POLITECNICO DI TORINO

Master’s Degree in Communications Engineering

F L
1859
dl

Master’s Degree Thesis

Interpretation of Learned Solutions for
Precoding-Oriented Massive MIMO CSI
Feedback Design

Supervisors Candidate
Prof. Giorgio TARICCO Roberta
Prof. Natasha DEVROYE BUCCHIGNANI

December 2025

Summary

The development of effective channel feedback strategies is crucial for enabling
the widespread adoption of Frequency Division Duplexing in Massive MIMO sys-
tems. While conventional methods rely on Compressed Sensing or Codebook-based
techniques, Deep Learning has recently emerged as a powerful paradigm for this
challenge. End-to-end (E2E) models, such as the framework proposed by Carpi et
al. [ICC 2023], have demonstrated superior performance by jointly learning the
Pilot Signals, the User’s Encoder, and the Base Station’s Decoder. Adopting a
“task-oriented approach", their objective maximizes the downlink sum-rate while
minimizing a differentiable overhead penalty (controlled by a trade-off parameter
A). Crucially, their results demonstrate that this strategy achieves near-optimal
performance with significantly compressed feedback, identifying an efficient op-
erating regime well below the requirements of traditional reconstruction-based
methods, which necessitate high-fidelity channel estimates. However, despite these
performance gains, these models operate as opaque “black boxes," leaving their
learned internal strategy unknown.

This thesis provides an original interpretability study to “open" this black box.
As the authors’ code was not public, we first successfully replicated the E2E pipeline
from Carpi et al. [ICC 2023], using this validated model as the faithful baseline for
our analysis.

We apply a novel methodological framework, combining Explainable Al tech-
niques, such as Quantitative Density-Based Clustering, Dimensionality Reduction,
and Contingency Analysis, to examine the system’s internal strategy.

Specifically, our analysis investigates the three fundamental learned stages of
the pipeline:
1. The Downlink Pilot Signals

2. The User’s latent vector, a compressed representation extracted by the Encoder
from the noisy, channel-distorted signals

I

3. The final precoder vector, generated by the Base Station’s network to execute
the downlink transmission

We demonstrate that the network’s internal strategy is not fixed but emerges as
a direct function of the rate-overhead trade-off, effectively switching between two
distinct operational modes:

o A Compression-Oriented Regime: Low values of A (e.g., A = 2), where
priority is given to compression efficiency (minimizing overhead) over rate
maximization.

o A Performance-Oriented Regime: High values of A (e.g., A\ = 100), where
priority is given to the maximization of the sum achievable rate.

In the high-rate regime (A = 100), the model aims for a faithful reconstruction
of the channel to maximize the sum-rate. Ideally suited for channel estimation, it
learns to generate orthogonal pilots at the sensing layer while focusing its energy
on the specific channel sector. Here, the latent representations act as continuous,
high-fidelity maps of the channel information, a characteristic mirrored in the
continuous distribution of the precoders. Both these two continuous representations
prove not to be clusterable.

Conversely, in the balanced regime (A = 2), the model prioritizes meaning over
form. Forced to prioritize efficiency, it abandons orthogonality to evolve towards
non-orthogonal, task-oriented pilots: the model learns to retain only task-useful
information while discarding the rest. In this state, the Base Station outputs a finite
set of clustered precoding vectors. Our clustering analysis quantifies this structure,
identifying 11 stable prototypes for the user’s latent space and 12-18 prototypes for
the precoder. By decoding the mapping from the latent clusters to the precoder
clusters, we uncover the Base Station’s learned policy: for simple channel states,
it adopts an efficient "lookup table" (a deterministic mapping between the input
latent and the output precoder). However, for ambiguous, high-interference sce-
narios, it dynamically switches to a context-aware policy (a “one-to-many" scenario).

We provide twofold proof that this is a learned strategy, not an inherent data
property: firstly, the structure completely dissolves as the compression constraint
is relaxed (at high \); secondly, it is entirely absent in the original, continuous,
and 'non-clusterable’ input channel. This demonstrates that the end-to-end sys-
tem has learned to “tessellate” the continuous physical space: it partitions the
non-clusterable channel manifold into discrete decision regions based on a rule of
semantic proximity, mapping physically similar channels to the same prototype.

11

Ultimately, this work demonstrates that E2E models are not inscrutable black
boxes: it is possible to develop interpretations of the underlying learned functions.
By unveiling these emergent behaviors, this thesis provides a new XAl-driven path-
way for understanding, trusting, and validating learned communication systems.

II1

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Classical CSI compression techniques
1.1.1 Codebook-based methods
1.1.2 Compressed-sensing (CS)-based methods
1.2 Deep Learning-based CSI compression techniques
1.2.1 Reconstruction-oriented Autoencoders
1.2.2 Rate-Distortion methods
1.2.3 Task-oriented methods
1.3 The Approach Proposed by Carpietal.
1.4 Goal of dissertation

2 System Model

2.1 Approach
2.2 Transmitted Signal Lo
2.3 Channel Model
2.4 Downlink Pilots Model
2.5 User Model
2.6 Feedback Model
2.7 Base Station Model L
2.8 Metrics

2.8.1 Overhead

2.8.2 Performance

2.8.3 Distortion

VI

VII

IX

3 System Implementation 16

3.1 Learning Objective 16

3.2 Pipeline Implementation 16

3.2.1 Downlink Pilots Model 17

322 UserModule., 17

3.2.3 Base-Station Module 20

3.3 Simulation Parameters and Results 22

4 Understanding the learned spaces 24

4.1 Variability of learned latent feedback representations t and precoders v 25

4.2 t-SNE representations 26

4.2.1 Latent Vectort; 30

4.2.2 Precoding Vector v, 41

4.3 Pilots Analysis 48

4.3.1 Orthogonality Analysis (Gram Matrix) 48

4.3.2 Effective Dimensionality Analysis (SVD) 49

4.3.3 Physical Domain Analysis (Beampattern) 53

5 Clustering o7

5.1 Methodological Rationale 57
5.2 Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) © . 58

5.2.1 Fundamental Definitions 58

5.2.2 Parameter Interpretation and Selection 59

5.2.3 Validation through Stability Analysis 60

5.3 Latent Representationst 60

5.3.1 A=2regime 61

5.3.2 A=100regime 64

5.4 Precoding Vectors v 65

54.1 A=2regime 66

5.4.2 A=100regime 75

5.5 Channel Realizations 76

6 Conclusion 81

Bibliography 84

List of Tables

3.1 User Module fy architecture.
3.2 Base-Station Module g4 architecture.
3.3 Simulation Parameters o000

4.1 Unique-value counts vs. A.
4.2 Pairwise distance statistics vs. A (user 0). L.

5.1 Sweep Results on t for A = 2 regime (Coarse View) - € Range: [0.013,
0.305], min_samples: 32
5.2 Number of samples for each Cluster Label (User 1)
5.3 Sweep Results on t for A = 100 regime - ¢ Range: [0.918, 2.198],
min_samples: 32o
5.4 Sweep Results on v for A = 2- ¢ Range: 0.033, 0.482], min_samples:
128 e
5.5 Number of samples for each Cluster Label (User 1)
5.6 Number of samples for each Cluster Label (User2)
5.7 Internal Composition of the v-Clusters (User 1).
5.8 Clustering Consistency Validation on the Top-20 Most Frequent
Unique Vectors.
5.9 Sweep Results on v for A = 100- € Range: [4.447, 7.228|, min_samples:
128 .
5.10 Sweep Results on h - € Range: [3.643,11.562], min_samples = 128 .

VI

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8
4.9
4.10
4.11

4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

System Block Diagram. L. 9
Detailed UE and BS models. 17
Analysis of the tradeoff between the feedback overhead and the

system performance. L 23
t-SNE representation of t; for A=2 31
t-SNE representation of t; for A =2 colored by Ry 32
t-SNE representation of t; for A = 2 colored by |hy| 34
t-SNE representation of t; for A = 2 colored by |vi| 34
t-SNE representation of t colored by the Gain coefficients for User 0

for Path 1 and Path 2 (a10,000) oL 36
t-SNE representation of of t colored by the AoDs for User 0 for Path

1L and Path 2 (B10,520) -« - - - o o o oo 36
t-SNE representation of t, for A=100 37
t-SNE representation of t; for A = 100 colored by Ry 37
t-SNE representation of t; for A = 100 colored by |vi| 38
t-SNE representation of tj, for A = 100 colored by |hy| 39
t-SNE representation of t colored by the Gain coefficients for User 0

for Path 1 and Path 2 (a19,000) . . - . . o . oo oL 39
t-SNE representation of t colored by the AoDs for User 0 for Path 1

and Path 2 (810, 020) - -« « « o o oo 40
t-SNE representation of v, for A=2 42
t-SNE representation of v, for A =2 colored by Ry, 42
t-SNE representation of vy for A = 2 colored by |tx] 43
t-SNE representation of v for A =2 colored by |hg| 44
t-SNE representation of v for A=100 45
t-SNE representation of v, for A = 100 colored by R 46
t-SNE representation of vy, for A = 100 colored by |hy| 46
t-SNE representation of vy, for A = 100 colored by |t 47
Gram Matrix for the Base Model. 49

VII

4.22 Gram Matrix for A\=2 Model.
4.23 Gram Matrix for A = 100 Model.
4.24 Singular Value Decomposition for the Base Model.
4.25 Singular Value Decomposition for A =2 Model.
4.26 Singular Value Decomposition for A = 100 Model.
4.27 Pilots Angular Beampattern for the Base Model.
4.28 Pilots Angular Beampattern for A =2 Model.
4.29 Pilots Angular Beampattern for A = 100 Model.

5.1 t-SNE representation colored by the DBSCAN clustering results for
the Latent Vector t for A\=2.
5.2 t-SNE representation colored by DBSCAN clustering results for the
Latent Vector vfor A=2.
5.3 Cumulative Coverage by the top-20 codewords
5.4 Rank-frequency of unique codewords
5.5 Contingency Table representing the mapping between the clusters
of t and the clustersof vfor A=2.
5.6 t-SNE representationof hy,
5.7 t-SNE representationof hy,
5.8 t-SNE representationof hy,o
5.9 t-SNE Visualization of h colored by the t clusters labels
5.10 t-SNE Visualization of h colored by the t clusters labels

VIII

Acronyms

BS

Base Station

UE
User Equipment

TDD

Time-Division Duplexing

FDD

Frequency-Division Duplexing

PMI
Precoding Matrix Index

CSI

Channel State Information

CS

Compressive Sensing

DL
Deep Learning

AE
Auto Encoder

AoD
Angle of Departure

IX

AWGN
Additive White Gaussian Noise
i.i.d.
Independent and Identically Distributed

MLP
Multilayer Perceptron

NN
Neural Network

E2E
End-to-End

MSE

Mean Squared Error

Chapter 1

Introduction

Wireless communication has emerged as one of the defining technological successes of
recent decades, and its demand continues to accelerate, driven by new applications
such as augmented reality and the Internet of Things. In this context, Massive
MIMO has become a key enabler for achieving significant increases in spectral
efficiency. In its standard form, a base station (BS) equipped with an array of
N, active antennas serves K single-antenna users simultaneously over the same
time-frequency resources [1].

Traditionally, Massive MIMO operates in time-division duplexing (TDD) mode.
In TDD, the uplink and downlink share the same frequency band but are divided
into alternating time slots, allowing for bidirectional communication over a single
band. By leveraging the reciprocity of the physical propagation channels under
TDD, the BS estimates uplink channels through pilots sent by the user equipment
(UE), and then reuses this acquired channel state information (CSI) for both
downlink precoding and uplink combining. Since each of the K users transmits a
mutually orthogonal uplink pilot within the coherence block, the cost of acquiring
CSI is K symbols and does not depend on the number of N; BS antennas [1]. As
a result, the pilot overhead scales with K rather than N;, preserving scalability
as the antenna array grows. Both estimation and payload transmission must fit
within a coherence block of 7 = B.T, transmission symbols, where B, denotes the
coherence bandwidth (in Hz) and 7, the coherence time (in seconds). Over these
7 uses the channel can be regarded as approximately constant, ensuring that the
acquired CSI remains valid for data transmission [1].

Currently, many wireless networks utilize frequency-division duplexing (FDD).
In FDD, the uplink and downlink operate on different frequency bands, which
means that channel reciprocity does not apply. Users estimate their downlink
channels through local channel estimators and send the estimated CSI back to
the BS, consuming both spectrum and energy. A basic FDD scheme requires
approximately N; downlink pilots per coherence block, K uplink pilots and a CSI

1

Introduction

feedback of N, coefficients from each of the K users. Consequently, the non-data
overhead scales with the product of the number BS antennas and the number
of UEs. Since a coherence block contains only 7 symbols, this overhead must fit
within the block. Therefore, while TDD can support arbitrarily large values of Ny,
FDD imposes a trade-off between N; and K, making it typically viable only in
low-mobility and low-frequency environments [1].

As the number of N; BS antennas increases, the downlink channel seen by each
UE becomes an N;-dimensional vector (one complex coefficient per antenna), which
implies a proportional increase in the amount of CSI that must be acquired and
reported. Consequently, it is essential to transmit a compressed representation
of the full CSI (or task-sufficient features) over the rate-limited link instead of
raw coefficients [2]. This challenge is especially pronounced in FDD, as downlink
training and uplink feedback scale with both N, and K, limiting the feasible
operating points within a finite coherence block [1].

Thus, developing effective channel feedback strategies is crucial for enabling the
widespread adoption of FDD in Massive MIMO systems.

1.1 Classical CSI compression techniques

In 5G New Radio (5G NR), CSI feedback is set up by the Radio Resource Control
(RRC) layer: the BS uses Information Elements (IEs) defined in 3GPP TS 38.331
(most notably CSI-ReportConfig, which references to CSI-ResourceConfig and
carries codebookConfig) to instruct the User Equipment (UE) what to measure and
how to report it. The physical-layer content of the codebooks and the precoding
matrix index (PMI) mapping is specified in TS 38.214, while the CSI-RS signals
used for channel measurements are defined in TS 38.211 [3], [4], [5]. Within this
framework, NR supports two families of downlink codebooks for CSI feedback:
Type-I and Type-II. Type-I is the simpler, single-user oriented option: the UE
selects a precoding matrix from a predefined table and reports a small set of indices
(PMI fields), keeping feedback short (low overhead) at the expense of angular
resolution. Type-II enables multi-user scheduling and higher spatial precision
through the use of oversampling: the UE reports multiple beams (PMIs) together
with per-beam coefficients (e.g. amplitudes/phases) according to the standard’s
format. This increases not only spatial precision but also the number of bits to
report, leading to an overhead growth with the array size; this issue becomes acute
with large antenna arrays in Massive MIMO [4]. From a system-design perspective,
the accuracy-overhead trade-off of standardized codebooks motivates compression:
as N; grows, the amount of Type-II CSI needed can become burdensome if fine
spatial detail is needed; both academia and industry are thus exploring compressed
CSI and learning-based feedback beyond fixed codebooks [2].

2

Introduction

As introduced by Sohrabi et al. [6], most classical schemes for multi-user
FDD Massive MIMO with limited feedback fall into two families: methods that
exploit spatial/temporal correlation and sparsity (compressed sensing, CS) [7], and
codebook /vector-quantization-based [8] PMI selection.

1.1.1 Codebook-based methods

A wide range of studies relies on finite codebook-based precoding configured a
priori at the BS/UE. As summarized by Love et al. [8], the BS probes candidate
precoders and each UE feeds back the set of indices and quality metrics (SNRs) of
the top-p strongest received signals. The BS selects the downlink precoder from
the codebook based on these reports. A DFT-based codebook is a common choice
[9]. In this framework, the operating point depends critically on p: with p =1 the
scheme effectively reduces to MRT (there is no mechanism to control inter-user
interference) [9][10], while larger p enables interference management but inflates
per-UE feedback, since there are more indices and metrics to report [11].

Dietl et al. [12] provide an in-depth comparison between CSI-feedback precoding
and codebook-based precoding in rich-scattering scenarios. When the available
feedback is very low, CSI feedback is preferred: with only a few bits, picking
indices from a finite codebook cannot provide beams with a sufficient angular
resolution, whereas feeding back, even coarsely quantized, CSI enables linear
precoders (MRT/ZF) that better exploit the channel. This gap becomes even larger
in massive MIMO with limited scattering: CSI-feedback pipelines can estimate
and quantize a few sparse path parameters and thus use very few pilots and
few feedback bits to describe the dominant propagation. Codebook schemes, in
contrast, need a codebook size that scales with the number of antennas N; to keep
angular resolution: the overhead becomes unmanageable for large systems. Given
these drawbacks, subsequent comparisons in this work focus on CSI-feedback-based
precoding methods, which are more efficient under tight feedback budgets and
large arrays with limited scattering. This approach is consistent with the analysis
in [6], which similarly concludes that codebook overhead scales unmanageably in
massive MIMO and, for this reason, also limits its own comparison to CSI-feedback
schemes.

1.1.2 Compressed-sensing (CS)-based methods

This second family of methods operates on a different principle. Instead of fixed
codebooks, CS-based techniques exploit the underlying physics of the channel:
it enables the capturing and reconstruction of a signal using significantly fewer
measurements. The operation of CS relies on a key assumption, i.e. that the signal
of interest is "sparse'. A signal is sparse if the vast majority of its information is

3

Introduction

contained within a very small number of "non-zero" coefficients. The CS technique
acquires only a few measurements and then uses an optimization algorithm to
find the sparsest possible signal that matches those measurements. Often, a signal
is not sparse in its native domain (e.g., in time domain), but becomes sparse
when represented in a different domain (e.g., the frequency domain via Fourier
transform).

1.2 Deep Learning-based CSI compression tech-
niques

Machine learning, especially deep neural networks (DNNs) has become a powerful
tool for high-dimensional, non-convex design in wireless systems. In FDD Massive
MIMO, Deep Learning (DL) frameworks learn compact representations of downlink
CSI and direct mapping to precoders, enabling end-to-end optimization across
pilot design, UE-side compression and BS-side processing. Three complementary
strands have emerged that, together, explain why DL solutions often outperform
classical CS methods despite relying on fewer modeling assumptions. These strands
are: reconstruction-oriented autoencoders (AEs), rate-distortion models, and task-
oriented approaches. Across these settings, learning-based CSI feedback has shown
strong potential [13][6].

1.2.1 Reconstruction-oriented Autoencoders

First, reconstruction-oriented AEs cast CSI compression as learned source coding:
a UE-side encoder f; maps the channel observation into a low-rate latent t; a
quantizer and an entropy coder map t; to a bitstream, and a BS-side decoder
ge reconstructs the channel H by minimizing a distortion metric (typically the
Normalized Mean Squared Error) at a given feedback budget. This AE paradigm,
introduced for CSI by CsiNet [14], is explicitly cited by Carpi et al. [13] as the first
demonstration that an AE can compress CSI effectively in massive MIMO; subse-
quent surveys and follow-ups report improved distortion at increasing compression
ratios [15].

1.2.2 Rate-Distortion methods

A second line of work concerns rate-distortion-optimized DL with learned entropy
models. Borrowing the toolchain from neural image compression, a UE-side encoder
produces a latent vector that is quantized (with a differentiable surrogate during
training). To optimize the overhead, this vector is entropy-coded: this requires
a learned entropy model, which is typically a neural sub-network trained jointly

4

Introduction

with the AE to estimate the probability distribution of the latent vector (p(ty)).
In this framework, both components are learned: the AE learns the compression
(mapping the channel to an efficient latent vector), while the entropy model learns
its probability distribution. This learned distribution is then used by a standard
entropy coder (e.g., arithmetic coding) to generate the bit stream. During training,
the entropy calculated from this model (E[— log, p(tx)]) serves as a differentiable
loss term, acting as a proxy for the final overhead. The encoder, decoder, and
entropy model are trained end-to-end with a rate-distortion objective that trades
the reconstruction error for the feedback bits. Carpi [13] explicitly adopts this
framework. The overhead term in their loss is calculated by applying the learned
entropy model to the “pseudo-quantized latents”. This term simply refers to the
output of the differentiable quantization surrogate (e.g., additive uniform noise)
used during training. The canonical tools for this approach were introduced by
Balle’ et al. [16], known as the “Entropy Bottleneck”. !

Along the same line, DeepCMC by Mashhadi et al. [17] proposes a fully-
convolutional AE for CSI feedback that integrates quantization and entropy coding
in the architecture and is trained with a weighted rate-distortion loss, thereby
enabling an explicit trade-off between CSI quality and feedback overhead. The
decoder uses residual layers to improve reconstruction, and a distributed variant
jointly decodes compressed CSI from multiple UEs to exploit inter-user correlation.
Compared with earlier AE baselines, DeepCMC achieves lower NMSE between
the original and reconstructed channel matrices at the same bit-rate, but, as with
most rate-distortion designs, the objective remains reconstruction quality, not the
downlink precoding task itself.

1.2.3 Task-oriented methods

A third distinct task-oriented branch optimizes the BS task itself (linear precoding)
rather than channel NMSE, optimizing sum-rate performance directly and thus
outperforming reconstruction-oriented pipelines at the same feedback budget. In
the multi-user setting of Sohrabi et al. [6], DL is used end-to-end across the whole
chain: the BS learns the downlink pilots; each UE runs a neural encoder that
maps its pilot observations to a fixed-length binary vector (“binary taps”); BS-side
network directly outputs the linear precoders. Channel estimation is not handled as
a stand-alone module; training maximizes the downlink sum-rate, thereby avoiding

!The Entropy Bottleneck is often implemented with a “factorized learned prior”, which assumes
that all elements of the latent vector tj are statistically independent (i.e., p(tx) = [, p(tk,i))-
The model thus learns a separate probability distribution for each latent element, and the total
entropy (the overhead term in the loss) becomes the sum of the individual element-wise entropies

(log(ITpi) = >_log(pi)).

Introduction

explicit channel reconstruction, and the feedback cost (overhead) is fixed by the
chosen feedback dimension (and it cannot be further compressed via entropy coding).
As noted in [6], many prior DL works either study single-user scenarios with no
inter-user interference or focus on CSI reconstruction at the BS assuming perfect
CSI at the UE. In contrast, they handle the multi-user case where each UE only
senses and feeds back its own channel, while precoding is a function of all users’
channels; secondly, they train end-to-end (including pilot sequences) to directly
enhance downlink spectral efficiency. In addition, they discuss generalizability
with respect to feedback rate and number of users, proposing two-step procedures
to operate over varying bit budgets B and user counts K without retraining
the UE encoders from scratch. In single-user massive MIMO, Chen et al. [18]
propose implicit CSI feedback: DL is used on both sides to learn what to send
and how to interpret it for beamforming. A UE-side encoder network compresses
the pilot observations into a compact code containing precoding-sufficient features
(rather than a full channel vector). A BS-side decoder network maps that code to
the precoder. During training, the objective is task-level (rate), and the code is
quantized to meet the feedback budget. Compared with standardized codebooks,
this reduces overhead while optimizing the end task directly.

Overall, DL-based feedback beats classical CS at the same overhead. The
different strands of research offer distinct advantages: rate-distortion methods
(1.2.2) control the feedback ovearhead by learning the probability distribution
(the entropy model) used by a standard, fixed entropy coder, while task-oriented
methods (1.2.3) align the entire training pipeline with the end-goal (precoding)
rather than a proxy distortion metric.

1.3 The Approach Proposed by Carpi et al.

Carpi et al. [13] focus on a multi-user FDD downlink Massive MIMO system,
adopting a sparse limited-scattering geometric multipath channel model.? Rather
than treating estimation as a stand-alone module, they adopt an end-to-end
viewpoint that jointly designs the downlink pilots, the channel estimation and
quantization strategy under limited feedback, and the downlink linear precoder
at the BS. UEs compress CSI over a rate-limited link, and the BS processes
that feedback to determine directly the precoding vectors, rather than a channel
estimate. They keep an autoencoder-shaped codec: the UE encoder is followed by
a quantization and learned entropy model, with the feedback overhead included
as a differentiable component of the optimization objective (the loss function),

2The technical details of this channel model, adopted from [6] and used by [13], are discussed
in Section 2.3.

Introduction

rather than being a fixed constraint. The goal is to understand and optimize the
trade-off between CSI feedback overhead and system performance, measured by
the sum achievable rate across users. Training is end-to-end in the multi-user
loop with a task-oriented objective: to maximize the downlink sum-rate while
simultaneously minimizing a differentiable overhead penalty, with the balance
between the two controlled by a trade-off parameter \. Their results reveal a
saturation effect in the rate-overhead trade-off: beyond a certain feedback capacity,
further increases in overhead yield diminishing returns in sum-rate, eventually
plateauing near the theoretical limit achievable with perfect CSI (CSIT). This
shows that the precoding-oriented strategy can achieve near-optimal performance
with significantly compressed feedback, identifying an efficient operating regime
well below the requirements of traditional reconstruction-based methods (which
necessitate high-fidelity channel estimates to perform effective precoding).

1.4 Goal of dissertation

This thesis’ goal is to interpret, in the sense of explainable Al, the learned precoding-
oriented CSl-feedback framework of Carpi et al. [13] for downlink FDD massive
MIMO, where reliable downlink precoders rely on user-supplied compressed CSI.

While their deep learning framework demonstrates high performance, it operates
as a "black box", leaving its learned internal strategy unknown. This thesis aims
to "open" that black box using methodologies from Explainable AT (XAI), which
provide post-hoc analysis tools to understand the inner workings of complex models
like deep neural networks. Our original contribution is to adapt these XAl tools to
reveal and visualize the strategy the network has learned to solve the end-to-end
communication problem.

Towards this, our contributions may be summarized as follows:

» Reproducibility and Baseline Validation: We first successfully repli-

cated the end-to-end learning pipeline from Carpi et al. [13]. This involved
re-implementing the learned pilots, UE-side encoder, and BS-side precoder
decoder, as the authors’ code was not public. Our implementation validates
their findings, confirming that the precoding-oriented approach achieves a
higher sum-rate in the low-feedback regime. This validated model serves as
the faithful baseline for our interpretability analysis.
We conducted extensive end-to-end simulations, systematically sweeping key
system parameters (number of antennas N, pilot length L, feedback dimen-
sionality Ny, and related SNR settings) to understand the overhead-sum-rate
performance trade off, and how different factors affect this.

e Understanding the learned spaces: We move beyond performance metrics
to analyze the internal strategy of the learned model. We provide quantitative

7

Introduction

and visual proof (via XAI tools as quantitative clustering and non-linear
dimensionality reduction) that the network’s internal strategy is not fixed, but
emerges as a direct function of the rate-overhead trade-off (A). We demonstrate
that the model develops a structured, semantic compression mechanism (i.e.,
a finite set of prototype vectors) only when forced to solve this trade-off, and
that this structured behavior vanishes when the compression constraint is
removed.

A Novel Framework for XAl in Wireless Systems: We introduce and
apply a new methodological framework for interpreting learned end-to-end
communication systems. To our knowledge, this is the first investigation to
apply a combined suite of XAl tools (specifically, density-based clustering,
non-linear manifold visualization, and contingency matrix analysis) to explain
the internal policy of a learned CSI-feedback and precoding pipeline. This
work is similar in spirit to the line of research on interpreting learned error-
correcting codes [19, 20, 21, 22, 23, 24, 25, 26] and provides a new template
for "opening the black box" in learned wireless design.

Chapter 2

System Model

This chapter lays out Carpi et al’s [13] system model in full detail. We retain their
system setup and notation throughout.

2.1 Approach

We pose the design as an end-to-end problem: maximize the sum of achievable rates
in (2.6) as subject to a budget on the feedback bits required to convey (by, ..., bk)
over the uplink.

Precoders/

Channel Pilots Noise Users Feedback Base Station .
reconstructions

X

P

g
(54 VK

D
=
=
~
L
’ l
4l

Figure 2.1: System Block Diagram.

We consider a multi-user precoding-oriented end-to-end architecture (2.1) similar
to that of Sohrabi et al. [6]. While this setup is reminiscent of the CSI-feedback
frameworks in [17], those methods target accurate channel reconstruction, whereas
Carpi et al [13]’s objective is to learn precoders directly: a precoding-oriented loss
embeds the rate-overhead tradeoff into the training objective. Under this loss,

9

System Model

the mapping in the UE block, denoted with F, learns a channel representation
expressly tailored for precoding efficiency; the mapping in the BS block, G, maps
that representation directly to the Precoding Matrix V.

The pilots, feedback schemes F, and BS processing G are modeled with neural
networks, and incorporate the learned compression-quantization mechanism of [16]
to respect the feedback-bit constraint. Unlike [6], we include a feedback overhead
optimization mechanism that estimates the feedback distribution during training
and uses entropy coding to generate the bit streams at test time.

2.2 Transmitted Signal

We consider a massive MIMO system where a BS with N, transmit antennas
serves K single-antenna users. Assuming linear precoding at the BS, the downlink
transmitted vector is

K
X =) visy=Vs
k=1

with v, € CMt representing the precoding vector and s, € C the symbol to be sent
for the k-th user.

2.3 Channel Model

The system assumes a BS equipped with a Uniform Linear Array (ULA) with N,
antennas.

The vector of channel gains for the k-th user, h, € C™, is modeled as the
superposition of L, propagation paths:

1 &
h, = —— Z Oy k; at(ﬁe,k)a (2~1)
\/ Lp /=1
Each path ¢ is defined by two components:

o The standard ULA steering vector (transmit array response), which is a
function of the path’s random Angle of Departure (AoD), Sy

) . . T
a,(B) = {17 eIVB) i2¢B) i (Nt—l)w(ﬁ)] 7 (2.2)

with phase increment

Y(p) = 27rf;d sin 3, (2.3)

10

System Model

where Ny is the number of BS antennas, d is the antenna spacing, f. is the
carrier frequency, and c is the speed of light.

Considering L,, paths and K users, each path ¢ towards a specific user k has its
own AoD [y, that is shared across all antennas towards the same user, and that
is drawn uniformly within the user’s angular sector (8 ~ U (O — A, O +A%)).
These draws are independent across both users and paths. Each antenna
experiences an additional phase shift that grows linearly with the antenna
index n.!

e The complex path gain oy towards the k-th user, modeled as an independent,
zero-mean circularly symmetric complex Gaussian random variable (o ~
C,N(0,1)). These gains are independent both across the K users and across
the L, paths, and identically distributed.

Because the same (3, and ay; appear in every antenna entry, the IV, entries of the
vector hy are not independent: they are tied together by the underlying physics
of the propagation paths. Since each user k has its own set of AoDs, and in our
scenario both users share the same distribution parameters, they statistically look
the same.

In our simulation setup, the random variables for all paths and users (both the
AoDs) and the gains oy) are drawn independently from the same statistical
distributions. As a result, the channel vectors hy for all users are independent
and identically distributed (i.i.d.) draws from the same underlying continuous
distribution.

2.4 Downlink Pilots Model

The BS probes the channel by transmitting a sequence of pilot symbols of length
L. These transmissions are represented by the pilot matrix X € CM*L. Each
transmitted pilot symbol (i.e., each column %, of X) must satisfy an instantaneous
power constraint ||%,||3 < P. The k-th user receives the pilot signal y, € C**F

which is modeled as:)
v, =hiX +z, (2.4)

where z, ~ CN(0,0°I) is the Additive White Gaussian Noise (AWGN). The pilot
matrix X is not fixed or pre-defined matrix (e.g., based on DFT). Instead, X is

'In our specific simulation setting, all K users are assigned the same angular support, defined by
a common central angle 6 and half-width A. While the general model could support heterogeneous
users (i.e., different 6, and A which would lead to non-i.i.d. channels), our homogeneous
setup ensures that all path angles 8, are drawn independently from the same uniform law,
Ulg — A6+ Al.

11

System Model

treated as a set of free parameters that are jointly optimized with the encoder and
decoder networks to maximize the final system objective.

2.5 User Model

After receiving the noisy pilot observation ¥, (2.4), each user k processes this signal
locally to create a compressed feedback message by.

2.6 Feedback Model

Each UE employs the same feedback mechanism F. Although the K UE experience
distinct channel realizations [hy, ..., hg|, prior work [6, 17] indicates that a single,
user-agnostic F remains effective in multiuser settings when the realizations follow
the same channel statistics.

The scheme comprises three components:

1. An Encoder Network (fy): A deep neural network (DNN), defined as a function
fy with a set of trainable parameters 6. Its role in the model is to extract
features from the received pilots y, and map them to a low-dimensional latent
representation t; € R™*!. The specific architecture of this network (e.g. the
number of layers and the total parameter count) is an implementation choice
detailed in Section 3.2.

2. A Quantizer (¢): A quantizer ¢, which applies uniform scalar quantization
to the nearest integer, yielding the quantized vector for the k-th user ty.
During training, this non-differentiable operation is replaced by additive i.i.d.
uniform noise u; whose support matches the quantization step [uj, ..., u]kvb] ~
U[—0.5,+0.5] [11]. The resulting pseudo-quantized vector t; = t; + uy is used
in place of t;, = q(t;) to enable gradient backpropagation.

3. An Entropy Coder ¢;: An entropy coder ¢, with a set of trainable parameters
1, which maps the quantized representation to a lossless bitstream. Following
[16], t) is modeled by a parameteric, fully factorized prior in which each
component is Gaussian with zero mean and a standard deviation learned
during training. At test time, these learned parameters are used by c to
encode ty.

2.7 Base Station Model

The Base Station (BS) employs a centralized processing operator G that aggregates
the feedback from all K users to determine the downlink transmission strategy.

12

System Model

Unlike the user-side processing, which occurs independently per device, the BS pro-
cessing is joint and multi-user. The scheme comprises three functional components:

1. An Entropy Decoder (c; 1): This component inverts the entropy coding applied
at the UE. Its behavior differs strictly between training and testing phases to
maintain end-to-end differentiability:At test time: It losslessly reconstructs
the quantized latent vectors from the received bitstreams, i.e., t; = Cy L(by)
for each user k.During training: The entropy decoding is bypassed. The
pseudo-quantized vectors with additive noise t; (generated by the UE) are
fed directly to the next stage. This allows gradients to flow back from the BS
to the UE, enabling the joint optimization of the encoder-decoder pair.

2. A Decoder Network (gs): A deep neural network parameterized by ¢, which
serves as the core processing unit. It takes as input the concatenation of the
latent representations from all K users, z = [t,...,tx], effectively fusing
the distributed CSI into a global state. Its role is to map this compressed
multi-user state to the Precoding Matrix V € CNe*X_ While the architecture
could technically output a channel reconstruction ﬂ, in our precoding-oriented
design, g, is optimized solely to generate V.

3. Power Normalization: A deterministic layer that ensures the generated pre-
coding matrix satisfies the physical power constraints of the massive MIMO
array. The raw output of g4 is normalized such that the total transmit power
does not exceed the budget P:

Tr(VVH) < p

2.8 Metrics

We quantify the CSI feedback task along three axes: feedback overhead, system
performance, and channel distortion.

2.8.1 Overhead

The feedback overhead captures the number of bits needed to convey the uplink
messages by. Following prior work [16, 17] we proxy this by the empirical entropy
of the pseudo-quantized latent vector t;. This vector t; is the output of the UE’s
encoder, and it is a random variable that depends on three underlying random
sources: the channel realization hy, the additive receiver noise z;, the additive
quantization noise uy, used during training. Therefore, the expected code length
must be averaged over the distributions of these three source variables. Specifically,
tr = F(hg,zg, ug; 9,5(), where F' represents the entire user-side network. The

13

System Model

per-user overhead Oy, measured in bits per channel use [bits/ch. use], is the
differential entropy of t; under a learned density model p;(-,1)):

Ok(0, %) = B, , [~ logy i (a5 90)] (2.5)

which estimates the code length for each feedback vector by.
The total overhead is the sum across the K users

2.8.2 Performance

System performance is measured by the achievable sum-rate, measured in bits per
channel use [bits/ch. usel:

K
R<07 ¢7 ¢) = Z Rk<07 ¢7 d))a
k=1

with

Ri(0,4,¢) =E logs (14 1 vel” (2.6)
k0, ¥, 0) =iy, Uz |102; Zj¢k|hgvj|2+02 '

being the achievable rate for the k-th user.

The instantaneous rate for user k is a random variable that depends on two main
components: the user’s channel hy, and the precoding matrix V = [vy,..., vk].
The overhead metric Oy is a per-user metric, depending only on that user’s local,
random information (the vectors hy, uy, z).

What changes in the per-user rate Ry is that the precoding matrix V is not fixed;
it is the output of the BS’s network g, which processes the joint information from
all K users:

V = g¢(1~31,...,tK)

As established in the previous section, each latent vector tj is itself a random
variable, being a function of the original channel hy, the receiver noise z;, and the
quantization noise uy. Therefore, the final precoding vector vj (and the entire
matrix V) is a complex, deterministic function of all underlying random sources
H,U,Z, where U and Z represent the collection of all users’ quantization and
receiver noise, respectively, and H is the full channel matrix. To find the expected
rate we must average the instantaneous rate over the distributions of these sources.

14

System Model

2.8.3 Distortion

To align with conventional reconstruction-based methods, we also report a distortion
metric, though this is not the focus of our task-oriented analysis. The distortion is
measured by the mean-squared error (MSE) between the true channel H and the
BS-side channel reconstruction H.

The reconstruction H is an alternative output of the same BS network g, derived
from the same latent vectors:

A A A ~ ~

H= [hl,...,hK} :g¢(t1,...,tK)

Crucially, just like the precoding matrix V analyzed in the previous section, the
reconstruction H is a deterministic function of the latent vectors ty. These, in turn,
depend on the underlying random sources H, U, and Z. Therefore, for the same
reason as the Rate metric (2.6), the expected distortion must be averaged over the
distributions of all these source variables:

(2.7)

2
I

D(6,%,¢) =EBuuz|H-H

15

Chapter 3
System Implementation

This section documents, in full detail, how we implemented the precoding-oriented
CSI feedback pipeline described by Carpi et al. [13] and used it to produce the
final overhead—performance curve, as the authors’ original code was not publicly
available. The implementation follows their system model and learning architecture
closely, with careful attention to reproducibility, numerical stability, and evaluation
against the same baselines.

3.1 Learning Objective

We train the system end-to-end, jointly optimizing the parameters of the blocks
fo, ¢y and g, under a differentiable objective that balances the three design criteria.
Specifically, during training we minimize the function

L£(6,¢,9) =0~ AR+ D, (3.1)

where O quantifies the feedback overhead (2.5), R measures system performance
(2.6), and D penalizes channel reconstruction error (2.7). The non-negative weights
A, > 0 control the trade-off among these terms. Classical overhead—distortion
(or rate—distortion) formulations correspond to A = 0, whereas precoding-oriented
designs set v = 0. In this work we adopt the latter regime (7 = 0) and sweep A
to explore different feedback budgets. Joint designs that output both precoding
vectors and channel reconstructions can be accommodated by choosing A > 0 and
~v > 0, but are outside our scope.

3.2 Pipeline Implementation

We implemented the end-to-end learning pipeline as a set of classes with explicit
interfaces.

16

System Implementation

3.2.1 Downlink Pilots Model

As defined in the System Model (Subsection 2.4), the pilot matrix X € CNe*E ig
optimized jointly with the network. To implement this, X is instantiated in our
pipeline as a trainable parameter.

The matrix multiplication hi7 X from the model is realized using a ’bias-free’ linear
layer, i.e. a standard fully-connected layer with its bias term set to zero and where
X serves as the layer’s trainable weight matrix.

To enforce the power constraint ||%||3 < P, the columns of the X weight matrix
are explicitly renormalized (L2-normalized and scaled by \/ﬁ) at every forward
pass of the training.

Finally, the AWGN z, is simulated by adding the appropriate amount of circular
complex Gaussian noise to the layer’s output.

3.2.2 User Module

The User module implements the per-user feedback fy as a 4-layer fully-connected
network.

The network processes the real-imaginary stacked pilot vector y, € R'*2L.

The forward pass is defined as

z, = ¢, (BN} (W1y + ¢1)) W, € RIO#XCL) o ¢ R1024x1

z3 = ¢y (BNy (Wazy + ¢3)) W, € R2048x1024 o R2048x1

Z3 = @3 (BN3 (W3z2 + C3)) W, € R256%2048 cs € R256x1
t=Wyzs+cy W, € RNox256 cy € RVox1

User Base Station

YK EC ¥C FC FC
— 5 5)

Figure 3.1: Detailed UE and BS models.

Each of the first three layers consists of a linear transformation (weights W;
and bias vector c;), followed by two standard components essential for training
deep networks. First, 1-D Batch Normalization (BN;) is applied. This technique

17

System Implementation

stabilizes the training process by standardizing the activations from the previous
layer to have approximately zero mean and unit variance '. Second, the ReLU
non-linearity ¢;(-) = max{0, -} is applied, which introduces non-linearity in the
network by simply zeroing-out any negative inputs. The final layer is linear (weights
W, bias ¢4) and produces the latent vector t € RM*1 fed to the entropy model 2.
The same set of trainable parameters 8 = {(W,, ¢;)}._, is used for all the users.

The final layer is strictly linear, with no activation. This is intentional: the next
component in the pipeline is an entropy bottleneck that learns a parametric prior
over t and converts it into bits. Imposing a nonlinearity at the output, as the
ReLU, would distort the marginal shapes, making them harder to code: a ReLU
would truncate the negative half-line, forcing ¢; > 0. The entropy coder ¢, itself is
a network whose parameters 1) are trained to model the probability distribution
of t. This block is trained jointly with the encoder fy that produces t. This
addresses the core training dynamic: f, learns to produce t, while c,, concurrently
learns to estimate the distribution p;(-;¢) through the trained parameters). The
loss function forces fy to produce latent vectors t that ¢, can model efficiently
(i.e., with low entropy). This learned probabilistic prior is then used both during
training, assigning a likelihood to each latent sample, and during testing, driving
the arithmetic coder that turns t into an actual bit-stream. Formally, the expected
code length (in bits) under the bottleneck’s prior satisfies

E[—log, g4 (t)] = H(P) + Dxr(P||Qy)

where P is the empirical distribution of the latent produced by the encoder and
(Q)y is the probabilistic model (prior) that the bottleneck is trained to learn. To be
precise, the bottleneck’s architecture can represent a set of possible distributions.
In this specific implementation, @, is the family of factorized, zero-mean Gaussian
distributions. The trainable parameters 1) that define the specific distribution are
the standard deviations for each independent component of the latent vector. The
entropy term H(P) is fixed by the data; what we can control is the mismatch

LAt inference time, BN does not recompute batch statistics: it uses the fixed running mean
and variance accumulated during training. As a result, normalization no longer depends on the
current batch composition or size, and the mapping becomes deterministic: the same input, with
fixed weights, always produces the same output.

23.1 details the architectures of the UE module fy and the BS module g, connected via the
quantizer q and the learned compression blocks cy. As previously said and as illustrated in the
diagram, each hidden layer in both networks follows a standard, repeating motif: a BN layer, a
FC layer and a ReLLU activation. The last layer is linear. The number for each FC layer specifies
the output dimension (i.e., the number of neurons) for that stage.

18

System Implementation

Dgr(P||Qy). Introducing a ReLU at the output distorts P, increasing this mis-
match and thus the number of bits we pay for the same task performance. Keeping
the final layer linear avoids that distortion: the bottleneck can drive Dy down,
yielding lower expected code-length.

The encoder’s architecture is deliberately designed with an expansion-contraction

Table 3.1: User Module fy architecture.

Layer Input Dim. (d;;) Output Dim. (d,,;) Parameters Activation Notes
Layer 1 2L =16 1024 Wi, c1 BN + ReLU L =38
Layer 2 1024 2048 Ws, co BN + ReLU

Layer 3 2048 256 W3, c3 BN + ReLlU

Layer 4 256 N, =16 Wy, ey Linear Ny, =16

structure (a 'narrow-wide-narrow’ profile). Looking at 3.1, it begins with a small
input (2L = 16), expands into two very wide hidden layers (1024 and 2048 neurons),
and then contracts to a final latent vector (N, = 16).

This design choice serves a specific purpose. The initial expansion into wide layers,
which hold most of the parameters, allows for rich, non-linear mixing of the 2L pilot
features. This enables the model to separate the task-relevant signal (precoding-
oriented structure) from nuisance variations (noise and incidental correlations).
The subsequent contraction to 256 concentrates what the model has distilled into a
compact, information-dense representation before the final linear projection to NNj.
Operationally, the same encoder fy is applied to every user independently, and the
resulting latents are then concatenated. The order in which users are processed
has no effect: permuting the users simply permutes the corresponding latents, with
no change in their values. This guarantees that any differences in rate or bit-rate
arise from the channel realizations themselves, not from arbitrary user indices.

Once the per-user feature vector t;, € RPN comes out of the MLP, the
encoder immediately hands it to the entropy bottleneck, which is the component
that turns the continuous latent features into an entropy-coded bitstream. We rely
on the EntropyBottleneck module provided by CompressAI [27]

The behavior of this module depends on the mode:

o In training mode, the goal is to make the non-differentiable quantization step
callable. For each user k, the call entropy_bottleneck(t_k) returns two

19

System Implementation

objects: a quantized surrogate £, € RP*"*No (created by adding differentiable
uniform noise), and a tensor of per-symbol likelihoods ¢; € RTtChXNb, i.e. the
model’s probability for each latent coefficient under a learned, factorized prior
(P, (-510)). We aggregate — log, £, across users and latent dimensions to form
the overhead term in the loss. This allows gradients to flow, training f; to
produce latents that the bottleneck ¢, can model efficiently (i.e., with low
entropy). Stacking across users yields T € RbatchxNoxK " congumed by the BS
to predict the precoder, and the likelihoods A € RPA#h*NoxK 'wwhich feed the
overhead term in the loss.

o In evaluation mode, real bitstreams are produced. For each user k, the MLP
output t is first quantized into an integer symbol sequence s = q(t;) =
(Sk.1,--s Sk,), Which is an inherently lossy step. Compression operates on
discrete symbols, not on floats. The entropy bottleneck relies on Asymmetric
Numeral System (specifically range ANS, TANS?) to losslessly encode the
discrete sequence s using the learned probability model. The coder returns a
list of byte strings (via compress, [27]), which constitutes the exact payload
that would be fed back from the UE; their measured lengths (in bits) coincide
to what is reported as the measured overhead (the actual payload size in bits).
Because the feedback coding stage is lossless with respect to the quantized
representation, and the order of users is preserved, the end-to-end mapping is
deterministic: the precoder depends only on the bitstreams and the learned
parameters, not on incidental runtime details.

3.2.3 Base-Station Module

The BS module receives the compressed feedback from all K users; the g4 processes
it jointly to generate the Ny x K precoding matrix.
The input to this module, t, depends on the operational mode:

+ In training mode, the network receives the stack of pseudo-quantized latents
T € RP*M XK produced at the UE’s encoder. These are concatenated to form
the input tensors z = [t1||fs|]...||fx] € REXENo),

« In evaluation mode, the BS receives a list of byte strings (the payloads from
each user). Using the same entropy model as the UE’s encoder, ¢, ! it invokes
decompress ([27]) to losslessly recover the quantized integer symbols sy, which
are bit-for-bit identical to the encoder’s quantized latents g(tx). These are

3rANS encodes a sequence of discrete symbols by updating a single integer state according to
each symbol’s probability; see [27] and [28] for details.

20

System Implementation

concatenated across users, z = [51]|5|...|[tx] € REXENo) and fed to the
network.

The z vector is fed to the module g4, which consists of a deep MLP; it acts as a
"mirror image" of the UE’s fy around the feedback bottleneck. Where the UE mod-
ule compresses a single user’s high-dimensional observation into a low-dimensional
latent, the BS module expands the concatenated low-dimensional latents back into
a high-dimensional, task-specific object (the joint precoder).

As detailed in [13], g4 is a 5-layer fully-connected network, summarized in 3.2.

Table 3.2: Base-Station Module g, architecture.

Layer Input Dim. (d;,) Output Dim. (d,;) Parameters Activation Notes

Layer 1 K x Ny =32 1024 Wi, 1 BN + ReLU K =27
Layer 2 1024 512 W, co BN + ReLlU
Layer 3 512 512 W3, c3 BN + ReLLU
Layer 4 512 256 Wy, ¢y BN + ReLU
Layer 5 256 K x N, =128 W, cs Linear N, =64

The first four hidden layers follow the same Linear — BatchNorm1D — ReLU
motif as the encoder, forming a shared "backbone'. This backbone processes the
concatenated input z and produces a final, high-level latent embedding of dimension
256. This shared embedding is then fed in parallel to two separate, linear output
heads, that act as a fifth layer. One head is trained to predict the real part of
the precoder (Vg € R%), and the second head is trained to predict the imaginary
part (V; € R%). These two real-valued outputs are then re-shaped, combined to
form the complex final precoder (V € C®). A final normalization step enforces
the power constraint Tr(VV*) = P.

The result is an encoder-decoder symmetry around the feedback bottleneck: com-
pression at the UE, followed by concatenation, joint decoding, and physical con-
straints enforcement at the BS. The symmetry is conceptual rather than parametric,
since weights are not shared. Moreover, the UE encoder is applied identically to each
user (preserving permutation symmetry), whereas the BS network operates jointly
across all users, to capture inter-user coupling essential for multi-user precoding
(such as managing inter-user interference).

21

System Implementation

3.3 Simulation Parameters and Results

The simulation parameters are summarized in 3.3. We focus on a multi-user
massive MIMO system where the BS with V; = 64 antennas serves K = 2 UEs
simultaneously. The channel is modeled with L, = 2 propagation paths, allowing us
to study the CSI feedback task in a scenario involving both multi-user interference
and multipath fading.

To reproduce the fundamental rate-overhead trade-off analysis originally presented
in [13], we trained the E2E system by sweeping the trade-off parameter \ across a
wide dynamic range, effectively forcing the model to operate in diverse regimes,
from high-compression (low A) to high-performance (high X). 3.2 illustrates the
resulting performance curve obtained from our simulations. The plot confirms the
expected behavior described in Section 1.3: a steep initial increase in sum-rate
at low feedback values is followed by a saturation effect where the performance
plateau approaches the perfect CSIT upper bound. The successful replication of
this performance curve serves as a validation of our codebase, confirming that the
learned encoder and precoder are functioning correctly.

Table 3.3: Simulation Parameters

Parameter Value
Number of Antennas NV, 64
Number of Users K 2
Number of Paths L, 2
Length of the Latent Vector (t) N, 16
Length of the Pilots L 8
Number of training batches 10
Batch size 1024
Learning Rate 1073
Power constraint P 1
Signal-to-Noise ratio 10 dB
Sector centers 31, 32 0°
Half-widths A1, A, 30°

22

System Implementation

f—
e
1

—
]
I

—
=
I

o
I

Sum achievable rate [bits/ch. use|
ot
ot
Il

o0
L

— ZF with CSIT
71 = MRT with CSIT
Precoding-Oriented Approach

G T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60

Overhead (feedback rate) per-user [bits/ch. use]

Figure 3.2: Analysis of the tradeoff between the feedback overhead and the system
performance.

23

Chapter 4

Understanding the learned
spaces

This chapter examines how the end-to-end pipeline converts channel realizations
into task-relevant representations, with the tradeoff parameter A controlling the
balance between feedback overhead and system performance.

We consider two distinct operating regimes for A:

« Compression-Oriented Regime: Low values (e.g., A\ = 2), where priority is
given to compression efficiency (minimizing overhead) over rate maximization.

o Performance-Oriented Regime: High values (e.g., A = 100), where priority is
given to the maximization of the sum achievable rate

We explore three complementary perspectives of the learned system, analyzing
its behavior as A varies: the variability of the latent representations at different
operating points (Section 4.1); the topological structure of the learned manifolds
(Section 4.2), specifically how samples are organized into coherent patterns when
projected non-linearly; the adaptation of the pilot structure, observing how the
learned pilots evolve under different constraints (Section 4.3).

Throughout this chapter, we present the analysis for a single representative user.
It is important to note that we verified these results against the second user in the
system (K = 2) and found them to be identical. This confirms that the learned
strategy is symmetric and robust across users.

24

Understanding the learned spaces

4.1 Variability of learned latent feedback repre-
sentations t and precoders v

To understand the learned representations of the variables to be fed back by the
UEs, denoted as t, and the resulting precoders v, we first train the model at various
trade-off parameters A and then analyze the statistics of these variables over 10000
channel realizations h. 4.1 illustrates how the count of unique values varies with \.
As expected, the channel h is exogenous to the optimization, showing a constant
number of unique instances across all settings. The latent variable t exhibits an
abrupt phase transition: at A = 1, we observe severe compression with only 1
unique realization. However, a minimal increase to A = 1.5 is sufficient to restore
9264 unique values, and for A > 2, the mapping from h to t becomes perfectly
one-to-one (10000 unique values).
Conversely, the precoder v displays a more gradual monotonic growth in diversity.
At low values (A = 1.5 and A\ = 2), despite t being highly diverse, the decoder
generates a limited set of unique precoders (132 and 531, respectively). This
suggests that in the low-budget regime, the decoder acts as a clustering mechanism,
effectively learning a finite set of patterns. As the budget increases, diversity rises
sharply, reaching 6 500 at A = 5, and eventually saturates at 10000 for A > 100.
This trend confirms that the mapping h — v transitions from a fine set-like behavior
(many channels collapsing to the same prototype) to a fully user-specific strategy.
To formally quantify the geometric diversity of the learned representations, we
define the pairwise distance metrics pq.) and 03(,) presented in 4.2.
Let X = {x1,...,xy} be the set of N = 10000 test samples for a given variable
(i.e., x can be h,t, or v). We first compute the set of all unique pairwise distances
D(X):

D(X) = {d(xi, x,)[1 < i < j < N}

where d(-,) is the Euclidean (L) distance. The mean pairwise distance jiq(;) and
the covariance of pairwise distances Jfl(z) are the empirical statistics of this set:

1
=E d| = d;;
Md(h) dGD(X)[] ‘D(X) dueZD(X) J
1
di; €D(X)

The mean distance p,(,) measures the average separation ("expansion') of the sam-
ples in the vector space; the variance 03(;(;) quantifies the structural "heterogeneity’
of this spacing.

We analyze the empirical results for these statistics, shown in 4.2 over the 10000
test samples.

25

Understanding the learned spaces

First, as expected, the channel statistics fi4n) and ag(h) remain constant across all
A, confirming that the input distribution is not learned or affected by the feedback
budget.

Focusing on the latent variable t, we observe a sharp transition. At A = 1, both
mean and variance are essentially zero, indicating a collapse to a single cluster. How-
ever, a minimal increase to A = 1.5 triggers an immediate expansion (jq) ~ 0.75),
which continues monotonically as A grows, reaching) =~ 6.87 at A = 150. This
aligns with the unique-value counts in 4.1: as the budget increases, the encoder
projects h onto an increasingly larger and richer region of the t-space. The con-
current growth in variance (aﬁ(t)) suggests that the latent manifold is becoming
geometrically complex.

The precoder v exhibits a different behavior due to the physical power constraints.
At A = 1, the distance is zero (single-prototype collapse). At A = 1.5, the small
mean distance (pqn) = 0.25) suggests that the vectors are distinct but densely
packed. From A = 2 onwards, p4(v) rises sharply and then saturates around ~ 0.96
for high . This saturation is a direct consequence of the power constraint, limiting
the maximum possible average separation. Crucially, while the mean saturates, the
variance o, decreases from 0.085 (at A = 2) to 0.021 (at A = 150). This implies
a regularization of the geometry: as the model refines its strategy, the precoders
become more uniformly distributed over the available angular space. Once the
model has sufficient overhead to generate effective, interference-aware precoders,
any additional bits are likely used for fine-tuning rather than creating drastically
different beams. Since all precoders are normalized by the power constraint, they
cannot move indefinitely far apart. As all solutions converge towards a set of
near-optimal, power-normalized vectors, their average pairwise distance can stabi-
lize or even slightly decrease. In summary, the encoder uses the relaxed penalty
to expand the latent space t indefinitely (increasing y, increasing o?), while the
decoder utilizes this information to map inputs onto a regular, highly structured,
and power-limited precoding manifold (saturating p, decreasing ?). As X\ grows, t
becomes more expressive, while v becomes more diverse yet more regular (larger
but tightly distributed distances), and h remains unchanged: the learned pipeline
transitions from a 'finite-set'-like behavior to a stable, task-oriented precoding
regime.

4.2 t-SNE representations

In this section, we visualize the learned representations (t and v vectors) by pro-
jecting them from their original high-dimensional space into a two-dimensional
(2D) space.

26

Understanding the learned spaces

Table 4.1: Unique-value counts vs. A.

A h; tr Vi

1 10,000 1 1
1.5 10,000 9,264 132

2 10,000 10,000 531

5 10,000 10,000 6,500
10 10,000 10,000 9,000
25 10,000 10,000 9,500
50 10,000 10,000 9,800
100 10,000 10,000 10,000
150 10,000 10,000 10,000

27

Understanding the learned spaces

Table 4.2: Pairwise distance statistics vs. A (user 0).

A Hed(h) (7521(/1) Ha(t) Uﬁ(t) Hd(v) Ug(v)

1 10.845 8.465 0.000 0.000 0.000 0.000
1.5 10.845 8.465 0.750 1.100 x 107! 0.250 0.020

2 10.845 8.465 1.038 1.726 x 10! 0.889 0.085

5 10.845 8465 1.426 1.197 x 107! 0.941 0.040
10 10.845 8.465 1.938 3.399 x 10~ 0.952 0.027
25 10.845 8.465 2.736 4.448 x 107! 0.964 0.024
50 10.845 8.465 3.690 6.764 x 107! 0.973 0.023
100 10.845 8.465 5.001 1.092 0.967 0.021
150 10.845 8.465 6.868 1.852 0.958 0.021

A standard baseline, Principal Component Analysis (PCA), was considered and re-
jected because it is a strictly linear transformation. PCA’s objective is to find a new
set of orthogonal axes that maximize the global linear variance. This methodology
is incompatible with out data, output of deep neural networks (complex and highly
non-linear functions). There is no reason to assume that the representations learned
by the network are separable along simple linear axes; it is far more likely that they
exist on a complex, non-linear manifold. Applying a linear projection (PCA) to
this inherently non-linear data would fail to capture this structure. Therefore, we
selected t-SNE, a non-linear dimensionality reduction technique, whose objective
is to preserve local neighborhood structure. A more detailed explanation of the
t-SNE algorithm follows.

t-SNE, short for t-distributed Stochastic Neighbor Embedding, is a dimension-
ality reduction technique that transforms complex, high-dimensional data into a
2D visualization while preserving the local structure of the original data [29]. In
essence, it enables the interpretable visualization of otherwise intractable datasets,
maintaining the proximity of similar points even in the lower-dimensional represen-
tation. In this section, we apply t-SNE reductions in order to obtain a visual sense
of the high dimension t and v spaces. The algorithm operates through two distinct
phases [29]:

1. In the first phase, the algorithm analyzes the data in the original high-
dimensional space. For each point, it computes a similarity measure with
all other points, converting Euclidean distances into probability. Intuitively,
this probability represents “the likelihood that this point is a neighbor of
that point in the original high-dimensional space”: highly similar points
receive elevated probabilities, while dissimilar points receive low probabilities.
This conversion is performed through a Gaussian distribution, which assigns
decreasing probabilities as distance increases.

28

Understanding the learned spaces

2. In the second phase, the algorithm positions all points on a two-dimensional
plane, attempting to reproduce these neighborhood relationships. The process
begins by randomly initializing point positions on the 2D plane. For each
configuration, the algorithm computes new distances between points in the 2D
space and converts them into neighborhood probabilities using the Student’s
t-distribution; these are called “current probabilities”. Simultaneously, the
algorithm retains the reference neighborhood probabilities computed from
the original high-dimensional distances in phase one. The core optimization
step then compares the reference probabilities (derived from the original
high-dimensional space) with the current probabilities (derived from the 2D
layout), and iteratively adjusts the positions of points on the 2D plane to
make these two probability distributions as similar as possible. The algorithm
minimizes a cost function (Kullback-Leibler divergence[30]) that measures
how well the probability of neighborhood in the 2D plane reflects that of the
original high-dimensional space, iterating until convergence.

The key insight underlying this choice is that a naive approach would simply
apply the same Gaussian distribution used in phase one. However, this creates a
fundamental problem: when compressing from high-dimensional space to 2D, a
Gaussian kernel produces vanishingly small probabilities at moderate distances,
failing to provide sufficient repulsive force between points. This leads to the
“crowding problem”[29], where points collapse toward the center of the visualization.
By employing the heavy-tailed Student’s ¢-distribution instead, the algorithm
ensures that even moderately distant points maintain residual influence, preventing
cluster collapse and preserving adequate spacing between groups.

Correctly interpreting a ¢-SNE visualization is essential. Tight clusters in a -SNE
plot generally reflect groups of points that were proximate in the original space, and
empty space between clusters indicates low similarity between groups. However,
it is critical to understand that absolute distances between clusters should not be
interpreted as quantitatively meaningful: the long-range geometry is an artifact of
the optimization procedure and does not represent intrinsic relationships in the
data [29]. The algorithm is explicitly designed to preserve local neighborhoods,
not global structure. Consequently, the geometry within a cluster is typically
interpretable, whereas the spacing between separate clusters, as well as the rotation
and reflection of the map, depend critically on tuning parameters and initialization
randomness, and therefore should not be over-interpreted.

To probe the geometry learned by our model, we apply t-SNE to two representations:

1. tg, the latent encoder output for the k-th user

2. v}, the precoding vector for the k-th user

29

Understanding the learned spaces

For clarity and brevity, our analysis focuses on the representations for a single user
(k = 1), as the channel statistics are identical for all users and preliminary tests
confirmed that the resulting embeddings for £ = 2 are qualitatively and structurally
equivalent.

For each representation we compute a baseline 2-D embedding and we recolor the
same 2-D coordinates with different scalars to reveal how auxiliary quantities align
with local neighborhoods.

Specifically, we use three colorings per embedding:

1. Per-user Rate Ry, that tests whether performance varies smoothly within local
neighborhoods of the manifold

2. Channel magnitude vector per user |hg|, that tests how much the channel
norm organizes the local structure

3. When the geometry is built from tx, we color by the precoder magnitude |vy|;
when the geometry is built from vy, we color by the latent magnitude |t]

4. Channel parameters (Path Gains a and AoD), analyzed specifically for the
latent representation t; to determine which features are relevant during the
encoding phase

We overlay scalar variables on a single, fixed t-SNE map to test how they align with
the neighborhoods uncovered by the embedding. This can reveal several patterns:

« smooth gradients along discovered clusters (indicating that the scalar varies
locally and gradually along the manifold)

o localized “hot/cold spots" (suggesting context-specific adjustments to specific
regimes)

« near-uniform fields (that implies the scalar is not a principal organizer of the
manifold)

t-SNE preserves local neighborhoods; global distances, angles and absolute radii
are not metrically meaningful. We therefore interpret color patterns within these
clusters, while avoiding metric claims based on exact inter-cluster spacing or angles.
We analyze two operating points, A = 2 and A = 100, to reveal how the geometry
of t;, and v changes across this spectrum.

4.2.1 Latent Vector t;

Following the methodology outlined previously, we now analyze the t-SNE embed-
ding for the latent vector t; (corresponding to User 1). This projection provides a
geometry-only view of the latent space.

30

Understanding the learned spaces

T SNE Wil lon af th (21 peojeciion)

w

ET
=
E
2
L
-1

_-u

-

v
an i 1l 0
#-E5E i 1

Figure 4.1: t-SNE representation of t; for A = 2

31

Understanding the learned spaces

A = 2 We begin our analysis with the A\ = 2 operating point. This setting
represents the high-compression, low-overhead regime, strongly penalizing the
feedback rate. Our analysis, consistent with the methodology outlined, focuses on
the latent vector t; (the signal fed into the entropy coder) for a single user. The
goal is to visualize the geometric structure of the latent space when the model is
forced to be extremely efficient.

The t-SNE embedding for this setting, shown in 4.1, exhibits a star-like structure:
it is composed of several distinct clusters, which are not uniform blobs but rather
take the form of thin, filament-like structures (which we will refer to as “strands")
that radiate from a denser central hub. Compact micro-clusters are separated by
small gaps along each strand. This topology is typical of neighborhood-preserving
embeddings and indicates that the dataset contains multiple, locally coherent
regions (i.e., sub-manifolds) in the original feature space. Axes have no semantic
meaning and the layout may rotate or flip across runs; only local neighborhoods
and separations are intended to be read. Consequently, the existence of distinct
blobs/strands is informative, whereas the exact distances or angles between separate
strands are not.

1-SNE of the eolomed 16 voesoes Fesead om the Bate

SN

Figure 4.2: t-SNE representation of t; for A = 2 colored by R;

We start coloring the embedding according to the precoding vector magnitude
|vi|, as illustrated in 4.4. The structure appears organized: some clusters are
entirely salmon-colored (mid values of |v|), while others range between orange and
yellow (higher values of |v|). This indicates a correlation between the value of t
and the precoder magnitude determined by the BS. While the magnitude range is
relatively narrow, it notably excludes values tending toward zero. This implies that

32

Understanding the learned spaces

the BS has learned to avoid low-power regions (which would penalize the achievable
rate) and instead effectively tries to maximize it. Crucially, all points falling within
the same t-cluster are mapped by the BS to the same precoder prototype.

Coloring the embedding by the channel magnitude |h|, as shown in 4.3, reveals
a different set of patterns. Unlike the previous plot, the change is not purely mono-
tonic along each arm, and the gradient is significantly less pronounced (even though
a closer inspection reveals that high |h| values tend to concentrate at the edges of
the islands). The main point is that hot spots and cool segments alternate along
many strands. A possible interpretation is that parameters other than channel
magnitude influence the latent representation, implying that magnitude itself is
not the most dominant feature. Consequently, both strong and weak channels can
end up within the same semantic cluster.

Coloring by rate, shown in 4.2, reveals smooth, intra-strand gradients. The
darker and purple tones, corresponding to low achievable rates, cluster predomi-
nantly near the center, while greener and yellow tones, representing high rates, are
more common towards the tips of the strands. Within many of these strands, the
color changes smoothly, suggesting that the rate varies gradually along local mani-
folds rather than jumping abruptly. In other words, the rate is locally correlated
with the features that drive those strands. This suggests that a single t-cluster is
not associated with uniform rate values. The rate variation among the samples
could possibly mirror the variations in the channel magnitude, not constant within
a given cluster. The rate term depends not only on the precoding vector but also on
the channel term: consequently, the rate gradient observed within a cluster coincides
with the variation in channel magnitude. A plausible interpretation is that the
model clusters the latents based on their requirement for a specific precoder configu-
ration, rather than clustering them based on the final target outcome (i.e., the rate).

Finally, we re-color this fixed geometry using the four distinct physical parameters
that generate the channel (4.5, 4.6). As defined in the Channel Model Section (2.3),
these parameters are the path gains (o, a20) and the AoDs (f1, £20), which
are unique for each propagation path (indexed by ¢ € {1, ..., L,}), and each user
(indexed by k € {1,..., K}). The Path Gain ayj represents the signal strength
of the f-th path to the k-th user; the AoD [, is the real-valued angle of the
(-th path for the k-th user, and it represents the physical direction from which
that path originates at the BS array. In our simulation setup, the channel vector
for each user is generated as the superposition of L, = 2 distinct propagation
paths. Consequently, the physical parameters governing the channel consist of two
independent pairs of variables: two AoDs (1, 32), and two Path Gains (aq, as).
To analyze their individual impact on the learned representation, we present the

33

Understanding the learned spaces

t-SNE of the colored th vectors based on the Channed Magnitude

w 17.5
150
m
125 =
o 3
: [i] |l|l|£"_‘
g 2
—on
50
-4 25

—4i —m 1) 2 I
tSNE din 1

Figure 4.3: t-SNE representation of t; for A = 2 colored by |hy]|

LSNE of the coloned 1k vectors basesd on the Precoding Matrix Magnitode

m
s
n —
=
. {LX7} E
[- =
I -
4 =
aed
] £
%]
w0
0 n [20 w
&SNE dim |

Figure 4.4: t-SNE representation of t; for A = 2 colored by |vy|

34

Understanding the learned spaces

t-SNE visualizations organized into two comparative figures: 4.5 presents the latent
space colored by the Path Gain of the first path (aq, left) alongside the Path Gain
of the second path (as, right); 4.6 presents the latent space colored by the AoD of
the first path (5, left) alongside the AoD of the second path (f,, right).

The ¢-SNE maps colored by the path gains oy o and as (4.5) show no discernible
structure; this visualization shows a chaotic, uncorrelated distribution. Within any
single cluster, we see a complete mix of colors: dark purple points (low gain) are
mixed with yellow points (high gain). There is no gradient or separation. This lack
of correlation demonstrates that the latent manifold’s geometry is not organized
by the channel strength (gain) of the individual L, paths. The encoder has learned
that this specific information, the absolute gain of a path, is secondary or irrelevant
for the precoding task, therefore it "compresses away" this information.

Instead, considering the AoDs, the plots in 4.6) show a more organized structure
with respect to the ones related to the a coefficient. For example, certain islands
are predominantly dark blue (low angles), while others are yellow-green (higher
angles). This proves that the spatial direction of the user is the one of the primary
features driving the clustering process: "where the UE is located with respect to
the BS" is one of the most critical piece of semantic information for the precoding
task.

Throughout our analysis, we visualized the latent spaces colored by the parameters
of the first path (Path 1). However, we verified that the visualizations corresponding
to the second path (Path 2) yield identical structures and color distributions. Since
the two paths are drawn from identical distributions and contribute symmetrically
to the channel sum (2.1), the Neural Network (NN) correctly treats them as
interchangeable, without learning any artificial bias or preference for one path
index over the other.

A =100 We now turn our analysis to the A = 100 operating point, to observe
how the latent geometry of t; adapts when performance, rather than extreme
compression, is the primary driver. The map shown in 4.7 still has a filament motif,
but the strands are much narrower and smoother, and more continous, forming
loop-like ribbons that wind around the center. Under a higher rate emphasis,
neighbor relationships become tighter and inter-strand scatter decreases. When
coloring the t; embedding by the per-user rate Ry, (4.8), we observe a stark contrast
to the A = 2 case. The coloring is now fairly uniform, dominated by mid-to-high
rate values (green), with scattered purple “hot spots" and a few localized lighter
spots. The strong gradient based on the rate, which was evident at A = 2 (4.2), has
disappeared. At A = 2, the model learns the simplest possible mapping, without
sending complex precoding information as the small rate reward isn’t worth the
high overhead cost. At A = 100, the model is forced to learn a more complex and
“expensive’ strategy to achieve higher rates, even though this information costs

35

Understanding the learned spaces

tSNE of the colored tk vectors based on the Path Gain (Path 1) t-SNE of the colored tk vectors based on the Path Gain (Path 2)

a
2
k
[
4
A
3

SNE dim 2
t-SNE dim 2
-

SNE dim 1 - ©SNE dim 1

(a) Path 1 Gain Coefficient for User 0 (a1 ,0) (b) Path 2 Gain Coefficient for User 0 (az,)

Figure 4.5: t-SNE representation of t colored by the Gain coefficients for User 0
for Path 1 and Path 2 (a4, aap)

t-SNE of the colored tk vectors based on the AoD for Path 1 LSNE of the colored tk vectors based on the AoD for Path 2

-SNE dim 2
=
AoD (Path 1) (User 0)
©-SNE dim 2
<

AoD (Path 2) (User 0)

0
+SNE dim L

(a) Path 1 AoD for User 0 (81,0) (b) Path 2 AoD for User 0 (82,0)

Figure 4.6: t-SNE representation of of t colored by the AoDs for User 0 for Path
1 and Path 2 (ﬁLo, 52’0)

36

Understanding the learned spaces

L]

Dim 2

Figure 4.7: t-SNE representation of t; for A = 100

-SNE mepresentation of standardized tk oodoped based on the Rate

25 4

[e—

Figure 4.8: t-SNE representation of t; for A = 100 colored by Rj

37

Understanding the learned spaces

more overhead. The model has learned to compute the optimal precoding solution

required to actively maximize the rate. The lack of a visible gradient suggests that

the model maintains high performance throughout almost the entire space.
When coloring the t; embedding by the precoding vector magnitude vy (4.9), we

E-SNE repressemtation of standardized 1k eolored basedd om the Precoding AMatrix Magnitmle

Figure 4.9: t-SNE representation of t; for A = 100 colored by |v|

observe a largely uniform orange-to-yellow field. The very slight gradient visible in
4.4, where the central hub was a duller salmon and the outer arms were a brighter
yellow, has now completely vanished. The color field is far more homogeneous,
indicating that the BS has learned a strategy that decouple power allocation
(|vg|, the color) from t;. The BS applies a policy of high power allocation. To
maximize the rate, the optimal strategy is to saturate the power constraint for each
individual sample, effectively utilizing as much power as possible. The encoder
network has learned a representation t such that, regardless of its location within
the latent space, it consistently ensures maximum rate performance and full power
utilization. Consequently, the continuous variability of the input does not interfere
with the stability of the output. In this scenario, the model is not concerned with
economizing on bits. Coloring based of the specific channel realization magnitude
(4.19), it successfully identifies an optimal mapping for both t and v to maximize the
rate. In this case, the representation is continuous and preserves the variance of h.
The network has not prioritized channel magnitude as the fundamental information.
It does not organize samples based on this metric alone but considers other latent
features; consequently, neighboring points in the space may exhibit different channel
magnitudes yet are grouped together due to other shared similarities considered
important by the encoder.

38

Understanding the learned spaces

t-SNE representation of standardized 1k cobored bhased on the Chaneel Magnitude

1]
0
5.0
75
o
iy =
a5 =
o il
i -

D 1

Figure 4.10: t-SNE representation of t; for A = 100 colored by |hy|

t-SNE of the colored tk vectors based on the Path Gain (Path 1)

t-SNE of the colored tk vectors based on the Path Gain (Path 2)

0 . oo taim - 0 50
T ":..-.C e, ‘
20 S {' ** & J 20 20
W B Aot g R -
. ‘ N - 'I "? K . :;;) i) . 2,0%
N F 3 S 53 s
; e - o] @ P)
< Rge .o TR * ::p. * § < ke . N 8
wf : X L] Ya Lo E e, r T3 N L @ E
X P 08 L 3 &
= 2 ‘:-.’4!': .i-'v%i D5 F':\ﬁ - P :',4."‘ };ﬁ'i W 8 f‘* L0
a%}\ .'W? iw t%}\ P qw
e, 05 3 S - o
" Y . YRR . 05
%— g L1 LV oy = £
-1 —10 '%. >
—10 -20 . s\us 1 . 20 40 —10 -20 0 20 10
-SNE dim SNE dim 1

(a) Path 1 Gain Coeflicient for User 0 (a1 0) (b) Path 2 Gain Coefficient for User 0 (a2,0)

Figure 4.11: t-SNE representation of t colored by the Gain coefficients for User 0
for Path 1 and Path 2 (Oél’(), Oz2’0)

39

Understanding the learned spaces

t-SNE of the colored tk vectors based on the AoD for Path 1 LSNE of the colored tk vectors based on the AoD for Path 2

; 0 15:: 5 o Lsi
4 3: N 3:
10 10
—20 —20
—40 —40
—40 —20 o 20 40 —0 —20 0 20 0
t-SNE dim 1 t-SNE dim 1
(a) Path 1 AoD for User 0 (81,0) (b) Path 2 AoD for User 0 (82,0)

Figure 4.12: t-SNE representation of t colored by the AoDs for User 0 for Path 1
and Path 2 (5170, 52’0)

40

Understanding the learned spaces

4.11 and 4.12 show the t-SNE visualizations colored by, respectively, the path
gains coefficients a and the AoDs /3 in the A = 100 regime.
The ¢-SNE maps colored by the path gains oy and agg (4.5), as in the A = 2
regime, show no discernible structure. In sharp contrast, the maps colored by the
AoDs (1 and 5 reveal a strong gradient. There is an evident and clear visual
progression: the colors transition smoothly from dark purple to yellow across the
entire manifold structure.
Geometry appears to be random if the underlying variable is uncorrelated with
t, as it happens with ay ;. The presence of this strong gradient for 8 shows that
the encoder fy has learned to organize its latent geometry based on this physical
parameter. The model has learned to represent the AoD with high fidelity, pre-
serving the granularity of the physical parameter. The encoder has learned that
all channels hy, regardless of the gain coefficients «, are functionally similar for
the precoding task if they share a similar angle 3. The encoder’s learned function
maps all of these functionally similar channels to similar latent vectors tg, i.e. it
assigns them all to the same “neighborhood" in the 16-dimensional latent space.
Whenever the BS receives a latent vector t; from that specific neighborhood, then
it will already know which precoding strategy to apply; t; gives the decoder all the
relevant information for the precoding strategy.
When the BS transmits the desired signal to the first User (using a precoding
vector vy), the same signal also travels to the second user, where it will be received
as interference. The goal of the precoder vy is therefore to both maximize the
signal in the desired direction (i.e., to align v; to the channel hy, achieving a large
h{’v,), and to minimize the signal in the unintended direction (this is achieved
when v; is “orthogonal" to the channel hy, yielding h§v1 ~ 0). These plots
show that the AoD f is a crucial information to solve this optimization problem
(i.e., find a vy aligned with h; but orthogonal to hy), while « is irrelevant. The
encoder, is learning to isolate 3, is learning to extract the only piece of information
that the BS needs to solve the interference problem and perform the precoding task.

4.2.2 Precoding Vector vy

A =2 Looking at the t-SNE of the Precoding Vector v, with A = 2 (4.13) the
embedding fragments in multiple compact pockets separated by clear gaps around
a loose center. There is no single continous path threading the entire set.
This reflects that, with A = 2, v, occupies several discrete local modes, small
regions in which samples are very similar to one another but not connected to other
modes.

Coloring the embedding by rate values (4.14) reveals that the rate varies hetero-
geneously across the pockets, exhibiting a broader dynamic range—from purple

41

Understanding the learned spaces

E-SNE Vissalizalbom of VR (20 oo jociion)

.o
“w ., .
- .
., 0t .-:;:,* e W .
. L
M I PRI A IOV L
. S e SR, .
T e T eE iy
"» (RN
0 s B
. . .‘,'.'b""‘:-.-_- " N
Iy LI * -
= A ys Y
i - . ' .
7 s . Tm -
l{ -
N e ¥ - " . 1
. . Trigeh
e ® -
. o
- Wore MM -
L
- - -
coeon N
L
il & .
I X » i = ¥ i

ESNE: i |

Figure 4.13: t-SNE representation of v for A = 2

EANE wpresentition of VE oolotel lesed on e Fate

.
i 4
1o
4
M
o
L 3
g 3
T . i '-s
=
T :
p - 3
.
» !
-
¥
" .
) o 1 I = u P

Figure 4.14: t-SNE representation of v for A = 2 colored by Ry

42

Understanding the learned spaces

(lower rate) to yellow (higher rate). While colors are relatively consistent within a
given pocket, the rate level changes noticeably between different pockets. There is
clear variability: while specific zones are dominated by lighter points and others
by darker tones, they are not perfectly clustered. This aligns with the fact that
even when the BS selects the optimal precoder (and thus the correct cluster), the
final achievable rate remains dependent on the actual channel realization, causing
the result to vary on a case-by-case basis. Consequently, the clusters are not
monochromatic, as they would be if the rate were determined exclusively by the
precoder choice.

Coloring based on the latent vector magnitude |tx| (4.15) reveals that the color

LENE ropresentatbon of e Vi sanphes colord b oo the tk Magnitud:

SNE dim |

Figure 4.15: t-SNE representation of v, for A = 2 colored by [ty

varies substantially across pockets. Several islands on the lower-left side are pur-
ple (indicating low |tj|), whereas others, especially towards the upper-right, are
orange and yellow (high [tx|). A distinct color gradient is visible from left to
right, highlighting a marked shift in magnitude. The A = 2 setting thus results
in diverse magnitude regimes and separated modes. A strong structure is evident
here: some clusters are entirely light (higher magnitude), while others are entirely
dark (lower magnitude). This demonstrates that the magnitude of the latent vector
t, input to the BS, is a determining factor in the selection of the precoder v, and a
discriminative feature for deciding which strategy to adopt.

Coloring the embedding by the channel vector magnitude |hg| (4.16) reveals
substantial variation across pockets, ranging from purple (low values) to orange and
yellow (higher values). However, the colors appear chaotic and not on a gradient
base, confirming that the choice of precoding is independent of channel magnitude.
From the perspective of the BS, both weak and strong channels sharing the same

43

Understanding the learned spaces

E-SNE pepresentation of the Vi samples oodoned besed on the Channel Magnitude

(o1} 2000
Ivs
n
[E1]
i -
n * 125 &
i .l . !
z ne g
o - -
- 3
0 e
“w Ll
G Lad

-SNE dim 1

Figure 4.16: t-SNE representation of v for A = 2 colored by |hy|

44

Understanding the learned spaces

direction require the same precoder configuration. Therefore, the clusters are likely
defined by spatial directionality, irrespective of the channel strength.

BSNE Womsalizatiom of Vie (200 projeetion)
- —_
t &
. e
1 A *m
", = = 1 .
) e
. .
. .
.
v

Figure 4.17: t-SNE representation of v for A = 100

A =100 In 4.17, with A\ = 100, the embedding for v; collapses in a serpentine
manifold. This smooth, continous structure contrasts sharply with the discrete
structure of the A = 2 regime (4.13), which suggests that the BS has learned a
discrete and limited codebook of precoders. The continous manifold in 4.17 reflects
the behaviour of the system: the decoder acts as a smooth, generative function.
The encoder provides a rich and continous feebdback vector t;, and the decoder
uses this rich input to calculate a unique precoder v; perfectly tailored to that
specific feedback.

Coloring the v; manifold by the Rate Ry (4.18), the entire “serpentine manifold"
identified in 4.17 is now colored almost uniformly with mid-to-high rates. This is
in contrast with the A = 2 case (4.14), where purple points were much closer with
respect to A = 100. What happens here is that we see sparse purple points, that
represent rare cases (e.g. severe interference), but not a systemic failure. Crucially,
there is still one small purple cluster that remains, and that represents a small
cluster of irrecoverable channels.

Colors in the channel range (4.19) are mostly mid-high, with short and smooth
variations along the curve and a few localized dips: |hy| is broadly uniform,
with gentle and local adjustments. A continuous and complex blend of colors
is visible along the curves, indicating that continuous variations in h map into
continuous variations in v. This confirms that the model has learned to decouple
the spatial direction (which likely determines the precoder) from the channel

45

Understanding the learned spaces

t-SNE representatbon of Vi colored based on the Rate

]

-SNE dim
Rale [wtenne

Figure 4.18: t-SNE representation of v, for A = 100 colored by Ry

-5XE represeniation of the Vk m||||||n-. ondegen] besead cm the Chansed Alagnitude

138 i
Claas] Mmribule Lj

-

&-5NE dmm I

Figure 4.19: t-SNE representation of v for A = 100 colored by |hy|

46

Understanding the learned spaces

magnitude, treating the latter as irrelevant. Indeed, even if the magnitude changes,
the embedding remains in the same region of the t-SNE graph: neighboring
points—which correspond to similar precoding vectors—are associated with diverse
channel magnitudes.

Colors in 4.20 are mostly mid-high, characterized by smooth, short-range gradients
along the curve and a few localized low-magnitude dips (the purple segments).
There are no abrupt jumps from strand to strand. Instead, solutions concentrate
on a continuous family of |tx| whose magnitude varies smoothly along the manifold,
with only small adjustments along the path. A very clear gradient structure is
evident here: there is a visible progression from purple to yellow along the curves.
This indicates that the magnitude of t serves as a strong organizational feature.
However, unlike the A = 2 case where it separated discrete clusters, here it defines
a continuous trajectory within the precoder space. Furthermore, this reflects the
absence of an overhead constraint: for every minimal variation in the latent vector t,
there is a corresponding continuous and fluid variation in the precoder v. Increasing

1-SNE represeniation of the VE samplos oobeted based on the th Slagnitud

Figure 4.20: t-SNE representation of v, for A = 100 colored by |ty|

A regularizes the feasible vy solutions in a coherent trajectory, giving stable groups
with smooth local variations; the milder weight allows different and alternative
operating pockets for the precoding vector, with a “mode-hopping" behavior that
is potentially useful for diversity but less smooth to control.

47

Understanding the learned spaces

4.3 Pilots Analysis

In a classical communication system, the pilot matrix X is a fixed, pre-defined
component. In our end-to-end framework, this assumption is removed. As explained
in Section 2.4 and in Section 3.2.1, the N, x L pilot matrix X is not fixed; it is a
set of trainable parameters, jointly optimized with the encoder f, and precoder gg.
We seek to answer the following question: What properties does the task-oriented
pilot matrix, learned from data, possess? To open this “black box”, we conducted
three distinct analyses, comparing the Randomly Initialized pilots against the final
Trained Pilots from both the A =2 (compressed) and A = 100 (high-rate) models.

4.3.1 Orthogonality Analysis (Gram Matrix)

The first analysis tests whether the network discovers a solution of orthogonal
pilots. To do this, we compute the L x L Gram Matrix G of the pilots, defined as

G =XIX et

This matrix is a complete “correlation map" for the L = 8 pilot vectors. Each ele-
ment G; ; is the inner product x7x;, which mathematically measures the alignment
(correlation) between pilot X; and pilot X;. Consequently, the diagonal elements
(i = j) represent the power of each pilot (||x;]|?), which is constrained to P = 1.
As seen in all three plots (4.21, 4.22, 4.23), the perfectly yellow diagonal confirms
that the power constraint was correctly enforced. The off-diagonal elements (i # j)
represent the cross-correlation (“inter-pilot interference"). A value of 0 (dark purple)
signifies perfect orthogonality, which is the ideal for classical channel estimation. A
non-zero value (blue/green) indicates a non-orthogonal basis.

We now compare the results for our three models:

1. Base Model: The plot in 4.21 serves as our control. As expected from a random,
un-trained matrix, the off-diagonal elements show non-zero correlation (“bluish"
squares, ~0.4), indicating the pilots are not orthogonal at initialization.

2. High-Rate Model (A = 100): The plot in 4.23 shows the “cleanest” matrix
among the three. The off-diagonal elements are almost all dark purple, in-
dicating the model has learned to generate a set of near-orthogonal pilot
vectors. In classical communication theory, the prerequisite for maximizing
rate is often to first obtain the most accurate CSI possible, i.e. minimizing
the channel estimation MSE. As foundational texts like Tse and Viswanath
[Tse2005Fundamentals| explain, the optimal “classical" solution for minimiz-
ing the estimation error is to use orthogonal sequences, as this mathematically
isolates the channel paths and removes inter-pilot interference. Our result for

48

Understanding the learned spaces

A = 100 is the empirical proof that the E2E optimizer, when unconstrained by
compression and tasked only with maximizing rate, autonomously rediscovers
this fundamental engineering principle. It learns that the optimal path to
maximum rate is to first solve the minimum-MSE estimation problem, and it
does so by converging to orthogonal pilots.

. Low-Overhead Model (A = 2): The plot in 4.22 reveals a cleaner matrix than
the random baseline, but it is visibly less orthogonal (more “polluted") than
the A = 100 model. This demonstrates that this model, when forced to solve
the true trade-off, actively abandons the perfect orthogonality learned by
the A = 100 model. This is not a failure: the learned model is not perfectly
orthogonal, and suggests this might not be needed when channel reconstruction
is not directly the end-to-end goal.

Gram Matrix(X 7 X) - Base L0

0
1 0.8
2

0.6
3
!

0.4
i} 2
T

0.0

Pilot Index (L)
Correlation Maguitu[l{*

=)

Pll{}t Index [L}

Figure 4.21: Gram Matrix for the Base Model.

4.3.2 Effective Dimensionality Analysis (SVD)

The scope of this second analysis is to test how many of the L = 8 available pilot
dimensions the network has learned to use.

To do this, we compute the Singular Value Decomposition (SVD) a fundamental
matrix factorization that decomposes our N; x L pilot matrix X into USVH. The
critical component for this analysis is the diagonal matrix 3, which contains the
L = 8 singular values oy > 09 > --- > 0g. Each singular value o; mathematically

49

Understanding the learned spaces

Gram Matrix(XH#X) -\ =2

Lo

3}

0.6

0.4

Pilot Index (L)
Correlation Magnitude

=1

01 > 3 L s 6 0.0

Pilot Index (L)

=1

Figure 4.22: Gram Matrix for A = 2 Model.

Gram Matrix(X7X) - A =100 o

0
1 0.8
2
0.6
3
|
0.4
6 0.2
01 > 3 L s § 7 0.0

Pilot Index (L)

Pilot Index (L)
Correlation Magnitude

Figure 4.23: Gram Matrix for A = 100 Model.

50

Understanding the learned spaces

represents the “importance" associated with one of the matrix’s 8 fundamental
dimensions. The number of non-zero singular values tells us the “effective rank" (i.e.,
how many dimensions the matrix truly uses). Our initial hypothesis is that a simple
model might use all 8 dimensions (thus a full rank X matrix, with L = 8), while a
more intelligent model might learn that the channel’s task relevant information
exists in a lower-dimensional subspace and so “turn off' the redundant pilots,
resulting n a low-rank solution.

We now compare the SVD plots for our three models.

A trend emerges moving from the baseline case, to A = 2, to A = 100.

Singular Value (SVD) - Base

Magnitude
> = =
!

o

0.0
0 1 2 3 1] G

Singular Value Index

Figure 4.24: Singular Value Decomposition for the Base Model.

Singular Value (SVD) - A =2

Magnitude
- = = =
!

o

0.0
i 1 2 3 1 5 6

Singular Value Index

Figure 4.25: Singular Value Decomposition for A = 2 Model.

The base case exhibits noticeable decay in its singular values, with a clear drop in
magnitude, indicating that their relative importance is progressively lower. This is

expected of a random matrix.
The A = 100 model (4.26) shows the most noticeable change. The trend is nearly

flat, with all eight singular values converging to a high, uniform magnitude (close to

51

Understanding the learned spaces

Singular Value (SVD) - A = 100

1.0 4 p b .

0.8 4

0.6 4

[agnitude

N

044

0.0

0 1 2 3 4
Singular Value Index

o
=
-1

Figure 4.26: Singular Value Decomposition for A = 100 Model.

52

Understanding the learned spaces

1.0). This reflects a full-rank, near-orthogonal matrix: the model has well learned
to make all L = 8 pilot dimensions equally important and linearly independent.
This finding closely relates to our Gram Matrix analysis (4.23): the A = 100 model
learns to create a nearly orthogonal set of pilots, aiming for the perfect channel
estimate. A property of an orthogonal matrix is that all its singular values are equal;
furthermore, a set of orthogonal vectors is linearly independent, which confirms
the model has learned a non-redundant sensing basis.

The A = 2 model (4.25) lies between these two scenarios: the spectrum is flatter
than the random baseline but less flat (more decaying) than the A = 100 model.
This confirms that this model learns a solution “less orthogonal" than the high-rate
model.

Our conclusion from this SVD analysis is that both trained models learn to use a
full rank (L = 8) pilots matrix, as evidenced by the 8 significant, non-zero singular
values.

4.3.3 Physical Domain Analysis (Beampattern)

This final analysis tests whether the learned pilots, X, have learned the physical
statistics of the channel model (specifically, that the channel h exists only within a
specific angular sector). This is a critical test of the end-to-end optimization, as the
system’s pilot power P is a finite resource. A baseline pilot sequence is “agnostic' to
the channel’s statistics; its beampattern “looks” in all directions, wasting significant
power by sensing angles where no channel actually exists. This results in a weak
signal (hi’ X), and, consequently, in a low SNR for the received vector y at the UE.
A fully learned model, however, should discover this statistical prior and optimize
its pilots accordingly. The importance of learning this distribution is that the model
can stop wasting power, focusing its entire sensing energy only on the sector where
the channel actually lives. By concentrating all the available power P in the relevant
subspace, the learned pilots induce a much stronger signal, maximizing the effective
SNR of the input signal y, to the encoder fy. A higher quality input, in turn,
allows for a more accurate semantic compression (mapping to the t prototypes), a
better precoder v, and, ultimately, a higher final sum-rate R.

To validate this, we compute the beampattern By(/3) for each of the L = 8 learned
pilot vectors X,. The beampattern is a property of an antenna array that describes
its directional gain as a function of a physical angle 5. The N; antennas at the BS
transmit the /Ny components of the pilot vector X,. It arises because the N, antennas
transmit the N; components of the pilot vector with different, specific phases; in
some directions, the phases align and the waves sum constructively (forming “main
lobes"), while in others they sum destructively (forming “sidelobes").

53

Understanding the learned spaces

The formula mathematically quatifies this physical effect:

2

By(B) = |a(B)' %

(4.1)

where X, is the learned pilot vector, and a;(f) is the ULA steering vector (from 2.2)
that represents the ideal phase delays a signal would experience from direction .
The inner product a;(3)7x, thus measures the “alignment" of our learned pilot
with that specific direction 8. A high value for B,(f) signifies that our learned pilot
X, is strongly aligned with the direction f,and is, in fact, transmitting significant
power towards that direction.

The analysis of the three plots reveals a clear learned strategy.

The beampatterns of the un-trained pilots (4.27) are unfocused and chaotic. Their
energy is spread almost uniformly across the entire angular space, from -90° to
+90°. This is a “naive’ sensing strategy. Part of the power is wasted probing
directions where the channel h is physically absent: the resulting signal y received
by the user is weak. In fact, in our specific scenario, the relevant angular sector is
defined between -30° and +30° (3.3).

The plots for the two trained models show a transformation (4.28 for A = 2, 4.29 for
A = 100): both have learned to focus their energy. The main lobes of all the 8 pilots
are now concentrated exclusively inside the [-30°, +30°] data sector (marked by
the red dashed lines), while the sidelobes outside this sector are heavily suppressed.
The E2E model, after observing thousands of channel realizations, has learned the
channel statistics. Specifically, it has learned that probing outside the [-30°, +30°]
sector is useless, and it therefore adapts its 64 complex pilot weights to concentrate
its power P only on the relevant subspaces. This is the learned classical solution:
the model’s goal is to get a complete, low-MSE estimate of the entire channel h, so
it illuminates the entire relevant sector uniformly.

As the A = 100 model, also the A = 2 model has learned to focus its energy inside
the [-30°, +30°] sector. However, its beampatterns are slightly different: they
are “spikier" and feature deep valleys (nulls) within the main sector. The “peaks'
(high gain) might be the model focusing its power on angles it has learned are
semantically crucial for classification. The valleys might be the model intentionally
“turning off" in directions it has learned are semantically irrelevant to its task;
moreover, this model might have learned to actively instruct the antennas of the
BS to create destructive interference in specific angular directions it has learned
to be semantically irrelevant for its task, focusing the finite power P only on the
features that matter.

The first conclusion for this analysis is that the model learns the channel’s physical
statistics: it discovers that the channel exists only in the [—30°, 4+30°] sector and
focuses all the L = 8 pilots in this relevant subspace. Secondly, by showing 8

o4

Understanding the learned spaces

Angular Beampattern (Base Case)

'A\Ml ”'n‘ "Hf“\ il ‘l"r,\r‘ *I ‘M ’ "'
ﬁ ’T" H{f il ”{ i i "(' i r‘\w‘\' i ,‘"\Vv

u' f v\
-

L
Figure 4.27: Pilots Angular Beampattern for the Base Model.

Ange of Departare (AcD) ¥

‘ﬁltld it

Py M
’ «m lf".mw

IV P ‘
l "\
“ f’{ M‘. h\l‘ al

i

li

R

R

—a
- %
=

Figure 4.29: Pilots Angular Beampattern for A = 100 Model.

T
Augle of Departure (AcD) 5

59

Understanding the learned spaces

significant singular values, the model demonstrates that it requires all L = 8 pilots
to capture the necessary information within that sector. The model’s strategy
moght be to use its full-rank, focused pilots to deliver the cleanest possible signal (y)
to the UE; the UE’s encoder, on its turn, will perform the task-oriented compression,
quantizing the input signal in the learned t prototypes.

56

Chapter 5

Clustering

This chapter presents a clustering analysis applied to the vector representations
within the system: the original channel vector h, the learned latent vector t and
the learned precoder vector v. First, the methodological rationale for the choice
of the DBSCAN algorithm is discussed Section 5.1, highlighting its advantages
over traditional partitioning algorithms for this discovery-oriented task. Following
this, a technical overview of DBSCAN [31] is provided Section 5.2, detailing its
fundamental parameters, their selection strategy, and the validation methodology.
The last part of the chapter, in Sections 5.5, 5.3, 5.4 is dedicated to the experimental
analysis. Clustering results are presented for all three vectors, comparing the learned
representations (generated by models trained with different A weights) against the
channel data.

Throughout this chapter, we present the analysis for a single representative user.
It is important to note that we verified these results against the second user in the
system (K = 2) and found them to be identical. This confirms that the learned
strategy is symmetric and robust across users.

5.1 Methodological Rationale

The selection of DBSCAN for this analysis, as opposed to algorithms like K-Means,
was a deliberate methodological decision. The primary research question was to
discover how many significant, high-frequency patterns the network learned: we
want the number of clusters k to be an unknown output of the analysis, not a
required input.

DBSCAN is suited for this task for two key reasons. Firstly, unlike K-Means, which
forces the data into a predefined number of clusters, k, DBSCAN is a density-based
algorithm that determines the number of clusters organically based on the data
structure. Secondly, DBSCAN differs from K-Means in its noise-handling capability.

57

Clustering

In fact, K-Means is a partitioning algorithm, which means it is algorithmically
required to assign every single data point to a cluster, and it has no mechanism
for identifying or excluding outliers. In our context, noise is not to be imagined
as random, spurious data; instead, it encompasses two distinct categories of non-
clustered points. The first category consists of infrequently used vectors that the
encoder learned but appear too rarely to satisfy the min_samples density threshold.
The second category is transitional vectors: these are sparse data points lying in
the low-density regions between the stable, high-frequency prototypes, and thus
do not belong to any single cluster. The application of K-Means would lead to
contamination, in which these rare and transitional vectors would be assigned
to the nearest high-density cluster; therefore, the centroid of that cluster would
no longer represent the true stable precoding vector prototype, but it would be
a distorted value, influenced by the noise points. DBSCAN, as a density-based
algorithm, defines a cluster as a region that satisfies a minimum density threshold
(min_samples); therefore, the high-frequency codewords are correctly identified as
dense clusters, whereas the rare vectors that fail to meet it are identified as noise
and excluded from the cluster analysis.

5.2 Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN)

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
clustering algorithm that defines clusters as contiguous regions of high-density
points [31]. Its objective is to identify these dense regions and separate them from
low-density regions, whose points are labeled as noise (outliers).

The algorithm relies on two fundamental parameters:

» ¢ (epsilon): The radius that defines a “neighborhood" around a point.

e min_samples: The minimum number of points that must be within the
e-neighborhood of a point for that region to be considered “dense".

5.2.1 Fundamental Definitions

Based on these parameters, DBSCAN classifies every point in the dataset into one
of three categories:

1. Core point: A point p is a core point if its e-neighborhood, denoted as
N:(p) ={q € X : d(p,q) < €}, contains at least min_samples points (including
p itself).
|N:(p)| > min_samples

58

Clustering

2. Border point: A point p is a border point if it is not a core point, but falls
within the e-neighborhood of at least one core point.

3. Noise point: A point p is a noise point (or outlier) if it is neither a core point
nor a border point.

The clustering process involves connecting core points that are “reachable" from
one another (i.e., within each other’s e-neighborhood). A final cluster consists of
all connected core points, plus all border points associated with them. Noise points
are not assigned to any cluster.

5.2.2 Parameter Interpretation and Selection

The choice of € and min_samples is crucial for the algorithm’s outcome.

o £(Scale): Defines the spatial scale at which density is measured. A larger ¢
considers wider neighborhoods, lowering the required minimum density and
leading to larger clusters and less noise.

« min_samples(Density Threshold): Defines the density threshold. Increasing
it will only consider the densest regions, leading to more noise and potential
fragmentation of clusters.

Specifically, these two parameters define a minimum local density threshold,
Pmin- A point is “dense” (core) if the density in its e-neighborhood exceeds this
threshold.

It is important to note that in high-dimensional spaces (such as the d = 16
latent space analyzed), the volume of the e-neighborhood grows exponentially with
the dimension (V o £¢). Consequently, the algorithm can be highly sensitive to
small variations in €.

Estimating ¢ via the “K-distance Knee"

Since manually selecting ¢ is difficult, a heuristic known as the k-distance knee
plot is often used.

1. Set £ =min_samples.
2. For each point in the dataset, calculate the distance to its k-th nearest neighbor.

3. These distances are then sorted in ascending order and plotted.

59

Clustering

This plot typically shows a curve with a “knee" or “elbow," which is a point
where the slope changes sharply. This point represents the transition between dense
regions (with low k-distances) and sparse regions (where k-distances begin to rise
rapidly). The e value corresponding to this knee is a good candidate to represent
the scale of the dense structures within the data.

5.2.3 Validation through Stability Analysis

The knee heuristic provides only an estimate. To validate the parameter choice, a
stability analysis is performed by testing a range of € values (e.g., a “sensitivity
band" of £20% around the estimated knee).

The goal is to find a “stability plateau": a range of € values where the clustering
outcome remains qualitatively consistent. This stability is assessed using internal
validation metrics (implemented via the scikit-learn library [32]), recorded for
each run:

1. Number of clusters: A stable number indicates a robust partition.
2. Noise fraction: A low and stable noise fraction is desired.

3. Silhouette Score: An internal index, computed only on non-noise points. It
measures clustering quality (from -1 to 1). A high value indicates that points
are close to their own cluster members (cohesion) and far from other clusters
(separation).

If a plateau is observed in this sensitivity band (i.e., stable cluster count and
noise fraction, with good quality scores), it can be concluded that DBSCAN has
identified a genuine density-based structure. Otherwise, it is concluded that the
data does not form robust, density-separated clusters.

5.3 Latent Representations t

We run DBSCAN across a small grid of € values within the band and min_samples =
32, recording the number of clusters and the noise fraction.

The selection of the parameter min_samples = 32 for the d = 16 dimensional
latent vector t is a deliberate methodological choice. This value is based on a
widely accepted heuristic for high-dimensional clustering, which recommends setting
min_samples > 2 x d. This conservative approach is crucial in high-dimensional
spaces, as it provides a stricter definition of density and enhances robustness against
noise, preventing the information of spurious or insignificant micro-clusters.

60

Clustering

5.3.1)\ =2 regime

The parameter sensitivity analysis for ¢ was conducted using a two-stage, coarser-
to-fine approach. First, a coarse exploratory sweep was performed to identify
regions of potential stability. The stability analysis was performed by sweeping
over a range of € values: this range was not chosen manually but was determined
automatically using the k-distance knee plot heuristic, as described in Section 5.2.
First, the k-distance was calculated for every point in the test dataset, with k set
to min_samples = 32. These distances (the distance from each point to its 32nd
nearest neighbor) were then sorted in ascending order to create the k-distance plot.
Following the methodology, two heuristic boundary points were extracted from this
curve: the Kneedle Point, and the Q95 Point. The first one is the point where the
curve bends the most (the “knee"), after excluding the initial flat segment where
the distances are very small; the second one is the 95th percentile of the k-distances,
serving as a conservative upper bound. This automated process defined the sweep
interval of €, which is then sampled at 30 linearly-spaced points. The DBSCAN
algorithm was run on the full dataset for each of these 30 ¢ values to generate the
final values presented in the table.

This initial pass revealed that the number of clusters was very unstable at very
small and large ¢ values, but suggested a promising region of interest between
e = 0.06 and € =~ 0.12. Second, a fine-grained validation sweep was conducted
within this specific range to precisely map the stability of the solution. The results
of this high-resolution analysis are presented in 5.1, which confirms the existence
of a robust stability plateau.

5.1 provides a validation of the clustering structure discovered in the 16-dimensional
latent space. The plot displays a 2D ¢-SNE projection of the latent vector t, where
each point is colored according to the cluster label assigned by DBSCAN. The
parameters used (¢=0.0871, min_samples=32) were selected directly from the
stability plateau analysis (5.1, 5.3.1). The 11 clusters identified by DBSCAN in the
16D space map perfectly to distinct and well-separated islands in the 2D ¢-SNE
projection. This confirms the good Silhouette score (= 0.87) observed in the stability
analysis: the “islands" are extremely compact (high intra-cluster cohesion), and
are separated by significant empty space (high inter-cluster separation). The noise
points (colored gray) are not randomly distributed. Instead, they primarily populate
the sparse regions between the dense cluster islands: this suggests they might
represent transitional or less-frequent latent prototypes, rare latent representations,
filtered out by the clustering parameters. The quantitative distribution of samples
across these identified clusters and the noise category is reported in 5.2. It reveals
that the learned set is highly skewed and non-uniform. We observe a single dominant
prototype (Cluster 3) which accounts for 26.48% of the dataset, suggesting it
captures a statistically prevalent or ’default’ state of the channel. The remaining

61

Clustering

10 prototypes act as ’'specialized’ states, with frequencies ranging between 3% and
8%.

This regime can be described as a mechanism of learned semantic compression: these
11 clusters are not arbitrary; they are defined by their relevance to the final task,
i.e. precoding. Through the end-to-end optimization, the network has learned that
the varied channel realizations within a single cluster are semantically equivalent,
meaning that they all lead to the same precoding decision to maximize the rate R.
The model acts on this discovery by learning to map all these fine-grained channel
variations (which are irrelevant to the final task) to the same, single prototype
vector: only the task-relevant information is preserved. This entire mechanism
is learned, as the network autonomously discovers this clustered structure as the
optimal solution to the trade off posed by the loss function.

Table 5.1: Sweep Results on t for A = 2 regime (Coarse View) - ¢ Range: [0.013,
0.305], min_samples: 32

¢ min_samples Clusters Noise (%) Silhouette

0.013 32 8 0.780 0.884
0.023 32 13 0.526 0.863
0.034 32 13 0.413 0.854
0.044 32 13 0.357 0.823
0.055 32 13 0.315 0.789
0.065 32 11 0.275 0.797
0.076 32 11 0.248 0.866
0.086 32 11 0.222 0.856
0.096 32 11 0.198 0.842
0.107 32 11 0.178 0.830
0.117 32 11 0.151 0.767
0.128 32 8 0.129 0.622
0.138 32 7 0.113 0.541
0.149 32 6 0.101 0.453
0.180 32 2 0.062 0.302
0.190 32 1 0.058 —
0.201 32 1 0.052 —
0.211 32 1 0.047 —
0.222 32 1 0.043 —
0.295 32 1 0.017 —
0.305 32 1 0.014 —

62

Clustering

t-SNE Visualization of t colored by the t clusters labels

T
s Label-1

.:.’;- 'Y Label 0
P77 ?,"'* Label |

- g \ﬂ) Label 2
. - L Label 3

. . Label 4

Label 5
Label 6 |
Label 7
Label 8
Label 9
Label 10

t-SNE dimension 2
o

20

—40

t-8NE dimension |

Figure 5.1: t-SNE representation colored by the DBSCAN clustering results for
the Latent Vector t for A\ = 2.

63

Clustering

Table 5.2: Number of samples for each Cluster Label (User 1)

Label Samples

2648
783
614
602
S77
549
203
417
416
349
327

2215

© OO DN - = Ut oW

—_
|)

5.3.2 A=100 regime

5.3 presents the DBSCAN clustering results for the latent vector t produced by a
model trained with A = 100. To perform this analysis, we applied the same two-
stage, coarse-to-fine sweep strategy defined previously for the A = 2 regime (Section
5.3.1): the € range boundaries were determined using the weighted k-distance plot,
and the resulting interval was sampled at 30 linearly-spaced points.

The results from this analysis stand in contrast to the previously analyzed model.
A total lack of a stable clustering solution is observed. The number of clusters
immediately disintegrates: it begins at 11, jumps to 21, drops to 17 and 7, and
then rapidly collapses to a single cluster. This chaotic behavior is coupled with
two other indicators of unstructured data. Firstly, there is an extremely high noise
fraction, starting at 90% for the smallest . Secondly, the Silhouette scores are poor
(starting at a mediocre 0.412) and degrade instantly, and the e values are more than
an order of magnitude larger than those of the stable plateau found in the previous
model (e ~ 0.013 — 0.305). This indicates that data is significantly more sparse
and lacks the nearly “quantized" structure seen previously. In this high-rate regime,
the encoder does not converge to a small, finite set of representative prototype
vectors; instead, it uses the entire 16-dimensional space to produce a continuous
and unstructured set of points. This result is a direct consequence of the loss
function’s objective. By prioritizing the achievable rate R almost exclusively, the
A = 100 model has learned not to compress. To achieve its goal, the BS requires
highly detailed and precise channel information for every realization: the resulting
continuous, non-clustered latent space implies that the user must feed back a

64

Clustering

unique, high-precision vector t for every channel instance. This procedure demands
a large feedback overhead O.

This stands in opposition to the A = 2 regime of “learned semantic compression",
in which the system learned to quantize the entire channel space into 11 stable
prototype vectors: this would allow the user to feed back a simple, low-bit index
and to exploit a minimal feedback overhead. We can therefore conclude that the
clustered structure is not an inherent property of data. It is a behavior learned by
the network, and it is only present when the optimization is forced to balance the
critical trade off between achievable rate and feedback overhead.

Table 5.3: Sweep Results on t for A = 100 regime - ¢ Range: [0.918, 2.198|,
min_samples: 32

¢ min_samples Clusters Noise (%) Silhouette

0.918 32 11 0.902 0.412
0.989 32 21 0.792 0.347
1.060 32 17 0.688 0.263
1.131 32 7 0.616 0.126
1.202 32 3 0.559 0.101
1.274 32 2 0.516 0.075
1.345 32 2 0.475 0.074
1.416 32 2 0.433 0.072
1.487 32 1 0.392 —
1.558 32 1 0.352 —
1.629 32 1 0.311 —
1.700 32 1 0.267 —
1.771 32 1 0.227 —
1.842 32 1 0.186 —
1.913 32 1 0.151 —
1.984 32 1 0.116 —
2.055 32 1 0.088 —
2.127 32 1 0.066 —
2.198 32 1 0.050 —

5.4 Precoding Vectors v

We applied the same stability analysis of Section 5.3 to the precoding vector v.
65

Clustering

5.4.1 A\=2 regime

t-SNE Visualization of v colored by the v clusters labels

o Label-l
Label 0
Label 1
Label 2

404 o Label3 _® L I— b .

Label 4 .

0 4

204 Label 7

1-SNE dimension 2
&
&

. R 1)
| e I
40 o

60

Figure 5.2: t-SNE representation colored by DBSCAN clustering results for the
Latent Vector v for A = 2.

To analyze the BS’s learned policy, we simulated the full end-to-end precoding
pipeline using a batch size of 10,000. Over the test set of 10,000 channel realizations,
we analyze the generated precoding vectors v, € CNt*! associated with the k-th
user (where N; = 64). The model trained with A = 2 produces only M=531 unique
precoding vectors in the batch, while the remaining ones are exact duplicates.
This finding is the proof that the BS network has learned a finite, discrete set
of "precoding actions" rather than a continuous mapping, consistent with our
hypothesis of a structured compression mechanism. The next key question is how
these M = 531 unique precoding vectors are used.

A frequency distribution analysis is visualized through a set of complementary
plots:

o The Rank-Frequency plot (5.4) reveals that the usage of precoding vectors
follows a heavy-tailed distribution. The y-axis (Count) represents the absolute
frequency, i.e., how many times a specific unique precoding vector appears
in the dataset. The z-axis (Rank) orders these vectors by popularity: Rank
1 is the single most frequent vector, Rank 2 is the second most frequent,
and so on. The resulting curve clearly shows a small "head" of frequently
used prototypes (high count, low rank), followed by a massive "long tail" of
hundreds of specialized vectors that are selected only rarely (often just once
or twice).

o The Cumulative Coverage plot (5.3) illustrates the cumulative probability
66

Clustering

mass function of the top-k most frequent precoding vectors. In this case, we
set k=20, considering the 20 most frequent codewords. The curve exhibits
a sharp initial rise, reaching a cumulative coverage of 0.480 (48.0%) with
just the top-20 unique vectors. This result signifies that nearly half of all
precoding decisions made by the network (in a dataset of 10,000 samples) map
to a tiny subset (=~ 4%) of the 531 available prototypes. This confirms the
highly concentrated nature of the learned policy, where a small “set" of robust
strategies handles the vast majority of channel scenarios: this is precisely the

structure that will be discovered by our DBSCAN analysis.

‘Cumulative coverage by top-20 codewords

08 4
206

04 4

@ 1t0p-20 coverage = 0.430

0.0

0 100 200 300 400 500
‘Top-k unique codewords (by frequency)

Figure 5.3: Cumulative Coverage by the top-20 codewords

Rank—frequency of unique codewords (log-log)

" \
e
107 4 1

=
&
10

o 1

T T T
10" 10! 102
Rank (1 = most frequent)

Figure 5.4: Rank-frequency of unique codewords

The table shown in 5.4 presents the core findings from the DBSCAN stability
analysis on the 64 dimensional precoding vector v, conducted using the identical
e-sweep methodology (based on the k-distance heuristic) described in Section 5.3.1.
The most immediate finding is the scale of the analysis. The BS network is not
producing a continuous output. Like the UE’s encoder, it has learned to act as a
quantizer, mapping inputs to a discrete set of prototype precoder vectors. At a fine
e scale, the system reveals three stable plateaus: at 18 clusters (from € ~ 0.083 to

67

Clustering

e ~ 0.150); this is immediately followed by another robust plateau at 17 clusters
(Silhouette ~ 0.87-0.90 and a very low noise fraction), and at 12 clusters (from e ~
0.299 to € ~ 0.449). The BS network does not just mirror the 11 clusters from
the latent space t; it maps the 11 clusters in t to richer set of 12-to-17 distinct
“precoding actions“. The quantitative distribution of samples across these identified
clusters is reported in 5.5.

5.2 provides a visual validation of the clustering structure discovered in the 64-
dimensional space. The plot displays a 2D ¢-SNE projection where each point is
colored according to the cluster label assigned by DBSCAN, using the parameters
(6=0.299, min_samples=128) selected directly from the stability plateau analysis
(5.4, 5.4.1). Comparing this plot to the t-SNE projection of t (5.1), while the
t clusters were dense and compact islands, the v clusters are more sparse and
resemble a cloud. This could take in consideration the multi-user nature of the BS
processing. A t cluster represents a simple, single-user channel state. A v cluster,
in contrast, represents a precoding action that the BS chooses in response to the
joint information from all users.

A contingency matrix is a data visualization tool used to analyze the relationship
between two categorical variables. The Contingency Table shown in 5.5 visualizes
the mapping of the 11 stable t-clusters (the 11 “codeword" categories learned by
the UE’s encoder, arranged on the y-axis) to the 12-cluster of the v vector (the 12
“precoder" categories learned by the BS, on the z-axis). Each cell in the matrix
displays two key pieces of information: the absolute count (the number of samples
that belong to both the cluster in that row and the cluster in that column), and
the row-normalized percentage (percentages calculated based on that row’s total
only, not the grand total of the whole table). The analysis reveals two distinct
types of behaviors: deterministic and contextual mappings. In the first scenario,
the vast majority of samples are handled by a simple and direct lookup policy. For
example, t—cluster 1 maps 100% of its members to v-cluster 6, and t-cluster 2
maps 100% of its members to v-cluster 9. This demonstrates that, for most inputs,
the system has learned an efficient and quantized “codebook". The second case is
the exception: the matrix also reveals a non-deterministic mapping for t-cluster
7. This row is “smeared" across two different v-clusters: 90.7 % of its samples are
mapped to v-cluster 1, while the remaining 9.3% are mapped to v-cluster 11.

We could interpret the 10 deterministic rows as “simple" channel states, and
row 7, the “exception’, as a more complex or ambiguous one: a one-to-many,
non-deterministic mapping. The final precoder choice is not solely determined
by t-cluster 7, but it might be contingent on other information (for example, the
channel report from the other user in the system), which causes this smeared
distribution. In fact, while the t-cluster is generated by a single user based only on
its own channel, the v-cluster, i.e. the precoder, is chosen by the BS, which sees
the reports from all users. The 9.1 % split might represent the cases where the

68

Clustering

BS has to replace its default precoder and choose an alternative (for example, to
manage interference).

Joint Cluster Mapping (1 vs. vi)

;;;;;;;

Figure 5.5: Contingency Table representing the mapping between the clusters of
t and the clusters of v for A = 2.

Before analyzing the joint multi-user policy, we must first understand the
frequency distribution of the learned prototypes for each user independently. 5.5
and 5.6 present the absolute sample counts for each of the 12 v-clusters found for
User 1 and User 2, respectively (including noise points, labeled -1). The primary
discovery is that the network’s learned policy is not uniform. A “balanced" policy
would use all 12 prototypes roughly equally. These tables, instead, prove that the
network has learned a highly skewed strategy that relies on a few fundamental
prototypes and on many “specialist" ones. For User 1, Cluster 3 accounts for 3094
samples (~ 31.3 % of the non-noise data). For User 2, Cluster 2 accounts for 3054
samples (~ 30.9 %). One possible interpretation could be that the network heavily
relies on this single dominant prototype as its “default" action. In contrast, the
network also learns “niche" solutions. For User 1, Cluster 11 (180 samples) and, for
User 2, Cluster 8 (177 samples) are the less populated clusters: we could interpret
these clusters as specialized solutions, each used in less than 2% of cases, probably
reserved for rare interference scenarios.

The second finding comes from comparing the two tables. This comparison reveals
that the two cluster count distributions are statistically identical. Both distributions
reveal the same underlying structure: a dominant cluster with ~ 3000 samples

69

Clustering

Table 5.4: Sweep Results on v for A = 2- £ Range: 0.033, 0.482], min_samples:
128

¢ min_samples Clusters Noise (%) Silhouette

0.033 128 29 0.230 0.896
0.050 128 24 0.142 0.930
0.067 128 20 0.106 0.911
0.083 128 18 0.101 0.892
0.010 128 18 0.092 0.891
0.116 128 18 0.069 0.897
0.133 128 18 0.058 0.894
0.150 128 18 0.046 0.890
0.166 128 17 0.036 0.875
0.183 128 17 0.025 0.868
0.200 128 17 0.024 0.868
0.216 128 17 0.024 0.867
0.233 128 17 0.023 0.867
0.249 128 17 0.021 0.866
0.266 128 15 0.020 0.811
0.283 128 13 0.019 0.769
0.299 128 12 0.013 0.848
0.316 128 12 0.012 0.848
0.332 128 12 0.012 0.847
0.349 128 12 0.011 0.846
0.366 128 12 0.011 0.846
0.382 128 12 0.010 0.845
0.399 128 12 0.009 0.844
0.416 128 12 0.009 0.844
0.432 128 12 0.007 0.841
0.449 128 12 0.006 0.840
0.465 128 9 0.002 0.648
0.482 128 8 0.000 0.593

70

Clustering

Table 5.5: Number of samples for each Cluster Label (User 1)

Label Samples

3094
905
751
746
740
705
622
610
044
924
455
180
124

Sk oo uw

—
2 ootoo o

1
[

Table 5.6: Number of samples for each Cluster Label (User 2)

Label Samples

3054
906
740
726
706
677
655
591
258
258
238
177
114

— =
OOH>>—‘©©HOOOO\]O‘![\')

I
—_

(3094 for User 1 vs 3054 for User 2), a single niche cluster with ~ 180 samples (180
for User 1 vs 177 for User 2), and a series of intermediate clusters with similar
counts (for User 1, the counts of {905, 751,746, 740} are comparable to the second
User’s {906, 740, 726, 706}). The only apparent difference is in the naming of the
labels: for example, the largest prototype is labeled “Cluster 3" for User 1 but

71

Clustering

“Cluster 2" for User 2. This is a benign and expected labeling artifact. It occurs
simply because the DBSCAN algorithm was run independently on the two datasets
and assigned its arbitrary numerical labels in a different orders.

Table 5.7: Internal Composition of the v-Clusters (User 1).

Cluster ID Total Samples Unique Vectors Dominant Prototype Dominance (

3 3094 48 ID 27 30.4%
7 905 33 ID 352 30.2%
6 751 20 ID 263 28.0%
0 746 47 ID 188 27.6%
9 740 27 ID 345 31.2%
4 705 42 ID 134 30.9%
1 622 30 ID 159 30.2%
10 610 65 ID 446 29.2%
2 044 o4 ID 267 29.2%
8 524 40 ID 425 34.2%
5 455 30 ID 153 33.0%
11 180 18 ID 396 32.2%
-1 124 47 ID 319 26.6%

To validate the quality of the discovered clusters, we analyzed their internal com-
position in terms of unique vectors. As established, the dataset contains significant
redundancy (= 95% of the total samples are duplicates). A critical requirement
for a robust clustering is consistency, i.e. identical inputs (duplicates) must be
assigned to the same cluster. Our analysis confirms that this condition is met. For
every unique vector in the dataset, all of its duplicates were assigned to the same
cluster (or all to noise). Furthermore, 5.7 reveals that each cluster is consists of a
single Dominant Prototype, which typically accounts for ~ 30% of the cluster’s
total mass. Surrounding this one, we find a set of 20-60 less frequent unique vectors.
This suggests that the "Precoding Action" represented by a cluster is not a single
rigid vector, but a family of closely related strategies. The network relies on a
primary vector (the Dominant Prototype) for the most common variations of that
channel state, but it has also learned a library of fine-grained variations to handle
specific micro-variations in the interference environment, all while keeping "Cluster
ID decision" constant.

5.8 details the clustering assignment for the top-20 most frequent unique vectors,

72

Clustering

a subset accounting for the highest density peaks in the dataset. For every high-
frequency vector, from the dominant ID 27 (941 copies) to the 20th ranked ID 153
(150 copies), the algorithm consistently assigns all copies to a single, unique cluster
label. Cluster 3, the largest cluster, is composed of multiple distinct, highly-frequent
vectors (e.g., ID 27, ID 143, ID 274, ID 369, ID 47, ID 41, ID 57, ID 89, ID 34, ID
58) which occupy 10 of the top-20 ranks. This proves that the whole cluster might
represents a broad, densely populated region containing a rich family of related
precoding strategies.

Table 5.8: Clustering Consistency Validation on the Top-20 Most Frequent Unique
Vectors.

Rank Vector ID Total Copies Assigned Cluster Njpeis Found

1 27 941 3 1
2 143 274 3 1
3 352 273 7 1
4 274 241 3 1
5 345 231 9 1
6 369 230 3 1
7 134 218 4 1
8 47 216 3 1
9 263 210 6 1
10 41 208 3 1
11 188 206 0 1
12 159 188 1 1
13 o7 184 3 1
14 89 179 3 1
15 425 179 8 1
16 446 178 10 1
17 34 169 3 1
18 o8 167 3 1
19 267 159 2 1
20 153 150) 1

A possible interpretation could be that the BS uses the encoder’s compressed
feedback to select a "Precoding Prototype' (one of the 12-18 v-clusters), which
defines the general spatial direction of the beam. The joint information from all
the users is used to calculate a continuous, fine-grained adjustment to the selected
prototype, ensuring proper interference management.

73

Clustering

Joint Cluster Mapping (v vs.

-3
a1
5%
155
6%
-0
m
Fi
o
06t s
218
s
a0 g
15 g
£ 2
H
3 3
° H
a1 H
ETs ;
s
73
045
s
4% an
=
313%
o - aos
f)
s
Er
. Lm0
2 3 4 s 7 5 9) i
Cluser s
.
igure 5.6: t- representation of hy,
Joint Cluster Mapping (v2 vs. V)
20
06%
1
e -0
o1
3107
215 s
S19%
51
v
a0y
7
057
3
097
Lais
7
a2
o
7% an
15
0%
ans
5
sio
15
3%
y oo
3 4 7 5 5) i1

Clusern

Figure 5.7: t-SNE representation of hy,

74

Clustering

To analyze the learned multi-user precoding policy, we plot two complementary
contingency matrices. 5.6 presents the Contingency Matrix mapping the 12 learned
vy clusters (y-axis) against the 12 learned vy clusters (z-axis), while 5.7 shows the
inverse.

This skewed distribution (estabilished in 5.5 and 5.6) is the direct cause of the
“magnet effect" we observe in both matrices. 5.6 shows that, regardless of the vy
state, the most probable outcome for User 2 is to be assigned to its most common
prototype. 5.7 shows the same logic in reverse: the most probable outcome for
User 1 is its default prototype, vi = 3, regardless of the vy state. The pair (v; = 3,
vy = 2) represents the most common scenario, accounting for 941 samples (nearly
10% of the total test data). An interpretation could be that the BS network, when
faced with two identical users, exploits a learned symmetric “default" strategy, i.e.
it assigns the single most commmon prototype to both users.

Finally, this analysis defines the BS network’s policy as “non-continuous" and
adaptive. A “uniform" policy would show each row as uniformly colored; instead, in
our plots each row is a mixture of bright yellow (high-probability “default" states)
and dark blue/purple (low-probability states) cells. A possible interpretation could
be that the network has not learned a finite set of joint strategies. It relies on
a dominant “default" pair (vq; = 3, vo = 2) for the most common scenarios, but
for all other complex interference cases (= the 90%), it abandons this default and
actively computes a continuous, adaptive joint solution.

5.4.2 A=100 regime

5.9 presents the clustering results for the 64-dimensional precoding vector v, gener-
ated by the A = 100 model. We applied the same heuristic e-sweep methodology
(Section 5.3.1) to determine the analysis range and perform the stability test.
The DBSCAN results show a complete failure to find any stable, quantized struc-
tured. Firstly, there is no stability plateau: the number of clusters is chaotic
(jumping from 10 to 24 to 19) before its inevitable collapse to 1, proving the algo-
rithm is not discovering any meaningful, robust structure. Secondly, the analysis
begins at an e value over 40 times larger than that of the previous model (& ~
4.4 vs. € =~ 0.1). This confirms the data is not a set of “discrete and repeated
codewords" but it is a continuous, sparse manifold. The Silhouette score is mediocre
(0.59) and it collapses instantly, while the initial noise fraction is extremely high
(83 %), confirming the data is sparse and vast majority of it does not belong to
any clustered region.

In the A = 2 regime, the clustered v space proved that the BS had learned a finite
“set" of precoding actions: it learned a small set of robust and optimal precoders
and chose the best one.

The A = 100 model shows a continuous space, which means that the BS has not

75

Clustering

learned a finite set; instead, it has learned a more complex policy. For every single
unique vector t it receives, it performs a unique, complex calculation to generate
a “one-of-a-kind" precoder v. The complete picture is that this model achieves
high rate exploiting overhead both to send the continuous t and for the complex
precoding policy to generate v.

Table 5.9: Sweep Results on v for A = 100- ¢ Range: [4.447, 7.228|, min_samples:
128

¢ min_samples Clusters Noise (%) Silhouette

4.447 128 10 0.832 0.593

4.579 128 14 0.715 0.544

4.711 128 24 0.510 0.499 900 0.826
4.844 128 19 0.396 0.411 580 1.145
4.976 128 17 0.325 0.358 466 1.429
5.109 128 20 0.247 0.292 386 1.460
5.241 128 15 0.190 0.241 377 1.773
5.374 128 11 0.156 0.203 363 2.149
5.506 128 8 0.131 0.170 371 2.559
5.639 128 9 0.102 0.162 350 2.443
5.771 128 7 0.093 0.141 353 2.822
5.904 128 8 0.066 0.117 307 2.645
6.036 128 6 0.057 0.122 355 3.156
6.169 128 D 0.048 0.102 348 3.451
6.301 128 4 0.042 0.082 342 3.877
6.434 128 3 0.034 0.064 342 4.413
6.566 128 3 0.026 0.063 342 4.424
6.700 128 2 0.019 0.048 341 5.025
6.831 128 1 0.016 — —
6.964 128 1 0.013 — —
7.096 128 1 0.008 — — —
7.228 128 1 0.007 - — —

5.5 Channel Realizations

A critical hypothesis of this work is that the original channel vector h € C% should
not be clusterizable. This hypothesis is based on its fundamental generating process.
All channel realizations are generated according to the same geometric multipath
model (2.1). In our simulation setup, all samples from all users are drawn from

76

Clustering

the same statistical distributions: they share the same angular support, the same
number of paths, and identically distributed complex path gains. Because there is
no distinction between sectors or propagation conditions, data originates from a
single, continuous law rather than from a mixture of distinct contributions. The
resulting vectors form a smooth, non-linear array manifold, and not a set of discrete,
separable groups.

To experimentally validate this theoretical assumption, we subjected h to the same
sweep and visual analysis as the learned vectors t and v.

First, our quantitative clustering analysis confirmed the hypothesis (5.10): the
DBSCAN stability sweep failed to find any stable, dense clusters.

The Cluster column is 1 for the entire sweep: the algorithm never, at any scale,
discovers a stable partition with more than one cluster. The algorithm simply
transitions from classifying most of the data as noise (for € lower than 3.643) to
absorbing the entire dataset into a single, contiguous group once the radius is large
enough. The Noise column confirms this: the analysis begins with 83.4% of the data
still classified as noise. This demonstrates the extreme sparsity of the h data, as
most points do not have 128 neighbors even within this large radius. The Silhouette
Score is undefined across the entire range: this is the logical consequence of the
cluster count never exceeding 1. Since the Silhouette score measures inter-cluster
separation (separation between clusters), it cannot be computed when only one
cluster exists.

Second, to visually support why this failure occurred, we employed dimensionality
reduction. We again rejected PCA, as it is a linear projected technique fundamen-
tally unsuited for the non-linear structure of h. We choose t-SNE, and our logic
was as follows: if even t-SNE cannot visually separate any distinct groups, then we
can confidently conclude that no clusters exist.

5.8 shows the resulting t-SNE plot. The visualization reveals a single, contiguous
point cloud with the absence of dense “islands" and “empty space". The plot
provides a visual proof that h is a non-clusterizable continuum.

7

Clustering

Table 5.10: Sweep Results on h - ¢ Range: [3.643,11.562], min_samples = 128

¢ min_samples Clusters Noise (%) Silhouette

3.643 128 1 0.834 —
3.916 128 1 0.774 —
4.190 128 1 0.714 —
4.463 128 1 0.650 —
4.736 128 1 0.575 —
5.009 128 1 0.496 —
5.282 128 1 0.422 —
2.595 128 1 0.362 —
5.828 128 1 0.302 —
6.374 128 1 0.204 —
6.920 128 1 0.133 —
7.466 128 1 0.083 —
8.012 128 1 0.048 —
8.599 128 1 0.026 —
9.105 128 1 0.014 —
9.651 128 1 0.008 —
10.197 128 1 0.004 —
10.470 128 1 0.003 —
11.016 128 1 0.002 —
11.562 128 1 0.001 —

t-SNE Visualization of hy (2D projection)

nsion 2

t-SNE dimer

=20

—40 4

Figure 5.8: t-SNE representation of hy

78

Clustering

To visualize the decision boundaries learned by the system, we project the
discrete cluster labels discovered in the downstream spaces (latent t, 5.3.1, and
the precoding v, 5.4.1) back on the t-SNE visualization of the original channel
vector h. 5.9 displays the h-manifold colored by the 11 t-labels (the UE encoder’s
prototypes), while 5.10 displays the same manifold colored by the 12 v-labels
(the BS’s actions). In both plots, points sharing the same label are not randomly
scattered across the map like noise; instead, they aggregate into coherent, contiguous
neighborhoods. This confirms that the model has learned a rule of "semantic
proximity": channels that are physically similar (neighboring on the continuous
h manifold) are consistently mapped to the same semantic prototype, whether at
the encoder output (t) or the precoder output (v). Crucially, this result does not
imply that the input channel h itself is clustered. As established, the h space is
a continuous, non-clusterizable structure. Rather, these plots demonstrate that
the end-to-end system has learned to "tessellate" this continuous physical space.
The visible "islands" of color are effectively the decision regions carved out by the
UE encoder (fy) and propagated by the BS network (g4), partitioning the infinite
continuum of physical channels into a finite set of actionable semantic categories.

t-SNE Visualization of h colored by the t clusters labels

-SNE dimension

—40 4 Label 10

T T T T T
—40 20] 20 40
t-SNE dimension |

Figure 5.9: t-SNE Visualization of h colored by the t clusters labels

79

Clustering

t-SNE Visualization of h colored by the v clusters labels

t-SNE dimension 2
oo
&=
& 5
-
F 5

=201 e Label5

Label 7 .
Label 8 .
© Label9
o+ Label 10 .
Label 11

40+

T
—40 20 o 20 40
t-8NE dimension |

Figure 5.10: t-SNE Visualization of h colored by the t clusters labels

80

Chapter 6
Conclusion

This thesis set out to interpret the end-to-end, precoding-oriented CSI feedback
framework of Carpi et al. [13], which, while high-performing, operates as a “black
box”. Our goal was to move beyond performance metrics and apply a novel method-
ological framework from Explainable AT (XAI) to “open” this box and understand
the internal strategy learned by the neural networks. We demonstrated that the
network’s learned functions change based on the rate-overhead trade-off, as regu-
lated by A.

Our XAI methodology combined non-linear dimensionality reduction (for visualiza-
tion) and quantitative clustering-based methods, to show the following:

1. We showed that, for low values of A (e.g., A\ = 2), the trade off is solved
by actively developing a discrete, internal structure. Our clustering analysis
found a stable set of 11 prototypes for the latent vector t, and a “hierarchical"
structure for the precoder v. This hierarchy was revealed by the discovery of
multiple stable plateaus in the DBSCAN sweep: a fine-grained “micro-set" of
17-18 prototypes, which, at a larger density scale, merged into a dominant
“macro-set" of 12 prototypes.

2. We showed that this structure is a consequence of the compression constraint.
By removing the constraint, setting A to higher values (e.g., A=100) this
structured behavior vanished, leaving a continuous, non-clusterizable latent
space. The BS learns a “hybrid" strategy: "deterministic" mappings for
low-overhead scenarios, and "context-aware" mappings for high-overhead ones.

This work confirms that the network learns an interpretable strategy, but it opens
several deeper questions about the nature of this strategy.
Future work could explore:

o Physical Nature of the High-Rate Latent Representation: A critical open
question concerns the physical interpretability of the continuous latent vector

81

Conclusion

t learned in the high-rate regime (A = 100). Does this vector estimate
the explicit channel gains (h), or does it extract the underlying physical
parameters (a, $)? Our findings strongly suggest the former: the convergence
of the pilots to an orthogonal basis (i.e. the classical optimality condition
for minimizing channel estimation MSE) indicates that the system optimizes
for a faithful reconstruction of the channel waveform rather than parameter
extraction. Future work could investigate whether each latent component t;
encodes a complex, non-linear combination of all physical parameters (i.e.,
ti = f(a1,aq, b1, P2)), or specific latent components focus exclusively on
distinct physical factors.

 Analytical Approximation of the Learned Mapping (t — v): While our
contingency analysis revealed a mapping exists between the latents t and
the prototypes v, the actual function driving it remains a black box. A
compelling direction for future work is to derive an analytical approximation
of this learned function. Specifically, research should investigate whether the
network effectively implements an adaptive approximation of the Regularized
Zero-Forcing (RZF) strategy (V = H”(HH" + oI)7!), with H ~ f(t). The
hypothesis is that the network could dynamically tune the regularization
parameter («) based on the interference level detected in the latents: it
may learn to increase it, prioritizing power maximization (MRT-like), if the
information extracted from the latent vectors reveals orthogonal channels, or
to decrease it, prioritizing interference minimization (ZF-like).

o Physical Interpretation of the “Default" Precoding Vector Prototype: Our
analysis revealed a highly skewed policy where a single precoding prototype
accounts for over 30% of all decisions. A critical next step is to investigate the
physical characteristics of this specific vector and what makes it so universally
applicable. Does it correspond to a specific beamforming strategy?

o Explicit Control of the Prototype Space: Our analysis revealed that the
network learns a set of precoding prototypes as a solution to the rate-overhead
trade-off. A promising direction for future research is to transition from
implicit discovery to explicit control. Future work could investigate methods
to fix the exact number of precoding prototypes the network is allowed to
learn. This could be achieved by introducing a new regularization term in the
loss function that forces the continuous latent space to collapse into exactly
that number of discrete states.

o Generalization across channel models: Our analysis was conducted on a specific
sparse, geometric channel model, with L, = 2. It could be interesting to see
how the learned strategy adapts to different channel physics. If the model is

82

Conclusion

retrained on a non-sparse, rich-scattering Rayleigh channel, would the learned
codebook vanish? Or would it learn a different set of prototypes?

83

Bibliography

Emil Bjornson, Erik G. Larsson, and Thomas L. Marzetta. « Massive MIMO:
Ten Myths and One Critical Question». In: IEEE Communications Magazine
54.2 (Feb. 2016), pp. 114-123. pO1: 10.1109/MCOM. 2016 . 7402270. URL:
https://doi.org/10.1109/MCOM.2016.7402270 (cit. on pp. 1, 2).

Wei Chen, Weixiao Wan, Shiyue Wang, Peng Sun, Geoffrey Ye Li, and Bo Ai.
«CSI-PPPNet: A One-Sided One-for-All Deep Learning Framework for Massive
MIMO CSI Feedbacky. In: IEEE Transactions on Wireless Communications
23.7 (July 2024), pp. 7599-7611. DOI: 10.1109/TWC . 2023 . 3342735. URL:
https://doi.org/10.1109/TWC.2023.3342735 (cit. on p. 2).

3rd Generation Partnership Project (3GPP). NR; Radio Resource Con-
trol (RRC); Protocol specification. Technical Specification T'S 38.331. Ver-
sion 17.0.0. Release 17. ETSI, May 2022. URL: https://www.etsi.org/deli
ver/etsi_ts/138300_138399/138331/17.00.00_60/ts_138331v170000p.
pdf (cit. on p. 2).

3rd Generation Partnership Project (3GPP). NR; Physical layer procedures for
data. Technical Specification T'S 38.214. Version 18.2.0. Release 18. ETSI, May
2024. URL: https://www.etsi.org/deliver/etsi_ts/138200_138299/
138214/18.02.00_60/ts_138214v180200p . pdf (Cit. on p. 2).

3rd Generation Partnership Project (3GPP). NR; Physical channels and
modulation. Technical Specification TS 38.211. Version 18.6.0. Release 18.
ETSI, Apr. 2025. URL: https://www.etsi.org/deliver/etsi_ts/138200_
138299/138211/18.06.00_60/ts_138211v180600p.pdf (cit. on p. 2).

Foad Sohrabi, Kareem M. Attiah, and Wei Yu. «Deep Learning for Distributed
Channel Feedback and Multiuser Precoding in FDD Massive MIMO». In:
IEEE Transactions on Wireless Communications 20.7 (2021), pp. 4044-4057.
DOT: 10.1109/TWC. 2021 .3055202 (cit. on pp. 3-6, 9, 10, 12).

X. Rao and V. K. N. Lau. «Distributed compressive CSIT estimation and
feedback for FDD multi-user massive MIMO systems». In: IEEE Transactions
on Signal Processing 62.12 (2014), pp. 3261-3271 (cit. on p. 3).

84

https://doi.org/10.1109/MCOM.2016.7402270
https://doi.org/10.1109/MCOM.2016.7402270
https://doi.org/10.1109/TWC.2023.3342735
https://doi.org/10.1109/TWC.2023.3342735
https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/17.00.00_60/ts_138331v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/17.00.00_60/ts_138331v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/17.00.00_60/ts_138331v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/18.02.00_60/ts_138214v180200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/18.02.00_60/ts_138214v180200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/18.06.00_60/ts_138211v180600p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/18.06.00_60/ts_138211v180600p.pdf
https://doi.org/10.1109/TWC.2021.3055202

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. An-
drews. «An overview of limited feedback in wireless communication systemsy.
In: IEEE Journal on Selected Areas in Communications 26.8 (Oct. 2008),
pp. 1341-1365. DOI: 10.1109/JSAC.2008.080828 (cit. on p. 3).

S. S. Nair and S. Bhashyam. «Hybrid beamforming in MU-MIMO using
partial interfering beam feedback». In: IEEE Communications Letters 24.7
(July 2020), pp. 1548-1552. DOI: 10.1109/LCOMM . 2020 . 2999004 (cit. on
p. 3).

M. R. Castellanos, V. Raghavan, J. H. Ryu, O. H. Koymen, J. Li, D. J.
Love, and B. Peleato. «Channel-reconstruction-based hybrid precoding for
millimeter-wave multi-user MIMO systems». In: IEEE Journal on Selected
Topics in Signal Processing 12.2 (May 2018), pp. 383-398. pOI: 10.1109/
JSTSP.2017.2780983 (cit. on p. 3).

A. Alkhateeb, G. Leus, and R. W. Heath. «Limited feedback hybrid precoding
for multi-user millimeter wave systems». In: IEFFE Transactions on Wireless
Communications 14.11 (Nov. 2015), pp. 6481-6494. pOI: 10.1109/TWC.2015.
2475695 (cit. on p. 3).

G. Dietl and G. Bauch. «Linear precoding in the downlink of limited feedback
multiuser MIMO systems». In: Proceedings of the IEEE Global Commu-
nications Conference (GLOBECOM). Washington, DC: IEEE, Dec. 2007,
pp. 4359-4364 (cit. on p. 3).

Fabrizio Carpi, Sivarama Venkatesan, Jinfeng Du, Harish Viswanathan, Sid-
dharth Garg, and Elza Erkip. «Precoding-oriented Massive MIMO CSI Feed-
back Design». In: Proceedings of the 2023 IEEFE International Conference on
Communications (ICC), SAC Machine Learning for Communications and
Networking Track. Feb. 2023. DOT: 10.1109/ICC45855.2023.10042240. URL:
https://ieeexplore.ieee.org/document/10042240 (cit. on pp. 4-7, 9, 16,
21, 22, 81).

C.-K. Wen, W.-T. Shih, and S. Jin. «Deep Learning for Massive MIMO CSI
Feedback». In: IEEE Wireless Communications Letters 7.5 (2018), pp. 748
751. DOI: 10.1109/LWC.2018.2818160 (Cit. on p. 4).

J. Guo, C.-K. Wen, S. Jin, and G. Y. Li. «Overview of Deep Learning-
Based CSI Feedback in Massive MIMO Systems». In: IEEE Transactions on
Communications (2022). Early Access. DOI: 10.1109/TCOMM. 2022 .3144857
(cit. on p. 4).

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick
Johnston. «Variational Image Compression with a Scale Hyperpriory. In:

[CLR. 2018 (cit. on pp. 5, 10, 12, 13).

85

https://doi.org/10.1109/JSAC.2008.080828
https://doi.org/10.1109/LCOMM.2020.2999004
https://doi.org/10.1109/JSTSP.2017.2780983
https://doi.org/10.1109/JSTSP.2017.2780983
https://doi.org/10.1109/TWC.2015.2475695
https://doi.org/10.1109/TWC.2015.2475695
https://doi.org/10.1109/ICC45855.2023.10042240
https://ieeexplore.ieee.org/document/10042240
https://doi.org/10.1109/LWC.2018.2818160
https://doi.org/10.1109/TCOMM.2022.3144857

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

[21]

[22]

23]

[25]

[26]

Mohammad B. Mashhadi, Qianqgian Yang, and Deniz Giindiiz. «Distributed
Deep Convolutional Compression for Massive MIMO CSI Feedback». In:
IEEE Transactions on Wireless Communications 20.4 (2021), pp. 2621-2633.
DOI: 10.1109/TWC. 20203040609 (cit. on pp. 5, 9, 12, 13).

X. Chen and coauthors. «Implicit CSI Feedback for FDD Massive MIMO via
Deep Learning». In: IEEE Transactions on Communications 70.xx (2022).
(single-user beamforming with task-oriented training; update with exact
metadata from your bib source), pp. xxxx—xxxx (cit. on p. 6).

Natasha Devroye, Neshat Mohammadi, Abhijeet Mulgund, Harish Naik, Raj
Shekhar, Gyorgy Turdn, Yeqi Wei, and Milos Zefran. «Interpreting Deep-
Learned Error-Correcting Codesy. In: IEEE International Symposium on
Information Theory, ISIT 2022, Espoo, Finland, June 26 - July 1, 2022.
IEEE, 2022, pp. 2457-2462. DOL: 10.1109/ISIT50566.2022.9834599. URL:
https://doi.org/10.1109/ISIT50566.2022.9834599 (cit. on p. 8).

N. Devroye, A. Mulgund, R. Shekhar, Gy. Turdn, M. Zefran, and Y. Zhou.
Interpreting Training Aspects of Deep-Learned Error-Correcting Codes — ex-
tended ArXiv version. June 2023. URL: https://arxiv.org/abs/2305.04347
(cit. on p. 8).

N. Devroye, A. Mulgund, R. Shekhar, Gy. Turan, Y. Wei, and M. Zefran.
«Evaluating interpretations of deep-learned error-correcting codesy. In: 2022

60th Annual Allerton Conference on Communication, Control, and Computing
(Allerton). Sept. 2022 (cit. on p. 8).

A. Mulgund, N. Devroye, Gy. Turan, and M. Zefran. «Decomposing the
Training of Deep Learned Turbo codes via a Feasible MAP Decoder». In:
International Symposium on Topics in Coding. Sept. 2023 (cit. on p. 8).

Y. Zhou, N. Devroye, Gy. Turdn, and M. Zefran. «Interpreting Deepcode,
a Learned Feedback Code». In: 2024 IEEE International Symposium on
Information Theory (ISIT). 2024, pp. 1403-1408. pDOI: 10.1109/ISIT57864.
2024 .10619390 (cit. on p. 8).

Y. Zhou, N. Devroye, Gy. Turan, and M. Zefran. «Higher-order Interpretations
of Deepcode, a Learned Feedback Codey. In: 2024 60th Annual Allerton
Conference on Communication, Control, and Computing. 2024, pp. 1-8. DOI:
10.1109/A11erton63246.2024.10735282 (cit. on p. 8).

R. Shekhar, N. Devroye, Gy. Turan, and M. Zefran. «Interpreting KO Codes».
In: International Symposium on Information Theory (ISIT. Ann Arbor, USA,
June 2025 (cit. on p. 8).

Y. Zhou, N. Devroye, Gy. Turdn, and M. Zefran. «On Non-Linearities of

Simple Learned AWGN Feedback Codes». In: International Symposium on
Information Theory (ISIT). Ann Arbor, USA, June 2025 (cit. on p. 8).

86

https://doi.org/10.1109/TWC.2020.3040609
https://doi.org/10.1109/ISIT50566.2022.9834599
https://doi.org/10.1109/ISIT50566.2022.9834599
https://arxiv.org/abs/2305.04347
https://doi.org/10.1109/ISIT57864.2024.10619390
https://doi.org/10.1109/ISIT57864.2024.10619390
https://doi.org/10.1109/Allerton63246.2024.10735282

BIBLIOGRAPHY

[27]

28]

[29]

[30]

[31]

32]

Jérémy Bégain, Fabien Racapé, Samuel Feltman, and Anshuman Pushparaja.
CompressAl: A PyTorch Library and Evaluation Platform for End-to-End
Compression Research. [Online; accessed 8-September-2025]. 2020. arXiv:
2011.03029 [cs.CV]. URL: https://arxiv.org/abs/2011.03029 (cit. on
pp. 19, 20).

Jarostaw Duda. « Asymmetric Numeral Systemsy. In: arXiv preprint arXiv:1311.2540

(2013) (cit. on p. 20).

Laurens Van der Maaten and Geoffrey Hinton. «Visualizing data using t-
SNE». In: Journal of Machine Learning Research 9.11 (2008), pp. 2579-2605
(cit. on pp. 28, 29).

Solomon Kullback and Richard A Leibler. «On information and sufficiency».
In: The Annals of Mathematical Statistics. Vol. 22. 1. 1951, pp. 79-86 (cit. on
p. 29).

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. «A density-
based algorithm for discovering clusters in large spatial databases with noise».
In: Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD’96). AAAI Press. 1996, pp. 226-231 (cit. on
pp. 57, 58).

F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». In: Journal
of Machine Learning Research 12 (2011), pp. 2825-2830 (cit. on p. 60).

87

https://arxiv.org/abs/2011.03029
https://arxiv.org/abs/2011.03029

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Classical CSI compression techniques
	Codebook-based methods
	Compressed-sensing (CS)-based methods

	Deep Learning-based CSI compression techniques
	Reconstruction-oriented Autoencoders
	Rate-Distortion methods
	Task-oriented methods

	The Approach Proposed by Carpi et al.
	Goal of dissertation

	System Model
	Approach
	Transmitted Signal
	Channel Model
	Downlink Pilots Model
	User Model
	Feedback Model
	Base Station Model
	Metrics
	Overhead
	Performance
	Distortion

	System Implementation
	Learning Objective
	Pipeline Implementation
	Downlink Pilots Model
	User Module
	Base-Station Module

	Simulation Parameters and Results

	Understanding the learned spaces
	Variability of learned latent feedback representations t and precoders v
	t-SNE representations
	Latent Vector t1
	Precoding Vector vk

	Pilots Analysis
	Orthogonality Analysis (Gram Matrix)
	Effective Dimensionality Analysis (SVD)
	Physical Domain Analysis (Beampattern)

	Clustering
	Methodological Rationale
	Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
	Fundamental Definitions
	Parameter Interpretation and Selection
	Validation through Stability Analysis

	Latent Representations t
	=2 regime
	=100 regime

	Precoding Vectors v
	=2 regime
	=100 regime

	Channel Realizations

	Conclusion
	Bibliography

