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Abstract

This thesis explores the application of Artificial Intelligence (AI) techniques, with

a particular focus on Neural Networks, to enhance the safety of roadside guardrails

along the highways of the Turin area. Through the analysis of data collected from

sensors and cameras mounted on a moving vehicle, the research aims to automate

the detection of guardrails and their classification based on type, compliance with

current safety regulations, structural integrity, and the presence of possible damage.

The ultimate goal is to develop a monitoring database capable of identifying non-

compliant or potentially critical guardrails, thus providing valuable support for

preventive maintenance strategies and contributing to improved driver safety, even in

the event of an accident.
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Chapter 1

Introduction

Road safety represents a central priority for modern transportation systems, where

the effectiveness of roadside infrastructure plays a fundamental role in preventing

and mitigating accidents.

Longitudinal safety barriers -commonly known as guardrails- are essential elements

designed to contain or redirect out-of-control vehicles over the edge of the road, thus

reducing the severity of road incidents [1]. Their protective performance, however,

strongly depends on their physical condition, proper installation, and compliance with

technical regulations. Structural deterioration, accidental damage, inadequate setup,

or outdated configurations can significantly compromise their ability to safeguard

road users.

Traditional inspection practices rely on periodic manual surveys conducted by

trained personnel. Although widely adopted, these procedures are time-consuming,

costly, and often lack systematic coverage. Their effectiveness is inherently limited by

subjective assessments and by the impossibility of ensuring high-frequency monitoring

over large territorial areas. Therefore, the major critical issues are:

• the high overall operating cost (related to both personnel and equipment for

the survey);

• the risks for personnel employed in the field, especially during inspection

activities on high-traffic roads;

• the lack of objectivity and repeatability in evaluations, which depend

heavily on the experience and judgment of the operators.
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Introduction

These constraints are particularly relevant in extensive metropolitan road networks

-such as the Turin highway system - where thousands of barrier segments are installed

under heterogeneous environmental, structural, and traffic conditions.

In recent years, research has increasingly explored automated techniques to support

or partially replace manual inspections. Computer-vision-based approaches

and deep learning models for guardrail inventory and condition evaluation have

demonstrated promising results [2]. Other works have developed methods to assign

maintenance priority to safety barriers, combining degradation indicators with spatial

information [3]. More recently, advanced computer vision techniques integrated

with Global Navigation Satellite System (GNSS) data have been proposed for fully

automated damage detection and geolocation of guardrails [4]. Despite these advances,

several open problems remain unresolved. Current solutions often suffer from:

• the lack of reliable integration between visual detection and geographic infor-

mation;

• the absence of unified pipelines capable of classifying both the type and the

structural condition of guardrails;

• limited scalability in producing georeferenced inventories suitable for long-term

monitoring;

• difficulties in the transfer, standardization, and long-term management of digital

data, especially when integrating results into Building Information Modeling

(BIM) environments for maintenance planning.

Furthermore, most existing studies rely on static imagery or controlled acquisition se-

tups, whereas real-world highway environments introduce challenges such as occlusions,

variable lighting conditions, heterogeneous barrier morphologies, and non-standard

installations.

This thesis aims to address these open issues by developing an automated pipeline

for the detection, classification, assessment, and georeferencing of guardrails

along the highways of the Turin area, acquired from onboard cameras and GNSS

sensors mounted on a moving vehicle. Leveraging convolutional neural networks,

the system automatically extracts guardrail regions from video frames, distinguishes

among different barrier types, and evaluates their apparent structural condition, with

2
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specific attention to deformation and corrosion. Each detected element is then associ-

ated with the corresponding GNSS coordinates, generating a structured geospatial

database that can be visualised within a GIS environment and queried according to

specific maintenance needs.

The work is structured as follows:

1. Data collection and preparation: extraction of frames from videos acquired

via monocular and stereo cameras, synchronization with the vehicle’s GNSS.

2. Image segmentation: implementation of a U-Net neural network for automatic

identification of guardrail regions in frames.

3. Classification and evaluation: differentiation among guardrail types (e.g.,

double-wave, triple-wave), and evaluation of structural conditions/damages.

4. Geospatial Integration: development of a geospatial monitoring database.

The ultimate goal of this work is not merely the automated detection of guardrails,

but the construction of a georeferenced monitoring tool that enables municipalities

or highway operators to map the condition of their roadside barriers and prioritise

interventions based on objective indicators. The methodology developed in this thesis

contributes to the broader effort towards predictive and data-driven maintenance in

road safety, providing a scalable framework that can be extended to other territorial

contexts or integrated with open data sources, such as historical street imagery.
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Chapter 2

State of art

2.1 Traditional Inspection Methods

Roadside guardrails (also known as road safety barriers) have historically been

inspected through routine visual surveys by road maintenance personnel.

In Italy, visual inspections are prescribed by technical guidelines and ministerial

decrees. For example, Decreto Ministeriale 18/02/1992 n.223 (DM 223/1992) defined

road safety barriers as devices intended to contain vehicles leaving the roadway

in the safest possible manner [5]. This decree required road authorities (ANAS,

highway concessionaires, provinces, and large municipalities) to report biennially on

the condition and performance of installed barriers [6].

In practice, however, those reporting requirements were largely unmet – few road

operators maintained a precise inventory or condition database of their guardrails, and

very little information reached the central Ministry [6]. Thus, traditional methods have

relied on periodic on-site visual inspections, wherein trained inspectors assess guardrail

segments for damage (e.g. dents, missing bolts, corrosion) and compliance with

standards. Figure 2.1 shows typical field activities performed by road maintenance

personnel during these visual inspections. ANAS (the Italian road agency) developed

standardized inspection forms (see Allegato A in the ANAS technical handbook) to

guide field personnel in evaluating the state of preservation and efficiency of safety

barriers across the network [7]. These inspections focus on visible defects such as

deformations, missing elements, excessive deflection, and corrosion, which are recorded

to prioritize maintenance.

4
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Figure 2.1: Examples of traditional visual inspections of roadside guardrails per-
formed by field technicians.

Regular inspection is crucial because guardrails directly impact road safety – deficien-

cies can lead to increased risk of severe accidents. The ANAS handbook emphasizes

that systematic control and inspection of safety barriers are vital to ensure their

effectiveness and to optimize investment in maintenance [7].

In Italy, inspection procedures have been influenced by European norms as well. The

early national guidelines (DM 223/1992 and subsequent updates) were eventually

aligned with the European Standard EN 1317, which governs road restraint systems.

EN 1317 introduced harmonized terminology and crash-testing criteria for barriers,

and Italy formally adopted these through Decreto Ministeriale 21/06/2004 n.2367

(DM 2367/2004) [8]. As a result, since 2011 all new or replacement road restraint

devices (including guardrails) in Italy must be CE-marked in accordance with EN

1317 [8].

Traditional inspection practices in Europe similarly rely on visual methods. Many

countries’ road agencies schedule routine surveys where crews visually check barrier

continuity, alignment, and damage. Guidelines often require prompt inspection after

traffic accidents or extreme events (e.g., collisions, landslides) to identify compromised

guardrail sections.

In summary, the state-of-practice has been predominantly manual: inspectors walk-

ing or driving along roadways, sometimes using paper or digital checklists to log

issues. This approach is labor-intensive and subjective, leading to efforts to improve

consistency via standardized forms (as done by ANAS) and to augment human

5
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inspections with technology (discussed later). Nonetheless, visual inspection remains

the cornerstone of guardrail maintenance management, forming the baseline against

which new automated methods are evaluated. The importance of these inspections is

underlined by safety audits and regulations: Italian standards explicitly recognize that

regular safety inspections help identify and preempt situations potentially leading to

accidents ( [7]).

2.2 Artificial Intelligence Applied to Road Safety

In recent years, Artificial Intelligence (AI) techniques – particularly computer

vision using deep learning – have been increasingly applied to automate the de-

tection and evaluation of road safety features such as guardrails. In road safety

inspections, Machine Learning/Deep Learning algorithms can be trained on images of

road environments to recognize guardrails, classify their condition, or segment their

precise location in the image. This capability addresses the limitations of traditional

inspections by providing continuous, objective, and high-speed analysis of visual data.

Early applications of Computer Vision to guardrails (mid-2000s) did not yet employ

modern deep learning, but they laid the groundwork for AI use. The first proposals

for automatic guardrail detection, such as those of Broggi et al. (2005), were based

on the search for long parallel lines obtained by edge detection, which represent the

longitudinal profile of the guardrail. The algorithm extracted edges and analyzed the

continuity of lines over time, assuming that a guardrail appeared as a sequence of

nearly straight parallel edges aligned with the direction of travel [9, 10] (see Figure

2.2).

Figure 2.2: Simplified example of guardrail detection in the early work of Broggi et
al. (2005), based on the search for parallel lines obtained by edge detection.

6
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Other studies detected guardrails via structure-from-motion (inferring the rail from the

camera’s egomotion and scene geometry) or template matching[11]. These approaches

were often rule-based or relied on hand-crafted features, and they struggled with

complex backgrounds, lighting changes, and lack of depth information[12]. As a result,

their accuracy was limited in real-world driving scenes[13]. The advent of modern

deep learning (around 2012) brought a step-change: convolutional neural networks

(CNNs) can automatically learn discriminative features of guardrails (shape, texture,

context) from large image datasets, greatly improving detection robustness.

Today, state-of-the-art AI systems for guardrail inspection primarily use deep neural

network architectures for object detection and semantic segmentation tasks.

• Object detection locates objects within the image via bounding boxes, as-

signing each a class (e.g., “guardrail”, “vehicle”, “pole”)- see Figure 2.3. This

approach answers the question “Where is the object?” providing an approximate

delimitation of its position. It is particularly indicated when the goal is to

locate or count discrete elements of the scene.

• Semantic segmentation, on the other hand, assigns a label to each individ-

ual pixel of the image, classifying it into one of the defined categories (e.g.,

“guardrail”, “road”, “vegetation”, “sky”)- see Figure 2.4. The result is a contin-

uous and precise mask, useful for analyzing the shape, length and extension of

the guardrail. This approach answers the question “Which pixels belong to this

object?”.

Figure 2.3: Example of ob-
ject detection, where objects (e.g.
guardrails) are located via bound-
ing boxes.

Figure 2.4: Example of semantic segmenta-
tion, where each pixel is assigned to a class (e.g.
road, car, sky).

7
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In the case of guardrails, semantic segmentation therefore allows for an accurate

delineation of the spatial continuity of the barrier, while object detection is better

suited to identifying individual sections or modules of the guardrail present in the

image.

Building on this distinction, several deep learning architectures have been developed

to address these tasks with high accuracy. Notable examples include U-Net, SegNet,

DeepLabv3+, Faster R-CNN, and Mask R-CNN. Table 2.1 provides a high-level

overview of these architectures and the tasks they are typically used for. U-Net and

SegNet are fully convolutional networks designed for semantic segmentation (pixel-

wise classification), while Faster R-CNN represents a commonly used framework

for object detection (predicting bounding boxes and class labels). Mask R-CNN

extends Faster R-CNN by adding a per-object mask, thus performing instance

segmentation. DeepLabv3+ is another widely used segmentation model, known for

its strong performance in complex road scenes and its ability to capture information

at multiple spatial scales. All these architectures have been applied to road safety

imagery – for example, segmentation networks to outline the continuous length of

guardrails in highway images, or Faster R-CNN and Mask R-CNN to detect and mask

discrete sections of barrier.

Architecture Task Description

U-Net (2015) Semantic segmen-
tation

Encoder–decoder network widely used for
pixel-wise classification; effective on limited
datasets.

SegNet (2015) Semantic segmen-
tation

Efficient encoder–decoder architecture suit-
able for real-time or near real-time segmen-
tation.

DeepLabv3+
(2018)

Semantic segmen-
tation

High-performing segmentation model capa-
ble of capturing multi-scale information in
complex scenes.

Faster R-CNN
(2015)

Object detection Two-stage detector predicting bounding
boxes and class labels; strong accuracy in
structured environments.

Mask R-CNN
(2017)

Instance segmen-
tation

Extension of Faster R-CNN that produces
a mask for each detected instance.

Table 2.1: Main deep learning architectures commonly used in road scene analysis.

The most commonly used metrics to evaluate the performance of segmentation and
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detection models are the following:

• Intersection over Union (IoU)

IoU =
|A ∩B|
|A ∪B|

, (2.1)

where A is the predicted mask and B is the ground-truth mask. A value of 1

indicates perfect overlap.

• Precision and Recall.

Precision =
TP

TP + FP
, (2.2)

Recall =
TP

TP + FN
, (2.3)

where TP, FP and FN denote true positives, false positives, and false negatives,

respectively. Precision measures whether the model tends to over-segment

(many false positives), whereas recall measures its ability to correctly identify

all object pixels.

• F1-score

F1 = 2 · Precision · Recall
Precision + Recall

, (2.4)

which is the harmonic mean of precision and recall. For pixel-wise segmentation,

the F1-score is mathematically equivalent to the Dice coefficient.

• Dice Coefficient

Dice =
2|A ∩B|
|A|+ |B|

, (2.5)

a commonly used alternative formulation of the F1-score, particularly helpful

for segmentation tasks. This coefficient is particularly useful when classes are

imbalanced.

• Pixel-wise Accuracy.

Accuracy =
TP + TN

TP + TN+ FP + FN
, (2.6)
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where TN denotes true negatives. Although commonly reported, accuracy can

be misleading in highly imbalanced segmentation tasks: a model predicting all

pixels as background would obtain high accuracy while completely failing at

object detection.

• Cross-Entropy Loss

LCE = −
∑
i

yi log(ŷi), (2.7)

where yi is the true label and ŷi the predicted probability for pixel i. Cross-

entropy is the most common loss function used during training and drives the

model to improve its discrimination between object and background pixels. In

the binary case, this reduces to the binary cross-entropy.

2.2.1 Challenges in Training Guardrail Detection Models

Deep learning models require large annotated datasets for training.

A significant challenge in applying AI to guardrail inspection is dataset scarcity:

there are relatively few publicly available datasets focused on guardrails or barrier

damage, especially compared to general road scene datasets. Jin et al. (2024) note

that existing guardrail segmentation models in the literature have all been trained

on rather limited datasets (often images captured from a vehicle perspective), and

there is a lack of diverse training data[14]. This can hinder the models’ ability to

generalize to different environments (e.g., different countries, backgrounds, or camera

viewpoints). For instance, a model trained only on forward-facing highway camera

images might perform poorly on side-view or higher-angle images (such as those from

drones or mapping vehicles) due to distributional shift. Indeed, studies have observed

that certain algorithms which perform well on near-field images lose accuracy on

far-field scenes or under different lighting conditions[15]. Overcoming this requires

data augmentation, transfer learning, or synthesizing training data to cover

a wide range of scenarios:

• Data augmentation consists of artificially increasing the size and variability

of the dataset by applying transformations to existing images (e.g., rotations,

flips, brightness variations, cropping, noise). This helps the model become more

robust to changes in viewpoint and lighting.
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• Transfer learning uses a model pre-trained on a large, generic dataset and

adapts it to the required detection task (e.g., guardrail detection). This allows

the model to achieve good performance even with relatively small domain-specific

datasets.

• Synthetic data generation creates artificial training images, typically through

simulation environments or generative models. Synthetic data can represent

rare conditions (e.g., unusual lighting, uncommon guardrail types, extreme

weather) and viewpoints that would be difficult or expensive to capture in the

real world.

(a) Data augmentation
(b) Transfer learning (c) Synthetic data

Figure 2.5: Illustration of techniques used to address dataset scarcity: (a) example
of data augmentation applied to a guardrail image; (b) conceptual diagram of transfer
learning, where a pre-trained model is adapted to the guardrail detection task; (c)
synthetic data generation (foggy generation) using simulated images.

Despite the challenges previously cited, recent research results are promising. Using an

improved U-Net architecture, Jin et al. achieved a mean IoU above 85% in guardrail

segmentation, an 8.63% increase over a standard U-Net, along with higher precision

and recall. Their F1-score reached 0.90, about 0.16 higher than the baseline[14,

16]. Such performance indicates that AI models can detect guardrail presence

and even segment fine details (like support posts or rail gaps) with high accuracy.

Furthermore, AI can not only locate guardrails but also assess their condition. By

training on examples of damaged vs. undamaged rails, models have been developed

to automatically flag sections with deformities, missing components, or corrosion.

Some approaches use a two-step pipeline: first segment the guardrail in the image,

then within that region apply classifiers or anomaly detectors to identify specific

defects (e.g., a break, or a detached rail)[17, 18]. Performance for damage detection
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is commonly reported with precision/recall; for example, above 85% accuracy in

identifying certain defect types[18].

Beyond dataset limitations, another key factor influencing performance is the ability

of AI models to maintain robustness and generalization. Road environments are

highly variable: guardrails come in different materials and shapes (double-wave, three-

wave, concrete barriers, etc), and background scenes can include clutter (vegetation,

vehicles, shadows). Models must handle these variations as well as adverse conditions

like rain, fog, or nighttime.

To improve generalization, researchers have experimented with data fusion (e.g.,

combining camera data with LiDAR or radar) and domain adaptation. For instance,

a vision+radar fusion algorithm was shown to reliably detect guardrails and ignore

them as non-threat obstacles in driver assistance systems[19, 20] – the radar provides

distance information that confirms a long linear reflector is likely a guardrail. While

such sensor fusion targets different objectives (e.g., filtering false positives for vehicle

detection), it demonstrates how multiple data sources can reinforce AI’s understanding.

In the context of automated inspection, combining 2D imagery with 3D depth (from

stereo cameras or laser scanners) can significantly improve detection of highway assets

like guardrails[21, 22].

In summary, the application of AI to guardrail inspection is a key part of a broader

trend of digital road asset management, which aims to continuously monitor in-

frastructure using imagery and sensor data, with machine learning providing the

analytical engine to interpret that data in real time.

2.3 Road Data Acquisition

AI-based guardrail inspection requires robust data acquisition systems capable of

collecting high-quality images or videos of roadways.

In practice, this is done via specific platforms mounted on a moving vehicle, called

mobile mapping systems (MMS). The underlying concept is simple: instead of

performing slow and dangerous manual surveys, an MMS integrates multiple sensors

(cameras, laser scanners, GNSS, etc.) on the vehicle, continuously recording the road

environment as it travels along the network. This enables the acquisition of high-

resolution images even at road speeds, provides continuous and systematic coverage
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of the guardrails, and assigns to each image the precise position and orientation of

the vehicle.

Figure 2.6: Example of a Mobile Mapping System (MMS) equipped with multi-
sensor instrumentation.

Modern MMS platforms can integrate different sensors depending on the level of

detail and accuracy required for road asset inspection. These technologies include:

• RGB and high-resolution cameras, which capture detailed visual informa-

tion on guardrails, posts and roadside elements;

• Stereo or multi-camera systems, used to estimate depth, reconstruct por-

tions of the scene in 3D, and improve robustness against lighting variability;

• LiDAR scanners, which generate dense 3D point clouds of the road corridor.

Guardrails appear as continuous, elevated linear structures, making LiDAR

particularly suitable for geometric reconstruction, deformation analysis and

structural measurements;

• 360° panoramic cameras, increasingly used for large-scale road inventories,

as they provide complete environmental coverage from a single sensor.

• GNSS receivers and Inertial Measurement Units (IMUs) to ensure

accurate georeferencing of all acquired data by fusing satellite navigation with

inertial measurements.
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(a) Example of RGB cam-
era

(b) Example of
stereo camera

(c) Example of Li-
DAR scanner

(d) Example of 360°
panoramic camera

(e) Example of GNSS receiver

Figure 2.7: Examples of sensing technologies commonly used in modern Mobile
Mapping Systems: (a) RGB camera, (b) stereo camera, (c) LiDAR scanner, (d) 360°
panoramic camera, (e) GNSS receiver.

Complementary acquisition methods include static or low-speed imaging (e.g., at

bridges or hazardous curves) and aerial acquisition using UAVs. Drones can capture

high-resolution imagery in areas difficult to access by road vehicles, provided that

images are geo-tagged through the drone GPS and ground control points.

Among the most widely used MMS platforms are the Automatic Road Analyzer

(ARAN) and various professional mapping vans operated by road management

authorities.
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Figure 2.8: Example of Automatic Road Analyze.

A key element of these platforms is the integration of cameras with GNSS receivers

and Inertial Measurement Units (IMUs). An IMU includes accelerometers,

which measure linear accelerations; gyroscopes, which detect angular velocity, and

sometimes magnetometers which provide orientation relative to the Earth’s magnetic

field. These sensors enable the estimation of the vehicle’s roll, pitch, and yaw, the

detection of rapid changes in motion, and the reconstruction of the vehicle’s trajectory

even when GNSS coverage is weak. The fusion of GNSS and IMU measurements

ultimately allows each image to be precisely georeferenced, associating accurate spatial

coordinates and orientation to every frame. Data acquired via MMS platforms can

then be integrated into existing geographic information systems (GIS), enabling large-

scale mapping of road safety resources. This integration becomes particularly valuable

when combined with institutional spatial databases- such as the Turin Metropolitan

City Road Cadastre [23], in our case - which provide authoritative geospatial layers

for the regional road network.

Such MMS-based acquisition pipelines are already employed in several large-scale

road management projects. A significant example is the mobile mapping campaign

conducted by Autovie Venete in Italy. A high-performance vehicle, known as MOMAS,

was used to survey the entire highway network at speeds of 50–70 km/h [24]. The

vehicle continuously recorded GNSS/IMU trajectories and archived georeferenced

high-definition images of both sides of the carriageway. These images were later

processed through a dedicated Road Management System, which synchronized the

visual data with the navigation trajectory, allowing operators to annotate guardrail

elements directly within their geographic context [25]. The final output consisted of

GIS-ready georeferenced polylines describing guardrail segments.
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2.4 Classification of Guardrails in Italy and Regu-

latory Standards

Guardrails are classified according to their performance and design characteristics in

both Italian regulations and European standards. Understanding these classifications

is important for evaluating compliance and for mapping the types of guardrails that

an automated inspection system may encounter.

2.4.1 Italian Ministerial Decrees

The foundational Italian regulation, DM 223/1992, established an initial classification

of road safety barriers based on an impact severity index, essentially related to the

energy absorption capacity of the barrier. It defined classes A1, A2, A3 for barriers

of increasing containment levels for light vehicles, and classes B1, B2, B3 for those

designed to contain heavier vehicles [26, 27]. For example, a class A1 barrier was one

allowing a severity index up to 15 kJ, A2 up to 50 kJ, A3 up to 150 kJ; whereas B1

allowed up to 300 kJ, B2 up to 600 kJ, and B3 up to 1000 kJ [26, 27]. In practical

terms, these classes corresponded to increasing strength: A-class barriers (often single

or double steel beam rails) for cars and small vehicles, B-class (stronger) for buses,

trucks, etc. The decree also tied minimum barrier classes to road types – for instance,

certain extra-urban highways required at least class A3 or B1 depending on traffic

and road category [28]. This schema was unique to Italy at the time, preceding the

harmonized European system. To clarify the differences between the former Italian

classification and the current European framework, Table 2.2 summarizes the main

containment classes defined by DM 223/1992 and the corresponding EN 1317 levels.
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Regulation Class/Level Energy/Test Reference Test Vehicle
DM 223/1992 A1 ≤ 15 kJ Passenger car

A2 ≤ 50 kJ Passenger car
A3 ≤ 150 kJ Passenger car
B1 ≤ 300 kJ Heavy vehicles
B2 ≤ 600 kJ Heavy vehicles
B3 ≤ 1000 kJ Heavy vehicles

EN 1317 N1, N2 Crash tests with cars (up to 1500 kg) Passenger car
H1, H2, H3, H4 Tests with heavy vehicles and cars at higher speeds Truck, bus

L1, L2 Low containment levels Light passenger car
(Special parapets) Dedicated test procedures Various

Table 2.2: Comparison between the DM 223/1992 classes and the EN 1317 contain-
ment levels

DM 2367/2004 updated the Italian classification by adopting the EN 1317 standard.

Article 1 of DM 2367/2004 explicitly replaces the old technical instructions with

new ones conforming to EN 1317 parts 1–4 [29]. EN 1317 introduced standardized

containment levels such as N1, N2 (Normal containment) and H1, H2, H3, H4 (Higher

containment), as well as L1, L2, etc. (Low containment) and special levels for bridge

parapets. Each level corresponds to a crash test involving specific vehicle types,

masses, and speeds. For example, an H2 barrier is tested to contain a 13-ton bus at

70 km/h and a car at 110 km/h [30].

The adoption of EN 1317 meant that Italy’s categorization shifted to these codes;

Italian road projects and inspections now refer to barriers as “H2”, “H3”, etc.,

rather than A/B classes. The ANAS Technical Manual notes that the European

framework comprises 8 parts of EN 1317, covering terminology, impact test procedures,

performance classes for barriers, crash cushions, terminals, transitions, product

certification, etc. [31]. A key aspect introduced by EN 1317 is the requirement

for crash testing and CE certification – since 2011, only barriers that have been

crash-tested according to EN 1317 and have CE marking (issued by a notified body)

can be installed on Italian and European roads [32]. This ensures a uniform level

of safety performance. Notably, DM 2367/2004 (Art. 6) mandated that attenuatori

d’urto (crash cushions) be used to shield fixed obstacles on roads, as per EN 1317-3,

and that all new barriers meet the updated criteria [29].
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2.4.2 Guardrail Typologies

Beyond performance classes, guardrails can be categorized by their structural type

and material.

The two primary families are rigid systems and deformable systems. Rigid barriers

are typically made of concrete (e.g. the New Jersey or concrete step barrier); they

essentially do not deflect under impact but dissipate energy through the vehicle’s

deformation and friction. Semi-rigid barriers are the common steel guardrails – usually

galvanized steel beams (double-wave or triple-wave profiles) mounted on posts – which

deflect upon impact to absorb kinetic energy. Flexible barriers refer to high-tension

wire rope barriers (cable barriers) which deflect the most during a crash [33].

Italian practice historically centered on steel guardrails as the standard solution along

highways and rural roads, with concrete barriers used in medians of high-speed roads

or where space is limited. Cable barriers have seen more limited use in Italy but are

employed in other European countries. Figure 2.9 illustrates the barrier types most

commonly installed on Italian highways, including double-wave and triple-wave steel

guardrails, concrete median barriers, and bridge parapets.

(a) Double-wave (b) Triple-wave
(c) Concrete me-
dian (d) Parapet

Figure 2.9: Example of most common guardrail types used on Italian motorways:
(a) double-wave steel barrier, (b) triple-wave barrier, (c) concrete central median
barrier and (d) bridge parapet barrier.
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Category Material Distinctive Features Typical
EN 1317
Class

Double-wave steel
guardrail

Galvanized
steel

Two horizontal corrugations; used
as roadside or median barrier; often
equipped with retroreflectors

N2 – H2

Triple-wave steel
guardrail

Galvanized
steel

Three corrugations; higher stiffness;
may include an upper
sound-absorbing panel

H1 – H2

Concrete “New
Jersey” barrier

Precast
concrete
(HDPE for
temporary
works)

Modular monolithic profile; used as
permanent median barrier or for
temporary delineation in work zones

N2 (perma-
nent),
T1–T3
(temporary)

Laminated timber
/ corten barrier

Timber with
steel core (or
corten steel)

Aesthetic solution used in scenic or
regional roads; combines wooden
appearance with metal structural
strength

H1

Central median
steel barrier

Galvanized
steel

Double-faced configuration based on
double-wave beams mounted on
central posts

H2

Bridge parapet
barrier
(PS1/PS2)

Steel or
reinforced
concrete

Anchored to bridge decks; requires
extended anchorage beyond the
structure edges

H2 – H3

Temporary
modular barrier

HDPE or
lightweight
plastic

Lightweight interlocking modules
used in construction zones for
temporary traffic channelization

T1 – T3

Table 2.3: Main guardrail types used in Italy and their typical properties

In addition to the visual examples shown above, Table 2.3 summarizes the main

guardrail categories used on Italian highways, detailing their materials, structural

characteristics, and typical EN 1317 containment classes.

In summary, Italy’s guardrails are categorized by containment performance (old A/B

system; now EN 1317 N/H classes) and by structural type (rigid, semi-rigid, flexible).

Automated AI-based inspection can help identify mismatches between required and

installed classes, and detect defects that may reduce performance [34].

19



Chapter 3

Methodology

3.1 Innovative Contributions

The proposed work introduces innovative contributions to currently available ap-

proaches for road guardrail inspection. The key aspects are summarised below:

• Guardrail-focused detection pipeline: Most existing studies treat guardrails

as secondary objects within more general detection frameworks (e.g., road

elements detection, vehicle detection). In contrast, this thesis proposes a

pipeline completely dedicated to guardrail detection, enabling significantly more

accurate segmentation of this specific class.

• Low-cost data acquisition system: Many commercial MMS (such as Leica

Pegasus, Trimble MX, or Topcon IP-S) are effective but extremely expensive

and proprietary. The solution proposed in this work relies instead on low-cost,

low-power sensors mounted on a standard vehicle.

• Spatio-temporal synchronisation: Several studies perform image detection

without integrating the results into the geographical domain. In contrast, this

thesis implements a workflow for synchronising video frames with navigation

data.

• Creation of a geo-referenced guardrail inventory: Public administrations

currently lack an open-source database containing information on guardrail
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location, compliance, and typology. The final product of this work, therefore,

represents a valuable tool for maintenance planning and safety assessment.

• Integration of Google Street View: An innovative aspect of this work is

the use of Google Street View as an additional open-data source to validate,

compare, and monitor the condition of guardrails over time.

• Modular and replicable framework: Unlike proprietary systems, the entire

pipeline is designed to be modular and easily replicable by public authorities or

research institutions.

3.2 Proposed approach

The primary objective of this thesis is to develop an automated, robust, and scalable

methodology for the comprehensive identification, classification, and condition

assessment of roadside barriers (guardrails). This approach is specifically tailored

to address the limitations of conventional manual inspection methods, offering an

objective and continuous evaluation of road safety infrastructure. The case study

focuses on a specific highway segment near Turin, Italy.

The proposed approach integrates state-of-the-art techniques from Artificial Intelli-

gence (AI), advanced Computer Vision, and Georeferencing within a structured

and modular pipeline. This architecture is explicitly designed to operate effectively

under common real-world driving scenarios.

The methodology is organized into a sequential flow of processing stages that

systematically transform raw sensor data into meaningful and spatially localized

information for road safety assessment. Starting from the acquisition of video and

GNSS data, the pipeline encompasses five distinct macro-phases, each subdivided

into specific tasks.

21



Methodology

Figure 3.1: Schematic representation of the methodology.

These macro-phases are:

1. Data Acquisition

2. Frame Extraction and Georeferencing

3. Guardrail Detection

4. Guardrail Type Classification and Condition Assessment

5. Geospatial Guardrail Monitoring Database Creation

At a high level, the proposed pipeline operates as follows. Starting from raw video

data acquired through onboard cameras and synchronized GNSS tracks, representative

frames are extracted and partially annotated to generate binary masks of roadside

barriers. These masks, together with external datasets, are used to train a neural

network for guardrail segmentation, enabling the automatic detection and localization

of barrier elements within each frame. A second neural network is then employed

to classify each identified guardrail segment by type, while additional image-based

analyses support the assessment of potential damage, such as deformities or surface

deterioration. Finally, all extracted attributes—combined with geospatial coordinates

obtained during the georeferencing stage—are integrated into a structured geospatial

database suitable for visualization and analysis within GIS environments such as

QGIS.

Figure 3.1 provides a schematic representation of the entire workflow, serving

as a conceptual guide for the detailed descriptions presented in the subsequent sections

of this chapter. Each module addresses a specific task, contributing to the overall goal

of generating an interpretable and spatially coherent representation of the guardrail
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conditions along the analyzed road segment. This modularity ensures flexibility,

maintainability, and scalability for future development or adaptation.

3.3 Data acquisition

The first phase of the methodology involves the collection of high-resolution

visual and geospatial data from the roadside environment. Figure 3.2 shows this

first block of the pipeline. At the end of this step, raw video footage and positioning

data, provided by a receiver, are available for the subsequent processing stages.

Figure 3.2: Data acquisition block, where video streams and GNSS trajectories are
collected from the mobile sensing platform.

Figure 3.3: Multi-sensor data acquisition setup, including stereo Sony cameras,
Insta360 panoramic camera, and a GNSS receiver.
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A purpose-built multi-sensor data acquisition platform, rigidly mounted on

the roof of a dedicated survey vehicle. The system integrates complementary sen-

sors—stereo RGB cameras, a panoramic camera, and a GNSS receiver—operating in

parallel and synchronized at the system level. This setup enables the construction of

a rich and temporally aligned dataset suitable for the subsequent tasks.

As shown in Figure 3.3, the platform consists of:

• Two stereo RGB cameras (Sony RX0 II) mounted rigidly on a custom

aluminium crossbar with a fixed baseline of approximately 25-30 cm. Each

camera captures video at up to 25 fps with a wide dynamic range.

• A 360-degree panoramic camera (Insta360 One X2), positioned centrally

on the crossbar to ensure uniform coverage.

• A GNSS receiver, installed close to the geometric center of the crossbar to

minimize offset from the optical sensors. The receiver supports dual-frequency,

multi-constellation GNSS and records Receiver Independent Exchange For-

mat (RINEX) raw measurements. This enables centimeter-level accuracy in

trajectory reconstruction and precise georeferencing of each video frame.

All devices were synchronized using system-level timestamps to ensure consistent

temporal alignment across data streams.

Table 3.1 summarizes the main characteristics, strengths, and limitations of the

selected sensors, clarifying the rationale behind the acquisition setup.

Sensor Key Specs Res./FPS Strengths Cost
(EUR)

Sony RX0 II
(×2)

1/2.3” CMOS;
24mm eq.;
stereo baseline
25–30 cm

4K@25fps High dynamic
range; compact;
robust; stereo
depth

750–800
each

Insta360 One
X2

360° FOV; dual
fisheye lenses

5.7K@25fps Full environmen-
tal coverage; use-
ful context

450–500

ZED-F9P GNSS Dual-frequency
L1/L2; multi-
constellation

20Hz raw Centimeter-
level accuracy
(RTK/PPK)

200–300

Table 3.1: Summary of the sensors used in the acquisition platform.
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3.4 Video Frames Extraction and Georeferencing

Figure3.4 illustrates the second block of the pipeline. In this phase, the recorded video

and the GNSS data collected by the receiver are processed to extract the individual

frames. Each frame is then associated with a corresponding geographic position

through timestamp synchronization and coordinate interpolation. The output of this

step is a set of georeferenced frames that serve as input for the subsequent analysis

tasks.

Figure 3.4: Second block of the pipeline: extraction of video frames and their
georeferencing.

In this phase, a multi-step procedure is adopted to extract meaningful video frames

and accurately assign geographic coordinates to each of them. First, the RINEX file

is processed to obtain a refined GNSS trajectory. Then, the vehicle’s speed profile is

analyzed to design an optimized frame-extraction strategy, avoiding redundancy and

ensuring that frames are uniformly distributed along the road—rather than simply

sampled at a constant temporal rate. Finally, a time-based georeferencing procedure

is implemented: video timestamps are synchronized with GNSS timestamps, and each

extracted frame is assigned the corresponding geographic position based on temporal

alignment.

3.4.1 GNSS Data Processing

The raw GNSS data were processed using the open-source software RTKLib,

applying a post-processing kinematic (PPK) approach. Differential correction enhances

GNSS positioning accuracy by exploiting the fact that two receivers observing the

same satellites at nearly the same time share most of the atmospheric and satellite-
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originated errors. A reference base station with known coordinates is used to compare

its measurements with those of the rover mounted on the vehicle.

For each satellite, both receivers collect pseudorange and carrier-phase observations,

which contain the true geometric distance plus several error sources (ionospheric and

tropospheric delays, satellite clock drift, multipath, and receiver noise). Because the

base position is known, its measurement errors can be estimated. By forming single

differences between rover and base observations, most common-mode errors cancel

out; computing double differences between satellites further removes satellite clock

errors and minimizes residual atmospheric effects.

This differential correction technique improves positional accuracy by minimizing

common-mode errors between the rover (vehicle) and a reference base station, achiev-

ing centimeter-level precision in stable segments. The output of this processing

is a .pos (see Figure 3.5) file containing, for each epoch, the estimated geographic

coordinates (latitude, longitude, altitude), the corresponding timestamp, a fix-quality

indicator (Q), and several accuracy metrics such as standard deviations and the

number of visible satellites.

These data served as the basis for both speed computation and time synchronization

with video frames, ensuring spatial and temporal alignment between the vehicle’s

motion and the recorded imagery.

Figure 3.5: Excerpt of the RTKLib .pos output file, showing the processing
configuration and the structure of the corrected PPK solution.
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3.4.2 Speed profile

Based on the .pos file, the vehicle’s speed profile was computed as follows. For each

consecutive pair of GNSS points, the three-dimensional distance was obtained by

combining the horizontal geodesic distance with the vertical elevation difference:

d(i) =

√(
d
(i)
2D

)2
+ (hi+1 − hi)

2 (3.1)

where d
(i)
2D is the geodesic distance between two points, and hi, hi+1 are their respective

altitudes. The geodesic distance was computed using the geopy library, which

implements the Karney (2013) algorithm on the WGS-84 ellipsoidal Earth model,

ensuring high precision and convergence. The instantaneous speed was then derived

as:

v(i) =
d(i)

ti+1 − ti
(3.2)

with v(i) expressed in meters per second and later converted to kilometers per hour.

The resulting speed profile was subsequently used to design an adaptive frame

extraction strategy: instead of sampling frames at a constant rate (e.g., 1 frame per

second), a variable-rate approach was adopted. In segments where the vehicle moved

faster, more frames were extracted to maintain adequate spatial resolution; conversely,

in slower or stationary segments, fewer frames were sampled to reduce redundancy.

3.4.3 Video–GNSS Synchronization

To accurately georeference each extracted frame, it was necessary to synchronize

the video and GNSS timelines. The synchronization point was identified using a

video frame in which a smartphone displaying the current time appeared. The

timestamp visible on the phone served as a temporal reference and was matched

to the corresponding timestamp in the RINEX-derived .pos file. Once the frame

rate (frames per second, FPS) of the video was verified (e.g., 25 fps), each frame’s

timestamp could be calculated according to:

ti = tref +
(i−N)

FPS
(3.3)
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where tref is the known timestamp of the reference frame N . This allowed each frame

to be associated with a precise acquisition time expressed in GNSS time.

3.4.4 Spatial Interpolation of Frame Coordinates

Since video frames typically correspond to timestamps not explicitly present in the

GNSS log (which usually records positions at 1 Hz), an interpolation method was

applied to estimate the geographic coordinates of intermediate frames. For each

GNSS time interval [ti, ti+1), where Pi = [ϕi, λi, hi] denotes latitude, longitude, and

altitude, the total displacement ∆P = Pi+1−Pi was divided according to the number

of frames M to be extracted within that interval.

Coordinates were assigned by evaluating fractional increments of the displacement

vector, excluding the final boundary point to avoid duplication between consecutive

intervals. The position of the k-th frame within [ti, ti+1) was therefore computed as:

P(ti,k) = Pi +
k

M
∆P, k = 0, 1, . . . ,M−1. (3.4)

This formulation ensures that the last frame in the interval approaches, but does not

overlap with, the next GNSS epoch. The interpolation was applied independently to

latitude, longitude, and altitude, resulting in spatially consistent coordinates for all

extracted frames.

3.5 Guardrail Detection

The third stage of the proposed pipeline, Guardrail Detection, represents a critical

requirement of this thesis, due to the inherent challenges in accurately identifying road

safety barriers within video frames. To address this, we adopted an image segmentation

approach using deep learning, specifically employing a U-Net architecture. U-Net

is selected for its proven efficacy in pixel-level segmentation, particularly in scenarios

constrained by limited dataset sizes.

Figure3.6 illustrates the process underlying the guardrail detection step. After

extracting the individual frames from the input videos (from the previous stage of the

pipeline), a subset of these frames — enriched with images from an external dataset

to ensure a wider variety of environmental conditions — was used to train the neural
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network. For all selected frames, a binary mask was previously generated to serve as

the ground truth input during the training phase.

Figure 3.6: Third block of the pipeline: guardrail detection.

Once trained, the neural network is applied to the remaining frames, for which no

mask is available. The goal is to enable the model to automatically detect the presence

of guardrails in the scene, producing for each image a binary segmentation mask

in which the pixels belonging to the guardrail are clearly distinguished from the

background.

3.5.1 Dataset Generation and Annotation Strategy

A significant hurdle in this phase was the absence of ground truth data (i.e., pre-

existing binary masks corresponding to the video frames). To address this, we initially

explored two strategies: manual labeling and a semi-automatic pipeline based on

classical computer vision.

• Manual Annotation: utilizing the MATLAB Image Labeler tool, we manually

delineated guardrail regions on a representative subset of frames. While this
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method guarantees high-precision ground truth, it is computationally expensive

and labor-intensive due to the requirement for pixel-perfect tracing.

• Semi-Automatic Generation via Classical Computer Vision: A proto-

type pipeline was developed based on Canny edge detection and the Hough

Transform to detect the linear structures typical of guardrails. A Kalman

filter was then employed to track these features across frames to reduce tempo-

ral noise. Despite its speed, this method required substantial parameter tuning

(e.g., adaptive thresholding for varying illumination) and often produced masks

with insufficient accuracy for training deep learning models.

To better illustrate the behaviour of the semi-automatic pipeline, Figure 3.7 reports

a sequence of representative frames processed through all intermediate steps. Each

column corresponds to a different stage of the workflow, allowing a clear understanding

of how geometric constraints and color filtering jointly contribute to the extraction of

preliminary guardrail masks.

Figure 3.7: Example of semi-automatic segmentation applied on a sequence of
consecutive frames.

The main stages are summarised below.

1. Frame Cropping. The upper portion of each frame is removed to discard

irrelevant background (sky, distant landscape), which typically introduces clutter

in edge and line detection. This step focuses the analysis on the roadway and

adjacent infrastructure.
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2. Edge Detection. A Canny operator is applied to extract strong structural

gradients. Guardrails generally produce long, sharp edges due to their metallic

profile and perspective projection. Edge detection, therefore, provides the first

reliable cue for identifying regions with potential guardrail presence.

3. Line Detection with Hough Transform. The edge map is processed

with the (probabilistic) Hough Transform to extract straight-line segments. A

filtering strategy based on line orientation and image position removes spurious

detections (e.g., lane markings, vertical poles) while preserving the slanted lines

characteristic of guardrails. This step produces a set of geometric primitives

that encode the scene’s perspective structure.

4. Vanishing-Point Estimation. Selected lines are combined to estimate a

vanishing point using a RANSAC-based procedure. The vanishing point captures

the global image geometry and provides a constraint for understanding which

regions of the frame are compatible with guardrail placement. This information

is used to define admissible regions of interest (ROIs).

5. Geometric ROI Construction. Using the vanishing point and the extremal

detected lines, polygonal regions where guardrails cannot be present are removed

(e.g., the road centre, far-field upper areas, or internal roadside zones). This

significantly reduces false positives and restricts the subsequent processing to

the most relevant image areas.

6. Color-Based Filtering. The remaining portion of the frame is converted to

the HSV color space, and thresholding is applied to isolate metallic grey tones

commonly associated with steel guardrails.

7. Temporal Stabilisation. A Kalman filter is employed to stabilise line positions

and the vanishing point over time, reducing jitter between consecutive frames

and improving the temporal consistency of the generated masks.

The final mask is obtained by combining geometric constraints and color filtering.

While not accurate enough to serve as definitive ground truth, this mask provides a

useful first approximation, later refined manually or replaced by deep-learning-based

segmentation.
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Limitations of Classical Approaches

While the semi-automatic pipeline provided a rapid way to generate initial masks,

it proved insufficient as a standalone solution for the final detection system. Clas-

sical edge detection relies heavily on strong gradients and linear approximations.

Consequently, it struggled significantly in scenarios involving:

• Curved Guardrails: The Hough Transform is optimized for straight lines and

often fails to capture the curvature of barriers on winding roads.

• Complex Backgrounds: High-frequency textures (e.g., trees, fences) often

trigger false positives.

• Varying Illumination: Fixed thresholds for edge detection do not generalize

well across different lighting conditions (e.g., shadows vs. direct sunlight).

These limitations necessitated the use of a Deep Learning approach capable of learning

robust, non-linear semantic features.

3.5.2 Neural Network Architecture: U-Net

To address the binary segmentation task, we selected the U-Net architecture. It is

particularly effective for tasks with limited training data due to its ability to combine

low-level detail with high-level context.

The architecture is characterized by a symmetric encoder-decoder structure:

1. Encoder (Contracting Path): Extracts hierarchical features by progressively

reducing spatial resolution while increasing feature depth. It captures the

”context” of the image (i.e., ”what” is present).

2. Decoder (Expanding Path): Reconstructs the spatial resolution to generate

a precise segmentation mask. It addresses the ”localization” (i.e., ”where” it

is).

3. Skip Connections: A critical feature of U-Net is the direct connection be-

tween encoder and decoder layers. These connections propagate high-resolution

spatial information lost during pooling, ensuring sharp boundaries in the final

segmentation.
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Figure 3.8: Traditional U-Net model architecture.

After training, the model was able to predict accurate guardrail segmentation masks

for new frames.

3.5.3 Performance Evaluation Metrics

In road scene imagery, guardrail pixels typically constitute a very small fraction

of the total image area (often < 5%). To prevent the model from converging to a

trivial solution (i.e., predicting everything as background), we utilized Binary Focal

Loss. Unlike standard Cross-Entropy, Focal Loss applies a modulating factor to

down-weight easy examples (background) and focus training on hard, misclassified

examples (guardrails).

The Binary Focal Loss is defined as:

Lfocal = −αt(1− pt)
γ log(pt), (3.5)

where αt balances the importance of positive and negative samples, γ controls the

focusing strength, and pt is the predicted probability for the true class. Model

performance is evaluated using the metrics described in Section 2.2.

3.6 Guardrail Type Classification

The fourth macro-phase of the proposed methodology involves a parallel workflow: on

one side, the classification of guardrails by typology, and on the other, the assessment

of defects such as corrosion or structural deformations. Figure 3.9 illustrates the

classification branch, which is described in detail in the following section.
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Figure 3.9: Fourth block of the pipeline: guardrail type classification branch.

After the segmentation phase, each detected guardrail must be classified according

to the types defined by European and Italian road safety legislation (e.g., EN 1317),

discussed in the previous chapter 2.4.2. In this work, 4 main categories were

considered:

• Double-wave guardrail

• Triple-wave guardrail

• Central median barrier

• Bridge/parapet barrier (for engineering structures)

These categories represent the most commonly used road restraint systems on Italian

roads, and their classification is based on both structural characteristics (e.g., wave

profile) and functional position (e.g., roadside, central divider, or bridge).

The classification of each guardrail is performed using a convolutional neural network

based on the ResNet-18 architecture. Before training the model, however, a

preliminary guardrail isolation step is required, as shown in Figure 3.9.

Guardrail Isolation. Starting from the original image and its corresponding segmen-

tation mask, each guardrail segment present in the frame is extracted independently.

The masks allow for the automatic cropping of the image regions containing the

guardrail; when multiple barriers appear in the same frame (for example, one on

each side of the roadway), each segment is treated as a separate image. This process

produces a dataset of patches focused exclusively on the guardrail area, thereby

reducing background noise and optimising the information content for typology classi-

fication. This operation is also beneficial for the subsequent stages, as the assessment
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of structural conditions is performed directly on the isolated guardrails rather than

on the entire frame. For the training phase, the classification network is trained

with isolated guardrails extracted from the training images of the previous U-Net

segmentation model. Once trained, the classifier is tested on the isolated guardrails

obtained from the remaining frames, using the masks generated by the segmentation

network in the testing stage.

Guardrail Typology Decision. Each isolated patch is then analysed by the

classification model:

• Input: cropped images containing the guardrail;

• Model: a ResNet-18 convolutional neural network, properly trained;

• Output: the typological label assigned to the guardrail segment.

3.6.1 ResNet-18 Architecture and Residual Learning

ResNet-18 is a Convolutional Neural Network (CNN) renowned for its efficiency and

performance in image recognition tasks. Figure 3.10 shows the traditional structure

of ResNet-18.

Figure 3.10: Original ResNet-18 Architecture.

This specific variant provides an optimal trade-off between network depth and com-

putational complexity, making it suitable for processing large-scale road inventory

datasets. The core innovation of the Residual Network (ResNet) family is the in-

troduction of skip connections (or identity shortcuts). In traditional deep networks,

increasing depth often leads to the vanishing gradient problem, causing performance

degradation.

ResNet addresses this by allowing gradients to flow directly through identity mappings.

Formally, rather than learning a direct underlying mapping H(x), the network fits a

residual mapping F (x) = H(x)−x. The original mapping is then recast into F (x)+x.
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This architecture enables the training of significantly deeper networks while preserving

feature transmission, allowing the model to effectively learn complex hierarchical

features—such as profile structures, wave shapes, and panel configurations—that are

critical for distinguishing guardrail types.

Transfer Learning and Adaptation

Given the specific nature of guardrail classification and the potential constraints in

dataset size compared to massive public datasets, we adopted a transfer learning

approach. We utilized a ResNet-18 model pre-trained on the ImageNet dataset,

leveraging its learned feature extractors (edges, textures, and shapes). ResNet-

18 offers an excellent compromise between computational cost and generalization

capability, making it well-suited for a moderately sized dataset such as the one

obtained in this case study.

To adapt the network for our specific multi-class problem, the final fully-connected

(FC) layer was replaced.The original fully connected layer was replaced by a new

mapping:

fc : R512 → RC

where C = 4 corresponds to the number of guardrail typologies considered. All remain-

ing components of the network—including residual blocks and skip connections—were

left unchanged.

Data Augmentation Strategy

To enhance model robustness and prevent overfitting, a data augmentation pipeline

was integrated into the training phase. Real-world infrastructure imagery is subject

to high variability in lighting, weather, and occlusion. Therefore, the network was

trained using transformations such as:

• Random horizontal flips (to simulate bidirectional viewpoints);

• Photometric distortions (brightness, contrast, and saturation adjustments);

• Random rotations.
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These augmentations force the model to focus on invariant structural features rather

than incidental pixel-level correlations, ensuring reliable performance even under

challenging conditions such as shadows or partial occlusions.

3.7 Guardrail Condition Assessment

After the typological classification of the guardrails, the pipeline proceeds with a

parallel branch dedicated to the evaluation of the structural condition of the barriers.

Figure 3.11 schematically illustrates this module.

Figure 3.11: Fourth block of the pipeline: guardrail condition assessment branch.

In this stage, the system receives as input the isolated guardrails (together with

their corresponding segmentation masks) extracted from the images processed during

the testing phase of the U-Net model. The objective is to analyse each segment

independently, identifying any anomalies that may compromise the safety performance

of the barrier. This block consists of two main sub-modules:

• Corrosion Assessment – determines the presence or absence of corrosive

phenomena, with particular attention to rust formation on metallic surfaces.

• Deformation Assessment – evaluates potential geometric deformations, such

as bending, impacts, or torsional distortions, which indicate structural damage

to the guardrail.
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These two micro-blocks allow the system to integrate, in addition to the guardrail

typology, detailed information regarding its conservation state, thus providing a more

complete and useful framework for inspection and maintenance activities.

3.7.1 Corrosion Level Assessment

The deterioration assessment module operates downstream of the semantic segmenta-

tion task. Once the pixel region belonging to the guardrail (ROI) has been identified

(Guardrail Isolation explained in section 3.6), the algorithm performs a targeted

chromatic analysis to quantify the presence of oxidation, while filtering out false

positives caused by reflective elements.

The procedure is articulated in the following phases:

Pre-processing and ROI Isolation

The system input consists of the original image in the BGR color space and the

binary mask obtained from the neural network (U-Net). To ensure that the chromatic

analysis remains unaffected by the surrounding environment (asphalt, vegetation,

sky), a masking operation is applied, setting all pixels not belonging to the “guardrail”

class to zero.

Color Space Transformation and Normalization

To effectively distinguish rust, the RGB/BGR color space lacks robustness against

natural illumination variations (e.g., shadows, overexposure). Consequently, the

image is converted into the HSV (Hue, Saturation, Value) space, which decouples

chromatic information (H) from light intensity (V ).

To further mitigate non-uniform lighting conditions along the barrier, the CLAHE

(Contrast Limited Adaptive Histogram Equalization) algorithm is applied exclusively

to the V (Value) channel.

• Rationale: Adaptive equalization enhances local contrast, allowing for the

detection of color variations typical of rust even in shadowed or partially

obscured areas of the guardrail, thereby increasing the algorithm’s robustness

in in-the-wild scenarios.
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Chromatic Segmentation of Rust

The identification of oxidized areas is achieved via thresholding within the equalized

HSV space. The parameters were empirically defined to isolate the orange-brown

hues characteristic of corroded metal:

• Hue: Interval [10, 25] (orange/brown spectrum).

• Saturation: S > 40, to exclude gray areas or dirty but healthy metal.

• Value: V > 40, to avoid classifying excessively dark or black areas as rust.

Filtering False Positives (Reflectors)

A specific critical issue in guardrail analysis is the presence of bright red retro-reflective

delineators. Under certain lighting conditions, the edges of these elements may fall

within the rust color range or generate artifacts. To eliminate these false positives,

an exclusion logic based on saturation differences and color purity was implemented:

1. A specific mask is generated for high-saturation red tones (typical of artificial

reflective materials), utilizing the original (non-equalized) HSV image to preserve

pure color fidelity.

2. A morphological opening operation is applied to remove point noise.

3. The final rust mask (Mfinal) is obtained via a Boolean operation:

Mfinal = Mcandidate ∧ (¬Mreflector) (3.6)

In this manner, only pixels identified as rust that do not belong to a reflector

are accepted.

Quantification and Classification

The health status of the guardrail is quantitatively defined by the Rust Ratio (Rr),

calculated as the ratio between the pixels classified as rust (Nrust) and the total pixels

of the guardrail (Ntotal):
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Rr =
Nrust

Ntotal

(3.7)

To avoid evaluations based on insignificant data (e.g., guardrails that are too distant or

partially occluded), the system discards instances where Ntotal falls below a minimum

threshold (Nmin = 500 pixels). Based on the Rr value, the guardrail is classified into

four severity levels, defined to support maintenance decision-making (Table 3.2).

Level Label Threshold (Rr) Description

0 OK < 0.01 Absence of corrosion or
negligible traces.

1 Warning 0.01 ≤ Rr < 0.05 Localized corrosion, onset
of deterioration.

2 Deteriorated 0.05 ≤ Rr < 0.15 Significant rust portions,
evident degradation.

3 Critical ≥ 0.15 Extensive rust, probable
need for replacement.

Table 3.2: Corrosion severity levels based on the Rust Ratio (Rr).

3.7.2 Deformation Level Assessment

The proposed deformation assessment module aims at detecting local misalignments

of longitudinal guardrails directly from monocular imagery. The procedure operates

entirely in the image domain and is therefore inherently linked to the image reso-

lution and viewing geometry. Rather than estimating the physical displacement

in centimetres, the algorithm produces a relative deformation index that can be used

to rapidly screen potentially damaged segments along long road stretches.

Given a binary mask produced by the segmentation stage, the method proceeds in

four main steps:

(i) Extraction of the guardrail central axis,

(ii) Automatic selection of the proximate portion of the profile (near the camera),

(iii) Fitting of an idealised reference model,

(iv) Computation of a dimensionless deformation metric based on the residuals.
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Central Axis Extraction from Binary Mask

Let M(u, v) denote the binary mask associated with a single guardrail region-of-

interest (ROI) defined over the discrete image grid Ω ⊂ Z2, with M(u, v) = 1 for

guardrail pixels and M(u, v) = 0 for background. For each image column u, we collect

the vertical coordinates of all foreground pixels

V(u) = {v | M(u, v) = 1}. (3.8)

If the foreground support is sufficiently populated (i.e., |V(u)| ≥ Nmin), the corre-

sponding point on the guardrail axis is obtained as the vertical centroid:

v̂(u) =
1

|V(u)|
∑

v∈V(u)

v. (3.9)

This column-wise averaging acts as a low-pass filter on the guardrail geometry,

attenuating local irregularities and segmentation noise. The set of axis points is thus

given by

Paxis = {(ui, v̂(ui))}Ni=1, (3.10)

with N denoting the number of valid columns.

Selection of the Proximal Segment

Due to the perspective projection, the apparent size of the guardrail pixels varies

significantly along its length: pixels corresponding to the far end of the ROI cover

larger real-world areas and are more affected by discretisation noise. To mitigate

this effect and work under an approximately constant ground sample distance

(GSD), the deformation analysis is intentionally restricted to the proximal

portion of the guardrail, i.e., the segment closest to the camera.

Let {(ui, v̂i)}Ni=1 be the axis points sorted by their horizontal coordinate ui. Since

the image coordinate system has its origin in the top-left corner, larger v values

correspond to points closer to the camera. We therefore estimate which side of the

profile (left or right in image space) is closer by comparing the mean v value over
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small windows at the beginning and at the end of the profile:

v̄start =
1

K

K∑
i=1

v̂i, (3.11)

v̄end =
1

K

N∑
i=N−K+1

v̂i, (3.12)

with K set as a fraction of N and bounded below by a minimum number of points.

The side with the larger mean value is considered the proximal side.

From this proximal side, we then retain only a fixed fraction α (e.g., α = 0.3) of the

profile:

Pnear = {(ui, v̂i)}i∈Inear , (3.13)

where Inear indexes either the first or the last αN samples, depending on which side

is closer. In subsequent frames of the same video sequence, the same rule is applied,

so that the analysis window always corresponds to the portion of guardrail that is

spatially close to the vehicle. When the frames are temporally adjacent and the

trajectory is smooth, this strategy ensures that the GSD within the analysed segment

remains approximately constant along the sequence, even though the exact same

physical points are not explicitly tracked.

Parametric Fitting of the Idealised Profile

The proximal axis points Pnear are assumed to represent the superposition of the global

road curvature and local deformations caused by impacts or structural imperfections.

To separate these contributions, the ideal (undamaged) trajectory is approximated

by a low-order polynomial model:

ymodel(u) =
k∑

j=0

βju
j, (3.14)

where k is typically chosen equal to 1 (straight alignment) or 2 (mild curvature). The

parameter vector β is estimated via Ordinary Least Squares (OLS), minimising the
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squared residuals between the observed axis and the model:

β̂ = argmin
β

∑
(ui,v̂i)∈Pnear

(
v̂i −

k∑
j=0

βju
j
i

)2

. (3.15)

Because of its limited flexibility, the polynomial model effectively captures only

the slowly varying component of the geometry (road alignment), while sharp local

deviations are left in the residuals and interpreted as potential damage.

Relative Deformation Metric

For each sample (ui, v̂i) ∈ Pnear, the vertical residual is defined as

ri = v̂i − ymodel(ui), (3.16)

and we consider its absolute magnitude |ri| as an indicator of local bending. To

obtain a deformation metric that is robust to perspective scaling and independent of

the absolute pixel values, the residuals are normalised by the apparent vertical extent

of the guardrail in the mask:

hrail = vmax − vmin, vmax = max{v | M(u, v) = 1}, vmin = min{v | M(u, v) = 1}.
(3.17)

The relative deviation is then defined as

Drel(ui) =
|ri|
hrail

. (3.18)

From this profile, summary statistics such as the maximum and mean relative deviation

are computed:

Drel
max = max

i
Drel(ui), (3.19)

Drel
mean =

1

|Pnear|
∑
i

Drel(ui). (3.20)

In the implementation used for this work, the binary decision “deformed / not

deformed” for a given ROI and frame is taken by thresholding the maximum relative
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deviation:

deformed =

1 if Drel
max ≥ Tdef,

0 otherwise,
(3.21)

with Tdef = 0.02. Values above this threshold indicate that, at least in one column of

the analysed segment, the guardrail axis exhibits a deviation larger than 2% of its

apparent height.

It is important to stress that this index is dimensionless and image-based: the

algorithm does not attempt to infer the true displacement in centimetres, nor does it

rely on external calibration. Instead, it provides a consistent, resolution-dependent

indicator that can be used to quickly identify segments where the geometry deviates

significantly from an ideal alignment and which therefore require closer inspection.

3.8 Geospatial Database Integration

The final step in the pipeline consists of generating the monitoring database using

all previously obtained results (see Figure 3.12). This stage integrates the outputs

of the segmentation, classification, and condition-assessment modules into a unified

geo-referenced inventory of roadside guardrails.

Figure 3.12: Fifth block of the pipeline: Geospatial Guardrail Monitoring Database
implementation.

To enable the geospatial visualization and analysis of the guardrail information

extracted from the video recordings, a dedicated spatial database was created.

This database acts as the bridge between the automated processing pipeline and its
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interpretation within a Geographic Information System (GIS), enabling the

results to be explored, queried, and contextualized on the road network. To achieve

this, we carried out two main phases:

1. Preparation of a structured CSV file containing georeferenced guardrail

annotations

2. Conversion of this file into an editable and queryable GeoPackage database.

3.8.1 Guardrail Data Structuring

For each guardrail instance, a record was generated containing the following attributes:

• Frame name

• Geographic coordinates: latitude, longitude, height- obtained through the

the temporal synchronization of frame timestamps with GNSS measurements;

• Guardrail type (double-wave/triple-wave/bridge parapet barrier/central me-

dian barrier);

• Deterioration status (OK/To be monitored/ Deteriorated/Critical);

• Deformation status (True= deformed, False= intact);

• Source of acquisition (e.g., Politecnico di Torino);

• Acquisition date, enabling temporal tracking and historical comparison.

The resulting file thus acts as a clean and structured tabular dataset, containing all

metadata associated with each detected guardrail segment.

3.8.2 Spatial Database Format

To ensure portability, consistency, and efficient querying, the guardrail dataset is

stored in a spatial database format compatible with common GIS tools. In this work,

the GeoPackage (GPKG) format is adopted due to its ability to:

• store spatial geometries and attribute tables within a single file;
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• support SQL-based querying and indexing;

• ensure interoperability with most GIS environments, such as QGIS;

• provide efficient access and editing capabilities.

The GeoPackage structure allows the entire guardrail inventory to be represented as a

single layer whose attributes encode both the semantic information (type, condition)

and the associated geospatial metadata. This enables a range of analysis tasks,

including:

• Geospatial visualization of guardrail points along the surveyed road segment;

• Attribute-based queries, for example filtering by guardrail type or condition;

• Combination with additional layers, including orthophotos, road networks,

or administrative boundaries;

• Production of thematic maps for reporting and inspection purposes.

This integration provides the final step of the methodological pipeline, enabling the

automated results to be inspected, validated, and interpreted with respect to the

real-world geographic context.
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Case Study: Application of the

Methodology, and Results

This chapter presents the practical application of the proposed methodology to the

selected case study, with the aim of evaluating the effectiveness of the developed

approach for the identification and analysis of roadside guardrails along a real road

segment. After outlining the methodological pipeline, the datasets, and the supporting

tools, this chapter provides a detailed description of all implemented steps—from data

acquisition and preprocessing to guardrail segmentation, classification, and condition

assessment.

Particular attention is devoted to the results obtained at each stage of the pipeline,

including georeferencing procedures, structural condition analysis, and GIS-based

integration, in order to provide a comprehensive evaluation of the overall performance

of the proposed system.

The objectives of this chapter are therefore twofold:

• to demonstrate how the methodology has been applied in a real-world

scenario;

• to critically discuss the achieved results, highlighting strengths and limita-

tions.
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4.1 Case Study Description

This case study focuses on a specific road segment located within the metropolitan

area of Turin (Italy). The selected area corresponds to a highway route personally

surveyed and recorded by us using a vehicle-mounted multi-sensor platform (described

in section 3.3. The recorded route spans several kilometres and includes both straight

and curved sections, multiple lanes, ramps, and roadside vegetation, providing natural

variability in illumination, perspective, and occlusions. This makes it a suitable real-

world environment for validating the proposed methodology for guardrail detection,

segmentation, and condition assessment.

The acquired dataset was intentionally divided into two parts according to the

objectives of the study:

• Training Section: the first portion of the route was used to generate ground

truth annotations and train/validate the neural segmentation models.

• Testing Section: the final 2.3 km of the recorded highway segment were

reserved for evaluating the performance of the end-to-end methodology, including

detection, segmentation, geolocation and structural assessment of guardrail

elements.

A map visualizing the surveyed route, highlighting both the training and testing

portions, is included to provide spatial context for the case study (see Figure 4.1).

This geospatial representation allows for a clear understanding of where the dataset

was collected and where the methodology was validated.

Figure 4.1: Reconstructed trajectory.
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Overall, this case study offers a controlled yet realistic scenario for assessing the

robustness of the proposed pipeline and its applicability to large-scale roadside

infrastructure monitoring.

4.2 Data Preparation and Synchronization

4.2.1 GPS post-processing

The processing procedure was carried out using the RTKPost module of RTKLib,

which allows the integration of rover and base station data to obtain higher-accuracy

positioning solutions. The positioning mode was set to Kinematic, which is suitable

for scenarios involving a moving receiver, such as the vehicle-based survey. Both

L1 and L2 GNSS frequencies were employed in a combined solution to enhance

the robustness and reliability of the estimated trajectory. The system utilized both

GPS and GLONASS constellations, increasing the number of satellites available for

computation and enhancing overall coverage.

Integer ambiguity resolution was managed using the Fix and Hold strategy, which

maintains a fixed solution once a sufficient level of reliability has been reached.

The reconstructed trajectory can be visualized through RTKLib’s integrated graphical

tool.

Figure 4.2: Reconstructed trajectory using RTKLib. Fix quality is color-coded.

As shown in Figure 4.2, each point in the trajectory is color-coded according to the

fix quality indicator Q :
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• Green: fixed solution (Q = 1), with centimeter-level accuracy

• Yellow: float solution (Q = 2), with sub-meter accuracy

Out of a total of 1632 points, 1040 (63.7%) were fixed and 592 (36.3%) were float.

The predominance of fixed solutions indicates a high level of reliability in the recon-

structed trajectory, making it suitable for downstream tasks such as video frame

synchronization and spatial interpolation.

4.2.2 Frame extraction strategy

As mentioned in Section 4.x, to avoid generating an excessive number of redundant

images while ensuring adequate coverage of the road environment, an adaptive frame

sampling strategy was developed based on the instantaneous speed of the vehicle,

which was calculated from the previously obtained .pos file.

Figure 4.3 shows the speed profile. The analysis reveals several phases during which

the speed remains very low (below 10 km/h), alternating with segments where the

speed exceeds 50 km/h, occasionally reaching peaks above 65 km/h. At times, the

vehicle comes to a complete stop, whereas in others, the speed varies significantly

within a few seconds.
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Figure 4.3: Speed profile of the vehicle during the survey.

For this reason, an adaptive sampling strategy was implemented for frame extraction

from video recordings. Specifically, three speed thresholds were defined:

• Speed < 50 km/h → 1 frame per second

• 50 km/h < speed < 65 km/h → 3 frames per second

• Speed > 65 km/h → 5 frames per second
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The rationale behind this approach is that, at higher speeds, the scene evolves more

quickly in space. Therefore, to avoid losing relevant visual information (such as

the presence or absence of guardrails), it is essential to increase the sampling rate.

Conversely, during low-speed or stationary conditions, the scene is relatively static,

and fewer frames are sufficient to represent it.

4.2.3 Georeferencing frames

At this stage, it was necessary to assign a geographic position to each frame extracted

from the video, ensuring consistency with the vehicle’s actual trajectory. Since the

video frames were sampled at a variable frequency, their timestamps did not always

match those available in the .pos file. To ensure accurate georeferencing, a linear

time interpolation was applied to the GPS data, as described in the subsection 3.4.4.
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Figure 4.4: Example of frame georeferencing via linear interpolation between two
GPS points

As an illustrative example, Figure 4.4 shows a concrete case of interpolation applied

to a video frame located between two consecutive GPS points. The blue circles

represent the original GPS positions extracted from the .pos file, each associated

with an exact second, while the crosses indicate the interpolated frames corresponding

to intermediate timestamps. The red dashed line connects two consecutive GPS

points and temporally bounds the highlighted frame, clearly illustrating the estimated

position.

In the specific example shown, the GPS receiver recorded a position at 09:18:40.000,
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and the next one at 09:18:41.000. However, one of the extracted frames corresponds

to the timestamp 09:18:40.190, an intermediate instant not explicitly represented in

the GNSS data. The figure visually demonstrates the outcome of the interpolation:

the frame is correctly placed along the segment connecting the two GPS points,

confirming the effectiveness of the adopted approach.

4.3 Guardrail Detection

In this section, we present the quantitative and qualitative results obtained from

training the U-Net model described in Chapter 3.5.

4.3.1 Dataset and Preprocessing

A total of approximately 2000 RGB frames (512×512) were extracted from the video

recorded by the left stereo camera mounted on the vehicle. Although 1400 images

were initially assigned to the training set, the network does not benefit from training

on long sequences of highly similar frames. Instead, what is required is sufficient

scene variability. For this reason, only about 150 frames were manually annotated

to obtain pixel-level ground truth masks. Figure 4.5 shows examples of manually

annotated masks through the Image Labeler tool of Matlab.

Figure 4.5: Examples of manually annotated guardrail masks created using Matlab’s
Image Labeler tool.

To further increase diversity and improve generalization capability, additional images

and masks were included from the Mapillary dataset: the original dataset was

52



Case Study: Application of the Methodology, and Results

filtered to retain only scenes containing European guardrails, and the corresponding

masks were derived from publicly available JSON annotation files. Figure 4.6 shows

an example of an image-mask pair obtained from Mapillary.

Figure 4.6: Example of an original road image, its corresponding guardrail mask,
and the resulting overlay produced from the Mapillary dataset.

All images were normalized to the range [0,1], and all masks were binarized. The

final dataset used for training consisted of a random split of 80% for training and

20% for validation.

4.3.2 U-Net Training and Parameters

The model was implemented in TensorFlow/Keras. Based on preliminary tuning, the

final training configuration was established as follows: the encoder consists of four

downsampling stages with 64, 128, 256, and 512 filters, each consisting of two

3×3 convolutions followed by max pooling and dropout (0.3). The bottleneck

employs 1024 filters. The decoder reconstructs the original spatial resolution using

transposed convolutions and skip connections with the corresponding encoder

feature maps. A final 1×1 convolution with sigmoid activation produces the binary

guardrail mask.

The model was trained for 40 epochs using the Adam optimizer with a learning

rate of 1 × 10−4. Due to the severe class imbalance — guardrail pixels make up

only a very small portion of each frame — the Binary Focal Cross-Entropy loss

(with γ = 2.0) was adopted. Early stopping and adaptive learning-rate reduction

were applied to mitigate overfitting. The final model was selected based on the best

validation Binary IoU. Table 4.1 summarizes the adopted configuration and the

hyperparameters used for training.
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Component Configuration
Framework TensorFlow / Keras
Hardware NVIDIA T4 GPU
Encoder 4 downsampling stages (64, 128, 256, 512 filters)
Encoder blocks Two 3×3 convolutions per stage
Pooling Max pooling (per stage)
Dropout 0.3 after each downsampling stage
Bottleneck 1024 filters
Decoder Transposed convolutions + skip connections
Output layer 1×1 convolution + sigmoid activation
Training epochs 40
Optimizer Adam
Learning rate 1× 10−4

Loss function Binary Focal Cross-Entropy (γ = 2.0)
Class imbalance handling Focal loss
Regularization Early stopping, ReduceLROnPlateau
Selection criterion Best validation Binary IoU

Table 4.1: Summary of model architecture and training configuration.

4.3.3 Training Performance Evaluation

Model performance was evaluated using standard semantic segmentation metrics,

including Intersection-over-Union (IoU), Dice coefficient, Precision, Recall, and the

area under the Precision–Recall curve (PR-AUC). The training curves of the loss

and Dice coefficient are reported in Figure4.7, showing stable convergence with a

consistent decrease in training loss and a corresponding improvement in segmentation

accuracy. The training loss decreases continuously, while the validation loss follows a

similar trend until reaching a plateau phase with no signs of divergence, indicating

good generalization. Similarly, the Dice coefficient increases rapidly during the initial

epochs and then converges to high values (approximately 0.85–0.90), with comparable

trajectories for both training and validation. This behaviour confirms that the model

effectively learned the shape and extent of guardrails without overfitting the dataset.
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Figure 4.7: Training and Validation curves. Left: Binary Focal Loss reduction
over epochs. Right: Improvement of the Dice Coefficient (thresholded at 0.5) on the
validation set.

4.3.4 Quantitative Evaluation

The model performance was also evaluated on a held-out test set of 19 images using

pixel-wise metrics. A threshold of 0.5 was applied to the sigmoid output to generate

the final binary masks.

Metric Score
Mean IoU 0.8017
Mean Dice 0.8866
Precision@0.5 0.8855
Recall@0.5 0.9018
PR-AUC 0.9712

Table 4.2: Summary of segmentation performance on a test dataset.

Figure 4.8 and Figure 4.9 illustrate the overall distribution of performance metrics

over the test set. The Precision–Recall curve shows that the classifier maintains high

precision for almost all recall values, confirming its robustness. The IoU histogram

demonstrates that most images achieve values between 0.80 and 0.90, indicating

consistent segmentation quality. Only a small number of frames fall below 0.70,

generally corresponding to challenging scenarios where the guardrail is either far from

the camera, appears very thin in the image, or is partially occluded.
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Figure 4.8: Precision–Recall curve for the guardrail segmentation model. The
high AUC (0.9712) indicates strong discriminative ability between guardrail and
background pixels.

Figure 4.9: Distribution of IoU values over the test set. Most predictions fall
between 0.80 and 0.90.

4.3.5 Qualitative Analysis and Error Modes

Visual inspection of the predictions reveals the model’s strengths and limitations.

Figure 4.13 shows three representative examples from the test set, including some of

the most challenging cases. These images directly correspond to those discussed in

the text regarding robustness to curvature, occlusions, and typical error modes.
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Figure 4.10: Example of segmentation with IoU=0.74.

Figure 4.11: Example of segmentation with IoU=0.58.

Figure 4.12: Example of segmentation with IoU=0.57.

Figure 4.13: Qualitative examples showing input images, ground truth masks, and
corresponding predictions for some of the most challenging frames in the test set.
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4.3.6 Application to the Final Road Segment

The trained U-Net was finally applied to the last portion of the road used in this

study, which was not included in either the training or validation phases. This

final segment represents the stretch where the complete inspection methodology is

ultimately deployed. The results are overall positive: the network reliably recognizes

the presence of guardrails along the entire route and accurately localizes them within

each frame. Only in a few isolated cases does the model fail to detect distant guardrails,

whose visual footprint is extremely small due to perspective. This limitation is not

particularly problematic, as these far objects naturally appear larger and more

detectable in subsequent frames of the same sequence. Overall, this confirms that

the model generalizes well and is suitable for supporting the downstream analysis

pipeline adopted in the final road inspection.

4.4 Guardrail classification

As described in the methodology chapter, the task of guardrail typology classification is

performed using a ResNet-18 convolutional neural network. The network was trained

on a dataset derived from the same frames used to train the U-Net segmentation model.

From each annotated frame, the regions of interest (ROI) containing the guardrail

segments were extracted by applying the binary segmentation masks. Whenever

multiple guardrails appeared within the same frame (e.g., left and right sides), each

ROI was treated as an independent sample, increasing intra-class variability and

improving the robustness of the classifier.

Once trained, the ResNet-18 model was used to classify the ROIs extracted from the

output of the U-Net segmentation network applied to the last segment of the road

corridor considered in this study.

4.4.1 ResNet-18 Training and Parameters

To enhance model robustness under real-world acquisition conditions (variable illumi-

nation, reflections, shadows, perspective distortions), the following data augmenta-

tion strategies were applied to the ROI dataset:

• Resize to 224× 224 pixels (standard ResNet input format)
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• Random horizontal flip with probability p = 0.5

• Color jitter on brightness, contrast and saturation (±20%)

• Normalization using ImageNet statistics

These augmentations were essential to prevent overfitting, given the relatively small

number of samples per class. The dataset was then partitioned using a standard

hold-out strategy: 80% for training and 20% for validation, organized using a

folder-based class structure.

The model was trained for 20 epochs using the hyperparameters in Table 4.3.

Parameter Value
Batch size 16
Optimizer Adam (fast convergence)
Learning rate 1× 10−4

Loss function CrossEntropyLoss
Hardware NVIDIA T4 GPU

Table 4.3: Hyperparameters used for training the ResNet-18 classifier.

The relatively low learning rate was selected to preserve the knowledge encoded in the

pre-trained weights and mitigate the risk of catastrophic forgetting. During training,

the evolution of both loss and accuracy was monitored for the training and validation

sets across all epochs to detect potential instability or overfitting.

4.4.2 Training Results

After the first epoch, the network already achieves a training accuracy of 78.30% and

a validation accuracy of 89.66%, together with a consistent drop in the loss (from

0.6713 to approximately 0.2609 on the validation set). By the final epoch, the model

reaches a training accuracy of 99.53% and a validation accuracy of 98.28%,

with the validation loss remaining stable in the range 0.02–0.07. The absence of

divergence between the training and validation curves suggests that the model is not

overfitting despite the limited dataset size, and is effectively learning discriminative

features relevant for guardrail typology classification.
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On the validation set, consisting of 58 samples, the model misclassifies only one

instance.

Figure 4.14: Confusion matrix of the ResNet-18 guardrail classifier on the validation
set.

The confusion matrix in Figure 4.14 illustrates the classification performance across

the four classes:

• double-wave: 16 correct out of 16

• bridge parapet barrier: 15 correct out of 15

• central median barrier: 9 correct out of 10

• triple wave: 17 correct out of 17

The single misclassification corresponds to a central median barrier guardrail

predicted as triple-wave(Figure 4.15), a mistake that can be explained by the

morphological similarity of the two profiles and the presence of vegetation partially

occluding the discriminative region. Despite this isolated error, the macro-average

F1-score of 0.98 confirms the reliability of the model in distinguishing among the

different guardrail typologies included in the dataset.
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Figure 4.15: Example of the only misclassified sample: a central median barrier

guardrail incorrectly predicted as triple-wave.

4.4.3 Qualitative Analysis of the Trained ResNet-18 on the

Real Road Segment

The trained ResNet-18 classifier was applied to all Regions of Interest (ROIs) extracted

by the U-Net segmentation model on the final portion of the motorway under analysis.

In total, the model processed 864 ROIs, each corresponding to an individual guardrail

instance. These results therefore reflect the inference-time behaviour of the classifier

on data never seen during training.

The overall distribution of predicted classes is reported in Table 4.4. This distribution

is not incidental but aligns with the actual infrastructure present along the analysed

road segment: triple-wave guardrails and bridge parapet barriers are indeed

the most common configurations in the final section of the route. The substantial

presence of the central median barrier class is also coherent with the central

divider found along long portions of the motorway. Conversely, the double-wave

category is less represented, both in reality and in the model predictions.
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Predicted class Occurrences
triple-wave 315
bridge parapet barrier 297
central median barrier 224
double-wave 28
Total 864

Table 4.4: Distribution of guardrail typologies predicted by the ResNet-18 classifier
on the real road segment.

Although no manually annotated ground truth is available for this segment of the

road, the classifier exhibits overall stable behaviour.

Temporal Coherence Analysis

To further assess the operational stability of the model, a temporal coherence

analysis was carried out by examining the predicted class for each ROI across

consecutive frames. Ideally, if the same guardrail remains visible at a given image

position, the predicted class should remain stable over time unless an actual change

in infrastructure occurs.

The analysis reveals a total of only 12 class transitions between consecutive frames,

distributed across both roi 0 and roi 1 (typically roi 0 for the right side, roi 1 for

the left side). These transitions do not constitute systematic errors but rather reflect

local variability in the predictions across closely spaced frames. Most fluctuations

occur between morphologically similar classes such as triple-wave, bridge parapet

barrier, and central median barrier. These structures can appear visually similar

when observed from unfavourable viewpoints, partially occluded by vegetation, traffic

or additional guardrails.

Table 4.5 reports representative examples of such transitions. These oscillations are

not due to an actual change in the physical guardrail but are likely caused by small

geometric variations in the ROIs extracted from the segmentation masks.
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ROI Previous (frame / class) Next (frame / class)

0 1284.92 / triple-wave 1285.12 / bridge parapet

0 1297.72 / bridge parapet 1297.92 / triple-wave

1 1304.35 / triple-wave 1304.56 / median barrier

1 1321.12 / median barrier 1321.35 / triple-wave

Table 4.5: Examples of class transitions across consecutive frames (compact version).

Overall, the inference results confirm that the classifier is capable of correctly identi-

fying the predominant guardrail typologies in real-world operational settings. The

small number of localised and non-systematic fluctuations does not compromise the

global stability of the model. This behaviour supports the robustness of the proposed

segmentation–classification pipeline and demonstrates its suitability for large-scale,

real-time monitoring of roadside barriers.

4.5 Corrosion Level Assessment

The corrosion analysis algorithm was applied to all ROIs generated by the U-Net

segmentation model for the final portion of the highway included in the case study. For

each ROI, the corresponding binary mask was first denoised to remove small artifacts

and spurious pixels, ensuring that only the actual guardrail surface contributed to

the deterioration estimation. As defined in the Methodology chapter, ROIs with an

area smaller than Nmin = 500 pixels were excluded from the analysis. This threshold

guarantees sufficient statistical reliability and prevents false detections caused by

segmentation fragmentation (for instance, when the guardrail is partially occluded by

vehicles or vegetation). Applying this filter led to the exclusion of 6 instances, which

were labeled as Not evaluable.

4.5.1 Analysis of the Guardrail Status: Results

Table 4.6 summarizes the classification results for the valid samples (Nvalid = 835),

categorized according to their deterioration level.
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Condition Count Percentage (%)

Good 812 97.3%
To be monitored 21 2.4%
Deteriorated 0 0.0%
Critical 2 0.2%

Table 4.6: Classification results on the test sequence.

The results reveal a clear predominance of guardrails in good condition (97.3%),

which is expected in a highway segment subject to regular maintenance activities.

Nevertheless, the system successfully detected specific areas requiring attention,

demonstrating sensitivity to varying degrees of oxidation, including localized rust

indicative of early deterioration.

Figure 4.16 provides a representative example of rust detection within a single

guardrail.

Figure 4.16: Example of detected rust sign within a single guardrail.

A relevant observation concerns the presence of retroreflective elements. As shown in

Figure 4.17, these components do not introduce systematic errors in the analysis, as

the deterioration metric relies on textural and chromatic features typical of corrosion

rather than brightness spikes produced by reflective surfaces.

Figure 4.17: Example of how retroreflectors don’t affect corrosion estimation.
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4.5.2 Additional Analysis on Paint Loss

In an early phase of the study, the possibility of incorporating a dedicated paint

loss measure into the deterioration assessment was explored. The idea was to

combine rust detection with changes in grayscale intensity to capture surface opacity

or abrasion.

In some cases, this method proved effective, as shown in Figure 4.18, where genuine

paint degradation is correctly highlighted. However, further experiments revealed

that the method is highly sensitive to illumination variability. Shadows, sunlight

reflections, and exposure differences along the road produce significant false positives:

guardrails in perfect condition may be incorrectly classified as degraded, as illustrated

in Figure 4.19.

Figure 4.18: Example of true paint loss correctly identified.

Figure 4.19: Example of true paint loss wrongly identified: false positive due to
lighting conditions.

Due to this strong dependence on lighting conditions and its limited robust-

ness in real-world outdoor scenarios, the paint-loss criterion was not included in

the final pipeline. This choice improved the stability and reliability of the overall

system, which ultimately relies solely on texture- and color-based rust detection, a

more consistent indicator of structural deterioration.
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4.6 Deformation Assessment

The deformation assessment methodology described in the previous chapter

was applied to all guardrail regions-of-interest (ROIs) extracted along the selected

highway segment. For every frame, the binary masks generated by the segmentation

model were processed to extract the axis, identify the proximal segment, and compute

the relative deformation metrics.

4.6.1 Results on representative frames

Before analysing the full temporal sequence, it is useful to examine a few representative

frames individually. These examples illustrate how the deformation index reacts to

the presence or absence of geometric anomalies in the guardrail.

Figure 4.20 shows a frame containing a clearly deformed guardrail segment. The

bending is visually detectable in the RGB image and is faithfully captured by the

extracted axis profile: the fitted line diverges from the real centroidal curve, especially

in the initial portion of the guardrail near the camera. This produces a local increase

in the relative deviation, well above the threshold of 0.02, and leads to a correct

“deformed” classification.

Figure 4.20: Example of a visibly deformed guardrail segment, with the corre-
sponding profile and deformation index.

In contrast, Figure 4.21 illustrates a frame where the guardrail is clearly intact. The

extracted centroidal axis remains almost perfectly aligned with the fitted model, and

the relative deviation stays consistently below the threshold over the entire proximal

segment. The deformation curve is flat and near zero, confirming the non-deformed

condition.
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Figure 4.21: Example of an intact guardrail segment with minimal deviation from
the fitted profile.

These examples demonstrate that the proposed algorithm behaves consistently with

visual inspection. When the guardrail exhibits a noticeable geometric inflection, the

deviation between the real and fitted profiles increases. Conversely, when the barrier

is straight and undamaged, both the axis profile and the deformation index remain

stable. This confirms that the method is sensitive to actual geometric anomalies and

robust to minor segmentation noise.

4.6.2 Sequence-level analysis and Results

To illustrate the behaviour of the method along a temporal sequence, this section

focuses on ROI 0, which corresponds to the right-hand side of the scene.

A total of 201 frames were analysed for ROI 0. Frames classified as non-deformed

exhibited consistently low values ofDrel
max (median ≈ 0.011), in agreement with a nearly

straight and undamaged barrier. Conversely, frames labelled as deformed showed

significantly higher deviations (median ≈ 0.034), with peaks reaching approximately

0.17. Overall, around 60 frames (roughly 30% of the entire sequence) were classified

as deformed.

From a temporal viewpoint, the deformed frames do not appear randomly

scattered. Instead, they form clusters of consecutive frames, each corresponding to

a physically damaged segment of the guardrail. The most pronounced cluster spans

approximately 10-12 consecutive frames and matches a clearly visible lateral bulge in

the structure. Outside these clusters, the deformation index remains low, and the

guardrail is correctly classified as non-deformed.
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These results confirm that the proposed method serves as an effective screening

tool for the rapid identification of anomalous geometries along extended road

sections. After processing the full sequence, the operator needs to inspect only the

limited subset of frames that exhibit high deformation indices.

Two additional considerations must be explicitly acknowledged:

• The analysis is qualitative rather than quantitative. Because the method

operates entirely in the image domain, the deformation index does not corre-

spond to a physical displacement. It identifies the presence and relative severity

of damage but does not quantify its magnitude in centimetres.

• Sequential consistency is ensured via the proximal-segment strat-

egy. By analysing only the image region closest to the camera, the algorithm

maintains an approximately constant GSD across consecutive frames. Due to

the natural overlap between frames along the vehicle trajectory, the proximal

portion of frame t corresponds to a slightly shifted, but spatially adjacent,

portion of the same guardrail in frame t+1. This guarantees internal coherence

of the deformation measurements across the sequence, even without explicit 3D

tracking.

In summary, the deformation module provides a computationally efficient, image-

based mechanism for identifying segments of roadside barriers that may require

further inspection. While it does not replace a metric structural evaluation, it offers

a robust and consistent tool for prioritising areas of potential interest in large-scale

visual surveys.

4.7 Integration and Visualization of Guardrail Data

in the GIS Environment

This section describes the practical implementation of this process in the case study,

detailing the construction of the dataset, its import into QGIS, the conversion to a

GeoPackage database, and the subsequent spatial queries and map visualizations.
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4.7.1 Construction of the Guardrail CSV Dataset

The first step consisted in generating a structured CSV file containing one record for

each detected guardrail region (ROI) in the video sequence. This file was created

by merging the outputs of the segmentation, classification, deterioration, and defor-

mation modules with the GNSS-based georeferencing information (see section 3.8) .

Figure 4.22 shows an excerpt of the resulting CSV file.

Figure 4.22: Excerpt of the .csv file generated for the case study. Each row
corresponds to a detected guardrail region.

4.7.2 From CSV File to GeoPackage Database

The CSV file was imported into QGIS using the Add Delimited Text Layer tool. This

interface allows the file to be loaded as a temporary point layer, using latitude and

longitude fields as geometry attributes. Figure 4.23 illustrates the import dialog used

in this step.

Figure 4.23: QGIS Add Delimited Text Layer interface used to import the guardrail
CSV dataset.

After confirming the coordinate system (EPSG:4326), the layer was correctly visual-

ized on the map canvas as a temporary point layer.

To obtain a persistent and editable spatial database, the temporary CSV layer was

exported as a GeoPackage (GPKG) file using the Save Features As functionality. The

resulting database contains all attributes and geometries in a single structured file.
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4.7.3 Spatial Visualization of the Guardrail Inventory

Once the GeoPackage database was created, it was loaded into QGIS and visualized

on top of the official road cadastral map of the Piedmont region. This reference

map, downloaded from the Geoportale Piemonte, provides an accurate and up-to-date

representation of the regional road network, enabling the spatial context of each

detected guardrail to be clearly inspected.

Figure 4.24: Visualization of the guardrails on the official cadastral road map of
the Piedmont region. Each point corresponds to a detected guardrail.

By overlaying the guardrail point layer onto the cadastral basemap, it is possible to

visualize the exact position of every detected guardrail along the surveyed highway

segment. Figure 4.24 shows an example of this overlay, where each point corresponds

to a guardrail ROI extracted from the video sequence.

4.7.4 Attribute and Spatial Queries

The GeoPackage database can be queried directly within QGIS to isolate specific

subsets of guardrails based on their structural condition or typology. This functionality

enables a rapid inspection of critical elements along the route.

For example, by applying an attribute filter on the field condition, it is possible to

select only the guardrails classified as Deformed and visualize their spatial distribution
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(Figure 4.25). Similarly, filtering by the field type allows the extraction of all

triple-wave guardrails, as shown in Figure 4.26.

Figure 4.25: Example of attribute
query selecting only guardrails classified
as Deformed - in red.

Figure 4.26: Example of attribute
query selecting guardrails of type
triple-wave - in orange.

4.7.5 Linking Guardrail Records to the corresponding frames

To facilitate rapid inspection of the visual evidence associated with each detected

guardrail, the spatial database was enriched with a dedicated field containing a

direct hyperlink to the corresponding video frame. This functionality enables the

operator to open the original image of a guardrail instance directly from the attribute

table in QGIS, thus allowing an immediate verification of the model predictions and

facilitating manual validation during the case study.

A new attribute, named frame link, was added to the GeoPackage using the QGIS

Field Calculator and its widget type was set to Hyperlink, enabling clickable links

inside the attribute table. When a user selects a point on the map and opens its

attribute form, the hyperlink provides direct access to the corresponding frame stored

in the project directory. An example is shown in Figure 4.27.
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Figure 4.27: Example of a video frame opened through the hyperlink stored in the
frame link attribute of the GeoPackage database.
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Chapter 5

Google Street View integration

To further assess the robustness and generalizability of the proposed methodology,

an additional validation step was conducted using external imagery sourced

from Google Street View (GSV). The goal of this experiment is to determine

whether the entire processing pipeline—segmentation, classification, and degradation

assessment—can be reliably applied to frames that were not captured by the on-board

camera system used in the case study. In other words, the same 2.3 km highway

segment analysed in Chapter 4 was re-evaluated using a small set of Street View

images, in order to verify whether consistent outcomes can be obtained despite the

change in acquisition platform, viewpoint, and radiometric characteristics.

5.1 Dataset Acquisition from Google Street View

A total of 15 frames were manually extracted from Google Street View. All images

correspond to June 2025, just six months after our on-site survey, ensuring that

the physical state of the infrastructure remained substantially unchanged between

the two datasets. Each image was selected to cover a representative portion of the

infrastructure, ensuring that the corresponding guardrails were visible and comparable

with those present in the original dataset. Figure 5.1 illustrates the approximate

locations along the highway from which the Street View frames were extracted.
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Figure 5.1: Geographical distribution of the fifteen Google Street View acquisition
points along the analysed 2.3 km highway segment in Turin. The points are visualised
on top of the official road network map provided by the Geoportale Piemonte.

These collected frames were then processed through the complete pipeline without

any modification or additional fine-tuning: the U-Net segmentation model, the

guardrail type classifier, and the condition assessment modules were applied exactly

as in the case study.

5.2 Results

The U-Net segmentation model demonstrated strong generalization capabilities

when applied to GSV images. As shown in Figure 5.2, the guardrail regions were

correctly identified in the great majority of cases, with minimal loss of completeness.

The most notable difference compared to the on-board dataset lies in the presence

of larger radiometric variations and slight blurring in the GSV imagery, which

occasionally reduced the sharpness of the mask boundaries. The morphological

post-processing step proved effective in correcting small artefacts, leading to clean

and contiguous masks that could be reliably used for ROI extraction.
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Figure 5.2: Example of segmentation performance on Google Street View frames.
From left to right: original image, raw U-Net binary mask, and processed mask after
morphological filtering.

The guardrail classifier produced highly consistent predictions across the majority

of the GSV ROIs (see Figure 5.3). All instances of triple-wave, double-wave, bridge

parapet barrier, and central median barrier were correctly identified when the ROI

retained sufficient contextual structure.

Figure 5.3: Example of correctly classified guardrails.

The primary source of misclassification is illustrated in Figure 5.4. In some situations,

the segmentation process extracts only the upper portion of a central median barrier,

resulting in an incomplete ROI that lacks the lower structural elements typically

distinguishing this category from a triple-wave barrier. When this occurs, the classifier

tends to assign the ROI to the latter class, as the visible features closely resemble the

learned appearance of a triple-wave profile.
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Figure 5.4: Example of the most frequent classification error on Google Street View
data: the lower portion of a central median barrier is partially occluded or removed
by the segmentation, leading the classifier to assign the ROI to the triple-wave

class.

These errors highlight an intrinsic limitation of using Street View imagery, where

perspective distortions and variable camera heights often reduce the visibility of the

lower guardrail components.

The deterioration analysis module also generalised well to the GSV dataset. The

majority of GSV guardrails were classified as Ok or To be monitored, with both the

visual inspection of the images and the typical condition of guardrails along this road

segment.

The geometric deformation assessment produced consistent results. The profiles

extracted from the segmented guardrails remained largely linear, with deformation

values well below the threshold used to flag structural anomalies. This behaviour is

expected, given that the analysed segment of the highway does not contain visibly

deformed barriers, and confirms that the polynomial fitting method maintains its

reliability on external data sources. Minor fluctuations in the estimated deviation are

attributable to the oblique viewing angle of GSV cameras and to perspective shorten-

ing, both of which increase the sensitivity of the fitted model to small segmentation

imperfections.

5.3 Discussion

Although the number of Street View frames is limited and does not allow for a

one-to-one comparison with the full on-board sequence, the experiment demonstrates

that the proposed methodology can be transferred to external image sources without

significant performance degradation. The segmentation remains stable, the classifier
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correctly identifies nearly all barrier types, and both deterioration and deformation

assessments yield values in agreement with what would be expected from visual

inspection. The few observed misclassifications are directly linked to partial visibility

of the ROI—probably a limitation inherent to the Street View acquisition process

rather than to the models themselves. These results support the feasibility of

integrating Google Street View imagery into large-scale or preliminary guardrail

monitoring applications, particularly in scenarios where direct on-site video collection

is not available.

5.4 Motivation and Potential Applications

The rationale behind this experiment lies in the potential future integration of

public geographic data sources into automated infrastructure monitoring systems.

If comparable results can be achieved using Street View imagery, the proposed

methodology could enable large-scale, low-cost guardrail assessment in situations

where direct video acquisition is not feasible. Furthermore, access to Google Street

View data through public APIs—when permitted—may open the possibility of

performing periodical analyses, even retrospectively, by leveraging the historical

imagery stored by the platform.
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Chapter 6

Conclusion and Future Works

6.1 Summary

This thesis aims to address a series of open issues:

1. the lack of automated and scalable methods for guardrail detection and assess-

ment;

2. the absence of unified pipelines capable of classifying both guardrail typology

and structural condition;

3. the difficulty of integrating visual results with geographic information for long-

term monitoring;

4. the need for low-cost and replicable inspection systems that can support public

administrations.

To respond to these challenges, a complete pipeline was developed for the automatic

detection, segmentation, classification, and georeferencing of roadside guardrails,

using low-cost onboard sensors and open data. The system proved effective in

extracting guardrail regions from stereo-camera images, evaluating their apparent

condition, and associating each detected element with precise GNSS coordinates.

Furthermore, the integration of Google Street View images demonstrated that the

proposed methodology can be extended beyond proprietary datasets, offering an

additional low-cost avenue for visual verification and historical analysis. Overall,
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the results confirm that an automated, AI-based approach can substantially reduce

the dependence on manual surveys, while improving objectivity and scalability in

guardrail monitoring.

6.2 Discussion and Considerations

A central consideration of this work is the idea that AI should be applied where it

provides concrete operational value. In the context of road safety, guardrail inspection

is both labour-intensive and crucial for public security. Automating even part of this

process can therefore deliver tangible benefits.

6.2.1 Strengths and Contributions

The framework directly addresses the critical issues highlighted in the initial problem

formulation:

• It offers a guardrail-specific detection pipeline, overcoming the limitations of

generic object detection solutions.

• It relies on low-cost and easily accessible sensors, reducing operational expenses

and increasing accessibility for public administrations.

• It introduces spatio-temporal synchronisation between the visual stream and

GNSS data, filling one of the major gaps identified in existing literature.

• It produces a georeferenced digital inventory, a resource currently lacking in

most metropolitan areas, including Turin.

• It demonstrates the feasibility of integrating Google Street View as an additional

source for monitoring and validation.

These aspects represent direct and measurable contributions to the research landscape

on automated infrastructure inspection.
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6.2.2 Limitations

Despite its promising results, the pipeline presents several limitations:

• The reliability of the analysis strongly depends on the accuracy of the segmen-

tation masks. Occlusions (vehicles, vegetation), shadows, and reflections may

reduce segmentation quality.

• Deformation assessment is performed in the image domain: apparent geometric

irregularities may not always correspond to true physical deformations.

• Variability in perspective, lighting conditions, and road geometry introduces

noise that may affect both classification and deformation estimation.

• Real-world conditions along urban roads and highways are extremely heteroge-

neous, and some scenarios remain challenging for the neural network.

However, by combining multiple frames and exploring multi-source imagery, the

pipeline can detect irregularities with a sufficient degree of consistency for operational

monitoring.

6.2.3 General Considerations

In a period in which AI systems raise concerns about sustainability and computational

cost, this work supports the idea of selective and efficient use of artificial intelligence.

Instead of exhaustively processing entire video sequences, the pipeline can act as a filter,

flagging only potentially problematic segments for subsequent human inspection. This

strategy reduces unnecessary computation and supports more sustainable maintenance

workflows.

6.3 Future Works

Several directions may extend the contributions of this thesis:

• Robust Occlusion Handling:Future segmentation models may incorporate

dedicated modules for occlusion reasoning, temporal consistency, or multi-view

fusion, thereby improving robustness in complex scenarios.
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• Fully Automated Integration with Open Data Platforms: Developing a

pipeline that automatically integrates municipal GIS layers, road imagery APIs,

and newly acquired video streams would enable continuous monitoring of urban

and highway networks.

• Historical Evolution and Predictive Maintenance: Leveraging the his-

torical archives of Google Street View would allow longitudinal analyses of

guardrail condition, supporting predictive maintenance strategies and asset

lifecycle management.

• Extension to Other Roadside Elements: The modular nature of the

proposed pipeline makes it adaptable to other roadside assets (traffic signs, crash

cushions, light poles, drainage systems), paving the way toward a comprehensive

digital inventory.

• Energy-Efficient AI and Edge Computing: Lightweight convolutional

models, deployment on edge devices, and selective model activation could reduce

energy consumption and support real-time processing directly onboard vehicles.
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