where these systems intersect with elevated fire 
hazards (USGS Fact Sheet 2008-3027 2008). In this research, UCERF3 serves as the 
seismic input to OpenSRA, ensuring that the earthquake scenarios considered reflect 
realistic conditions in the Bay Area. A sample of the UCERF3 input parameters can be 
seen in Table 10. Rupture traces produced by the software, alongside seismic hazard 
zones determined by USGS, are represented in Figure 16.

Within OpenSRA, UCERF3 is implemented through probabilistic seismic hazard 
analysis (PSHA), combining rupture forecasts with NGA-West2 ground-motion 
prediction equations to estimate shaking intensities at specific locations (Largent et 
al. 2023). The resulting intensity measures (IMs), including peak ground acceleration, 
form the first layer of input into the PBEE workflow. The PBEE framework then 
links these IMs to engineering demand parameters (EDPs), which describe how the 
ground responds to shaking. For this research, liquefaction-induced settlements and 
earthquake-triggered landslides were selected as the ground deformation parameters 
of interest. This choice reflects both their strong influence on buried pipeline behavior 
and their clear relevance in the Bay Area, where diverse geological conditions, young 
sedimentary deposits, and steep terrain create susceptibility to both phenomena. 
Liquefaction and landslides therefore provide a meaningful basis for analyzing how 
seismic ground failure may compromise gas infrastructure.

These EDPs feed into the next PBEE stage, in which OpenSRA translates ground 
deformation into damage measures (DMs) for the pipeline segments. The DMs 
modeled include tensile and compressive strains, which correspond to the primary 
pipeline failure modes: tensile leakage, tensile rupture, and compressive rupture. 
These relationships are defined by fragility functions developed from advanced finite 
element analyses and laboratory testing, enabling OpenSRA to estimate how various 
levels of ground deformation may generate physical damage in buried steel pipelines 
(Watson-Lamprey et al. 2022).

The final PBEE step expresses these results as decision variables (DVs), most notably 
the annual rate of exceedance for each failure mode. An annual rate of 0.01, for 
example, would imply a roughly 1% chance of the failure occurring in any given year, 
or approximately a 10% chance over a decade. The PBEE framework described here 
can be visualized in Figure 17.

This research relies on OpenSRA as the main tool for evaluating seismic risk, and 
while the software can be used to model any natural gas network, its application here 
is tailored to the specific characteristics of the Bay Area case study. The region, as 
previously discussed, offers a compelling context for examining compounding seismic–
fire hazards. In this thesis, the software is applied to PG&E’s Bay Area gas transmission 
system, using pipeline data provided by the utility to the software’s development team 
and subsequently made available for this study. The modeled transmission network is 
shown in Figure 15. Distribution pipelines were not considered, as their data was not 
made available due to security reasons.

OpenSRA is of particular value because it produces spatially explicit results that 
can be readily merged with other hazard datasets; its GIS-based outputs make it 
straightforward to evaluate seismic effects alongside additional spatial information. 
This capability is especially important in the Bay Area, where the combination of 
complex geology, steep terrain, and dense development creates conditions in which 
earthquake-induced pipeline damage may coincide with elevated fire potential. Such 
interactions between seismic ground failure, pipeline performance, and fire hazards 
remain understudied, and this thesis therefore contributes to ongoing research by 
examining how these processes intersect and collectively influence the vulnerability 
of natural gas transmission infrastructure.

The findings of this research can offer valuable insights for utilities and governing bodies 
in the Bay Area, helping to inform infrastructure planning, emergency response, and 
long-term risk mitigation. However, these results should be interpreted carefully, as the 
region’s hazard environment and infrastructure configuration are unique. Because 
compound hazards are highly place-specific, the outcomes presented here cannot 
be assumed to apply directly to other regions with different geological, climatic, or 
operational contexts. Even so, this work illustrates how OpenSRA can be used beyond 
this case study, providing utilities nationwide with a flexible and rigorous PBEE-based 
framework for assessing the seismic vulnerability of their own gas networks.
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Figure 16 UCERF3 modelled rupture traces and USGS mapped seismic hazard zones.Figure 15 PG&E gas transmission network in the Bay Area.
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Table 10 Sample UCERF3 input parameters.

List of components, locations, and characteristics

Apply the PEER risk methodology to each component

Characterize seismic 
demand:

, PGA

Assess geohazard 
consequences:

Liquefaction, 
landslide, 

fault rupture 
deformation

Assess damage:

Pipe strain

Assess losses:

Probability of rupture 
and leakage

IM EDP DM DV

Aggregate losses over all seismic scenarios

λ

Figure 17 PEER risk methodology framework applied to underground pipelines. Adapted from (Largent et al. 
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Table 11 Liquefaction OpenSRA framework inputs.

Findings from the analysis illustrate how the modeled failure mechanisms manifest 
across the Bay Area pipeline network. Liquefaction-induced damage was represented 
through the mean annual rate of failure calculated for each pipe segment under both 
compressive and tensile strain conditions. The model predicted occurrences of tensile 
rupture and tensile leakage, whereas no instances of compressive rupture were 
observed. For consistency with the fire hazard results, which already employed a 1 to 5 
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7.2.1 Liquefaction Induced Settlements

Liquefaction-induced settlement is a critical geotechnical hazard that can strongly 
affect the performance of buried infrastructure such as natural gas pipelines. During 
strong ground shaking, loose and saturated sandy soils may temporarily lose their 
strength as excess pore water pressures rise, causing the soil to behave like a fluid (Seed 
and Idriss 1970; Kramer 1996). When the shaking stops and pore pressures dissipate, 
the soil contracts into a denser state, producing permanent settlement and often 
uneven downward movement across short distances (Ishihara 1993). Such differential 
settlement can impose significant strains on pipelines that rely on consistent support 
along their length.

This hazard is especially relevant in regions like the San Francisco Bay Area, where many 
urban districts are built on young fill and estuarine deposits that are highly susceptible 
to liquefaction (Holzer et al. 2002). Historic events, most notably the 1989 Loma Prieta 
earthquake, illustrated how liquefaction-related settlement and lateral spreading can 
damage buildings, pavement, and underground utilities, including gas pipelines that 
contributed to post-earthquake fires (Hamada and O’Rourke 1992). Because pipelines 
are long, continuous structures, uneven settlement can induce tensile and compressive 
stresses that exceed design tolerances, leading to joint separation, buckling, rupture, 
or leakage (O’Rourke and Liu 1999). Gas leakage in densely populated environments 
can escalate into fire hazards, especially when combined with other lifeline failures 
such as disrupted water supply (Kiremidjian et al. 2007; O’Rourke 2003).

To analyze potential liquefaction-induced damage to gas pipelines in the Bay area, 
certain input models were chosen in OpenSRA. They are summarized in Table 11.

risk scale, the liquefaction numerical outputs were classified into five damage classes. 
The mean annual failure rates associated with each failure mode, and their respective 
classes, are summarized in Table 12.

The OpenSRA damage outputs can be visualized by pipeline segment within the 
software and exported as vector GIS layers. To develop maps suitable for integration 
with the Fire Risk Index produced in Section 7.1 (see Figure 13), the exported pipeline 
damage layers were rasterized in QGIS so that they matched the pixel resolution of 
the fire map. The vector data for pipeline damage was processed in three separate 
iterations: one for compressive rupture, one for tensile rupture, and one for tensile 
leakage. Each resulting raster was then assigned a risk value ranging from 1 to 5. Tensile 
rupture and tensile leakage layers were classified according to this scale (see Figures 
19 and 20), while the compressive rupture raster was assigned a value of 0, reflecting 
the absence of this failure mode in the liquefaction results and ensuring it would not 
influence the aggregated damage analysis (see Figure 18).

To generate a comprehensive representation of total liquefaction-related pipeline risk, 
the compressive-rupture, tensile-rupture, and tensile-leakage rasters were combined 
by summing their pixel values and subsequently normalizing the output back to a 1-5 
scale. The resulting hazard map indicates that liquefaction-related damage potential 
is highest in flat, low-lying regions, particularly along the margins of the Bay and 
throughout the inland corridor between San José and Gilroy, where loose, saturated 
soils are prevalent (see Figure 22).

A validation of these results was conducted by overlaying mapped liquefaction-prone 
zones onto the outputs. This comparison revealed a strong spatial correspondence 
between susceptible soils and the locations where pipeline damage was predicted, 
reinforcing the known association between liquefaction hazards and flatter 
geomorphic settings (see Figure 23).

A detailed interpretation of these maps, alongside a thorough explanation for the 
failure modes, is provided in Section 8.2

Table 12 Liquefaction mean annual rate. Values were classified on a 1 to 5 
scale.

Liquefaction Mean Annual Rate of Failure

Normalized Compressive 
Rupture Tensile Rupture Tensile Leakage

1 0 0.000049 - 0.000093 0.000678 - 0.001104

2 0 0.000093 - 0.000133 0.001104 - 0.001311

3 0 0.000133 - 0.000239 0.001311 - 0.001525

4 0 0.000239 - 0.000567 0.001525 - 0.001953

5 0 0.000567 - 0.000948 0.001953 - 0.002826

Input

Infrastructure PG&E Gas Transmission Pipeline Network

Decision Variable

Pipe Compressive Rupture

Pipe Tensile Rupture

Pipe Tensile Leakage

Damage Measure Settlement Induced Pipe Strain

Engineering Demand 
Parameter

Liquefaction

Liquefaction Induced Settlement

Intensity Measure
UCERF3

NGA-West2
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Figure 18 Liquefaction-induced compressive rupture. Figure 19 Liquefaction-induced tensile rupture.
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Figure 20 Liquefaction-induced tensile leakage.
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Figure 21 Total liquefaction risk.
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Figure 22 Total liquefaction risk close-up in Santa Clara county.
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Figure 23 Total liquefaction risk validated using USGS liquefaction prone zones survey data. Figure 24 Total liquefaction risk close-up in Santa Clara county validation. Validated using USGS liquefaction 
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7.2.2 Landslides

Earthquake-induced landslides represent another significant secondary hazard 
that can disrupt natural gas pipeline systems. Strong shaking can destabilize slopes 
by reducing soil strength, increasing pore water pressures, or generating inertial 
forces that overcome a slope’s resistance (Keefer 1984; Kramer 1996). Resulting slope 
failures may range from shallow slips and debris flows to deep-seated landslides, 
often producing ground displacements that far exceed those caused by shaking 
or liquefaction alone (Jibson 1993). Because many transmission pipelines cross hilly 
terrain, engineered embankments, and coastal bluffs, landslide susceptibility plays a 
crucial role in determining their seismic vulnerability.

In the San Francisco Bay Area, steep hills, heterogeneous geology, and high seismicity 
contribute to widespread landslide potential. Past earthquakes along the San Andreas 
and Hayward faults have triggered extensive slope failures across both natural and 
developed terrain. Weak and weathered geological formations, combined with seasonal 
saturation, heighten this vulnerability. Pipelines crossing such slopes may experience 
bending, stretching, or compressive forces as ground masses move downslope, 
potentially causing buckling, rupture, or joint pullout (Hamada and O’Rourke 1992). 
Landslide-induced ruptures also raise the possibility of gas leakage and ignition, as 
observed during past earthquakes such as the 1995 Kobe event (Nishida et al. 2024). 
Furthermore, landslides may block access routes, delay repairs, and damage other 
lifelines, creating further compounding failures that complicate emergency response 
(O’Rourke 2003).

To analyze the potential landslide-induced damage to gas pipelines in the Bay Area, 
the input parameters described in Table 13 were chosen.

Table 13 Landslides OpenSRA inputs framework.

Methodology

Input

Infrastructure PG&E Gas Transmission Pipeline Network

Decision Variable

Pipe Compressive Rupture

Pipe Tensile Rupture

Pipe Tensile Leakage

Damage Measure Landslide Induced Pipe Strain

Engineering Demand 
Parameter Landslide

Intensity Measure
UCERF3

NGA-West2

The results of the analysis performed using OpenSRA illustrate the distinct spatial 
and mechanical behavior of landslide hazards compared to liquefaction. Like the 
liquefaction analysis, the landslide analysis resulted in mean annual rate of failure 
values for each pipe segment under compressive and tensile strain, the results of 
which can be seen in Table 14. In the landslide simulations, compressive rupture was 
the only damage mode present, while tensile rupture and tensile leakage did not 
occur. This is due to the way soil behaves under landslide and liquefaction scenarios. 
This difference in behavior is explained in section 8.2 The values have been assigned 1 
to 5 hazard classes like those employed in the liquefaction analysis.

Since tensile strain damage is non-existent, both rasters were assigned values of 0. 
This means the total landslide damage map is identical to the compressive-rupture 
map, since no other damage modes contributed to the combined score.

The results were validated comparing mapped landslide-prone zones with the raster 
output. This comparison, like liquefaction, revealed a solid spatial correspondence 
between soils susceptible to landslides and the locations where pipeline damage was 
predicted, reinforcing the known association between landslide hazards and sloped 
terrains (see Figures 29 and 30).

A detailed interpretation of these maps, alongside a thorough explanation for the 
failure modes, is provided in Section 8.2.

Methodology

Landslides Mean Annual Rate of Failure

Normalized Compressive Rupture Tensile Rupture Tensile Leakage

1 0.000000 - 0.000797 0 0

2 0.000797 - 0.002280 0 0

3 0.002280 - 0.003809 0 0

4 0.003809 - 0.006060 0 0

5 0.006060 - 0.012781 0 0

Table 14 Landslides mean annual rate. Values were classified on a 1 to 5 scale.
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Figure 25 Landslides-induced compressive rupture.
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Figure 26 Landslides-induced tensile rupture.
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Figure 27 Landslides-induced tensile leakage.
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Figure 28 Total landslide risk. Figure 29 Total landslide risk close-up in Contra Costa county. Validated using USGS landslides prone zones 
survey data.
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Figure 30 Total landslide risk validated using USGS landslide prone zones survey data. Figure 31 Total landslide risk close-up in Contra Costa county validation. Validated using USGS landslide prone 
zones survey data.
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7.3 Compound Hazard Analysis

The results presented in this section build directly on the datasets and procedures 
developed in sections 6.1 and 6.2. After constructing a fire risk index map and two 
seismic-induced damage vulnerability maps for the Bay Area transmission pipeline 
network, these outputs were further examined to understand their potential compound 
effects. Because earthquake-related pipeline fragility and fire potential do not occur in 
isolation, a combined analysis was required to determine how these hazards interact 
spatially and to identify the pipeline segments most exposed to multiple risk factors 
simultaneously.

To achieve this, three different analytical methods chosen by the author were applied, 
each offering a distinct lens through which to interpret the relationship between 
the two hazard surfaces. The objective was not only to compare the spatial patterns 
produced by each method but also to evaluate which approach most effectively 
supports the broader goal of identifying pipeline segments subject to high, moderate, 
or low levels of combined hazard. This multi-method structure is essential given the 
critical role of gas transmission pipelines: they represent an infrastructure system 
fundamental to the functioning of daily life, yet one that also poses significant danger 
when exposed to compounding natural hazards. By clarifying the conditions under 
which these pipelines are at elevated risk of failure, the analysis contributes to the 
development of a maintenance and replacement framework that can assist utility 
operators in prioritizing interventions. Such insights help promote both operational 
awareness within gas companies and broader public safety efforts aimed at protecting 
human life and the environment.

The three analytical methods employed were the additive hazard index, the matrix 
hazard index, and the binary hazard index, names coined by the author and based 
on reasoning, according to the different results the research aimed to achieve. The 
additive index is the most straightforward and visually intuitive, but its simplicity can 
lead to potential misrepresentation because it collapses different hazard combinations 
into identical values. The matrix index provides the most comprehensive perspective 
for the purposes of this thesis: it retains the distinct contributions of both fire risk 
and pipeline vulnerability and thus allows for a more nuanced interpretation of their 
interaction. The binary index, in contrast, offers a targeted view of the most severe 
overlapping conditions and is particularly useful for identifying top-priority areas in 
emergency response or rapid decision-making contexts.

Together, these three methods form the basis of the results presented in this section, 
allowing for a detailed examination of how compound hazards affect the Bay Area’s 
transmission pipeline system and offering crucial insights into where the network 
may require increased maintenance, reinforcement, or modernization.

Method 1: Additive Hazard Index

To generate a continuous estimate of earthquake-induced pipeline hazard that 
integrates both structural fragility and fire potential, an additive hazard index was 
calculated by combining the two normalized raster layers (each classified on a 1-5 
scale). This approach assumes that both dimensions, earthquake-induced pipeline 
damage potential and fire hazard, contribute jointly and approximately equally to the 
overall hazard environment. Let P denote the pipeline damage class and F the fire 

Methodology

potential class for a given pixel; the combined hazard score H is therefore defined as:

This formulation produces values ranging from 2 (minimum combined hazard: 1 + 1) 
to 10 (maximum: 5 + 5) and preserves the ordinal meaning of the input classes while 
creating a smooth, continuous surface of combined hazard intensity across the study 
area.

To make the comparison with other components of the analysis easier, the additive 
index Ha was normalized back to a 1-5 scale using a linear transformation:

The resulting normalized index was then grouped into five hazard intensity classes 
reflecting very low to very high combined hazard. These classes maintain approximate 
equality while retaining ordinal separation, allowing for intuitive visualization and 
interpretation. The results can be seen in Table 15.

Table 15 Additive risk reclassification ranges.

The principal strength of the additive method lies in its simplicity and transparency: 
the formulation is intuitive, easily reproducible, and straightforward to communicate 
to both technical and nontechnical audiences. The additive score directly increases 
when either pipeline fragility or fire potential rises, ensuring that higher individual risk 
levels appropriately contribute to higher joint hazard estimates. Additionally, because 
the method produces a continuous surface, it captures gradual spatial transitions that 
may be overlooked by more categorical approaches, making it an effective tool for 
broad regional screening.

However, the additive method also exhibits notable limitations. By assigning equal 
weight to pipeline fragility and fire potential, it implicitly assumes that both factors 
contribute symmetrically to overall hazard, an assumption that may not fully align 
with real-world dynamics or operational priorities. Furthermore, the method does not 
distinguish between different combinations of values that yield the same total, even 
though the underlying hazard implications of these scenarios may differ substantially. 
As a result, extreme values in one factor can mask moderate contributions in the 
other, potentially obscuring important nuances in joint hazard patterns. Despite these 
constraints, the additive index remains useful as an initial, high-level representation of 
overall earthquake-fire hazard across the Bay Area.
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Hazard Class Threshold (H)

5 H ≥ 4.2

4 3.4 ≤ H < 4.19

3 2.6 ≤ H < 3.39

2 1.8 ≤ H < 2.59

1 H < 1.8
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Figure 32 Additive liquefaction risk.
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Figure 33 Additive landslides risk.
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Method 2: Matrix Hazard Index

Method 2 employs a joint hazard matrix to characterize the interaction between 
earthquake-induced pipeline fragility and fire potential at a given pixel level. This 
approach preserves the full set of possible combinations between the two input rasters 
(both classified on a 1-5 scale) while allowing a direct interpretation of how these two 
hazards overlap spatially. Each pixel is assigned a two-digit code ranging from 11 to 55, 
where the first digit corresponds to the pipeline fragility class Pand the second digit 
corresponds to the fire potential class F. As an example, a pixel coded as 55 indicates 
the simultaneous presence of the highest pipeline fragility and highest fire potential, 
whereas a value of 11 reflects minimal hazard in both dimensions.

To facilitate quantitative comparison and visualization, the matrix values were further 
transformed into a joint hazard score. The two digits were first separated into their 
individual components, and a combined score was calculated as the arithmetic mean:

This formulation retains the independence and interpretability of the original hazard 
components while generating a continuous measure of combined hazard on a 1-5 
scale. The resulting values were then grouped into five classes representing very 
low, low, moderate, high, and very high joint hazard conditions. In this classification 
scheme, pixels with H ≥ 4.5 were assigned to the Very High class, while those with 
H < 2.0 were assigned to the Very Low class, with intermediate classes defined 
using equidistant thresholds (see Table 16). Each of the 25 matrix codes (11-55) was 
subsequently reclassified into one of these five hazard categories according to its 
computed value of H (see Table 17). This direct mapping ensures that no information 
is lost in the transition from the matrix representation to the final hazard layer.

Table 16 Matrix risk reclassification ranges.

The matrix method provides several important advantages. Its principal strength lies in 
its ability to preserve the full structure of the two-dimensional hazard space, allowing 
combinations of pipeline fragility and fire potential to be examined explicitly rather 
than collapsed prematurely into a single continuous score. This makes the method 
particularly effective for interpreting the joint behavior of hazards; combinations such 

Methodology

Table 17 Matrix values classified by risk.

as high pipeline fragility with moderate fire potential, or moderate pipeline fragility 
with high fire potential, remain distinguishable and can be analyzed in detail. The 
method also offers strong interpretability, as the two-digit codes transparently reflect 
the underlying hazard components and their contributions to the final classification. 
This interpretability is valuable for communicating results to stakeholders and for 
understanding the drivers of high-hazard outcomes.

Despite its clarity and flexibility, the matrix method also introduces certain limitations. 
The discrete nature of the matrix codes can produce a map with many classes, some 
of which may occur infrequently, resulting in visual complexity and potential difficulty 
in discerning broader spatial patterns. The method also requires an additional step 
of reclassification to convert the matrix codes into a more manageable number of 
hazard categories, and the choice of classification thresholds introduces some degree 
of subjectivity. While the arithmetic mean provides a balanced way to integrate both 
hazard components, it implicitly applies equal weighting, which may not always 
reflect operational priorities or physical processes. Furthermore, although the matrix 
captures all combinations, it does not inherently quantify the relative severity of 
different pairings without the additional step of reclassification.
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Hazard Class Threshold (H)

5 H ≥ 4.5

4 4.0 ≤ H < 4.5

3 3.0 ≤ H < 4.0

2 2.0 ≤ H < 3.0

1 H < 2.o

Hazard Class Matrix Values (P, F)

5 45, 54, 55

4 35, 44, 53

3 15, 24, 25, 33, 42, 43, 51, 52

2 13, 14, 22, 23, 31, 32, 41

1 11, 12, 21 
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Figure 34 Matrix liquefaction risk.
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Figure 35 Matrix landslides risk.
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Method 3: Binary Hazard Index

Whereas Methods 1 and 2 focus on continuous gradations in hazard conditions, Method 
3 aims to identify only those areas where earthquake-induced pipeline fragility and 
fire potential simultaneously reach high levels. This binary hotspot detection approach 
isolates the most severe co-occurrences of risk factors and is therefore particularly 
relevant for emergency management, hazard mitigation policy, and targeted 
maintenance interventions. The method classifies a pixel as a high-risk hotspot if both 
the pipeline fragility class P and the fire potential class F meet or exceed 4. Formally, 
the hotspot score Hh is defined as:

The resulting raster is strictly binary, distinguishing only between critical overlap 
zones (value 1) and all other areas (value 0). To assess the sensitivity of the hotspot 
classification to the chosen threshold, a supplementary evaluation was conducted 
using a relaxed threshold of P ≥ 3 and F ≥ 3, enabling an examination of how the spatial 
distribution of hotspots responds to broader inclusion criteria.

Methodology Methodology

The hotspot approach offers a clear advantage in its interpretability and operational 
clarity. By presenting only the most severe joint hazard conditions, the method 
effectively highlights locations where immediate action, inspection, or reinforcement 
may be warranted. This clarity makes the hotspot map particularly useful for decision-
makers who require rapid identification of priority areas without the complexity of 
gradient-based models. The method is also stringent in its identification of severe 
co-occurrence, ensuring that only genuinely high-risk conditions are highlighted and 
that moderate-risk areas do not dilute the analysis.

Nevertheless, the strengths of the hotspot method are accompanied by important 
limitations. Because the classification depends entirely on a predefined threshold, 
results can vary substantially depending on whether the cutoff is set at ≥ 4, ≥ 3, or 
some other value, introducing an element of subjectivity into the analysis. The binary 
nature of the output also leads to a significant loss of information, as all non-hotspot 
areas are treated uniformly even when they differ substantially in their underlying risk 
composition. Transitional zones that may still pose meaningful hazard, such as areas 
with high pipeline fragility but only moderate fire potential, are excluded entirely from 
the hotspot category, which may underrepresent their significance in a broader risk 
management context. Consequently, the hotspot approach is best interpreted as a 
complementary decision-support layer rather than a full replacement for continuous 
hazard models.
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+ 0.026[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] 

𝐻𝐻𝑎𝑎 = 𝑃𝑃 + 𝐹𝐹 

𝐻𝐻𝑎𝑎,𝑛𝑛 = 1 + (𝐻𝐻𝑎𝑎 − 2)
(10 − 2) × 4 

𝐻𝐻 = 𝑃𝑃 + 𝐹𝐹
2  

𝐻𝐻ℎ = {1, if 𝑃𝑃 ≥ 4 and 𝐹𝐹 ≥ 4
0, otherwise  
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Figure 36 Binary liquefaction risk. Figure 37 Binary liquefaction risk close-up.
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Figure 38 Binary landslides risk. Figure 39 Binary landslides risk close up.
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8. RESULTS AND 
DISCUSSION

8.1 Wildfire Hazard

The fire risk map for the San Francisco Bay Area (see Figure 13) illustrates a distinct 
spatial structure in wildfire susceptibility, shaped primarily by topography, vegetation 
distribution, and the degree of urbanization. The lowest risk zones, shown in yellow, 
are concentrated in the region’s most urbanized, flat, and heavily modified landscapes, 
while the highest risk zones, shown in dark orange and red, dominate the vegetated 
uplands and mountainous areas.

San Francisco County stands out clearly as the area with the smallest overall fire 
risk. As one of the most densely populated counties in the United States, it contains 
minimal natural vegetation and virtually no Wildland-Urban Interface (WUI) zones. 
Its built landscape, coastal setting, and lack of extensive fuel beds produce a nearly 
continuous swath of low-risk classification, making it the least susceptible county in 
the region to fire activity.

Along the bayshore, a consistent pattern emerges across San Mateo, Santa Clara, 
and Alameda Counties. Each shows a broad corridor of low fire risk adjacent to the 
shoreline, reflecting the flat terrain, absence of steep slopes, and fragmented or 
urbanized land covers in these areas. Moving inland, fire risk increases progressively as 
these counties transition into hillier terrain. Here, the landscape shifts toward denser 
vegetation, stronger fuel continuity, and more extensive WUI zones, creating the 
conditions associated with medium to very high risk. Santa Clara County is the main 
exception to the general bayshore pattern: its interior low-risk corridor extends much 
farther inland than in San Mateo or Alameda, reaching deep into the Santa Clara 
Valley and encompassing San José and its surrounding communities. This reflects a 
wide expanse of urban development and relatively open valley floor that limits fuel 
availability.

In contrast, Marin, Sonoma, and Napa Counties exhibit some of the highest fire risk 
values in the region. Their rugged topography, extensive forest and shrubland cover, 
and large continuous tracts of natural vegetation drive the concentration of high and 
very high risk zones. The mountainous terrain of western Marin, the forested areas 
of Napa’s eastern ridges, and the chaparral and oak dominated foothills of Sonoma 
form an extensive surface of the upper three categories of fire risk. Small pockets of 
low risk do appear along their edges near the Bayshore, particularly around San Pablo 
Bay and the lower-lying areas near Santa Rosa, Sonoma, and Napa City, where flatter 
topography and reduced vegetation moderate fire potential.

Solano County is one of the counties with the smallest overall fire risk, second only 
to San Francisco. Much of its landscape, particularly toward the Sacramento Valley, 
consists of flatter terrain, agricultural areas, and lower-density vegetation, resulting in 
extensive low-risk zones. Like Marin, Napa, and Sonoma, Solano also has additional low-
risk stretches along the San Pablo Bay shoreline, reinforcing the pattern of reduced 
susceptibility in low-lying coastal plains.

Contra Costa County displays a more mixed pattern, with very high fire risk 
concentrated in its central upland areas, called the East Bay Hills, where steep hills 
and continuous vegetation create favorable conditions for wildfire spread. In contrast, 
the low-risk zones cluster along the San Francisco Bay margin to the west and extend 
eastward toward the flatter lands in the direction of Stockton These gradients reflect 
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the county’s sharp topographic transitions between its coastal plain, interior valleys, 
and the elevated ridges of the Diablo Range.

Overall, the map highlights a consistent regional dynamic: low fire risk aligns with 
urbanization, valley floors, and flat coastal plains, while high risk dominates the 
vegetated, mountainous belts that frame the Bay Area. This spatial pattern closely 
mirrors historical fire occurrences (see Figure 14) and underscores the role of 
topography, vegetation, and land use in shaping the region’s wildfire susceptibility.

8.2 Seismic Hazard

The seismic hazard analysis performed on OpenSRA reveals clear patterns of both 
liquefaction and landslide susceptibility in the San Francisco Bay Area, exposing 
pipelines across the entire region. These patterns reflect the region’s fault system, local 
soil conditions, and, most important, the distribution of critical infrastructure across 
the counties. The OpenSRA results clearly highlight areas where modeled seismic 
activity is most likely to disrupt the gas network.

The liquefaction-prone soils of the area pose a substantial threat to gas pipelines, 
as buried infrastructure can experience displacement, joint separation, and rupture 
when saturated soils lose strength under intense shaking.

This study found that gas pipelines exposed to earthquake-induced liquefaction tend 
to experience tensile damage, with both rupture and leakage happening at different 
points, while compressive failures do not occur at all. This can be explained by how 
liquefied soil behaves and how pipelines interact with it.

As the soil liquefies, it loses much of its strength and can no longer firmly support the 
pipeline. As a result, the pipe may become partly unsupported while the surrounding 
ground moves in different directions. Ground movements such as settlement or lateral 
spreading usually pull the soil apart rather than push it together, meaning the ground 
suffers horizontal extension. Parts of the pipeline that remain anchored in firmer soil 
resist this movement, causing the pipe to stretch and bend. These forces increase 
tensile strain and can lead to cracking or rupture. In contrast, compressive failure, which 
requires the pipe to be pushed together, rarely occurs during liquefaction because the 
ground almost never shortens in these conditions. Instead, the weakened soil moves 
in a way that causes extension, not compression. Even when bending causes some 
compression on one side of the pipe, the tension on the other side is usually larger and 
controls the failure.

This explains why tensile damage was observed in the modeled pipeline while 
compressive damage was not. These findings closely match patterns observed in major 
international earthquakes, such as the 1964 Niigata earthquake, where widespread 
liquefaction and lateral spreading caused severe deformation and tensile failures in 
buried utilities (Hamada and O’Rourke 1992). This emphasizes the need to consider 
tensile strain capacity and ground movement patterns when evaluating pipeline 
performance in liquefaction-prone areas.

The results seen in the previous section (see Figures 21 and 22) paint the picture of the 
immense impact liquefaction-induced settlement damage has in the San Francisco 
Bay Area. Significant portions of the Bay shoreline and valley floors exhibit high 
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liquefaction potential due to their composition of artificial fill, alluvial soils, and shallow 
groundwater. Notable hotspots include the shore margins of the Alameda, Contra 
Costa, Santa Clara and San Mateo counties, with high liquefaction susceptibility going 
from Richmond all the way past Freemont, and around the bay towards Palo Alto. It 
is also present in the low stretches of land between Sonoma and Santa Rosa, and all 
around Napa. It is also highly present in the low-lying portions of the Santa Clara Valley 
going from San Jose all the way to Gilroy, with this stretch being the one with the 
highest susceptibility score.

In addition to liquefaction, the Bay Area is also at risk of experiencing major landslides. 
Landslide-prone slopes can greatly endanger gas pipelines, as the infrastructure can 
experience loading, bending, and rupture when unstable ground masses rapidly shift 
downslope during seismic activity.

This research found that earthquake-induced landslides caused compressive damage 
to the gas pipelines, while no tensile rupture or leakage occurred. This outcome is, 
similar to liquefaction, mainly due to how the ground moves during a landslide and 
how said movement impacts buried pipelines.

During a landslide, the soil mass typically moves downslope and toward stable ground, 
causing the ground to shorten rather than stretch. This means the ground is suffering 
horizontal compression. Because parts of the pipeline remain anchored in stable soil, 
the moving soil effectively pushes the pipe, creating compression. Situations that 
would pull the pipeline apart and create tension, like during liquefaction, are much 
less common in landslides and were not present in the scenarios analyzed.

Furthermore, the way a pipe interacts with the surrounding soil also favors compression 
as the main loading type. When a pipe is pushed, the soil provides strong resistance, 
which builds up significant compressive forces on it. However, when the pipe is pulled, 
the soil offers much less resistance or may even separate from the pipe, allowing 
tension to be relieved before it can cause serious damage.

Additionally, steel pipelines can usually tolerate more tensile strain without failing, but 
they are much more vulnerable to buckling and wrinkling under compression. Even 
moderate compressive strains can lead to local instability, especially when the pipe is 
confined by soil.

Overall, this combination of factors explains why compressive rupture occurred 
during landslides simulation while tensile damage did not. It is possible to draw a 
comparison between these findings and those of a landslide-related pipeline failure 
reported in the literature. In March 2019, a major landslide in Taleqan, Iran, triggered by 
extreme rainfall, caused a 16-inch natural gas pipeline to rupture when the downslope 
soil movement pushed the pipe, creating high compressive forces and bending 
at a girth weld (Vasseghi et al. 2021). Although this event was rainfall-induced, the 
comparison should not be undermined as the damage mechanism is directly relevant 
to earthquake-induced landslides as well, seeing as both hazards generate similar 
patterns of ground movement that place buried pipelines under intense compression 
and localized deformation. These results stress that pipeline design and evaluation 
in regions vulnerable to landsliding must prioritize the management of compressive 
deformation and the mitigation of buckling hazards.
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Drawing from the previous section, Figure 28 makes it clear that landslides-induced 
damage, although present, is not as problematic a deformation mechanism in the 
Bay Area as liquefaction. This can be clearly seen when comparing Figures 21 and 
28. However, the area still shows some significant damage hotspots. The region of 
highest concern is in the East Bay Hills, especially in the part right to the north of the 
city of Lafayette. It is also somewhat present along the shore on the Carquinez Strait, 
between the cities of Martinez and Crockett. Less significant damage is also present 
to the east of Marin county, in an area of the Diablo Range to the east of the city of 
Freemont, and very sparsely along the stretch between San Jose and Gilroy.

8.3 Compound Hazard

The three hazard modelling approaches applied in section 7.3 of this study, (1) the 
additive hazard index, (2) the matrix hazard index, and (3) the binary hazard index, 
offer different perspectives on the interaction between earthquake-induced pipeline 
fragility and fire potential. Although all rely on the same underlying 1-5 normalized 
input rasters, each method conceptualizes and represents the multi-hazard 
environment in distinct ways, thereby influencing both the interpretation and the 
practical applicability of the results.

Method 1, the additive hazard index, provides a smooth and continuous spatial 
representation of compound hazard by summing the pipeline fragility and fire potential 
values. This produces a gradient-like surface in which hazard intensity increases 
whenever either input increases. The strength of this method lies in its simplicity and 
ease of interpretation: it clearly illustrates regional patterns and broad transitions in 
multi-hazard exposure. However, the additive approach also has significant limitations. 
By collapsing two hazard dimensions into a single total, it may obscure meaningful 
differences between combinations that produce the same sum. For instance, a pixel 
with extremely fragile pipelines but low fire potential may be assigned the same score 
as an area with moderate fragility and moderate fire potential, despite the distinct 
hazard dynamics implied by each scenario. Moreover, the method assumes equal 
weighting of the two hazard components, an assumption that may not always reflect 
operational or physical realities.

Method 3, the binary hotspot detection approach, offers a different perspective by 
isolating only the most severe co-occurrences of high pipeline fragility and high fire 
potential. It identifies a pixel as a hotspot only when both input values exceed a defined 
threshold, thereby producing a clear and decisive delineation of the most critical areas. 
This method is effective for highlighting zones that may warrant urgent attention 
from managers or emergency response planners. Yet its stark binary structure leads 
to substantial information loss: all areas that fall below the chosen threshold, even 
if only marginally, are treated uniformly despite potentially significant underlying 
differences in hazard levels. Furthermore, hotspot identification is inherently sensitive 
to the choice of threshold, and modest adjustments can cause substantial changes in 
the spatial extent of the resulting high-risk zones. As such, Method 3 is valuable as a 
supplementary diagnostic layer but less suitable as a primary modelling framework.

Positioned between these two approaches, Method 2, the joint risk matrix, offers a 
more balanced and information-rich representation of the multi-hazard landscape. By 
encoding each pixel using a two-digit value that preserves both the pipeline fragility 
and fire potential classes, the method retains the full structure of the combined 
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hazard space. This makes it possible to distinguish between different combinations 
that would otherwise be collapsed into the same value under an additive approach, for 
example, high pipeline fragility with moderate fire risk versus moderate fragility with 
high fire risk. The subsequent reclassification into joint hazard categories provides 
a generalized yet transparent summary of these combinations while maintaining 
fidelity to the underlying drivers of risk. Unlike Method 3, Method 2 avoids abrupt 
cutoffs and preserves nuance across intermediate hazard levels. Unlike Method 1, it 
does not obscure the internal composition of hazard contributions.

A more practical, map-based explanation of the methods helps show why the matrix 
approach is especially useful for this study. When looking at the resulting maps, 
the additive method consistently shows higher risk levels for both liquefaction and 
landslides (see Figures 21, 23, 28 and 30), often making long sections of pipeline appear 
more vulnerable than they actually are. This can create the impression that many more 
pipelines need urgent attention, which may shift focus away from the areas where the 
risk is truly serious. In many cases, segments marked as high risk in the additive map 
are reduced to moderate risk when evaluated with the matrix method, giving a more 
realistic picture of where the most important problems are.

These differences matter for planning and decision-making. The matrix method 
provides a clearer view of how hazard intensity and pipeline vulnerability interact, 
helping authorities identify the areas that genuinely require immediate action. This 
allows resources, such as maintenance work, monitoring efforts, or emergency planning, 
to be directed to the segments where failure would have the most significant impact. 
For this study, the matrix map is therefore the most reliable tool for understanding the 
real distribution of pipeline risk.

After those highest-priority segments have been dealt with, the additive map becomes 
useful as a secondary reference. Because it tends to give higher values overall, it 
highlights additional pipelines that may not require urgent intervention but could 
still benefit from long-term monitoring or future upgrades. In this sense, the additive 
method helps identify medium-priority areas once the most critical ones have already 
been addressed.

The binary method, however, goes in the opposite direction. It underestimates risk 
by showing only the pipeline segments that fall into the very high risk category. This 
means it ignores all other segments that still represent a potential threat. As a result, 
the binary map is too simplified for effective planning, since it overlooks many areas 
that should not be ignored.

The comparison of the three methods suggests that each plays a distinct role in 
characterizing multi-hazard interactions. Method 1 is useful for visualizing regional 
hazard gradients; Method 3 is effective for identifying the most critical overlap zones; 
but Method 2, through its explicit preservation of the individual hazard components 
and their combinations, offers the clearest and most analytically robust depiction of 
the interaction between pipeline fragility and fire potential, making it the most suitable 
for governing bodies in charge of monitoring, fixing and upgrading the network, as 
well as to emergency responders and planners.
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8.4 Implications for Infrastructure, Government and Communities

The multi-hazard assessment presented in this thesis demonstrates how wildfire 
potential interacts with earthquake-induced liquefaction and landslide-related 
pipeline fragility across the San Francisco Bay Area. These findings have important 
implications for infrastructure managers, public agencies, and the communities that 
rely on this critical network.

Implications for Infrastructure Management

The analysis shows that liquefaction is the most widespread and damaging seismic 
hazard for gas pipelines in the region. Because liquefaction-induced ground 
deformation predominantly generates tensile forces, pipeline operators should 
prioritize engineering strategies that enhance tensile strain capacity, improve joint 
flexibility, and mitigate vulnerability to lateral spreading. High-priority corridors include 
the low-lying bayshore margins in Alameda, Contra Costa, San Mateo, and Santa Clara 
Counties, as well as the Santa Clara Valley and the Napa-Sonoma lowlands.

Although landslide-induced pipeline damage is less spatially extensive, its 
consequences are structurally severe. Landslides impose compressive and bending 
forces that can lead to buckling and rupture, failure modes to which steel pipelines 
are particularly vulnerable. Hotspots identified in the East Bay Hills, the Carquinez 
Strait, and parts of the Diablo Range require targeted mitigation such as slope 
stabilization, soil-strengthening measures, and enhanced monitoring. Importantly, 
because landslides occur on steep slopes, any pipeline failure in these areas carries 
an elevated risk of igniting fires that can propagate rapidly through the slopes. This 
means that even relatively small landslide-related pipeline failures can escalate into 
larger, fast-moving fire incidents, amplifying their potential impact on infrastructure 
and surrounding communities.

The matrix compound hazard method supports infrastructure planning by 
distinguishing between hazard combinations that would otherwise be obscured. For 
pipeline operators, this provides a clearer basis for prioritizing inspections, upgrades, 
and emergency planning in locations where pipeline fragility and fire potential 
converge most critically.

Implications for Government Agencies and Emergency Planning

For state, regional, and county agencies, the compound hazard findings underline the 
need for integrated seismic and wildfire preparedness strategies. Again, the matrix 
method offers the most realistic representation of where hazards interact, making it 
a valuable decision-support tool for allocating resources, enforcing safety standards, 
and coordinating emergency response efforts.

Liquefaction-prone areas that coincide with moderate or high wildfire susceptibility 
are especially important for government planning, as post-earthquake gas leakage 
could trigger fires in regions where suppression is more difficult. In contrast, landslide-
prone regions require a different focus: because these areas are steep and heavily 
vegetated, they not only expose pipelines to compressive rupture but also present 
terrain conditions highly conducive to fire spread. Steep slopes accelerate flame 
movement, increase radiant heat transfer, and allow fires to grow more rapidly than 
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in flat terrain. This amplifies the importance of pre-event mitigation, early detection 
systems, and rapid suppression capacity in hillside counties such as Marin, Contra 
Costa, Alameda, and Sonoma.
These patterns justify greater interagency coordination between fire authorities, 
geotechnical units, and pipeline regulators, ensuring that emergency plans incorporate 
both the probability of pipeline failure and the fire behavior characteristics of the 
surrounding terrain.

Implications for Communities and Public Safety

For communities, the results clarify where seismic damage to pipelines is most likely 
and how such damage could interact with local wildfire conditions. Residents in 
liquefaction-prone urban corridors face elevated risks of gas leakage and potential 
ignition following major earthquakes. Public outreach and preparedness programs, 
such as emergency shutoff awareness, evacuation planning, and household resilience 
measures, can directly reduce these risks.

Communities located in or near landslide-prone hillsides face a dual vulnerability: the 
possibility of pipeline rupture due to ground compression, and the significantly higher 
fire propagation potential typical of sloped terrain. Fires that start in these areas can 
grow more rapidly, spread farther, and reach communities faster. They can also block 
important transportation corridors and isolate populations. This underscores the need 
for strengthened public education around fire behavior in steep landscapes, improved 
defensible space practices, fuel management, and participation in neighborhood 
evacuation and alert systems.

Finally, the compound hazard maps produced in this study can support transparent 
risk communication, helping communities understand not only which hazards 
they face, but how those hazards interact. This enables residents, local leaders, and 
emergency organizations to plan more effectively and build resilience.

8.5 Limitations of the Study

Despite the structured approach used in this thesis, several limitations must 
be acknowledged. These stem mainly from data availability, methodological 
simplifications, and the challenges of modeling complex, overlapping hazards in the 
San Francisco Bay Area.

First, the study relies on spatial datasets that differ in age and how often they are 
updated. Seismic hazard layers reflect long-term probabilities, while wildfire datasets, 
especially fuel and vegetation information, capture conditions from past years rather 
than current states. Because vegetation and fire behavior are changing rapidly due 
to climate change, the hazard maps used here may not fully represent present-day or 
future conditions.

Second, limitations in pipeline data affect the precision of the fragility analysis. The 
transmission pipeline network used in this study comes directly from PG&E, which 
ensures that the information regarding these large-diameter pipelines is highly 
accurate. However, this analysis does not include the distribution pipeline network, 
which is typically more extensive and reaches deeper into residential neighborhoods. 
Distribution pipeline data is not available due to security reasons and the absence 
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of this data reduces the completeness of the analysis, since damage to distribution 
pipelines could significantly influence local risk patterns and affect areas not reached 
by the transmission system.

Third, the hazard integration method is static and does not account for real-time or 
cascading interactions. For example, an earthquake-induced gas leak during extreme 
wind conditions would pose a very different fire risk than a leak on a calm, humid 
day. The model also does not include factors such as fire suppression capacity, road 
closures, or water system failures, which can strongly influence disaster outcomes. 
These dynamic processes fall outside the scope of this spatial overlay approach but 
are important in real events.

Fourth, the weighting choices used to combine hazard layers introduce some 
subjectivity to the study. Although weights were informed by existing literature, 
alternative choices could reflect different priorities or assumptions, and no sensitivity 
analysis was performed to test how different weights might change the results.

Finally, the study focuses on physical hazards and pipeline vulnerability but does not 
integrate social vulnerability factors that shape how communities experience and 
recover from disasters. Characteristics such as income, age, disability, race, immigrant 
status, linguistic isolation, and access to transportation or health services strongly 
influence a community’s exposure and resilience. Including such metrics would allow 
for a more complete understanding of who is most at risk, but this requires additional 
datasets and a broader modeling framework than what was used in this thesis.

8.6 Future Research

The results of this study highlight several promising avenues for advancing multi-
hazard analysis and regional resilience planning in the San Francisco Bay Area.

A priority direction is the development of dynamic, event-based hazard models that 
simulate the progression of earthquake-fire interactions in real time. This could 
include modeling pipeline rupture likelihood under varying wind conditions, fuel 
moisture levels, and seasonal fire-weather extremes (such as Diablo winds). Integrating 
dynamic emergency response variables like travel-time delays, water system failures, 
and communication disruptions would provide a more realistic representation of 
cascading disaster scenarios.

Another important direction is the incorporation of climate change projections 
into both wildfire and seismic-related hazard models. As vegetation composition, 
drought intensity, and fire-weather conditions shift, the spatial distribution of wildfire 
susceptibility will change accordingly. Future models should integrate downscaled 
climate scenarios to assess how hazard patterns may evolve over coming decades and 
to guide long-term adaptation planning.

Expanding multi-hazard assessments to incorporate social vulnerability metrics also 
represents an important next research step. Pairing physical hazard exposure with 
indicators such as transportation access, housing quality, and public health burdens 
would allow researchers to identify communities where limited adaptive capacity 
intersects with high hazard levels. This would support more equitable prioritization of 
mitigation resources and emergency planning.

Results and Discussion

Finally, future research should explore cross-jurisdictional coordination frameworks 
that reflect the regional nature of Bay Area hazards. Earthquakes, wildfires, and pipeline 
systems transcend municipal boundaries, yet planning and response capacities vary 
widely between jurisdictions. Multi-county data-sharing agreements, integrated 
scenario planning, and joint emergency-response exercises could significantly 
enhance resilience. Research into collaborative governance models would help bridge 
these gaps and support a more unified regional approach to compound hazard 
management.
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9. CONCLUSION The research conducted in this thesis illustrates how California’s evolving hazard envi-
ronment requires analytical approaches capable of addressing the interconnected na-
ture of natural disasters and the vulnerabilities of critical infrastructure. Earthquakes, 
landslides, liquefaction, and the pressures of climate and development intersect in 
ways that challenge long-standing assumptions about how infrastructure performs 
under stress. Among the systems most exposed to this shifting reality are natural gas 
networks, lifelines that operate quietly beneath the surface but whose failure during 
earthquakes can trigger consequences far beyond the initial ground shaking. Under-
standing how these failures emerge, and how different hazards converge to shape 
them, has become more than a technical question; it is a matter of public safety, ener-
gy security, and long-term resilience.

This work responds to that need by bringing together tools and perspectives that have 
rarely been integrated. Through the combination of OpenSRA’s performance-based 
modeling with spatial multi-criteria analysis, the research forms a methodological 
bridge between detailed engineering assessment and regional hazard evaluation. In-
stead of treating liquefaction, landslides, and other ground-failure mechanisms as iso-
lated phenomena, the framework allows them to be examined together, highlighting 
how they co-occur, reinforce each other, and ultimately influence pipeline behavior 
along different segments of the network. This represents a notable step forward in a 
field where compound hazards are often acknowledged but seldom quantified with 
such clarity.

The results make these interactions tangible. Liquefaction emerges as a defining driv-
er of risk in the Bay Area, with clear patterns of tensile rupture and leakage in low-ly-
ing, water-saturated zones. The absence of compressive rupture in the modeled sce-
nario helps refine the understanding of how local geologic conditions translate into 
distinct performance outcomes. The combined risk map, produced by normalizing 
and synthesizing the hazard layers, underscores these patterns visually and analyti-
cally: the highest concentrations of vulnerability trace the shorelines, floodplains, and 
sedimentary basins stretching from the central Bay to the Santa Clara Valley. Such 
insights offer a level of precision that is valuable not only to researchers but also to util-
ities seeking to target investments, prioritize inspections, or plan emergency response 
strategies.

Beyond the specific findings, the broader contribution of the research lies in the emer-
gence of a methodological framework that is adaptable, transparent, and scalable. Its 
structure, open-source, data-driven, and grounded in performance-based engineer-
ing, makes it relevant not only for the Bay Area but for utility operators throughout 
California and the United States. As hazards become more interconnected and infra-
structure systems more stressed, methods capable of capturing these interactions 
are no longer optional; they are essential. This thesis demonstrates how such an ap-
proach can be constructed and applied in practice, turning complex scientific models 
into decision-support tools with real operational value.

At the same time, the work opens pathways for future enhancement. Higher-reso-
lution geotechnical data, richer pipeline attribute information, and the incorpora-
tion of additional compounding factors, such as rainfall-triggered slope instability or 
post-earthquake fire ignition, would deepen the analytical power of the framework. 
As data availability expands and hazard modeling advances, the methodology pre-
sented here can evolve into an even more comprehensive system for anticipating, 
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visualizing, and mitigating risk.

Instead of viewing the findings as an end point, this research positions itself as the be-
ginning of a larger shift in how critical infrastructure risk is understood. The methodol-
ogy developed here demonstrates that complex hazard interactions can be translated 
into tools that directly support decision-making, but it also reveals how much un-
tapped potential remains. As utilities move toward modernization, climate pressures 
intensify, and expectations for reliability grow, the ability to anticipate system behavior 
under multi-hazard conditions will increasingly define the difference between reac-
tive management and true resilience. The framework introduced in this work offers 
a blueprint for that evolution, not as a fixed solution, but as a foundation that future 
researchers, practitioners, and agencies can expand, refine, and adapt. Its value lies 
not only in the insights it generates today but in the doors it opens for integrating new 
data, new models, and new ways of thinking about infrastructure in a hazard-prone 
world. In this sense, the thesis contributes more than an assessment: it marks a turn-
ing point toward a more holistic, science-driven, and anticipatory approach to safe-
guarding lifeline systems.
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