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Summary

Vision–Language Models (VLMs) have emerged as powerful general-purpose models,
capable of transferring to a wide range of downstream tasks in a zero-shot manner.
These models are typically trained with contrastive objectives on large-scale image-
text datasets, aligning images and text into a shared embedding space. Although
effective for many applications, tasks such as Composite Image Retrieval (CIR),
which consists of retrieving a target image given a reference image and a natural
language modification, pose unique challenges. Classical CIR approaches rely on
curated triplet datasets (reference, query, target), which are difficult to scale and
limited in diversity.

This work introduces Multimodal Arithmetic Loss (MA-Loss), a training objec-
tive that learns compositional reasoning directly from readily available image-text
pairs, eliminating reliance on costly triplet supervision. Unlike triplets, which
require manual curation and annotation, image–text pairs can be collected at scale
from the web, making them a practical foundation for large and diverse datasets.
MA-Loss models semantic differences as structured transformations in a shared
embedding space, aligning textual modifications with corresponding visual changes.
This formulation enables CIR in a zero-shot setting while scaling naturally to
heterogeneous web-sourced data.

To ground the design of MA-Loss, we conduct a systematic study of multi-
modal arithmetic using the SIMAT benchmark, analyzing the relationship between
embedding space geometry (e.g., modality gap, alignment, uniformity) and compo-
sitional reasoning ability. Experiments show that a CLIP model post-pre-trained on
MSCOCO using the MA-Loss objective achieves a new state of the art on SIMAT
with a 48% score, surpassing the previous best of 42%.

Applying MA-Loss to CIR in a zero-shot setting, we evaluate on FashionIQ and
CIRR benchmarks. Although using a relatively small dataset for post-pre-training,
our method achieves results comparable to similar state-of-the-art pair-based
approaches, while outperforming others on both benchmarks. These findings
suggest that modeling semantic differences rather than absolute representations
offers a scalable and effective alternative for compositional retrieval tasks.
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Chapter 1

Introduction

Vision–Language Models (VLMs) have become a central paradigm in modern
multimodal learning. Their ability to align images and natural language into a
shared embedding space has enabled strong zero-shot performance on tasks that
range from classification to retrieval. This progress has been driven by large-scale
image–text datasets and contrastive learning objectives that encourage paired
samples to occupy nearby regions of the embedding space. Although this paradigm
has produced widely adopted general-purpose models, it also reveals limitations
when the target application requires reasoning about transformations rather than
absolute descriptions.

Among the tasks that expose these limitations, Composite Image Retrieval
(CIR) plays a significant role. CIR requires a model to retrieve a target image
given a reference image and a natural language description of how the target
differs from the reference. This process cannot rely exclusively on recognizing the
content of individual images, but it also requires the ability to interpret relative
changes such as color, shape, or context. Classical approaches rely on curated
triplets that explicitly define reference, modification, and target. Triplet-based
datasets, however, are costly to produce and limited in diversity, which restricts
the scalability of CIR systems and their adaptation to open-world settings.

Recent interest in multimodal arithmetic has highlighted an alternative perspec-
tive. Multimodal arithmetic investigates the extent to which semantic transforma-
tions can be expressed as vector operations in a shared embedding space. This idea
is inspired by the regularities observed in word embeddings, where relationships
between concepts can be captured by linear transformations. Early work has shown
that current VLMs exhibit only partial support for these operations, but also that
this capability depends strongly on geometric properties of the embedding space,
such as modality alignment, uniformity, and the modality gap. Understanding
these properties and the learning objectives that govern them is therefore crucial
for improving compositional reasoning.
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This thesis investigates whether multimodal arithmetic can serve as a foundation
for zero-shot CIR without relying on triplet supervision. The work begins with
a systematic study of multimodal arithmetic using the SIMAT benchmark. This
study analyzes how geometric properties of the embedding space influence the
ability to perform cross-modal compositional reasoning. It also revisits the role of
the modality gap, showing that the alignment of modality delta vectors is more
important than their average separation.

Building on these insights, the thesis introduces the Multimodal Arithmetic
Loss (MA-Loss), a new training objective that learns to model semantic differences
using only image–text pairs. MA-Loss aligns transformations across modalities by
encouraging the model to represent changes in a consistent way. Since it operates
on image–caption pairs, the method eliminates the need for triplet supervision and
allows training on large, widely available datasets. The thesis investigates MA-Loss
analytically and empirically. It studies how the loss interacts with contrastive
learning, how it influences embedding space properties, and how it behaves during
post-pre-training.

The proposed methods are first evaluated on multimodal arithmetic, where
MA-Loss improves over the classical contrastive objective and achieves a new state
of the art on SIMAT. The methods are then applied to zero-shot CIR and evaluated
on FashionIQ and CIRR. Despite being trained only on image–caption pairs and
using a moderate dataset size, it reaches performance that is comparable to, and
in some cases better than, existing zero-shot approaches.

Overall, this thesis shows that modeling semantic differences rather than absolute
representations is an effective strategy for compositional retrieval tasks. It also
demonstrates that contrastive post-pre-training guided by multimodal arithmetic
principles can enhance the generalization ability of VLMs. This opens a path toward
multimodal systems that can adapt to new tasks without requiring significant
annotation effort. It also contributes to the understanding of how embedding space
geometry influences cross-modal reasoning.

1.1 Outline of the thesis
This thesis is structured as follows: in Chapter 2, we propose an overview of the
key works relevant to this research, starting with a general introduction to VLMs
and their embedding space properties, followed by previous approaches related to
our chosen tasks. In Chapter 3, we present a comprehensive theoretical framework
to analyze the principles of multimodal arithmetic and to ground the design of our
learning objective. In Chapter 4, we empirically evaluate our proposed methods
and compare them against the current state of the art. Finally, in Chapter 5,
we summarize the main conclusions based on our findings and outline potential
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directions for future research.
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Chapter 2

Related Works

In this chapter, we will present the main works relevant to this thesis. We will start
in Section 2.1 with a brief overview of vision-language models (VLMs), considering
the evolution of visual recognition paradigms, the main architectural solutions used
in VLMs, the most effective learning objectives, and a more specific discussion
about one of the most innovative VLMs actually existing. We will then discuss in
Section 2.2 the main geometrical and statistical properties relevant to characterizing
an embedding space, spanning from traditional properties like uniformity, variance,
and alignment, to the more recent phenomenon of the modality gap; we will then
also discuss some proposed approaches to bridge the modality gap. Finally, we
introduce the two main downstream tasks relevant for this thesis: multimodal
arithmetic (Section 2.3) and composite image retrieval (Section 2.4). For both
of them, we will give an overview of the most effective approaches and the main
benchmarks used to evaluate performance.

2.1 Vision-language models
Vision-Language Models (VLM) have recently established themselves as a versatile
and effective paradigm in computer vision, particularly due to their ability to
perform zero-shot transfer across a wide range of tasks. These models are typically
trained on extensive image–caption datasets using a contrastive learning objective
that aligns visual and textual representations into a joint embedding space, enabling
general-purpose applications.

2.1.1 Evolution of visual recognition paradigms
As well outlined by a recent survey [64], VLMs are the last step in an evolution
process of visual recognition paradigms. Early computer vision solutions relied on
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end-to-end deep learning from scratch, which required large amounts of task-specific
labeled data and incurred substantial computational costs. Subsequently, the
pre-training, fine-tuning, and prediction paradigm emerged, where a model is first
pre-trained on a large annotated dataset and then fine-tuned for each specific task.
While this improved efficiency and performance, it still necessitates task-specific
labeled data for effective adaptation.

More recently, the VLM approach of pre-training and zero-shot prediction has
changed the landscape by utilizing vast amounts of web-scale image-text pairs for
model training. This framework allows a single model to learn rich correspondence
between images and their natural language descriptions. As a result, the model can
directly perform downstream visual recognition tasks without the need of additional
fine-tuning. This advancement helps to overcome limitations related to labeled
data scarcity and task dependency.

In addition, Yamaguchi et al. [58] have introduced the concept of post-pre-
training. Different from fine-tuning, this paradigm prescribes a domain-agnostic
training phase to be carried out after pre-training in order to refine the properties of
the embedding space to improve generalization and zero-shot transfer capabilities.

2.1.2 Architectures
VLM architectures are usually made of two primary components: an image encoder
and a text encoder. These components work together to project the inputs into a
joint embedding space. Image encoders are typically either convolutional neural
networks (e.g., ResNet [23]) or Vision Transformers (ViT) [16]. Text encoding is
generally realized using transformer-based language models like [52], or variants
[15] [43].

From an architectural point of view, there exist two main families of models:

• Dual-encoder models (two-towers models) which separately encode images
and text and use metrics like cosine similarity or dot product for retrieval or
classification tasks. They facilitate scalable retrieval by allowing precomputa-
tion of embeddings. This family includes models like CLIP [44], and ALIGN
[26].

• Cross-modal transformers (one-tower models) which integrate image
patches and text tokens in a fused transformer architecture with cross-attention
layers allowing rich interactions between modalities for detailed vision-language
understanding. Examples are CLIPPO [51], OneR [24], and UNITER [10].

Additionally, a third hybrid architecture has been proposed. In this case, a
dual-encoder architecture is followed by a fusion module to enrich cross-modal
reasoning. Such models are exemplified by FLAVA [48], and CoCa [62].

5
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While cross-modal transformers excel in tasks requiring deep reasoning (e.g.,
VQA, captioning, etc.), dual-encoders excel in zero-shot and retrieval settings due
to their scalability and training simplicity.

2.1.3 Pretraining objectives and strategies
The foundation of effective VLMs lies in their pre-training methods, which aim to
learn aligned vision-language representations that generalize to various downstream
tasks. Pre-training leverages large-scale datasets of image-text pairs and employs
one or more of the following learning objectives:

• Contrastive learning: Models learn to distinguish matching image-text pairs
from non-matching pairs within a batch, maximizing similarity of true pairs
while minimizing similarity of (negative) mismatched pairs. This objective
underpins CLIP [44] and ALIGN [26]. Contrastive training is efficient and
scalable, and enables strong zero-shot transfer by tying image embeddings to
text descriptions.

• Masked modeling: Inspired by masked language modeling in NLP (e.g.,
BERT [15]), masked image modeling (MIM) and masked language modeling
(MLM) objectives have been extended to vision-language pre-training [10]
[48]. These models mask parts of the input and learn to reconstruct them
conditioned on the remaining content.

• Image-Text Matching: they enforce VLMs to align paired images and
texts by learning to predict whether the given text describes the given image
correctly. They are commonly used as auxiliary losses, e.g., in FLAVA [48],
and nCLIP [66].

A significant advancement is also the use of web-scale noisy image-text pairs for
pre-training, which dramatically increases data diversity and size beyond curated
datasets like COCO or Visual Genome. This scale has been vital for achieving
strong generalization and zero-shot transfer capabilities.

2.1.4 CLIP
CLIP (Contrastive Language-Image Pre-training) proposed by [44]. It is a pioneer-
ing model that leverages an infoNCE contrastive objective [40] to jointly train an
image encoder (either ResNet [23] or ViT [16]) and a text transformer [43]. The
pre-training is conducted using a proprietary dataset of over 400 million image-text
pairs collected from the web. Essentially, CLIP learns to maximize the cosine
similarity between the embeddings of matching image-text pairs while minimizing
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the similarity between non-matching pairs. Refer to Section 3.1.2 for more details
on CLIP’s training objective.

CLIP differs from traditional image classification pre-training because it learns
to ground images in natural language descriptions, instead of curated labels. This
process makes it highly flexible and enables zero-shot transfer to a broad spectrum
of vision tasks without supervised fine-tuning. For example, CLIP achieves zero-
shot ImageNet [14] accuracy comparable to supervised baselines while using none
of ImageNet’s labels during training.

Architecturally, CLIP has a two-tower structure, and projects both modalities
into a shared embedding space where cosine similarity determines alignment.
CLIP-based classifiers can be created using text prompts such as "a photo of
{class description}" and evaluating the similarities of the prompt’s embedding
against the image. This allows CLIP to quickly generalize to a set of virtually
unlimited classes. CLIP models have also demonstrated robustness to distribution
shifts, outperforming comparable supervised ImageNet-trained models on out-
of-distribution datasets [44]. Their zero-shot performance also shows effective
embedding quality, competitive with few-shot and sometimes supervised linear
probe classifiers.

The success of CLIP has inspired numerous follow-up works using contrastive
language-image pre-training with varied datasets, architectures, and improved
objectives. It stands as a foundational pillar within vision-language research, widely
adopted for tasks ranging from retrieval and classification to image generation
guidance.

2.2 Geometric properties of the embedding space
The geometric landscape of latent embedding spaces is central to the success of
modern multimodal and vision–language models. Among the most crucial geomet-
ric properties are uniformity, alignment, variance, and the so-called modality gap.
These properties govern how information from disparate modalities is represented,
compared, and transferred in downstream tasks such as classification, image re-
trieval, and semantic multimodal arithmetic. A more formal definition of these
properties will be given in Section 3.1.3.

2.2.1 Uniformity, variance, and alignment
In the context of contrastive learning, the uniformity and alignment of embeddings
are recognized as two fundamental objectives. Uniformity describes the extent to
which representations are spread over the embedding hypersphere, ideally maxi-
mizing mutual information by reducing representational collapse or overcrowding.
Alignment refers to the proximity of paired (e.g., image-text) embeddings, seeking
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to bring corresponding pairs as close as possible in the latent space without col-
lapsing all samples to one point. Wang and Isola’s [55] analysis formalizes these
intuitions, showing that maximizing alignment (minimizing the distance between
positive pairs) and promoting uniformity (spreading out negative pairs) are both
desirable and synergistic in well-calibrated unimodal settings.

Other empirical studies [32][17][47][61] have extended these concepts to the
multimodal regime; for instance, in CLIP-based models, optimal uniformity and
alignment are associated with competitive performance on downstream tasks.
However, the introduction of multiple modalities brings additional complexity, as
the optimization objectives for uniformity and alignment can become antagonistic,
particularly when the two modalities possess heterogeneous information structure
or content [47][18][32].

2.2.2 The modality gap
A key phenomenon emerging in multimodal embedding spaces is the modality gap:
a geometric separation between the submanifolds populated by different modalities,
such as images and texts. This gap manifests as non-overlapping hypercones of
representations on the embedding hypersphere and has been consistently observed
in state-of-the-art models like CLIP and its variants [32][47]. An illustrative example
is presented in Figure 2.1.

Figure 2.1: Illustrative example of the modality gap. On the left, the embeddings
of the two modalities form disjoint clusters. On the right, the gap has been
mitigated, and the two modalities are spread across the hypersphere. Source: [17].

Several works provide a multifaceted explanation for this phenomenon. From
a theoretical perspective, model initialization induces the so-called "cone effect",
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where deep neural representations shrink to narrow cones; this leads distinctively
different random initializations or architectures to produce separable cones for each
modality (Figure 2.2)[32][47][18]. During training, the contrastive learning objective
then preserves or even amplifies these separations unless explicit penalization is
enforced. The local minima of the multimodal contrastive loss favor solutions where
modalities stay separated, further stabilized by factors such as the value of the
temperature parameter in InfoNCE losses [61][47].

Figure 2.2: 3D embeddings dynamics during training. At initialization, the
two modalities are completely separate due to the cone effect. As the training
progresses, the two modalities gradually spread across the hypersphere but stay
disjointed. It is only after many epochs that the contrastive objective succeeds in
bridging the gap between the modalities. Source: [18].

Although some early research suggested that closing the modality gap might
not be necessary [32], or even potentially detrimental depending on the application,
more recent evidence [61][18] points to its subtle impact: adjusting the gap can
yield quantifiable benefits for downstream classification, retrieval, fairness, and
multimodal arithmetic tasks. For instance, Liang et al. [32] show that careful
manipulation (instead of closure) of the gap can improve zero-shot accuracy and
reduce bias in demographic classification. Other studies confirm that reducing the
gap by translation or alignment can enhance SIMAT [12] capabilities, enabling
more consistent and meaningful multimodal embedding arithmetic [18]. Finally, a
more recent work [56] has shown that the modality gap has a negative impact on
out-of-distribution detection.

2.2.3 Strategies for improving embedding space properties
The geometric properties discussed above directly translate to downstream perfor-
mance. Models with better alignment and controlled modality gap consistently
outperform baselines on tasks such as classification, image retrieval, and multimodal
arithmetic. Multiple strategies have emerged for closing or managing the modality
gap:
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• Loss Engineering: Augmenting the standard contrastive loss with explicit
uniformity and alignment penalties (see Section 3.1.4), as proposed by a recent
work [18], directly improves the geometric structure of the representation
space.

• Loss tuning: Adjusting loss-related hyperparameters like temperature has
also been shown to mitigate the modality gap [61][47].

• Parameter-Sharing and Architectural Innovations: Methods such as
those in AlignCLIP [17] show that sharing encoder weights between modalities
and introducing intra-modality separation can substantially reduce the gap,
also improving alignment, general downstream robustness, and cross-modal
retrieval. A similar approach [56] uses cross-modality mappings to enforce
image-text consistency and reduce the gap.

• Latent Space Translation: Techniques using algebraic (e.g., Procrustes)
transformations [36] or anchor-based translation [38] allow for zero-shot stitch-
ing of encoder/decoder pairs trained in disjoint spaces. These approaches
leverage underlying isomorphisms present in well-trained models, supporting
model reuse and composability across architectures and even modalities.

Each of these solutions brings strengths and caveats. For example, latent
translation and relative representations unlock compositionality and robustness
but may require sufficient anchor correspondences and careful handling of non-
isometric factors. Loss-based methods are more broadly applicable but may trade
off performance on certain tasks if the fine structure of the gap is not respected.
Finally, some recent explanations reframe the modality gap as a contrastive gap,
an inherent property of contrastive objectives, suggesting that future progress may
require fundamentally new learning formulations [18].

To conclude, the geometric properties of the embedding space are deeply intercon-
nected with the effectiveness of multimodal representations for downstream tasks.
The collective evidence from recent research emphasizes that neither total closure
nor total disregard of the modality gap is optimal. Instead, targeted manipulation
achieved through architectural design, loss engineering, and geometric alignment en-
ables more generalizable, fair, and high-performing multimodal systems, enhancing
the utility and interpretability of large-scale vision language models.

2.3 Multimodal arithmetic
Multimodal arithmetic refers to the manipulation and combination of embeddings
from multiple modalities, notably vision and language, by applying vector arithmetic
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operations in a shared embedding space. This concept is inspired by the well-
known linguistic analogy property observed in word embeddings, where embeddings
exhibit consistent geometric relationships (e.g., king − man + woman ≈ queen)
[37]. Early works in natural language processing established these regularities as
fundamental properties of word embeddings, enabling algebraic manipulation of
semantic concepts.

Recent studies extend this paradigm to multimodal embeddings that unify
images and text representations. After CLIP [44] was introduced in 2021, it
demonstrated strong zero-shot classification and retrieval capabilities, but it was
initially unclear whether it exhibited multimodal arithmetic properties analogous
to language models.

Couairon et al. [12] explicitly explored semantic image transformations con-
ducted by vector arithmetic in joint text-image embedding spaces. They introduced
the SIMAT dataset (Section 4.2.2) to quantitatively evaluate text-driven image
transformations, where given a source image and a text-based delta vector (e.g.,
changing "cat" to "dog"), the goal is to retrieve a visually corresponding transformed
image. Such a process is depicted in Figure 2.3. Their findings suggested vanilla
CLIP embeddings were limited in supporting such arithmetic; however, simple
linear adaptation based on datasets like MSCOCO (Section 4.2.1) improved this
property considerably. Additionally, incorporating pretrained text encoders such
as FastText [7], LASER [2], and LaBSE [20] contributed to better performance
in semantic image transformations. This work opens the path to quantifying and
improving multimodal arithmetic for visual generation and retrieval tasks. A
later work [18] investigated the relationship between SIMAT performance and the
modality gap (Section 2.2), revealing that loss functions designed to bridge the
modality gap also improved multimodal arithmetic capabilities.

Multimodal arithmetic also underlies various applications in text-driven image
editing and retrieval. For instance, methods in image retrieval explore composing
queries by combining reference images with modification texts to find target images
that satisfy the textual instructions, an approach exemplified in composed image
retrieval datasets such as CIRR (Section 4.2.4) and FashionIQ (Section 4.2.3).
These datasets and tasks rely on multimodal representations that capture fine-
grained semantic relationships to support arithmetic-like transformations between
image and text embeddings.

Beyond retrieval, text-driven image manipulation methods employ multimodal
arithmetic in latent spaces for controlled editing. Patashnik et al. [42] introduced
StyleCLIP, combining CLIP embeddings with generative models (StyleGAN [27])
for semantic editing of images through vector arithmetic on latent vectors. Similar
approaches [45] have leveraged arithmetic properties to manipulate image attributes
via textual instructions in various generative adversarial and diffusion frameworks.

Complementary studies in multimodal representation learning aim to enhance
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Figure 2.3: Example of multimodal arithmetic based on a textual delta vector.
The textual embeddings are subtracted to obtain a delta vector; this is then summed
to the query image embedding to obtain the transformed image embedding. The
result is used to retrieve the most relevant image from a database. Source: [12].

the structure and interpretability of joint embeddings. Works such as Jia et al. [26]
have scaled image-text alignment training, demonstrating emergent geometrical
regularities and transfer capabilities in massive multimodal datasets. Others [60]
have investigated fine-grained alignment of regional visual features and textual
tokens to support detailed manipulation and retrieval.

In summary, multimodal arithmetic represents a growing research frontier to
harness the geometric properties of joint vision-language embeddings for image
transformation, retrieval, and generation. Current progress shows promise through
advances in pretraining objectives, multimodal datasets, and fine-tuning strategies
that enhance latent space arithmetic for real-world visual and linguistic concept
interaction.
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2.4 Composite image retrieval
Composite Image Retrieval (CIR) is an innovative and challenging task in computer
vision and multimodal research. Similar to the traditional image retrieval task, the
goal is to retrieve a target image from a database; this task is based on a multimodal
query formed by a combination of a reference image and natural language-based
modifications. Unlike traditional image retrieval methods that rely on either
image or text queries alone, CIR requires models to understand and integrate
multimodal cues effectively to retrieve target images that reflect the specified
differences in the reference image. This task has significant practical applications,
including interactive search in e-commerce, design, and content creation, where
users iteratively refine their search results by providing visual examples and textual
instructions (see Figure 2.4). A recent comprehensive survey [49] synthesizes
the broad landscape of CIR research, encapsulating datasets, fusion techniques,
architectures, evaluation protocols, and emerging challenges. CIR remains a
dynamic research frontier, progressively driven by larger datasets, more expressive
embeddings, and increasingly powerful multimodal fusion strategies.

Figure 2.4: Example of a practical application of CIR. Unlike a traditional
retrieval system, CIR prescribes an iterative refinement of the retrieval results.
Source: [22]

.

2.4.1 Benchmarks evolution
Early efforts in CIR [22][53] primarily focused on simpler domains such as fashion
and abstract geometric shapes. Guo et al. [22] introduced the FashionIQ dataset
(Section 4.2.3), which consists of fashion images annotated with human-generated
relative captions. This dataset supports interactive retrieval scenarios where the
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system refines search results based on detailed natural language feedback about
attributes like color, style, and texture. FashionIQ laid an important foundation for
CIR research by highlighting the complexity of real-world user demands and the need
for compositional understanding of visual and linguistic modalities. Other earlier
datasets for CIR, like CSS (Composed Synthetic Shapes) [53], present a synthetic
collection of simple geometric 3D objects with descriptions generated automatically
according to visual differences. CSS provides a controlled environment to study
compositional image retrieval, focusing on basic shape and color transformations
rather than complex real-world scenes.

To broaden the scope of CIR research, another study [34] introduced the CIRR
dataset (Section 4.2.4), which includes over 36,000 triplets containing a reference
image, a text-based modification, and the target image to be retrieved. CIRR
focuses on real-world scenes that are open-domain and feature high levels of
semantic and visual complexity. It challenges models to interpret complex textual
instructions while distinguishing subtle image differences, demanding sophisticated
visiolinguistic reasoning. It also introduces a novel evaluation metric, RecallSubset,
to address common pitfalls in CIR benchmarking, like false negatives, and to
provide a more reliable assessment framework.

2.4.2 Previous approaches
Recent approaches in CIR have explored various strategies, broadly categorized
into zero-shot and supervised methods, with further distinctions based on whether
they use textual-inversion techniques or vector operations in the embedding space.

Zero-shot CIR Approaches

Zero-shot (ZS-CIR) methods aim to perform composed retrieval without requiring
annotated triplets for training. They leverage pre-trained VLMs like CLIP [44]
and apply innovative fusion or manipulation techniques to enable retrieval in a
training-free or minimally supervised manner.

Textual-inversion-based methods develop learnable pseudo-word tokens that
represent the visual content of the reference image, which are then combined with
the modification text tokens to form a text query. The core idea is to invert
image embedding features back into the text token space to enable multimodal
fusion fully within the text encoder (Figure 2.5). Models like PALAVRA [11] and
SEARLE [3] introduce optimization-based textual inversion (OTI) and a mapping
network to generate pseudo-word tokens. These tokens capture the visual content of
reference images while aligning them semantically with real tokens in the CLIP text
embedding space. iSEARLE [1] improves on SEARLE by injecting Gaussian noise
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and employing similarity-based hard negative sampling for better generalization
and reduced modality gap. Pic2word [46] pioneers coarse-grained textual inversion
by training a lightweight mapping network from image embeddings to learn a
pseudo-token that represents an entire image as a "word". LinCIR [21] extends
textual inversion to fine-grained scenarios using a self-masking projection network
to flexibly replace keywords in the text with projected latent embeddings, enhancing
retrieval performance in zero-shot settings.

Figure 2.5: Inference process of ZS-CIR based on textual inversion. The query
image is transformed into a text token that can be directly fused with the relative
caption. Source: [3].

Pseudo-triplet-based approaches generate synthetic triplets by leveraging
large language models (LLMs) or masking strategies to automatically construct
training data, thus allowing traditional supervised training paradigms without
manual annotations. MTI [8] adopts a masked learning approach where masked
images and associated captions simulate the composed query, and the original
image plays the role of the target, enabling the model to learn from unlabeled data
efficiently.

Training-free methods operate without any further training by exploiting
pre-trained VLM models and direct embedding space operations. Slerp [25] uses
spherical linear interpolation between reference image and text embeddings in
the joint embedding space, blending visual and semantic cues for effective zero-
shot retrieval. WeiMoCIR [57] employs weighted modality fusion and similarity
measures, leveraging multiple captions generated by multimodal large language
models (MLLM) to improve the cross-modal matching without model training.
CIReVL [28] and SEIZE [59] utilize large language models to transform composed
queries into natural language captions suitable for off-the-shelf image retrieval
systems, adding local re-ranking mechanisms to improve accuracy.
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Supervised CIR Approaches

Supervised methods rely on annotated triplets of reference image, modification text,
and target image for training. They primarily focus on designing sophisticated
fusion networks, metric learning losses, and image-text alignment strategies to
improve query-target matching.

Vector operation-based supervised methods treat the textual modification
as an embedding space transformation. CLIP4CIR [4], and its later improvement
CLIP4CIR2 [6], stand out as important models leveraging multimodal arithmetic
principles. They perform fine-tuning of CLIP encoders, learning a residual vector in
the joint embedding space that corresponds to the relative caption, and apply this
residual to the reference image embedding (see Figure 2.6), effectively achieving
controlled semantic manipulation analogous to vector arithmetic seen in unimodal
contexts. This method yields significant performance gains due to integrating the
strong prior knowledge of CLIP’s multimodal alignment. Combiner [5] similarly
combines reference image and modification text features via learned fusion networks
but emphasizes adaptive spatial and component-wise fusion to retain more fine-
grained features.

Figure 2.6: CIR supervised approach of CLIP4CIR. Relative captions are directly
fed to the text encoder. Reference image and relative caption embeddings are
combined using vector operations to obtain the combined features, which, in
turn, are used to retrieve the target image. CLIP’s weights are fine-tuned with a
contrastive approach. Source: [6].

Additionally, zero-shot textual-inversion techniques have been integrated into
end-to-end supervised frameworks: models like SEARLE [3] and iSEARLE [1] also
have supervised versions leveraging annotated triplets for better inversion of visual
content and improved alignment with textual modifiers.
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Other supervised models utilize neural attention mechanisms or graph rep-
resentations to enhance the fusion of multimodal inputs, such as SPIRIT [9]
(style-guided patch interaction) or JAMMA [63] (joint attribute manipulation with
graph attention) for attribute-level reasoning.

Overall, the CIR landscape shows a complex interaction between zero-shot and
supervised methods, with textual-inversion techniques pushing the boundaries of
zero-shot capabilities by mapping images to pseudo-textual tokens, while vector
operation methods exploit embedding arithmetic principles to model semantic
modifications as continuous shifts, achieving powerful and interpretable composition
in retrieval tasks.
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Methods

In this chapter, we will discuss our theoretical approach to the problem of mul-
timodal arithmetic and composite image retrieval. We will start in Section 3.1
with a general background, describing the notation we will use, the structure and
properties of the classical contrastive learning objective, the main statistical and
geometrical properties of the embedding space, and some auxiliary losses proposed
by previous works. In Section 3.2, we will formalize the concept of cross-modal
semantic consistency, present a theorem that links this property to Multimodal
arithmetic performance, and design a metric to globally evaluate the cross-modal
consistency of an embedding space. We will also analyze this metric and discuss
its global minima and their relationship with the structure of the embedding space.
Finally, in Section 3.3, we will design a loss to effectively train a VLM on an
image-text pair dataset, applying the insights obtained in the previous section. We
will also analyze some particular behavior of this loss, some limitations, and some
possible solutions to overcome them.

3.1 Background

3.1.1 General notation
In this thesis, we decide to adopt a similar notation to a recent work [61]. Consider
a set of N paired training samples {(xt

i, x
v
i )}N

i=1 ⊆ Rdt × Rdv , where each pair
(xt

i, x
v
i ) consists of samples from the textual and visual modalities, respectively. We

define the encoders of CLIP as fθ : Rdt → Rd for textual inputs and gϕ : Rdv → Rd

for visual inputs. By fixing θ and ϕ as the model’s weights, we can evaluate the
encoders to obtain the textual embeddings ht

i = fθ(xt
i) and the visual embeddings

hv
i = gϕ(xv

i ). These embeddings live in a joint vector space with finite dimension
d. Furthermore, since fθ(·) and gϕ(·) are usually followed by an L2-normalization
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layer, we can consider ht
i, hv

i as Rd vectors with unitary L2-norm. This property
allows us to characterize the embedding space as a unit hypersphere, where each
encoding corresponds to a specific point on its surface.

3.1.2 Contrastive Language–Image objective
Like the majority of VLM pre-training techniques, CLIP[44] is pre-trained using a
contrastive infoNCE loss [40]. The general idea for this objective is to pull matching
(or positive) image-text pairs close to each other while pushing apart non-matching
(or negative) pairs.

Formally, we start by defining a similarity measure for our embedding space.
This is usually done by means of the cosine similarity. Given two vectors a, b ∈ Rd,
the cosine similarity cos(a, b) between the two has values in [−1,1] and is defined
as:

cos(a, b) = ⟨a, b⟩
∥a∥∥b∥

(3.1)

where ⟨·, ·⟩ denotes the inner product, and ∥ · ∥ denotes the euclidean L2-norm.
In practice, since our embeddings have a unitary L2-norm, we can simplify this
definition by omitting the denominator. This function can either be seen as a
similarity measure based on the angle between the two vectors, or as a way to
compute the logits corresponding to the probability of the two vectors being
semantically related (i.e., of the pair (a, b) being a positive pair).

The CLIP optimization objective, hereby denoted by LCLIP, is composed of two
unidirectional losses: one for image-to-text classification LV →T

CLIP , and the other for
text-to-image classification LT →V

CLIP . They are both formulated as temperature-scaled
cross-entropy losses, structured to maximize the similarity of positive pairs (k = i)
against the similarity of negative ones (k /= i). Analytically, the image-to-text
classification loss is defined as:

LV →T
CLIP = − 1

N

NØ
i=1

log
C

exp(⟨hv
i , h

t
i⟩ /τ)qN

k=1 exp(⟨hv
i , h

t
k⟩ /τ)

D
(3.2)

and similarly:

LT →V
CLIP = − 1

N

NØ
i=1

log
C

exp(⟨hv
i , h

t
i⟩ /τ)qN

k=1 exp(⟨hv
k, h

t
i⟩ /τ)

D
(3.3)

where the scaling factor τ is an additional parameter known as temperature. The
overall bidirectional loss function is given by the average between the two unidirec-
tional ones:

LCLIP = 1
2LV →T

CLIP + 1
2LT →V

CLIP (3.4)
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Note that the above loss function does not directly affect the similarity between
samples of the same modality, but acts only on cross-modality pairs.

In practice, the loss is typically applied using minibatches, replacing N with
Nb, where Nb represents the size of the batch. Since this is a contrastive objective,
it generally necessitates a relatively large batch size. For instance, some studies
utilize a minibatch size as large as 32,768 [44].

Temperature. The effects of the temperature parameter τ have been extensively
studied in both unimodal and multimodal contrastive learning [54] [65] [61]. Ge-
ometrically, this parameter acts as a scaling factor that alters the radius of the
hypersphere. To avoid introducing an additional hyperparameter, Radford et al.
[44] treat it as a learnable parameter represented by s. They incorporate s into the
model’s set of learnable parameters and scale the logits using the parametrization
τ = 1

exp(s) . However, later works [61] found this approach to be counterproduc-
tive and have proposed alternatives, such as using a fixed value, implementing a
schedule, or adopting a different parametrization for τ .

To better understand the action of LCLIP, we can refer to the algebraic formu-
lation. Let’s define the matrix Ht ∈ RN×d obtained by concatenating the textual
embeddings ht

i along the first axis. Here N denotes the batch size, and d denotes
the embedding space dimension. Similarly, we define Hv ∈ RN×d as the matrix
created by applying the same operation to the visual embeddings. We then multiply
the two embedding matrices to obtain the similarity matrix S ∈ RN×N :

S := HvH
T
t (3.5)

For construction, this matrix is such that each element (i, k) is the logit quantifying
the probability of the image-text pair (i, k) being a positive pair:

(S)(ik) = ⟨hv
i , h

t
k⟩ (3.6)

A visual representation of this operation is depicted in Figure 3.1. The learning
objective can be interpreted as maximizing the diagonal elements against the
others. Each row i of the similarity matrix corresponds to a single instance of the
cross-entropy in LV →T

CLIP for a fixed value of i. Similarly, LT →V
CLIP acts column-wise,

maximizing the ratio (of exponentials) of the diagonal cell over the non-diagonal
ones. In practice, this formulation allows for an efficient imwplementation in
PyTorch: after applying the scaling factor τ , the matrix can be used as logits in
the cross-entropy loss function.

3.1.3 Properties of the embedding space
In this subsection, we define some metrics to evaluate the embedding space geometry.
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Figure 3.1: Visual representation of the CLIP loss: the Hv visual (left) and Ht

textual embeddings (top) are multiplied to obtain the similarity matrix (bottom-
right). The learning objective can then be interpreted as maximizing the diagonal
elements (green) against the others (blue). Each row i of the similarity matrix
corresponds to a single instance of the cross-entropy in LV →T

CLIP for a fixed value of i.
Similarly, LT →V

CLIP acts column-wise, maximizing the ratio (of exponentials) of the
green cell over the blue ones.

Mean similarity

A simple way to measure the effectiveness of the contrastive objective (Section 3.1.2)
is by means of the similarity distribution. To describe this distribution with simple
metrics, we refer to the mean similarity between all positive pairs (MPS) and all
negative pairs (MNS). Note that in a dataset with size N , there are N positive
pairs and N(N − 1) negative ones. Formally:

MPS := 1
N

NØ
i=1

ht
ih

v
i (3.7)
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MNS := 1
N(N − 1)

NØ
i=1

NØ
j=1
j /=i

ht
ih

v
j (3.8)

Referring to the example in Figure 3.1, MPS is the average value of the green
squares, while MNS corresponds to the average value of the blue ones.

Modality gap

We denote the modality gap (see Section 2.2) as ∆gap ∈ Rd, and define it as the
centroid difference between the two modalities:

∆gap := 1
N

NØ
i=1

hv
i − 1

N

NØ
i=1

ht
i (3.9)

= 1
N

NØ
i=1

(hv
i − ht

i) (3.10)

Analogously, we define the modality delta vector ∆i ∈ Rd for each pair (ht
i, h

v
i ):

∆i := hv
i − ht

i i ∈ [1, N ] (3.11)

Using equations (3.9) and (3.11), we can reformulate the modality gap as the mean
of the modality delta vectors:

∆gap = 1
N

NØ
i=1

∆i (3.12)

To assess modality alignment, we often refer to the Euclidean norm ∥∆gap∥,
which represents the centroid distance between visual and text modalities. Unless
otherwise specified, when we talk about modality gap, we refer to ∥∆gap∥.

Additionally, we can also define the alignment as the mean squared L2-norm of
the modality delta vectors:

A := 1
N

NØ
i=1

∥∆i∥2 (3.13)

We say that the alignment improves as A goes to 0.

Variance

From a statistical point of view, the embedding space can also be described with a
distribution of the representations over the hypersphere. To have a good semantic
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expressivity, we seek the embedding space to be as "wide" as possible. This way,
we can ensure the model fully exploits the available dimensionality. We measure
this "wideness" by means of the in-modality variance. We first define the (textual)
mean µt and covariance matrix Σt:

µt := 1
N

NØ
i=1

ht
i (3.14)

Σt := 1
N

NØ
i=1

(ht
i − µt)(ht

i − µt)T (3.15)

The total textual in-modality variance is then formulated as:

Var
è
ht
é

:= Tr(Σt) = 1
N

NØ
i=1

∥ht
i − µt∥2 (3.16)

And analogously for the visual modality:

Var [hv] := Tr(Σv) = 1
N

NØ
i=1

∥hv
i − µv∥2 (3.17)

For a good semantic expressivity, we seek the in-modality variances to be as
large as possible.

Uniformity

Another important property for the embedding space is uniformity. To assess this
property, we use a metric based on the Wasserstein distance between the embedding
distribution and an ideal Gaussian distribution N (0, 1

N
IN) [19]. The formulation

is:

U :=
ó

∥µ∥2 + 1 + Tr(Σ) − 2√
N
Tr(Σ 1

2 ) (3.18)

Where Σ is the covariance matrix and µ is the mean of the embeddings. A small U
indicates a large uniformity of representations.

3.1.4 Auxiliary losses
In order to bridge the modality gap and improve cross-modal alignment, Fahim et
al. [18] propose some additional losses. In the following paragraphs, we report the
formulations for these losses.
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In-modal uniformity

The in-modal uniformity works by pushing apart the samples within each modality.
In the classical contrastive loss (3.4), there is no term that actively pushes apart
samples from the same modality; thus a specific loss is designed. Formally, we can
define the uniformity loss for the visual modality Lv

U as follows:

Lv
U = log

 1
N

NØ
j=1

NØ
k=1

exp(−2∥hv
j − hv

k∥2)
 (3.19)

Analogously, we can define the in-modal uniformity for the textual modality Lt
U ,

and compute the average between the two to obtain the total loss:

LU = 1
2Lv

U + 1
2Lt

U (3.20)

Note that this loss pushes apart embeddings from the same modality regardless
of whether they are semantically related.

Cross-modal uniformity

While LU acts by pushing apart encodings within each modality, it does not affect
cross-modal negative pairs. To enforce a stronger constraint, a cross-modal version
has been proposed. The so-called cross-modal uniformity loss LXU is defined as
follows:

LXU = log

 1
N

NØ
j=1

NØ
k=1
k /=j

exp(−2∥hv
j − ht

k∥2)

 (3.21)

Alignment

Finally, to explicitly improve alignment, they propose the alignment loss LA:

LA = 1
N

NØ
j=1

(∥hv
j − ht

j∥2) (3.22)

Different from the contrastive objective in Equation (3.4), which maximizes the
positive similarity against the negative one, this loss aims to reduce the Euclidean
distance between the embeddings of positive pairs.

In practice, these losses are designed to be used in combination with each other
and the classical contrastive objective. In particular, we will refer to two specific
combinations, proposed by [18]:
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LCUA = LCLIP + LU + LA (3.23)

LCUAXU = LCLIP + LU + LA + LXU (3.24)

3.2 Cross-modal semantic consistency
Cross-modal semantic consistency is a multimodal generalization of the famous
example « king-man+woman ≈ queen » [37]. The general principle is to consider
the visual-text embedding space as a single unified semantic space, where the
encodings are semantically consistent with each other regardless of the modality.

3.2.1 Formalization
Let us consider an image-text pair (ht

i, h
v
i ). Ideally, both the textual and visual

encodings should represent the same general concept. We denote this general
concept (for pair i) as Ci. However, since ht

i and hv
i belong to different modalities,

we could expect their encodings to reflect this difference. In general, this modality
contribution is modality-dependent and specific to each pair. Without loss of gen-
erality, we model the modality contributions as additional components orthogonal
to Ci that we denote as ψt

i and ψv
i for text and vision, respectively. We can then

write the embeddings as:

ht
i = Ci + ψt

i ψt
i ⊥ Ci (3.25)

hv
i = Ci + ψv

i ψv
i ⊥ Ci (3.26)

By subtracting the above expressions, we obtain the modality delta vector ∆i:

∆i = hv
i − ht

i = ψv
i − ψt

i i ∈ [1, N ] (3.27)

In practice, to be able to effectively compute semantic arithmetic-based oper-
ations, we show that the modality delta vectors should be as aligned as possible.
To understand why this is the case, let us examine two different pairs (ht

i, h
v
i ) and

(ht
j, h

v
j ). In a unimodal setting, we can transition from sample i to sample j using

the semantic delta vector Cj − Ci through vector arithmetic [37]. In a multimodal
setting, we reformulate this task as the problem of retrieving hv

j given hv
i , ht

i, and
ht

j. This is analogous to the multimodal arithmetic task proposed by [12] (see
Section 2.3). We aim to tackle this problem by constructing a query vector qv

i→j

that we define as follows:

qv
i→j := hv

i + (ht
j − ht

i) (i, j) ∈ [1, N ]2 (3.28)
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Theorem 3.2.1 gives us the condition under which we can successfully use the
vector qv

i→j to retrieve hv
j . Note that this approach can be generalized to obtain a

textual embedding ht
j with a query qt

i→j analogously constructed.

Theorem 3.2.1. We show that, for any (i, j) ∈ [1, N ]2, we have qv
i→j = hv

j iff
∆i = ∆j.

Proof. Using the definitions (3.28) and (3.11), we have:

qv
i→j =hv

i + (ht
j − ht

i) (3.29)
=(hv

i − ht
i) + ht

j

=∆i + ht
j

The difference qv
i→j − hv

j is then:

qv
i→j − hv

j =∆i + ht
j − hv

j (3.30)
=∆i − ∆j

Thus qv
i→j = hv

j iff ∆i = ∆j.

This theorem states that the most relevant factor for multimodal arithmetic is
the alignment of the modality delta vectors. It is important to note that this does
not suggest that the modality gap influences multimodal arithmetic performance.
Indeed, this result indicates that instead of focusing on ∆gap (which represents the
mean of the vectors ∆i), we should consider their variance Var [∆] (or a proxy
metric, as described in the next section). Empirical results supporting this claim
are discussed in Section 4.3.3.

It is also important to note that one way to improve the alignment of modality
delta vector is by reducing their magnitude (i.e., setting ∆i → 0⃗); this leads to a
decrease in both Var [∆] and ∥∆gap∥. As a result, one might mistakenly interpret
the closure of the modality gap as the factor that improves performance, while in
reality, it is the alignment of the modality delta vectors that drives the improvement.

In practice, we can relax the equality in Theorem 3.2.1 to obtain the underlying
general principle of cross-modal semantic consistency:

hv
i + (ht

j − ht
i) ≈ hv

j ∀(i, j) ∈ [1, N ]2 (3.31)

Or alternatively:
ht

j − ht
i ≈ hv

j − hv
i ∀(i, j) ∈ [1, N ]2 (3.32)

In other words, this property is such that making a step in one modality is
equivalent to making a step in the other.
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3.2.2 Designing a metric
To systematically measure cross-modal semantic consistency, we design a residuals-
based metric named XSC-SR (X-modal Semantic Consistency based on mean
Squared Residuals). Using the general principle in (3.32), we first define the
semantic consistency residual for the (i, j) pair:

rij : = (ht
j − ht

i) − (hv
j − hv

i ) i, j ∈ [1, N ]2 (3.33)
= ht

j − ht
i − hv

j + hv
i (3.34)

= (hv
i − ht

i) − (hv
j − ht

j) (3.35)
= ∆i − ∆j (3.36)

We can notice that:

rij = −rji ∀(i, j) ∈ [1, N ]2 (3.37)
∥rij∥ = ∥rji∥ ∀(i, j) ∈ [1, N ]2 (3.38)
rii = 0 ∀i ∈ [1, N ] (3.39)

To satisfy the general principle, we want rij to be as close as possible to 0⃗. Thus,
we consider its squared L2-norm ∥rij∥2, and define XSC-SR as the mean value
across all distinct pairs. Note that, given a dataset of N samples, we can construct
N(N−1)

2 distinct pairs, therefore:

XSC-SR := 2
N(N − 1)

NØ
i=1

NØ
j=i+1

∥rij∥2 ≥ 0 (3.40)

Given the symmetry property in (3.38), we can reformulate the above, considering
also non-distinct pairs:

XSC-SR = 1
N(N − 1)

NØ
i=1

NØ
j=1
j /=i

∥rij∥2 (3.41)

Also, given the (3.39), we can include in the sum the improper pairs for which
i = j:

XSC-SR = 1
N(N − 1)

NØ
i=1

NØ
j=1

∥rij∥2 (3.42)

And explicitly:

XSC-SR := 1
N(N − 1)

NØ
i=1

NØ
j=1

∥ht
j − ht

i − hv
j + hv

i ∥2 ≥ 0 (3.43)
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By applying a well-known property of the variance (A.1), we can also rewrite it as
follows:

XSC-SR = 1
N(N − 1)

NØ
i=1

NØ
j=1

∥∆i − ∆j∥2 (3.44)

= 2N
N − 1Var [∆] (3.45)

Equation (3.43) gives us the definition of XSC-SR, while the (3.45) shows the
relationship between this metric and the sample variance of the modality delta
vectors, as well as a more practical way to compute it. Ideally, for a good embedding
space, we would like the XSC-SR metric to be as small as possible.

Note that, for the construction of this metric, we have that Theorem 3.2.1 is
satisfied iff XSC-SR = 0, i.e., in each of its global minima.

3.2.3 Relationship with other properties
Given Theorem 3.2.1, one might consider using XSC-SR as a loss function to
explicitly optimize a VLM for a multimodal arithmetic task. However, we show
with the following result why this approach might not be advisable.

Theorem 3.2.2. The following equality holds

XSC-SR = 2N
N − 1Var [hv] + 2N

N − 1Var
è
ht
é

+ 4(MNS − MPS) (3.46)

Proof. We can prove the theorem by decomposing the XSC-SR metric and applying
a well-known property of the variance. The complete proof can be found in
Appendix A.2.

Theorem 3.2.2 gives us the relationship between the XSC-SR metric and other
properties of the embedding space: in-modality variances, mean positive similarity
(MPS), and mean negative similarity (MNS). Recall that XSC-SR follows the
principle "the smaller the better", thus Theorem 3.2.2 prescribes to maximize the
difference MPS − MNS, while minimizing in-modality variances. This highlights an
important trade-off intrinsic to multimodal arithmetic; as a matter of fact, while
having a good separation between positive and negative pairs is coherent with the
goals of contrastive learning, in-modality variance is generally considered a good
property to have, since it allows for a good semantic expressivity of the embedding
space. Indeed, we notice that (3.46) has a global minimum corresponding to
Var [ht] = Var [hv] = 0 (see Figure 3.2 left); in such a case, it is easy to see how
Theorem 3.2.1 is satisfied for all the samples, even though such embeddings do not
carry any meaningful semantic information. From this, we can identify two main
takeaways:
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1. Multimodal arithmetic, as formulated by [12], is intrinsically limited by the
geometry of the embedding space.

2. XSC-SR, while useful to assess cross-modal semantic consistency, should not
be used as a standalone learning objective, as it may deteriorate the embedding
distribution.

3.2.4 Global minima

Figure 3.2: 3D illustration of the XSC-SR global minima. The zero-variance case
(left) is such that each modality is encoded into a single point; in such a case, both
the modality gap and the alignment might be large. The perfect alignment case
(right) is such that each text-image pair is encoded into a single point; in such a
case, we have perfect alignment and zero modality gap.

We have already mentioned how squeezing the in-modality variances gives us
one global minimum for XSC-SR. We now prove that proposition.

Having Var [ht] = Var [hv] = 0 means that all embeddings of each modality are
encoded in two single points of the hypersphere (see Figure 3.2 left). Let us denote
these points as ht

⋆ and hv
⋆ such that we have ht

i = ht
⋆ and hv

i = hv
⋆ ∀i ∈ [1, N ]. We
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note that, in such a case:

Var
è
ht
é

= Var
è
ht

⋆

é
= 0 (3.47)

Var [hv] = Var [hv
⋆] = 0 (3.48)

MPS = 1
N

NØ
i=1

hv
⋆ · ht

⋆ = hv
⋆ · ht

⋆ (3.49)

MNS = 1
N(N − 1)

NØ
i=1

NØ
j=1
j /=i

hv
⋆ · ht

⋆ = hv
⋆ · ht

⋆ (3.50)

Thus, equation (3.46) gives us XSC-SR = 0.
Furthermore, from the definition of the residuals in (3.36), we notice that another

minimum is given when the positive pairs are perfectly aligned (i.e., ∆i = 0⃗), indeed:

∆i = 0⃗ ∀i ∈ [1, N ] (3.51)
=⇒ ∆i − ∆j = 0⃗ ∀(i, j) ∈ [1, N ]2 (3.52)
=⇒ rij = 0⃗ ∀(i, j) ∈ [1, N ]2 (3.53)
=⇒ XSC-SR = 0

From this latter result, we can deduce that another way to improve cross-modal
semantic consistency is by improving the alignment A as it is defined in (3.13)
(see Figure 3.2 right). We summarize these two global minima, along with the
corresponding geometrical and statistical properties, in Table 3.1.

Description Alignment In-modality variance Modality gap

Zero-variance [0,4] 0 [0, 2]
Perfect alignment 0 [0, 1] 0

Table 3.1: Summary of the geometrical and statistical properties of the global
minima of XSC-SR.

3.3 Contrastive query-target objective
We now discuss the problem of designing a loss function LMA to explicitly train a
model for multimodal arithmetic. As we have seen in Section 3.2.3, using XSC-SR
as a loss function might lead the model to the zero-variance global minimum, and
deteriorate the embeddings distribution. This global minimum directly follows from
the strict condition qv

i→j = hv
j in Theorem 3.2.1. However, in a practical application,
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we do not really need to have a strict equality between our query vector and the
target image. Indeed, if we reformulate the task of multimodal arithmetic as a
classification problem, where we limit ourselves to match the query with the "best"
target image, it becomes sufficient to ensure that the query is positioned closer to
the target with respect to any other sample in the database.

A similar argument can be made for the classical contrastive objective discussed
in Section 3.1.2: in that context, we did not require the loss to completely align the
positive pairs, but we instead constructed it to maximize the similarity of positive
pairs against the negative ones.

3.3.1 Formulation

Applying the above reasoning to the multimodal arithmetic task, we decide to
follow a contrastive approach. Recall that our goal is to retrieve a target image
hv

j given a query qv
i→j. From a set of N text-image pairs, we can construct N2

queries; each of these queries should be matched with one among N candidate
images. Since, in general, qv

i→j do not have a unitary L2-norm, we normalize the
queries. We then stack all the normalized queries along the first axis to construct
a query matrix Qv ∈ RN2×d, and do the same operations for the candidate images
to obtain a target matrix Tv ∈ RN×d. Finally, we compute a similarity matrix
Sq→v ∈ RN2×N multiplying Qv and Tv:

Sq→v = QvT
T
v (3.54)

For simplicity, we index matrix Sq→v denoting the rows with (i, j) ∈ RN2 (corre-
sponding to the query qv

i→j) and columns with k ∈ [1, N ] (corresponding to the
candidate image hv

k). For construction, we have:

(Sq→v)[(i,j),k] = cos(qv
i→j, h

v
k) (3.55)

Note that the positive elements are given when j = k. In practice, we can identify
their position with an index matrix I constructed by vertically stacking N identity
matrices IN :
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I =



1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

... ... ... ...

1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1



∈ RN2×N

The learning objective can then be formulated as the optimization task of
maximizing the positive elements against the negative ones. A visual depiction of
this objective is proposed in Figure 3.3.

Figure 3.3: Visual depiction of the query-target contrastive objective. The query
matrix Qv (left) is multiplied with the target matrix Tv (top) to obtain the similarity
matrix Sq→v (bottom-right). The positive elements (j = k) are depicted in green,
while the negative ones (j /= k) are colored in blue. Due to spatial limitations, we
can only show a small subset of the similarity matrix rows. In reality, this matrix
is rectangular, with N2 rows and N columns.
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Note that until now, we have only considered the query-to-image case, but the
same approach can be followed to design a query-to-text similarity matrix Sq→t.

To enforce the optimization objective, we write an infoNCE loss function that,
for the query-to-vision case, we can write as follows:

Lq→v
MA = − 1

N2

NØ
i=1

NØ
j=1

log
C

exp(cos(qv
i→j, h

v
j )/τ)qN

k=1 exp(cos(qv
i→j, h

v
k)/τ)

D
(3.56)

and analogously for the query-to-text case:

Lq→t
MA = − 1

N2

NØ
i=1

NØ
j=1

log
C

exp(cos(qt
i→j, h

t
j)/τ)qN

k=1 exp(cos(qt
i→j, h

t
k)/τ)

D
(3.57)

Finally, we define the bidirectional loss as:

LMA = 1
2Lq→v

MA + 1
2Lq→t

MA (3.58)

From now on, we will refer to LMA as the unweighted bidirectional loss, and to
Lq→v

MA as its monodirectional version.

Applications for CIR. In the scope of CIR, LMA can be interpreted as a
supervised contrastive loss similar to the one used in CLIP4CIR [4]. The difference
is that we do not require an annotated relative caption to transform hv

i into hv
j ;

instead, we approximate the relative caption with the difference vector ht
j − ht

i, and
use this vector to construct the query. This approach is based on the assumption
that any image i can be meaningfully transformed into an image j. We will discuss
a possible strategy to relax this assumption in Section 3.3.3.

3.3.2 Edge cases behaviour
We now present a special behavior that arises from LMA when we consider the
particular case i = j. For simplicity, let us consider the monodirectional vision-to-
text loss. Under the condition i = j, we have:

qv
i→j = hv

i + (ht
j − ht

i) (3.59)
qv

i→i = hv
i (i = j) (3.60)

We can also notice that in the loss written in (3.56) there appear N different terms
for which i = j. We can isolate from (3.56) the partial sum that depends on those
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terms, and write it as follows:

− 1
N2

NØ
i=1

log
C

exp(cos((qv
i→i, h

v
i )/τ)qN

k=1 exp(cos(qv
i→i, h

v
k)/τ)

D
(3.61)

= − 1
N2

NØ
i=1

log
C

exp(cos(hv
i , h

v
i )/τ)qN

k=1 exp(cos(hv
i , h

v
k)/τ)

D
(3.62)

= − 1
N2

NØ
i=1

log
C

exp(1/τ)qN
k=1 exp(⟨hv

i , h
v
k⟩ /τ)

D
(3.63)

= − 1
N2

NØ
i=1

log
C

1qN
k=1 exp(⟨hv

i , h
v
k⟩ /τ)

D
− 1
τN

(3.64)

We notice that, as written in (3.64), this partial sum acts to minimize the similarity
between each pair of embeddings inside the target modality.

To summarize, we can conclude that inside each monodirectional loss there
appear N terms for which i = j, and that these terms behave like an in-modal
uniformity loss that pushes apart the embeddings of the target modality.

3.3.3 Tackling incompatible samples
Until now, we have explored a loss function based on the principles of multimodal
arithmetic. LMA is based on the assumption that we can write a meaningful
transformation query between any couple of pairs i, j. However, this is hardly the
case in practice. Indeed, there are many couples of images that are too different
to allow for a transformation that makes sense. Let’s consider, for example, the
images in Figure 3.4: for a human annotator, it would be hard to write a relative
caption to transform one image into the other. Yet, the LMA would consider the
difference between their textual embeddings as a relative caption, even if it hardly
reflects any meaningful visual transformation.

To tackle the problem of incompatible samples, we propose a weights-based
approach. We aim to define a weighting function w : Rd × Rd → R+, such that
w(ht

i, h
t
j) expresses how "compatible" the captions i and j are. We then use this

function to re-weight the cross-entropy loss. The unidirectional query-to-vision loss
thus becomes:

Lq→v
MA⋆ = − 1qN

l=1
qN

m=1 w(ht
l , h

t
m)

NØ
i=1

NØ
j=1

w(ht
i, h

t
j) log

C
exp(cos(qv

i→j, h
v
j )/τ)qN

k=1 exp(cos(qv
i→j, h

v
k)/τ)

D
(3.65)

and similarly:

Lq→t
MA⋆ = − 1qN

l=1
qN

m=1 w(ht
l , h

t
m)

NØ
i=1

NØ
j=1

w(ht
i, h

t
j) log

C
exp(cos(qt

i→j, h
t
j)/τ)qN

k=1 exp(cos(qt
i→j, h

t
k)/τ)

D
(3.66)
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Figure 3.4: Example of two incompatible images. A human annotator would
likely not be able to write a meaningful relative caption to transform a dog (left)
into a serving of mashed potatoes (right). These images are taken from CIRR’s
imageset.

As before, the bidirectional version is the average of the two unidirectional ones:

LMA⋆ = 1
2Lq→v

MA⋆ + 1
2Lq→t

MA⋆ (3.67)

For the rest of this work, we will use the weighted versions LMA⋆ and Lq→v
MA⋆ of our

loss function, referring to them as the Multimodal Arithmetic loss (MA-loss bi)
and its monodirectional variant (MA-loss mono).

Weighting function

We now want to define the function w(·, ·). We want this function to:

1. be symmetrical, since if the couple (i, j) is incompatible, so is couple (j, i)

2. have values in [0,1], so that we can use it to re-weight the samples

We decide to use an approach based on the similarity; the rationale is that if
two samples are similar enough, they are also compatible. Thus, we formulate
w(·, ·) as:

w(hi, hj) := ✶⟨hi,hj⟩>0 ⟨hi, hj⟩2 (3.68)
where ✶ denotes the indicator function. With this formulation, we find that w(hi, hj)
is symmetric, has values in [0,1], and equals 0 if the similarity ⟨hi, hj⟩ is negative.
The latter property enables us to disregard samples that are too dissimilar to
represent a meaningful transformation. A plot for this function is presented in
Figure 3.5.
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Figure 3.5: Behavior of the weighting function w(hi, hj). The value only depends
on the similarity ⟨hi, hj⟩.

In Appendix B.1, we report a simple PyTorch code to efficiently compute the
weighted version of the MA-loss using this weighting function.

Alternative weighting strategies

Until now, we have discussed a weighting strategy based on the textual embedding
similarity, but we could as easily adopt a strategy based on the visual embeddings.
All we have to do is compute the weighting function as w(hv

i , h
v
j ) using the visual

embeddings in place of the textual ones.
One could argue that using the same model to compute embeddings for both

the query-target learning objective and the weighting function might confuse the
model. Specifically, allowing a single model to optimize both the learning objective
and the weighting function could result in the model assigning a low compatibility
score to samples that are challenging but still "compatible." This situation could
ultimately lead to a model with reduced generalization capabilities. To address
this issue, we propose a weighting strategy called frozen weights. This strategy
involves using a separate, frozen model instance solely for computing compatibility
scores based on embedding similarities. Furthermore, since this auxiliary model
does not partake in the training process, we can compute the compatibility scores
once and cache the results to speed up training.

To summarize, defining a weighting strategy requires us to choose both the
modality for calculating the weighting function and whether to use a frozen auxiliary
model to compute the embeddings. This results in a total of four different strategies,
which are outlined in Figure 3.6.
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Textual embeddings Visual embeddings

Dynamic
weights

Frozen
weights

Figure 3.6: Visual representation of the weighting strategies. Each strategy is
defined by the modality used to compute the weighting function: Textual (left) or
Visual (right); and whether the weighting function is computed using the same
model (top), or an auxiliary frozen model (bottom).
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3.3.4 Adapting the MA-Loss to supervised CIR
In Section 3.3.1, we have discussed how MA-loss can be used to train a model for
ZS-CIR. We did so based on two assumptions:

• Our linear fusion strategy (the query construction in (3.28)) is complex enough
to apply a meaningful multimodal transformation

• When post-pre-training on an image-text pair dataset for ZS-CIR, we can
approximate a text-based transformation using the difference of the captions’
embeddings

In order to evaluate the first assumption, we aim to develop a method in order to
evaluate the effectiveness of the fusion strategy, excluding any possible effects due
to the zero-shot transfer. In other words, we want to establish a supervised upper
bound for CIR.

Unlike MA-loss, which is formulated for an image-text dataset like MSCOCO
[33], in supervised CIR, we have a relative caption xc

i that describes the difference
between source xv

i and target zv
i images. We then proceed by encoding the

images with the visual encoder to obtain the embeddings hx
i = gϕ(xv

i ) ∈ Rd and
hz

i = gϕ(zv
i ) ∈ Rd, for source and target, respectively. Similarly, we encode the

relative caption with the textual encoder and obtain the encoding hc
i = fθ(xc

i) ∈ Rd.
Recall that for the MA-loss, we approximated the relative caption as the dif-

ference between the text embeddings; in supervised CIR, we can directly use the
relative caption embedding hc

i . The CIR query to retrieve the target image can
then be written as a simple sum between the source image and the relative caption
embeddings:

qCIR
i := hx

i + hc
i (3.69)

We then use the above query inside the unidirectional unweighted loss in (3.56).
We call the resulting loss function MA-CIR (Multimodal Arithmetic for CIR), and
we formulate it as follows:

LMA-CIR = − 1
N

NØ
i=1

log
C

exp(cos(qCIR
i , hz

j)/τ)qN
k=1 exp(cos(qCIR

i , hz
k)/τ)

D
(3.70)

Since CIR is fundamentally a modality-asymmetrical problem, i.e., we always
retrieve an element from the visual modality, we do not need a bidirectional version
of the MA-CIR loss.

This supervised CIR loss is equivalent to the fusion strategy in [4], without the
combiner.
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Experiments

In this chapter we will discuss the experimental setup, datasets and results of our
experiments. In Section 4.1, we start with a brief overview of our setup and main
hyperparameters used across most of our experiments. In Section 4.2, we then
describe the datasets we used, their structure, origin, and usage within the scope of
this thesis. Finally, we present our experimental results. These are divided into two
categories: first, in Section 4.3 we discuss the multimodal arithmetic performance
of our methods, along with a comparison with some replicated methods from the
SoTA, an ablation study of the various weighting strategies, an analysis of the
embedding space geometry in relation with SIMAT, and a study of the SIMAT
score dynamics during the post-pre-trainging process; secondly, in Section 4.4 we
present a set of experiments centered on CIR, including a performance comparison
across the weighting strategies, and a comparison with SoTA performance on both
FashionIQ and CIRR.s

4.1 Experimental setup

All the experiments are run on a single NVIDIA GeForce RTX 2080 Ti GPU
with 11GB of memory. The implementation is developed in Python, leveraging
the PyTorch [41] deep learning framework for model training, evaluation, and
experimentation.

The main architecture chosen for the experiments is CLIP, introduced by Radford
et al. [44]. We use the ViT-B/32 version, with a vision transformer for the vision
tower and a slightly improved transformer [43] for the text tower. Model’s weights
are initialized with the checkpoints released by OpenAI. A standard size of 512
is chosen for the embedding space. The practical implementation was adapted
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from OpenAI’s official repository on GitHub 1. Unless otherwise specified, the
post-pre-training process was applied exclusively to the final projection layers of
CLIP, while keeping the backbone encoders frozen. The optimization is carried out
using AdamW [35], which combines the fast convergence of Adam with decoupled
weight decay, ensuring both fast convergence and improved generalization during
training. Unlike standard Adam [29], its treatment of weight decay as a separate
regularization term avoids the tendency to overfit and makes it particularly effective
for training large-scale VLMs. The main hyperparameters chosen for post-pre-
training are summarized in Table 4.1.

Hyperparameter Value

Image encoder Vit-B/32
Embedding size 512

Batch size 128
Epochs 20

Learning rate 1e-6
Weight decay 0.1

Epsilon 1e-8
Betas (0.9, 0.99)

Scheduler Cosine

Table 4.1: Hyperparameters used for post-pre-trainging CLIP. Unless otherwise
specified, these hyperparameters are used to post-pre-train all our models.

4.2 Datasets
The datasets used in our experiments can be divided into three categories:

• Pair-based. Mainly used for post-pre-training. Includes MSCOCO, de-
scribed in Section 4.2.1

• Text-driven image transformation. Used to test for multimodal arithmetic.
Includes SIMAT, described in Section 4.2.2

• Triplet-based. Used both for supervised CIR fine-tuning and CIR/ZS-CIR
testing. Includes FashionIQ and CIRR, described in Section 4.2.3 and
Section 4.2.4, respectively.

The main characteristics and usage of these datasets are summarized in Table 4.2.

1https://github.com/openai/CLIP
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Dataset N. Images Usage Structure

MSCOCO 123287 post-pre-train Text-image pairs
SIMAT 5860 test Text-driven image transformations

FashionIQ 75254 fine-tune/test Image-text-image triplets
CIRR 16939 fine-tune/test Image-text-image triplets

Table 4.2: Summary of the datasets’ characteristics. The number of images refers
to the total number of images, considering all the splits. The usage is specifically
referred to our experiments.

4.2.1 MSCOCO
MS COCO (Microsoft Common Objects in Context) is a widely used general-
domain dataset for computer vision tasks, particularly suitable for object detection,
segmentation, and image captioning. The dataset is known for its rich contextual
information, containing complex everyday scenes with multiple objects per image,
which provides a challenging environment for models to learn object recognition in
a natural setting. It was first introduced in 2014 by Lin et al. [33], while a refined
version was later released in 2017. This latter version is the most prominent and
the one used in our training process. It is divided into a train/validation/test split
featuring around 118,000 and 5000 images for training and validation, respectively.
Each image is associated with five human-generated captions that describe the
scene in natural language, making it ideal for an image-text contrastive objective.
A practical example of the dataset image-text pairs structure is offered in Table 4.3.

4.2.2 SIMAT
The SIMAT dataset (Semantic IMage Transformation) was first introduced in 2022
by Couairon et al. [12] to evaluate models on the task of text-driven image trans-
formation. It consists of approximately 6,000 images and 18,000 "transformation
queries", where each query aims to either replace scene elements or modify their
pairwise relationships in the image. The goal is to retrieve an image consistent
with the given source image and transformation query.

The dataset is built on top of the Visual Genome dataset [30] using its anno-
tations, which consist of subject-relation-object triplets. These triplets are then
filtered and expanded to create feasible transformation queries. The transforma-
tion queries are, in turn, used to produce human-written transformed captions.
The so-built samples are thus composed of a source image, a source caption, a
transformation, and a transformed (target) caption. Some practical examples are
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Image Captions

1. A table with pies being made and a person
standing near a wall with pots and pans hanging
on the wall.
2. A man is in a kitchen making pizzas.
3. Man in apron standing on front of oven with
pans and bakeware
4. A baker is working in the kitchen rolling dough.
5. A person standing by a stove in a kitchen.

1. City dwellers walk by as a homeless man begs
for cash.
2. A homeless man holding a cup and standing
next to a shopping cart on a street
3. People walking past a homeless man begging
on a city street
4. A person with a shopping cart on a city street
5. People are walking on the street by a homeless
person.

Table 4.3: Example structure of MSCOCO: each image is paired with five natural
language descriptions.

reported in Table 4.4. For evaluation, an external image/text matching oracle
(OSCAR[31]) is used to assess the probability of the retrieved image corresponding
to the target caption. The final score is then given by a weighted sum of these
oracle-computed probabilities. To ease the evaluation pipeline, the dataset also
features pre-computed OSCAR scores for every combination of images and target
captions. In this sense, unlike triplet-based datasets, SIMAT does not offer a hard
ground truth in terms of compositional retrieval. Nevertheless, this dataset offers
the ideal tool for quantifying the cross-modal semantic structure of the embedding
space.

4.2.3 FashionIQ
The FashionIQ dataset is a comprehensive resource designed for interactive fashion
image retrieval using natural language feedback. It was first introduced by Guo
et al.[22] in 2019. The dataset includes about 77.6K images and 30.1K triplets,
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Source image Transformation
Source caption

↓
Target caption

Dog → Girl

A dog laying on a
pillow.

↓
A girl laying on a

pillow.

Sitting on → Touching

A woman sitting on a
horse.

↓
A woman touching a

horse.

Table 4.4: Example structure of SIMAT: each sample is composed of a source
image, a source caption, a transformation, and a target caption. Unlike CIR-specific
datasets, only a textual description of the target image is provided.

divided into training, validation, and test sets, with the test set being a challenge
dataset that is not publicly accessible. FashionIQ covers three main categories of
fashion items: dresses, shirts, and tops/tees. It provides two evaluation protocols:
the VAL-Split and the Original-Split, which differ in the candidate image sets
used for testing; in our experiments, we elected to use the VAL-Split. The dataset
was constructed by collecting images and rich side information, including real-
world product descriptions and detailed attribute labels extracted and refined
from product websites. A key feature of FashionIQ is the inclusion of high-quality,
human-written relative captions, which describe subtle visual differences between
pairs of similar garment images to facilitate fine-grained retrieval. These relative
captions were collected via crowd-sourcing, with annotators focusing on differences
in color, texture, style, and other attributes of fashion.
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FashionIQ supports several tasks, notably dialog-based interactive image re-
trieval, where a system iteratively refines retrieval results based on textual feedback
provided by users comparing a reference image to the target image. It also supports
single-turn retrieval and relative captioning tasks. Its structure is composed of
typical CIR triplets, where each sample is composed of a query image, a target
image, and two alternative relative captions describing the difference between
the two images. An illustrative example of the dataset structure is reported in
Table 4.5.

Query image Relative captions Target image

1. is solid black with no
sleeves
2. is black with straps

1. is plaid and is more
colorful
2. is red and black plaid

Table 4.5: Example structure of FashionIQ: each sample is composed of a query
image, a target image, and two alternative relative captions that describe the
difference between the two images.
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4.2.4 CIRR

The CIRR dataset (Composed Image Retrieval on Real-life Images) is a large-scale
benchmark designed for the task of composed image retrieval (CIR), where queries
are composed of a reference image paired with a natural language text describing
desired modifications to retrieve a target image. First proposed by Liu et al. [34],
CIRR consists of over 36,000 annotated triplets (reference image, modification text,
and target image) based on the images of NLVR2 [50], a dataset that provides a
diverse collection of real-world images with rich context and semantic complexity.
CIRR specifically emphasizes visually similar images to challenge models to perform
fine-grained visiolinguistic reasoning, requiring understanding what in the image
should be preserved or altered based on the text query. It includes carefully
crafted subsets of semantically and visually related images, and the annotation
process involves crowd-sourcing modification sentences that clearly discriminate
the target image from other candidates within the subset, reducing false-negative
issues common in prior datasets. A structured example is presented in Table 4.6.

The main purpose of CIRR is to push forward research on understanding and ef-
ficiently combining multimodal inputs (image and text) for retrieval in open-domain
settings beyond narrow domains like fashion. It serves as a challenging benchmark
to evaluate models on their ability to fuse visual and linguistic information to
achieve accurate and subtle image retrieval based on text-guided modifications.
CIRR additionally supports detailed analysis through metrics like RecallSubset,
which considers ranking within subsets to evaluate fine-grained retrieval capability
without bias from false negatives. Overall, CIRR is structured to enable and
stimulate studies in joint image-text representation learning, multimodal reasoning,
and interactive image retrieval in realistic environments.

4.3 Multimodal arithmetic

We start our set of experiments with a comparison focused on the Multimodal
Arithmetic task. For this first experiment, we post-pre-train CLIP on MSCOCO
using a variety of techniques. The models are evaluated on SIMAT using the test
split. The results are presented in Table 4.7.

We compare the performance of our proposed method against two baselines. We
also consider a number of techniques proposed to bridge the modality gap and/or
improve the overall geometrical structure of the embedding space.

W/O post-pre-training. To establish a first baseline, we use the checkpoints
released by OpenAI without any additional training process.
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Query image Relative caption Target image

Have two dogs of the
same breed

Leave the mashed
potatoes in the pot

Table 4.6: Example structure of CIRR: each sample is composed of a query image,
a target image, and a relative caption that describes the difference between the
two.

CLIP loss. The second baseline is established using the standard CLIP loss, as
described in [44]. The post-pre-training process is performed with the hyperpa-
rameters described in Table 4.1. As OpenAI’s checkpoints were obtained using a
different dataset, this baseline enables a fair comparison of the effect of our proposed
methods against the traditional contrastive objective, excluding any impact due to
potential domain differences.

CUAXU loss. Originally proposed by [18], this loss aims at improving both
the pairwise alignment and the cross-modal uniformity (see Section 3.1.4). The
proposing paper showed that this loss improves both modality gap and SIMAT
performance. Note that our experimental setup is different from the one in [18],
thus we obtain slightly different SIMAT scores.
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CUA loss. Similar to CUAXU but without the cross-modal uniformity term (see
Section 3.1.4). This loss was also proposed by [18] to bridge the modality gap.

Hard Swapping Between Modalities (HS). This method was proposed by
[61] to mitigate the modality gap. It involves randomly selecting images and their
corresponding text descriptions, and exchanging the projected embeddings of these
images and paired texts within the joint embedding space. Following the original
paper, we apply the swap with a probability of 1e− 3.

Soft Swapping Between Modalities (SS). Similar to HS, this method consists
of merging the selected features using a weighted sum. In our implementation, we
elected to use a weight of λ = 0.5 for the modality fusion. This corresponds to
computing the arithmetic average between textual and visual features. Following
[61], we apply the swap with a probability of 5e− 2.

Fixed temperature (FT). Proposed by [61], this strategy involves freezing the
temperature parameter τ . In this experiment, we report the results for τ = 0.1.

Bidirectional MA-loss. We perform a post-pre-training process using our
proposed (bidirectional) MA-loss (see Section 3.3.1). In Table 4.7 we report the
results using a weighting strategy based on the textual embeddings similarities (see
Section 3.3.3) without freezing the weights. In Table 4.8 we report the performance
using different weighting strategies.

Monodirectional MA-loss. Similar to the above, we perform a post-pre-training
process using our proposed MA-loss in a monodirectional configuration (see Sec-
tion 3.3.1). The result reported in Table 4.7 is obtained using a weighting strategy
based on textual embedding similarities and frozen weights. In Table 4.8 we report
the performance using different weighting strategies.
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Method SIMAT ↑ Reported SIMAT ↑
W/O post-pre-training 16.30 -

CLIP loss 33.85 -
CUAXU 41.45 42.47

CUA 44.69 42.18
SS 43.80 -
HF 28.59 -
FT 42.54 -

MA-loss (bi) 48.13 -
MA-loss (mono) 43.84 -

Table 4.7: SIMAT score of our methods (bottom rows) compared to the baselines
(top rows) and other SoTA methods (center rows). The reported SIMAT column
refers to the score reported by the proposing paper [18].

The comparative results reported in Table 4.7 reveal a clear progression in
SIMAT performance across the tested methods, with our proposed approaches
achieving the strongest overall results. The baseline without post-pre-training
yields the lowest score (16.30), as expected, since OpenAI’s CLIP checkpoints were
optimized on a more general dataset. This baseline thus establishes the lower bound
for performance on this evaluation. The standard CLIP loss substantially improves
results (33.85), confirming a considerable domain difference between MSCOCO and
CLIP’s proprietary pre-training dataset. Among the existing techniques designed
to reduce the modality gap, both the CUAXU and CUA losses further enhance
compositional structure, achieving 41.45 and 44.69, respectively. The improvement
of CUA over CUAXU might indicate that excessive regularization on cross-modal
uniformity may occasionally limit fine-grained optimization. Similarly, the swapping-
based strategies (SS and HS) and the fixed-temperature configuration (FT) provide
moderate gains, with SS (43.80) and FT (42.54) performing comparably to CUA,
while HS (28.59) underperforms due to the instability introduced by hard embedding
exchanges. In this sense, further hyperparameter tuning might yield some minor
improvements; however, such efforts fall outside the scope of this work.

Our proposed multimodal arithmetic losses (MA-loss) deliver the highest SIMAT
scores among all compared methods, confirming their effectiveness in reinforcing
the geometric consistency of the joint embedding space. The bidirectional variant
reaches 48.13, outperforming all baselines and previous SoTA techniques by a
considerable margin of +3.4 points over the strongest competitor (CUA). This
demonstrates that jointly considering both directions of the arithmetic relations
contributes to more robust multimodal representations. The monodirectional
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configuration achieves 43.84, aligning closely with the best SoTA methods but
still below the bidirectional approach. This contrast highlights the importance
of symmetric cross-modal constraints in preserving semantic coherence across
visual and textual domains. Overall, these results validate the hypothesis that
the proposed MA-loss effectively improves multimodal compositional reasoning by
enhancing the structure of the embedding space, ultimately leading to superior
performance on SIMAT.

4.3.1 Similarity distributions
We propose an analysis of the similarity distributions between the constructed
queries and the targets. For this experiment, we identify the SIMAT’s targets
as the images that maximize the oracle score. For comparison, we use images
picked at random from SIMAT’s image database, excluding those with an oracle’s
score greater than 0.5. In Figure 4.1, we plot the similarity distributions of the
constructed queries with the targets and with random images.
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Figure 4.1: Similarity distribution considering targets (orange) and random
images (blue) on SIMAT. Ideally, a good model should be able to separate the two
distributions. The plots use different scales for better visibility.

This analysis gives some valuable information regarding the way different models
behave on SIMAT. Ideally, a good model should be able to distinguish between
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a target and a random image; this would show as two separate curves, with a
significant separation. The baseline without post-pre-training (Figure 4.1 top left)
shows a significant overlap between the target and random image distributions;
this overlap might produce confusion and reduce the model’s ability to identify
the correct target. In the same way, better-performing models like CUA and
bidirectional MA-loss are able to better recognize the true targets, yielding a
significant improvement on SIMAT and more separate similarity distributions.

An interesting result is obtained for the monodirectional MA-loss (Figure 4.1
bottom right); this model produces two very similar distributions with a difference
in means of just 0.3 and a significant overlap, yet this configuration greatly improves
the performance over the baseline, and performs only slightly worse than CUA. At
this time, we cannot give a satisfactory explanation of why the monodirectional
loss achieves good SIMAT results despite this behavior.

Another interesting observation is how different losses influence the means and
standard deviations of the similarity distributions. The baseline model produces
exclusively similarities on the positive range, spanning from around 0.2 to 0.8. CUA
obtains similar results for the target distribution, but pushes the random distribution
towards the left, producing queries that are more likely to be orthogonal to the
non-target embeddings. The MA losses, instead, follow an alternative strategy: they
increase the similarity of both the targets and the random images, but compensate
by shrinking the standard deviations to achieve better separation. This suggests
that CUA is able to produce queries that are more widely spread in the hyperspace,
and potentially more informative. However, since the MA-loss outperforms CUA
on SIMAT, it is not clear whether the "wideness" of the query space influences
retrieval performance.

4.3.2 Weighting strategies ablation study
As discussed in Section 3.3.3, choosing a good weighting strategy to tackle incompat-
ible samples is vital to improve the robustness of our loss. In this section, we study
the effect that the weighting strategy has on SIMAT. In Table 4.8 we report the
results considering the symmetrical bidirectional and asymmetrical monodirectional
versions of MA-loss.

Starting with the overall trend, the bidirectional formulation clearly outperforms
the monodirectional one across nearly all configurations. The best bidirectional
score (48.13) surpasses the best monodirectional score (43.84) by more than four
points, confirming that encouraging cross-modal consistency in both directions
enhances the semantic alignment between textual and visual representations. This
improvement suggests that the bidirectional constraint encourages a more globally
coherent embedding space, in which both modalities contribute symmetrically to
the underlying structure.
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Loss direction Weighting strategy Frozen weights SIMAT ↑
Bi None - 48.10
Bi Images ✓ 41.29
Bi Images ✗ 40.96
Bi Texts ✓ 48.00
Bi Texts ✗ 48.13

Mono None - 40.47
Mono Images ✓ 41.28
Mono Images ✗ 40.93
Mono Texts ✓ 43.84
Mono Texts ✗ 43.70

Table 4.8: SIMAT score comparison of MA-loss in different directional configura-
tions and with different weighting strategies.

When considering the effect of weighting, the “None” configurations provide
useful baselines for each loss direction. In the bidirectional case, the absence of
weighting already yields a strong result (48.10), nearly matching the best-performing
weighted variant (48.13). This indicates that the bidirectional loss itself captures
much of the necessary relational information, and that weighting primarily serves
a minor role rather than a decisive one. In contrast, the monodirectional loss
without weighting performs substantially worse (40.47), suggesting that weighting
plays a more crucial role when semantic relationships are enforced in only one
direction. Here, the absence of weighting may leave the optimization biased toward
one modality, reducing overall coherence in the joint embedding space.

Comparing the different weighting strategies reveals another consistent pattern:
text-based weighting outperforms image-based weighting in both loss directions.
For the bidirectional loss, text-based weighting (48.13 with unfrozen weights)
slightly improves upon the unweighted baseline, while image-based weighting
significantly underperforms (around 41 points). This discrepancy likely arises from
the richer semantic structure of text embeddings, which provide more reliable cues
for balancing the contribution of pairs. In the monodirectional case, a similar
behavior emerges: text-based weighting reaches 43.84 (frozen) and 43.70 (unfrozen),
while image-based variants hover near 41, confirming that text-derived weighting
better guides the optimization in asymmetrical setups.

The impact of weight freezing is relatively minor but nonetheless informative.
For image-based strategies, frozen weights consistently perform marginally better
than unfrozen ones (41.29 vs. 40.96 for the bidirectional case, and 41.28 vs. 40.93
for the monodirectional), indicating that an auxiliary model during training offers
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a small but consistent gain. For text-based strategies, however, the difference
between frozen and unfrozen configurations is negligible, suggesting that the more
stable textual features do not benefit from independent reweighting.

In summary, these results collectively demonstrate that
• bidirectionality is the dominant factor driving performance gains

• text-based weighting is the most effective and stable strategy across both loss
directions

• independent, frozen weights provide slight but consistent improvements

• in the absence of weighting, the bidirectional formulation still performs remark-
ably well, whereas the monodirectional loss requires weighting to approach
competitive results

This interplay indicates that while weighting strategies can refine performance, the
structural advantages of the bidirectional loss are fundamentally responsible for
the superior multimodal arithmetic alignment observed.

4.3.3 Relationship with embedding space properties
Many previous works have tried to establish a connection between embedding space
properties and downstream performance [32] [18] [61]. In Section 3.2.2, we expand
those works proposing the XSC-SR metric to evaluate the semantic composability
of our models. In this section, we evaluate the ability of XSC-SR to predict the
downstream performance on the SIMAT benchmark.

Using the checkpoints reported in Table 4.7 and Table 4.8, we propose a simple
correlation analysis between the SIMAT score and the main embedding space
properties. In particular, we consider modality gap (using the centroid distance),
alignment, uniformity, and XSC-SR. Note that modality gap, alignment, and XSC-
SR follow the principle of "the smaller the better", while uniformity yields higher
values for more uniform spaces. Figure 4.2 shows the scatter plots of these metrics
against SIMAT.

None of the metrics considered achieves a definite strong correlation on mul-
timodal arithmetic. The modality gap shows a behavior almost independent of
SIMAT, with some techniques that are quite good at closing the modality gap
performing similarly, or worse, than the ones with a pronounced gap. A similar
observation can be made for the alignment, with checkpoints that produce em-
bedding spaces with a wide range of alignment scores spanning between 0.20 and
1.80, but no significant relationship with SIMAT. Uniformity shows a significant
negative correlation, suggesting that less uniform spaces yield better SIMAT re-
sults. XSC-SR, on the other hand, yields a moderate negative correlation with the
downstream task..
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Figure 4.2: Correlations between SIMAT and other embedding space properties.
Alignment (bottom left) and modality gap (top left) show almost no relationship
with SIMAT. XSC-SR (top right) shows a mild but significant negative correlation
with SIMAT.

These results support the theoretical insights in Section 3.2.2, demonstrating
that improving alignment and reducing the modality gap can occasionally enhance
semantic composability, though they are not essential to SIMAT. On the other
hand, XSC-SR better correlates with multimodal arithmetic performance, even if
it cannot explain the observed results alone. This is because a simple scalar metric
like XSC-SR might not be complex enough to capture the nuanced structure of the
embedding space, and thus is unable to provide definitive results.

4.3.4 SIMAT dynamics during post-pre-training
We finish this first set of experiments, presenting an interesting yet mysterious
finding observed by analyzing the dynamics of the SIMAT score during post-pre-
training with the MA-loss.

In Figure 4.3, we plot the SIMAT score as post-pre-training progresses. For
this experiment, we evaluate the MA-loss in both unidirectional and bidirectional
versions. We observe that the SIMAT score reaches a notable peak after only a
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Figure 4.3: Epoch-wise SIMAT dynamics during post-pre-training. For the
monodirectional loss, the drop is more pronounced, and the subsequent rise stabilizes
at a lower value. The bidirectional version has a smaller drop and is then able to
recover, achieving a second peak before stabilizing.

few epochs, increasing from around 16 at initialization to approximately 43 for the
unidirectional loss and 46 for the bidirectional loss. Following this peak, there is
a significant drop in downstream performance before it begins to rise again after
some additional epochs.

Notably, the behavior of the unidirectional MA loss is more pronounced; it
experiences a substantial drop in performance of about 20 points before stabilizing
at a value of 40, which is lower than the initial peak. In contrast, the bidirectional
loss has a smaller decline of 10 points before stabilizing at a new high of 47.

The fluctuations observed in the SIMAT scores during post-pre-training may be
interpreted through the lens of the double descent phenomenon, which describes non-
monotonic behaviors in model performance as the effective complexity of the system
increases [39]. In our case, training length, or even introducing weighting strategies
and changing loss directionality, can be seen as altering the implicit capacity of the
model, which might explain why some configurations initially underperform and
then recover or even surpass the initial peak. Although this perspective provides an
appealing conceptual framework, double descent has not been systematically studied
in zero-shot transfer settings, and the mechanisms governing transfer performance
may differ from those typically examined in supervised learning [13]. Therefore,
while double descent provides a plausible interpretation of the observed dynamics,
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further investigation is necessary before drawing any definitive conclusions.
On a more practical note, we can use this finding to refine our post-pre-training

process. Since epoch-wise plots, like the one in Figure 4.3, are expensive and
potentially difficult to replicate on datasets without a clear validation split, we can
decide to implement an a priori early-stopping strategy. This approach would allow
us to stop training during the first peak, but it may limit performance if a second
peak occurs. However, since the presence of the second peak could be influenced
by many unknown factors, an a priori early-stopping strategy would provide more
consistent results across different datasets and configurations, other than a simpler
and quicker post-pre-training process.

4.4 Composite image retrieval
We now generalize the approach we adopted for SIMAT in the ZS-CIR task.
Similarly to what we did before, we post-pre-train a CLIP model on MSCOCO and
then evaluate the checkpoints on two different CIR datasets, without any additional
transfer procedure. Unlike what we did for SIMAT, for this set of experiments, we
follow the approach of [58], training the models for just two epochs. Due to the
reduced length of training, we do not employ any learning scheduler.

Baselines. We compare our methods against two basic baselines. The first
baseline (W/O post-pre-training) simply evaluates the performance of OpenAI’s
pre-trained checkpoints used at initialization. This baseline aims at establishing a
null hypothesis score to evaluate the effectiveness of our proposed methods. The
second baseline (CLIP loss) is obtained by performing a post-pre-training process
using the standard CLIP loss [44]. Since OpenaAi’s checkpoints were trained on a
general-purpose proprietary dataset, the second baseline is important to exclude
any effect due to possible domain differences between the datasets.

Supervised upper bound. As discussed in Section 3.3.4, our proposed MA-loss
is applicable to CIR under the assumption that our linear query construction is
complex enough to express a meaningful relative transformation. Our proposed
MA-loss is applicable to CIR under two main assumptions:

• The linear fusion strategy is powerful enough to effectively combine the source
image with the relative caption

• When using an image-text pair dataset, we can effectively approximate a
textual transformation using the difference of the captions’ embeddings

The first assumption has partially been tested by some recent works that adopted
a similar fusion strategy [4] [6], but still requires additional experiments for a fair
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comparison with our experimental setup. The second assumption is paramount to
the zero-shot transfer and is measurable by comparing the supervised performance
with our zero-shot methods.

To empirically evaluate these assumptions, we designed a supervised version
of our MA-loss, namely, MA-CIR. This loss is used to fine-tune CLIP directly
on the train split of our CIR datasets and serves as an important upper bound
comparison for our zero-shot methods.

Zero-shot methods. Following the methods discussed in Section 3.3.1, we
evaluate our proposed MA-loss in two different directional configurations using
the best performing weighting strategies. A more comprehensive exploration of the
weighting strategies is presented in Table 4.11.

Method R@10 R@50 Avg.

W/O post-pre-training 8.59 19.88 14.24
CLIP loss 11.53 24.87 18.20

MA-CIR (supervised) 25.64 46.92 36.28
MA-loss (bi) 19.47 35.45 27.46

MA-loss (mono) 19.47 35.62 27.55

Table 4.9: Performance on FashionIQ of our zero-shot methods (bottom rows)
compared to the zero-shot baselines (top rows) and the supervised upper bound
(center row).

Method R@k Rsubset@k
k=1 k=5 k=10 k=50 k=1 k=2 k=3

W/O post-pre-training 10.84 32.27 46.71 75.47 30.15 53.78 73.78
CLIP loss 12.91 37.16 51.95 80.00 34.05 58.53 78.00

MA-CIR (supervised) 23.50 54.07 67.78 89.16 51.88 74.65 87.71
MA-loss (bi) 19.01 46.434 61.831 86.145 44.63 68.27 83.54

MA-loss (mono) 18.94 46.19 61.86 86.36 44.55 68.19 83.64

Table 4.10: Performance on CIRR of our zero-shot methods (bottom rows)
compared to the zero-shot baselines (top rows) and the supervised upper bound
(center row).
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Table 4.9 and Table 4.10 report the performance of our zero-shot methods
compared to the baselines and the supervised upper bound, on FashionIQ and
CIRR, respectively. Across both FashionIQ and CIRR, the supervised MA-CIR
model establishes a clear upper bound that is essential for interpreting the zero-
shot results. Since the supervised model directly learns the transformation from
annotated CIR data, the gap between this upper bound and our zero-shot variants
reflects how well the MA-loss can approximate CIR-specific relational reasoning
without any task-level supervision. On FashionIQ, the supervised MA-CIR score
(36.28 average) is notably higher than all zero-shot methods, showing a gap of
roughly nine points over the best zero-shot variant. This difference is substantial
and indicates that, while our MA-loss effectively improves over the unsupervised
baselines, zero-shot transfer still captures only part of the transformation needed
for FashionIQ-style attribute modifications.

The CIRR results in Table 4.10 follow a similar structure. The unsupervised
baselines remain the weakest performers, and the supervised MA-CIR model again
provides a strong upper bound. Here, the bidirectional and monodirectional variants
perform almost identically on global retrieval metrics, with the bidirectional version
showing a slight advantage at lower k.

Across both datasets, the zero-shot models improve meaningfully over unadapted
CLIP and over CLIP-loss post-pre-training, but they do not close the distance
to the supervised upper bound. This distance is informative: it quantifies how
much of CIR reasoning can be recovered through multimodal arithmetic alone.
The smaller the gap, the stronger the evidence that the underlying transformation
is expressible through text–image relations present in MSCOCO. The larger the
gap, the more the transformation appears to depend on dataset-specific structure
that must be learned explicitly. These results show that our MA-loss achieves non-
trivial zero-shot transfer while still leaving room for improvement before matching
supervised performance

4.4.1 Weighting strategies comparison
As we did for multimodal arithmetic, we compare the different weighting strategies
described in Section 3.3.3, evaluating the different combinations on FashionIQ. This
comparison is then used to select the best configuration for CIR used for the other
results reported in this section.

These results reveal several interesting dynamics regarding the behavior of the
proposed MA-loss on CIR. In contrast with the SIMAT results, where bidirectional
training offered a clear advantage, CIR retrieval performance displays a more
nuanced pattern. The monodirectional formulation reaches the overall highest
score in the unweighted configuration, with R@10 of 19.466 and R@50 of 35.615,
slightly outperforming the corresponding bidirectional baseline. This suggests that,
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Loss
direction

Weighting
strategy

Frozen
weights

R@10 R@50 Avg.

Bi None - 15.841 30.517 23.179
Bi Images ✓ 19.324 35.597 27.461
Bi Images ✗ 19.466 35.447 27.457
Bi Texts ✓ 15.514 30.340 22.927
Bi Texts ✗ 15.585 30.261 22.923

Mono None - 19.466 35.615 27.541
Mono Images ✓ 19.316 35.606 27.461
Mono Images ✗ 19.474 35.438 27.456
Mono Texts ✓ 19.033 35.430 27.232
Mono Texts ✗ 19.219 35.350 27.285

Table 4.11: Comparison of recall scores on FashionIQ with the MA-loss in different
directional configurations and with different weighting strategies. Due to the small
numerical differences, we report the scores up to the third decimal digit.

for CIR, enforcing the compositional constraint in a single direction may already
provide sufficient structure for the retrieval objective, and that adding the reverse
constraint does not necessarily yield additional benefits. This is consistent with
previous findings, which argued that CIR is inherently asymmetrical and thus
benefits from a monodirectional transformation [4]. Still, the differences remain
small, indicating that both directionalities behave comparably once the model is
adapted to the CIR setting.

The impact of weighting strategies differs markedly from what was observed on
SIMAT. In the bidirectional case, image-based weighting leads to large improve-
ments over the unweighted baseline, raising R@10 from 15.8 to more than 19.3 and
R@50 from 30.5 to around 35.5. This shows that, unlike SIMAT, where image-
based weighting was consistently suboptimal, CIR retrieval benefits strongly from
emphasizing visual similarities during the loss computation. Text-based weighting,
however, has the opposite effect: both frozen and unfrozen variants decrease perfor-
mance relative to the unweighted bidirectional baseline. The asymmetry between
image-based and text-based weighting in this setting hints at a retrieval behavior
driven primarily by visual attributes, which is consistent with the nature of CIR.

In the monodirectional setting, weighting strategies induce far milder effects.
Neither image nor text-based weighting meaningfully improves over the unweighted
baseline, and all variants remain extremely close to the best monodirectional
score. This suggests that, once the loss is constrained in a single direction, the
model becomes less sensitive to reweighting of the multimodal pairs, likely because
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the directional constraint already biases the optimization toward the visual path
relevant for CIR.

The effect of freezing the weights also varies across strategies. For image-
based weighting, frozen and unfrozen configurations behave almost identically in
both directionalities, mirroring the observations made for SIMAT. For text-based
weighting, freezing the weights has only minor effects, consistently positive in
the bidirectional case and neutral or slightly negative in the monodirectional one.
Overall, weight freezing appears to influence CIR performance far less than on
SIMAT, and its impact does not seem tied to a clear trend across settings.

Comparing these findings to the SIMAT results highlights the task-dependent
nature of the MA-loss behavior. On SIMAT, bidirectionality and text-based
weighting provided the strongest gains, whereas on FashionIQ, the best results
arise either from monodirectional training without weighting or from bidirectional
training with image-based weighting. This divergence suggests that CIR relies more
heavily on visual similarity structure, while multimodal arithmetic benefits from
richer semantic balancing introduced by text-driven weighting and bidirectionality.
Together, the two sets of results illustrate how the optimal MA-loss configuration
depends strongly on the characteristics of the downstream task and the modality
that carries the most discriminative information.

4.4.2 Comparison with the state of the art
We conclude our experiments by comparing our methods with the leading works in
the state-of-the-art (SoTA). The values reported in Tables Table 4.12 and Table 4.13
represent the performance of various models on FashionIQ and CIRR, as cited in
[49]. All models considered were trained using CLIP-B. To ensure a fair comparison,
we also include an additional version of our model, denoted as U, which is obtained
by post-pre-training CLIP on all parameters.

Method R@10 R@50 Avg.

MA-loss (bi) 19.47 35.45 27.46
MA-loss (mono) 19.47 35.62 27.55

MA-loss U (mono) 18.07 34.16 26.12
SEARLE 22.89 42.53 32.71

MagicLens 26.30 47.40 36.90
MTI 31.31 53.24 42.28

Table 4.12: Zero-shot performance on FashionIQ of our methods compared to
the SoTA.
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Method R@k Rsubset@k
k=1 k=5 k=10 k=50 k=1 k=2 k=3

MA-loss (bi) 19.01 46.434 61.831 86.145 44.63 68.27 83.54
MA-loss (mono) 18.94 46.19 61.86 86.36 44.55 68.19 83.64

MA-loss U (mono) 21.08 46.96 60.89 84.82 54.77 75.57 87.04
SEARLE 24.00 53.42 66.82 89.78 54.89 76.60 88.19

MTI 18.80 46.07 60.75 86.41 44.29 68.10 83.42
MagicLens 27.00 58.00 76.90 91.10 66.70 83.90 92.40

Table 4.13: Zero-shot performance on CIRR of our methods compared to the
SoTA.

On FashionIQ, the unlocked variant performs slightly worse than both the
bidirectional and monodirectional MA-loss configurations. While the standard
MA-loss models reach an average score of about 27.5, MA-loss U drops to 26.12.
This performance drop suggests that full post-pre-training on MSCOCO does not
transfer well to FashionIQ. This is because FashionIQ requires modeling very fine-
grained visual differences across similar items, often tied to subtle attributes such
as fit, texture, or local color changes. Updating all CLIP parameters on MSCOCO,
a dataset not designed for such delicate distinctions, may distort parts of the
embedding space that FashionIQ relies on. In contrast, the post-pre-training limited
to the projection layers of MA-loss modifies the representation more conservatively
and thus retains the structure needed for fine-grained, attribute-driven retrieval.

When compared to zero-shot SoTA systems, our MA-loss variants remain below
SEARLE, MagicLens, and MTI, all of which were also trained on CLIP-B and
evaluated in zero-shot mode. The gap reflects the relative difficulty of transferring
FashionIQ-style fine-grained relational information purely from MSCOCO. MTI,
for instance, reaches an average of 42.28, significantly higher than our best result.
Still, our methods improve substantially over non-arithmetic baselines presented
earlier, showing that MA-loss introduces meaningful transferable structure even
without CIR-specific training.

On CIRR (Table 4.13), the behavior changes. The locked bidirectional and
monodirectional MA-loss variants again achieve similar results, but the unlocked
model performs noticeably better on the subset metrics, with an Rsubset@1 of
54.77 compared to roughly 44.6 for the other variants. CIRR contains broader
domain diversity than FashionIQ, with less emphasis on tiny attribute differences
and more on general relational cues. Full post-training on MSCOCO can therefore
be advantageous: adapting the entire encoder helps align the representation to a
distribution more compatible with CIRR’s open-domain content. This explains why
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MA-loss U outperforms the other MA-loss variants on the subset-based rankings
and performs competitively on global metrics.

Compared to the zero-shot SoTA, our methods still fall below MagicLens, which
remains the strongest performer across most metrics. However, the unlocked
MA-loss model narrows the gap more effectively on CIRR than on FashionIQ.
Its subset-level performance, in particular, approaches SEARLE and surpasses
MTI. This difference with FashionIQ underlines that the usefulness of full post-pre-
training depends heavily on the dataset.

Overall, these results reinforce a pattern that is consistent with the detailed
analyses carried out earlier in this chapter. In the SIMAT experiments, we observed
that the bidirectional MA-loss and text-based weighting strategies were particularly
effective, suggesting that SIMAT benefits from strong semantic consistency and
symmetry between modalities. In other words, SIMAT relies heavily on the
structure of the multimodal space and on preserving fine semantic relations during
post-pre-training.

In contrast, the FashionIQ and CIRR results show that CIR tasks do not
respond uniformly to these same principles. FashionIQ, which depends on very
subtle attribute modifications, is harmed by full post-pre-training and benefits
from keeping CLIP’s fine-grained structure largely intact. CIRR, on the other
hand, involves more general relational reasoning over a broader visual domain, and
therefore benefits from unlocking all parameters during training. By comparing
these behaviors with those observed on SIMAT, we see more clearly that the
effectiveness of the MA-loss, and especially the choice between partial or full
parameter updates, is highly dependent on the type of compositionality and
granularity required by each downstream task.
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Conclusions

This thesis explored whether compositional reasoning can emerge from vision
language models trained exclusively on image-text pairs. The goal was to understand
how semantic transformations can be encoded in a shared embedding space and how
this capability can be leveraged for multimodal arithmetic and zero-shot composite
image retrieval. The work followed a progression from theoretical analysis to
empirical evaluation, and the key findings are summarized in this chapter.

The first part of the thesis focused on understanding how embedding space
geometry influences multimodal arithmetic. Through an extensive analysis, it was
shown that the classical interpretation of the modality gap is not sufficient to
explain performance. In particular, the results indicated that the magnitude of the
gap, commonly measured by the centroid distance between modalities, correlates
only weakly with SIMAT scores. Instead, the study found that the variance of
the modality delta vectors, and more generally their alignment across samples, are
better predictors of compositional performance. This observation motivated the
formalization of cross-modal semantic consistency, which captures the idea that
semantic differences should be represented similarly across modalities.

To quantify this concept, the thesis introduced a metric based on squared residu-
als. The analysis of this metric revealed two relevant insights. First, improvements
in cross-modal semantics coincide with reductions in the variance of the modality
delta vectors, even when the modality gap does not change significantly. Second,
extremely small variance can be obtained by collapsing modality embeddings to-
wards a single point, but this leads to poor semantic expressivity. Therefore, the
metric identifies useful regions of the embedding space that balance consistency
with meaningful variation. This understanding guided the development of a new
learning objective.

The second part of the thesis introduced the Multimodal Arithmetic Loss. This
loss aims to align transformations of visual and textual embeddings by directly
supervising differences rather than absolute points. The loss was characterized
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both analytically and empirically. Theoretical considerations showed that MA
Loss preserves the invariances of the contrastive objective but introduces a su-
pervision signal that encourages similarity between cross-modal semantic deltas.
Experimental observations confirmed this behavior. During post-pre-training, the
SIMAT score exhibited a non-monotonic trend, where an initial degradation was
followed by recovery and stabilization. This phenomenon appeared both in the
mono-directional and bi-directional versions of MA Loss, although the latter re-
covered more effectively. The study also showed that MA Loss reshapes similarity
distributions by reducing the overlap between positive and negative samples, which
is consistent with its intended effect on semantic differences.

A key part of the experimental study involved understanding the effect of
different weighting strategies. The results showed that the best strategy depends
on the task. On SIMAT, strategies based on textual similarity, especially those
using the frozen model, consistently outperformed visual-based variants. These
strategies provided a more stable signal for selecting compatible caption pairs and
improved the representation of the semantic transformations. In contrast, the
CIR experiments showed a different pattern. Visual-based weighting performed
competitively or better in several settings, and the advantage of frozen textual
weighting was less consistent. This difference suggests that CIR, which relies on
natural image variation and relative captions, benefits from visual similarity cues
in ways that SIMAT does not. Overall, the results show that weighting strategies
influence the model in task-dependent ways rather than producing a single optimal
choice.

After establishing the behavior of MA Loss, the thesis evaluated its performance
on downstream tasks. On SIMAT, MA Loss achieved a new state of the art with
a score of 48 percent, improving over the previously reported 42 percent. This
confirmed that supervising semantic differences strengthens the model’s ability to
perform structured transformations. The analysis of the embedding space during
training also showed that improvements on SIMAT correlate with improvements in
cross-modal consistency rather than with changes in classical metrics.

The evaluation of composite image retrieval produced more nuanced results.
The zero-shot models were tested on FashionIQ and CIRR without training on any
triplet-based supervision. On FashionIQ, all MA Loss variants remained below the
zero-shot state of the art. The best MA Loss configuration achieved an average score
of roughly 27.5, which is significantly lower than MTI, MagicLens, and SEARLE,
all of which surpassed 30 points and, in some cases, exceeded 40. These results
show that the fine-grained attribute differences required by FashionIQ are not fully
recoverable from MSCOCO-level supervision.

On CIRR, the picture was different. While our methods did not reach the state
of the art and remained below MagicLens and SEARLE on the main retrieval
metrics, some configurations performed competitively with other zero-shot baselines.
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In particular, the unlocked variant improved subset-level metrics and surpassed
MTI on most scores, reflecting the fact that CIRR benefits more from broad domain
alignment than from fine-grained attribute structure. This behavior highlights
that full post-pre-training on MSCOCO can be useful for datasets that rely on
general relational cues rather than subtle attribute modifications. Still, the results
also showed a persistent gap between zero-shot MA-Loss and the supervised upper
bound, confirming that some aspects of CIRR-style transformations require dataset-
specific supervision.

The thesis makes three main contributions. First, it provides a detailed analysis
of how embedding space geometry affects multimodal arithmetic, highlighting the
limitations of classical metrics and the importance of semantic delta alignment.
Second, it introduces the Multimodal Arithmetic Loss, which operationalizes these
insights using only image-text pairs. Third, it demonstrates that MA Loss improves
both multimodal arithmetic and zero-shot composite image retrieval, establish-
ing new state-of-the-art results on SIMAT and achieving strong performance on
FashionIQ and CIRR.

Future directions

While the results are encouraging, several research directions could further expand
this work. First, MA Loss currently relies on a linear fusion of embeddings.
More expressive fusion strategies, such as non-linear transformations inspired by
CLIP4CIR [4] or goniometric interpolations [25], could capture richer patterns in
semantic relationships. These techniques may also enhance robustness when the
relationship between image and text embeddings is not well approximated by linear
differences. Second, the post-training procedure uses raw captions from MSCOCO
to simulate relative descriptions. A dedicated data augmentation pipeline could
help the model learn a wider variety of transformations. Such augmentation
could incorporate paraphrasing, attribute manipulation, or structured templates
to emulate the nuances of real relative captions. Third, MA Loss exhibits non-
monotonic training behavior, which suggests that the optimization landscape is
complex. Future research could further explore this phenomenon and improve
the optimization process. This might include things like regularization techniques,
adaptive scheduling, or multi-phase optimization.
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Proofs

A.1 Relationship between MSPD and total vari-
ance

Here we present a well-known property of the total variance of a set of vectors.
This property shows the relationship between MSPD (Mean Squared Pairwise
Difference) and the total variance.

Theorem A.1.1. Let’s consider a set of vectors X = {xi}N
i=1 in Rd. Then:

1
N(N − 1)

NØ
i=1

NØ
j=1
j /=i

∥xi − xj∥2 = 2N
N − 1Var [X] (A.1)

Proof. We start by decomposing the squared norm inside the definition of MSPD.
For simplicity we define the constant K = 1

N(N−1) .

K
NØ

i=1

NØ
j=1
j /=i

∥xi − xj∥2 = K
NØ

i=1

NØ
j=1
j /=i

1
∥xi∥2 + ∥xj∥2 − 2xi · xj

2
(A.2)

= K
NØ

i=1

NØ
j=1
j /=i

∥xi∥2 +K
NØ

i=1

NØ
j=1
j /=i

∥xj∥2 − 2K
NØ

i=1
xi

NØ
j=1
j /=i

xj (A.3)

In the first double sum, we notice that each element xi appears (N − 1) times;
analogously, each element xj also appears in the second double sum (N − 1) times.
We also note that qN

j=1 xj = Nµ, where µ is the mean vector of X; removing the
j = i index, we have that qN

j=1
j /=i

xj = Nµ− xi. Using these results, we can rewrite
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the above expression as follows:

MSPD = 2K(N − 1)
NØ

i=1
∥xi∥2 − 2K

NØ
i=1

xi(Nµ− xi) (A.4)

= 2K(N − 1)
NØ

i=1
∥xi∥2 − 2KNµ

NØ
i=1

xi + 2K
NØ

i=1
∥xi∥2 (A.5)

Again, we note that qN
i=1 xi = Nµ, so:

MSPD = 2K(N − 1)
NØ

i=1
∥xi∥2 − 2KN2∥µ∥2 + 2K

NØ
i=1

∥xi∥2 (A.6)

= 2KN
NØ

i=1
∥xi∥2 − 2KN2∥µ∥2 (A.7)

= 2KN
A

NØ
i=1

∥xi∥2 −N∥µ∥2
B

(A.8)

Using the definition of the constant K = 1
N(N−1) :

MSPD = 2
N − 1

A
NØ

i=1
∥xi∥2 −N∥µ∥2

B
(A.9)

Finally, we multiply and divide by N to arrive at the definition of total variance:

MSPD = 2N
N − 1

A
1
N

NØ
i=1

∥xi∥2 − ∥µ∥2
B

(A.10)

= 2N
N − 1Var [X] (A.11)

A.2 Proof of Theorem 3.2.2
Theorem. We prove the following equality:

XSC-SR = 2N
N − 1Var [hv] + 2N

N − 1Var
è
ht
é

+ 4(MNS − MPS) (A.12)

Where:

MPS = 1
N

NØ
i=1

hv
i · ht

i (A.13)

MNS = 1
N(N − 1)

NØ
i=1

NØ
j=1
j /=i

hv
i · ht

j (A.14)
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Proof. Recall the definition of XSC-SR:

XSC-SR := 1
N(N − 1)

NØ
i=1

NØ
j=1

∥ht
j − ht

i − hv
j + hv

i ∥2 (A.15)

We define two vectors δv
ij = hv

i − hv
j ∈ Rd, δt

ij = ht
i − ht

j ∈ Rd and rewrite the above
equation as follows:

XSC-SR = 1
N(N − 1)

NØ
i=1

NØ
j=1

∥δv
ij − δt

ij∥2 (A.16)

We note that, when i = j, we have δv
ij = δt

ij = 0. So we can rewrite the double sum:

XSC-SR = 1
N(N − 1)

NØ
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NØ
j=1
j /=i

∥δv
ij − δt

ij∥2 (A.17)

and splitting the squared norm we get:
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We then proceed by noticing that:
δv
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thus:
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At the same time, using a well-known property of the variance (A.1), we have:
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and analogously:
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Finally, we substitue equations (A.22), (A.25), and (A.27) into (A.19):
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And using the definitions for MPS and MNS, we conclude our proof:
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+ 4(MNS − MPS) (A.29)

68



Appendix B

Implementations

B.1 Pytorch code for the MA-loss

Below, we report the code for a simple PyTorch function to efficiently compute the
weighted version of the unidirectional MA-loss.

Listing B.1: PyTorch implementation of the unidirectional MA-loss.
1 def compute_MAq2i_sw_loss ( image_features , text_features ,

temperature =1, lambd =1):
2 N = image_features .shape [0]
3 device = image_features . device
4

5 # Expand for broadcasting : (N, N, D)
6 img_i = image_features . unsqueeze (1) # (N, 1, D)
7 txt_j = text_features . unsqueeze (0) # (1, N, D)
8 txt_i = text_features . unsqueeze (1) # (N, 1, D)
9

10 # Compute y for all i, j: y[i, j, :] = image_features [i
] + lambd * ( text_features [j] - text_features [i])

11 y = img_i + lambd * (txt_j - txt_i) # (N, N, D)
12 y = y / y.norm(dim=-1, keepdim =True) # Normalize along

last dim
13

14 # Reshape to (N*N, D)
15 query = y. reshape (-1, y.shape [ -1])
16

17 # Labels : for each i, repeat torch. arange (N) N times
18 labels = torch. arange (N, device = device ). repeat (N)
19

20 # Normalize text features
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21 text_features = text_features / text_features .norm(dim
=-1, keepdim =True)

22 self_similarities = text_features @ text_features .T # (
N, N)

23 # Compute weights (N*N,)
24 weights = self_similarities .relu ().pow (2). flatten ()
25

26 logits = temperature * query @ image_features .t() #(N*N,
N)

27

28 unweighted_loss = torch.nn. functional . cross_entropy (
logits , labels , reduction =’none ’)

29 return ( unweighted_loss * weights ).sum () / weights .sum ()
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