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Abstract

Early detection of plant stress and pest infestation is a key enabler of sustainable
and precise crop management. Volatile organic compounds (VOCs) emitted by
plants provide a valuable, non-invasive means of monitoring physiological changes,
yet their implementation in real-time sensing remains limited by the high cost,
complexity, and laboratory confinement of conventional analytical methods such as
GC-MS (Gas Chromatography—Mass Spectrometry).

This thesis investigates the potential of a low-cost MOS (Metal Oxide Semicon-
ductor) gas sensor platform for detecting plant-emitted VOCs under controlled
laboratory conditions. The system was tested across two main experiments designed
to characterize the sensor response to biological volatile emissions. A preliminary
validation was performed using sheep wool samples to assess system performance
and stability under known conditions. The main experiment involved maize (Zea
mays L.) plants subjected to herbivory by larvae of Spodoptera littoralis (Boisdu-
val), a polyphagous lepidopteran pest widely used in studies of herbivore-induced
plant volatiles. The experimental setup allowed simultaneous monitoring of eight
plants for approximately twenty-four hours, including a two-hour period of dynamic
headspace collection for GC-MS analysis.

The results demonstrate that the tested MOS sensors can qualitatively detect the
presence of plant-emitted VOC under herbivory. Although the sensor signals did
not allow for discrimination of individual compounds, clear differences in response
magnitude were observed between plants exhibiting high and low VOC emissions,
as confirmed by GC-MS. This indicates that commercial MOS sensors are sensitive
enough to capture large variations in volatile release associated with biotic stress,
even without chemical selectivity. The responses were highly dependent on the
degree of feeding activity and overall VOC concentration, highlighting the need for
improved control of biological variability in future experiments.

While GC-MS remains indispensable for compound identification, this study
demonstrates that low-cost MOS sensors can serve as portable, complementary tools
for real-time plant monitoring. Their affordability and simplicity make them promis-
ing candidates for integration into distributed sensing networks for greenhouse or
field-scale applications. The work establishes an experimental and methodolog-
ical foundation for future development of low-cost electronic systems aimed at
early detection of plant stress through continuous monitoring of volatile emissions,
contributing to the broader vision of precision and data-driven agriculture.
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Chapter 1

Introduction

Agriculture, the foundation of human survival and economic stability, faces increas-
ing threats from pests and plant diseases that cause global yield losses of 20-40%
annually [1, 2, 3, 4]. Climate change, agricultural intensification, and globalization
further exacerbate these risks by facilitating pest proliferation and the spread of
invasive species such as the fall armyworm (Spodoptera frugiperda), responsible for
an estimated USD 9.4 billion in annual damage across Africa [2].

The widespread use of synthetic pesticides has become environmentally unsus-
tainable, leading to soil and water contamination, pest resistance, and the decline of
pollinators. A shift toward sustainable and eco-friendly crop protection is therefore
essential [5, 3.

Plants possess diverse intrinsic defense mechanisms against pests. Central to
these are VOCs, airborne compounds that mediate ecological communication and
defense signaling, often referred to as semiochemicals [6]. Because VOC emissions
can reveal early physiological changes before visible symptoms appear, they offer a
promising, non-invasive basis for sustainable IPM strategies [7, 5]. Many stress-
induced emissions occur rapidly and transiently (over minutes to hours) which
means that continuous, high-temporal-resolution monitoring is crucial for early
detection.

Despite the rapid growth of VOC-based plant diagnostics, the translation of
laboratory findings into practical agricultural tools remains limited. Conventional
analytical technologies provide unparalleled chemical resolution but fall short of
operational requirements in the field. GC-MS remains the gold standard for com-
prehensive VOC profiling, while PTR-TOF-MS enables real-time, high-sensitivity
detection [7]. However, both are costly, bulky, and require specialized infrastructure.
Even “portable” GC-MS units weigh 15-20 kg, have high power demands, and rely
on complex, discrete sampling workflows spanning hours to days [8]. These con-
straints prevent continuous monitoring and make them unsuitable for integration
into precision agriculture or dense sensor networks. As a result, VOC detection
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remains largely confined to centralized laboratories [9].

To bridge this gap, there is growing interest in low-cost, miniaturized gas sensors
capable of continuous, in-situ detection. Among the available portable sensing
technologies, MOS gas sensors are particularly appealing due to their low cost,
compactness, and compatibility with battery-powered or embedded systems. Their
sensitivity to a wide range of reducing gases makes them strong candidates for
monitoring the complex volatilome emitted by plants. However, MOS sensors also
present well-known challenges: limited chemical selectivity, strong cross-sensitivities
to humidity and temperature, sensor drift, and nonlinear response behavior. Their
output reflects broad chemical classes rather than individual compounds, meaning
they capture the integrated “fingerprint” of the emitted VOCs blend rather than
its detailed molecular composition [10]. Understanding these limitations is essential
before deploying them in real agricultural environments.

More generally, the development of field-ready VOC sensing technologies faces
several interconnected challenges:

Environmental and Biological Complexity
Plant VOC emissions are highly sensitive to environmental drivers such as
light, temperature, humidity, and atmospheric oxidants (e.g., ozone, NOx),
which can rapidly degrade reactive volatiles [9]. Biological factors—including
plant genotype, developmental stage, and the nature and timing of her-
bivory—produce large natural variability [11]. This variability complicates
both sensor calibration and the identification of stress-specific signatures.

Selectivity

Miniaturized sensors, including MOS devices and electronic noses, often
struggle to distinguish specific target VOC within the highly complex plant
volatilome. Many VOCs share similar reducing properties and produce overlap-
ping responses, leading to low chemical specificity and interfering background
signals [10]. Effective sensing therefore relies on capturing multi-dimensional
response patterns rather than targeting individual molecules, which requires
careful control of environmental conditions.

Data Analysis and Modeling
Plant VOCs signals are chemically diverse, nonlinear, and heavily influenced
by external conditions. Building robust, transferable models requires large,
well-curated datasets and the application of multivariate statistics or machine
learning [12]. However, the lack of standardized calibration mixtures and the
strong dependence on experimental setup often limit reproducibility across
studies and sensor platforms [13].

Because MOS sensors are intrinsically sensitive to environmental variables and
prone to cross-sensitivities, a controlled experimental approach is essential as a
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first step toward evaluating their suitability for VOC-based plant monitoring. Con-
ducting experiments under stable and reproducible conditions allows the intrinsic
sensor behavior to be characterized independently of atmospheric variability. Fur-
thermore, coupling the sensor platform with a reference GC-MS system provides
complementary chemical information: not to calibrate the sensor to individual
compounds, but to confirm the presence and relative trends of plant-emitted VOCs,
enabling more informed interpretation of sensor responses.

This work aims to contribute to the development of inexpensive, portable systems
for continuous, non-invasive, and high-resolution monitoring of plant VOC. The
long-term vision is to establish a foundational understanding of how low-cost MOS
sensors respond to plant emissions, with the goal of enabling “smart farming’
tools that provide timely, data-driven information to growers and support early
intervention before visible damage occurs. By characterizing sensor performance
under controlled conditions and comparing it with GC-MS measurements, this
thesis evaluates the feasibility of using MOS sensors as a low-cost platform for
real-time assessment of plant physiological status.
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Chapter 2

Background

2.1 Metal Oxide Semiconductor (MOS) gas sen-
sors

Metal-oxide semiconductor (MOS) gas sensors are among the most widely used
technologies for low-cost VOC detection. Their operation relies on the interaction
between gas molecules and the surface of a heated semiconducting oxide, where
chemical reactions modulate the electrical conductivity of the material. Despite
their simplicity and high sensitivity, these devices exhibit limitations such as poor
selectivity, humidity dependence, and long-term drift. This section introduces the
working principles, material considerations, operating modes, and performance
characteristics of MOS sensors, providing the conceptual basis for interpreting the
experimental results presented in this thesis.

2.1.1 Operating Principle

MOS sensors constitute a class of resistive gas sensors first introduced by Seiyama
et al. using ZnO [14], and later commercialized by Taguchi using SnO,. Their
transduction mechanism originates from temperature-activated reactions occurring
at the semiconductor surface, where gas adsorption influences charge transport.

When an n-type oxide such as SnO, is heated in air (typically 200 °C to 400 °C),
oxygen molecules adsorb onto the surface and withdraw electrons from the semicon-
ductor’s conduction band. This process forms ionosorbed oxygen species, including
0,5, O, and O*", whose relative abundance depends strongly on temperature [15].
At ~150°C, the dominant form is molecular O, , while above 300 °C more reactive
atomic species O~ and O? prevail.
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Space-charge region and semiconductor physics

The withdrawal of electrons leads to the formation of a space-charge region, a
concept central to semiconductor physics. The space-charge region describes the
portion of the semiconductor in which mobile charge carriers have been depleted
or rearranged, creating an internal electric field. In n-type oxides, this forms a
depletion layer, characterized by a reduced concentration of free electrons.

Depending on the surface conditions and dopants, the surface region may also
exhibit:

e Accumulation: an excess of majority carriers at the surface,
» Inversion: a surface layer where minority carriers dominate.

These regimes are well described in classical models by Madou and Morrison
[16]. The band bending effects associated with depletion, and accumulation are
illustrated schematically in Figure 2.1, which shows the electronic structure of n-
and p-type semiconducting metal oxides under exposure to reducing gases.

(A) Electron-depletion layer Oy S0: H,0
' 2 QL
QO,O + v
oé%e.
S (-]
R}
S Ec
EFn
& Ey
) N, H,0

s N
Bt e
3 O
N oo/ ~H, Y

° V..
0 Q e
€0 —
° NH,+ Oy
(-]

° —
o
A¢/; S Ec¢
S E
— Ex™] e
Eg,
& Ev

E: bottom of conduction band; Ey: top of valence band; Eg,: bulk Fermi level;
Ep,: surface Fermi level; A@: potential barrier;

Figure 2.1: Gas sensing mechanism of (A) n- and (B) p-type semiconducting
metal oxide nanostructures SMONs upon exposure of reducing gases [17, 18].
The position of the Fermi level, the electrochemical potential of electrons in

the material, determines the distribution of electrons in the bands and strongly
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influences the sensor’s electrical response. Adsorption of oxygen or analyte gases
perturbs the Fermi level, modulating the width of the space-charge region and thus
the resistance.

Sensor structure and grain boundaries

In practical devices, the sensitive layer of a MOS sensor is a polycrystalline or
nanocrystalline film deposited on an insulating substrate equipped with interdig-
itated electrodes and an integrated heater [15, 17, 19]. This film is composed
of many small crystallites, or grains, typically in the nano- to micrometre range,
separated by grain boundaries. In n-type oxides such as SnO,, adsorption of oxygen
on the grain surfaces creates depletion layers that extend into each grain. As a
result, electrical conduction is largely controlled by the potential barriers that form
at the grain boundaries, i.e. the inter-grain regions through which electrons must
pass to contribute to the measured conductivity [15, 20].

Reaction with target gases

When a reducing gas (e.g. Hy, CO, hydrocarbons, or plant-emitted VOC) contacts
the heated surface, it reacts with the ionosorbed oxygen species. This reaction
releases the previously trapped electrons back into the conduction band, narrowing
the depletion region and lowering the potential barriers at the grain boundaries
(inter-grain barriers). As a result, the conductivity increases.

Conversely, oxidizing gases withdraw additional electrons, thickening the de-
pletion region and reducing conductivity. The magnitude of this change depends
on the gas concentration, surface catalytic activity, and operating temperature
[17]. A simplified representation of these surface processes is shown in Figure 2.2,
highlighting the ionosorption of oxygen and its reaction with incoming reducing
gases.

Microstructure and conduction regimes

The sensitivity and dynamic behavior of a MOS sensor depend strongly on the
microstructure of the sensing material. A critical parameter is the ratio between
the grain size x, and the Debye length Ap, the characteristic length scale of the
space-charge region [15]:

« Large grains (z, > Ap): only a thin shell near the surface is depleted;
conduction is dominated by grain-boundary barriers.

« Small grains or nanomaterials (z, < Ap): the depletion region spans the
entire grain, so even small perturbations to surface charge dramatically affect
conductivity.
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° 9 9 Reduced gas
o

Oxygen Oxygen

ctron
Q @)

Alumina substrate Alumina substrate

In Upon exposing
clean air to reducing gas

Figure 2.2: Mechanism of oxygen ionosorption and reaction of VOC on an n-type
MOS surface [19].

This explains why nanostructured films, nanowires, and mesoporous oxides
exhibit superior sensitivity [20, 17].

2.1.2 Material engineering strategies

The sensing performance can be greatly enhanced through purposeful modification
of the oxide surface or bulk.

Catalysts and surface modifiers.

Noble metals such as Pt, Pd, or Au are often added to SnO, to promote selective
reactions. Their effects arise through two principal mechanisms [16, 20]:

1. Spillover effect: gas molecules dissociate on the catalyst and migrate (“spill
over”) onto the oxide, lowering reaction activation energies.

2. Fermi-level control: nanoscale catalysts pin the semiconductor’s Fermi level
locally, modulating the space-charge region as the catalyst’s work function
shifts under gas exposure.

Catalyst choice tunes the surface kinetics and selectivity toward specific gases.
For example, Pt and Pd enhance response to Hy, and CO, whereas Au or CuO
improve performance towards sulfur-containing gases [20]. Of particular relevance
for plant-stress detection, SnO,/MXene composites have recently demonstrated
high selectivity to methyl jasmonate, a key herbivory-related VOC [21].
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Bulk doping and nanocomposites.

Bulk doping refers to the intentional incorporation of foreign atoms into the crystal
lattice of the metal oxide. Unlike surface catalysts, which primarily modify reaction
kinetics at the surface, bulk dopants alter the intrinsic electronic structure and
microstructure of the oxide [16, 20]. Donor-type dopants (e.g. Sb°t in SnO,)
increase the free-electron concentration and shift the Fermi level, influencing the
width of the depletion layer and the baseline resistance. Such dopants also accelerate
oxygen adsorption kinetics and can improve response and recovery behaviour [20].

Dopants play a crucial role in microstructural control. During high-temperature
annealing, they may inhibit grain growth, promote the formation of thermally
stable nanocrystalline structures, and increase porosity. Since maximum gas
sensitivity occurs when the grain size is comparable to the Debye length, dopant-
induced suppression of grain coarsening is a key optimisation strategy [15, 20]. A
practical limitation is the narrow concentration range for effective doping: optimal
sensing improvements typically occur at additive levels below 1—2%, whereas larger
concentrations (5-10%) may stabilise the microstructure but degrade sensitivity by
introducing recombination sites or excessive electronic screening [20].

Nanocomposite strategies further enhance sensing performance by creating
hybrid materials that combine metal oxides with additional functional components.
These approaches exploit interfacial charge-transfer phenomena, catalytic synergy,
and enhanced adsorption sites.

« Heterojunction formation. Composites formed from two semiconductors
with different Fermi levels (e.g. p—n or n—n junctions) exhibit charge transfer
across the interface until equilibrium is reached, producing a depletion region
highly sensitive to gas exposure. Heterojunction-based improvements in
sensitivity, selectivity, and kinetics are widely documented in multi-oxide
sensors [20]. A representative example is the CuO/MoS, composite, where
exposure to H,S induces the conversion of CuO into metallic CuS, collapsing
the p—n junction and creating a large conductivity change [20].

o Integration with carbon nanomaterials. Carbon nanotubes CNTs and
rGO (Reduced Graphene Oxide) provide high electrical conductivity, large
surface area, and additional adsorption sites. Their incorporation improves
response speed and enhances charge transfer between the adsorbed gas species
and the oxide. CNT-oxide nanocomposites such as SnO,/CNT and SnO,/rGO
hybrids are reported to improve sensitivity and reduce operating temperature,
particularly for oxidizing gases such as NO, [20]. These composites also
mitigate grain agglomeration and promote efficient percolation pathways for
electrons.



Background

o Hybridization with two-dimensional materials. Transition metal dichalco4
genides (TMDs), including MoS,, introduce highly accessible edge sites and
layered structures that facilitate selective adsorption and rapid charge transfer.
Their use as supporting matrices in MOS composites enhances both sensitivity
and environmental stability by preventing nanoparticle agglomeration and
providing additional conduction channels [20].

« Noble metal functionalisation of nanostructures. Noble metals can
be incorporated not only as bulk dopants but also as surface decorations
on nanowires, nanofibres, or nanosheets. These systems combine catalytic
activation with modifications to local band alignment. Pd-functionalised SnO,
nanowires, Au-decorated WO3; nanofibres, and similar hybrid nanostructures
show large enhancements in sensitivity and selectivity [17]. In the context of
plant-related VOC monitoring, noble-metal-functionalised oxides have demon-
strated strong responses to compounds such as methyl salicylate and methyl
jasmonate [22, 21].

2.1.3 Morphology and device architecture

The morphology of the sensing film strongly affects sensitivity, stability, and
reproducibility:

o Thick films (screen-printed or sintered): easy to fabricate but dominated by
grain-boundary conduction.

e Thin films: improved homogeneity and lower power consumption.

e 1D nanostructures: high surface-to-volume ratio, fast response, but chal-
lenging fabrication [20].

In systems coupled to GC or controlled-flow sampling, chamber design is critical:
dead volume must be minimized to avoid peak broadening, and oxygen supply
must remain constant to sustain the sensing reaction [23, 24].

2.1.4 Performance

MOS sensors are typically evaluated based on sensitivity, selectivity, transient
response, stability, and operating temperature [17, 19].

Sensitivity and selectivity

Sensitivity describes how strongly the sensor’s resistance changes in response to a
gas. It is often expressed as:
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where R, is the baseline resistance, IR, the resistance under gas exposure, and
AR = |R; — R,|.

Selectivity remains the principal weakness of MOS technology. Because many
reducing gases interact similarly with surface oxygen, responses to different analytes
often overlap. This is especially problematic in plant headspaces, where complex
mixtures of VOCs are emitted with high variability [9].

Transient response

Response time (ty) is the duration required for the signal to reach 90 % of its
total change upon exposure. Recovery time is the corresponding duration needed
after removal of the analyte. Both depend on adsorption/desorption kinetics,
diffusion through the porous film, and operating temperature.

Stability and drift

Long-term stability is critical for field deployment. MOS sensors suffer from drift
due to:

« Grain growth and sintering at high temperature [18];
« Chemical poisoning by siloxanes or sulfur species [13];
« Bulk diffusion and irreversible reactions [16];

o Surface hydration in humid environments [13].

In addition to physical drift, MOS sensors exhibit considerable sensor-to-sensor
variability, requiring individual calibration. Recent advances use machine learning,
transfer learning, and drift-resistant features to reduce calibration burden and
improve long-term robustness [25].

Operating temperature and advanced modes

Operating temperature regulates the dominant surface oxygen species, the reaction
rates, and the overall sensitivity of the sensor [26]. High-temperature “burn-oft”
cycles are often employed to desorb contaminants and restore surface reactivity.
Modern microhotplates enable TCO (Temperature-cycled Operation), where
the sensor temperature is modulated over time according to a predefined waveform.

10
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Each gas exhibits characteristic kinetic behavior during these temperature transi-
tions, producing a time-dependent resistance “fingerprint” [12, 27]. TCO therefore
transforms a single sensing element into a virtual sensor array, greatly improving
selectivity—especially when combined with machine-learning analysis [10, 28].

A particularly powerful TCO method is the DSR (Differential Surface Reduction)
approach introduced by Baur et al. The key idea is to exploit the non-equilibrium
surface state generated after a rapid temperature jump. As illustrated in Figure 2.3a,
the sequence proceeds as follows:

1. At equilibrium state (1), the sensor is held at a low temperature with relatively
weak surface oxidation and low negative surface charge.

2. A rapid heating step to a high temperature, e.g. 400°C (1—2), causes an
instantaneous increase in conductance due to the temperature rise, while the
surface population of adsorbed oxygen remains nearly unchanged.

3. During the subsequent relaxation at high temperature (2—3), rapid oxidation
occurs: highly reactive oxygen species form on the surface, increasing the
surface occupation and lowering conductance.

4. An abrupt cooling step (3—4) transfers this highly oxidized surface population
to a low-temperature regime. The surface now has an excess negative charge
compared to the low-temperature equilibrium.

At this point (state 4), the surface is in its most reduction-sensitive non-
equilibrium state: reduction reactions with incoming reducing gases (e.g. Ho,
CO, or plant-emitted VOCs) strongly dominate over further oxidation. For a short
duration, the time derivative of the logarithmic conductance is directly proportional
to the rate constant of surface reduction:

din G
dt

o k(t),

and at low concentrations the rate constant is proportional to the gas concentration
[29]. This enables very sensitive detection of short gas pulses.

The implications for analytical systems such as GC are shown schematically
in Figure 2.3b. A temperature jump from high to low temperature produces a
characteristic relaxation curve in InG. When several concentration peaks with
different widths but identical total dosage (concentration—time integral) pass over
the sensor, their relaxation curves differ in slope but yield the same integrated
shift in InG. Thus, under TCO operation the sensor output becomes directly
proportional to the total gas dosage, enabling quantitative peak integration for
short GC pulses [30].

11
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Figure 2.3: Illustration of TCO-based non-equilibrium operation in a MOS sensor.
(a) Rapid heating and cooling drive the sensor into distinct non-equilibrium surface
states, enabling differential surface reduction. (b) During the low-temperature
relaxation phase, the slope of In G’ encodes the concentration of reducing gases, and
the integrated shift is proportional to the total gas dosage. Adapted from [31, 30].

Beyond controlled laboratory demonstrations, the practical applicability of
TCO-based operation has been validated in real sensor systems. In particular,
Koehne et al. [32] developed a modular platform for odor monitoring that integrates
microhotplate-based MOS sensors operated under temperature modulation with
embedded electronics, flow control, and on-board signal processing. Their system
demonstrates that non-equilibrium approaches such as differential surface reduc-
tion can be robustly implemented outside the laboratory and applied to practical
problems such as continuous raw milk quality assessment, where characteristic
VOCs associated with spoilage must be detected at low concentrations in a hu-
mid, complex matrix. By exploiting temperature-dependent kinetic fingerprints,
the platform achieved discrimination of milk freshness stages and environmental
contaminants without relying on chromatographic separation. This work highlights
the maturity of TCO-driven sensing for field-deployable applications and illustrates
how microhotplate MOS sensors operated under advanced temperature schemes
can support reliable, real-time monitoring in food quality control, environmental
surveillance, and other applied settings.

Despite these promising results, such advanced operating modes also present
notable practical limitations. First, TCO-based machine-learning models require
extensive calibration data acquired under highly controlled conditions, including
precise gas mixing, accurate humidity control, and reproducible VOC delivery. This
often necessitates gas mixing apparatuses or permeation-based generators capable

12
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of producing target analytes at controlled concentrations, along with reference-
grade zero air. Second, reliable training data typically require a well-defined and
low-volume sensor chamber with minimal dead volume, since residence time, flow
distribution, and adsorption—desorption dynamics strongly influence the transient
response used as ML input features. Even minor variations in flow rate, tubing
materials, chamber geometry, or oxygen availability can introduce significant vari-
ability that decreases model transferability. Additionally, temperature modulation
increases system complexity, imposes higher power consumption, and requires pre-
cise heater control to ensure cycle-to-cycle reproducibility. Finally, the reliance on
data-driven calibration means that models may be sensitive to sensor aging, drift, or
sensor-to-sensor variability, often requiring periodic retraining or transfer-learning
strategies to maintain long-term stability [25]. These constraints highlight that,
while TCO-enabled sensing platforms can achieve high performance in controlled
environments, significant engineering effort is required to translate them into robust
field-deployable instruments.

2.2 Plant Volatile Organic Compounds (VOCs)

Plant VOCs are low—molecular weight and lipophilic molecules with sufficiently
high vapor pressures to diffuse into the surrounding environment. Rather than
functioning as metabolic waste, they serve as information-rich chemical signals
that mediate interactions with mutualists and antagonists and convey a plant’s
internal physiological status [7]. Their profiles consist of complex blends derived
from multiple biosynthetic pathways, and their emission is tightly regulated by
developmental, environmental, and stress-related cues.

2.2.1 Chemical Diversity and Biosynthetic Origins

The chemical diversity of plant VOCs reflects the metabolic pathways from which
they arise. Terpenoids represent the largest class and dominate global biogenic
emissions. Isoprene alone accounts for nearly seventy percent of global fluxes, while
monoterpenes and sesquiterpenes contribute approximately eleven and two point
five percent respectively [33]. Common representatives include a-pinene, S-pinene,
myrcene, linalool, and S-ocimene, as well as sesquiterpenes such as caryophyllene,
cis-a-bergamotene, and (E)— S-farnesene. Plants also produce the homoterpenes
DMNT and TMTT, compounds widely known for their ecological roles in attracting
parasitoids [5].

A second major group consists of fatty acid-derived green leaf volatiles (GLVs),
which include C6 aldehydes, alcohols, and esters such as (Z) 3 hexenol, (E) 2 hexenal,
n-hexanal, and (Z) 3 hexenyl acetate. These compounds are responsible for the
characteristic “cut grass” odor and are released within seconds of tissue disruption

13
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[34]. Additional important VOCs include phenolics and benzenoids such as methyl
salicylate (MeSA) and indole, both of which play key roles in defense and long-
distance signaling.

The biosynthesis of many stress-related volatiles follows the oxylipin pathway.
After mechanical injury or herbivore feeding, lipases release linoleic and a-linolenic
acids from chloroplast membranes. These are converted by lipoxygenase (LOX)
into 13-hydroperoxides, which are subsequently cleaved by 13-hydroperoxide lyase
(13-HPL) to generate the C6 aldehydes n-hexanal and (Z) 3 hexenal [35]. This
rapid biochemical sequence explains why GLVs are among the earliest detectable
indicators of damage.

Importantly, the oxylipin pathway forms a metabolic branching point. The
same 13-hydroperoxides required for GLV formation can alternatively feed into the
allene oxide synthase (AOS) branch that produces jasmonic acid (JA). Experiments
in Nicotiana attenuata have demonstrated a reciprocal trade-off between these
branches: silencing AOS reduces JA accumulation but enhances GLV emission,
whereas impairing HPL has the opposite effect [35]. This reflects a fine-scale
regulation of metabolic flux depending on the type and immediacy of the stress.

2.2.2 Ecological and Functional Roles

The emission of VOCs serves both direct and indirect defensive roles. Many
herbivore-induced plant volatiles (HIPVs) recruit predatory insects and parasitoids.
In a classical field experiment, Kessler and Baldwin showed that artificially aug-
menting the VOC plume of wild tobacco increased predation of herbivore eggs and
reduced overall herbivory by more than ninety percent [36]. Compounds such as
[-ocimene attract parasitoids including Aphytis melinus and Aphidius gifuensis, as
well as generalist predators, while methyl salicylate attracts spiders and predatory
bugs and mites and hoverflies [5].

Several VOCs also act directly on pathogens or herbivores. GLVs inhibit fungal
species including Botrytis cinerea and Aspergillus flavus [37], and terpenoids such
as linalool reduce oviposition in lepidopteran moths [36]. Abiotic stressors likewise
modulate volatile emissions: exposure to heat, ozone, or high light intensity
increases VOC release, and some compounds contribute to membrane stabilization
or antioxidant buffering. For example, certain GLVs mitigate cold-induced damage
in maize seedlings [7].

Volatile signals also mediate plant—plant communication. Neighboring individ-
uals can perceive and respond to volatiles emitted by damaged plants. In maize,
airborne indole emitted by damaged plants is taken up by nearby individuals and
converted into benzoxazinoid defense metabolites, providing enhanced protection
against subsequent attack [38].

14
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2.2.3 Determinants of VOC Emission Profiles

The qualitative and quantitative composition of a plant’s VOC blend depends
strongly on both the elicitor and ambient conditions. Biotic triggers include
herbivore feeding such as by Spodoptera littoralis [39] and pathogen infection [40],
while mechanical wounding alone is sufficient to generate a rapid GLV burst [11].
Abiotic elicitors such as heat and ozone further modulate the response [35].

Once induced, VOC emission rates depend on environmental parameters. Light
availability is a dominant factor: emissions occur almost exclusively during the
photophase and increase proportionally with light intensity. Temperature strongly
modulates emission kinetics, with an optimal range around twenty-two to twenty-
seven degrees Celsius, while humidity influences both stomatal conductance and
volatilization. In controlled experiments on maize, maximum emission occurred
around sixty percent relative humidity, and drought stress increased total volatile
output. Nutrient availability also influences emission, as fertilized plants release
higher amounts of volatiles independently of biomass [39].

2.2.4 Relevance for Biosensing

Because VOCs often constitute the earliest quantifiable indicators of plant stress
and routinely precede visible symptoms [34], they represent an attractive target for
noninvasive sensing. In engineering applications, detecting characteristic changes
in volatile fingerprints enables early diagnosis of pest outbreaks or physiological
stress. Low-cost metal oxide semiconductor (MOS) sensors can detect complex
volatile mixtures and therefore serve as compact and real-time detectors of VOC
emissions. Recent developments such as smartphone-based VOC sensors for the
detection of tomato late blight highlight the potential for deploying volatile sensing
technologies directly in agricultural environments [7].

This biological and ecological context motivates the central objective of this
work: assessing whether commercial MOS sensors can detect plant VOC responses
associated with biological activity under controlled experimental conditions.

2.2.5 Physicochemical Properties Relevant for VOC Sens-
ing

The detectability of plant VOCs by MOS sensors is governed by their physicochem-
ical properties, in particular vapor pressure, volatility, polarity, the presence of
oxygenated functional groups, and overall reducing power [1, 41, 34]. Volatility
determines how efficiently a compound partitions into the gas phase. According to
leaf-level emission models, the flux of a given VOC is directly linked to its vapor
pressure and diffusivity within the leaf, which is why highly volatile compounds
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dominate the gas phase under typical environmental conditions [41, 42]. GLVs and
many monoterpenes possess relatively high vapor pressures and therefore rapidly
accumulate in the headspace where they can interact with the sensor surface [34,
37, 35]. Their partitioning behavior can be expressed in terms of Henry’s constants,
with nonoxygenated terpenes and isoprene exhibiting high values associated with
strong tendencies to reside in the gas phase [41].

From the perspective of MOS sensors, oxygenated functional groups and their
associated redox properties are equally important. GLVs are fatty acid derivatives
composed mainly of C6 aldehydes and alcohols that act as reducing gases on
typical n-type metal oxides [34, 37]. When these molecules are oxidized on the
sensor surface, they donate electrons to the conduction band, decreasing the width
of the depletion layer and thus reducing the sensor resistance [20, 1]. Similar
redox-driven detection principles underlie many electrochemical and chemiresistive
sensor platforms, which monitor changes in electrical signals caused by surface
reactions of electroactive plant metabolites [43, 1].

Polarity further modulates adsorption and transport. More polar oxygenated
compounds such as aldehydes and alcohols interact strongly with surfaces and
water films, increasing their affinity for sensor and tubing surfaces but also leading
to losses in sampling systems if lines are not heated or passivated [34, 44]. In
contrast, less polar sesquiterpenes and larger terpenoids are more hydrophobic and
therefore often transmitted less efficiently through sampling systems and may show
slower equilibration with the gas phase [41, 34]. Overall, the combination of vapor
pressure, polarity, and functional group chemistry produces compound-specific
patterns of adsorption and redox reactivity on MOS sensors. These patterns give
rise to characteristic response fingerprints for different VOC blends, providing the
basis for using sensor arrays to detect stress-induced changes in plant emissions [1,
9, 10].

2.2.6 Temporal Dynamics and Biological Variability of
VOC Emissions

The temporal dynamics of VOC emissions provide essential diagnostic information
for biosensing applications because different chemical classes exhibit characteristic
release patterns linked to the biochemical processes responsible for their formation
[7]. GLVs constitute the fastest-emitted volatiles. Their production relies on rapid
cleavage of hydroperoxides rather than on de novo synthesis, leading to release
within seconds of herbivore attack or mechanical damage [35, 34, 37, 45]. In
controlled wounding experiments, GLV emissions peak almost instantaneously and
decay within minutes, forming a short transient pulse released both from damaged
sites and from intact tissues [46, 40, 11]. This immediate burst is dominated by a
narrow set of C6 aldehydes and alcohols and represents the sole volatile signature
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during the earliest stage of damage [45].

By contrast, terpenoids and benzenoids require de novo synthesis and therefore
accumulate more slowly [47, 40]. Their emission typically begins tens of minutes
to several hours after elicitation, and induced sesquiterpenes often do not reach
maximum levels until three to four hours following simulated herbivory [48, 45]. This
delay forms a second temporal phase that follows the initial GLV burst, producing
the well-established two-stage emission pattern characteristic of herbivory and
detectable in time-series data from MOS-based systems [45, 7].

Superimposed on these kinetic differences is substantial biological variability
in the intensity and composition of VOC emissions. Emission rates depend on
genotype and phenotypic plasticity, leading to notable variation in herbivore-induced
blends among plant varieties [9, 49]. Developmental stage is another important
factor; for instance, younger maize plants can emit more than twice the amount of
volatiles compared to older ones [50, 47]. Both damaged and undamaged tissues
contribute to induced emissions, as systemic release is frequently observed across
the plant canopy [51, 45]. Spatial heterogeneity also arises between above-ground
and below-ground tissues; root herbivores can stimulate the release of volatiles such
as (E) f-caryophyllene, which recruits natural enemies in the soil [6, 45]. Feeding
location and insect species strongly influence the induced blend, producing distinct
odor signatures for different herbivores and damage types [39, 52, 48]. Circadian
regulation further modulates emissions, with terpenoids and benzenoids being
released predominantly during the photophase and ceasing when the lights are off
(39, 45].

This combination of kinetic and biological sources of variation leads to substantial
heterogeneity in headspace VOC concentrations. Because plant responses integrate
stress type, severity, insect density, injury duration, and developmental stage, they
produce context-dependent volatile profiles that are challenging to standardize
under field conditions [10]. For MOS-based systems, this variability underscores
the need for multivariate sensing approaches that treat the VOC mixture as a
dynamic chemical fingerprint rather than as a set of individual markers. Sensor
arrays are capable of capturing these multidimensional patterns, enabling robust
discrimination of stress-induced volatiles despite the inherent biological variability

1].
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Chapter 3

Material and Methods

This chapter describes all experimental procedures, instrumentation, and data
processing steps used throughout the thesis.

For clarity and to avoid redundancy, the setups for all experiments (sheep
wool, greenhouse monitoring, and maize herbivory) are presented here, while their
biological motivation and scientific context are provided in the corresponding
Results sections (chapter 4).

3.1 Hardware

To address the challenge of VOC detection, the device implemented in this thesis
uses commercially available off-the-shelf components, including development boards
and SBC (Single Board Computer). This allowed for rapid production and use of
the device.

3.1.1 Sensors

One sensing unit is composed of two individual sensors, one for gas and one for
temperature and humidity. Both are integrated on individual breakout boards
(Adafruit Industries, New York, NY, USA), which are then electrically connected
using a perfboard support. Both sensors communicate with the I?C (Inter Integrated
Circuit) protocol, which requires only two wires, meaning a total of four, including
power and ground, are needed for the complete connection. This is done using a
four-conductor wire (Sensocord®-PUR 4 x 0.34 mm?)!, a Wire to Board Terminal
Block, and connectors to plug into a breadboard.

I'Kabeltronik Arthur Volland GmbH, Denkendorf, Germany
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Figure 3.1: Breakout boards of the VOC and environmental sensors used for data
collection adapted from Kattni Rembor, licensed under CC BY-SA 4.0

(Gas sensor

The SGP40 (Sensirion AG, Stéfa, Switzerland) MOS gas sensor (see Figure 3.1a) was
chosen as it provides a complete package of sensing elements, readout electronics and
humidity compensation. The sensor has a low-power consumption (2.6 mA at 3.3
V), can be sourced at low-cost and has been shown to reach 50 ppb accuracy when
used in conjunction with a GC (Gas Chromatography) column [32, 24]. The output
signal is a 16-bit unsigned integer in arbitrary units defined by the manufacturer as
ticks, proportional to the logarithm of the semiconductor’s resistance. It includes
a membrane to protect it from siloxane poisoning and four sensing pixels with
different doping to target a wide range of VOC [53, 54], it has been shown that the
protective membrane also affects the sensor’s dynamics and sensitivity [55, 24].

Temperature and humidity sensor

The effect of water vapor on MOS sensors is similar to that of a reducing gas
[15]; to decorrelate the output response, the SGP40 makes use of temperature
and humidity values as input parameters when receiving commands from the 12C
master.

The SHT31 (Sensirion AG, Stéafa, Switzerland) digital humidity and temperature
sensor (see Figure 3.1b) was selected for its good accuracy in both data outputs and
the low cost [56]. The version chosen is also covered by a 100um PTFE membrane
that provides IP67 protection against dust and water allowing the use in harsh
environments.
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3.1.2 Single Board Computer

The sensor data was collected using a Raspberry Pi 4 Model B Rev 1.4, 8GB
(Raspberry Pi Ltd., Cambridge, England), a SBC running Raspberry Pi OS Lite
equipped with WiFi connectivity, I?C bus and onboard storage with a Micro-SD
card. The control loop for the sensors was performed with a C script logging time
referenced data in a CSV (Comma Separated Value) file, the device terminal was

accessed with SSH (Secure Shell).

i 4 Model B
=

10: 2ABCB-RP14B
: 20953-RP14B.

Figure 3.2: Raspberry Pi 4B by Laserlicht on Wikimedia Commons , licensed
under CC BY-SA 4.0

3.1.3 Architecture

For the experimental setup, eight identical sensor modules needed to operate
simultaneously on a single I?C bus. Since the SHT31 can only use 0x44 or 0x45 and
the SP40 has a fixed address of 0x59, a multiplexer was required to avoid address
conflicts.

A simple I?C multiplexer breakout board, the TCA9548A (Adafruit Industries,
New York, NY, USA), was chosen for its availability, low cost, and because it
provides eight controllable ports that forward all I*C signals. Each port can be
individually enabled or disabled by sending the corresponding command to the
multiplexer’s address, which defaults to 0x70. This address can be modified by
shorting any of three pads on the PCB (Printed Circuit Board), allowing eight
possible addresses and enabling up to 64 identical devices to be connected to the
same 12C bus.

This was mounted on a breadboard, which was then inserted in a 3D-printed
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Figure 3.3: High-level schematic of the sensing setup. The Raspberry Pi communi-
cates via an I*C multiplexer (TCA9548A) with eight sensor modules (channels 0-7),
each containing an SGP40 and SHT31 sharing the same I?C bus and 5 V/GND

lines.

support that also housed the RPi%2. The assembly was then glued to a wooden
board, and connections between the sensor modules and the breadboard were
established using jumper wires. These wires were routed from the breadboard to
lever-type terminal blocks, which were mounted on 3D-printed holders®. From the
terminal blocks, proper cables described in subsection 3.1.1 were used to connect
to the sensor modules, ensuring reliable electrical contact while allowing easy
disconnection and reconfiguration of the setup, the simplified wiring diagram is
included in Figure 3.3, while a picture of the setup is provided in Figure 3.4.

2By user nilok (Printables.com), licensed under CC BY-NC-SA 4.0 [57].

3Parametric lever wire connector mount by user TheOneTruePatrick (Printables.com), licensed
under CC BY 4.0 [58].
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Figure 3.4: The experimental sensing platform developed for rapid connection of
sensor modules with three of them connected.

3.2 Software

The software developed for this thesis consists of two main components, correspond-
ing to the hardware on which it was executed and the specific role it fulfilled:

o Data acquisition on the RPi. The main logging program was written
in C and relied on manufacturer-provided Sensirion libraries for low-level
communication with the sensors, together with custom routines developed
specifically for this project. The program handled sensor initialization, 12C
communication, timing, error checking, oversampling, and periodic storage of
measurements in CSV format.

o Data processing on a workstation. All analysis was conducted in MAT-
LAB R2025a (The MathWorks Inc., Natick, Massachusetts, USA). A collection
of MATLARB scripts was implemented to import, visualize, and process the
time-series data, including exploratory plotting, environmental correlation
analysis, and GC-MS alignment for the herbivory experiment.

3.2.1 Data Acquisition

The embedded C program running on the RPi continuously read values from the
SGP40 and SHT31 sensors through the I*C multiplexer. Each acquisition cycle
produced temperature, relative humidity, and VOC-related measurements, which
were timestamped using the RPi’s system clock and written to a local CSV file.
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Timestamps followed the ISO 8601 format (e.g. 1999-03-22T05:06:07). For correct
timekeeping, the RPi required an active network connection at least once after
boot to synchronize with an NTP server, which occasionally posed challenges on
restricted IoT-only networks.

Full source code is included in Appendix B; the description below summarizes
the main logic.

Sensirion libraries

Communication with the SGP40 and SHT31 sensors was handled using the official
Sensirion Raspberry Pi I?C driver libraries*. These libraries provide a hardware-
agnostic abstraction layer for 12C communication, CRC validation, timing, and
device-specific measurement commands. The following headers were included:

#include "libraries/sensirion_common.h"
#include "libraries/sensirion_i2c.h'

s|#include "libraries/sensirion i2c¢_hal.h'

#include "libraries/sgp40_ i2c.h"

s|#include "libraries/sht3x i2c.h"

Their roles can be summarized as follows:

o sensirion_common.h — shared utilities (CRC checks, byte-order helpers,
error codes).

e sensirion_i2c.h — generic 12C protocol functions used by all Sensirion
devices.

e sensirion_i2c_hal.h — hardware abstraction layer that maps generic I?C
calls to the Raspberry Pi’s I?C device driver.

o sgp40_i2c.h — device-specific driver implementing the official SGP40 mea-
surement sequences, including humidity-compensation input handling.

e sht3x_i2c.h — driver for the SHT31, providing temperature and humidity
measurement commands and repeated-start I°C transaction handling.

Using these manufacturer libraries ensured compliance with the recommended
sensor command sequences and timing constraints, reduced the likelihood of com-
munication errors, and provided reliable humidity and VOC measurements for all
experiments.

4Available at https://github.com/Sensirion/raspberry-pi-i2c-sgp40 and https:
//github.com/Sensirion/raspberry-pi-i2c-sht3x.
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Oversampling and logging

To reduce the influence of short-term noise, the program performed oversampling by
averaging multiple consecutive readings from each sensor port. Two configuration
parameters controlled this behavior:

o oversample count (default: 5), the number of raw readings averaged into a single
logged data-point,

e sht31 humidity offset (default: 0), an optional correction applied to the SHT31
humidity reading.

Both parameters were defined in a dedicated configuration file, allowing for run-
time adjustments of sampling behavior without needing recompiling nor modifying
the core acquisition logic.

The choice of a one-second raw sampling interval was based on the manufac-
turer’s recommended measurement rate for the SGP40, ensuring that the operating
conditions matched those specified in the datasheet. The oversampling routine
simply averaged multiple consecutive one-second readings and therefore did not
modify the intrinsic sensor sampling behavior. Instead, the effective logging rate
was determined by the configurable oversample_count parameter.

This structure allowed the system to balance temporal resolution and noise
reduction: a low oversample_count provided finer resolution for rapid tests, whereas
a higher value reduced noise and kept file sizes manageable during multi-hour
experiments.

The sht31_humidity_offset parameter was introduced during early development,
when the platform was tested using a different humidity sensor model. The two
humidity sensors exhibited a small but systematic offset, and this parameter
enabled evaluating whether artificially correcting the SHT31 reading affected the
downstream humidity-compensation algorithm of the SGP40. Although unnecessary
in the final configuration (where only identical SHT31 sensors were used), the
parameter was retained for completeness.

Main sampling loop

At each iteration, the program collected and accumulated data from all sensor
channels, applied oversampling, timestamped the result, and wrote a single row to
disk. Each CSV file contained timestamped measurements of temperature, relative
humidity, and raw VOC ticks for all eight sensor ports. To ensure traceability
across batches, filenames incorporated both the timestamp and an experiment label
supplied as a command-line argument (via arge/argv).
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while (1) {
for (int i = 0; i < oversample_count; i++) {
sample_all_ports(accum, sht31_ humidity_offset);
sensirion_i2c_hal sleep_ usec(1000000); // 1 second delay

}

get__timestamp (timestamp, sizeof (timestamp));
finalize averages(logfile , accum, oversample count, timestamp):;
reset__accumulators (accum) ;

At the beginning of each new log file, the program automatically generated a
CSV header row containing the timestamp and, for each port, the corresponding
temperature (T#), humidity (H#), and VOC (VOC#) columns. This ensured a
consistent column structure across all files and allowed ports marked as NaN (e.g.,
disconnected sensors) to be handled seamlessly during MATLAB import and batch
processing.

The application was designed with modularity in mind. During early devel-
opment, support was implemented for configuring different 12C addresses for the
multiplexer, allowing in principle up to 64 sensor modules to be attached to the
same bus. Although this full capability was not required for the present work, the
structure was retained for future scalability. A similar modular principle motivated
the implementation of a hot-swapping feature: at each iteration, the program
scanned the 12C bus to detect the presence or absence of sensor modules. This
allowed sensors to be unplugged and reinserted while the script was running, with-
out requiring a restart of the data acquisition process. In particular, for ports that
did not respond to mux_i2c_detect(), all measurable parameters were assigned the
value NaN (Not a Number). This convention is natively interpreted by MATLAB
as missing data and allowed all logged CSV files to maintain fixed-width rows with
consistent column structure, simplifying subsequent parsing and analysis.

3.2.2 Data Processing

The complete processing scripts are reported in Appendix C. The processing
pipeline described below was applied identically to all experiments unless otherwise
specified, with only minor additions introduced when required by the structure of
a specific dataset.

Importing and structuring the data

Each CSV file was imported using the readtable function, and timestamp strings
were converted into native datetime objects to ensure proper temporal alignment.
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Because the number of active sensing ports varied between experiments, the
script automatically inferred the number of channels by dividing the number of
non-timestamp columns by three, corresponding to temperature, humidity, and
VOC readings for each port. The signals were then reorganized into dedicated
matrices, while non-existent or unused channels were represented as NaN. This
approach ensured that all datasets were handled uniformly without the need for
experiment-specific code branching.

In the wool measurements, some recordings were split across consecutive files
due to acquisition restarts. In these cases the tables were concatenated and sorted
by timestamp before further processing, effectively reconstructing a continuous
time series and preventing discontinuities in downstream analyses.

Transformation of the VOC signal

The SGP40 raw VOC output (VOCies) corresponds to an internal, logarithmic
representation of the sensor resistance R. Since electrical conductance G is inversely

proportional to resistance,

1
G=—
R?

a higher VOC concentration (leading to a reduction in R) results in a decrease in
the raw tick value. To obtain a quantity that increases with gas concentration and
is proportional to the logarithm of the conductance, the VOC signal was inverted:

Glog(t) = — VOCuae(t) o log(G(t)).

This simple transformation preserves the logarithmic response while producing a
visually intuitive signal in which rising VOC levels correspond to upward shifts in
the processed trace.

Noise reduction and smoothing

The raw time-series signals exhibited high-frequency noise originating from analogue-
to-digital conversion and minor environmental fluctuations. To suppress this noise
while preserving the slower dynamics relevant for VOC emission processes, a 20-
sample moving average (MATLAB movmean) was applied to the VOC, temperature,
and humidity channels:

10
z(t + k).
k=—9

Lsmooth (t) == 270

The window length was selected empirically as a compromise between noise re-
duction and preservation of characteristic rising edges associated with sample
introduction or concentration changes.
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Port identification and labeling

Each sensing port corresponded to a fixed physical sampling position within the
measurement setup (e.g. individual wool samples, clean-air references, or plant
chambers). A port-to-label mapping was defined at the beginning of each analysis
using a MATLAB containers.Map object, ensuring consistent traceability across
datasets. For the induced-VOC plant experiments, ports were additionally classified
as either control or treatment channels to enable color grouping in the visualization
phase.

Time-window selection (plant experiments only)

In the induced-VOC experiments on maize, only part of the full recording period
was relevant for inter-batch comparison. For consistency, the displayed time window
was trimmed to fixed daytime intervals defined by the recording day. Batch 1 was
plotted from the beginning of the measurement until 18:00 on the next day, while
Batch 2 was trimmed to the same interval extended to 18:30. This ensured that
both batches were visualized over matching daily periods.

Visualization and export

For each dataset, three time-series plots were generated showing the processed
VOC signal, relative humidity, and temperature. In the wool experiments, color
assignment was based on the perceptually uniform linspecer palette, while in the
plant experiments a set of blue and green shades was used to distinguish control
from treatment channels. Markers were added at regular intervals along each trace
to aid visual inspection, and an interactive legend allowed individual curves to be
toggled on or off.

All figures were exported using a dedicated helper function that standardized
the aspect ratio, font sizes, and line widths prior to producing vector PDF output.
Titles were removed in the exported version to facilitate integration into the
manuscript layout, and file names were generated automatically from the experiment
descriptors. This procedure ensured consistent visual appearance and formatting
across all figures included in this work.

3.2.3 Processing of GC-MS Data

Volatile organic compounds were collected using dynamic headspace sampling
on Tenax-based sorbent tubes, as described in the corresponding methodological
sections for the wool and herbivory experiments. Briefly, approximately 1 g of
sheep wool or an intact potted maize plant was placed on aluminum foil under
a glass dome. Synthetic air was pumped into the top of the dome at a rate of
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300 mL min~?!, while a simultaneous vacuum of 200 mL min~' was applied to a

thermal-desorption tube (Tenax TA) positioned in one of the side outlets. This
setup ensured a continuous flow of purified air across the sample and efficient
trapping of emitted VOCs. Each volatile collection lasted 2 h and was replicated
across multiple batches, following the same airflow conditions as those used for the
sensor recordings.

All laboratory procedures required for thermal desorption and chromatographic
separation were performed by experienced staff at the hosting laboratory (UZH,
Zirich, Switzerland), including Dr. Dani Lucas Barbosa. Sorbent tubes were
desorbed for 10 min at 250°C and cryo-focused at —20°C. Secondary desorption
was performed at a ramp rate of 40°C s™! to a final temperature of 280°C, held for
10 min. The released compounds were transferred (split ratio 1:4) onto a non-polar

gas-chromatography column operated with helium as carrier gas at 1 mL min .

The GC oven was programmed from 40°C (5 min hold) to 250°C (8 min hold)
at 5°C min~!. The MS interface and ion source were maintained at 250°C, and
electron ionization was set to 70 eV. Mass spectra were acquired in the m/z 35-400
range at 4.7 scans s71. A standard n-alkane mixture (Cg—Cyg, 10 pg mL™!) was
run under identical conditions to compute Al (Arithmetic retention Indices) for
compound annotation.

For each sample, the GC-MS output consisted of a peak table containing
retention times, tentative compound identities, and peak intensities. The raw data
were pre-processed using the MetAlign—-MSClust pipeline [59, 60], which performs
baseline correction, noise removal, chromatogram alignment, and clustering of
co-eluting ions into reconstructed mass spectra of putative compounds. Only
aligned peaks detected between 5 and 25 min and within the 55-400 m/z range
were retained for downstream analysis. Tentative annotation was performed by
comparing both mass spectra and experimentally determined Al values with entries
from the Wageningen Mass Spectral Database of Natural Products and the NIST
library. For each compound, a representative diagnostic ion was selected as the
quantitative feature. Peaks with intensities not exceeding the background were
excluded.

Peak-intensities tables were exported in CSV format and prepared for multivari-
ate analysis by the author. Data were formatted according to the requirements of
the METABOANALYST online platform (https://www.metaboanalyst.ca/), with
samples as rows, VOC features as variables, and metadata specifying treatment
and batch. Statistical processing included log;g transformation and autoscaling
(mean-centering and division by the standard deviation) to stabilize variance across
compounds of different abundances. Heatmaps were used to visualize global emis-
sion patterns and inspect differences between Spodoptera-damaged and control
plants.
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It is important to note that GC-MS peak intensities cannot be compared quan-
titatively between different compounds because ionization efficiency and detector
response vary across analytes. Meaningful comparisons are therefore restricted to
within-compound differences across samples. Since the GC-MS dataset served as
a qualitative chemical reference rather than a quantitative calibration source, no
attempt was made to align GC-MS intensities with the VOC sensor time series.
Instead, the chromatographic profiles were used to contextualize sensor signals and
support qualitative interpretation of emission strength across samples.

Module Overview

Input Data Type Available Modules (click on a module to proceed, or scroll down to explore a total of 18 modules including utilities)

LC-MS Spectra
(mzML, mzXML or mzData)

Spectra Processing
[LC-MS w/wo MS2]

MS Peaks
(peak list or intensity table)

Peak Annotation Functional Analysis Functional Meta-analysis
[MS2-DDA/DIA] [LC-MS] [LC-MS]

G Format o . o .
eneric Forma Statistical Analysis Statistical Analysis

Biomarker Analysis Dose Response Analysis Statistical Meta-analysis
[one factor] [metadata table]

Causal Analysis
[Mendelian randomization]

(.csv or .t table files)

Annotated Features

(metabolite list or table)

Link to Genomics & Phenotypes
(metabolite list)

Figure 3.5: Screenshot of the https://www.metaboanalyst.ca/ interface
illustrating the available analysis modules. In this work, the Statistical Analysis
(metadata table) module was used for processing the GC-MS peak-area data.

3.3 Experimental Setups

This section describes all experimental configurations used throughout this work,
including sensor characterization tests, sheep wool VOC sampling, greenhouse
monitoring, and the maize herbivory experiment. All experiments employed the
sensing platform detailed in Chapter 3, and data were collected and processed
following the workflow outlined in Section 3.2.1.

3.3.1 Sensor Characterization Tests

Two preliminary tests were performed to validate sensor operation and to assess
cross-sensitivity to humidity. These characterizations ensured correct functionality
before conducting the biological experiments.
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Ethanol-based transient response test

As recommended in the SGP Design-In Guide by Sensirion [61], the first functional
test consisted of exposing the sensor array to a brief pulse of ethanol-based vapors
released from a permanent marker. The VOC source was positioned approximately
10cm from the sensors, measured under ambient condition without enclosure,
to generate a short, localized perturbation. This test served to confirm correct
initialization and communication of all sensor modules, and to evaluate their
transient response characteristics (see Section 2.1.4).
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Figure 3.6: Transient response of the VOC channel to a short ethanol pulse
released near the sensors.

Humidity disturbance test

A second characterization assessed the effect of abrupt humidity changes. The
sensors were positioned above a beaker containing hot water (approximately 60°C)
covered with aluminium foil to retain water vapor. This configuration produced a
rapid rise in relative humidity, approaching saturation ( 100%). The objective was
to evaluate the magnitude of humidity-induced variations in the compensated VOC
signal and to verify the effectiveness of the manufacturer’s humidity compensation
algorithm [53].

3.3.2 Sheep Wool VOC Collection

This section describes the dynamic headspace sampling protocol used to collect
volatiles from sheep wool, whose results are presented in section 4.2.
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The setup used for the wool experiments is shown in Figure 3.7. Eight glass
domes were placed on freshly replaced aluminium foil, each equipped with four
lower ports and one upper port. Synthetic air (80% Ng, 20% O2) was supplied
from a pressurized cylinder through a PTFE manifold split into eight parallel
channels. Each line incorporated a rotameter to adjust and maintain an inflow of
300mL min~!, introduced from the top of each dome.

(a) Preliminary setup used to determine optimal sampling  (b) Detail of a collection
duration. unit with wool sample, sen-
sor module, and sorbent
tube.

Figure 3.7: Experimental setup for sheep wool VOC sampling.

Volatiles were collected using Tenax TA sorbent tubes (8 mm OD, 6 mm ID)
inserted into one of the lower dome ports. Chamber air was drawn through each
tube at 200mL min~!, generating slight overpressure to prevent contamination.
Flow rates were verified using a secondary flow meter before the tubes converged
into one of two pumps (four chambers per pump).

Sensor modules were placed inside each dome, with cables passed through a
lower port and sealed with aluminium foil. Based on preliminary tests, a sampling
duration of two hours was selected.

A total of eight batches (54 samples) were collected. Each batch included one
background measurement containing only an empty Petri dish. Between batches,
domes were rinsed under a fume hood using both polar and non-polar solvents and
placed on fresh aluminium foil before the next sampling sequence.
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3.3.3 Greenhouse Monitoring Experiment

The following setup describes the configuration used in the greenhouse monitoring
experiments, which are analyzed in Section 4.3.

A long-term monitoring campaign was conducted inside the greenhouse in which
the maize plants for the herbivory study were grown (Agroscope, Reckenholz,
Zurich). Two sensor modules were enclosed in transparent plexiglass tubes: one
containing a healthy maize plant at the V3 stage, and the other containing only
moist soil in an identical pot. The tubes were nearly sealed except for three
circular 1cm holes, creating a semi-closed environment that allowed accumulation
of VOCs and humidity. Two additional sensors were placed in the open greenhouse
atmosphere to record background conditions.

(a) Sensor placement on the first day of (b) Enclosures after one week, showing

monitoring. humidity buildup in the plant-containing
tube.

Figure 3.8: Greenhouse monitoring configuration.

Greenhouse environmental conditions varied due to automatic ventilation,
weather fluctuations, and supplemental lighting. All sensors logged data continu-
ously using the same pipeline as in the laboratory experiments, enabling comparison
among (i) a confined plant environment, (ii) a confined soil environment, and (iii)
open-air greenhouse conditions.

32



Material and Methods

3.3.4 Extended Four-Tube Greenhouse Setup

To assess the reproducibility of the observations made in the initial two-tube
greenhouse experiment, an extended monitoring trial was conducted from 4 August
to 20 August inside the same greenhouse facility (Agroscope, Reckenholz, Zurich).
Four transparent plexiglass enclosures of identical geometry were employed. All
tubes were initially filled with moist soil; in two of them, maize seeds were sown at
the start of the experiment and germinated within the first days, producing two
healthy V3 plants. A third tube contained only moist soil, while the fourth enclosure
held an empty plastic pot without soil. All four sensor modules deployed in this trial
were factory-new to eliminate the influence of previous VOC exposure or long-term
drift. The enclosures were placed side by side on a single metal greenhouse bench

(a) Configuration at the beginning of the (b) System shortly after the watering
extended trial. All four tubes contained event on 13 August. Increased humidity
moist soil; maize seeds were sown in the is visible in the plant tubes.

first two enclosures (left).

Figure 3.9: Photographic documentation of the four-tube greenhouse setup.

and experienced comparable illumination from overhead greenhouse lighting and
natural sunlight. Each tube was semi-closed, with three circular ventilation holes
(1 cm diameter), creating a confined headspace in which humidity and volatiles
could accumulate. Temperature inside the enclosures remained highly similar due to
their identical geometry and shared exposure conditions, whereas relative humidity
varied depending on tube contents and watering events.
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Photographs documenting the physical configuration of the system at the begin-
ning of the experiment and after a mid-experiment watering event are shown in
Figure 3.9a and Figure 3.9b. The state of the growing plants toward the end of the
trial is shown in Figure 3.10. All four sensor modules logged VOC, humidity, and
temperature data continuously using the same acquisition routines described in
Section 3.2.1.

Figure 3.10: Enclosures on 18 August. Two V3 maize plants have developed in
the leftmost tubes. Moisture condensation is clearly visible in the plant enclosures.

3.3.5 Maize Herbivory Experiment

This section details the controlled laboratory herbivory setup used to investigate
induced maize volatiles (results in Section 4.4).

The herbivory experiment used eggs of Spodoptera littoralis obtained from
Prof. Ted Turlings (Université de Neuchétel). Upon arrival, eggs were placed in
a mesh cage together with five maize plantlets (Figures 3.11-3.14). Excess egg
batches were removed to avoid overcrowding. Larvae hatched after 3-4 days and
consumed most of the leaf mesophyll, confirming successful rearing.

Eight enlarged glass domes were used, following the same principles as the
wool experiment but scaled for whole maize plants. Maize (Zea mays L., cultivar
Pioneer® P9610) was grown for 12 days in 8 cm pots and watered every four days.
On the day of the experiment, plants were watered with 50 mL and covered with
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(a) Egg clusters received in Petri dishes. (b) Detail of an individual egg batch.

Figure 3.11: Overview and detail of S. [ittoralis eggs used in the herbivory
experiment.

Figure 3.12: Laboratory configuration for maize herbivory VOC sampling.

aluminium foil to minimize soil VOC emissions.

Three first-instar larvae were placed on each plant and allowed to feed freely
for 20-22 hours before VOC sampling. Feeding continued during the two-hour
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forced-air sampling period, resulting in a total herbivory duration of approximately
24 hours.

Figure 3.13: Mesh cage containing Figure 3.14: Skeletonized leaves af-
maize plantlets and eggs. ter larval feeding.

Synthetic air was supplied and extracted using rotameters connected to a pres-
surized cylinder and vacuum pump, maintaining constant chamber pressure. The
same MOS sensor modules were used for continuous VOC monitoring. Four of the
eight chambers served as undamaged controls. GC-MS sampling was synchronized
with the final two hours of forced-air collection. Temperature and humidity were
recorded using the integrated sensors.

After sampling, larvae were removed and above-ground biomass was measured
for subsequent GC-MS data normalization.
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Chapter 4

Results and Discussion

4.1 Sensor characteristics

To explore and understand the performance of the MOS sensors, a set of simple
experiments was performed, targeting known weak points such as drift, noise, and
humidity influence.

4.1.1 Results and Discussion

The output response from the ink test is shown in Figure 3.6. The sensor exhib-
ited a rapid increase in signal, followed by a quick recovery, consistent with the
manufacturer’s specifications. The rise time was below 30 s, and recovery occurred
within approximately one minute [61]. At its maximum, the conductance increased
by over 4400 ticks relative to the clean air baseline, while the relative humidity rose
by only 1%. This confirmed the expected sensitivity to volatile compounds and
indicated low cross-sensitivity to humidity. Moreover, the reproducible response
validated both the hardware configuration and data acquisition pipeline.

A qualitative humidity control was performed to assess whether abrupt mois-
ture changes could explain the large VOC-like events observed later in biological
experiments. During the test, relative humidity was increased by more than 40%,
approaching saturation. Despite this large stimulus, the compensated VOC signal
changed by only around 300 ticks (see Figure 4.1), compared with the ~4400 tick
response elicited by a small ethanol VOC pulse. Although the uncompensated
raw output was not recorded in this test, the small amplitude of the compensated
signal under such extreme humidity conditions provides qualitative evidence that
humidity variation alone is unlikely to account for the major signal changes ob-
served in subsequent experiments. Consequently, large events in the biological
experiments are more plausibly attributed to genuine VOC fluctuations or other
experimental perturbations, rather than to uncompensated humidity artefacts alone.
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Figure 4.1: Response of the VOC channel to a rapid increase in relative humidity.
The humidity was raised from approximately 60% to nearly 100% using a beaker
of hot water. Only a small variation in signal intensity (~300 ticks) was observed,
confirming the low humidity cross-sensitivity of the sensor.

This interpretation is consistent with the on-chip compensation strategy described
by Riiffer et al. [53], which corrects most humidity-related conductance shifts using
the co-located RH measurement.

A brief transient response was visible at the onset of the humidity increase.
Although the temporal shape of this signal resembles that of a typical VOC
response, its amplitude was more than an order of magnitude smaller. This
behavior is consistent with a short-lived physical perturbation, such as minor
thermal or diffusion gradients near the sensing surface, rather than a genuine
chemical interaction with the sensing layer. Long-term humidity effects on metal-
oxide sensors are well documented and involve gradual changes in surface chemistry
through the adsorption of physisorbed and chemisorbed water [16], typically leading
to slower and more sustained drifts than those observed here. The combination
of a small amplitude and rapid relaxation therefore supports the conclusion that
humidity fluctuations alone cannot account for the much larger VOC-like signals
observed in later biological experiments.

Overall, these preliminary characterizations confirmed that the sensor platform
behaved as expected under simple test conditions. The strong and reversible
response to ethanol vapors demonstrated high reactivity to volatile compounds,
while the limited effect of large humidity variations indicated robust performance in
varying environmental conditions. These results provided the necessary confidence
to proceed with more complex biological experiments, where the sensors would be

38



Results and Discussion

exposed to plant-emitted VOC under controlled laboratory settings.

4.2 Sheep wool VOC Preliminary Experiment

In this section, the sensor system is validated through a preliminary experiment
conducted on sheep wool samples. The study had two objectives: (i) to assess the
performance of the sensor array under realistic measurement conditions, and (ii)
with the dynamic headspace sampling workflow introduced in subsection 3.3.2 and
used later in the main experiment of this thesis.

Before presenting the results, the following background provides the biological
and ecological motivation for analyzing sheep wool volatiles.

4.2.1 Background

This work was carried out as part of a broader project following the research of
Brok et al. [62], which aims to reduce damage caused by biting midges of the genus
Culicoides (Diptera: Ceratopogonidae). These insects are vectors of pathogens in
the livestock industry, which can potentially cause disease to animals such as the
bluetongue virus and can also trigger allergic reactions. Similar to mosquitoes,
biting midges locate their hosts by detecting body odors and exhaled breath, which
partly explains why some individuals are more attractive to these blood-feeding
insects than others. This variation is mainly driven by differences in the skin
microbiome, since bacteria are largely responsible for producing the VOC that form
the odor bouquet of humans and animals.
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Figure 4.2: Representation of high/low attractiveness (left/right) of different
sheep odors to biting midges. Created with BioRender.
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In the first phase of the project, sheep were washed with bacterial strains
previously shown to reduce host attractiveness. In the phase reported here, wool
samples from treated animals were collected and analyzed to characterize their
volatile organic compound emissions. VOC were sampled using dynamic headspace
collection coupled with GC-MS analysis to be performed at a later stage. The sensor
system was placed inside the measurement chamber with the wool samples to detect
and monitor the released compounds. This preliminary study thus served both to
validate sensor performance under realistic conditions and to provide familiarity
with the experimental workflow employed in the main part of this thesis.

4.2.2 Results and Discussion

An example of an unforeseen event occurred during Batch 1, when the compressed air
supply bottle ran out before the end of the collection period. This was immediately
evident from the pressure gauge on the tank, but it was also clearly reflected in the
sensor data. As shown in Figure 4.3, the gradual reduction of airflow corresponds
to a noticeable rise in the blank signal (pink), which can be explained by the
progressive inflow of laboratory air, characterized by a higher VOC concentration
than the supplied synthetic air. In this sense, the sensor system acted not only as
a VOC detector but also as an online diagnostic tool for monitoring the integrity
of the experimental setup.
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Figure 4.3: Detailed time-series of Batch 1

The presence of the sensors therefore helped pinpoint the timing of the problem,
enabling a prompt decision to repeat the collection. However, the second batch also
encountered a similar issue (Figure A.3a), when the backup air tank used to rerun
Batch 1 was depleted during sampling. In both cases, the signal patterns were

40



Results and Discussion

consistent with a sudden shift in ambient composition, confirming the system’s
responsiveness to minor variations in air purity.

The moment of sample insertion, between 10:45 and 10:53, is also clearly visible
as a step-like increase in sensor response. This transient reflects both the brief
exposure of the sensors to unfiltered laboratory air during chamber opening and the
sudden introduction of the wool sample’s odor, which releases a burst of VOC into
the headspace. Although such abrupt changes are undesirable from a measurement
standpoint, they provided useful temporal markers for verifying signal alignment
and confirming that the sensors responded promptly to the presence of new volatiles.

A clear distinction can be observed between the earlier batches (Figures A.3—-A.5)
and the later ones (Figures A.6-A.9), as illustrated in the complete set of experi-
mental plots provided in Appendix A. In the earlier experiments, sensor recordings
began after or only immediately before sample introduction, resulting in the absence
of a well-defined pre-sample reference phase. In contrast, the later batches included
an initial period of clean synthetic air exposure prior to sample insertion, providing
a stable baseline for normalization and comparison. This procedural refinement
significantly improved data consistency, enabling clearer interpretation of sensor
responses to the introduced VOC.

4.3 Greenhouse Long-Term Monitoring Experi-
ment

The experimental configuration of this greenhouse trial is described in subsec-
tion 3.3.3. Here, we provide additional background to contextualize the biological
and environmental expectations before presenting the recorded sensor signals.

4.3.1 Background

Before conducting the controlled herbivory experiment, a preliminary multi-day
study was performed in the greenhouse to explore the temporal dynamics of plant-
emitted VOC under natural environmental fluctuations. While the laboratory
experiments described in the previous sections provide controlled and reproducible
conditions, understanding sensor behavior in more realistic environments is essential
for assessing the feasibility of continuous monitoring applications.

It is important to note that healthy, undamaged maize plants emit only very
small quantities of constitutive VOC and are considered nearly odorless under non-
stress conditions [11]. Therefore, large or distinct VOC signals were not expected
in the absence of herbivory. Instead, this exploratory trial focused on (i) observing
day—night oscillations in VOC and environmental variables, (ii) assessing sensor
behavior in the absence of stress-induced plant emissions, (iii) understanding how
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greenhouse temperature, humidity, lighting and ventilation dynamics influence the
measurements, and (iv) identifying potential sources of variability and confounding
signals prior to the controlled herbivory experiment. As no reference analytical
measurements (e.g. GC-MS) were available, the results are qualitative and serve
primarily as contextual information.

4.3.2 Results and Discussion

Figure 4.4 and Figure 4.5 present representative signals from the multi-day green-
house recording. Both sensors placed inside the plexiglass enclosures showed
substantially higher relative humidity than the sensors in the open greenhouse air,
reflecting reduced ventilation and the presence of moist soil in the tubes. Among
the enclosed sensors, the plant-containing tube consistently reached the highest
humidity values, in line with transpiration-driven moisture release, as it can be
seen in Figure 4.6a.
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Figure 4.4: Signals recorded inside the two enclosed plexiglass tubes. The tube
containing only moist soil (yellow line) shows slightly higher absolute values than
the tube containing a V3 maize plant (brown line).

Contrary to initial expectations, the soil-only tube exhibited a higher mean VOC-
related signal than the plant tube throughout the monitoring period. The difference
between the two traces remained relatively stable, oscillating between approximately
600 and 1300 ticks depending on environmental conditions. Importantly, the
temporal dynamics of both enclosed sensors were almost identical. Daily peaks in
signal intensity coincided with maxima in greenhouse temperature and light.

Because no GC-MS reference data were available, this offset cannot be interpreted
as a biological difference in VOC emission. Several non-exclusive explanations are
more plausible. First, moist soil and associated microbial activity can generate a
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Figure 4.5: Open-air greenhouse recordings. The two sensors placed in the
ambient greenhouse environment show lower signal amplitudes than the enclosed
soil tube, but peak values comparable to the plant enclosure.

substantial VOC background. Second, enclosure materials such as plastics may off-
gas more strongly under elevated temperatures. Third, plant physiological processes,
including transpiration and stomatal behavior, may influence air exchange within
the small headspace. The strong similarity in temporal patterns suggests that the
observed difference reflects a persistent baseline offset rather than plant-specific
emissions.

The sensors in the open greenhouse atmosphere behaved consistently with each
other. Their traces followed the same diurnal pattern as the enclosed sensors but
had significantly lower absolute amplitudes because of continuous dilution and
ventilation. Brief signal increases occurred when the greenhouse doors were opened,
illustrating the sensitivity of the system to airflow and environmental perturbations.
All four sensors shared the same temperature trend as shown in Figure 4.6b.

Two qualitative conclusions can be drawn from this first greenhouse trial. Sen-
sors exposed to the same microenvironment displayed nearly identical temporal
dynamics, which indicates good reproducibility of the sensing platform. In addition,
enclosure effects such as reduced airflow, elevated humidity, and accumulation
of background volatiles dominated the absolute magnitude of the VOC-related
signal. These observations highlighted the need for tighter control of airflow and
background sources in the subsequent herbivory experiment.

Overall, this initial trial confirmed that under semi-closed greenhouse conditions
the outputs of metal-oxide sensors are strongly influenced by environmental factors
and enclosure characteristics. Although no biological conclusions can be drawn
from these measurements, the experiment provided useful diagnostic insight into
long-term drift, humidity influence, and the role of enclosure geometry.
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(a) RH measured in the greenhouse atmosphere and inside the plant
and soil sampling tubes during the two-tube experiment.
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Figure 4.6: Environmental conditions during the greenhouse two-tube experiment:
(a) relative humidity and (b) temperature in the greenhouse atmosphere and in the
plant and soil enclosures.

Extended Four-Tube Greenhouse Trial

The extended four-tube greenhouse trial provided additional insight into long-term
sensor behaviour under semi-confined environmental conditions. In contrast to
the first two-tube experiment, where enclosed sensors exhibited different baseline
dynamics, the four enclosed sensors in this extended trial showed highly similar
temporal behaviour. All VOCs signals displayed pronounced diurnal oscillations
driven by greenhouse temperature and light cycles, increasing during warm, bright
periods and decreasing during the night.

Despite this shared temporal pattern, the four tubes differed in their absolute
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signal baselines. Throughout the experiment, the empty-pot enclosure consistently
produced the highest VOC signal. The soil-only enclosure showed intermediate
values, while the two plant tubes exhibited the lowest signals and remained closely
aligned. This ordering was maintained for almost the entire monitoring period.

The watering event on 13 August induced clear humidity changes that corre-
sponded with shifts in the relative signal offsets. Before watering, Plant B exhibited
lower humidity (approximately 72-88 percent) than Plant A (85-100 percent).
After irrigation, the humidity in Plant B rose to values similar to those in Plant A,
and the difference in VOC baseline between the two plant tubes decreased accord-
ingly. The soil-only enclosure showed a comparable rise in humidity, whereas the
empty-pot enclosure, which received minimal water, did not.

The full time series of VOC, humidity, and temperature measurements is pre-
sented in Figures 4.7a, 4.7b, and 4.7c. The strong similarity among the temporal
patterns, combined with the persistent baseline ordering, indicates that enclosure-
specific microenvironmental factors such as humidity accumulation, ventilation
characteristics, and surface off-gassing dominated the sensor response. The identity
of the enclosure with the highest baseline differed from that in the initial green-
house trial, which further suggests that these differences were determined by local
microenvironmental conditions rather than by variation between sensor modules.

Overall, this extended trial demonstrated that in semi-closed greenhouse envi-
ronments MOSs sensor respond primarily to humidity and airflow patterns rather
than to plant-emitted VOCs. An additional factor is that the plants themselves
likely emitted only very low constitutive levels of volatiles during this period. In
the absence of herbivory or other biotic or abiotic stress, most crop species release
only minimal quantities of green-leaf volatiles and terpenoids, with emission rates
several orders of magnitude lower than during induced defence responses [45, 48,
63]. Such “silent" emission profiles are typical for healthy, unstressed plants and
make detection challenging for low-cost sensors operating in variable environmental
conditions.

These observations motivated the use of strictly controlled laboratory conditions
in the herbivory experiment, where GC-MS reference measurements provided a
more reliable basis for interpreting sensor signals.
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(a) VOC signal from the four enclosures over the monitoring period.
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(b) Relative humidity inside the four enclosures. Watering induced
step-like increases in the plant and soil tubes.
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Figure 4.7: VOC and environmental measurements from the extended four-tube
greenhouse trial.
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4.4 Maize Herbivory

This section describes the main experiment of this thesis, briefly recalling the
concepts on plant VOCs introduced in section 2.2 and discussing the obtained
sensor measurements in relation to the GC-MS reference data. In addition, it
introduces essential background information on Spodoptera littoralis, the insect
species used in the experiments, to support understanding of the experimental
procedure and its biological relevance. The experimental conditions and sampling
protocol for the this experiment are detailed in subsection 3.3.5.

4.4.1 Background

Plant life relies on Volatile Organic Compound for continuous communication
within its ecosystem, playing critical roles in defense and signaling. In response
to mechanical damage or feeding by antagonists, plants release complex chemical
signals known as HIPVs [64]. These HIPVs function primarily as an indirect defense
mechanism, acting as chemical cues to attract the natural enemies (predators and
parasitoids) of the attacking herbivore. Additionally, HIPVs can prime the defenses
of neighboring or systemic plant tissues, enhancing resistance to future stress
[65]. VOC emission patterns are highly plastic and serve as sensitive, non-invasive
markers for monitoring biotic stress [9].

Maize (Zea mays L.) is widely utilized as a model system for investigating
chemical ecology and tritrophic interactions due to its global agricultural importance
and its robust, inducible volatile response [48, 63, 49, 50, 39]. Crucially, maize
production of specific volatiles is triggered by elicitors found in caterpillar oral
secretions, allowing the plant to differentiate herbivory from mere mechanical
damage [64].

The insect species Spodoptera littoralis (Boisduval), commonly known as the
Egyptian cotton leafworm, belongs to the class Insecta, order Lepidoptera, family
Noctuidae [66, 67]. It is a highly polyphagous pest of global agricultural concern,
known to feed on more than 100 plant species across over 40 families, including
key crops such as cotton, soybean, maize, tomato, and various vegetables and
ornamentals. Native to Africa, S. littoralis is now established throughout the
Mediterranean Basin, the Middle East, and parts of Southern Europe, where mild
winters allow it to persist year-round. Its wide host range and capacity to migrate
and reproduce under a range of climatic conditions make it a major threat to
temperate agriculture.
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(a) 1st (right) and early 2nd (b) 2nd (left) and early 3rd (c) 4th instar.
instar. instar.

Figure 4.8: S. littoralis instar stages. Photos by M. vd Straten © NPPO, The
Netherlands [67].

The larval stage is the most damaging phase of the life cycle. Newly hatched
larvae initially feed gregariously, scraping the epidermis from the underside of young
leaves, while later instars become solitary and consume entire leaf sections, leading
to defoliation and yield loss. Pupation occurs in the soil, and adults emerge as
nocturnal moths that are strong fliers and can disperse over considerable distances,
contributing to seasonal infestations [66, 67].

Beyond its economic impact, S. littoralis serves as a well-established model
organism for studying herbivory-induced plant responses, owing to its predictable
feeding behavior and the consistent induction of defense signaling in host plants
such as maize. Feeding damage or exposure to larval oral secretions, containing
specific elicitors like volicitin, triggers the production of HIPVs, including GLV
(Green Leaf Volatile), terpenoids, and indole [45, 48]. These compounds mediate
complex tritrophic interactions by attracting the natural enemies of the herbivore
and modulating the defensive state of neighboring plants. Consequently, S. lit-
toralis—maize interactions represent an ideal experimental model for investigating
plant volatile emission dynamics under controlled conditions.

Maize responds to S. littoralis damage by emitting characteristic HIPV blends.
This emission occurs in distinct phases: an immediate release of GLVs, fatty acid
derivatives such as (Z)-3-hexenal, (E)-2-hexenal, and (Z)-3-hexen-1-yl acetate,
which signal acute tissue damage. This initial burst is followed, hours later, by
the systemic release of newly synthesized compounds, primarily terpenoids and
aromatic compounds [48]. Key induced metabolites include homoterpenes like
DMNT ((E)-4,8-dimethyl-1,3,7-nonatriene), sesquiterpenes such as §-caryophyllene,
and indole, a shikimate-derived compound acting as a priming signal in maize [38,
51]. The specific profile of these induced metabolites (GLVs, terpenoids, indole)
varies depending on the maize genotype and the timing of the attack [49].

The distinct, time-dependent chemical signatures produced by maize during
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herbivory are critical targets for plant health monitoring [43]. To move HIPV
monitoring from controlled laboratory environments to practical field applications,
this research employs low-cost MOS (Metal Oxide Semiconductor) gas sensors
for rapid and continuous detection [1, 5]. To ensure the accuracy and reliability
of the data obtained from these lower-fidelity sensors, laboratory validation is
crucial. Therefore, performing controlled experiments using both the emerging
MOS sensing technology and the high-precision analytical capabilities of GC-MS
(Gas Chromatography—Mass Spectrometry) is necessary to reliably interpret the
complex HIPV profiles associated with S. littoralis herbivory in maize [5, 2|.

4.4.2 Results and Discussion

The results from the maize herbivory experiment revealed clear differences in
volatile emission dynamics between the two experimental batches, largely reflecting
the variability in larval feeding activity. In Batch 1, the larvae placed on the
plants during the evening did not feed overnight, and additional individuals were
introduced the following morning. Consistent with this limited early damage, both
the MOS sensor responses and the GC-MS reference data showed only minimal
induction in the Spodoptera-treated plants (SpoM). In particular, SpoM05 displayed
no detectable difference from the control maize (CM) plants in its GC-MS profile and
also showed no visible feeding marks, confirming the absence of herbivory-induced
VOC emission, thus it was classified as control.

To better illustrate the biological conditions underlying the contrasting VOC
profiles in the two batches, Figure 4.9 shows representative leaf damage on SpoM01
and SpoMO06 at the time of dynamic headspace sampling.
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(a) SpoMO01 (Batch 1). Only limited (b) SpoM06 (Batch 2). Substantial feed-
feeding damage was present at the time ing damage was already present at the
of dynamic headspace sampling. start of sampling.

Figure 4.9: Comparison of leaf damage between SpoMO01 (Batch 1) and SpoMO06
(Batch 2) at the time of dynamic headspace collection. The limited early feeding
in Batch 1 explains the weak and poorly structured VOC emissions, whereas the
sustained herbivory in Batch 2 produced stronger and more temporally coherent
VOC signatures.

Accordingly, the sensor curves of Batch 1 (Figure 4.13) remained nearly indis-
tinguishable between CM and SpoM chambers until after the beginning of the
photoperiod (Figure 4.13a). After this point, additional larvae were placed onto
the plants, visible as small drops in the VOC signal caused by handling the domes,
and feeding likely began shortly thereafter. The perturbations observed in the
conductance traces occurred only later, following the opening of the air supply
(Figure 4.10), consistent with the expected timing of induced volatile emission
occurring several hours after the onset of herbivory [48]. These transient features,
absent in CM, likely reflect the early stages of induced volatile release and may
have been amplified by the drop in relative humidity following the opening of the
air supply (Figure 4.13b). Temperature remained stable across ports and did not
appear to influence sensor behavior (Figure 4.13c).

Interestingly, CMO01 exhibited a marked increase in MOS sensor signal during the
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Figure 4.10: Zoomed view of VOC conductance during Batch 1, showing the
beginning of the photoperiod (lights on at 08:30) and the moment the air supply
was opened for dynamic headspace collection.

night period, a pattern not observed in the other control plants. The corresponding
GC-MS profile revealed substantially higher levels of 4-hydroxybenzaldehyde and
cyclosativene compared to the remaining CM and SpoM samples. Because CMO01
experienced no herbivory and showed no visible damage, this atypical emission
pattern is unlikely to be related to insect feeding. Instead, it may reflect localized
processes such as microbial activity on plant or pot surfaces (e.g., fungi or bac-
teria contributing phenolic and sesquiterpene volatiles)[68]. Without dedicated
microbiological data, this interpretation remains speculative, but it highlights that
control chambers can occasionally display VOC signatures that are not strictly
“background” in a biological sense.

In contrast, Batch 2 exhibited continuous herbivory from the start of the
recording period, resulting in more temporally structured VOC responses. While
all chambers showed the expected nocturnal decrease in VOC emission, a clear
daytime increase was evident primarily in SpoM06, which experienced the strongest
feeding activity (Figure 4.11). An exception was port 7 (CM04), which displayed
substantially higher conductance values than the other CM plants. This artifact
was traced back to the cleaning procedure between batches: a small amount of
ethanol was used to remove larvae from the glass dome of Batch 1, and insufficient
venting time likely resulted in residual vapors persisting inside the chamber at
the start of Batch 2. This affected the MOS sensor response but not the GC-MS
measurements as Tenax TA does not retain well molecules outside its range (from
n-Cg to n-Cyg). For this reason, the plotting scale for the Batch 2 VOC traces was
adjusted to prevent CM04 from dominating the y-axis. Notably, when the air supply
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Figure 4.11: Zoomed view of VOC conductance during Batch 2, from the moment
lights were turned on and highlighting the onset of dynamic headspace collection
when the air supply was opened.

was opened, the CM04 signal decreased sharply, although it did not return fully to
baseline levels during the experiment. The corresponding VOC conductance curves
are shown in Figure 4.14a. Relative humidity and temperature followed patterns
comparable to those observed in Batch 1 (Figure 4.14b and Figure 4.14c¢), indicating
that the differences between the batches stemmed primarily from herbivory progress
rather than environmental variation. Unlike Batch 1, no pronounced perturbation
was associated with the air-supply phase, likely because the plants had already
begun emitting induced volatiles prior to this event.

4.4.3 GC-MS Reference Data

The normalized GC-MS data (see Figure 4.12) revealed clear differences between the
two experimental batches, consistent with the distinct feeding patterns observed in
the sensor measurements. Overall, Batch 2 exhibited substantially higher amounts
of herbivory-related volatiles compared to Batch 1. This was expected, as larvae
in Batch 2 had been feeding continuously before and during sampling, whereas in
Batch 1 feeding only began shortly before the VOC collection period.

Across both batches, the chemical composition of the headspace was dominated
by three main classes of compounds: (i) green-leaf volatiles (GLVs) such as hexanal,
(E)-3-hexenal, and their acetate derivatives; (ii) terpenoids including limonene,
trans-f-ocimene, and DMNT; and (iii) minor contributions from aromatic com-
pounds and aldehydes. As expected for maize under herbivory, several terpenoids
showed particularly strong induction in SpoM samples of Batch 2, most notably
trans-$-ocimene, DMNT, and [-farnesene, which are characteristic markers of
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systemic HIPV release. Notably, within Batch 2, SpoM06 stood out by producing
particularly high amounts of a-bergamotene and sabinene, sesquiterpenes associated
with strong or progressing herbivore damage [46, 45].

batch
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Figure 4.12: Autoscaled heatmap of GC-MS peak intensities across CM and
SpoM samples in the two experimental batches.
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In contrast, Batch 1 showed overall lower abundances for these compounds,
reflecting the limited damage prior to sampling. A notable exception was CMO1,
which displayed elevated amounts of 4-hydroxybenzaldehyde and cyclosativene
relative to the other controls. Since no herbivory occurred on this plant, this atypical
profile likely reflects non-herbivory-related processes such as local microbial activity
or individual plant metabolic variation. Apart from this outlier, the CM samples
of both batches clustered tightly and showed consistently low emission across all
major compound classes, confirming that the observed increases in Batch 2 arise
from active larval feeding rather than environmental differences between batches.

A further difference between the batches is visible in the GC-MS data: the control
plants of Batch 2 showed slightly higher amounts of several volatiles, particularly
hexanal and nonanal, compared to the controls of Batch 1. Since these GLVs often
increase in plants exposed to airborne cues from damaged neighbors, this elevation
may reflect a mild induction caused by volatiles released during the preceding
herbivory experiment. As shown by Skoczek et al. [63], several of these aldehydes
are inducible compounds whose emission increases under both direct feeding and
exposure to HIPVs from neighboring plants.

Overall, the maize herbivory experiments showed that low-cost MOS sensors
can resolve time-dependent changes in plant volatile emissions associated with
S. littoralis feeding. When herbivory was sustained (Batch 2), the sensors differ-
entiated actively damaged plants from controls, in agreement with the GC-MS
data that revealed strong induction of characteristic HIPV markers such as GLVs,
terpenoids, and DMNT. At the same time, the experiments highlighted important
sources of variability and potential confounding factors, including plant-to-plant
differences, residual contaminants in the enclosures, and low-level induction of
control plants by airborne cues. These findings underline both the promise and the
current limitations of using commercial MOS devices for ecological VOC monitoring.
The next chapter summarizes the main outcomes of this work and discusses their
implications for future applications and methodological developments.
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(¢) Temperature measured inside the enclosures during Batch 1.

Figure 4.13: Environmental and VOC-related measurements acquired by the
sensor array during the first maize herbivory experiment (Batch 1).
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(c) Temperature inside the enclosures during Batch 2.

Figure 4.14: Environmental and VOC-related measurements acquired by the

sensor array during the second maize herbivory experiment (Batch 2).
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4.5 Conclusion

This thesis evaluated the performance of a low-cost MOS gas sensor platform
for the detection of plant-emitted VOCs under controlled laboratory conditions.
Across three experimental stages (sheep wool validation, greenhouse monitoring,
and herbivory-induced emissions in maize) the system demonstrated the ability to
track relative changes in volatile release, despite the inherent limitations of low-cost
sensor technology.

The preliminary wool experiments provided a stable reference system and enabled
characterization of sensor behavior, including baseline drift, overshoot effects, and
cross-sensitivity to humidity and temperature. These trials demonstrated that the
platform was sufficiently stable for long-duration measurements and highlighted the
importance of environmental conditions and sensor orientation when interpreting
raw MOS signals.

Experiments in the greenhouse environment offered insight into system per-
formance under semi-controlled but biologically realistic conditions. The sensors
accurately followed the diurnal cycles of the greenhouse, with clear responses to
temperature-driven ventilation changes and plant transpiration. Although no chem-
ical reference method was available in these trials, the measurements confirmed
that enclosed plants produced stronger signals than open-air conditions, reinforcing
the potential usefulness of such platforms for continuous crop monitoring.

The herbivory experiment on maize plants constituted the core of this work.
The system successfully detected differences in VOCs emission between control
maize (CM) and Spodoptera-treated plants (SpoM), with clear temporal patterns
corresponding to the light regime, feeding activity, and dynamic headspace sampling.
Batch 2, in which larvae fed continuously prior to measurement, showed a much
stronger induction of HIPVs than Batch 1, consistent with the temporal dynamics
of volatile induction described in the literature. These qualitative differences were
confirmed by GC-MS analysis, particularly for key compounds such as GLVs,
monoterpenes, and the homoterpene DMNT. Within Batch 2, SpoM06 exhibited
especially high levels of a-bergamotene, sabinene, trans-g-ocimene, DMNT, and
[-farnesene , matching the marked rise observed in its sensor signal and indicating
a strong systemic herbivory response.

Across all experiments, the results demonstrate that low-cost MOS sensors
can detect herbivory-induced changes in maize VOCs at a qualitative level and
reliably capture large variations in emission magnitude. However, the findings
also highlight important limitations. The sensors lack chemical selectivity, exhibit
cross-sensitivity to humidity, and require careful calibration to avoid confounding
effects such as residual chamber contaminants. Biological variability, particularly
inconsistent feeding behavior, emerged as a major source of experimental noise.
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Furthermore, the study did not employ machine learning or deep learning ap-
proaches for signal processing, partly due to the hardware complexity, limited
dataset size, and increased total cost of ownership that such methods would entail.
Advanced data-driven techniques could substantially enhance pattern recognition
and discrimination power once larger curated datasets become available.

Biological limitations also influence the interpretation of the results. The
experiments did not include treatments with standardized oral secretion or insect
extract, which could provide controlled and reproducible induction of HIPVs.
Control plants in Batch 2 showed slightly elevated levels of constitutive GLVs,
likely due to airborne exposure to volatiles emitted during Batch 1, illustrating the
sensitivity of maize to inter-plant communication.

Future work should therefore focus on improving both the sensing system and
the experimental methodology. On the technical side, integrating temperature
and humidity compensation algorithms, applying multivariate or machine learning
models for signal interpretation, and exploring sensor arrays with complementary
materials would enhance selectivity and robustness. On the biological side, stan-
dardizing herbivory induction, expanding sample size, and conducting controlled
exposure experiments with isolated HIPVs or oral secretion extracts would reduce
variability and enable stronger cross-validation. Finally, coupling the system with
portable GC or miniaturized preconcentration units could transform it into a
powerful hybrid platform for field-ready plant monitoring.

In summary, this thesis establishes a methodological basis for the use of low-cost
MOS-based platforms in plant volatile sensing and demonstrates their applicability
for detecting herbivory-induced changes in maize. While further refinement and
validation are required before such systems can be deployed outside controlled
environments, the results highlight their promise as accessible tools for continuous
crop health monitoring and precision agriculture.

58



Appendix A

Raw Time Series Plots
Sheep Wool VOC

This appendix reports the complete time series of the VOC sensor responses and
environmental measurements (temperature and humidity) for each experimental
batch performed in the sheep wool experiment described in section 4.2. Each
pair of plots shares the same time axis for direct comparison of signal variations
and environmental conditions. On later experiments the orientation of the sensor
module was recorded and the information is included in the legend, marked as
either side, up or down, and if the chamber contained an empty Petri dish blank
was also included.
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Figure A.1: VOC and environmental sensor responses during Batch 1. All plots
share the same time scale.
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Figure A.2: VOC and environmental sensor responses during Batch 1 retake. All
plots share the same time scale.
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(c) Temperature during Batch 2.

Figure A.3: VOC and environmental sensor responses during Batch 2. All plots
share the same time scale.
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Figure A.4: VOC and environmental sensor responses during Batch 3. All plots

share the same time scale.
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Figure A.5: VOC and environmental sensor responses during Batch 4. All plots
share the same time scale.

64



Raw Time Series Plots Sheep Wool VOC

VOC conductance signal (ticks)

Relative humidity (%)

Temperature (°C)

x10°
291 Port0-G-up Port4 - C - down
30 Port 1 -F - down Port5 - H - down
- Port 2 - E - side - blank Port6 -A - up
Port3 - D - side Port7 -B - up
31+
32+
33+
34+
35
236
37+
1 1 1 1 1 1 1
12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
Time Jul 30, 2025
(a) VOC sensor responses during Batch 5.
60 -
Port0-G-up Port4 - C - down
50 | Port 1 - F - down Port5 - H - down
Port 2 - E - side - blank Port6-A-up
Port3 - D - side Port7-B -up
40
30
20
10
0 1 i 1 - 1 1 1 1 1
12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
Time Jul 30, 2025
(b) Humidity during Batch 5.
24 -
Port0-G-up Port4 - C - down
Port 1 -F - down Port5 - H - down
Port 2 - E - side - blank Port6 -A-up
23.5F Port 3 - D - side Port7 - B - up
23
225
22 1 1 1 1 1 1 1
12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
Time Jul 30, 2025

(c) Temperature during Batch 5.

Figure A.6: VOC and environmental sensor responses during Batch 5. All plots
share the same time scale.
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Figure A.7: VOC and environmental sensor responses during Batch 6. All plots

share the same time scale.
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Figure A.8: VOC and environmental sensor responses during Batch 7. All plots

share the same time scale.
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Figure A.9: VOC and environmental sensor responses during Batch 8. All plots
share the same time scale.
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Appendix B

Data Acquisition codebase

B.1 main.c

#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include

#define LOG D

<stdio .h>
<stdlib .h>
<string .h>
<time .h>
<sys/stat .h>
<sys/types.h>

"libraries /sensirion__common.h"
"libraries /sensirion_i2c.h'
"libraries /sensirion_i2c¢__hal.h"
"libraries /sgp40_i2c.h'
"libraries/sht3x_i2c.h'
"libraries /VOC__essentials.h"

"../logs"

int main(int argc, charx argv][]) {
char filename [128];
char timestamp [32];

// Generate timestamp for filename
time_t now = time (NULL) ;
struct tmx t = localtime (&now):;

strftime (timestamp ,

if (arge >= 2) {

snprintf (filename ,

argv[1l], timestamp);

} else {

69

sizeof (timestamp) , "%Y—Ym-%d_YH-IMY%S", t);

sizeof (filename), "%s/%s %s.csv"', LOG_DIR,
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29 snprintf(filename, sizeof (filename), "%s/log %s.csv", LOG _DIR
, timestamp) ;

30 }

32 int oversample_count = 5;

33 float sht31__humidity_ offset = 0;

34

35 if (read_config(&oversample count, &sht31_ humidity_ offset) != 0)

{

36 printf("Using default config: oversample count = %d,

humidity offset = %.2f\n", oversample_count, sht31_ humidity_ offset
);

37 } oelse {

38 printf("Loaded config: oversample count = %d, humidity offset
= %.2f\n", oversample_count, sht31 humidity_offset);

39 }

10

11 mkdir (LOG_DIR, 0755);

42

43 FILEx logfile = fopen(filename, "a");
44 if (llogfile) {

15 perror ("Failed to open log file");

46 return 1;

47 }

48

19 // Write CSV header if file is empty
50 fseek (logfile , 0, SEEK END) ;

51 if (ftell(logfile) = 0) {

52 fprintf(logfile , "Timestamp");

53 for (int i = 0; i < MAX PORTS; i++) {

54 fprintf(logfile , " ,T%d ,H4d ,VOCd" , i, i, i);
56 fprintf(logfile , "\n");

57 }‘

59 sensirion_i2c¢__hal init();

60 sht3x__init (SHT31_I2C_ADDR _ 44);

61 mux__init_address (TCA_ADDR._70) ;

62

63 SensorAccumulator accum [MAX PORTS];

64 reset__accumulators (accum) ;

65

66 while (1) {

67 for (int i = 0; i < oversample_count; i++) {

68 sample_all_ports (accum, sht31_humidity_ offset);

69 sensirion_i2c__hal_sleep__usec(1000000); // 1 second delay
per sample

70 }

70
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get__timestamp (timestamp, sizeof (timestamp));
finalize averages(logfile , accum, oversample_ count, timestamp

)3
}

fclose (logfile);
return 0;

reset__accumulators (accum) ;

B.2 VOC_essential.h

NN

NN Y NN NN
® 9 O A @ N =

//
2| // Created by save0 on 02/06/2025.

31 //

s|#ifndef VOC ESSENTIALS H
;|#define VOC ESSENTIALS H

#include <stdint.h>

9|#include "sensirion common.h'
#include "sensirion_ i2c¢.h'
#include "sensirion i2c¢_hal.h'
o|#include "sgp40_i2c¢.h"’
s|#include "sht3x i2c.h’

|#endif //VOC_ESSENTIALS H

ol#include "stdlib.h"
#include "stdio.h"
#include "string.h'
#include "time.h'

#define CONFIG_FILE "../config.txt'
#define MAX PORITS 8

#define TCA ADDR 70 0x70
#define TCA ADDR 71 0x71

s1|#define TCA ADDR 72 0x72

o

w

#define TCA_ADDR,_T73 0x73
#define TCA _ADDR, 74 0x74
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63
64
65
66
67
68
69
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71
72
73
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#define TCA ADDR 75 0x75
#define TCA_ADDR 76 0x76
#define TCA _ADDR 77 0x77

/%%

* @struct SensorAccumulator

x @brief A structure to accumulate sensor readings over multiple
samples for averaging.

ES

x This structure is used during oversampling to store the running sum
of sensor readings

* and the number of valid samples collected for a given multiplexer

port.
*/

typedef struct {

float temp_ sum; /*x< Sum of temperature readings (°C). x/
float hum_sum; /#%< Sum of humidity readings (%RH). x/
uint32_t voc_sum; /*x< Sum of raw VOC signal readings (ticks
). +/

int sample_count; /#*%< Number of valid samples accumulated.

*/

} SensorAccumulator;

/%%

*  mux_init_address() — This function select the of the multiplexer
to use in following functions

*

*  @param mux_addr is the multiplexer address in the format OxXX
*
*/
void mux_init_address(uint8_t mux_addr);
/%%

* mux_port_select () — This command selects one of the eight port of
the multiplexer for i2c¢ communication

@param mux_ port Port of the multiplexer to select (from 0 to 7)

* % ¥

x @Qreturn 0 on success, an error code otherwise
*/

intl6_t mux_port_select(uint8_t mux_port);

/%%

« mux_i2c_detect () — This command scans the i2c addresses range and
returns 0 if it detects any device other

* than the multiplexer

*

x @Qreturn 0 on success, 1 otherwise

*/
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intl6_t mux_i2¢c_detect ();

/%%

* get_timestamp () — This command saves the current time in a string
buffer

*

x @param buffer String buffer where to save the time stamp

*

* Q@param size Size of buffer

*/

void get_timestamp (charx buffer , size_t size);

IET:

s7|* read__config() — Reads configuration values from a file.

88| *

so| * This function reads two parameters from a configuration file:

90| * — The oversampling count, which determines how many individual
measurements are averaged .

91| * — The humidity offset , which is used to correct sensor readings.

92| *

93

94

97
98
99
100
101
102
103

104
105
106
107
108
109

110

111
112
113

114

x @param oversample count Pointer to an integer where the read
oversampling count will be stored.

* @param humidity_offset Pointer to a float where the read humidity
offset (in %) will be stored.

| * @Qreturn 0 on success, —1 if the configuration file is not found or

cannot be read.

*/

int read_config(int* oversample_count, floatx humidity_ offset);

/%
*

* @param oversample count Oversampling factor so that T_sampling =
oversample__count*1s
@param sht31 humidity offset Offset for humidity measure
@param avg temp
@param avg hum
@param avg_raw_ voc
* Qreturn
*/
intl6_t measure_ oversampled(int oversample count, float
sht31_ _humidity_offset, float x avg temp, float % avg hum, uintl6_t
% avg_raw_voc );

/%%
* single measure () — Performs a single sensor measurement for
temperature , humidity , and VOC.

* X ¥ *
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x This function reads temperature and humidity from the SHT3I1,
applies the humidity offset |,

* and then measures raw VOC signal using the SGP40, providing the
corrected humidity and temperature.

117 *

118

119

120

121

122
123
124

125

126
127
128
129

* @param humidity Pointer to float where the corrected humidity (%RH)
will be stored.

x @param temperature Pointer to float where the measured temperature
(°C) will be stored.

* @param raw_voc Pointer to uintl6_t where the measured raw VOC
signal (ticks) will be stored.

* @param humidity offset Offset in Y%RH applied to humidity for VOC
compensation .

*k

* @Qreturn 0 on success, error code if measurement fails.

*/

intl6_t single_measure(float* humidity, float* temperature, uintl6_t=x
raw_voc, float humidity_offset);

/%%
* sample all ports() — Performs one measurement per active sensor
port and stores results in accumulators.

130( *

131

x This function loops over all multiplexer ports, selects each sensor
, performs a single measurement ,

* and accumulates the results (temperature, humidity, VOC) for later
averaging .

133] *

134

135
136
137

138
139
140
141

x @param accum Array of SensorAccumulator structures used to collect
and sum measurements for each port.
* @param humidity offset Offset in %RH applied to humidity readings.
*/
void sample_all_ports(SensorAccumulator accum|[], float
humidity_ offset);

/%%
« finalize averages() — Computes final averages and writes them to
the logfile.

142 *

143

144

* This function calculates the average temperature, humidity, and VOC
values for each port

* using the accumulated sums and writes a formatted CSV line to the
logfile .

145]| *

146
147

x @Qparam logfile File pointer to the CSV log file.
x @param accum Array of SensorAccumulator structures containing
summed data.
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% @param oversample count Number of measurements accumulated (used

for averaging).

* @param timestamp Current timestamp string to prefix the CSV line.

*/
void finalize_ averages (FILEx logfile , SensorAccumulator accum [],
oversample_count, const chars timestamp);

/%%

* reset__accumulators() — Resets the measurement accumulators for
ports.

* This function sets the sum and count fields of each
SensorAccumulator to zero,

x preparing them for a new round of oversampling.

*

x @param accum Array of SensorAccumulator structures to reset.

*/

void reset_accumulators(SensorAccumulator accum/|]) ;

int

all

B.3 VOC__essentials.c

#include "VOC_essentials.h'
#include "sensirion i2c¢_hal.h"'
#include <stdio.h>

#include <time.h>

static uint8_t _mux_addr;

void mux_init address(uint8 t mux addr) {
_mux_addr = mux_ addr;
}

intl6_t mux_port_select (uint8_t mux_port) {
if (mux port > 7) return 1;
uint8 _t data = 1 << mux_ port;
return sensirion_i2c¢_hal write(_mux addr, &data, 1);

}

intl6_t mux_i2c_detect () {
for (uint8_t addr = 0; addr <= 127; addr++) {
if (addr = _mux_addr) continue;
if (semsirion_ i2c_hal write(addr, NULL, 0) = 0) {
return 0; // Device detected
}
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}

return 1; // No devices found

N

}

void get_timestamp (charx buffer , size t size) {
time_t now = time (NULL) ;
strftime (buffer , size , "%WY—"o-"dTALYM:%S", localtime (&now)) ;

NN NN NN
© 0w = Qb

w

31 }

33/ int read__config(int* oversample_ count, float* humidity_ offset) {

34 FILE+ config_file = fopen (CONFIG_FILE, "r");

35 if (!config_file) {

36 fprintf(stderr, "Config file not found. Using defaults.\n");
37 return —1;

38 }

10 char line [128];
1 while (fgets(line, sizeof(line), config_file)) {

42 char key[64], value[64];

13 if (line[0] "\NO7 || line[0] = ’'#’) continue;

14 if (sscanf(line, "%63s = %63s", key, value) = 2) {

15 if (stremp(key, "oversample count"') = 0) {

16 xoversample__count = atoi(value);

47 if (xoversample_count <= 0) xoversample_count = 5;
48 } else if (strcmp(key, "humidity offset") = 0) {

19 xhumidity offset = atof(value);

50 if (xhumidity_offset < 0) sxhumidity_offset = 0;

53 }
55 fclose (config file);
56 return 0;

37}

50 int16_t measure oversampled (int oversample count, float
humidity_ offset, float* avg temp, floatx avg hum, uintl6_ t=x
avg_raw_voc) {

60 float temp_sum = 0, hum sum = 0;

61 unsigned int voc_sum = 0;

62 intl6_t error = 0;

63

64 for (int i = 0; i < oversample_ count; i++) {

65 float t = 0, h = 0;

66 uintl6_t voc = 0;

67 error = single measure(&h, &t, &voc, humidity offset);
68 sensirion_i2c¢__hal_ sleep_usec(1000000);

69 if (error) return error;
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71 temp_sum += t;
72 hum_sum += h;
73 vOoC_ Sum —+= VvocC;

74 }

76 xavg_temp = temp_sum / oversample_ count;

77 *avg_hum = hum_ sum / oversample_count;

78 *xavg_raw_voc = voc_sum / oversample_count;
79

80 return 0;

\1}

s3/int16__t single measure(float+ humidity, float* temperature, uintl6_ tx
raw_voc, float humidity_ offset) {

84 uintl6_t h_ticks = 0, t_ticks = 0;

85 intl6_t error = sht3x_ measure_single shot (REPEATABILITY HIGH,
false , &t_ticks, &h_ticks);

86 if (error != NO ERROR) return error;

88 h_ticks += (uintl6_t) ((humidity_offset % 65535.0f) / 100.0f);

89

90 xhumidity = signal_humidity (h_ticks);

91 xtemperature = signal_temperature (t_ticks);

92

93 error = sgp40_measure_raw_ signal (h_ticks, t_ticks, raw_voc);

94 return error;

95 }

o7l void sample_all_ports(SensorAccumulator accum][], float
humidity_offset) {

98 for (int port = 0; port < MAX PORTS; port++) {

99 mux_ port_select (port) ;

101 if (!mux_i2c_detect()) {

102 float t = 0, h = 0;

103 uintl6_t voc = 0;

104 if (single_measure(&h, &t, &voc, humidity offset) =— 0) {
105 accum [ port |.temp_sum += t;

[

106 accum [ port |.hum_sum += h;

107 accum [ port |.voc_sum += voc;

108 accum [ port | . sample_ count+-+;

110 printf("Port %d | Temp: %.2f °C | Humidity: %.2f %% |
VOC: %u ticks\n", port, t, h, voc);

111 }

112 }

113 }

114 }
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void finalize_averages (FILEx logfile , SensorAccumulator accum|], int
oversample count, const charx timestamp) {
char csv_row[1024] = "";

snprintf(csv_row, sizeof(csv_row), "%s', timestamp);

for (int port = 0; port < MAX PORIS; port++) {
if (accum|[port].sample_count = oversample_count) {
float avg_temp = accum|[port].temp_sum / oversample_count;
float avg _hum = accum[port].hum_ sum / oversample_ count;
uintl6_t avg voc = accum[port].voc_sum / oversample_ count

snprintf(csv_row 4 strlen (csv_row), sizeof (csv_row) —
strlen (csv_row),
"%.21,%.21,%u" , avg_temp, avg hum, avg_ voc);
} oelse {
snprintf(csv_row 4 strlen (csv_row), sizeof (csv_row) —
strlen (esv_row), " NaN,NaN,NaN");

}
}
fprintf(logfile , "%s\n", csv_row);

fflush (logfile);

}

7| void reset__accumulators(SensorAccumulator accum|[]) {

for (int i = 0; i < MAX PORTS; i++) {
accum|[i] = (SensorAccumulator) {0};

B.4 Useful functions from Sensirion’s libraries

B.4.1 sgp40_i2c.c

intl6_t sgp40_measure_raw_signal(uintl6_t relative humidity ,
uintl6_t temperature, uintl6_tx sraw_voc) {
intl6_t error;
uint8_t buffer [8];
uintl6é_t offset = 0;
offset = sensirion_i2c¢_add_command_to_buffer(&buffer [0], offset ,
0x260F ) ;

offset = sensirion_i2c_add_uintl6_t_to_buffer(&buffer [0], offset ,
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9 relative__humidity);

10 offset =

11 sensirion_i2c_add_uintl6_t_to_buffer(&buffer [0], offset ,
temperature) ;

13 error = sensirion_i2c_write_data (SGP40_I2C_ADDRESS, &buffer [0],

offset);
14 if (error) {
15 return error;
16 }
17
18 sensirion__i2c¢__hal_sleep_usec(30000);

19
20 error = sensirion_i2c_read_data_inplace (SGP40_I2C_ADDRESS, &
buffer [0], 2);
if (error) {

return error;
}

kxsraw__voc = sensirion__common_bytes_to_uintl6_t(&buffer [0]) ;
return NO ERROR;

@ N =
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B.4.2 sht31 i2c.c

intl6_t sht3x_measure_single_shot(repeatability
measurement_repeatability ,

bool is_clock_stretching,

uintl6_t* a_temperature, uintl6_tx a_humidity) {

1 uintl6_t raw_temp = O0;

5 uintl6_t raw__humi = 0;

6 intl6_t local error = O0;

7 if (is_clock_ stretching) {

8 if (measurement_repeatability = REPEATABILITY HIGH) {

9 local error =

w N

sht3x__measure_single_shot__high_repeatability__clock_stretching(
11 &raw__temp, &raw__humi) ;

12 if (local_error != NO _ERROR) {

13 return local error;

14 }
15 } else if (measurement repeatability = REPEATABILITY MEDIUM)

16 local error =

sht3x__measure_single shot_ medium_repeatability clock_ stretching(
18 &raw__temp, &raw__humi) ;

79




9

NN NN =
[ AW N =

W ON NN NN
S © 0w = C

[

Data Acquisition codebase

if (local_error != NO_ERROR) {

return local_error;

} else if (measurement_repeatability = REPEATABILITY LOW) {
local error =

sht3x__measure_single_shot_low_repeatability__clock_stretching(
&raw__temp, &raw__humi) ;
if (local_error != NO_ERROR) {
return local error;
}

} else if (measurement_repeatability =— REPEATABILITY_ HIGH) {
local error =
sht3x__measure_single shot_high repeatability(&raw_temp, &

raw__humi) ;
if (local_error != NO_ERROR) {

return local_error;

} else if (measurement_repeatability = REPEATABILITY MEDIUM) {
local__error = sht3x_measure_single_shot_ medium_ repeatability
(&raw_temp,
&raw_humi) ;
if (local_error != NO_ERROR) {

return local_error;

} else if (measurement repeatability = REPEATABILITY LOW) {
local error =
sht3x__measure_single_shot_low_repeatability(&raw_temp, &

raw__humi) ;
if (local_error != NO_ERROR) ({

return local_error;
}
}

*a_ temperature = raw_temp;
*a__humidity = raw__humi;
return local error;
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Data Processing scripts

C.1 analyze_wool_batches.m

clear variables
close all
clc

%% Credit

% Line color palette:

% Jonathan C. Lansey (2025). Beautiful and distinguishable line
colors + colormap

% (https://www.mathworks.com/matlabcentral/fileexchange /42673~
beautiful ~and-distinguishable-line-colors-colormap),

% MATLAB Central File Exchange. Retrieved July 25, 2025.

%% General settings

% Output folder for figures (created if it does not exist)
outDir = fullfile(pwd, 'Figures_wool');
if ~exist (outDir, 'dir')
mkdir (outDir) ;
end

% Moving-average window length (samples)
wind_length = 20;

%% Loop over experiments (wool batches)

num_ex 9;

for ex = 1:num_ex
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%% Select CSV file and port mapping for this experiment
switch ex

case 1
% 22 July - morning
filename = 'exp_1_2025-07-22_10-29-42.csv';
experimentLabel = 'Batch 1 - 2025-07-22 - morning';

portTypeMap = containers.Map (
{O, 1’ 2’ 3’ 4, 5’ 6’ 7}’

{'F', 'G', 'NC', 'C', 'D', 'H', '"A', 'B'} );
case 2
% 22 July - afternoon (retake)
filename = 'exp_1_retake_2025-07-22_14-08-16.
csv';
experimentlLabel = 'Batch 1 retake - 2025-07-22 -
afternoon';

portTypeMap = containers.Map(
{O’ 17 2) 3’ 4’ 5’ 6, 7}’

{IEI’ lFl, INCI, IDl’ ICI’ IGI’ lBl, IAI} );
case 3
% 23 July - morning
filename = 'exp_2_2025-07-23_09-27-24.csv';
experimentLabel = 'Batch 2 - 2025-07-23 - morning';

portTypeMap = containers.Map (
{0, 1, 2, 3, 4, 5, 6, 7},

{IFI, IGI’ INCI, IDI’ IEI’ IHI, IAI’ IBI});
case 4
% 29 July - afternoon
filename = 'exp_3_2025-07-29_12-54-31.csv';
experimentLabel = 'Batch 3 - 2025-07-29 - aftermnoon';

portTypeMap = containers.Map(
{O’ 19 2’ 3’ 4’ 5’ 6’ 7}’

{IGI’ IFI, IDI, IEI’ ICI’ IHI, IAI, IBI});
case 5
% 30 July - morning
filename = 'exp_4_2025-07-30_09-30-36.csv';
experimentLabel = 'Batch 4 - 2025-07-30 - morning';

portTypeMap = containers.Map (
{0, 1, 2, 3, 4, 5, 6, 7}, ...
{'G - up', 'F - down', 'D - side',

'E - side - blank', 'C - down', 'H - down',
'"A - up', 'B - up'} );
case 6
% 30 July - afternoon (clean air reference)
filename = 'clean_air_2025-07-30_12-58-23.csv';
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experimentLabel = 'Batch 5 - 2025-07-30 - aftermnoon';
portTypeMap = containers.Map (
{0, 1, 2, 3, 4, 5, 6, 7},
{'G - up', 'F - down', 'E - side - blank',
'D - side', 'C - down', 'H - down',
'"A - up', 'B - up'} );

case 7
% 5 August - morning: concatenate two files into a

single CSV
datal = readtable('exp_6_2025-08-05_08-46-10.csv');

data2 = readtable('exp_6_continue_2025-08-05_09-13-39.
csv');
data_combined = [datal; data2];
% Sort by timestamp if the column exists
if any(strcmp('Timestamp', data_combined.Properties.
VariableNames))
data_combined = sortrows(data_combined, 'Timestamp
I);
end
% Save the combined file locally
filename_combined = 'exp_6.csv';
writetable (data_combined, filename_combined) ;
filename = filename_combined;
experimentlLabel = 'Batch 6 - 2025-08-05 - morning';
portTypeMap = containers.Map (
{0, 1, 2, 3, 4, 5, 6, 7},
{'B - up - blank', 'C - down/side', 'D - side ',
'E - side', 'F - side', 'A - up',
'G - up', 'H - side'} );
case 8
% 5 August - afternoon: concatenate two files into a
single CSV
datal = readtable('exp_7_2025-08-05_13-07-23.csv');
data2 = readtable('exp_7_continue_2025-08-05_13-16-00.
csv');

data_combined = [datal; data2];
% Sort by timestamp if the column exists

if any(strcmp('Timestamp', data_combined.Properties.
VariableNames))
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data_combined sortrows (data_combined, 'Timestamp

DI
end
% Save the combined file locally
filename_combined = 'exp_7.csv';
writetable (data_combined, filename_combined);
filename = filename_combined;
experimentlLabel = 'Batch 7 - 2025-08-05 - aftermnoon';
portTypeMap = containers.Map(
{0, 1, 2, 3, 4, 5, 6, T},
{'B - up ', 'C - side', 'D - side ',
'E - side', 'F - side', 'A - up - blank',
'G - side', 'H - side'} );
case 9
% 6 August - morning (continuation of exp_8)
% filename = 'exp_8_2025-08-05_16-22-10.csv"';
filename = 'exp_8_continue_2025-08-06_08-47-59.
csv';
experimentlLabel = 'Batch 8 - 2025-08-06 - morning';
portTypeMap = containers.Map(
{0, 1, 2, 3, 4, 5, 6, T},
{'B - up', 'C - down/side - blank', 'D - side ',
'E - side - blank', 'F - side', 'A - up',
'G - up - blank', 'H - side'} );
end
%% Read CSV data
data = readtable(filename, "Delimiter", ',');

% Convert timestamp to datetime

data.Timestamp datetime (
data.Timestamp,
'InputFormat ',

'yyyy-MM-dd''T' 'HH:mm:ss ') ;
hh

Extract number of ports from number of columns

then triplets T / H / VOC per port
1/ 3

% 1 column for Timestamp,
numPorts (width (data)

hh

Prepare arrays for easier handling

Temps

Hum
voc

NaN (height (data),
NaN (height (data),
NaN (height (data),

s
_res

numPorts) ;
numPorts) ;
numPorts) ;
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for p = 0:(numPorts-1)

tempCol = sprintf ('T%d"', p);
humCol = sprintf ('H%d', Pl
vocCol = sprintf('V0C%d', p);

if ismember (tempCol, data.Properties.VariableNames)
Temps (:, p+1) = data.(tempCol);

end

if ismember (humCol, data.Properties.VariableNames)
Hums (:, p+1) = data.(humCol);

end

if ismember (vocCol, data.Properties.VariableNames)
VOC_res(:, p+1l) = data.(vocCol);

end

end

%% Convert VOC resistance to (logarithmic) conductance and
smooth signals

% According to the manufacturer, VOC ticks are proportional to
log(R).

% Conductance is proportional to 1/R, so the signal is
inverted to obtain

% a log-conductance representation, which is visually easier
to interpret.

VOC_cond = -VOC_res;
VOC_cond_mean = NaN(size(V0OC_cond));
Hums_mean = NaN(size (Hums)) ;

Temps_mean NaN(size (Temps));

for p = 1l:numPorts
VOC_cond_mean(:, p)

movmean (VOC_cond (:, p), wind_length)

Hums_mean (:, p) movmean (Hums (: , p), wind_length)

Temps_mean(:, p) movmean (Temps (:, p), wind_length)

end

% Precompute colors for all plots in this experiment
colors = linspecer (numPorts);

%% Plot VOC (conductance) from all ports

figv0C = figure('Name', ['VOC - ', experimentLabell);
hold on;

ax = gca;

ax.YAxis.Exponent = 3; % Force labels to be in 1e3 units
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for p = 1:numPorts
if all(isnan(VOC_cond_mean(:, p)))
continue; % Skip port with all NalN
end

portLabel = sprintf ('Port %d - %s', p-1, portTypeMap(p-1))

plot(data.Timestamp, VOC_cond_mean(:, p),
'LineWidth', 1.5,
'"Color', colors(p, :),
'DisplayName', portLabel);
end

ylim([-3.75e4 -2.85e4]);

hold off;

xlabel ('Time');

ylabel ('VOC conductance signal (ticks)', 'Interpreter',6 'latex
I).

title(['VOC conductance over time - ', experimentLabel],
Interpreter', 'mnone');

ax = gca;

% Larger axes for readability
ax.FontSize = 12;
ax.LineWidth 1;

% Legend style same as thesis

lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best')
set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));
grid on

saveThesisFigure (figV0OC, outDir, 'VOC', experimentLabel);

%% Plot humidity from all ports

figh = figure('Name', ['Humidity - ', experimentLabell]);
hold on;
for p = l1l:numPorts

if all(isnan(Hums(:, p)))
continue; 7 Skip port with all NaNlN
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end
portLabel = sprintf ('Port %d - %s', p-1, portTypeMap(p-1))

plot(data.Timestamp, Hums(:, p),
'LineWidth', 1.5,
"Color', colors(p, :),
'DisplayName', portLabel);
end

ylim ([0 60]);

hold off;

xlabel ('Time ') ;

ylabel ('Relative humidity (%) ');

title(['Humidity over time - ', experimentLabel], 'Interpreter
1 |none|).
s I

ax = gca;

% Larger axes for readability
ax.FontSize = 12;
ax.LineWidth 1;

% Legend style same as thesis
lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best')

set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));
grid on

saveThesisFigure(figH, outDir, 'HUM', experimentLabel);

%% Plot temperature from all ports

figT = figure('Name', ['Temperature - ', experimentLabel]);
hold on;
for p = 1l:numPorts

if all(isnan(Temps(:, p)))
continue; 7 Skip port with all NalN
end

portLabel = sprintf ('Port %d - %s', p-1, portTypeMap(p-1))
plot(data.Timestamp, Temps(:, p),

'"LineWidth', 1.5,
'"Color', colors(p, :),
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'DisplayName', portLabel);
end

hold off;
xlabel ('Time ') ;
ylabel (' Temperature (°C)');

title(['Temperature over time - ', experimentLabel], '
Interpreter', 'mnone');
ax = gca;

% Larger axes for readability
ax.FontSize = 12;
ax.LineWidth 1;

% Legend style same as thesis

lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best')
set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));
grid on

saveThesisFigure (figT, outDir, 'TEMP', experimentLabel);

end % for ex = 1l:num_ex

C.2 induced_voc_processing.m

clear variables
close all
clc

%% Output folder (consistent with other scripts)
outDir = fullfile(pwd, 'Figures_inducedV0OC');
if ~exist (outDir, 'dir')
mkdir (outDir) ;
end

%% General settings
wind_length = 20; % moving-average window length (samples)

%% Loop over experiments
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num_ex 2;

for ex = 2:num_ex
%% Select file and port mapping
switch ex

case 1
filename = 'first_batch_2025-09-16_15-32-17.csv
experimentLabel = 'Induced VOC';
portTypeMap = containers.Map(
{0, 1, 2, 3, 4, 5, 6, 7},
{'cM01', 'SpoMO1l', 'SpoMO2', 'CMO2', 'SpoMO3',
CM0O3', 'SpoM04', 'SpoMO5'} );
case 2
filename = 'second_batch_2025-09-17_19-15-38.
csv';
experimentLabel = 'Induced VOC experiment 2';
portTypeMap = containers.Map(
{0, 1, 2, 3, 4, 5, 6, 7},
{'cMo7', 'SpoM0O9', 'SpoM0O8', 'SpoMO7', 'CMO6',
CMO5', 'SpoMO6', 'CMO4'} );
end

%% Read data

data = readtable(filename, "Delimiter", ',');
data.Timestamp = datetime(data.Timestamp,

'InputFormat', 'yyyy-MM-dd''T''HH:mm
:ss');

%% Number of ports
numPorts = (width(data) - 1) / 3; 7 1 Timestamp + 3 columns
per port

%% Identify control vs test ports
isControl = false (1, numPorts);
for p = 0:(numPorts-1)
isControl (p+1l) = startsWith(portTypeMap(p), "CM"); 7%
controls start with "CM"

end
numControls = sum(isControl) ;
numTests = numPorts - numControls;

%% Color scheme (unchanged: blue for controls, green for tests

)

blueBase = [0 0 1]; % deep blue
bluelLight = [0.7 0.85 1]; 7 sky blue
greenBase = [0 0.6 0]; % strong green
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greenLight = [0.7 1 0.7]; % light green

blueShades = makeShades (blueBase, numControls, bluelLight);
greenShades = makeShades (greenBase, numTests, greenlLight) ;
colors = zeros (numPorts, 3);

cIdx = 1; gldx = 1;
for p = 0:(numPorts-1)
if isControl(p+1)
colors(p+1,:)
cIdx = cIdx + 1;
else
colors(p+1l,:) = greenShades (gldx,:);
gldx = gldx 1;
end
end

blueShades (cIdx,:);

+

%% Prepare arrays

Temps = NaN(height (data), numPorts);
Hums NaN(height (data), numPorts);
VOC_res NaN(height (data), numPorts);

for p = O0:(numPorts-1)
tempCol = sprintf('T%d', p);
humCol sprintf ('HY%d', p);
vocCol sprintf ('VOC%d', p);

if ismember (tempCol, data.Properties.VariableNames)
Temps (:, p+1) = data.(tempCol);

end

if ismember (humCol, data.Properties.VariableNames)
Hums (:, p+1) = data.(humCol);

end

if ismember (vocCol, data.Properties.VariableNames)
VOC_res(:, p+1l) = data.(vocCol);

end

end

%% Convert resistance -> log-conductance & smooth signals

VOC_cond = -V0OC_res; % log-
conductance representation

VOC_cond_mean = movmean(VOC_cond, wind_length);
Hums_mean = movmean (Hums, wind_length) ;
Temps_mean = movmean (Temps, wind_length);

%% Time cut-off: for Batch 1, keep from start until next-day
18:00

if ex == 1
startDay = dateshift (data.Timestamp (1), 'start',6 'day');
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cutoffTime = startDay + days(1l) + hours (18); % next day
at 18:00
validIdx = data.Timestamp <= cutoffTime;
elseif ex == 2
startDay = dateshift(data.Timestamp (1), 'start',6 'day');
cutoffTime = startDay + days(1l) + hours(18) + minutes (30);
%» next day at 18:00
validIdx = data.Timestamp <= cutoffTime;

end
tUse = data.Timestamp(validIdx) ;

%% Markers (unchanged)

ctrlMarkers = {'o','s',' T, d,'p!,th Ty R
{l>l I*l IXI l+| lsl "= IV| l<|}.
numel (ctrlMarkers);

numel (testMarkers);

testMarkers
numCtrlMarkers
numTestMarkers

numMarkers = 20; % markers per line
%% === VOC (smoothed) ===
figvV0C = figure('Name', ['VOC - ', experimentLabell]);

hold on; grid on;

ax = gca;
ax.YAxis.Exponent = 3;

ctrlldx = 1;
testldx = 1;

for p = 1l:numPorts
if all(isnan(VOC_cond_mean(:, p))), continue; end

portlLabel = sprintf ('Port %d - %s', p-1, portTypeMap(p-1))

if isControl (p)

marker = ctrlMarkers{mod(ctrlIdx-1, numCtrlMarkers)
+1};
ctrlIdx = ctrlldx + 1;
else
marker = testMarkers{mod(testIdx-1, numTestMarkers)
+1};

testIdx = testlIdx + 1;
end

N = sum(validIdx) ;
markerIdx = round(linspace(l, N, numMarkers));
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plot(tUse, VOC_cond_mean(validIdx, p),
'LineWidth', 1.5,
"Color', colors(p,:),
'"Marker', marker,
'MarkerIndices', markerIdx,
'DisplayName', portLabel);

end

xlabel ('Time ') ;

ylabel ('VOC conductance signal ($ticks$)','Interpreter','latex
")

title (['VOC conductance signal over time - ', experimentLabel
], 'Interpreter', 'none');

ax.FontSize = 12;

ax.LineWidth = 1;

% Legend style same as thesis
lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best');
set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));

ylim ([-35e3 -30e3]);

x1im([tUse (1), cutoffTime]);
saveThesisFigure(figVOC, outDir, 'VOC', experimentLabel);

hh

== Humidity (smoothed) ===

figh = figure('Name', ['Humidity - ', experimentLabell);
hold on; grid on;

ctrlldx
testIdx

1;
1;

for p = 1l:numPorts
if all(isnan(Hums_mean(:, p))), continue; end

portLabel = sprintf('Port %d - %s', p-1, portTypeMap(p-1))

if isControl (p)

marker = ctrlMarkers{mod(ctrlIdx-1, numCtrlMarkers)
+1};
ctrlldx = ctrllIdx + 1;
else
marker = testMarkers{mod(testIdx-1, numTestMarkers)
+1};

testIdx = testlIdx + 1;
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end

N = sum(validIdx) ;
markerIdx = round(linspace(l, N, numMarkers));

plot (tUse, Hums_mean(validIdx, p),
'LineWidth', 1.5,
"Color', colors(p,:),
'"Marker', marker,
'"MarkerIndices', markerIdx,
'DisplayName', portLabel);
end

xlabel ('Time ') ;

ylabel ('Relative humidity (\%)','Interpreter','latex');
title(['Humidity signal over time - ', experimentLabel],
Interpreter', 'none');

ax = gca;

ax.FontSize = 12;

ax.LineWidth = 1;

lg = legend('Fontsize',10, 'NumColumns', 2, 'Location','south'

)
set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));

x1lim([tUse (1), cutoffTimel); % NEW
saveThesisFigure(figH, outDir, 'HUM', experimentLabel);
%% === Temperature (smoothed) ===

figT = figure('Name', ['Temperature - ', experimentLabel]);
hold on; grid on;

ctrlldx 1;
testIdx = 1;

for p = 1l:numPorts
if all(isnan(Temps_mean(:, p))), continue; end

portLabel = sprintf ('Port %d - %s', p-1, portTypeMap(p-1))

if isControl (p)
marker = ctrlMarkers{mod(ctrlIdx-1, numCtrlMarkers)
+1};
ctrllIdx = ctrllIdx + 1;
else
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marker = testMarkers{mod(testIdx-1, numTestMarkers)
+1};
testIdx = testldx + 1;
end

N = sum(validIdx) ;
markerIdx = round(linspace(l, N, numMarkers));

plot (tUse, Temps_mean(validIdx, p),
'LineWidth', 1.5,

"Color', colors(p,:),
'Marker ', marker,
'MarkerIndices', markerIdx,

'DisplayName', portLabel);
end

xlabel ('Time ") ;

ylabel (' Temperature (°C)');

title(['Temperature signal over time - ', experimentLabel],
Interpreter', 'none');

ax = gca;
ax.FontSize
ax.LineWidth

12;
1;

% Legend style same as thesis
lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best')

’

set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));

saveThesisFigure(figT, outDir, 'TEMP', experimentLabel);

hh —mmm T T T m -

% VOC-only thesis plots with custom time windows for Batches 1 &
2

% _____________________________________________

% Determine time window depending on batch

if ex == 1
% Batch 1: from same-day 08:30 to next-day 18:00
dayStart = dateshift(data.Timestamp (1), 'start',6 'day');
tStart = dayStart + days(1l) + hours(8) + minutes (30);
tEnd = dayStart + days (1) + hours(18);

elseif ex == 2
% Batch 2: from 09:30 until end
dayStart = dateshift(data.Timestamp (1), 'start',6 'day');
tStart = dayStart + days (1) + hours(9) + minutes (30);
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tEnd = data.Timestamp (end) ;
end

% Mask data
validIdx = (data.Timestamp >= tStart) & (data.Timestamp <= tEnd);
tUse = data.Timestamp(validIdx) ;

% Create figure
figV0Cwin = figure('Name', ['VOC (windowed) - ', experimentLabell])

hold on; grid on;

ax = gca;
ax.YAxis.Exponent = 3;

% Reset marker counters
ctrlIdx = 1;
testIdx = 1;

for p = 1l:numPorts
if all(isnan(VOC_cond_mean(:, p))), continue; end

portLabel = sprintf('Port %d - %s', p-1, portTypeMap(p-1));

% Choose marker

if isControl(p)
marker = ctrlMarkers{mod(ctrlIdx-1, numCtrlMarkers)+1};
ctrlldx = ctrllIdx + 1;

else
marker = testMarkers{mod(testIdx-1, numTestMarkers)+1};
testIdx = testlIdx + 1;

end

% Markers evenly spaced in the trimmed window
N = sum(validIdx) ;
markerIdx = round(linspace(l, N, numMarkers));

% Plot smoothed VOC

plot(tUse, VOC_cond_mean(validIdx, p),
'LineWidth', 1.5,
"Color', colors(p,:),
'Marker', marker,
'MarkerIndices', markerIdx,
'DisplayName', portLabel);

end

xlabel ('Time');
ylabel ('VOC conductance signal ($ticks$)','Interpreter','latex');
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title(['VOC signal - ', experimentLabel, ' (trimmed window)']l, '
Interpreter', 'none');

ylim([-35e3 -30e3]);
% Larger axes for readability
ax.FontSize = 12;
ax.LineWidth = 1;
% Legend style same as thesis

lg = legend('Fontsize',10, 'NumColumns', 2, 'Location', 'best');
set(lg, 'ItemHitFcn', @(src, event) toggleVisibility(event));

% Export PDF
saveThesisFigure (figV0Cwin, outDir, 'VOCwindow', experimentLabel);
end % for ex = 1l:num_ex

function shades = makeShades(baseColor, n, lightTint)
% Generate n shades between a light tint and the baseColor

if n == 1
shades = baseColor;
return;
end
shades = zeros(n,3);
for i = 1:n
t = (i-1)/(n-1); % interpolation fraction
shades(i,:) = (1-t)*lightTint + t*baseColor;
end

end

C.3 toggleVisibility.m

function toggleVisibility(event)
% toggleVisibility Legend click callback to hide/show lines.

obj = event.Peer;

if strcmp(obj.Visible, 'on')
obj.Visible = 'off';

else

obj.Visible

on';
end
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‘end

L

C.4 saveThesisFigure.m

function saveThesisFigure(figHandle, outDir, prefix,
experimentLabel)
% saveThesisFigure Save a thesis-styled figure as vector PDF.

% - wide aspect ratio (good for \linewidth)

% - normalised fonts and line widths

% - title removed

% - small padding so axes are not glued to the edge
safelabel = makeFileSafeName (experimentLabel);
base = sprintf('Ys_%s', prefix, safelabel);

% Set figure window ratio: width:height = 2.5 : 1 (tune if
needed)
setFigureRatio (figHandle, 2.5);

% Normalise axes style
ax = get(figHandle, 'CurrentAxes');
if ~isempty (ax)

ax.FontSize = 12;
ax.LineWidth = 1.0;
lines = findall(ax, 'Type', 'line');

set(lines, 'LineWidth', 1.2);

% Remove title for final output
title(ax, '');
end

% Export as vector PDF with a bit of padding
exportgraphics (figHandle,
fullfile(outDir, [base '.pdf']l),
'ContentType', 'vector',
'BackgroundColor', 'white',
'"Padding', 0.02);

close (figHandle) ;
end

% —--- subfunction: only used inside this file

function setFigureRatio(figHandle, ratio)
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% ratio = width / height
if nargin < 2

ratio = 2.5;
end

0ldUnits = get(figHandle, 'Units');
set (figHandle, 'Units', 'pixels');

pos = get(figHandle, 'Position'); % [left bottom width
height]
pos (4) = pos(3) / ratio; % height = width / ratio

set (figHandle, 'Position', pos);

set (figHandle, 'Units', o0ldUnits);

end
% —--- subfunction: only used inside this file
function safe = makeFileSafeName (label)
safe = strtrim(label);
safe = strrep(safe, ' ', '_');
safe = strrep(safe, '-', '-'); % en dash -> normal dash
badChars = '/\:; ,x"?2"'"'""';

for k = 1:numel(badChars)
safe = strrep(safe, badChars(k), '');
end
end
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