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ABSTRACT

California’s natural gas infrastructure is essential to the state's energy system yet
it still remains highly vulnerable to the combined effects of seismic events and fire
activity. Traditional assessment approaches often overlook these interactions, limiting
themselvestoresilience planning.To bridge thisgap, thisthesisdevelopsa quantitative,
performance-based framework that integrates seismic hazard characterization,
infrastructure vulnerability, and fire behavior into a unified multi-hazard analysis.

Applied to the San Francisco Bay Area through QGIS and the OpenSRA platform, the
framework highlights where vulnerabilities concentrate and how cascading impacts
may develop across interconnected systems. The findings show that compound risks
are shaped by the convergence of physical conditions, infrastructure characteristics,
and surrounding urban environments.

By establishing a more rigorous and transparent method for evaluating these
dynamics, the research provides utilities and public agencies with a practical tool
capable of informing targeted mitigation, investment prioritization, and integrated
resilience strategies. The framework is broadly transferable and offers a path toward
more robust multi-hazard assessment practices across California and the United
States.




1. INTRODUCTION
CONTENTS 2. CLIMATE CHANGE
3. NATURAL DISASTERS
3.1 Earthquakes
3.2 Wildfires
4. COMPOUND HAZARDS
4.1 Post-Earthquake Fires
4.2 Earthquake-Gas Pipeline-Fire Relationship
5. CALIFORNIA HAZARD LANDSCAPE
5.1 WUI Zones
5.2 Gas Networks
6. CASE STUDY: SAN FRANCISCO BAY AREA
7. METHODOLOGY
7.1 GIS-MCDA-AHP
7.1.1 Definition of the Parameters
7.1.1.1 Wildland-Urban Interface (WUI)
7.1.1.2 Fire Hazard Severity Zones (FHSZ)
7.1.1.3 Vegetation Coverage
7.1.1.4 Housing Density
7.1.1.5 Ignition Density
7.1.1.6 Road Proximity to Ignition Sources
7.1.2 Construction of the Pairwise Comparison Matrix
7.1.4 Consistency Verification
7.1.5 Weighted Linear Combination (WLC)
7.2 OpenSRA
7.2.1 Liquefaction Induced Settlements

7.2.2 Landslides

7.3 Compound Hazard Analysis
8. RESULTS AND DISCUSSION
8.1 Wildfire Hazard

8.2 Seismic Hazard

8.3 Compound Hazard
8.4 Implications for Infrastructure, Government and Communities
8.5 Limitations of the Study
8.6 Future Research
9. CONCLUSION
10. BIBLIOGRAPHY




LIST OF FIGURES

Figure 1 State of California and BAy Ar€Q COUNTIES. ......uuuuiet ettt et et ettt eateeaeeaeeaeeateeanseanns 25
Figure 2 MethodOoIOgY FrOMEWOIK. ...ttt et ettt ettt et e et et e e e e et e eeteeaneeaneeaeeanseanns 29
Figure 3 Intermix and interface WUI zones in the Bay Area

Figure 4 Fire Hazard Severity Zones in the Bay Area

Figure 5 VVegetation coverage in the Bay Area

Figure 6 Housing density inN the BAY AFCQ. ........uei ettt ai ettt ettt et at et et ateeateeanseaneeateeanseannss 41
Figure 7 Historical ignition point data

Figure 9 Ignition density in the Bay Area

Figure 8 Initial ignition AENSItY PATLEIN. .......u ittt ettt et e et ett e et et ateeateeaneeaneeareeaneeannes 43
Figure 10 Road Network in the Bay Area

Figure 12 Road Proximity to Ignition SOUrces in the BAY AF€Q. .......uuiueiieii ettt e eee e e eaieeeareanann 45
Figure 11 Road network intersected With igNitioN SOUICES. .........uiiueii it e e ee e eieeenreenann 45
Figure 13 Fire Risk Index in the Bay Area

Figure 14 Fire Risk Index validated by Rhistorical fire PeriMELErS. .......uuuui it eiaeanans 51
Figure 15 PG&E gas transmission network in the Bay Area

Figure 16 UCERF3 modelled rupture traces and USGS mapped seismic hazard zones

Figure 17 PEER risk methodology framework applied to underground pipelines

Figure 18 Liquefaction-induced compressive rupture

Figure 19 Liquefaction-induced tensile rupture

Figure 20 Liquefaction-induced tensile [@AKAGE. .........ouuuii it et ettt e e e e enreanaes 64

2o [V] =34 KoY de | W[ To [U1=) o o1 L) o I K1 < o 66

Figure 26 Landslides-induced tensile rupture.

Figure 27 Landslides-induced teNsile |@AKAGE. ........oueiiiiii ittt et ettt e et e e enaeanaen 74
2o [V]4=32 B Ke)de I o aTe kY[ lo L3N K1 < 76
Figure 29 Total landslide risk close-up in CoONtra COSEA COUNTY. ....uuueiueiietat ettt eaeeaeeaeeaeeaieeaneeanans 77
Figure 30 Total landslide risk validated using USGS landslide prone zones survey data

Figure 31 Total landslide risk close-up in Contra Costa county validation. ...........cccoeiiiiiiiiiiiiiiiiiieeineannn, 79

Figure 33 AdditiVe IQNASIIAES FISK. ...ttt et ettt ettt et e et e et at e et e eaneeaeeaeeaneeennes 83
(ST [V =S YV To T g b @l Lo [U1=) o o1 [0 g I 4 K1~ N 86
Figure 35 MatriX IQNASHAES FISK........o..u ettt ettt ettt et et et et e et et at e e ateeaneeaneeaeeanseannes 87

Figure 36 BinaAry lIQUETACTION FISK. ...ttt et ettt ettt et et e e et et e et et ateeaneeaneeaneeaeeaneeanns 90

Figure 37 Binary liquefaction risk close-up.
Figure 38 Binary IQNASHA@S FiSK. ...ttt et et ettt et e et et e et e et e et e e eteeaneeaneeaeeaneeanans 92
Figure 39 Binary 1aNdSlides FISK CIOS@ UP. ...ttt ettt e ettt e et e et e e et eae e aeeanaeanaas 93




LIST OF TABLES

Table 1 Selected parameters AN tREIF SOUICES. ..........ei ittt e e et e e taeeareeaneaaeeanaann 31
Table 2 Wildland vegetation cover and the hazard classes assigned to each range. .........c.ccoeviiiiiiiiiiinennnns 39
Table 3 Housing density in the Bay Area and the hazard classes assigned to each range

Table 5 The final 6x6 pairwise comparison matrix A

Table 4 Saaty’s Fundamental Scale

e L) =I A=Y e | gAY =Tt e ) A P 47
Table 6 Normalized matrix N

Table 8 All eigenvalues computed.

Table 9 Random Consistency Index adapted from SQAtY (T987). «...unu ittt eieeieeaann 48
Table 10 SamMple UCERF3 iNPUL PAIQIMELELS. ....ueitie ettt et a ettt ettt et et ettt et et e etteeaaeeaaseaneeaeeaneeennes 58
Table 11 Liquefaction OpenSRA framework inputs

Table 12 Liquefaction Mmean QNNUGI FALE. .........uiiiiii ettt ettt ettt et e e teeeaaeeaaeeareeaeeanseanaes 61

Table 15 Additive risk reclassification ranges.

Table 16 Matrix risk reclassifiCAtiON FANGES. .......o.ueiin ittt e e ettt ettt et eareeareeaneeaeeaneeannes 84

Table 17 Matrix values ClASSITIEA DY FISK. ...t ettt ettt et e e et e e aaeeaaeeaeeaeeanseanaes 85




1. INTRODUCTION

California faces an increasingly complex and dynamic hazard environment shaped
by the convergence of seismic activity, wildfire dynamics, climate change, population
expansion, and aging infrastructure systems. As one of the most hazard-prone
states in the United States, California has experienced significant evolution in its
risk landscape over the last century. Historically, earthquakes have played the most
defining role in shaping both public understanding and institutional approaches to
disaster management. Landmark events such as the 1906 San Francisco earthquake
and the 1989 Loma Prieta earthquake were pivotal in advancing seismic design,
refining emergency response systems, and deepening scientific knowledge of crustal
deformation and ground motion (Fielding Reid 1910; Lee et al. 2008). However, in
recent decades, wildfires have eclipsed earthquakes as the state’s most frequent
and economically destructive hazard. Driven by persistent drought, vegetation stress,
and intensifying development pressures in fire-prone regions, wildfire disasters have
grown larger, more severe, and more costly (Li and Banerjee 2021; Westerling 2016;
Keeley and Syphard 2019; Syphard et al. 2019).

Although earthquakes and wildfires are often analyzed as distinct hazard categories,
their physical processes and societal impacts intersect in critical ways. These
interactions exist within what disaster scholars increasingly describe as a multi-
hazard or compounding hazard environment, one in which the occurrence of one
hazard alters the probability, intensity, or consequence of another. In California, these
interactions frequently involve infrastructure systems that bridge hazard domains,
such as gas pipelines, electric power networks, and transportation corridors. When
such systems fail during major earthquakes, compound, also known as cascading,
effects can initiate secondary hazards that significantly magnify disaster impacts.
Among the most consequential of these cascading processes is the phenomenon
called fire following earthquake (FFE), also known as post-earthquake fire (PEF), which
has historically been responsible for some of the most severe urban disasters in the
state (Scawthorn 1986).

The San Francisco Bay Area provides a particularly compelling context for examining
these interconnected risks. The region is situated atop one of the most active and
geometrically complex sections of the boundary between the Pacific and North
Americantectonic plates, with the San Andreas, Hayward, Rodgers Creek,and Calaveras
faults, each capable of producing high-magnitude events, cutting directly through
densely populated urban corridors (Aagaard et al. 2016). Probabilistic assessments
such as UCERF3 project a high likelihood of at least one major earthquake affecting
the region in the coming decades (Field et al. 2014). Simultaneously, the Bay Area’s
Mediterranean climate, steep topography, diverse vegetation, and expanding
wildland-urban interface (WUI) create conditions conducive to large, fast-moving
wildfires. WUI growth places residential neighborhoods, infrastructure networks, and
gas distribution systems in closer proximity to ignition-prone landscapes, increasing
exposure and complicating emergency management.

Climate change further intensifies these risks by altering the environmental conditions
that govern wildfire behavior. Rising temperatures, prolonged heat waves, declining
snowpack, and increasing fuel aridity have extended the fire season well beyond its
historical bounds (Keeley and Syphard 2016). These climatic shifts coincide with long-
term vegetation stress, tree mortality, and hazardous fuel accumulation resulting from
both ecological change and land-management practices. As a result, the Bay Area,and
California more broadly, faces wildfire risks that are more extreme, more widespread,
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and more difficult to manage than at any time in the past century (Westerling et al.
201).

Despite this convergence of seismic and wildfire threats, hazard assessment practices
continue to rely primarily on single-hazard frameworks. Seismic analysis typically
focuses on ground-motion forecasting, structural response, liquefaction, lateral spread
and landslide susceptibility, permanent ground deformation, and lifeline fragility.
Wildfire research, in contrast, focuses on vegetation characteristics, ignition patterns,
WUl expansion, meteorological drivers, and fuel dynamics to create fire-spread models
(IUFRO and PROFOR 2020; Syphard et al. 2007). Neither take each other into careful
consideration. While each field has developed advanced tools and methodologies
to tackle their individual hazards, analytical separation obscures how earthquakes
may create conditions favorable for fire ignition or how fire-prone environments may
amplify the consequences of infrastructure failures triggered by seismic activity.

One of the most consequential yet understudied intersections between these hazard
domains involves gas transmission and distribution pipelines. Many of California’s gas
pipelines were constructed decades ago, before modern seismic design standards
were established (Bain 2023; Fournier et al. 2025). These systems, often composed of
older or brittle materials and located in geologically complex terrain, are vulnerable
to rupture, buckling, joint separation, or leakage when subjected to intense shaking
or ground deformation such as liquefaction, lateral spreading, landslides, or surface
fault rupture (O'Rourke and Liu 1999; Pitilakis et al. 2006). In the aftermath of a major
earthquake, escaping natural gas can be easily ignited by downed electrical lines,
damaged equipment, sparks, open flames, or static discharge. In dense urban areas
where pipelinesintersect buildings, transportation routes,and electrical infrastructure,
multiple ignition events may occur simultaneously. If such ignition points arise within
or near WUI zones, they may propagate into wildfires under severe fuel and weather
conditions.

Historically, these cascading hazards have produced significant devastation. During
the 1906 San Francisco earthquake, ruptured gas lines were a dominant source of
ignition for the fires that ultimately destroyed more than 80% of the city's urban core
(Fielding Reid 1910). Although firefighting capacity and infrastructure resilience have
improved greatly since then, new vulnerabilities, including aging pipeline materials,
population densification, and increasingly volatile fuel conditions, create renewed risk,
especially following a major seismic event when water supply disruptions, roadway
blockages, and emergency resource shortages may severely constrain fire response.
In the contemporary Bay Area, additional risk emerges from continued residential
and infrastructural expansion into WUI landscapes. Housing expansion along ridge
tops, in narrow valleys, and on densely vegetated slopes creates environments with
high ignition potential and limited evacuation capacity. These constraints hinder
fire suppression even under normal conditions; after an earthquake, when access
routes may be compromised and water systems disrupted, containment becomes
exponentially more difficult. Understanding where seismic vulnerability and wildfire
potential overlap spatially is therefore essential for strengthening regional resilience
and reducing compound hazard risk.

Despite mounting evidence of these interactions, significant analytical gaps remain

unexplored in wildfire and earthquake research. While seismic studies have explored
pipeline fragility under a range of hazard scenarios, and wildfire studies have
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advanced high-resolution spatial models of ignition and spread, few efforts integrate
these approaches to identify where earthquake-pipeline-fire interactions are most
likely to cascade. For regional planners, emergency managers, and utility operators,
the absence of such integrated assessments limits the ability to identify and prioritize
multi-hazard hotspots, namely, locations where earthquake-induced pipeline damage
is likely to coincide with landscapes predisposed to rapid fire spread.

This thesis responds directly to these gaps by developing a spatially explicit, multi-
hazard assessment of the San Francisco Bay Area that integrates seismic pipeline
vulnerability modeling with wildfire risk analysis. Using a combination of GIS-based
Multi-Criteria Decision Analysis (MCDA), the Analytic Hierarchy Process (AHP), and
the OpenSRA seismic risk framework, the study produces a detailed spatial model
of earthquake-pipeline-fire interactions. OpenSRA provides probabilistic estimates
of pipeline damage under UCERF3 earthquake scenarios, incorporating parameters
such as ground motion intensity, soil conditions, pipeline material, and installation
characteristics. In parallel,a wildfire hazard surface is constructed using environmental,
infrastructural, and historical ignition variables such as vegetation cover, proximity to
roads, and past ignition locations (Syphard et al. 2007; Radeloff et al. 2018; CAL FIRE,
n.d.). Integrating these layers reveals spatial patterns of compounding risk that remain
obscured under single-hazard approaches.

The study has four primary objectives:

1. To develop a clear and understandable wildfire-risk surface for the Bay Area
using environmental, infrastructural, and historical data.

2. To model pipeline-damage probability under UCERF3 earthquake scenarios
using the OpenSRA framework.

3. To integrate the resulting hazard surfaces to identify combined hazard hotspots
where earthquake-induced pipeline damage and wildfire potential intersect.

4. To evaluate the implications of these findings for hazard mitigation, emergency
preparedness, and infrastructure planning across the region.

By situating this analysis in the Bay Area, a region defined by tectonic complexity,
diverse ecosystems, and extensive infrastructure networks, this thesis offers insights
relevant to other metropolitan regions facing similar multi-hazard dynamics. As
climate extremes intensify and critical infrastructure continues to age, the urgency
of developing integrated hazard assessments grows. Understanding where and
how these risks intersect is essential not only for reducing disaster losses but also for
supporting long-term planning, sustainable development, and community resilience.
The chapters that follow therefore examine California’s climate-driven wildfire context,
its seismic hazard landscape, key theories of compounding hazards, the Bay Area’s
regional characteristics, and the methodological framework employed to evaluate
earthquake—pipeline—fire interactions across the region.
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2. CLIMATE CHANGE

One of the biggest and most pressing environmental concerns of the modern time
is climate change. This phenomenon has, much quicker than expected, become a
defining force that is constantly reshaping environmental, ecological, and societal
conditions across the world, impacting countless lives. In response to that, a new
trend in behavior has emerged among the youth, with constant protests and
demonstrations demanding actions to counter the phenomenon, while governments
and international bodies are beginning to rise up to the challenge by creating new
policies, goals and increasing cross-border cooperation initiatives.

One of the countries highly affected by climate change, and the main focus of this
research,isthe United States, with California standing atthe forefront ofitsaccelerating
impacts. Scientific evidence has been consistently demonstrating that anthropogenic
greenhouse gas emissions have driven unprecedented global warming over the past
century, resulting in climate shifts that are already altering hydrological systems,
vegetation regimes, atmospheric dynamics, and the frequency and severity of
natural hazards. Studies conducted in the beginning of 2025 have shown that global
temperatures in 2024 exceeded over 1.5°C above pre-industrial levels, a considerable
feat, making it the hottest year on record and the culmination of an uninterrupted
series of extreme heat anomalies going back more than a decade (Schaeffer et al. 2025).
NASA similarly confirms that humans are now observing climate-driven changes such
as more intense heatwaves, shrinking ice sheets, sea-level rise, and increased drought
faster than previously anticipated, with some of these changes being completely
irreversible (NASA 2024). A University Corporation for Atmospheric Research (UCAR)
scientific assessment further corroborates these findings, projecting additional
warming of up to 4 or 5°C by the end of the century if emissions remain high. This
considerable increase intemperature could fundamentally alter precipitation regimes,
extreme weather patterns, ocean chemistry, and ecosystem structures (UCAR 2025).
In sum, the evidence is strong in illustrating that climate change is not a distant risk
but a present reality, one that is greatly affecting every region of the United States.

Across the country, the manifestations of a warming climate are most prominently
evident in the intensification of climate-related disasters. Hurricanes striking the
Atlantic and Gulf coasts have become stronger due to warmer ocean waters (Vernick
2025), extreme rainfall events have increased in both frequency and magnitude,
and major flooding has devastated many communities from the Midwest to the
Southeast (US EPA 2024). Heatwaves have grown longer, hotter,and more widespread,
contributing to significant mortality rates and placing added stress on energy systems
and public health infrastructures that are already in high-demand (Schaeffer et al.
2025). Water resources are under similar stress, being more limited each day. The
severity of droughts in the Southwest has gotten much worse as warming has led to a
decline in snowpack, which is melting earlier and earlier each year, threatening water
supply reliability and even food production, increasing human vulnerability (NASA
2024). These national trends help form the backdrop against which California’s unique
climate vulnerabilities have become especially pronounced.

The state of California is widely recognized as one of the United States’ most climate-
sensitive regions. This is due to many factors, including its rapidly rising temperatures,
atmospheric aridity, recurrent droughts, and complex topography. In recent decades,
these factors have converged to dramatically intensify wildfire behavior across
the state. Research by Abatzoglou and Williams (2016) further corroborates that
anthropogenic warming is one of the main causes behind increased fuel aridity across
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the western United States. It has accounted for more than half of observed increases
in vapor pressure deficit, a key variable controlling forest flammmability. Building
on this work, Williams et al. (2019) show that climate change has also doubled the
cumulative forest area burned in the western U.S. since the 1980s. More recently, Turco
et al. (2023) measured how much climate change has affected California’'s wildfire
trends. They found that almost all of the fivefold increase in summer burned area
between 1971-1995 and 1996-2021 is linked to human-caused warming. Their results
show a 172% increase in burned area directly connected to rising temperatures, which
confirms that heat-driven vegetation drying, rather than natural climate variation, is
the main force behind California’s current wildfire behavior. State-level records also
reinforce these conclusions. The California climate indicators report shows that annual
burned area has increased sharply since the early 2000s, with 2020 alone burning
an unprecedented 4.2 million acres followed by 2.6 million acres in 2021, making
both years some of the worst in California’s recorded history (Sapsis et al. 2022). The
number of very large fires (taken to be over 10,000 acres in area) has risen dramatically,
with nearly all of the state’s largest fires occurring since 2000. These megafires have
caused widespread destruction, with two of its most infamous fires being the 2018
Camp Fire, the deadliest and most destructive in California history, and the 2020
August Complex Fire, the state’s first “gigafire” exceeding one million acres (Sapsis et
al. 2022). However, the fires alone are not the only problem to be considered. Postfire
impacts are equally worthy of discussion and investigation, as they cascade across
communities, ecosystems, and critical infrastructure systems, resulting in horrible and
at times dangerous air-quality periods of time, extensive economic damages to both
the population and the government, habitat loss, tree mortality, and, most important
for this research, severe disruption of public services systems and networks.

Climate-driven wildfire escalation in California is also tightly connected to weakened
forest resilience and elevated vegetation stress (NASA 2024). Vegetation modeling by
Ackerly etal. (2015) showsthatclimatechangeiscausing majorchangesinthetypesand
locations of plant communities in the San Francisco Bay Area, even in places that were
once thought to be protected from climate impacts. These transitions significantly
influence fuel loads, setting the stage for more extreme fire seasons. Atmospheric
research further demonstrates that warming-induced increases in vapor pressure
deficit intensify the speed at which fuels dry, producing more days of extreme fire
weather and lengthening the fire season into months that previously had little fire
activity (Schaeffer et al. 2025).

Apart from the growing threat of wildfires, climate change in California is increasingly
reshaping people’s lives, with extreme heat emerging as one of the most concerning
hazards. Recent scientific reviews indicate that a rising share of the global population
is being pushed outside the historical “human climate niche,” which is described as
the range of climatic conditions in which human societies have traditionally settled in
(Schaeffer et al. 2025). As heat extremes surpass levels that are physiologically tolerable
in some regions, more communities are being forced to reconsider where and how
they live. This shift is already contributing to patterns of displacement, as households
relocate in search of safer temperatures, reliable livelihoods, and more stable living
conditions. In addition to that, rising temperatures put an added strain on vulnerable
populations such as outdoor workers, the elderly, and low-income communities,
exacerbating health and socioeconomic disparities (Do et al. 2023).

These social effects are further intensified when climate-driven hazards interact
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with critical service systems. Research on infrastructure interdependencies shows
that wildfires, heatwaves, and extreme weather can trigger cascading disruptions
across energy, transportation, communication, and water networks (Sfetsos et al.
2021). In California, wildfires have repeatedly damaged transmission lines, prompted
preemptive grid shutdowns, and hindered emergency response, with national
analyses indicating that extreme weather accounts for over 60% of prolonged power
outages affecting medically vulnerable populations (Do et al. 2023), illustrating how
climate hazards compound existing social inequalities. These patterns mirror global
trends documenting that socially and economically marginalized communities bear
disproportionate burdens from climate disasters (lbarraran Viniegra et al. 2009; Vernick
2025).

In addition to these more immediate hazards, climate change has also been linked
to the change in long-term geophysical processes. Studies in Alaska by Sauber and
Ruppert (2013) and Sauberetal. (2021) showthatrapidice massloss can influence crustal
stress fields and modulate seismicity. While these processes are most pronounced in
regions undergoing significant deglaciation, they illustrate broader principles linking
climate processes to geological hazards. Similar research in East Asia demonstrates
that interglacial warming periods have historically aligned with elevated intraplate
seismicity (Kim and Lee 2023), suggesting that climate-induced mass redistribution
may influence seismic risk in certain contexts. Though this phenomenon is certainly
less significant in California than its dominant tectonic forces, it is still an interesting
point of research. As sea levels continue to rise and alter coastal mass distribution,
future changes in ocean loading along California's coast could, at least in principle,
have subtle effects on regional stress fields, making this a topic worth monitoring as
climate change progresses.

In summary, the literature paints a coherent and urgent picture: climate change is
intensifying environmental hazards and California is paying a high price as one of
the most acutely affected regions. Wildfires have become larger, more destructive,
and more frequent; heatwaves are growing more intense; droughts are deepening;
and critical infrastructure systems are increasingly vulnerable. These impacts interact
with socioeconomic inequalities, increasing risks for marginalized communities and
amplifying the costs of inaction. Climate change in California represents not a singular
threat but a system-wide transformation affecting ecosystems, human life and health,
infrastructure, governance, and long-term environmental stability. The trajectory of
these impacts will depend heavily on near-term mitigation and adaptation strategies,
as emphasized by NASA (2024), UCAR (2025), and the Intergovernmental Panel on
Climate Change (IPCC) (Schaeffer et al. 2025). Immediate reductions in greenhouse
gas emissions, combined with coordinated adaptation planning, will determine the
extent to which California and the nation can preserve a livable future in a rapidly
changing climate prone more and more to more devastating natural disasters.
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3. NATURAL DISASTERS

Natural disasters are severe natural events that exceed a community’s capacity to
respond, shaped by both physical processes and societal vulnerability (Quarantelli
2000). Their frequency and impact have grown due to urbanization, environmental
degradation, and climate change (Saunders et al. 2025). In 2024 alone, 393 natural
hazard-related disasters caused 16,753 fatalities, affected 167 million people, and
generated US$242 billion in losses (CRED 2025). Despite advances in forecasting and
management, disasters continue to reveal global inequalities, often harming low-
income communities the most (Botzen et al. 2019; Kharb et al. 2022; Rentschler et al.
2022).

Floods, storms, droughts, heatwaves, and earthquakes remain the most common
disasters globally. Floods caused the highest number of fatalities in Africa and Asia in
2024, while tropical cyclonessuch as Typhoon Yagiand Cyclone Remal affected millions
across Southeast Asia. At the same time, severe droughts in southern Africa and the
Amazon damaged ecosystems and agricultural systems (Delforge et al. 2025). Extreme
heat events are also becoming a major threat, illustrated by the 2024 Saudi Arabia
heatwave that killed over 1,300 Hajj pilgrims (CRED 2025). These trends underscore
the links between climate change, population growth, and hazard exposure.

Disaster impacts are mediated by governance and infrastructure quality. Wealthier
nations experience high economic losses but lower mortality due to stronger
emergency systems, while lower-income regions face disproportionate fatalities and
slower recovery (Botzen et al. 2019; Kharb et al. 2022). Weak data systems further
exacerbate risk: EM-DAT, the most widely used disaster database, lacks consistent
reporting in low-income regions and underrepresents smaller events (Delforge et al.
2025; Gall et al. 2009; Mazhin et al. 2021). This limits accurate assessments for policy
and investment.

Improving resilience requires better data integration and communication. Research
emphasizes that effective early-warning systems depend not only on accurate
forecasts but also on public understanding, trust, and communication clarity
(Saunders et al. 2025; Twigg 2003; Golding 2022). Emerging technologies, like satellite
imagery, crowdsourced observations, and machine-learning models, enable more
localized and timely warnings (Kaku 2019). These innovations align with global policy
frameworks like the Hyogo and Sendai Frameworks, which promote data-driven,
preventive approaches to disaster risk reduction (UNISDR 2015; Delforge et al. 2025).
Yet implementation gaps persist, especially where institutional capacity is limited.

Overall, natural disasters are no longer isolated natural phenomena; they are systemic
challengesshaped by socialinequality, climate change,and infrastructure vulnerability.
Data quality, communication, and governance remain central to improving resilience
and reducing future losses (CRED 2025; Delforge et al. 2025; Saunders et al. 2025).

3.1 Earthquakes

Earthquakes occur when accumulated stress in the Earth’s crust is released along
faults, generating seismic waves and surface shaking (Kanamori and Brodsky 2004).
The elastic rebound process explains how stress builds gradually and is suddenly
released when rock strength is exceeded (Hardebeck and Okada 2018). Although
tectonic motion is the primary driver, environmental factors such as glacial retreat,
permafrost thaw, groundwater depletion, and human activities can influence fault
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stress.

Climate-related surface changes are particularly significant in Alaska. Rapid glacier
melt has reduced crustal loading, increasing stress on nearby faults. Sauber and
Ruppert (2013) found that ice loss brought faults between the coast and the 1979
aftershock zone closer to failure by roughly 0.2-1.2 MPa. Subsequent research showed
that seasonal snow loading, deglaciation, and permafrost thaw alter stress fields in
ways that promote seismicity on upper-crustal faults (Sauber et al. 2021). These findings
build on earlier work by Plafker (1969), whose mapping of upliftand subsidence patterns
after the 1964 Alaska earthquake established the basis for linking glacial mass change
and crustal deformation.

Similar processes occur in California through human-induced hydrological change.
Groundwater pumping in the Central Valley has caused crustal uplift and reduced
normal stress on the San Andreas Fault. Amos et al. (2014) demonstrated that this
unburdening helps explain the seasonal pattern of microearthquakes near Parkfield.
Such studies show that seismicity responds to changes at Earth’s surface, not just
deep tectonic forces.

Earthquakes create profound and lasting societal impacts. The 1994 Northridge
earthquake damaged over 114,000 structures and caused US$41.8 billion in losses,
making it one of the costliest disasters in U.S. history (Petak and Elahi 2001). Fires
ignited by gas and electrical failures further increased destruction (Eguchi et al. 1998).
Similarly, the 1964 Alaska earthquake caused major coastal uplift and subsidence,
drastically altering shorelines, damaging ports, and affecting nearshore ecosystems
(Plafker 1969).

Furthermore, earthquakes often trigger secondary hazards, including tsunamis,
landslides, liguefaction, and urban fires. The 1906 San Francisco earthquake illustrates
this interaction: roughly 80% of total destruction resulted from fires that ignited after
gas and electrical systems failed. More recent research highlights that earthquake-
related fire remains one of the most significant compounding urban hazards (Vitorino
et al. 2024).

In sum, earthquakes are not isolated geological events but dynamic interactions
between tectonic processes, climate-driven mass changes, human activities, and
infrastructure vulnerability. It is, therefore, imperative to learn how to analyze these
factors together for better planning in a changing environment.

3.2 Wildfires

Wildfires are uncontrolled fires that burn vegetation across forests, shrublands, and
grasslands, with their spread governed by fuel conditions, weather, and topography
(Keane et al. 2008; MclLauchlan et al. 2020). They propagate through surface fuels,
ladder fuels, and tree canopies, and their intensity increases under dry, hot, and windy
conditions that promote rapid combustion. Although lightning and other natural
processes can ignite fires, human activities now account for the majority of ignitions,
including power-line malfunctions, equipment sparks, and accidental or negligent
behavior (Balch et al. 2017; Farid et al. 2024). This mixture of natural and anthropogenic
drivers establishes wildfires as both ecological processes and socio-environmental
hazards.
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The ecological impacts of fire are multifaceted. Many western U.S. ecosystems
evolved with periodic low-intensity burning, which facilitates nutrient recycling,
opens habitat, and stimulates regeneration (McLauchlan et al. 2020). Yet the benefits
of fire are increasingly overshadowed by the prevalence of high-severity events.
When fire frequency or intensity exceeds ecological thresholds, vegetation loss, soil
hydrophobicity, and shifts in species composition become widespread (Keane et al.
2008). These degradative effects extend beyond the burn perimeter as post-fire erosion
and sedimentation impair water quality in rivers and reservoirs (Farid et al. 2024). Thus,
contemporary wildfires destabilize landscape processes in ways that differ markedly
from pre-suppression fire regimes.

A major source of modern wildfire risk is long-term fuel accumulation, driven primarily
by twentieth-century fire suppression. After catastrophes like the 1910 Great Fire,
U.S. land agencies adopted suppression policies that minimized the role of natural
burning (Marlon et al. 2012). Although intended to protect timber and settlements,
these policies produced denser forests and heavier fuel loads, making current fires
larger, faster, and more intense. Scientific recognition of fire ecology has since shifted
management toward prescribed burning and managed fire (Huffman et al. 2020), but
the scale of accumulated fuels far exceeds current treatment capacity. This historical
backdrop helps explain why recent fires behave in ways uncharacteristic of many fire-
adapted ecosystems.

Climate change is now amplifying these structural vulnerabilities. Warmer
temperatures, earlier snowmelt, and prolonged drought reduce fuel moisture and
lengthen fire seasons across the western United States (Keane et al. 2008; McLauchlan
et al. 2020). Quantitative attribution studies estimate that between 33% and 82%
of the burned area in several western ecoregions from 1992-2020 is attributable to
anthropogenic climate change, along with roughly 49% of smoke exposure (Feng
et al. 2024). Wildfires themselves contribute to further warming through the release
of carbon dioxide, methane, and black carbon (Farid et al. 2024). This feedback loop,
warming that fuels fires, and fires that in turn reinforce warming, illustrates the deep
interconnection between climatic and ecological processes.

Another critical component shaping wildfire impacts is human settlement in the
wildland-urban interface (WUI). WUI expansion has increased ignition likelihood
and placed millions of homes and residents at direct risk (Balch et al. 2017). The
juxtaposition of flammable vegetation with dispersed housing, limited road access,
and inadequate defensible space complicates both suppression and evacuation
efforts. Smoke exposure further magnifies the human cost, contributing to respiratory
and cardiovascular health effects across wide regions (Feng et al. 2024, Edgeley et al.
2025). As such, the WUI transforms wildfire from a largely ecological phenomenon
into a complex socio-technical hazard.

Collectively, these factors have produced a wildfire regime in California that is
fundamentally different from previous decades. Although ignition frequency has not
dramatically increased, the area burned and severity of fires have risen significantly,
straining suppression resources and complicating post-fire recovery (Farid et al. 2024).
Addressing these challenges requires integrated approaches that combine ecological
fuel management, climate adaptation, land-use planning, and the hardening of
communities and infrastructure. Only with such multi-dimensional strategies can
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California move toward a more sustainable coexistence with
accelerating environmental change.
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4. COMPOUND HAZARDS

Compound hazards occur when multiple drivers or events interact, producing impacts
greater than the sum oftheirindividual effects (Zscheischler et al. 2018; Brett et al. 2025).
These interactions are especially critical in urban environments where infrastructure
systems, like water, power, gas, and transportation, are tightly interconnected. When
one system fails, cascading disruptions can propagate quickly and non-linearly
(Alexander and Pescaroli 2019). Earthquakes combined with fires represent one of the
clearest and most destructive examples of such compound behavior: seismic shaking
damages buildings and lifelines, ruptures utilities, and impairs emergency response,
while fires ignite and spread under compromised conditions (Scawthorn et al. 2006).

Historical earthquakes around the world consistently illustrate that fire is a major
contributor to total losses. The 1906 San Francisco and 1923 Great Kanto events
demonstrate that when ignition rates are high and water systems are damaged, fires,
not the shaking, dominate fatalities and property destruction (Scawthorn et al. 2006;
Schencking 2013). More recent events such as Northridge (1994), Kobe (1995), and the
2011 Great East Japan earthquake also reaffirm the strong coupling between seismic
impacts, gas infrastructure failure, and urban fire spread (Cruz and Suarez-Paba 2019).
Compound-hazard research has traditionally focused on climate-related pairs (e.g.,
heat-drought, flood-storm-surge), leaving technologically mediated events, such
as earthquake-triggered fires or NaTech disasters, comparatively underexamined
(Zscheischler et al. 2018; Brett et al. 2025). Yet the urban and technological dimensions
of these hazard cascades are increasingly relevant as cities densify, infrastructure ages,
and climate change alters baseline stressors on energy systems.

Against this backdrop, understanding how earthquakes interact with fire dynamics
and gas networks is essential for anticipating catastrophic outcomes and addressing
remaining gaps in multi-hazard modeling.

4.1 Post-Earthquake Fires

Post-earthquake fires (PEFs) are among the most devastating secondary hazards in
seismic regions. Historical earthquakes show that fires can surpass shaking-related
losses when lifelines fail and ignition sources proliferate. In the 1906 San Francisco
earthquake, more than 80% of total destruction resulted from fires that burned for
days after gas and water systems were damaged (Vitorino et al. 2024; Baguedano
Julid et al. 2021). A similar pattern occurred in the 1923 Great Kanto earthquake, where
over 110,000 fatalities, most fire-related, were caused by widespread ignitions and the
collapse of response capabilities (Vitorino et al. 2024).

Despite these precedents, PEFs remain insufficiently integrated into seismic design
standards. Building codes generally prioritize structural resistance but rarely account
for fire following earthquake (FFE) conditions, leaving buildings vulnerable once
fireproofing, connections, or partitions are compromised (Vitorino et al. 2024; Mousavi
etal.2008). Thisgapis particularly pronounced for steel moment framesand reinforced
concrete structures, where seismic damage can sharply reduce fire resistance (Alasiri
et al. 2021; Dashti et al. 2025).

Ignition patterns in PEF scenarios follow strong empirical trends. A global review of
49 events shows that fires correlate more closely with shaking intensity and time of
day than with earthquake magnitude (Vitorino et al. 2024). Mealtime hours generate
higher ignition rates due to appliance use. Common ignition sources include ruptured
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gas lines, electrical faults, and open flames, often triggered or exposed by structural
collapse (Hua et al. 2025). These fires then spread more readily when roads are blocked,
water networks are damaged, or communications fail, as seen in Northridge (1994)
and Kobe (1995) (Scawthorn 1986; Tian et al. 2025; Nishino 2023).

Modeling capabilities for PEFs have advanced substantially, with early geometric
approaches having been replaced by probabilistic, GIS-based, and physics-informed
methods (Baquedano Julid et al. 2021). Ren and Xie (2004) incorporated Huygens'
Principle to simulate urban fire spread under varying winds and densities. More
recently, Nishino et al. (2023) developed Monte Carlo and hierarchical Bayesian
frameworksthatintegrateignition uncertainty, urban morphology, firefighter mobility,
and infrastructure fragility, allowing realistic scenario generation even in data-limited
contexts. These tools help planners test interventions, evaluate worst-case outcomes,
and prioritize investments.

Mitigation strategies span building-level, urban, and regional scales. At the structure
level, maintaining active fire systems (sprinklers, alarms), securing utilities, and
upgrading passive fire protection are essential (Mousavi et al. 2008). At the city scale,
flexible gas connections, water system redundancy, alternative water sources, firebreak
corridors, and coordinated emergency communication networks are crucial (KUarum
Varolglnes and Varolgunes 2025; Vitorino et al. 2024). BIM-based simulations further
support evacuation planning by showing how smoke can render corridors impassable
within minutes (Lofti et al. 2021).

Even with improved science, significant gaps remain. Social behavior, delayed
evacuations, and community-led response are rarely modeled; most analyses rely
on U.S. and Japanese case studies, leaving large parts of the world without tailored
assessments (Vitorino et al. 2024). European historical districts, for example, pose
unique challenges, as highlighted by Baquedano Julia et al. (2021), due to narrow
streets, combustible materials, and limited fire separations.

PEFsthereforerepresentadecisivecomponentofearthquakerisk, requiringintegrated,
multi-scale planning and recognition of their central role in urban disaster outcomes.

4.2 Earthquake-Gas Pipeline-Fire Relationship

Earthquakes and urban fires are tightly linked through the vulnerability of natural gas
infrastructure.Buried pipelinesexperiencedeformationfromfaultrupture,liguefaction,
lateral spreading, and wave-propagation strain. Older systems, particularly cast-iron
pipes and brittle joints, are highly susceptible to breakage, with failure probabilities
increasing sharply once peak accelerations exceed ~0.7g (Ueno et al. 2004). When
leaks ignite due to electrical faults, sparks, or open flames, cascading urban fires can
develop and quickly overwhelm limited suppression capabilities (Lee et al. 2008).

Historical eventsrepeatedlyillustrate this pattern.Inthe 1906 San Francisco earthquake,
gas mains ruptured across the city, contributing to dozens of simultaneous ignitions
(Scawthorn et al. 2006). The 1994 Northridge earthquake produced around 110 post-
quake fires, many linked to natural gas failures, including the Balboa Boulevard fire
that destroyed multiple homes (Cruz and Suarez-Paba 2019). During the 1995 Kobe
earthquake, damage to buried gas facilities and joint failures led to over 200 gas-
leak fires and disrupted service to roughly 857,000 customers (Cruz and Suarez-Paba
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2019). NaTech incidents, such as the refinery fires during the 2011 Great East Japan
earthquake, further illustrate how technological systems amplify earthquake impacts.
Modeling the earthquake-gas-fire chain remains challenging. Fragility functions for
pipelines are limited and often derived from small datasets, urban fire models seldom
integrate lifeline failure, and proximity effects, such as clustering of gas corridors and
dense housing, are difficult to represent accurately (Piccinelli et al. 2013; Krausmann et
al. 2019). Yet the mechanisms are well understood: ground deformation causes leaks,
ignition likelihood rises with interaction between utilities, and compromised water
systems reduce suppression capacity (Jones et al. 2008).

This nonlinearity matters because small changes in ignition probability or response
delay canshift outcomesfrom isolated firesto block-level conflagrations. Co-location of
faults, liquefaction zones, and densely built neighborhoods creates hazard “hot spots”
where gasinfrastructure and population exposure overlap. Fires can also feed back into
infrastructure failure by damaging power lines, substations, and telecommunications
equipment.

Targeted interventions offer substantial risk reduction. Automatic shutoff valves,
excess-flow limiters, sectionalized mains, and prioritized replacement of brittle
pipes all reduce leak likelihood. Water system redundancy, like firefighting cisterns,
fireboats, and emergency hydrants, improves suppression under lifeline failure. San
Francisco's Marina District during the 1989 Loma Prieta earthquake is a notable
example: liquefaction destroyed hydrants, but the fireboat Phoenix provided critical
water supply that prevented widespread conflagration.

In summary, the interaction between earthquakes, gas networks, and fire is a classic
cascading hazard. Damage to pipelines increases ignitions, water network failures
limit suppression, and urban density accelerates fire spread. Addressing this requires
integrated, multi-hazard data, coupled simulations,and infrastructure-aware planning
that reflects the realities of interconnected urban systems (Zscheischler et al. 2018;
Piccinelli et al. 2013; Jones et al. 2008).
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5. CALIFORNIA HAZARD
LANDSCAPE

California’s hazard landscape has grown increasingly complex due to climate change,
aginginfrastructure,and continueddevelopmentin high-riskareas. While earthquakes
have traditionally shaped statewide preparedness, wildfires now occur more frequently
and impose greater socioeconomic impacts. From 1953 to 2024, the state experienced
386 federal disaster declarations, with nearly one-third since 2015 and 289 linked to
wildfire (Ermagun et al. 2025). Burned area has increased nearly fivefold between 1971-
1995 and 1996-2021 (Turco et al. 2023), driven largely by anthropogenic climate change
(Dahl et al. 2023; Turco et al. 2023). In contrast, earthquakes accounted for only 7% of
emergency declarations from 1950 to 2017 (Legislative Analyst's Office 2019), though
their potential for cascading failures remains severe (Li et al. 2024; Comfort 2021).

The current problem of climate change only amplifiesrisk across hazard types. Warmer
conditions increase vapor pressure deficits, drying vegetation and intensifying fire
seasons (Turco et al. 2023). At the same time, critical infrastructure, designed for
historical climate conditions, struggles to withstand modern extremes (Moftakhari
and AghaKouchak 2019). Compound events such as wildfire-rainfall sequences also
pose growing threats, exemplified by the 2018 Montecito debris flows following severe
wildfire (Moftakhari and AghaKouchak 2019). As temperatures rise, these multi-hazard
seguences are expected to increase (Nemeth et al. 2024).

Energy systems face elevated exposure to compound hazards. Wildfire, landslide,
erosion, and runoff threaten both above- and below-ground pipeline infrastructure,
particularly in Northern and Central California (Moftakhari and AghaKouchak 2019).
Above-ground gas facilities melt or fail under wildfire conditions, while underground
lines are damaged by flooding, sedimentation, and ground movement. Projections
suggest that even currently low-risk regions, such as the Mojave and Sonoran Deserts,

will experience increased compound hazard exposure in coming decades.

Social vulnerability further intensifies this bleak hazardscape. More than 2.9 million
Californians live within one kilometer of oil and gas infrastructure in wildfire-prone
areas, disproportionately affecting Black, Hispanic, and Native American communities
(Gonzalez et al. 2024), with many lacking access to mitigation resources, insurance,
or resilient infrastructure (MacCarthy et al. 2024; Thomas 2024). Meanwhile, aging
networks amplify risks: gas systems face safety and compliance challenges as
midstream networks deteriorate (Saran et al. 2024), and electricity systems suffer
escalating outage potential as assets exceed design lifespans (Lo et al. 2019; Do et al.
2023).

Riskcommunication systemsalsolag behind these evolving threats. Publicframeworks
often treat hazards in isolation, failing to convey the interconnected nature of wildfire,
infrastructure vulnerability, and post-earthquake risks (Nemeth et al. 2024). This
communication gap disproportionately harms socially vulnerable communities and
complicates emergency response.

Mitigation requires integrating land management, infrastructure upgrades, and
inclusive planning. Fuel treatments (prescribed burns, thinning, grazing) reduce
wildfire severity when applied systematically (Oliveira et al. 2016; Murray et al. 2023).
Transportation and utility networks need safe-to-fail design with redundancy to
withstand cascading events (Fraser et al. 2022). Zoning reforms, updated building
codes, and community-centered resilience planning are crucial for long-term
adaptation (Shives et al. 2025; Bondi and Kaewwilai 2020; MacCarthy et al. 2024).
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California’'s hazard environment is thus defined by the convergence of climate
pressures, infrastructure fragility, and social inequity. Understanding this context is
essential for assessing risk to critical systems such as gas networks and for advancing
resilience across diverse communities.

5.1 WUI Zones

The wildland-urbaninterface (WUI),where homes meet orintermingle with flammable
vegetation, is one of the fastest-growing and most hazardous landscapes in California
(Radeloff et al. 2005; 2018). Over one-third of California households now reside in WUI
areas, with nearly 1.5 million new homes built there from 1990 to 2020 (Greenberg et al.
2024). This expansion places millions at heightened wildfire risk due to direct exposure
to flames, radiant heat, and wind-driven embers (Wilkin et al. 2025). California’s fire-
adapted ecosystems and steep topography further intensify this threat (Thapa et al.
2023).

Most WUI fires are human-caused, by accidents, infrastructure failures, or negligence,
raising ignition likelihood as development expands (Radeloff et al. 2018; Calvifo-
Cancela et al. 2016). Firefighting is further complicated by dispersed housing, narrow
roads, and limited water supply, making evacuations dangerous. The 2018 Camp
Fire showed how bottlenecks and limited exit routes can turn evacuations into life-
threatening events, especially for elderly or mobility-limited residents (Thapa et al.
2023).

Compliance with defensible space and fire-resistant construction codes remains
inconsistent. Inspections show that a majority of WUI homes fail to meet vegetation
clearance or ember-resistant standards (Wilkin et al. 2025). Meanwhile, WUI growth
disrupts ecosystems, fragments habitats, and introduces invasive species (Radeloff et
al. 2005; 2018). Fire suppression to protect homes further alters natural fire regimes,
increasing fuel accumulation (Thapa et al. 2023). Smoke from burning structures also
produces toxic pollution with regional health impacts (Qiu et al. 2025).

Socioeconomic dynamics intensify vulnerability. Wealthier residents often seek scenic
WUI locations, benefiting from insurance and political resources, while California’s
housing shortage pushes lower-income households into more isolated, high-risk WUI
areas (Debats Garrison and Huxman 2020; Greenberg et al. 2024). Recovery after fires
often follows inequitable trajectories: affluent households rebuild more easily, while
vulnerable groups experience permanent displacement (Amiri et al. 2025).

Advances in WUI mapping and modeling provide better tools for managing risk.
Gong et al. (2024) incorporate housing density, vegetation cover, and fire occurrence
to delineate high-risk zones. Masoudvaziri et al. (2021) integrate wildfire hazard,
exposure,and demographic vulnerability to identify hotspot communities, particularly
useful for regions like the Sierra Nevada foothills. These methods support planning for
evacuation routes, fuel treatments, and zoning restrictions.

Recent events underscore the urgency of better governance. The 2025 Los Angeles
fires caused US$250 billion in damages and destroyed over 16,000 structures, largely
in WUI neighborhoods (Qiu et al. 2025). Such fires illustrate that WUI disasters are not
simply ecological problems but socio-technical crises shaped by settlement patterns,
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building practices, and infrastructure limitations.

Policy solutions must combine fuel management, resilient building standards,
equitableinsurance models,and land-use planning. Without coordinated intervention,
ongoing WUI expansion and climate change will deepen California’s wildfire crisis and
increase exposure to cascading hazards.

5.2 Gas Networks

California’s natural gas networks, comprising high-pressure transmission pipelines,
local distribution lines, and underground storage, form a critical energy lifeline. They
support heating, electricity generation, and industrial operations while interacting
with water, electricity, and transportation systems. Their complexity makes them
particularly vulnerable to disruption during natural hazards, especially earthquakes.
Seismic damage to pipelines arises from fault rupture, liquefaction, lateral spreading,
and differential settlement. The 1994 Northridge earthquake ruptured both
transmissionanddistributionlinesalong Balboa Boulevard,igniting firesthat destroyed
five homes (O'Rourke and Palmer 1994, Bain et al. 2024). Older oxy-acetylene welds
performed poorly compared to modern electric arc welds (Bain 2023). The 1989 Loma
Prieta earthquake caused liquefaction-induced failures in San Francisco's Marina
District, where ruptured gas mains ignited fires and hydrant failure forced reliance on
the fireboat Phoenix (Schmidt et al. 2014; O'Rourke and Palmer 1994, Scawthorn et al.
1992).

Minor ground deformation canalso cause significant pipeline damage, asdocumented
by Schmidt et al. (2014). Similar vulnerabilities are observed in global incidents such
as the 2004 Ghislenghien explosion in Belgium and the 2010 Dalian disaster in China.
U.S. events, including the 2018 Merrimack Valley explosions and the 1965 Natchitoches
pipeline tragedy, highlight failures related to over-pressurization, mismanagement,
corrosion, and outdated materials (Ly 2019).

California’'ssystem hasfaced high-profilefailures,such asthe 2015 Aliso Canyon blowout,
the largest methane release in U.S. history, caused by corrosion and inadequate
maintenance. These cases underscore that pipeline risk arises not only from natural
hazards but also from aging infrastructure, operational errors, and regulatory gaps.
Multi-hazard perspectives are essential for understanding pipeline vulnerability.
Wildfire can melt above-ground equipment; floods, landslides, and erosion can
expose or rupture buried lines; and earthquakes can generate widespread leaks that
lead to urban fires. Integrated GIS-based models that combine seismicity, liquefaction
susceptibility, WUI expansion, infrastructure age, and population exposure can guide
targeted retrofits and risk mitigation.

In this context, strengthening California’s gas networks requires replacing brittle
materials, improving corrosion monitoring, enhancing shutoff and pressure-control
technologies, and prioritizing upgrades in geohazard-prone zones. As climate
pressures and urban expansion continue, the resilience of these systems is central to
reducing the severity of future disasters.
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6. CASE STUDY: SAN
FRANCISCO BAY AREA

Thissection ofthethesisbringstogetheralltheelementsdiscussedin previouschapters
in ordertoframe the San Francisco Bay Area as the case study investigated in this work.
Commonly referred to as the Bay Area, the location is one of the most dynamic and
complex regions in California, both socially and environmentally. It encompasses nine
counties (San Francisco, Alameda, Contra Costa, Marin, Napa, San Mateo, Santa Clara,
Solano,and Sonoma - see Figure 1) and includes a diverse mix of urban, suburban, and
rural environments. The region is centered around the San Francisco Bay, an estuarine
system that significantly influences the area’s climate, ecology, and development
patterns. The Bay Area’s delimitation as a distinct geographic and socio-economic
unit is rooted in its interconnected infrastructure, shared environmental systems,
and integrated economy. Its boundaries are not merely administrative but reflect a
cohesive region tied together by daily commuting flows, regional planning agencies
such as the Metropolitan Transportation Commission (MTC) and the Association of
Bay Area Governments (ABAG), and shared vulnerabilities to natural hazards.

Socially, the Bay Area is home to over 7.7 million residents and stands as one of the
most densely populated and economically significant regions in the United States
(Bay Area Census 2020). It is characterized by a strong concentration of technological
industries, particularly in Silicon Valley, which contributes to both regional affluence
and socio-spatial inequality. The region’'s infrastructure, comprising dense
transportation networks, energy systems, and extensive urban settlements, makes
it particularly sensitive to compounding hazards. The proximity between residential
areas and critical lifelines, such as gas transmission networks operated by Pacific Gas
and Electric (PG&E), increases the potential for multi-hazard interactions, especially in
the aftermath of earthquakes.

Natural characteristics further heighten the Bay Area’'s complexity and vulnerability.
The region is defined by its position along the Pacific coast and its proximity to major
active fault systems, including the San Andreas and Hayward faults. These faults
have historically generated significant seismic events, such as the 1906 San Francisco
earthquake and the 1989 Loma Prieta earthquake, both of which caused widespread
infrastructure damage and secondary fires (Scawthorn et al. 2006). The presence of
these faults, combined with a dense gas pipeline network, creates conditions under
which earthquakes can easily trigger compounding hazards like gas leaks and fires,
making the area an ideal case study for research on earthquake impacts on gas
infrastructure and subsequent fire activity.

Environmental diversity is another defining feature of the Bay Area. The region’s
Mediterranean climate supports a mix of vegetation types, ranging from coastal
scrublands and grasslands to dense chaparral and oak woodlands. These ecosystems
are highly flammable during the dry summer and fall months, when prolonged
droughts, low humidity, and high winds amplify wildfire risks (Keeley and Syphard
2018). The region also contains extensive wildland-urban interface (WUI) zones. These
areas, found prominently in the East Bay Hills, Marin County, and parts of Santa Clara
and Sonoma counties, represent some of the highest fire risk zones in California, as
the combination of fuel continuity, steep topography, and human presence facilitates
ignition and rapid fire spread (Radeloff et al. 2018).

The proximity of the ocean further influences the Bay Area's microclimates and
vegetation distribution. Coastal fog and marine breezes help moderate temperatures
and occasionally provide moisture that can delay the onset of fire season in some
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locations. However, these same meteorological conditions can also transport smoke
and pollutants from inland fires toward coastal commmunities, amplifying air quality
issues and regional health impacts. The ocean’s moderating effect also contrasts with
the dry inland valleys, creating sharp climatic gradients that influence vegetation
flammability and hydrological patterns across short distances (Martin 2008; Weiss et
al. 2013; Chow et al. 2022).

The Bay Area’s significance extends beyond its own boundaries, as its infrastructure,
economy, and environmental systems are deeply interconnected with those of
surrounding regions. Energy transmission lines, transportation corridors, and supply
chains link the Bay Area with Central and Northern California, meaning that any
disruption, such as a large earthquake or widespread fire, could have cascading
consequences at the state and national level. The region’s ports, financial institutions,
and technological industries are vital to California’s and the U.S. economy, reinforcing
the importance of safeguarding its critical infrastructure from multi-hazard events
(Tam and Johnson 2020; Cal OES 2023).

For these reasons, the Bay Area is a highly significant study area for investigating the
relationship between earthquake-induced damage to gas networks and subsequent
fire activity. Its unique combination of dense population, active fault lines, aging
energy infrastructure, and extensive WUI zones provides a natural laboratory for
understanding compounding and cascading hazards. Research in this region not
only contributes to local disaster resilience but also offers insights applicable to other
seismically active urban regions worldwide. The Bay Area’s social, infrastructural, and
environmental vulnerabilities, when analyzed together, highlight the urgent need
for integrated risk assessment approaches capable of addressing the intersection
between seismic and fire hazards in an era of increasing urbanization and climate
stress.
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7. METHODOLOGY

The methodology developed for this study combines geospatial analysis, multi-criteria
decision-making, and seismic risk modeling in order to evaluate compound hazards
in the San Francisco Bay Area. The first component of the analysis involved the use of
Geographic Information System (GIS) data processed in QGIS to create a detailed fire
risk index map. This map was developed through spatial analysis techniques and the
application of Multi-Criteria Decision Analysis (MCDA) using the Analytic Hierarchy
Process (AHP), which allowed the weighting and integration of several fire-related
parameters selected by the author. The second component focused on seismic
activity modeling performed in OpenSRA, applying the Uniform California Earthquake
Rupture Forecast, Version 3 (UCERF3) model, to assess potential ground failure and
its effects on gas transmission infrastructure. Finally, the results from both analyses
were combined to examine how earthquake-induced pipeline damage may interact
with fire susceptible zones, providing an integrated perspective on the interaction
and progression of compound hazards across the region.
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7.1 GIS-MCDA-AHP

Geographic Information Systems (GIS) have become an indispensable tool in natural
hazard research, providing the capacity to integrate, analyze, and visualize complex
datasets within a spatial framework. Their value lies in the ability to unify diverse
information into coherent models that capture the dynamics of risk across both
natural and built environments. Unlike purely statistical or engineering approaches,
GIS situates hazards within their geographic and socio-ecological contexts, enabling
a more complete understanding of where multiple threats converge. This integrative
capability is particularly relevant in multi-hazard assessments, where compounding
risks frequently emerge at the intersection of seismic activity, wildfire exposure, and
infrastructure vulnerability (Burrough and McDonnell, 1998; Goodchild, 2006).

Within this framework, Multi-Criteria Decision Analysis (MCDA) representsa prominent
application of GIS, allowing multiple spatial criteria to be combined according to their
relative importance. The method enables the construction of composite indices that
represent spatial variations in hazard susceptibility and has been widely adopted
for wildfire risk mapping. Malczewski (1999) established the theoretical basis for
integrating MCDA within GIS, emphasizing its ability to incorporate both expert
judgment and empirical evidence. Among MCDA methods, the Analytic Hierarchy
Process (AHP) has become one of the most widely used due to its structured pairwise
comparison approach, which provides a transparent and consistent mechanism for
assigning weights to different factors (Saaty 1987; 1990). Studies have shown that AHP
effectively balances qualitative and quantitative criteria, reduces subjectivity through
consistency checks, and allows replication across diverse spatial. For these reasons,
the AHP method was selected for this study as the most appropriate approach to
systematically weight and integrate the parameters influencing wildfire susceptibility
in the Bay Area.

The effectiveness of GIS-based MCDA-AHP has been demonstrated in numerous
wildfire assessments. In California, Chuvieco et al. (2014) and Keeley and Syphard (2018)
applied weighted overlay techniques to map wildfire risk and prioritize management
zones, while other studies used similar approaches to support post-fire restoration
planning. Beyond California, studies in Greece, Turkey, and Iran have applied GIS-AHP
to model wildfire hazard under future climate scenarios, integrating biophysical and
social factors to identify areas of highest vulnerability. At a finer scale, Li et al.(2021)
enhanced Wildland-Urban Interface (WUI) mapping in California by combining
building footprint and vegetation data, illustrating the adaptability of AHP-based
GIS frameworks to detailed landscape analysis. These studies collectively support the
reliability and transferability of GIS-AHP methods for regional hazard assessment.

Although GIS-based wildfire assessments are widely developed, relatively few studies
have explicitly addressed the interaction between fire risks and pipeline vulnerability.
This represents a significant gap in hazard research, as gas transmission infrastructure
can play a critical role in amplifying the impacts of natural disasters. Gas leaks and
explosions are known to intensify fire behavior and complicate suppression efforts,
particularly whenthey occuralongside seismic events. Post-earthquake firesare a well-
documented secondary hazard, often resulting from ruptured pipelines or damaged
gas distribution systems. Historical examples such as the 1994 Northridge earthquake,
which triggered multiple fires following pipeline ruptures, illustrate the potential for
infrastructure damage to escalate into large-scale fire incidents (Yegian et al. 1995;
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Seismic Safety Commission 1995). Despite the precedents, the spatial relationship
between seismic-induced pipeline damage and wildfire exposure has rarely been
examined through an integrated modeling framework. Addressing this gap offers
an opportunity to advance vulnerability assessment by revealing new pathways of
cascading risk in seismically active and fire-prone regions.

California provides an ideal setting for exploring this interconnection. The state
combines some of the most severe wildfire recurrence patterns in the world with
an extensive and aging gas transmission network that traverses active fault systems
and densely populated Wildland-Urban Interface (WUI) zones (Radeloff et al. 2018).
Its complex topography, Mediterranean climate, and history of both large wildfires
and damaging earthquakes make it an unparalleled case study for evaluating the
overlap of seismic and fire hazards. Furthermore, California’s regulatory and data-rich
environment provides the necessary foundation for implementing a comprehensive,
GlS-based multi-hazard analysis.

Parameters Description Publication Website

Radeloff, Volker C., Da-

Wildland-Urban vid P. Helmers, H. Anu

ntertace (WU | 15015 19070 US| mer ot o 20
“Rapid Growth of the

USGS National Land Cover US Wildland-Urban

Vegetation Data (NLCD) to spatially Interface Raises Wildfire https./silvis.forest.wisc.

Coverage represent the Wildland-Ur- | ., : edu/data/wui-change/
9 ban Interface (WUI) as Zlégo:g?;iig/ggf o(;‘fthe
defined by the Federal Y

Sciences 115 (13): 3314-19.

Register (66:751, 200]). https./doiorg/10.1073/

Housing Density

pPNas.1718850115.
GIS data containing a Short, K. C. 2014. "A Spa-
spatial database of wildfire | tial Database of Wildfires
Historical Ignition ignition points in the Unit- |in the United States, https://wvv\/\/fs.usdcr‘
Points ed States from 1992-2020, |1992-2011." Earth System | gov/rds/archive/cata-

compiled from federal, Science Data 6 (1): 1-27. log/RDS-2013-0009.6
state, and local fire agency | https./doi.org/10.5194/
reports. essd-6-1-2014.
GIS data depicting road
networks in the San Fran- https.//opendata.
cisco Bay Region, compiled mtc.ca.gov/datasets/

Road Network from county-level shape- - MTC:san-francis-
files by the Metropolitan co-bay-region-road-
Transportation Commis- ways/about
sion.

GIS data from CAL FIRE
delineating Fire Hazard
. Severity Zones (FHSZ),

Fire Hazard based on datasets from

Severity Zones | /| r/pE FRAP, CANSAC _

https.;/fosfm.fire.ca.gov/
what-we-do/commu-
nity-wildfire-prepared-
ness-and-mitigation/

(FHSZ) the U.S. Census Bureau, the fire-hazard-severi-
U.S. Geological Survey, and ty-zones
other public GIS databases.
Table 1 Selected parameters and their sources.
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Building on the strengths of earlier GIS-based wildfire assessments and addressing
the clear research gap in multi-hazard modeling, this study develops a Fire Risk Index
for the San Francisco Bay Area by integrating six spatial parameters identified as key
drivers of wildfire susceptibility: Wildland-Urban Interface (WUI) zones, Fire Hazard
Severity Zones, vegetation coverage, housing density, historical ignition point density,
and road proximity to ignition sources. These layers were processed and standardized
in QGIS to ensure comparability and were later combined into a single composite
map that represents the spatial distribution of fire risk across the region. This index
then serves as the foundation for linking wildfire susceptibility with seismic pipeline
damage, enabling a detailed assessment of cascading hazard potential.

To establish how much each parameter contributes to overall fire risk, the study
applied the Analytic Hierarchy Process (AHP) developed by Saaty (1987). AHP was
chosen because it provides a structured way to transform literature-based evidence
and expert judgment into numerical weights through pairwise comparisons. This
approach is widely used in wildfire susceptibility studies due to its transparent and
repeatable method for ranking multiple interacting factors (Adaktylou et al. 2020;
Greene et al. 2011; Gigovic et al. 2018).
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7.1.1 Definition of the Parameters

The first step of the MCDA-AHP analysis was to define the goal of the model and
identify the criteria that influence wildfire susceptibility in the Bay Area. The objective
was to create a single wildfire risk map that represents the combined effect of several
environmental and human-related factors. Six parameters were selected based on
their relevance in wildfire research: Wildland-Urban Interface (WUI) zones, Fire Hazard
Severity Zones (FHSZ), vegetation coverage, housing density, historical ignition density,
and road proximity to ignition sources.

The datasets used for each parameter were collected from established and reliable
sources, which are summarized in Table 1. After gathering the data, each parameter
was processed in QGIS to ensure consistency across the entire study area. Because the
datasets came in different formats and units, they were first converted into a raster
format, allowing the landscape to be represented as a uniform grid of cells that can be
compared directly across layers. Each raster was then normalized to a 1-5 scale, with
the risks being classified as:

1= Very Low
2=Low

3 = Moderate
4 = High

5 = Very High

This normalization step ensures that all parameters contribute proportionally to the
final model and prevents differences in measurement units from influencing the
results. Once standardized, each parameter produced its own risk map, and these
individual layers were later overlapped and combined using the AHP-derived weights
to generate the final integrated wildfire risk map.

Methodology 33



7.1.1.1 Wildland-Urban Interface (WUI)

The wildland-urban interface (WUI) constitutes a zone of particular concern for
wildfire risk, because it combines human ignition sources, built infrastructure, and
combustible fuels. Research demonstrates that both interface zones (where structures
meet wildland) and intermix zones (where structures and fuels intermingle) carry
elevated risk compared to developed areas isolated from fuel (Taccaliti et al. 2023; Mell
et al. 2010).

For that reason, WUI was selected as a parameter. The WUI map developed by
Radeloff et al. (2018) was selected for this study, imported into QGIS and reclassified
into three categories: non-WUI (areas beyond or separated from wildland fuel),
interface WUI and intermix WUI. Recognizing that intermix zones typically present
the greatest vulnerability (fires can ignite in vegetation and transition into structures,
while structural fuels can also contribute to spread), values of 1, 3 and 5 were assigned
respectively (see Figure 3), within the established 1-5 scoring framework, to map
relative risk contributions. The choice of 1-3-5 (rather than a linear 1-2-3) reflects the
need to preserve meaningful separation between low, moderate and high risk, and
to maintain compatibility with other criteria in the composite overlay risk calculation.

In doing so, the WUI parameter is ensured to contribute appropriately to the overall
fire-risk map, directing attention and resources toward those zones (especially intermix
WUI) which, according to empirical studies, are at greatest risk of ignition, fire spread
and built-environment damage (Taccaliti et al. 2023).
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Figure 3 Intermix and interface WUI zones in the Bay Area.
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7.1.1.2 Fire Hazard Severity Zones (FHSZ)

Fire hazard severity zones were integrated into the fire risk model using official data
from the California Department of Forestry and Fire Protection (CAL FIRE), which
classifies all areas of the state into three risk categories: moderate, high, and very high.
Using this dataset ensures consistency with state-level fire management and hazard
assessment frameworks while providing a scientifically validated basis for further
spatial analysis. The map was clipped to fit the Bay Area, focusing the assessment on
the study region’s local geographic and environmental conditions.

To maintain consistency across all fire risk parameters, the CAL FIRE map was
reclassified. The original three categories were aligned with values 3, 4, and 5. A buffer
zone was created around the CAL FIRE severity zones to represent transitional areas
with lower but still relevant exposure to wildfire hazard. This buffer was assigned a
value of 2, acknowledging that fire risk does not decrease abruptly outside mapped
hazard boundaries, as ignition and spread often extend beyond these zones (Chuvieco
et al. 2014).

All remaining areas in the Bay Area not covered by either the official severity zones
or the buffer were assigned the value 1. This ensures full spatial coverage while
maintaining proportional differentiation of hazard across the study area. The resulting
five-class map (see Figure 4) allows for finer granularity and comparability across
parameters, which is consistent with established methodologies for multi-criteria fire
risk mapping (Fiorucci et al. 2024).
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Figure 4 Fire Hazard Severity Zones in the Bay Area.
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7.1.1.3 Vegetation Coverage

Vegetation Coverage

1]
Vegetation was selected as a core parameter due to its fundamental role in both 2 [
the ignition and propagation of fires. Vegetation represents the primary source of iE
combustible material within a landscape, directly influencing the likelihood, intensity, s

and spread of wildfires. Areas with higher proportions of vegetation, particularly those
containing dry or continuous fuel loads, are more prone to ignition and sustain faster
rates of fire spread once ignited.

The role of vegetation as a determinant of fire behavior has been extensively
documented in wildfire ecology and risk modelling literature. Loudermilk et al. (2022)
describe vegetation as not only the fuel for fires but also a structural element that
shapes how fires behave across the landscape, influencing factors such as flame
height, heat release, and rate of spread. Similarly, Thonicke et al. (2010) demonstrate
through global vegetation-fire modelling that vegetation characteristics, including
composition, structure,and continuity,areamong the primary controls of fire dynamics
and burned area extent. The composition and dryness of vegetation therefore have
direct implications for the probability of ignition and the potential severity of a fire
event.

Fires originating in vegetated areas behave differently from those in urban or built
environments. In vegetated regions, the continuity of fuel allows fires to spread rapidly,
driven by abundant biomass and the presence of ladder fuels that facilitate vertical
fire movement. The presence of shrubs, grasslands, and forested areas contributes
to higher heat release rates and broader spatial propagation compared to ignition in
built-up areas, where fire spread is generally constrained by breaks in fuel continuity.

(6] 10 20 30 40 50km
According to Chuvieco et al. (2014), the spatial configuration of vegetation cover is one @ L1
of the key determinants of wildfire propagation, as continuous vegetation provides
the necessary connectivity for fire expansion across the landscape. Figure 5 Vegetation coverage in the Bay Area.

In this study, vegetation was incorporated as a quantitative variable expressed as the
percentage of vegetation cover. Data were extracted from available census and land Hazard Class Wildland vegetation in %
cover datasets, comprising categories such as forests, grasslands, and wetlands. This 1 0-95

approach allowed for the spatial representation of fuel availability, providing a basis

for comparison among regions with varying vegetation densities. Areas with higher 2 9.5-31.2
vegetation percentages were assigned higher risk values, on a scale of 1to 5, as they 3 312 -56.7
represent environments with greater combustible potential and, consequently, a

higher probability of fire ignition and spread. The raw data used for classification of & 6.7-826
the vegetation patterns can be seen in Table 2. 5 82.6 - 100

Table 2 Wildland vegetation cover and the hazard classes
assigned to each range. Data refers to 2019 surveys.
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7.1.1.4 Housing Density

Housing density was included because it influences both the likelihood of ignition
and the vulnerability of people and structures during wildfire events. Areas with many
homes have more human activity and more potential ignition sources, and they also
contain larger populations and a greater number of buildings that may be threatened.
High housing density therefore reflects elevated exposure for residents as well as a
higher potential for loss of homes.

The relevance of this parameter is well established in wildfire research, especially in
the Wildland Urban Interface (WUI), where residential areas directly border flammable
vegetation. Homes in these zones are highly exposed to embers, radiant heat, and
advancing flames (Radeloff et al. 2018; Cohen 2000). In California, continued growth
withinthe WUI has substantially increased structure loss and risks to human life during
wildfire events (Syphard et al. 2019).

Typical construction practices also add to the importance of this factor. Approximately
90 to 94% of homes in the United States are built with light wood framing and drywall,
which ignite easily and allow fire to spread once exposed to heat or embers. Wind-
driven embers can ignite structures far ahead of the flame front, and burning homes
can ignite others nearby, especially in dense developments (Alexandre et al. 2016).

This map, like the others, was assigned values of risk between 1 and 5 in order to
maintain continuity between datasets (see Figure 6). It is possible to see a clear pattern
of urbanization in the areas in closest proximity to the San Francisco Bay, with housing
density decreasing in areas where vegetation is most prevalent. Table 3 shows the
original dataset of housing density (units/km?2) in the Bay Area, 2020, before it was
converted into hazard classes. The table also shows what hazard value each range was
assigned to.
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Figure 6 Housing density in the Bay Area. The urban corridors are very obviously located around the Bay, be-
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Hazard Class

Housing density (units/km?2)

1

O - 868

868 - 4014

4014 - 13217

13217 - 41291

2
3
4
5

41291 - 99649

Table 3 Housing density in the Bay Area and the hazard classes
assigned to each range. Data refers to 2020 surveys.
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7.1.1.5 Ignition Density

Another fundamental parameter was the spatial distribution of historical ignition
points. These represent the geographical locations where fires have been recorded in
the past and therefore constitute a direct indicator of areas with demonstrated sus-
ceptibility to fire ignition (Costafreda-Aumedes et al. 2016). The ignition point dataset
was imported into QGIS for spatial analysis and visualization. The first analytical step
consisted of generating a kernel density heatmap, which converts discrete ignition
points into a continuous surface representing ignition density. This process allows the
identification of hotspots of fire activity, where ignition events are spatially clustered
and thus indicate areas of heightened ignition likelihood. The heatmap was subse-
qguently rasterized to ensure compatibility with other layers. However, because some
areas contained no ignition points, portions of the Bay Area fell outside the resulting
raster coverage. To maintain consistency across layers, all of which must share the
same spatial extent to allow accurate calculation of summmed raster values, these gaps
were filled with cells assigned a value of O. This preserves the ability to overlay the
heatmap with the other datasets while ensuring that the added cells do not influence
the final analysis, as they represent a separate, non-impactful class.

Using historical ignition data as a primary fire-risk criterion is well established in the
literature. Historical ignitions have been demonstrated to be strong predictors of fu-
ture fire occurrence, since they capture the combined effect of environmental, cli-
matic, and human factors influencing fire likelihood over time (Chuvieco et al. 2014).
Furthermore, kernel density estimation (KDE) has been widely adopted in wildfire risk
mapping as an effective means of transforming point occurrences into continuous
probability surfaces that facilitate spatial modeling and comparison (Guo et al. 2024;
Oliveira et al. 2016). By rasterizing this layer, the analysis ensured methodological con-
sistency among all datasets and allowed for weighted overlay analysis in subsequent
steps.

Legend

[] Bay Area Counties

Ignition Points

San Francisco County
Close-Up

Figure 7 Historical ignition
point data. Sourced from
Short (2014). Data shown be-
fore being transformed into a
heatmap. The large amount
of points makes compre-
hension difficult, therefore, a
close-up of the San Francisco
County is provided in order
to add perspective to the
dataset.
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Figure 8 Initial ignition density pattern. It
is possible to see how the county of Sola-
no has large sparse areas of no data. That
region was assigned a value of O so the map
could have the same resolution and spatial
boundaries as the others, ensuring a proper
overlay later on in the analysis.
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Figure 9 Ignition density in the Bay Area.
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7.1.1.6 Road Proximity to Ignition Sources

The road network was also chosen as a key parameter due to its strong association
with human-caused ignitions and its critical role in both the onset and management
of wildfires. Roads represent one of the most influential forms of human infrastructure
in relation to ignition probability, particularly where they intersect vegetated or
non-urbanized areas. Numerous studies have demonstrated that wildfires are
disproportionately ignited near roads, primarily as a result of human activities such as
smoking, mechanical sparks, and vehicle malfunctions (Ricotta et al. 2018; Narayanaraj
and Wimberly 2012). These anthropogenic causes are especially frequent along
highways and rural routes that traverse or border natural landscapes, where fuel
continuity allows small ignition sources to develop into larger fires.

Beyond direct human influence, roads modify their surrounding environment
by increasing sunlight exposure and wind flow along roadside edges, which can
reduce fuel moisture and promote ignition (Ricotta et al. 2018). Moreover, the close
spatial relationship between major roads and other critical infrastructure, such as
gas transmission lines, can amplify the consequences of potential ignitions through
cascading failures or explosions.

In this study, a buffer of 200 meters was applied to each road segment to capture the
adjacent vegetated zones likely affected by road-related ignition risks. These buffered
zones were intersected with historical ignition point data from the Bay Area to quantify
the relationship between roads and fire occurrences. Roads that overlapped with
one or more ignition points were classified on a five-level risk scale, where a higher
number of intersections indicated greater risk. This approach follows evidence from
fire science literature showing that ignition likelihood decreases exponentially with
distance from roads. The cells that fell outside the scope of the roads were assigned a
value of 0 so as to not interfere with the final product of the overlapped layers.

San Francisco County
Close-Up

Figure 10 Road Network
in the Bay Area. The lines
representing the streets and
highways form clusters diffi-
cult to visualize, therefore, a
close-up of the San Francis-
co county was drawn to help
understand the dynamics
of transportation systems in
the region.
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Figure 11 Road network intersected with
ignition sources. Streets were buffered
and overlapped with historical ignition

points. This created a map where the
roads were classified by how many times
each segment overlapped with different
ignition points. Because this data left a
big gap in area not covered by the net-
work (seen as white in the map), it was
necessary to manually add a value to all

“no data” pixels within the boundary used

for the analysis. The value assigned was O,
so as to not interfere with actual relevant
spatial data during the multi-hazard
analysis performed later in the studly.

Figure 12 shows all classes (1-5) alongside

the O class.
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Figure 12 Road Proximity to Ignition Sources in the Bay Area.
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7.1.2 Construction of the Pairwise Comparison Matrix

A pairwise comparison matrix A = [aij] was constructed to assess the relative importance
of each parameter with respect to the main goal (see Table 5). Each element ajj
represents the importance of factor i compared to factorj, with reciprocal relationships
defined as ajj = 1/aij. The scale proposed by Saaty (1990) was used to assign comparative
values between 1 and 9, where 1 denotes equal importance and 9 denotes extreme
importance of one parameter over another. Saaty's Fundamental Scale, where these
values are explained, can be seen in Table 4.

Importance . .

P Definition Explanation

value
1 Equal importance Two activities contribute equally
3 Moderate importance One activity is slightly favored over another
5 Strong importance One activity is strongly favored over the other

. One activity is very strongly favored over the
7 Very strong importance
other
) The evidence favoring one activity over the other

9 Extreme importance

is of the highest possible order of affirmation

Numerical compromises between values as
2,468 Intermediate values sometimes it is not possible to describe one
activity over another in simple terms

Reciprocal value when |A comparison where the smaller element is used
1/x the inverse relationship | as a reference unit to estimate how many times

applies larger the other element is.

Table 4 Saaty’s Fundamental Scale. Adapted from Saaty (1990).

In this study, the WUI zones and Fire Hazard Severity Zones were assigned the highest
relative importance, as these represent areas of both high fuel availability and high
human exposure. The next most important parameter was Vegetation Coverage,
followed by Housing Density, Ignition Density, and Road Proximity to Ignition Sources,
which exert secondary but still relevant influence on fire dynamics.

WUI Zones FHSZ Vegetation Coverage Housing Density Ignition Density Road Proximity
WUI Zones 1 1 2 4 7 9
FHSZ 1 1 2 4 7 9
Vegetation Coverage 0.5 05 1 3 [ 7
Housing Density 025 025 0.333 1 5 [
Ignition Density 0143 0143 0167 0.2 1 3
Road Proximity om 0m 0143 0.167 0333 1

Table 5 The final 6x6 pairwise comparison matrix A. Constructed based on the
author’s judgments, forming the foundation for weight calculation. The recipro-
cal structure of the matrix ensured internal consistency and symmetry.

7.1.3 Derivation of Weights

After constructing the pairwise comparison matrix, the next step involved the
calculation of the relative weights of each criterion, which represent their proportional
contribution to the overall wildfire risk. The process followed the normalization and
averaging method proposed by Saaty (1987).

First, the sum of each column of the pairwise comparison matrix was calculated. Then,

46 Methodology

every element in each column (aU) was divided by the total of its respective column.
This operation normalizes the data and produces a new normalized matrix (N), shown
in Table 6, ensuring that the sum of each column equals 1:

a; j
nij = T
Y.
=1
WUI Zones FHSZ Vegetation Coverage Housing Density Ignition Density Road Proximity
WUI Zones 0.333 0.333 0.354 0323 0266 0257
FHSZ 0.333 0.333 0.354 0323 0266 0257
Vegetation Coverage 0.166 0166 0178 0243 0228 02
Housing Density 0083 0.083 0.059 0.081 0.189 017
Ignition Density 0.048 0.048 0.029 0.016 0.038 0.086
Road Proximity 0.037 0.037 0.026 0.014 0.013 0.029

Table 6 Normalized matrix N.

Once the matrix was normalized, each row of this new matrix was averaged to obtain
the weight vector (w), which expresses the mean relative importance of each factor
across all comparisons:

The resulting vector w = [wq, wo, .., W] contains the normalized weights of the criteria,
where the sum of all weights equals 1.

Parameters Weight
WUI Zones 0.31
FHSZ 0.31
Vegetation Coverage 0.197
Housing Density om
Ignition Density 0.044
Road Proximity 0.026

Table 7 Weight vector w. The two highest weights (WUl and FHSZ) reflect the predominance of
these factors in determining fire susceptibility. Vegetation and housing density also play rele-
vant roles, followed by historical ignition points and road proximity to past ignition sources.

To verify the consistency of the matrix and to prepare for the subsequent step, the
original comparison matrix (A) was then multiplied by the weight vector (w) to obtain
the product vector Aw:

a;;  ag A1n Wy
a1 Q2 arn w;
Aw = . . el I
An1 Anz - Aupn| W
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Each resulting element of Aw represents a weighted sum of the judgments for each
parameter.

Subsequently, each element of the vector Aw was divided by the corresponding
element of the weight vector (w) to obtain a set of &;j values:

A .
2 = AW
Wi

This operation yields one eigenvalue (&j) per parameter. In this case, there are six
resulting values corresponding to the six selected factors, as seen in Table 8.

Al 6.437
A2 6.4357
A3 6.532
A4 6.378
A5 6.045
AG 6

Table 8 All eigenvalues computed.

The maximum eigenvalue (Ay5x) Was then estimated as the average of these six
eigenvalues, calculated with the formula:
n /’11:

=1

Amax = =
max
n

Given that n = 6, the computation produced a result of A5x = 6.305.

7.1.4 Consistency Verification

To ensure that the pairwise comparisons were logically coherent, the Consistency
Index (Cl) and Consistency Ratio (CR) were calculated using the principal eigenvalue
Amax- The formulas proposed by Saaty (1987) are:

CI=/1max_n
n—1

CR_CI
" RI

where n is the number of parameters used and Rl is the random index for a matrix of
that order. In this case, n = 6. The Rl values, as proposed by Saaty (1987), are as follows:

n 1 2 3 4 5 6 7 8 9 10

Random Index

(RI) 0 0 0.58 0.9 112 1.24 1.32 1.41 1.45 1.49

Table 9 Random Consistency Index adapted from Saaty (1987).
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The maximum eigenvalue obtained was A5y = 6.305, leading to:

1_6.305—6_0061
T 6—-1
R =220 049
124

The resulting Consistency Ratio (CR = 0.049) is well below the accepted threshold of
0.10, indicating that the matrix judgments are highly consistent and no adjustments
were necessary.

7.1.5 Weighted Linear Combination (WLC)

After the weights were validated, they were applied to the standardized raster layers
of each criterion to compute the Fire Risk Index (FRI) through a weighted linear com-
bination model. The general equation used was:

n
FRI = ZWL' 'Xi
i=1

where w;j is the weight of each criterion and Xj is the normalized spatial layer. The
equation computed into the QGIS Raster Calculator was as follows:

FRI = 0.311[WUI] + 0.311[FHSZ] + 0.197[VEGETATION COVERAGE] + 0.111[HOUSING DENSITY |
+ 0.044[IGNITION DENSITY] + 0.026[ROAD PROXIMITY ]

Each raster was multiplied by its corresponding weight and then summed to generate
the continuous fire risk surface. The results can be seen in Figure 13. The outcome
was validated by overlapping the Fire Risk Index map with historical fire perimeters
in the Bay Area, creating a new output where it is possible to see a strong correlation
between the moderate to very high categories and the areas burned in previous fires.
Figure 14 shows these results.
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Figure 13 Fire Risk Index in the Bay Area.
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Figure 14 Fire Risk Index validated by historical fire perimeters.
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7.2 OpenSRA

OpenSRA is an open-source software tool designed to provide a more quantitative
and transparent understanding of how natural gas infrastructure behaves during
earthquakes in California. Its development responds to a long-standing issue in utility
risk assessment, where many existing approaches rely on subjective scoring systems
that do not fully represent the uncertainties or the physical fragility of pipelines and
storage systems (Largent et al. 2023). By integrating updated scientific models of
earthquake occurrence, ground deformation, and infrastructure response within
the Performance-Based Earthquake Engineering (PBEE) framework, developed by
the Pacific Earthquake Engineering Research Center (PEER), OpenSRA offers a more
rigorous and reproducible basis for evaluating seismic risk. The tool was developed
through a collaboration among UC Berkeley, Lawrence Berkeley National Laboratory,
UC San Diego, the University of Nevada Reno, the NHERI SimCenter, and Slate
Geotechnical Consultants, with support from the California Energy Commission
(Largent et al. 2024).

A fundamental part of OpenSRA is its representation of the earthquake environment
in California. The tool relies on the Uniform California Earthquake Rupture Forecast
Version 3 (UCERF3), the official long-term earthquake probability model for the state.
UCERF3 synthesizes data from geology, GPS-based crustal deformation, paleoseismic
trenchrecords,and historical seismicity toestimate the likelihood of earthquakesacross
a wide range of magnitudes (Field et al. 2014; USGS Fact Sheet 2015-3009 2015). One
notable advancement in UCERF3 is its allowance for multi-fault ruptures, which better
reflect the cascading nature of real earthquake events. As a result, UCERF3 anticipates
fewer small isolated events and a greater prevalence of large, multi-segment ruptures
capable of producing strong, widespread shaking (USGS Fact Sheet 2015-3009 2015).
With probabilities exceeding 99% for at least one magnitude 6.7 or greater earthquake
within the next 30 years, and a 7% probability of a magnitude 8 event, UCERF3
underscores the need for detailed seismic risk assessments of gas transmission
infrastructure, particularly in regions where these systems intersect with elevated fire
hazards (USGS Fact Sheet 2008-3027 2008). In this research, UCERF3 serves as the
seismic input to OpenSRA, ensuring that the earthquake scenarios considered reflect
realistic conditions in the Bay Area. A sample of the UCERF3 input parameters can be
seen in Table 10. Rupture traces produced by the software, alongside seismic hazard
zones determined by USGS, are represented in Figure 16.

Within OpenSRA, UCERF3 is implemented through probabilistic seismic hazard
analysis (PSHA), combining rupture forecasts with NGA-West2 ground-motion
prediction equations to estimate shaking intensities at specific locations (Largent et
al. 2023). The resulting intensity measures (IMs), including peak ground acceleration,
form the first layer of input into the PBEE workflow. The PBEE framework then
links these IMs to engineering demand parameters (EDPs), which describe how the
ground responds to shaking. For this research, liquefaction-induced settlements and
earthquake-triggered landslides were selected as the ground deformation parameters
of interest. This choice reflects both their strong influence on buried pipeline behavior
and their clear relevance in the Bay Area, where diverse geological conditions, young
sedimentary deposits, and steep terrain create susceptibility to both phenomena.
Liquefaction and landslides therefore provide a meaningful basis for analyzing how
seismic ground failure may compromise gas infrastructure.
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These EDPs feed into the next PBEE stage, in which OpenSRA translates ground
deformation into damage measures (DMs) for the pipeline segments. The DMs
modeled include tensile and compressive strains, which correspond to the primary
pipeline failure modes: tensile leakage, tensile rupture, and compressive rupture.
These relationships are defined by fragility functions developed from advanced finite
element analyses and laboratory testing, enabling OpenSRA to estimate how various
levels of ground deformation may generate physical damage in buried steel pipelines
(Watson-Lamprey et al. 2022).

The final PBEE step expresses these results as decision variables (DVs), most notably
the annual rate of exceedance for each failure mode. An annual rate of 0.01, for
example, would imply a roughly 1% chance of the failure occurring in any given year,
or approximately a 10% chance over a decade. The PBEE framework described here
can be visualized in Figure 17.

This research relies on OpenSRA as the main tool for evaluating seismic risk, and
while the software can be used to model any natural gas network, its application here
is tailored to the specific characteristics of the Bay Area case study. The region, as
previously discussed, offersa compelling context forexamining compounding seismic—
fire hazards. In this thesis, the software is applied to PG&E's Bay Area gas transmission
system, using pipeline data provided by the utility to the software’s development team
and subsequently made available for this study. The modeled transmission network is
shown in Figure 15. Distribution pipelines were not considered, as their data was not
made available due to security reasons.

OpenSRA is of particular value because it produces spatially explicit results that
can be readily merged with other hazard datasets; its GlIS-based outputs make it
straightforward to evaluate seismic effects alongside additional spatial information.
This capability is especially important in the Bay Area, where the combination of
complex geology, steep terrain, and dense development creates conditions in which
earthquake-induced pipeline damage may coincide with elevated fire potential. Such
interactions between seismic ground failure, pipeline performance, and fire hazards
remain understudied, and this thesis therefore contributes to ongoing research by
examining how these processes intersect and collectively influence the vulnerability
of natural gas transmission infrastructure.

Thefindingsofthisresearch can offervaluableinsightsfor utilitiesand governing bodies
in the Bay Area, helping to inform infrastructure planning, emergency response, and
long-term risk mitigation. However, these results should be interpreted carefully, as the
region’s hazard environment and infrastructure configuration are unique. Because
compound hazards are highly place-specific, the outcomes presented here cannot
be assumed to apply directly to other regions with different geological, climatic, or
operational contexts. Even so, this work illustrates how OpenSRA can be used beyond
this case study, providing utilities nationwide with a flexible and rigorous PBEE-based
framework for assessing the seismic vulnerability of their own gas networks.
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Figure 15 PG&E gas transmission network in the Bay Area.
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fid | event_id | magnitude | annual_rate | dip | rake | dip_dir tor | z_bor fault_trace
1 32 5.45 0.000708 | 90 | 16 | 581 0 | 145 [[122.499, 38.997, 0.0], [122.552, 39.047, 0.0], [[122.587, 39.09, 0.0}, [122.603, 39.097, 0.0]]
[[122.603, 39.097, 0.0], [122.651, 39149, 0.0], 122653, 39152, 0.0], [122.714, 3919, 0.0], [122.756,
2 3 5.45 0000708 | 90 | 16 | 581 o | 14s
39.216, 0.0], [122.772, 39.235, 0.0]]
B s o ic 0000703 | 90 | 16 | se o | 145 |[F122772 39235 0.0 1122817, 39289, 0], [-122.863, 39342, 0.0], [-122.869, 3235, 0.0], [122914,
39393, 0.0], [122.92, 39398, 0.0]]
122.92, 39398, 0.0], [-122.948, 39.451, 0.0], [122.956, 30.466, 0.0], [122.987, 39.507, 0.0], [-
4 35 5.45 0000708 | 90 | 16 | 581 o | 14s I : I I 6, 39.466, 001 [ ' P00l
123.029, 39562, 0.0], [123.046, 39583, 0.0]]
: 6,39.583, 0.0], [123.079, 39613, 0.0], [-12312], 3965, 0.0], [123.137, 39.659, 0.0], [[123.205,
- = cie 0000708 | 90 | 16 | 581 o | 145 | 123046 39583, 0.0, [123.079, 39613, 0.0], 123121, 3965, 0.0], [123137, 39.659, 0.0), [123.205
39.696, 0.0], [[123.218, 39703, 0.0]]
(123218, 39.703, 0.0], [123.263, 39.742, 0.0], [-123.27, 39.748, 0.0], [[123.287, 33.802, 0.0, |-
6 27 6.45 0000708 | 90 | 16 | 581 o | 4s
123.288,39.805, 0.0}, [-123318, 39.862, 0.0])
[[123.318, 39.862, 0.0], [-123.339, 39.9, 0.0], [-123.356, 39.919, 0.0], [-123 396, 39.963, 0.0, 123402,
7 8 6.45 0000708 | 90 | 16 | 581 o | 4s
39972, 0.0]]
[(123.402, 39.972, 0.0], [-123.438, 40.03, 0.0], [123.424, 40077, 0.0], 123428, 40.092, 0.0, |-
8 29 6.45 0000708 | 90 | 16 | 581 o | 4s
123.445, 40155, 0.0, [123.45, 40171, 0.0]]
([122.499, 38.997, 0.0], [122.552, 39.047, 0.0], [122.597, 38.09, 0.0], [122.603, 39.097, 0.0, [
9 40 5.95 0.000819 | 90| 16 | 581 0 | 145 | 12265139149, 0.0], [122.653, 39152, 0.0, [122.714, 3919, 0.0], [122.756, 39.216, 0.0], [122.772,
39235, 0.0], [122.817, 39289, 0.0], [122.863, 39342, 0.0, [[122.869, 39.35, 0.0]]
[[122.869, 3935, 0.0], [[122.914, 39393, 0.0], [122.92, 39.398, 0.0], [122.948, 39451, 0.0], [122.956,
39.466, 0.0], [122.987, 39,507, 0.0], [123.029, 39562, 0.0], [-123.045, 39,583, 0.0], [123.079, 39.613,
10 41 595 0000818 | 90| 16 | 581 o | 14s
0.0], [123121, 39.65, 0.0, [123.137, 39.659, 0.0], [123.205,39.696, 0.0], [123.218, 33.703, 0.0], [
123.263,39.742, 0.0], [123.27, 39.748, 0.0]
[-123.27, 39.748, 0.0], [123.287, 38.802, 0.0], [-123.288, 39.805, 0.0], [-123.318, 39862, 0.0], |-
123.339,39.9, 0.0], [[123.356,39.19, 0.0], [[123.396, 30.963, 0.0], [123.402, 39.972, 0.0}, [[123.438,
7 42 5.95 0000819 | 90 | 16 | 581 o | 45
40.03, 0.0], [123.424, 40,077, 0.0], [123.428, 40.092, 0.0], [-123.445, 40155, 0.0], [123.45, 40171,
0.01]
[122.499, 38.997, 0.0], [-122.552, 39.047, 0.0], [122.597, 38.09, 0.0], 122603, 39.097, 0.0, [-
122,651, 39149, 0.0], [-122.653, 39152, 0.0], [122.714, 3919, 0.0}, [-122.756, 39.216, 0.0], [-122.772,
309235, 0.0], [[122.817, 39.289, 0.0], [122.863, 39342, 0.0], [122.869, 39.35, 0.0], [[122.914, 39393,
0.0], [122.92, 39,398, 0.0], [-122.948, 39.451, 0.0], [122.956, 39.466, 0.0], [122.987, 39507, 0.0}, [
12 43 7.45 000069 | 90 | 16 | 581 0 | 145 | 123.029,39562, 0.0] [123.046, 39583, 0.0], [-123.079, 39613, 0.0], [[123121, 3965, 0.0}, [123.137,
39.659, 0.0], [-123.205, 39.696, 0.0], [-123.218, 39.703, 0.0}, [-123.263, 39.742, 0.0], [-123.27, 38.748,
0.0], [123.287, 39.802, 0.0], [[123.288, 39.805, 0.0], [-123.318, 39.862, 0.0], [123.338, 39.9,0.0], [
123.356, 39.919, 0.0], [-123.396, 38.963, 0.0, [123.402, 39.972, 0.0], [-123.438, 40.03, 0.0], [123.424,
40.077, 0.0], [123.428, 40.092, 0.0], [123.445, 40155, 0.0], [123.45, 40171, 0.0]]
[(122.499, 38997, 0.0], [-122.552, 39.047, 0.0], [-122.597, 38.09, 0.0}, 122603, 39.097, 0.0, [-
122,651, 38149, 0.0], [-122.653, 39152, 0.0], [122.714, 3919, 0.0], [122.756, 39.216, 0.0], [122.772,
39235, 0.0], [122.817, 39.289, 0.0], [122.863, 39342, 0.0], [122.869, 39.35, 0.0], [122.914, 39393,
0.0], [122.92, 39,398, 0.0], [122.948, 39.451, 0.0], [122.956, 39.466, 0.0], [122.987, 39507, 0.0], [
13 44 785 000029 | 90 | 16 | 581 0 | 145 | 123.029,39562, 0.0], [123.046, 39583, 0.0], [123.079, 39613, 0.0], [[12312], 3965, 0.0}, [123.137,
29,659, 0.0], [123.205, 39.696, 0.0], [123.218, 38.703, 0.0], [[123.263, 39.742, 0.0], [123.27, 39.748,
0.0], [123.287, 39.802, 0.0], [[123.288, 39.805, 0.0), [-123.318, 39.8562, 0.0], [123.339, 39.9, 0.0], [
123.356, 39.919, 0.0], [[123.396, 39.963, 0.0, [123.402, 39.972, 0.0], [-123.438, 40.03, 0.0}, [123.424,
40.077, 0.0], [123.428, 40.092, 0.0], [123.445, 40155, 0.0], [123.45, 40171, 0.0])
122598, 40.216, 0.0], [122.522, 40261, 0.0], [[122504, 40.269, 0.0], [122.467, 40287, 0.0], [-
14 45 6.75 0000174 | 74 | 359 | 156 o |1e7 | C 6,00 L 61,00 ¢ 69,0.01 [ N 1L
122.404, 40.315,0.0], [[122395, 40.32, 0.0], [122.329, 40346, 0.0], [[122.3, 40.356, 0.0]]
1223, 40,356, 0.0], [-122.202, 40389, 0.0], [[122193, 40.391, 0.0], [122.08, 40.416, 0.0}, [-121.967,
15 46 6.75 0000174 | 74 | 359 | 156 o |97 | 6,001 1L I 6,00 [21.56
40.441,0.0]]
(122598, 40.216, 0.0], [122.522, 40261, 0.0], [122504, 40.269, 0.0], [-122.467, 40287, 0.0], [-
1 47 715 0.o00m8 | 74 | 359 | 156 0 | 197 | 122404, 40315 00], [[122.395, 4032, 0.0], [[122329, 40346, 0.0], [[1223, 40.356, 0.0], [[122.202,
40389, 0.0], [122193, 40391, 0.0], [[122.08, 40.416, 0.0], [-121.967, 40.441, 0.G]]
A 535 0000733 | 90| 0 | e03 o 10 ([[122.47, 38225, 0.0], [122.503, 38.259, 0.0], [-122537, 38292, 0.0}, [122.562, 3833, 0.0]]
(122562, 3833, 0.0], 122587, 38368, 0.0}, 122592, 38376, 0.0], [-122.617, 38.403, 0.0],
18 55 625 0000733 |90| o | e03 o 10
122,647, 38.435, 0.0], [122.647, 38.438, 0.0]]
[[122.47, 38225, 0.0], [[122503, 38.259, 0.0], [122537, 38.292, 0.0], [[122.562, 38.33, 0.0], [122.587,
19 56 6.75 0000455 | 90 | 0 | 803 0 10 | 38368, 0.0], [122.592, 38376, 0.0], [122.617, 38.403, 0.0], [122.647, 38.435, 0.0], [-122.647, 38.438,
0.0]]
20| 101 635 0000121 | 70 | 191 | 271 0 2 [[1121.928, 37121, 0.0], [121.988, 37.142, 0.0], [121.992, 37144, 0.0], [122.04, 37173, 0.0]]
Table 10 Sample UCERF3 input parameters.
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Figure 17 PEER risk methodology framework applied to underground pipelines. Adapted from (Largent et al.
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7.2.1 Liquefaction Induced Settlements

Liquefaction-induced settlement is a critical geotechnical hazard that can strongly
affect the performance of buried infrastructure such as natural gas pipelines. During
strong ground shaking, loose and saturated sandy soils may temporarily lose their
strength as excess pore water pressures rise, causing the soil to behave like a fluid (Seed
and Idriss 1970; Kramer 1996). When the shaking stops and pore pressures dissipate,
the soil contracts into a denser state, producing permanent settlement and often
uneven downward movement across short distances (Ishihara 1993). Such differential
settlement can impose significant strains on pipelines that rely on consistent support
along their length.

This hazardisespecially relevantin regionslike the San Francisco Bay Area, where many
urban districts are built on young fill and estuarine deposits that are highly susceptible
to liquefaction (Holzer et al. 2002). Historic events, most notably the 1989 Loma Prieta
earthquake, illustrated how liquefaction-related settlement and lateral spreading can
damage buildings, pavement, and underground utilities, including gas pipelines that
contributed to post-earthquake fires (Hamada and O’'Rourke 1992). Because pipelines
arelong, continuousstructures, uneven settlementcaninducetensileand compressive
stresses that exceed design tolerances, leading to joint separation, buckling, rupture,
or leakage (O'Rourke and Liu 1999). Gas leakage in densely populated environments
can escalate into fire hazards, especially when combined with other lifeline failures
such as disrupted water supply (Kiremidjian et al. 2007; O'Rourke 2003).

To analyze potential liquefaction-induced damage to gas pipelines in the Bay area,
certain input models were chosen in OpenSRA. They are summarized in Table 11.

Input
Infrastructure PG&E Gas Transmission Pipeline Network
Pipe Compressive Rupture
Decision Variable Pipe Tensile Rupture
Pipe Tensile Leakage
Damage Measure Settlement Induced Pipe Strain

Engineering Demand | Liguefaction
Parameter Liquefaction Induced Settlement

UCERF3

Intensity Measure

NGA-West2

Table 11 Liquefaction OpenSRA framework inputs.

Findings from the analysis illustrate how the modeled failure mechanisms manifest
across the Bay Area pipeline network. Liquefaction-induced damage was represented
through the mean annual rate of failure calculated for each pipe segment under both
compressive and tensile strain conditions. The model predicted occurrences of tensile
rupture and tensile leakage, whereas no instances of compressive rupture were
observed. For consistency with the fire hazard results, which already employed alto 5

60 Methodology

risk scale, the liquefaction numerical outputs were classified into five damage classes.
The mean annual failure rates associated with each failure mode, and their respective
classes, are summarized in Table 12.

The OpenSRA damage outputs can be visualized by pipeline segment within the
software and exported as vector GIS layers. To develop maps suitable for integration
with the Fire Risk Index produced in Section 7.1 (see Figure 13), the exported pipeline
damage layers were rasterized in QGIS so that they matched the pixel resolution of
the fire map. The vector data for pipeline damage was processed in three separate
iterations: one for compressive rupture, one for tensile rupture, and one for tensile
leakage. Each resulting raster was then assigned a risk value ranging from1to 5. Tensile
rupture and tensile leakage layers were classified according to this scale (see Figures
19 and 20), while the compressive rupture raster was assigned a value of O, reflecting
the absence of this failure mode in the liquefaction results and ensuring it would not
influence the aggregated damage analysis (see Figure 18).

To generate a comprehensive representation of total liquefaction-related pipeline risk,
the compressive-rupture, tensile-rupture, and tensile-leakage rasters were combined
by summing their pixel values and subsequently normalizing the output back to a 1-5
scale. The resulting hazard map indicates that liquefaction-related damage potential
is highest in flat, low-lying regions, particularly along the margins of the Bay and
throughout the inland corridor between San José and Gilroy, where loose, saturated
soils are prevalent (see Figure 22).

A validation of these results was conducted by overlaying mapped liquefaction-prone
zones onto the outputs. This comparison revealed a strong spatial correspondence
between susceptible soils and the locations where pipeline damage was predicted,
reinforcing the known association between liquefaction hazards and flatter
geomorphic settings (see Figure 23).

A detailed interpretation of these maps, alongside a thorough explanation for the
failure modes, is provided in Section 8.2

Liquefaction Mean Annual Rate of Failure
Normalized COSL r:tzsrs;ve Tensile Rupture Tensile Leakage
1 0 0.000049 - 0.000093 0.000678 - 0.001104
2 0 0.000093 - 0.000133 0.00T1104 - 0.00131
3 0 0.000133 - 0.000239 0.001311 - 0.001525
4 0 0.000239 - 0.000567 0.001525 - 0.001953
5 0 0.000567 - 0.000948 0.001953 - 0.002826

Methodology

Table 12 Liquefaction mean annual rate. Values were classified ona1to 5

scale.

61



O

0

10 20 30 40 50km

Legend

Bay Area Counties I:I

Compressive Rupture

o [

62

Figure 18 Liquefaction-induced compressive rupture.
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Figure 19 Liquefaction-induced tensile rupture.
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Figure 20 Liquefaction-induced tensile leakage.
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Figure 21 Total liquefaction risk.
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Figure 22 Total liquefaction risk close-up in Santa Clara county.
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Figure 23 Total liquefaction risk validated using USGS liquefaction prone zones survey data.
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Figure 24 Total liquefaction risk close-up in Santa Clara county validation. Validated using USGS liquefaction
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7.2.2 Landslides

Earthquake-induced landslides represent another significant secondary hazard
that can disrupt natural gas pipeline systems. Strong shaking can destabilize slopes
by reducing soil strength, increasing pore water pressures, or generating inertial
forces that overcome a slope’s resistance (Keefer 1984; Kramer 1996). Resulting slope
failures may range from shallow slips and debris flows to deep-seated landslides,
often producing ground displacements that far exceed those caused by shaking
or liquefaction alone (Jibson 1993). Because many transmission pipelines cross hilly
terrain, engineered embankments, and coastal bluffs, landslide susceptibility plays a
crucial role in determining their seismic vulnerability.

In the San Francisco Bay Area, steep hills, heterogeneous geology, and high seismicity
contribute to widespread landslide potential. Past earthquakes along the San Andreas
and Hayward faults have triggered extensive slope failures across both natural and
developedterrain.Weakandweathered geologicalformations,combinedwithseasonal
saturation, heighten this vulnerability. Pipelines crossing such slopes may experience
bending, stretching, or compressive forces as ground masses move downslope,
potentially causing buckling, rupture, or joint pullout (Hamada and O'Rourke 1992).
Landslide-induced ruptures also raise the possibility of gas leakage and ignition, as
observed during past earthquakes such as the 1995 Kobe event (Nishida et al. 2024).
Furthermore, landslides may block access routes, delay repairs, and damage other
lifelines, creating further compounding failures that complicate emergency response
(O'Rourke 2003).

To analyze the potential landslide-induced damage to gas pipelines in the Bay Area,
the input parameters described in Table 13 were chosen.

Input

Infrastructure PG&E Gas Transmission Pipeline Network

Pipe Compressive Rupture

Decision Variable Pipe Tensile Rupture

Pipe Tensile Leakage

Damage Measure Landslide Induced Pipe Strain
Engineering Demand Landslide
Parameter
UCERF3
Intensity Measure
NGA-West2

Table 13 Landslides OpenSRA inputs framework.
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The results of the analysis performed using OpenSRA illustrate the distinct spatial
and mechanical behavior of landslide hazards compared to liquefaction. Like the
liguefaction analysis, the landslide analysis resulted in mean annual rate of failure
values for each pipe segment under compressive and tensile strain, the results of
which can be seen in Table 14. In the landslide simulations, compressive rupture was
the only damage mode present, while tensile rupture and tensile leakage did not
occur. This is due to the way soil behaves under landslide and liuefaction scenarios.
This difference in behavior is explained in section 8.2 The values have been assigned 1
to 5 hazard classes like those employed in the liquefaction analysis.

Landslides Mean Annual Rate of Failure
Normalized Compressive Rupture Tensile Rupture | Tensile Leakage
1 0.000000 - 0.000797 0 0
2 0.000797 - 0.002280 0 0
3 0.002280 - 0.003809 0 0
4 0.003809 - 0.006060 0 0
5 0.006060 - 0.012781 0 0

Table 14 Landslides mean annual rate. Values were classified on a 1to 5 scale.

Since tensile strain damage is non-existent, both rasters were assigned values of O.
This means the total landslide damage map is identical to the compressive-rupture
map, since no other damage modes contributed to the combined score.

The results were validated comparing mapped landslide-prone zones with the raster
output. This comparison, like liquefaction, revealed a solid spatial correspondence
between soils susceptible to landslides and the locations where pipeline damage was
predicted, reinforcing the known association between landslide hazards and sloped
terrains (see Figures 29 and 30).

A detailed interpretation of these maps, alongside a thorough explanation for the
failure modes, is provided in Section 8.2.

Methodology VA



O

(0]

10 20 30 40 50km

Legend

Bay Area Counties \:’ :

Compressive Rupture

Car BISG MO, ), ey

EEEC

72

Figure 25 Landslides-induced compressive rupture.
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Figure 26 Landslides-induced tensile rupture.
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Figure 27 Landslides-induced tensile leakage.
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Figure 28 Total landslide risk.
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Figure 29 Total landslide risk close-up in Contra Costa county. Validated using USGS landslides prone zones
survey data.

Methodology 77



O

Legend

Bay Area Counties I:I :

Landslides Risk Zones

Total Risk

O

HEE

2
S
A
S

0O 10 20 30 40 50km

78

Figure 30 Total landslide risk validated using USGS landslide prone zones survey data.
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Figure 31 Total landslide risk close-up in Contra Costa county validation. Validated using USGS landslide prone
zones survey data.
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7.3 Compound Hazard Analysis

The results presented in this section build directly on the datasets and procedures
developed in sections 6.1 and 6.2. After constructing a fire risk index map and two
seismic-induced damage vulnerability maps for the Bay Area transmission pipeline
network,theseoutputswerefurtherexaminedtounderstandtheir potentialcompound
effects. Because earthquake-related pipeline fragility and fire potential do not occur in
isolation, a combined analysis was required to determine how these hazards interact
spatially and to identify the pipeline segments most exposed to multiple risk factors
simultaneously.

To achieve this, three different analytical methods chosen by the author were applied,
each offering a distinct lens through which to interpret the relationship between
the two hazard surfaces. The objective was not only to compare the spatial patterns
produced by each method but also to evaluate which approach most effectively
supports the broader goal of identifying pipeline segments subject to high, moderate,
or low levels of combined hazard. This multi-method structure is essential given the
critical role of gas transmission pipelines: they represent an infrastructure system
fundamental to the functioning of daily life, yet one that also poses significant danger
when exposed to compounding natural hazards. By clarifying the conditions under
which these pipelines are at elevated risk of failure, the analysis contributes to the
development of a maintenance and replacement framework that can assist utility
operators in prioritizing interventions. Such insights help promote both operational
awareness within gas companies and broader public safety efforts aimed at protecting
human life and the environment.

The three analytical methods employed were the additive hazard index, the matrix
hazard index, and the binary hazard index, names coined by the author and based
on reasoning, according to the different results the research aimed to achieve. The
additive index is the most straightforward and visually intuitive, but its simplicity can
lead to potential misrepresentation because it collapses different hazard combinations
into identical values. The matrix index provides the most comprehensive perspective
for the purposes of this thesis: it retains the distinct contributions of both fire risk
and pipeline vulnerability and thus allows for a more nuanced interpretation of their
interaction. The binary index, in contrast, offers a targeted view of the most severe
overlapping conditions and is particularly useful for identifying top-priority areas in
emergency response or rapid decision-making contexts.

Together, these three methods form the basis of the results presented in this section,
allowing for a detailed examination of how compound hazards affect the Bay Area's
transmission pipeline system and offering crucial insights into where the network
may require increased maintenance, reinforcement, or modernization.

Method 1: Additive Hazard Index

To generate a continuous estimate of earthquake-induced pipeline hazard that
integrates both structural fragility and fire potential, an additive hazard index was
calculated by combining the two normalized raster layers (each classified on a 1-5
scale). This approach assumes that both dimensions, earthquake-induced pipeline
damage potential and fire hazard, contribute jointly and approximately equally to the
overall hazard environment. Let P denote the pipeline damage class and F the fire
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potential class for a given pixel; the combined hazard score H is therefore defined as:
H,=P+F

This formulation produces values ranging from 2 (minimum combined hazard: 1 + 1)
to 10 (maximum: 5 + 5) and preserves the ordinal meaning of the input classes while
creating a smooth, continuous surface of combined hazard intensity across the study
area.

To make the comparison with other components of the analysis easier, the additive
index Hg was normalized back to a 1-5 scale using a linear transformation:

(Hqg —2)
Hop=1+-—2—2x4
an =1t T0-2)

The resulting normalized index was then grouped into five hazard intensity classes
reflecting very low to very high combined hazard. These classes maintain approximate
equality while retaining ordinal separation, allowing for intuitive visualization and
interpretation. The results can be seen in Table 15.

Hazard Class Threshold (H)
5 H=>42
4 34=<H<419
3 26<H<339
2 1.8<H <259
1 H<18

Table 15 Additive risk reclassification ranges.

The principal strength of the additive method lies in its simplicity and transparency:
the formulation is intuitive, easily reproducible, and straightforward to communicate
to both technical and nontechnical audiences. The additive score directly increases
when either pipeline fragility or fire potential rises, ensuring that higher individual risk
levels appropriately contribute to higher joint hazard estimates. Additionally, because
the method produces a continuous surface, it captures gradual spatial transitions that
may be overlooked by more categorical approaches, making it an effective tool for
broad regional screening.

However, the additive method also exhibits notable limitations. By assigning equal
weight to pipeline fragility and fire potential, it implicitly assumes that both factors
contribute symmetrically to overall hazard, an assumption that may not fully align
with real-world dynamics or operational priorities. Furthermore, the method does not
distinguish between different combinations of values that yield the same total, even
though the underlying hazard implications of these scenarios may differ substantially.
As a result, extreme values in one factor can mask moderate contributions in the
other, potentially obscuring important nuances in joint hazard patterns. Despite these
constraints, the additive index remains useful as an initial, high-level representation of
overall earthquake-fire hazard across the Bay Area.
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Figure 32 Additive liquefaction risk.
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Figure 33 Additive landslides risk.
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Method 2: Matrix Hazard Index

Method 2 employs a joint hazard matrix to characterize the interaction between
earthquake-induced pipeline fragility and fire potential at a given pixel level. This
approach preserves the full set of possible combinations between the two input rasters
(both classified on a 1-5 scale) while allowing a direct interpretation of how these two
hazards overlap spatially. Each pixel is assigned a two-digit code ranging from 11 to 55,
where the first digit corresponds to the pipeline fragility class Pand the second digit
corresponds to the fire potential class F. As an example, a pixel coded as 55 indicates
the simultaneous presence of the highest pipeline fragility and highest fire potential,
whereas a value of 11 reflects minimal hazard in both dimensions.

To facilitate quantitative comparison and visualization, the matrix values were further
transformed into a joint hazard score. The two digits were first separated into their
individual components, and a combined score was calculated as the arithmetic mean:

H_P+F
2

This formulation retains the independence and interpretability of the original hazard
components while generating a continuous measure of combined hazard on a 1-5
scale. The resulting values were then grouped into five classes representing very
low, low, moderate, high, and very high joint hazard conditions. In this classification
scheme, pixels with H > 4.5 were assigned to the Very High class, while those with
H < 2.0 were assigned to the Very Low class, with intermediate classes defined
using equidistant thresholds (see Table 16). Each of the 25 matrix codes (11-55) was
subsequently reclassified into one of these five hazard categories according to its
computed value of H (see Table 17). This direct mapping ensures that no information
is lost in the transition from the matrix representation to the final hazard layer.

Hazard Class Threshold (H)
5 H=45
4 40s<H<45
3 30=H<40
2 20<sH<30
1 H<2o0

Table 16 Matrix risk reclassification ranges.

The matrix method provides several important advantages. Its principal strength lies in
its ability to preserve the full structure of the two-dimensional hazard space, allowing
combinations of pipeline fragility and fire potential to be examined explicitly rather
than collapsed prematurely into a single continuous score. This makes the method
particularly effective for interpreting the joint behavior of hazards; combinations such
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Hazard Class Matrix Values (P, F)
5 45,54, 55
4 35, 44,53
3 15, 24, 25, 33, 42, 43, 51, 52
2 13,14, 22, 23, 31, 32, 41
1 1,12, 21

Table 17 Matrix values classified by risk.

as high pipeline fragility with moderate fire potential, or moderate pipeline fragility
with high fire potential, remain distinguishable and can be analyzed in detail. The
method also offers strong interpretability, as the two-digit codes transparently reflect
the underlying hazard components and their contributions to the final classification.
This interpretability is valuable for commmunicating results to stakeholders and for
understanding the drivers of high-hazard outcomes.

Despite its clarity and flexibility, the matrix method also introduces certain limitations.
The discrete nature of the matrix codes can produce a map with many classes, some
of which may occur infrequently, resulting in visual complexity and potential difficulty
in discerning broader spatial patterns. The method also requires an additional step
of reclassification to convert the matrix codes into a more manageable number of
hazard categories, and the choice of classification thresholds introduces some degree
of subjectivity. While the arithmetic mean provides a balanced way to integrate both
hazard components, it implicitly applies equal weighting, which may not always
reflect operational priorities or physical processes. Furthermore, although the matrix
captures all combinations, it does not inherently quantify the relative severity of
different pairings without the additional step of reclassification.
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Figure 34 Matrix liquefaction risk.
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Figure 35 Matrix landslides risk.
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Method 3: Binary Hazard Index

Whereas Methods1and 2 focuson continuous gradationsin hazard conditions, Method
3 aims to identify only those areas where earthquake-induced pipeline fragility and
fire potential simultaneously reach high levels. This binary hotspot detection approach
isolates the most severe co-occurrences of risk factors and is therefore particularly
relevant for emergency management, hazard mitigation policy, and targeted
maintenance interventions. The method classifies a pixel as a high-risk hotspot if both
the pipeline fragility class P and the fire potential class F meet or exceed 4. Formally,
the hotspot score Hp, is defined as:

ifP>4andF >4

1,
Hyp = {0, otherwise

The resulting raster is strictly binary, distinguishing only between critical overlap
zones (value 1) and all other areas (value 0). To assess the sensitivity of the hotspot
classification to the chosen threshold, a supplementary evaluation was conducted
using a relaxed threshold of P >3 and F = 3, enabling an examination of how the spatial
distribution of hotspots responds to broader inclusion criteria.
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The hotspot approach offers a clear advantage in its interpretability and operational
clarity. By presenting only the most severe joint hazard conditions, the method
effectively highlights locations where immediate action, inspection, or reinforcement
may be warranted. This clarity makes the hotspot map particularly useful for decision-
makers who require rapid identification of priority areas without the complexity of
gradient-based models. The method is also stringent in its identification of severe
co-occurrence, ensuring that only genuinely high-risk conditions are highlighted and
that moderate-risk areas do not dilute the analysis.

Nevertheless, the strengths of the hotspot method are accompanied by important
limitations. Because the classification depends entirely on a predefined threshold,
results can vary substantially depending on whether the cutoff is set at > 4, > 3, or
some other value, introducing an element of subjectivity into the analysis. The binary
nature of the output also leads to a significant loss of information, as all non-hotspot
areas are treated uniformly even when they differ substantially in their underlying risk
composition. Transitional zones that may still pose meaningful hazard, such as areas
with high pipeline fragility but only moderate fire potential, are excluded entirely from
the hotspot category, which may underrepresent their significance in a broader risk
management context. Consequently, the hotspot approach is best interpreted as a
complementary decision-support layer rather than a full replacement for continuous
hazard models.

Methodology 89



O

(0]

10 20 30 40 50km

Legend

Bay Area Counties EI ;
Risk

o[ ]

'l

920

Figure 36 Binary liquefaction risk.
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Figure 37 Binary liquefaction risk close-up.
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Figure 38 Binary landslides risk.
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Figure 39 Binary landslides risk close up.
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8. RESULTS AND
DISCUSSION

8.1 Wildfire Hazard

The fire risk map for the San Francisco Bay Area (see Figure 13) illustrates a distinct
spatial structure in wildfire susceptibility, shaped primarily by topography, vegetation
distribution, and the degree of urbanization. The lowest risk zones, shown in yellow,
are concentrated in the region’s most urbanized, flat,and heavily modified landscapes,
while the highest risk zones, shown in dark orange and red, dominate the vegetated
uplands and mountainous areas.

San Francisco County stands out clearly as the area with the smallest overall fire
risk. As one of the most densely populated counties in the United States, it contains
minimal natural vegetation and virtually no Wildland-Urban Interface (WUI) zones.
Its built landscape, coastal setting, and lack of extensive fuel beds produce a nearly
continuous swath of low-risk classification, making it the least susceptible county in
the region to fire activity.

Along the bayshore, a consistent pattern emerges across San Mateo, Santa Clara,
and Alameda Counties. Each shows a broad corridor of low fire risk adjacent to the
shoreline, reflecting the flat terrain, absence of steep slopes, and fragmented or
urbanized land covers in these areas. Moving inland, fire risk increases progressively as
these counties transition into hillier terrain. Here, the landscape shifts toward denser
vegetation, stronger fuel continuity, and more extensive WUI zones, creating the
conditions associated with medium to very high risk. Santa Clara County is the main
exception to the general bayshore pattern: its interior low-risk corridor extends much
farther inland than in San Mateo or Alameda, reaching deep into the Santa Clara
Valley and encompassing San José and its surrounding communities. This reflects a

wide expanse of urban development and relatively open valley floor that limits fuel
availability.

In contrast, Marin, Sonoma, and Napa Counties exhibit some of the highest fire risk
values in the region. Their rugged topography, extensive forest and shrubland cover,
and large continuous tracts of natural vegetation drive the concentration of high and
very high risk zones. The mountainous terrain of western Marin, the forested areas
of Napa's eastern ridges, and the chaparral and oak dominated foothills of Sonoma
form an extensive surface of the upper three categories of fire risk. Small pockets of
low risk do appear along their edges near the Bayshore, particularly around San Pablo
Bay and the lower-lying areas near Santa Rosa, Sonoma, and Napa City, where flatter
topography and reduced vegetation moderate fire potential.

Solano County is one of the counties with the smallest overall fire risk, second only
to San Francisco. Much of its landscape, particularly toward the Sacramento Valley,
consists of flatter terrain, agricultural areas, and lower-density vegetation, resulting in
extensive low-risk zones. Like Marin, Napa, and Sonoma, Solano also has additional low-
risk stretches along the San Pablo Bay shoreling, reinforcing the pattern of reduced
susceptibility in low-lying coastal plains.

Contra Costa County displays a more mixed pattern, with very high fire risk
concentrated in its central upland areas, called the East Bay Hills, where steep hills
and continuous vegetation create favorable conditions for wildfire spread. In contrast,
the low-risk zones cluster along the San Francisco Bay margin to the west and extend
eastward toward the flatter lands in the direction of Stockton These gradients reflect
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the county’s sharp topographic transitions between its coastal plain, interior valleys,
and the elevated ridges of the Diablo Range.

Overall, the map highlights a consistent regional dynamic: low fire risk aligns with
urbanization, valley floors, and flat coastal plains, while high risk dominates the
vegetated, mountainous belts that frame the Bay Area. This spatial pattern closely
mirrors historical fire occurrences (see Figure 14) and underscores the role of
topography, vegetation, and land use in shaping the region’s wildfire susceptibility.

8.2 Seismic Hazard

The seismic hazard analysis performed on OpenSRA reveals clear patterns of both
liguefaction and landslide susceptibility in the San Francisco Bay Area, exposing
pipelines across the entire region. These patterns reflect the region’s fault system, local
soil conditions, and, most important, the distribution of critical infrastructure across
the counties. The OpenSRA results clearly highlight areas where modeled seismic
activity is most likely to disrupt the gas network.

The liquefaction-prone soils of the area pose a substantial threat to gas pipelines,
as buried infrastructure can experience displacement, joint separation, and rupture
when saturated soils lose strength under intense shaking.

This study found that gas pipelines exposed to earthquake-induced liquefaction tend
to experience tensile damage, with both rupture and leakage happening at different
points, while compressive failures do not occur at all. This can be explained by how
liquefied soil behaves and how pipelines interact with it.

As the soil liquefies, it loses much of its strength and can no longer firmly support the
pipeline. As a result, the pipe may become partly unsupported while the surrounding
ground moves in different directions. Ground movements such as settlement or lateral
spreading usually pull the soil apart rather than push it together, meaning the ground
suffers horizontal extension. Parts of the pipeline that remain anchored in firmer soil
resist this movement, causing the pipe to stretch and bend. These forces increase
tensile strain and can lead to cracking or rupture. In contrast, compressive failure, which
requires the pipe to be pushed together, rarely occurs during liquefaction because the
ground almost never shortens in these conditions. Instead, the weakened soil moves
in a way that causes extension, not compression. Even when bending causes some
compression on one side of the pipe, the tension on the other side is usually larger and
controls the failure.

This explains why tensile damage was observed in the modeled pipeline while
compressive damage was not. These findings closely match patterns observed in major
international earthquakes, such as the 1964 Niigata earthquake, where widespread
liguefaction and lateral spreading caused severe deformation and tensile failures in
buried utilities (Hamada and O'Rourke 1992). This emphasizes the need to consider
tensile strain capacity and ground movement patterns when evaluating pipeline
performance in liquefaction-prone areas.

The results seen in the previous section (see Figures 21 and 22) paint the picture of the
immense impact liquefaction-induced settlement damage has in the San Francisco
Bay Area. Significant portions of the Bay shoreline and valley floors exhibit high
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liquefaction potential due to their composition of artificial fill, alluvial soils, and shallow
groundwater. Notable hotspots include the shore margins of the Alameda, Contra
Costa, Santa Clara and San Mateo counties, with high liquefaction susceptibility going
from Richmond all the way past Freemont, and around the bay towards Palo Alto. It
is also present in the low stretches of land between Sonoma and Santa Rosa, and all
around Napa. Itis also highly present in the low-lying portions of the Santa Clara Valley
going from San Jose all the way to Gilroy, with this stretch being the one with the
highest susceptibility score.

In addition to liquefaction, the Bay Area is also at risk of experiencing major landslides.
Landslide-prone slopes can greatly endanger gas pipelines, as the infrastructure can
experience loading, bending, and rupture when unstable ground masses rapidly shift
downslope during seismic activity.

This research found that earthquake-induced landslides caused compressive damage
to the gas pipelines, while no tensile rupture or leakage occurred. This outcome s,
similar to liquefaction, mainly due to how the ground moves during a landslide and
how said movement impacts buried pipelines.

During a landslide, the soil mass typically moves downslope and toward stable ground,
causing the ground to shorten rather than stretch. This means the ground is suffering
horizontal compression. Because parts of the pipeline remain anchored in stable soil,
the moving soil effectively pushes the pipe, creating compression. Situations that
would pull the pipeline apart and create tension, like during liquefaction, are much
less common in landslides and were not present in the scenarios analyzed.

Furthermore,the way a pipeinteracts with the surrounding soil also favors compression
as the main loading type. When a pipe is pushed, the soil provides strong resistance,
which builds up significant compressive forces on it. However, when the pipe is pulled,
the soil offers much less resistance or may even separate from the pipe, allowing
tension to be relieved before it can cause serious damage.

Additionally, steel pipelines can usually tolerate more tensile strain without failing, but
they are much more vulnerable to buckling and wrinkling under compression. Even
moderate compressive strains can lead to local instability, especially when the pipe is
confined by soil.

Overall, this combination of factors explains why compressive rupture occurred
during landslides simulation while tensile damage did not. It is possible to draw a
comparison between these findings and those of a landslide-related pipeline failure
reported in the literature. In March 2019, a major landslide in Talegan, Iran, triggered by
extreme rainfall, caused a 16-inch natural gas pipeline to rupture when the downslope
soil movement pushed the pipe, creating high compressive forces and bending
at a girth weld (Vasseghi et al. 2021). Although this event was rainfall-induced, the
comparison should not be undermined as the damage mechanism is directly relevant
to earthquake-induced landslides as well, seeing as both hazards generate similar
patterns of ground movement that place buried pipelines under intense compression
and localized deformation. These results stress that pipeline design and evaluation
in regions vulnerable to landsliding must prioritize the management of compressive
deformation and the mitigation of buckling hazards.
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Drawing from the previous section, Figure 28 makes it clear that landslides-induced
damage, although present, is not as problematic a deformation mechanism in the
Bay Area as liquefaction. This can be clearly seen when comparing Figures 21 and
28. However, the area still shows some significant damage hotspots. The region of
highest concern is in the East Bay Hills, especially in the part right to the north of the
city of Lafayette. It is also somewhat present along the shore on the Carquinez Strait,
between the cities of Martinez and Crockett. Less significant damage is also present
to the east of Marin county, in an area of the Diablo Range to the east of the city of
Freemont, and very sparsely along the stretch between San Jose and Gilroy.

8.3 Compound Hazard

The three hazard modelling approaches applied in section 7.3 of this study, (1) the
additive hazard index, (2) the matrix hazard index, and (3) the binary hazard index,
offer different perspectives on the interaction between earthquake-induced pipeline
fragility and fire potential. Although all rely on the same underlying 1-5 normalized
input rasters, each method conceptualizes and represents the multi-hazard
environment in distinct ways, thereby influencing both the interpretation and the
practical applicability of the results.

Method 1, the additive hazard index, provides a smooth and continuous spatial
representation ofcompound hazard bysummingthe pipelinefragilityandfire potential
values. This produces a gradient-like surface in which hazard intensity increases
whenever either input increases. The strength of this method lies in its simplicity and
ease of interpretation: it clearly illustrates regional patterns and broad transitions in
multi-hazard exposure. However, the additive approach also has significant limitations.
By collapsing two hazard dimensions into a single total, it may obscure meaningful
differences between combinations that produce the same sum. For instance, a pixel
with extremely fragile pipelines but low fire potential may be assigned the same score
as an area with moderate fragility and moderate fire potential, despite the distinct
hazard dynamics implied by each scenario. Moreover, the method assumes equal
weighting of the two hazard components, an assumption that may not always reflect
operational or physical realities.

Method 3, the binary hotspot detection approach, offers a different perspective by
isolating only the most severe co-occurrences of high pipeline fragility and high fire
potential. It identifies a pixel as a hotspot only when both input values exceed a defined
threshold, thereby producing a clear and decisive delineation of the most critical areas.
This method is effective for highlighting zones that may warrant urgent attention
from managers or emergency response planners. Yet its stark binary structure leads
to substantial information loss: all areas that fall below the chosen threshold, even
if only marginally, are treated uniformly despite potentially significant underlying
differences in hazard levels. Furthermore, hotspot identification is inherently sensitive
to the choice of threshold, and modest adjustments can cause substantial changes in
the spatial extent of the resulting high-risk zones. As such, Method 3 is valuable as a
supplementary diagnostic layer but less suitable as a primary modelling framework.

Positioned between these two approaches, Method 2, the joint risk matrix, offers a
more balanced and information-rich representation of the multi-hazard landscape. By
encoding each pixel using a two-digit value that preserves both the pipeline fragility
and fire potential classes, the method retains the full structure of the combined
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hazard space. This makes it possible to distinguish between different combinations
that would otherwise be collapsed into the same value under an additive approach, for
example, high pipeline fragility with moderate fire risk versus moderate fragility with
high fire risk. The subsequent reclassification into joint hazard categories provides
a generalized yet transparent summary of these combinations while maintaining
fidelity to the underlying drivers of risk. Unlike Method 3, Method 2 avoids abrupt
cutoffs and preserves nuance across intermediate hazard levels. Unlike Method 1, it
does not obscure the internal composition of hazard contributions.

A more practical, map-based explanation of the methods helps show why the matrix
approach is especially useful for this study. When looking at the resulting maps,
the additive method consistently shows higher risk levels for both liguefaction and
landslides (see Figures 21, 23, 28 and 30), often making long sections of pipeline appear
more vulnerable than they actually are. This can create the impression that many more
pipelines need urgent attention, which may shift focus away from the areas where the
risk is truly serious. In many cases, segments marked as high risk in the additive map
are reduced to moderate risk when evaluated with the matrix method, giving a more
realistic picture of where the most important problems are.

These differences matter for planning and decision-making. The matrix method
provides a clearer view of how hazard intensity and pipeline vulnerability interact,
helping authorities identify the areas that genuinely require immediate action. This
allowsresources,suchasmaintenancework,monitoringefforts,oremergencyplanning,
to be directed to the segments where failure would have the most significant impact.
For this study, the matrix map is therefore the most reliable tool for understanding the
real distribution of pipeline risk.

After those highest-priority segments have been dealt with, the additive map becomes
useful as a secondary reference. Because it tends to give higher values overall, it
highlights additional pipelines that may not require urgent intervention but could
still benefit from long-term monitoring or future upgrades. In this sense, the additive
method helps identify medium-priority areas once the most critical ones have already
been addressed.

The binary method, however, goes in the opposite direction. It underestimates risk
by showing only the pipeline segments that fall into the very high risk category. This
means it ignores all other segments that still represent a potential threat. As a result,
the binary map is too simplified for effective planning, since it overlooks many areas
that should not be ignored.

The comparison of the three methods suggests that each plays a distinct role in
characterizing multi-hazard interactions. Method 1 is useful for visualizing regional
hazard gradients; Method 3 is effective for identifying the most critical overlap zones;
but Method 2, through its explicit preservation of the individual hazard components
and their combinations, offers the clearest and most analytically robust depiction of
theinteraction between pipeline fragility and fire potential, making it the most suitable
for governing bodies in charge of monitoring, fixing and upgrading the network, as
well as to emergency responders and planners.
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8.4 Implications for Infrastructure, Government and Communities

The multi-hazard assessment presented in this thesis demonstrates how wildfire
potential interacts with earthquake-induced liquefaction and landslide-related
pipeline fragility across the San Francisco Bay Area. These findings have important
implications for infrastructure managers, public agencies, and the communities that
rely on this critical network.

Implications for Infrastructure Management

The analysis shows that liquefaction is the most widespread and damaging seismic
hazard for gas pipelines in the region. Because liquefaction-induced ground
deformation predominantly generates tensile forces, pipeline operators should
prioritize engineering strategies that enhance tensile strain capacity, improve joint
flexibility,and mitigate vulnerability to lateral spreading. High-priority corridors include
the low-lying bayshore margins in Alameda, Contra Costa, San Mateo, and Santa Clara
Counties, as well as the Santa Clara Valley and the Napa-Sonoma lowlands.

Although landslide-induced pipeline damage is less spatially extensive, its
consequences are structurally severe. Landslides impose compressive and bending
forces that can lead to buckling and rupture, failure modes to which steel pipelines
are particularly vulnerable. Hotspots identified in the East Bay Hills, the Carquinez
Strait, and parts of the Diablo Range require targeted mitigation such as slope
stabilization, soil-strengthening measures, and enhanced monitoring. Importantly,
because landslides occur on steep slopes, any pipeline failure in these areas carries
an elevated risk of igniting fires that can propagate rapidly through the slopes. This
means that even relatively small landslide-related pipeline failures can escalate into
larger, fast-moving fire incidents, amplifying their potential impact on infrastructure
and surrounding communities.

The matrix compound hazard method supports infrastructure planning by
distinguishing between hazard combinations that would otherwise be obscured. For
pipeline operators, this provides a clearer basis for prioritizing inspections, upgrades,
and emergency planning in locations where pipeline fragility and fire potential
converge most critically.

Implications for Government Agencies and Emergency Planning

For state, regional, and county agencies, the compound hazard findings underline the
need for integrated seismic and wildfire preparedness strategies. Again, the matrix
method offers the most realistic representation of where hazards interact, making it
a valuable decision-support tool for allocating resources, enforcing safety standards,
and coordinating emergency response efforts.

Liquefaction-prone areas that coincide with moderate or high wildfire susceptibility
are especially important for government planning, as post-earthquake gas leakage
could trigger fires in regions where suppression is more difficult. In contrast, landslide-
prone regions require a different focus: because these areas are steep and heavily
vegetated, they not only expose pipelines to compressive rupture but also present
terrain conditions highly conducive to fire spread. Steep slopes accelerate flame
movement, increase radiant heat transfer, and allow fires to grow more rapidly than
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in flat terrain. This amplifies the importance of pre-event mitigation, early detection
systems, and rapid suppression capacity in hillside counties such as Marin, Contra
Costa, Alameda, and Sonoma.

These patterns justify greater interagency coordination between fire authorities,
geotechnical units,and pipeline regulators,ensuring thatemergency plansincorporate
both the probability of pipeline failure and the fire behavior characteristics of the
surrounding terrain.

Implications for Communities and Public Safety

For communities, the results clarify where seismic damage to pipelines is most likely
and how such damage could interact with local wildfire conditions. Residents in
liguefaction-prone urban corridors face elevated risks of gas leakage and potential
ignition following major earthquakes. Public outreach and preparedness programs,
such as emergency shutoff awareness, evacuation planning, and household resilience
measures, can directly reduce these risks.

Communities located in or near landslide-prone hillsides face a dual vulnerability: the
possibility of pipeline rupture due to ground compression, and the significantly higher
fire propagation potential typical of sloped terrain. Fires that start in these areas can
grow more rapidly, spread farther, and reach communities faster. They can also block
important transportation corridors and isolate populations. This underscores the need
for strengthened public education around fire behavior in steep landscapes, improved
defensible space practices, fuel management, and participation in neighborhood
evacuation and alert systems.

Finally, the compound hazard maps produced in this study can support transparent
risk communication, helping communities understand not only which hazards
they face, but how those hazards interact. This enables residents, local leaders, and
emergency organizations to plan more effectively and build resilience.

8.5 Limitations of the Study

Despite the structured approach used in this thesis, several limitations must
be acknowledged. These stem mainly from data availability, methodological
simplifications, and the challenges of modeling complex, overlapping hazards in the
San Francisco Bay Area.

First, the study relies on spatial datasets that differ in age and how often they are
updated. Seismic hazard layers reflect long-term probabilities, while wildfire datasets,
especially fuel and vegetation information, capture conditions from past years rather
than current states. Because vegetation and fire behavior are changing rapidly due
to climate change, the hazard maps used here may not fully represent present-day or
future conditions.

Second, limitations in pipeline data affect the precision of the fragility analysis. The
transmission pipeline network used in this study comes directly from PG&E, which
ensures that the information regarding these large-diameter pipelines is highly
accurate. However, this analysis does not include the distribution pipeline network,
which is typically more extensive and reaches deeper into residential neighborhoods.
Distribution pipeline data is not available due to security reasons and the absence
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of this data reduces the completeness of the analysis, since damage to distribution
pipelines could significantly influence local risk patterns and affect areas not reached
by the transmission system.

Third, the hazard integration method is static and does not account for real-time or
cascading interactions. For example, an earthquake-induced gas leak during extreme
wind conditions would pose a very different fire risk than a leak on a calm, humid
day. The model also does not include factors such as fire suppression capacity, road
closures, or water system failures, which can strongly influence disaster outcomes.
These dynamic processes fall outside the scope of this spatial overlay approach but
are important in real events.

Fourth, the weighting choices used to combine hazard layers introduce some
subjectivity to the study. Although weights were informed by existing literature,
alternative choices could reflect different priorities or assumptions, and no sensitivity
analysis was performed to test how different weights might change the results.

Finally, the study focuses on physical hazards and pipeline vulnerability but does not
integrate social vulnerability factors that shape how communities experience and
recover from disasters. Characteristics such as income, age, disability, race, immigrant
status, linguistic isolation, and access to transportation or health services strongly
influence a community’s exposure and resilience. Including such metrics would allow
for a more complete understanding of who is most at risk, but this requires additional
datasets and a broader modeling framework than what was used in this thesis.

8.6 Future Research

The results of this study highlight several promising avenues for advancing multi-
hazard analysis and regional resilience planning in the San Francisco Bay Area.

A priority direction is the development of dynamic, event-based hazard models that
simulate the progression of earthquake-fire interactions in real time. This could
include modeling pipeline rupture likelihood under varying wind conditions, fuel
moisture levels,and seasonal fire-weather extremes (such as Diablo winds). Integrating
dynamic emergency response variables like travel-time delays, water system failures,
and communication disruptions would provide a more realistic representation of
cascading disaster scenarios.

Another important direction is the incorporation of climate change projections
into both wildfire and seismic-related hazard models. As vegetation composition,
drought intensity, and fire-weather conditions shift, the spatial distribution of wildfire
susceptibility will change accordingly. Future models should integrate downscaled
climate scenarios to assess how hazard patterns may evolve over coming decades and
to guide long-term adaptation planning.

Expanding multi-hazard assessments to incorporate social vulnerability metrics also
represents an important next research step. Pairing physical hazard exposure with
indicators such as transportation access, housing quality, and public health burdens
would allow researchers to identify communities where limited adaptive capacity
intersects with high hazard levels. This would support more equitable prioritization of
mitigation resources and emergency planning.
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Finally, future research should explore cross-jurisdictional coordination frameworks
thatreflecttheregional nature of Bay Area hazards. Earthquakes, wildfires,and pipeline
systems transcend municipal boundaries, yet planning and response capacities vary
widely between jurisdictions. Multi-county data-sharing agreements, integrated
scenario planning, and joint emergency-response exercises could significantly
enhance resilience. Research into collaborative governance models would help bridge
these gaps and support a more unified regional approach to compound hazard
management.
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9. CONCLUSION

The research conducted in this thesis illustrates how California’s evolving hazard envi-
ronment requires analytical approaches capable of addressing the interconnected na-
ture of natural disasters and the vulnerabilities of critical infrastructure. Earthquakes,
landslides, liquefaction, and the pressures of climate and development intersect in
ways that challenge long-standing assumptions about how infrastructure performs
under stress. Among the systems most exposed to this shifting reality are natural gas
networks, lifelines that operate quietly beneath the surface but whose failure during
earthquakes can trigger consequences far beyond the initial ground shaking. Under-
standing how these failures emerge, and how different hazards converge to shape
them, has become more than a technical question; it is a matter of public safety, ener-
gy security, and long-term resilience.

This work responds to that need by bringing together tools and perspectives that have
rarely been integrated. Through the combination of OpenSRA's performance-based
modeling with spatial multi-criteria analysis, the research forms a methodological
bridge between detailed engineering assessment and regional hazard evaluation. In-
stead of treating liquefaction, landslides, and other ground-failure mechanisms as iso-
lated phenomena, the framework allows them to be examined together, highlighting
how they co-occur, reinforce each other, and ultimately influence pipeline behavior
along different segments of the network. This represents a notable step forward in a
field where compound hazards are often acknowledged but seldom quantified with
such clarity.

The results make these interactions tangible. Liquefaction emerges as a defining driv-
er of risk in the Bay Area, with clear patterns of tensile rupture and leakage in low-ly-
ing, water-saturated zones. The absence of compressive rupture in the modeled sce-
nario helps refine the understanding of how local geologic conditions translate into
distinct performance outcomes. The combined risk map, produced by normalizing
and synthesizing the hazard layers, underscores these patterns visually and analyti-
cally: the highest concentrations of vulnerability trace the shorelines, floodplains, and
sedimentary basins stretching from the central Bay to the Santa Clara Valley. Such
insights offer a level of precision that is valuable not only to researchers but also to util-
ities seeking to target investments, prioritize inspections, or plan emergency response
strategies.

Beyond the specific findings, the broader contribution of the research lies in the emer-
gence of a methodological framework that is adaptable, transparent, and scalable. Its
structure, open-source, data-driven, and grounded in performance-based engineer-
ing, makes it relevant not only for the Bay Area but for utility operators throughout
California and the United States. As hazards become more interconnected and infra-
structure systems more stressed, methods capable of capturing these interactions
are no longer optional; they are essential. This thesis demonstrates how such an ap-
proach can be constructed and applied in practice, turning complex scientific models
into decision-support tools with real operational value.

At the same time, the work opens pathways for future enhancement. Higher-reso-
lution geotechnical data, richer pipeline attribute information, and the incorpora-
tion of additional compounding factors, such as rainfall-triggered slope instability or
post-earthquake fire ignition, would deepen the analytical power of the framework.
As data availability expands and hazard modeling advances, the methodology pre-
sented here can evolve into an even more comprehensive system for anticipating,
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visualizing, and mitigating risk.

Instead of viewing the findings as an end point, this research positions itself as the be-
ginning of a larger shift in how critical infrastructure risk is understood. The methodol-
ogy developed here demonstrates that complex hazard interactions can be translated
into tools that directly support decision-making, but it also reveals how much un-
tapped potential remains. As utilities move toward modernization, climate pressures
intensify, and expectations for reliability grow, the ability to anticipate system behavior
under multi-hazard conditions will increasingly define the difference between reac-
tive management and true resilience. The framework introduced in this work offers
a blueprint for that evolution, not as a fixed solution, but as a foundation that future
researchers, practitioners, and agencies can expand, refine, and adapt. Its value lies
not only in the insights it generates today but in the doors it opens for integrating new
data, new models, and new ways of thinking about infrastructure in a hazard-prone
world. In this sense, the thesis contributes more than an assessment: it marks a turn-
ing point toward a more holistic, science-driven, and anticipatory approach to safe-
guarding lifeline systems.
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