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Abstract

Enhancing the performance of institutions and other Decision Making Units (DMUs)
is among the primary objectives in efficiency analysis. Conventional Data Envelop-
ment Analysis (DEA) models offer useful tools for measuring relative efficiency, but
such targets are sometimes unrealistic from a behavior-theoretical point of view,
since they can be mathematically optimal but impossible to reach empirically.

This thesis presents a more powerful benchmark employing DEA in combination
with counterfactual reasoning within a Bilevel Optimization (Bilevel) optimization
framework. Our approach finds the smallest and most realistic changes to inputs or
outputs that would make an inefficient unit efficient, which turns abstract efficiency
scores into interpretable and actionable improvements.

In higher level, the model controls the sparsity of changes and magnitude and
smoothness based on observed data to deviation, while standard DEA efficiency
constraints are set in lower level. The resulting model also fits within the larger
context of interpretable and explainable analytics, following Explainable Artificial
Intelligence (XAI) principles by providing transparent explanations that can be
understood by humans.

We apply the model to a case from the logistics industry, focusing on environ-
mental, social and governance (ESG) factors in order to demonstrate its potential
for eked out overall efficiency improvements derived from sustainability issues. It is
shown that the counterfactual DEA provides a new way to understand efficiency and
enhances the decision relevance of efficiency analysis compared with the traditional
optimization perspective, promoting a shift from a rich yet opaque optimization
ideology toward a more interpretable analytical framework.
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Chapter 1

Introduction

Motivation and Context

The growing availability of high-dimensional data has transformed performance
evaluation into a data-driven science. Organizations, public institutions, and firms
increasingly rely on advanced analytics and Artificial Intelligence (AI) tools to
assess, predict, and optimize their operations. Yet, as Al systems become more
pervasive, they also become more opaque. Many modern models achieve impressive
predictive accuracy but offer limited transparency regarding why and how specific
decisions are made. This lack of interpretability can hinder trust, adoption, and
the translation of analytical insights into actionable managerial knowledge.

In the domain of efficiency and productivity analysis, DEA stands out as one of
the earliest and most influential forms of interpretable Al. Since its introduction by
Charnes et al. [1], DEA has offered a transparent, optimization-based method for
benchmarking Decision Making Units (DMUs) using multiple inputs and outputs
without requiring a predefined functional form. Over the past four decades, DEA
has evolved into a cornerstone of quantitative performance assessment, applied to
diverse sectors such as banking, healthcare, energy, education, and sustainability
[2]. Its appeal lies in its empirical nature: DEA constructs a data-driven production
frontier and measures efficiency relative to observed best practices.

However, as Bogetoft et al. [3] point out, the interpretability of DEA is limited
when communicating results to non-technical decision makers. The efficiency score
alone provides little insight into how a specific DMU can realistically improve.
Managers often ask not only “how efficient are we?” but also “what should we do
differently to become efficient?” Answering this requires moving from evaluation
toexplanation—from descriptive analytics toward prescriptive and interpretable Al.

1



Introduction

From DEA Benchmarking to Counterfactual Rea-
soning

In recent years, the field of Al has witnessed a paradigm shift toward explainability
and human-centric reasoning. The rise of XAl stems from the need to make complex
models—such as deep neural networks—more transparent and trustworthy [4, 5].
Among XAI approaches, Counterfactual Explanation (CF) have gained particular
prominence because they mirror human reasoning: they describe what minimal
change in the input would have led to a different outcome. For instance, in a loan
decision model, a counterfactual explanation might say, “if the applicant’s income
were $10,000 higher, the loan would be approved.” Such statements transform
algorithmic predictions into actionable knowledge.

Bogetoft et al. [3] introduced a similar philosophy into DEA by proposing the
concept of Counterfactual Explanation in Data Envelopment Analysis (CEDEA).
Rather than simply identifying efficient peers, the model computes alternative
input—output configurations that are close to the current profile of an inefficient
DMU but would make it efficient. This approach unifies the interpretability of
counterfactual Al with the economic rigor of DEA. The result is a framework that
not only measures efficiency but also prescribes how to achieve it.

In practical terms, counterfactual DEA formulates a Bilevel optimization prob-
lem.The lower level corresponds to the standard DEA model that assesses technical
efficiency at a given return to scale—either under Constant Returns to Scale (CRS)
or Variable Returns to Scale (VRS)—whereas the upperstage balances the cost
or effort needed to get from where we are now to an alternative position. The
distance is computed by mixtures of £y, {1 and f5 norms resulting in flexible trade-
offs between sparsity (fewest changes), magnitude (smallest amount by which the
parameters should be adjusted) and realism (smooth and plausible transitions).This
formulation parallels recent developments in interpretable Machine Learning (ML),
where counterfactuals are used to explain black-box models such as neural networks,
support vector machines, or tree ensembles [6, 4].

Problem Statement and Research Gap

While classical DEA provides valuable efficiency benchmarks, it lacks behavioral
realism: the recommended targets may be mathematically valid but economically
or operationally infeasible. At the same time, most XAI frameworks—though
strong in interpretability—focus on classification and prediction tasks, not on
multi-input multi-output production systems. The intersection of these domains
remains underexplored.

There is thus a growing need for methods that combine:
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 the theoretical robustness and interpretability of DEA,
 the explanatory power of counterfactual Al, and
e the optimization precision of modern data science.

Integrating DEA with counterfactual reasoning allows the model to answer
the “what-if” questions that traditional efficiency analysis cannot. Instead of
producing static efficiency scores, it generates dynamic, scenario-based insights:
what minimal, data-supported changes can make an inefficient firm reach the
frontier? This shift from evaluation to simulation aligns DEA with contemporary
trends in data science and Al, where interpretability, fairness, and algorithmic
recourse are central concerns [5, 4].

Yet, practical implementations of counterfactual DEA are scarce. Existing stud-
ies mainly focus on theoretical formulations or small illustrative datasets. Moreover,
there is limited empirical evidence on how the integration of Bilevel optimization
and counterfactual reasoning performs on complex, real-world data—such as En-
vironmental, Social and Governance (ESG) indicators or industrial performance
metrics—where interpretability and accountability are crucial. This thesis addresses
these gaps by operationalizing the counterfactual DEA model within a modern Al
pipeline.

Objectives and Contributions

The main objective of this research is to develop and apply a counterfactual-based
DEA framework that combines the transparency of Operations Research (OR)
models with the interpretability standards of modern AI. By integrating explainable
and data-driven principles into efficiency benchmarking, the thesis aims to enhance
both methodological rigor and practical decision support. Specifically, it seeks to:

1. Formulate an interpretable DEA model incorporating counterfactual reasoning
through Bilevel optimization.

2. Implement the model using Python and Gurobi, integrating data preprocessing,
scaling, and visualization within a data science workflow.

3. Evaluate the model on real datasets, such as ESG performance indicators, to
derive meaningful and actionable efficiency improvements.

4. Experiment with different regularization schemes (¢, ¢1, and ¢3) in the counter-
factual optimization to evaluate trade-offs between sparsity, total adjustment,
and smoothness—key factors influencing interpretability and realism in data-
driven target setting.
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This combination of DEA, counterfactual reasoning, and XAI positions the work
at the intersection of optimization and data science, contributing to the development
of transparent, explainable, and accountable Al for performance analysis.

By combining principles from OR, optimization, and XAlI, this work contributes
to the emerging field of transparent decision analytics. The proposed framework
bridges the gap between prescriptive modeling and human understanding, en-
abling decision makers to explore multiple realistic pathways toward efficiency
improvement.

Scientific and Practical Relevance

From a scientific perspective, this study extends the frontier of DEA research
toward hybrid Al systems. It demonstrates that counterfactual reasoning, originally
developed for interpretable ML, can enrich performance evaluation by providing
local, human-understandable explanations. It also contributes to the broader debate
on how optimization models can support ethical and accountable AI-—an issue
increasingly recognized in European and international regulatory frameworks.

From a practical standpoint, organizations are under pressure to justify their
decisions and sustainability claims using transparent and explainable analytics. In
this context, counterfactual DEA offers a decision-support tool that transforms
abstract efficiency metrics into concrete managerial actions. It enables firms to
understand not only their relative position but also the feasible steps required to
reach best practice, all while maintaining interpretability and auditability.

Structure of the Thesis
The thesis is organized as follows:

o Chapter 1 gives an introduction to the research work, motivation and objectives
of this study and presents the research problem as well as the overall thesis
structure.

o Chapter 2 presents a review of the literature on DEA, target setting, and
counterfactual and interpretability techniques, situating our work within this
wider established context.

o Chapter 3 presents the backgrounds of DEA and Bilevel optimization for
theoretical preparation in our model.

o Chapter 4 presents the proposed counterfactual DEA framework, detailing its
mathematical formulation, model design, and computational implementation.

4



Introduction

o Chapter 5 discusses the empirical application of the model, analyzes the results,

and provides managerial insights in addition to the conclusion and future
work.

Through this structure, the thesis aims to advance DEA from a traditional
benchmarking technique to a human-centered, interpretable Al framework—one

capable of transforming data-driven evaluation into transparent, actionable, and
explainable decision support.



Chapter 2

Literature Review

This chapter reviews the theoretical and empirical foundations that motivate the
development of the proposed counterfactual-based DEA framework. It traces
the evolution of efficiency analysis from early concepts of productive efficiency
to modern extensions of DEA, highlighting the progression from measurement
to explanation. The chapter then explores the growing intersection between
optimization, counterfactual reasoning, and XAI, emphasizing how interpretability
and realism have become central goals in data science. The review concludes by
identifying the research gaps that this thesis seeks to address.

From Productive Efficiency to Data Envelopment
Analysis

The origin of efficiency measurement dates to Farrell [7], who defined efficiency
as the ratio between observed performance and the theoretical best practice.
Farrell’s geometric framework, representing a production frontier through isoquants,
established the conceptual foundation for modern nonparametric benchmarking.

Charnes et al. [1] translated this concept into an operational method through
DEA, introducing the Charnes-Cooper-Rhodes model (CCR) model under constant
returns to scale. By constructing an empirical frontier enveloping all observed
DMUs, DEA measures relative efficiency without assuming a specific functional
form. The subsequent Banker—Charnes-Cooper model (BCC) model by Banker et
al. [8] relaxed the scale assumption, allowing variable returns and thereby improving
realism in empirical studies.

DEA’s flexibility led to widespread adoption across public and private sectors,
supported by the comprehensive expositions of Cooper et al. [9] and Cooper et al.
[2]. These works systematized extensions such as additive models, slacks-based
measures, and directional distance functions. Recent bibliometric analyses confirm
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DEA’s continued growth, identifying new trends such as dynamic and network DEA,
environmental efficiency, and robust formulations that incorporate uncertainty and
noise [10]. Collectively, these developments portray DEA as one of the most
enduring and adaptive tools in quantitative performance analysis.

Target Setting and Distance—Based Extensions

Classical DEA identifies efficiency scores but does not specify the minimal changes
required for an inefficient unit to reach the frontier. Research in the early 2000s
addressed this limitation by reformulating DEA as a distance-minimization problem.
Aparicio et al. [11] proposed the “closest-target” model, which minimizes the
distance from each inefficient unit to the efficient frontier, producing realistic and
attainable benchmarks. Related works introduced multiple distance norms and
penalty structures to ensure the suggested adjustments remained feasible and
interpretable.

Parallel to distance approaches, the Slack-Based Measure (SBM) family of
models emerged, emphasizing input and output slacks rather than aggregate dis-
tance. Surveys of SBM developments show how inefficiency can be decomposed
into factor-specific components and integrated with undesirable outputs [12]. These
contributions collectively pushed DEA from descriptive assessment toward pre-
scriptive, action-oriented modeling—an intellectual trajectory that foreshadows the
counterfactual perspective explored later in this thesis.

Optimization Perspectives and Bilevel Formula-
tions

DEA naturally aligns with mathematical programming and optimization theory.
The field of Bilevel optimization, formalized by Bard [13] and Dempe [14], provides
the theoretical foundation for hierarchical problems in which one optimization task
is nested within another. Such problems capture leader—follower or upper—lower
decision structures and are inherently nonconvex and computationally challenging.
Later reviews, including Sinha et al. [15], categorize bilevel methods into classical,
evolutionary, and hybrid approaches, emphasizing their applicability to nonconvex,
multiobjective problems.

These advances have enabled new formulations of DEA that explicitly integrate
behavioral realism, regulatory goals, and multi-level decision processes. The same
mathematical logic underpins the recent wave of counterfactual DEA models, in
which an upper-level problem minimizes deviation from observed data while a
lower-level problem enforces efficiency constraints.

7
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Counterfactual Analysis and Target Setting in
DEA

The first studies to incorporate counterfactual reasoning in DEA dates back to
Bogetoft et al. [3]. Their model, called Counterfactual DEA, casts improving the
efficiency in terms of identifying a nearby point in input—output space that would
make an inefficient DMU efficient. The objective function is a mixture of the
ly, ¢1, and f5 norms to control trade-offs between sparsity, total adjustment, and
smoothness. This changes DEA from being a static benchmarking mechanism
to an interpretive and normative system, which is able to provide actionable
recommendations.

Building on this foundation, Carrizosa et al. [6] interpreted counterfactual target
setting within the broader context of mathematical optimization. They framed
counterfactual explanations as constrained optimization problems seeking minimal
perturbations that reverse model outcomes, thereby unifying perspectives from
economics, machine learning, and operations research. These developments converge
on a shared goal: to generate small, plausible, and interpretable adjustments that
link quantitative results with managerial insight.

Counterfactual Explanations and Explainable Ar-
tificial Intelligence

Beyond efficiency analysis, counterfactual reasoning has become central to XAI. A
counterfactual explanation specifies the minimal change to an input that would
alter a model’s output, offering intuitive “what-if” reasoning. Guidotti [4] provide
one of the most extensive surveys of counterfactual methods, showing that validity,
actionability, sparsity, and plausibility often trade off against each other. Verma et
al. [5] review over 350 algorithms and emphasize counterfactuals’ role in algorithmic
recourse, fairness, and transparency.

Recent research extends these ideas toward robustness and causality. The survey
by Delaney and Greene [16] synthesizes strategies for ensuring that counterfactuals
remain stable under data perturbations, while Hancox-Li and Lipton [17] discuss
the distinction between mere correlation-based counterfactuals and truly causal
explanations. Ethical considerations have also emerged: Kusner et al. [18] warn
that ill-defined counterfactuals can misrepresent feasible actions, especially when
sensitive attributes are involved.

Another growing theme concerns user perception. Empirical studies such as
Poyiadzi et al. [19] show that simplicity and interpretability strongly influence
human trust in counterfactual explanations. These insights are particularly relevant
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when counterfactual principles are applied to management and policy contexts,
where interpretability and realism are as critical as mathematical validity.

Extensions of DEA and Opportunities for Integra-
tion

Parallel to developments in explainability, the DEA community has explored
numerous methodological extensions. Reviews such as Kao [20] document the rise of
network DEA, which models multi-stage and interlinked processes; others emphasize
dynamic and stochastic DEA, addressing temporal change and statistical noise.
These advances broaden DEA’s applicability but rarely address interpretability
explicitly. Integrating counterfactual reasoning with such models could enhance
their transparency and decision relevance.

Moreover, hybrid approaches combining data-driven learning and optimization
logic are gaining prominence in Al. The concept of neurosymbolic Al—surveyed by
Kosasih et al. [21]—illustrates how neural networks can capture complex patterns
while symbolic components maintain interpretability. Counterfactual DEA aligns
with this hybrid vision: it retains optimization rigor while providing interpretable,
localized explanations, effectively bridging OR and Al

Identified Research Gap

Despite the conceptual alignment between DEA, counterfactual reasoning, and
XAI, practical implementations of counterfactual DEA remain scarce. Existing
studies mainly demonstrate feasibility on small synthetic datasets, leaving empirical
validation on complex, high-dimensional data largely unexplored. Few works system-
atically analyze how different regularization norms (¢, ¢1, ¢5) affect interpretability,
realism, or the managerial usefulness of the recommended adjustments.

Additionally, connections with broader XAI themes—robustness, causability,
and human perception—are seldom examined in efficiency analysis. Bridging these
perspectives offers a promising avenue for advancing both methodological rigor
and interpretability in performance benchmarking. The framework proposed in
this thesis addresses these gaps by integrating norm-regularized counterfactual
optimization with DEA, emphasizing transparent, realistic, and data-driven target
setting.



Chapter 3

Theoretical Background:
DEA and Bilevel
Optimization

This chapter presents the theoretical foundations that underpin the modeling
framework proposed in this thesis. It is structured in two main parts: the first
introduces DEA, a method for measuring the relative efficiency of DMUs; the second
explores Bilevel optimization, a powerful framework for modeling hierarchical
decision processes. The integration of these two approaches forms the basis for
counterfactual-based target setting, as proposed in the CEDEA model discussed in
the next chapter.

3.1 Data Envelopment Analysis (DEA)

DEA is a non-parametric method in operations research and economics for assessing
the relative efficiency of DMUs, such as firms, public-sector agencies, or production
systems, which use multiple inputs to produce multiple outputs. DEA originated
from Farrell’s seminal work on efficiency measurement [7], and was later formalized
and extended by Charnes, Cooper, and Rhodes through the development of the
CCR model [1], and subsequently the BCC model by Banker, Charnes, and Cooper
[3].

The DEA methodology constructs a best-practice frontier by enveloping ob-
served data points through Linear Programming (LP), without requiring explicit
assumptions on the functional form of the production process [9]. Efficiency is
defined as the distance of a DMU from this frontier.
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Farrell Efficiency Measure (1957)

The term technical efficiency was first defined formally by M. J. Farrell in 1957 [7],
who introduced an analog to the ratio of productivity and suggested a method for
comparing the relative efficiency of firms with respect to a constructed production
frontier. The basic thought is that a firm is technically efficient if it works on the
frontier and technically inefficient if it lies below.

Farrell suggested measuring efficiency as the maximum possible proportional
reduction in inputs that still allows the firm to produce the same level of outputs.
In modern notation, for a firm using an input vector xy to produce an output vector
Yo, the Farrell input efficiency score F is defined as:

E =minf such that (6zg,vy0) € T (3.1)
Where:

o T is the feasible production set (i.e., the set of all input-output combinations
observed or assumed).

o 0 is the scalar representing the maximal feasible contraction of inputs.

If £ =1, the firm is efficient. If £ < 1, the firm is inefficient and can reduce all
inputs by a proportion (1 — E) without reducing output.

This model assumes radial reductions and laid the groundwork for the DEA
methodology, which later operationalized this idea through LP using observed data.

3.1.1 Returns to Scale Assumptions: CRS and VRS

In the early development of DEA, two fundamental assumptions about production
technology were established: Constant Returns to Scale (CRS) and Variable Returns
to Scale (VRS)[8, 1]. Under CRS, a proportional increase in all inputs leads to an
equivalent proportional increase in all outputs, implying that all DMUs operate
at an optimal and efficient scale. In contrast, the VRS assumption allows for
economies or diseconomies of scale, acknowledging that production efficiency may
vary with the size of operations or external conditions. These assumptions are
essential because they determine how the production frontier is constructed and how
efficiency is interpreted. The classical CCR model proposed by Charnes, Cooper,
and Rhodes (1978) represents the DEA formulation under CRS, whereas the later
BCC model introduced by Banker, Charnes, and Cooper (1984) incorporates VRS
to capture differences in scale among DMUs.
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Model Orientation: Input- and Output-Oriented Approaches

Another important modeling aspect in DEA is the orientation of the analysis,
which defines the direction in which efficiency is measured [9]. An input-oriented
model evaluates how much input usage can be proportionally reduced while main-
taining the same level of outputs. This perspective is suitable when decision
makers have greater control over resource utilization than over output genera-
tion. Conversely, an output-oriented model assesses how much outputs can be
proportionally expanded without increasing input consumption. This formulation is
more appropriate when the focus lies on improving productivity or service delivery
given fixed resources. Although these two orientations take different perspectives,
they generally yield consistent efficiency classifications under convex production
technologies [9].

3.1.2 The CCR Model (CRS)

The CCR model assumes CRS, implying that a proportional increase in all inputs
results in a proportional increase in outputs. The CRS assumption is appropriate
when all DMUs are believed to operate at an optimal scale [1].

The input-oriented CCR model evaluates how much input quantities can be
proportionally reduced without decreasing output levels. It is formulated as:

I1917i)\n 0

st. YA >y (3.2)
X\ <0z
A>0

The output-oriented CCR model evaluates how much outputs can be propor-
tionally increased without increasing input usage:

max ¢
st. YA> oy (3.3)
X\ <z
A>0

Where:
e 19 € R™ is the input vector of the evaluated DMU.
e Yo € R? is the output vector.

o X,Y are the input/output matrices.
12
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» ) is a non-negative intensity vector.

e 0 is the input efficiency score, ¢ is the output efficiency score.

3.1.3 The BCC Model (VRS)

The BCC model removes the assumption of CRS and instead allows for VRS,
making it suitable when DMUs operate at different scales of production [8]. The
key addition is the convexity constraint:

Aj=1 (3.4)

1

J

This ensures that the reference set is a convex combination of existing DMUs,
allowing the efficiency frontier to exhibit variable returns to scale. The input-
oriented BCC model becomes:

min ¢
0.\
s.t. YA > Yo
XA <0z (3.5)
doa=1
J
A>0

And the output-oriented BCC model:

R o
st YA > oy
XA < @ (3.6)
doa=1
J
A>0

3.1.4 Dual (Multiplier) Form

Every linear programming formulation in DEA has a corresponding dual problem
that provides a complementary interpretation of efficiency [1, 9]. While the primal
(envelopment) form constructs the efficiency frontier by enveloping the observed
data, the dual—also known as the multiplier form—focuses on determining the
optimal weights assigned to each input and output. In this view, a DMU is
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considered efficient if it can choose a set of non-negative weights that maximize its
own weighted output-to-input ratio without exceeding one for any other unit.
The dual of the input-oriented CCR model is expressed as:

max 'y

v
st. vizgg=1
W'Y —oTX <0
u,v > 0

(3.7)

In this formulation:

o u and v are the non-negative weight vectors for outputs and inputs, respec-
tively;

e the constraint v7zy = 1 normalizes the input side to avoid trivial scaling;

o the inequality uTY — vTX < 0 ensures that no DMU achieves an efficiency
score greater than one using the same set of weights.

This dual representation provides valuable managerial insight into how each
input and output contributes to the efficiency score of a DMU. It also highlights
one of the strengths of DEA: each unit is evaluated using the most favorable set
of weights within the feasible space, thereby avoiding subjective or pre-specified
weighting schemes.

Intuitive Understanding of the Efficiency Frontier

In the simplest case with one input and one output, the DEA frontier can be
understood conceptually as a piecewise linear and convex boundary that envelops
all observed DMUs [9]. Units that lie directly on this boundary are considered
efficient (6 = 1), while those located below it are inefficient. The efficiency score
represents the proportional distance of a unit from this frontier—that is, the ratio
between its current performance and the performance of an efficient peer operating
on the boundary.

DEA Extensions

Over the years, DEA has been extended in multiple directions to better reflect
real-world production settings and to increase its discriminatory power among
efficient units [9]. The most relevant extensions include:

« Slack-Based Measure (SBM) models: which assess efficiency using input and
output slacks rather than purely radial proportional changes [22].
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« Directional Distance Function (DDF) models: which allow simultaneous input
reductions and output augmentations in specified directions [23].

o Super-efficiency Models: which enable ranking of efficient DMUs by excluding
the evaluated unit from the reference set [24].

o Malmquist Productivity Index and Window Analysis: which evaluate produc-
tivity and efficiency changes over time [25].

o Robust and Stochastic DEA: which incorporate noise or uncertainty in the
data [26].

These formulations broaden the applicability of DEA across domains such as
banking, energy, education, and healthcare [9]. However, while these models
improve measurement and discrimination, they still provide limited interpretability
regarding how an inefficient DMU should adjust its inputs or outputs to become
efficient. This limitation motivates the integration of Bilevel optimization, which
enables the generation of interpretable and actionable counterfactual targets, as
discussed in the next section.

3.1.5 The Data Envelopment Analysis (DEA) model used
in this research

The empirical analysis in this thesis builds upon the classical Data Envelopment
Analysis (DEA) framework, originally introduced by Charnes et al. [1] and based
on the efficiency concept formulated by Farrell [7]. DEA is a nonparametric method
for measuring the relative efficiency of a set of homogeneous Decision Making Units
(DMUs), each using multiple inputs to produce multiple outputs.

Input-oriented DEA and Farrell efficiency

In the input-oriented formulation, efficiency is defined as the maximum proportional
reduction in inputs that allows the DMU to continue producing the same output
levels. For a DMUq with input vector xq and output vector yq, the model is written
as:

rxel’i)\n 0

s.t. YA >y, (3.8)
XA < 0xq,
A>0,
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where X and Y are matrices of observed inputs and outputs for all DMUs, and
A represents the intensity variables. The scalar 6 € (0,1] corresponds to the Farrell
efficiency score, indicating the feasible proportion of input use.

A DMU is efficient if # = 1, while values below unity imply inefficiency. The
corresponding Farrell projection identifies the efficient input combination:

x* = 0"xq,

which lies on the efficient frontier. This projection defines the classical DEA
benchmark used as a baseline for counterfactual comparison in later chapters.

Returns to scale and model orientation

The analysis in this thesis applies the input-oriented model under both Constant
Returns to Scale (CRS) and Variable Returns to Scale (VRS) assumptions, following
the CCR and BCC formulations respectively. The choice of orientation reflects the
ESG benchmarking context, where firms aim to reduce environmental and social
input intensities while maintaining the same output performance.

Transition to counterfactual DEA

Although the Farrell model provides an objective benchmark, it assumes uniform
proportional contraction across all inputs, which may not correspond to realistic
or interpretable managerial adjustments. To address this, the counterfactual
DEA model proposed in Chapter 4 reformulates the efficiency projection as an
optimization problem that incorporates regularization norms (Lg, Lo, and Lo+Lo)
to capture sparsity, smoothness, and realism in improvement paths.

3.2 Bilevel Optimization

Bilevel optimization is a mathematical programming framework for modeling
hierarchical decision-making processes where two decision-makers (called the leader
and the follower) interact. The leader makes the first decision, anticipating the
reaction of the follower, who then optimizes their own objective in response to the
leader’s action. This hierarchical structure was first formalized in optimization
by Bard [13] and later developed into a comprehensive theoretical framework by
Dempe [14]. Bilevel formulations naturally occur in many practical settings such as
pricing and regulation, game theory, transportation planning, and network design
[13, 14, 15]. More recently, they have also been applied in explainable analytics and
performance benchmarking, where upper-level interpretability constraints guide
lower-level optimization [15, 3].
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3.2.1 General Formulation

A general Bilevel program consists of two nested optimization problems—an upper-
level problem (leader) and a lower-level problem (follower)—that can be expressed
as follows [13, 14]:

Upper-level problem (leader):

i F 3.9
xGXI,I?lJIEnY(m) <:E7 y) ( )

Subject to:

Lower-level problem (follower):
y € arg min {f(x,y) : g(x,y) <0} (3.10)
y€eY (z)

Where:

e F(z,y) is the objective function of the upper-level (leader) problem;

e f(x,y) is the objective function of the lower-level (follower) problem;

e g(x,y) <0 are the constraints of the lower-level problem;

o x and y denote the upper- and lower-level decision variables, respectively.

Bilevel problems are challenging because of their nested structure, which makes
them generally non-convex and Nondeterministic Polynomial time (NP)-hard [14,
15]. Specialized algorithms, relaxations, and reformulations have therefore been
developed to handle such models in practical applications.

3.2.2 KKT Reformulation

One common approach for solving Bilevel problems with convex and differentiable
lower-level problems is to replace the follower’s optimization problem with its
optimality conditions, typically the Karush-Kuhn-Tucker (KKT) conditions [13,
14]. The lower-level problem:

min  f(z,y)
v (3.11)
st gi(z,y) <0 Vi
can be replaced by the KKT system:
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Vyf(@,y) + 3 mVygi(w,y) =0

gi(r,y) <0 Vi (3.12)
pi >0 Vi

Migi(xay) =0 Vi

These KKT conditions transform the original Bilevel problem into a single-level
Mathematical Program with Complementarity Constraints (MPCC) (Mathematical
Program with Complementarity Constraints), which can be solved using relaxation
or penalty-based techniques [14, 15].

3.2.3 Cost Functions for Counterfactual Explanations

An important recent application of bilevel optimization arises in counterfactual
analysis and benchmarking. One of the key innovations in the counterfactual DEA
model by Bogetoft et al. [3] is the use of flexible cost functions to model the “effort” or
“burden” of improving performance. The idea is to generate counterfactual targets
(i.e., improved inputs or outputs) that are not only efficient but also interpretable
and actionable [4]. This is achieved by minimizing a convex combination of three
norms:

min  vol|lz — 2o + v1lz — 2|1 + wallx — 2|3 (3.13)

o lg-norm (|l — Z|o): Promotes sparsity—it counts the number of variables
that change, leading to counterfactuals requiring few modifications [3].

e (1-norm (||z — #||;): Encourages small total change and is widely used in
interpretable modeling for feature selection [4].

e lynorm (||z — 2||3): Penalizes large deviations and promotes smooth, realistic
recommendations [3].

The weights 1, v1, and v, can be tuned to reflect user preferences. For example,
a regulator may prioritize sparse explanations (high 1), while a manager may prefer
gradual improvements (high v,). This flexible cost structure enables customized
and practical benchmarking solutions [3].

Principle of Least Action in DEA Benchmarking

The use of composite cost functions aligns with the economic and philosophical
principle of least action, which suggests that optimal adjustments should occur with
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minimal total effort. In the DEA context, this principle implies that an inefficient
DMU should not be forced to make arbitrary or excessive changes to become
efficient. Instead, counterfactual recommendations should identify the “nearest”
efficient point—one requiring minimal effort, disruption, or cost [3]. This notion
also supports incentive compatibility, meaning that the proposed targets are more
likely to be accepted and implemented in practice. It further allows benchmarking
to be integrated into policy or regulatory frameworks where minimal invasiveness
is crucial.

This principle is formalized in the CEDEA model through the minimization
of distance functions subject to DEA efficiency constraints [3]. It complements
traditional DEA models by offering not only evaluation but also explanation and
prescription.

3.2.4 Interpretability and Actionability in DEA

Traditional DEA models have been criticized for their “black-box” nature, particu-
larly in managerial or regulatory decision contexts. While DEA provides relative
efficiency scores and target benchmarks, it does not clarify how or why those
targets are chosen [9]. Counterfactual DEA addresses this limitation by producing
interpretable and justified recommendations. For instance, it can answer questions
such as:

o What is the smallest change required to become efficient?
o Which input contributes most to inefficiency?
o How do the suggested targets compare with peers?

These questions are particularly relevant in sectors where transparency and
accountability are essential (e.g., healthcare, education, and public administration).
Counterfactual DEA integrates explainability into classical OR frameworks, aligning
with recent trends in XAl and interpretable analytics [4, 3].

3.2.5 Applications in DEA and Counterfactual Benchmark-
ing

Bilevel optimization has recently been applied within DEA to construct inter-
pretable, actionable recommendations for inefficient DMUs [3]. In this framework:

o The upper-level problem minimizes a cost or distance function D(z, %) repre-
senting the magnitude or sparsity of input/output changes.

o The lower-level problem enforces that the counterfactual DMU 2 lies on or
above a required efficiency level (e.g., E > E*).
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This structure is exemplified by the CEDEA model proposed by Bogetoft et
al. [3], which employs a bilevel formulation to identify least-cost counterfactual
improvements that move a DMU to the efficient frontier.

3.2.6 Example Formulation for Counterfactual DEA
Let xg denote the input vector of an inefficient DMU, and % its counterfactual

(target) input vector. The Bilevel counterfactual model can be expressed as:

Upper-level (Counterfactual optimization):

Lower-level (DEA efficiency):

find A s.t.
YA >y
XA< 2
A>0
(Optional: > A; =1 for VRS)
J

(3.15)

The constraint ensuring that Z achieves the desired DEA efficiency level is
encoded through the feasibility of the lower-level problem. This formulation
can be extended with alternative norms (e.g., ¢y, {s), fairness constraints, or
sparsity preferences [3, 4]. Such models offer explainable and realistic guidance
for performance improvement, supporting compliance with modern standards of
fairness and interpretability in data-driven decision making. In summary, the
theoretical concepts of DEA and Bilevel optimization discussed in this chapter
provide the foundation for the proposed framework developed next. By integrating
efficiency measurement with counterfactual reasoning, the forthcoming methodology
translates these ideas into an operational model capable of generating interpretable
and actionable performance targets. The next chapter formalizes this integration
and presents the mathematical formulation of the counterfactual DEA model.

20



Chapter 4

Proposed Methodology

Building on the theoretical foundations established in Chapter 3, this chapter
presents the proposed methodological framework for integrating DEA with Bilevel
optimization to produce interpretable and prescriptive efficiency benchmarks. The
method transforms raw ESG performance indicators into an optimization-ready
dataset, applies a robust efficiency estimation model, and extends it through
counterfactual reasoning to generate realistic improvement targets. The chapter is
organized as follows: first, the data preprocessing pipeline is described in detail;
second, the mathematical formulation of the counterfactual DEA model is presented;
finally, the computational implementation and interpretative aspects of the approach
are discussed.

4.1 Data and variables

The dataset used in this study is a proprietary panel of logistics companies from 2023,
containing a mixture of environmental, social, and governance (ESG) indicators.
The raw dataset consists of 1,494 rows and 7 features, including company names,
ESG scores, and key operational indicators such as:

Water Use to Revenues (USD million)

Total CO2 Equivalent Emissions to Revenues (USD million)

Waste Recycled to Total Waste

Women Managers (percentage)

Board Gender Diversity (percentage)

Renewable Energy Use Ratio
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o Employee Health and Safety Training Hours

The ESG indicators used in this study were retrieved from the Refinitiv
ESG database (formerly Refinitiv Eikon), accessed through the university’s li-
censed connection to the London Stock Exchange Group (LSEG) Workspace
(https://www.lseg.com/ ). Refinitiv/LSEG ESG data are commercially licensed
and proprietary, requiring an institutional subscription for access. Consequently,
the full reproducibility of the empirical results is limited to researchers who have
access to LSEG’s subscription-based ESG data services.

4.1.1 Data Preprocessing

Before applying DEA and counterfactual models, the raw dataset was cleaned
and transformed to ensure data quality, consistency, and suitability for efficiency
measurement.

Input and Output Specification

Following the conceptual framework introduced in Chapter 3, each ESG indica-
tor was classified as an input or output based on managerial controllability and
performance orientation. The selected variables are:

o Inputs: Water Use to Revenues, Total CO, Equivalent Emissions to Rev-
enues, Waste Recycled to Total Waste, Women Managers, and Board Gender
Diversity.

e Output: ESG Score.

Feature Selection Rationale

The selection of ESG indicators reflects the three primary sustainability pillars:

o Environmental: Water Use to Revenues and CO, Emissions to Revenues
represent the firm’s ecological efficiency, capturing resource intensity and
carbon impact relative to economic output.

o Social: Women Managers reflects the degree of gender inclusiveness in manage-
rial positions, serving as an indicator of social diversity within the organization.

o Governance: Board Gender Diversity captures gender balance at the board
level, reflecting the firm’s commitment to equitable representation and trans-
parent decision-making structures.
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This selection aligns with the current trend of evaluating corporate sustainability
as a multidimensional production process, where firms transform environmental
and social resources into perceived ESG performance.

Data Loading and Cleaning

The dataset was imported from Excel. To guarantee consistency:
o Column names were standardized by removing extra spaces and line breaks.
e Duplicate rows were removed to avoid bias from repeated company entries.

» Companies with missing values in the target variable (ESG Score) were
excluded.

Linear Transformation of Undesirable Inputs

In the input-oriented DEA framework, inputs represent quantities that should
ideally be minimized. However, certain variables in the dataset—such as social
or governance indicators (e.g., Women Managers, Board Gender Diversity)—are
desirable when large. To maintain the correct directional interpretation without
violating linearity, these variables were transformed using a linear transformation
rather than inversion.

The transformation is expressed as:

i =1-—u1y, (4.1)

which preserves the relative differences among observations while ensuring that
higher original values (desirable) correspond to lower transformed values in the
DEA model. This approach maintains the linearity of the production possibility
set and is therefore more appropriate for linear programming—based DEA models.

Unlike normalization or reciprocal inversion, the linear transformation retains
the original data scale and avoids introducing nonlinearity into the optimization
problem.

Justification of Modelling Choice

An alternative modelling strategy for desirable indicators—such as Women Man-
agers and Board Gender Diversity—would be to classify them as outputs, on
the basis that firms “produce” diversity and inclusiveness as part of their social
performance. While this interpretation is valid, in this study these indicators
were intentionally retained as inputs and transformed using the linear mapping
x, = 1 — x;. This choice preserves a fully input-oriented perspective, ensuring that
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all ESG-related drivers of performance are expressed in a common decision space
and can be directly compared.

A further motivation for this choice is that both social and governance indicators
play a significant role in a firm’s overall ESG score. By keeping them as (trans-
formed) inputs within the DEA framework, we allow the counterfactual model to
identify how changes in these variables contribute to ESG efficiency in practice. If
they were moved to the output side, their effect on inefficiency would be partially
absorbed into the aggregate ESG score, reducing the model’s ability to show how
improvements in diversity influence the firm’s position relative to the frontier.
Retaining them as (transformed) inputs therefore provides clearer, feature-specific
insight into the behavioural adjustments that lead to higher ESG performance,
while maintaining consistency with the input-oriented structure of the analysis.

Outlier Treatment

To mitigate the influence of extreme values, the Interquartile Range (IQR) rule
was applied with bounds:

LB=Q, —15IQR, UB=Q;+1.5IQR (4.2)

Values outside [ LB, UB] were clamped.

Logarithmic Transformation

Skewed environmental indicators were log-transformed using log(1 + z):
» Water Use To Revenues (USD in million)

« Total COy Equivalent Emissions To Revenues (USD in million)

Missing Value Imputation

Remaining missing values in numerical columns were imputed as follows:
o Median for highly skewed variables.

e Mean for approximately symmetric variables.

Feature Selection and Scaling
The final features used for modeling are:

1. Water Use to Revenues (USD million)
24



Proposed Methodology

2. Total COy Equivalent Emissions to Revenues (USD million)
3. Waste Recycled to Total Waste
4. Women Managers (percentage)
5. Board Gender Diversity (percentage)
All variables were scaled to [0,1] using:
T — Tppin

= (4.3)

Tmax — Tmin

4.1.2 Final Dataset

The company name column was renamed to DMU, and the cleaned dataset was saved
to an excel file for next steps. After preprocessing and filtering for missing data,
the final dataset includes 312 Decision Making Units (DMUs), each representing a
logistics firm observed in 2023.

Table 4.1: Variables used in the study and their modelling roles.

Variable (raw) Role Notes / transformation

Water Use To Revenues Input Skewed = log-transformed; then
scaled.

Total COy Emissions Input Skewed = log-transformed; then
scaled.

Waste Recycled To Total Input Desirable-as-large = scaled, then
linearly transformed.

Women Managers Input Desirable-as-large = scaled, then
linearly transformed.

Board Gender Diversity Input Desirable-as-large = scaled, then
linearly transformed.

ESG Score Output Scaled.

After all transformations, the cleaned dataset was exported to an Excel file for
reproducibility. The final preprocessing step confirmed that:

« all records were unique and complete;
« all input and output variables were scaled, bounded, and nonnegative;
» no zero values remained without substitution by «;

 transformed inputs were directionally consistent.
This finalized dataset was used as the empirical basis for model implementation.
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4.2 Problem Statement and Model Rationale

The model is designed to address the following question: “What minimal changes
to ESG-related inputs would allow an inefficient company to become efficient or
reach a desired level of performance?”

To address this, a custom optimization routine was implemented in Python
using Gurobi, capturing the principles of radial input contraction, norm-based
deviation minimization, and DEA frontier approximation. The model balances
sparsity, interpretability, and practicality in counterfactual target setting, and is
tailored to ESG performance benchmarking within the logistics sector.

4.3 Modeling Framework

Let each DMU £k be defined by an input vector xo, € R™ and output vector
Yor € R®. The objective is to find a counterfactual input vector zj such that the
DMU would achieve at least a specified efficiency level E*, relative to the empirical
DEA frontier constructed from peer firms.

Objective Function: Multi-Norm Minimization

To promote both interpretability and realism in the counterfactual suggestions,
the model minimizes a composite cost function consisting of ¢y, ¢1, and 5 norm
components:

H%in V(]H.fik — IOkHO + V1||i’k — J,’QkHl + l/2||fk - Iong (44)
k
Each term plays a distinct role:

e /y norm: encourages sparsity, i.e., changing as few input features as possible.

e /1 norm: controls the total absolute magnitude of changes, promoting inter-
pretability.

e /5 norm: penalizes large deviations, ensuring smooth and moderate adjust-
ments.

This formulation is inspired by the general norm-based approach proposed in [3],
but is here fully adapted and implemented for ESG benchmarking in the logistics
sector.

Efficiency Constraints (DEA BCC Model)

The feasibility of the counterfactual input vector zj is enforced via the classical
input-oriented BCC model (see Section 3.1.3):
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Input constraint

ffk,i Z Z Bf.itfﬂ' Vi (45)
f=1
Output constraint
1 n
— - Yoko < Y Bryro Vo (4.6)
E =

Convexity condition (VRS)
Z Br=1 (4.7)
=1

The output vector o, remains fixed, while Zj, is optimized to achieve the target
efficiency.

Duality and KKT Conditions

To linearize the bilevel optimization problem, the lower-level DEA model is replaced
by its Karush-Kuhn-Tucker (KKT) conditions (see Section 3.2.2):

Dual normalization
Z Yo¥Yok,o +Xx= 1 (48)

KKT inequality for all reference DMUs

D itri = 2 Volro —X 20 VS (4.9)

The model further includes binary slack variables (u, v, w) and large constant
bounds (M) to approximate complementarity slackness.

Use of the Big M Method for Constraint Activation

The proposed model makes extensive use of the Big M method to linearize and
activate logical constraints. In particular, binary variables are introduced to control
the enforcement of slacks and complementary conditions.
For example, a typical constraint involving an input slack variable u; is formulated
as:
vi < My - uy, (4.10)
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which ensures that ~; is zero whenever u; = 0, and allows ~; to take a positive
value only when u; = 1. Similar constructs are used for output slacks (v,) and
frontier constraints (wy), each with different upper bounds M;, M, and M,
respectively.

These M constants are chosen based on the scale of the problem to avoid overly
loose bounds that could degrade numerical stability, while still ensuring feasibility.
The use of Big M enables the model to encode piecewise and conditional logic
within a mixed-integer linear programming (MILP) formulation, which is essen-
tial for implementing the bilevel-inspired structure and counterfactual generation
mechanism.

Linearization of Norm Terms
e (s norm is approximated by binary indicators £

—M - &) < By —wops < M- E)

e (1 norm is modeled via auxiliary variables &
1 A
& 2 |Tki — Tokl

e /5 norm is added directly as:

Z(ilm - ka,i)Z

Single-Level Reformulation via KKT Conditions

Although the proposed model is inspired by a bilevel optimization structure—with
an upper-level objective seeking interpretability and a lower-level DEA feasibility
problem—the formulation is ultimately solved as a single-level program. This
transformation is made possible by leveraging the optimality conditions of the inner
DEA problem.

In particular, following the approach proposed by Bogetoft et al. [3], the bilevel
problem is replaced by a single-level reformulation where the lower-level problem is
substituted by its Karush-Kuhn-Tucker (KKT) conditions. This is valid because
the lower-level DEA problem is a convex linear program with continuous variables.
As such, the KKT conditions are both necessary and sufficient for optimality.

As illustrated in Equation (5) of [3], the inner DEA problem is first expressed
in its dual form, and then the complementary slackness, primal feasibility, and
dual feasibility conditions are explicitly encoded into the model. These constraints
are directly integrated into the upper-level formulation, thereby yielding a mixed-
integer linear program (MILP) that captures both feasibility and optimality of the
inner problem within a single optimization layer.
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This KKT-based reformulation avoids the need for bilevel solvers and simplifies
the computation while preserving the economic interpretation of the model. The
binary variables introduced in the model (e.g., u;, v,, wy) are used to linearize the
complementarity constraints using the Big M method (see Section 4.3), resulting
in a tractable formulation suitable for counterfactual analysis and sparse target
setting.

4.3.1 Implementation Overview

The complete model is implemented in Python using the Gurobi solver. For each
DMU £, the model solves the MILP problem defined above and returns:

o Counterfactual inputs Z;,

Efficiency after adjustment (FEj)

Peer weights [ (defining the reference convex combination)

Feature-wise input changes Ax

Total deviation cost (objective value)

The analyst may control the trade-offs via the norm weights (v, 11, 1) and the
target efficiency level E*. This framework provides a flexible tool for generating
interpretable improvement targets in ESG performance assessment.
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Chapter 5

Results Discussion,
Conclusion and Future Work

This chapter illustrates the empirical implementation of the counterfactual-based
DEA framework introduced in Chapter 4. The aim is to assess how the proposed
model performs when applied to a real-world, high-dimensional ESG dataset from
the logistics sector and to demonstrate its capability to produce interpretable and
actionable efficiency improvements.

The analysis uses the panel of logistics firms described in Section 4.1. After
the preprocessing procedures outlined in Chapter 4—including scaling, transfor-
mation of desirable inputs, and outlier adjustment—the final dataset contains 312
decision-making units (DMUs). Each DMU is characterized by five input indicators
representing key environmental, governance, and social dimensions and by a single
output variable, the ESG Score. All variables were scaled to the [0,1] range to
ensure comparability and numerical stability during optimization.

This chapter is structured as follows. Section 5.1 introduces the dataset and
descriptive statistics of the normalized variables. Section 5.2 provides a detailed
case study of one representative firm, Santos Brasil Participacoes SA, illustrating
how the counterfactual framework prescribes interpretable improvement paths
compared with the classical Farrell benchmark. Section 5.3 extends the analysis
to the entire sample of logistics firms, comparing results across different efficiency
targets (E£* = 1.0 and E* = 0.8) and all combinations of cost-function configurations.
Finally, Section 5.4 summarizes the key findings, discusses their managerial and
methodological implications, and outlines directions for future research.

All optimization models were implemented in Python 3.11.5 using the gurobipy
interface to the Gurobi Optimizer (version 11.0.3, build v11.0.3rc0, win64). Numeri-
cal experiments were performed on a laptop equipped with an AMD Ryzen 7 5800H
processor (8 cores, 16 threads, base frequency 3.2 GHz) and 16 GB RAM, running
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64-bit Windows 11. The main Python libraries employed in the implementation
were NumPy 1.24.3 and pandas 2.0.3.

5.1 The Data

The dataset used in this study comprises 312 logistics firms observed in 2023, each
characterized by five input indicators and one output variable corresponding to
the overall ESG score. The selected input variables capture key environmental,
governance and social dimensions of corporate sustainability, namely Water Use
to Revenues, Total CO, Equivalent Emissions to Revenues, Waste Recycled to
Total Waste, Women Managers, and Board Gender Diversity. All preprocessing
steps—including normalization, transformation of desirable inputs, and outlier
adjustment—were performed as described in Chapter 4. Consequently, all variables
are scaled within the [0,1] interval, ensuring comparability and numerical stability
in the optimization models. Table 5.1 reports the descriptive statistics of the
normalized dataset used for the efficiency and counterfactual analyses.

Table 5.1: Descriptive statistics of the normalized ESG dataset (scaled to [0,1]).

Variable Mean Min Max Std. dev.

Water Use to Revenues 0.605,8 0.000,1 1.000,0 0.212,6
CO4 Emissions to Revenues 0.642,0 0.000,1 1.000,0  0.217,6
Waste Recycled to Total Waste 0.471,0 0.000,0 0.999,9 0.202,8

Women Managers 0.618,2 0.000,1 0.999,9 0.154,4
Board Gender Diversity 0.695,6 0.000,1 0.999,9 0.202,2
ESG Score (output) 0.535,8 0.000,1 1.000,0 0.232,3

The normalized input and output values show moderate dispersion, with standard
deviations ranging between 0.15 and 0.23, indicating a balanced spread across firms
after scaling. The output variable (ESG Score) presents an average of 0.54, reflecting
a mid-level overall performance for the sample. These values provide a consistent
and well-conditioned input for the efficiency and counterfactual optimization models
developed in this work.

After applying the input-oriented BCC DEA model, the efficiency distribution
of firms was computed. Out of the 312 logistics companies analyzed, the majority
exhibit substantial room for improvement relative to the estimated production
frontier. Table 5.2 summarizes the frequency of firms across efficiency intervals
before the application of counterfactual adjustments.
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Table 5.2: Original DEA efficiency distribution.

Efficiency range (%) Number of firms

<50% 206
50-60% 30
60-70% 24
70-80% 11
80-90% 11
90-95% 3
95-100% 27

As shown in Table 5.2, 206 firms (approximately 66% of the sample) record
efficiency levels below 0.5, while only 27 firms are fully or nearly efficient (E >
0.95). This distribution indicates a highly skewed efficiency pattern within the
sector, suggesting that a significant portion of firms operate far from the best-
practice frontier. Such heterogeneity highlights the importance of counterfactual
benchmarking to provide interpretable improvement targets and identify realistic
pathways toward enhanced ESG performance.

5.2 Counterfactual analysis for one firm: Santos
Brasil Participacoes SA

This section presents a detailed counterfactual analysis for Santos Brasil Partic-
ipacoes SA, a representative firm in the logistics sector sample. In the classical
input-oriented BCC model (see Section 3.1.5), the firm obtained an efficiency
score of 0, = 0.6307, meaning that, under a purely radial contraction, its inputs
could theoretically be reduced by approximately 36.9% while maintaining the same
output level. While this Farrell measure provides a global efficiency benchmark,
it does not indicate which specific variables drive inefficiency or how realistic the
implied reductions are. The counterfactual DEA framework developed in this thesis
addresses these limitations by producing interpretable, feature-level improvement
paths that are both feasible and economically meaningful.

Baseline DEA and Farrell efficiency

The baseline DEA model follows the input-oriented BCC (VRS) formulation
introduced by Banker et al. [8], which measures the Farrell efficiency of each
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decision-making unit (DMU). For a given firm k, the efficiency score 6y is obtained
by solving

min 0 st. YAy, XA<Om, A0, 1"\ =1. (5.1)

The resulting 6, € (0,1] represents the proportion by which all inputs can
be radially reduced while maintaining the same output levels, and its reciprocal
Fi, = 1/0 defines the corresponding Farrell frontier point. For each firm, the
classical Farrell projection is then

Farrell __ original

which specifies the proportional input contraction required to reach the efficient
frontier. For Santos Brasil Participacoes SA, this corresponds to

J:Farrell = 0.6307 % xorlgmad’

serving as a conventional benchmark against which the counterfactual targets will
be compared.

Counterfactual configurations and cost functions

The counterfactual DEA model extends this baseline by introducing a cost-of-
adjustment function that minimizes the effort required for a firm to reach a desired
efficiency target E*. The general optimization problem is

min vo [y = @xllo + vr [y, — zxll + v |7y — el3 (5.2)
k

subject to the standard DEA feasibility constraints. Here, zj, denotes the
adjusted (counterfactual) input vector and xj the original one. Each norm encodes
a complementary notion of adjustment effort:

e ||@), — x1|lo — number of variables that change (sparsity);
o ||@), — zi||1 — total absolute deviation (budgeted cost);

o ||z}, — zx||3 — squared magnitude of deviation (smooth proportional change).

By choosing different combinations of the weights (v, 14, 1/2), the model repro-
duces distinct managerial preferences: focusing effort on a few critical indicators,
distributing small changes across all, or balancing both principles.
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Table 5.3: Weight configurations (g, v1, v») used for counterfactual cost functions.

Cost Function vy v; s

Ly 10° 0 0
ly 0 0 10°
Lo + U5 1 0 1

Table 5.3 summarizes the three cost-function specifications adopted in this study.
The ¢y configuration promotes parsimonious adjustments by penalizing the number
of modified indicators; the ¢5 configuration favors smooth, distributed changes;
and the combined (y+/¢5 setting balances interpretability and realism. These
formulations are used consistently across all efficiency targets (E* = 0.8 and
E* = 1.0), enabling a direct comparison of adjustment patterns under different
regularization regimes.

Managerial interpretation

For Santos Brasil Participacoes SA, the counterfactual framework yields actionable,
feature-level targets that complement the classical DEA projection. Each configu-
ration reflects a different managerial philosophy: whether to concentrate resources
on a few key inputs ({y), to pursue incremental system-wide improvements (¢5), or
to find a compromise between the two ({5 + ¢2). Together, these results illustrate
how counterfactual DEA transforms traditional efficiency analysis from a purely
diagnostic exercise into a prescriptive and interpretable decision-support tool.

Table 5.4: Signed input changes required under different targets and configurations.

Water Use CO:y Emissions Waste Recycled Women Board Gender Number

Target (1) Configuration to Revenues to Revenues to Total Waste Managers Diversity of
Changes

12 —0.07845 —0.01315 +0.00000 +0.05386 +0.03538 4

0.8 Lo —0.00000 —0.00000 +0.28445 +0.00000 +0.00000 1

lo + L2 —0.13221 —0.00000 -+0.00000 +0.00000 +0.00000 1

Lo —0.00000 —0.23487 +0.14357 +0.00000 +0.00000 2

1.0 Lo —0.00000 —0.32264 +0.00000 +0.00000 +0.00000 1

lo + L2 —0.00000 —0.32264 +0.00000 -+0.00000 +0.00000 1

Numerical targets

Tables 5.5 and 5.6 report the counterfactual target values for Santos Brasil Par-
ticipacoes SA at efficiency levels E* = 0.8 and E* = 1.0. Each configuration is
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Table 5.5: Counterfactual targets for Santos Brasil Participacoes SA at £* = 0.8.

. ‘Water Use Total CO2 Waste Recycled Women Board Gender
Configuration

to Revenues to Revenues to Total Waste Managers Diversity
12 0.4561 0.5104 0.7154 0.4804 0.2946
Lo 0.5346 0.5236 0.9999 0.4266 0.2593
by + L2 0.4023 0.5236 0.7154 0.4266 0.2593
Farrell Benchmark 0.3371 0.3302 0.9796 0.5840 0.3550
Original Values 0.5346 0.5236 0.7154 0.4266 0.2593

Table 5.6: Counterfactual targets for Santos Brasil Participacoes SA at E* = 1.0.

Water Use Total CO; Waste Recycled Women Board Gender

Configuration to Revenues to Revenues to Total Waste Managers Diversity
12 0.5346 0.2887 0.8590 0.4266 0.2593
Lo 0.5346 0.2010 0.7154 0.4266 0.2593
by + £ 0.5346 0.2010 0.7154 0.4266 0.2593
Farrell Benchmark 0.3371 0.3302 0.9796 0.5840 0.3550
Original Values 0.5346 0.5236 0.7154 0.4266 0.2593

compared with the firm’s Original Values and the Farrell Benchmark. The latter
was computed as a radial contraction aligned with the average DEA efficiency across
firms. For the social and governance indicators—Waste Recycled, Women Managers,
and Board Gender Diversity—higher values correspond to better performance.

To facilitate interpretation, Figures 5.1 and 5.2 display grouped bar charts for
E* = 0.8 and £* = 1.0. Each feature cluster includes the Original Values, the
Farrell Benchmark, and the three counterfactual configurations (¢a, €y, o+/2).
This format makes the trade-offs visible across environmental Water Use, CO,
Emissions) and social/governance (Waste Recycled, Women Managers, Board
Diversity) dimensions.

Analysis and discussion

Table 5.4 quantifies how each configuration modifies the firm’s ESG profile. Negative
values indicate required reductions (in environmental burdens), while positive
values denote desirable increases (in social or governance performance). To enhance
interpretability, percentage changes have been computed relative to the firm’s
original values reported in Tables 5.5 and 5.6.

At E* = 0.8, the /5 model applies four moderate yet coordinated adjustments:
Water Use decreases from 0.5346 to 0.4561, corresponding to a 14.7% reduction;
CO4 Emissions fall slightly from 0.5236 to 0.5104 (2.5% decrease); while Women
Managers increase from 0.4266 to 0.4804 (12.6% improvement) and Board Gender
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Configurations
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Figure 5.1: Grouped bar chart at £* = 0.8: Original, Farrell, and counterfactual
targets.
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Figure 5.2: Grouped bar chart at £* = 1.0: Original, Farrell, and counterfactual
targets.
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Diversity rises from 0.2593 to 0.2946 (13.6% increase). These small, distributed
changes describe a balanced transition—modest environmental reductions combined
with tangible gains in social representation.

In contrast, the sparse ¢y configuration focuses entirely on one dimension: Waste
Recycled rises sharply from 0.7154 to 0.9999, an extraordinary 39.8% increase,
while all other indicators remain fixed. This pattern reflects a selective, one-
dimensional improvement strategy centered on waste management, demonstrating
that achieving moderate efficiency (E* = 0.8) can be realized through targeted, high-
impact actions. The mixed ¢y + ¢ configuration instead acts on Water Use alone,
reducing it from 0.5346 to 0.4023 (24.7% decrease), while all other variables remain
constant. This highlights that a single, substantial environmental improvement can
be sufficient for reaching an intermediate efficiency target.

At E* = 1.0, where the efficiency requirement is stricter, the magnitude and
selectivity of adjustments increase. Under the smooth /5 configuration, CO,
Emissions drop from 0.5236 to 0.2887, equivalent to a substantial 44.9% reduction,
and Waste Recycled improves from 0.7154 to 0.8590 (20.1% increase). Water Use,
Women Managers, and Board Diversity remain unchanged, indicating that the
path to full efficiency primarily depends on environmental performance. Both
the ¢y and ¢y 4 {5 configurations focus exclusively on CO, Emissions, reducing
them from 0.5236 to 0.2010—an impressive 61.6% decrease. This result confirms
that, at higher efficiency levels, environmental efficiency—particularly emission
control—becomes the dominant driver of improvement.

Feature-level insight

Across both efficiency levels, Water Use and CO, Emissions act as the main “pull”
variables (requiring reductions), while Waste Recycled, Women Managers, and
Board Gender Diversity serve as “push” variables (increasing when feasible). At
E* = 0.8, the 5 model promotes a balanced multi-dimensional change: about 15%
reduction in water intensity, minor 2-3% COs cut, and 12-14% increases in social
and governance indicators. At E* = 1.0, however, the adjustment strategy becomes
more concentrated—driven almost entirely by large-scale emission cuts (45-62%)
and moderate recycling improvements (20%). This transition from distributed
adjustments to concentrated environmental improvements illustrates the nonlinear
trade-off between interpretability and ambition: as the efficiency goal becomes
more demanding, firms must focus their resources on the most elastic, high-impact
variables.
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Sparsity versus magnitude

The final column in Table 5.4 confirms this trade-off between sparsity and magnitude.
At E* = 0.8, the 5 model modifies four inputs with relatively small individual
magnitudes (between 2-15%), whereas the sparse ¢, and ¢y + ¢ configurations
each alter only one input but with much greater amplitude—25-40% changes in
a single feature. At E* = 1.0, the pattern becomes even sharper: ¢y coordinates
two variables (with 20-45% adjustments), while the sparse variants perform one
very large shift (over 60% reduction in CO, intensity). Thus, as sparsity increases,
the model compensates by requiring more drastic changes in individual inputs,
reflecting the inherent trade-off between interpretability (fewer changes) and realism
(smaller steps).

Comparison with the Farrell benchmark

The classical Farrell benchmark, derived through uniform proportional contraction,
reduces all inputs proportionally (to around 63% of their original levels) and
increases desirable inputs uniformly. This approach lacks differentiation and
interpretability, as it assumes identical reduction ratios across all dimensions. In
contrast, counterfactual DEA identifies precisely which dimensions matter most
and by how much they should change. For instance, it shows that realistic efficiency
improvements can be achieved through targeted actions—such as reducing CO,
emissions by up to 60%, lowering water use by 25%, or raising waste recycling by
40%—rather than applying blanket proportional cuts. By quantifying improvement
paths in percentage terms and aligning them with managerial dimensions, the
counterfactual framework transforms DEA from a diagnostic evaluation tool into
a prescriptive decision-support system, capable of offering actionable and data-
grounded guidance for sustainability transitions.

5.3 Aggregate Counterfactual Results across All
Firms

After analyzing one representative firm, the counterfactual DEA framework is
now applied to the entire sample of 312 logistics companies. This section presents
the experimental design adopted for the aggregate analysis, which includes all
combinations of cost-function parameters and two efficiency targets, £* = 1.0
and E* = 0.8. Based on the original efficiency scores reported in Table 5.2, 27
firms in the sample were already classified as efficient at the full efficiency level
E* =1.0. When the target was relaxed to £* = 0.8, this number increased to 41
firms, reflecting the expected expansion of the feasible set under a less stringent
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performance requirement. .Each configuration was solved independently for every
firm in the dataset.

Table 5.7: Combinations of cost-function parameters (v, v, 1/2) used for aggregate
counterfactual analysis.

Cost Function Vo 2 Vs
ly 109 0 0
by + Uy 1 0 1
Uy 0 0 109
0y 0 10° 0
by + 11 1 1 0
0+ Uy 0 1 1
by + 01+ s 1 1 1

The configurations in Table 5.7 represent all tested combinations of the three
norm-based cost components. Each setup was evaluated for the two efficiency
targets to examine how the choice of regularization and ambition level jointly
influence the feasibility and magnitude of counterfactual adjustments across the
full sample of firms.

The subsequent analysis compares the firms reaching the desired efficiency under
each configuration and quantifies the distribution of required input changes.

Aggregate counterfactual results for £* = 1.0

We now summarize the statistics of the counterfactual adjustments obtained for
the full sample when the desired efficiency is set to E* = 1.0. Following the
target—benchmarking structure, Table 5.8 reports the percentage of firms for which
each input changes; Table 5.9 shows the average absolute change in each input; and
Table 5.10 provides the average number of inputs that change per firm. Heatmaps
in Figures 5.3a—5.3c¢ illustrate these patterns visually for the three main principal
cost functions.
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Table 5.8: Share of firms (%) for which each input changes when desired efficiency
is B* = 1.0.

Input by lo+ly Ly by Lol 4Ly Lo+li+0

Women Managers 449 119 414 16.0 119 164 12.2
COy Emissions to Revenues 24.0 43.3 48.1 43.3 43.6 426 43.6
Waste Recycled to Total Waste 15.7 11.5 57.4 19.6 11.5 23.1 11.9
Water Use to Revenues 9.3 147 256 15.1 14.7 16.7 14.4
Board Gender Diversity 9.3 21.8 333 189 21.5 19.6 21.2

Table 5.9: Average absolute change by input when desired efficiency is £* = 1.0.

Input by Lot+la Lo b bo+b b+l bo+-04-E

Women Managers 0.237 0.046 0.083 0.063 0.046 0.065 0.047
COy Emissions to Revenues 0.140 0.209 0.174 0.205 0.211 0.193 0.211
Waste Recycled to Total Waste 0.080 0.024 0.066 0.028 0.024 0.034 0.024
Water Use to Revenues 0.054 0.052 0.077 0.049 0.050 0.060 0.050
Board Gender Diversity 0.056 0.100 0.061 0.072 0.100 0.068 0.097

Table 5.10: Average number of inputs that change per firm at £* = 1.0.

Cost Function Mean number of inputs changed

Lo 2.57
lo+4s 2.53
£ 3.18
b 1.74
bo+0q 2.41
U1+l 2.02
bo+t1+Ls 2.44

For E* = 1.0, the most frequently adjusted variable across all cost functions
is COy Emissions to Revenues, changing in about 43-48% of firms (except for
o). Under the ¢5 configuration, Waste Recycled to Total Waste also shows a high
adjustment frequency (57%), consistent with its role as a flexible compensating
input. In contrast, Water Use and Board Gender Diversity remain among the least
frequently modified indicators, with changes observed in roughly 15-25% of firms.

Average magnitudes confirm these patterns. CO, reductions are the most sub-
stantial (average change of approximately 0.20), whereas adjustments in recycling
and water use are modest (below 0.08). Under ¢;, where few features are altered,
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Women Managers displays the largest mean shift (0.24), emphasizing that sparse
configurations require larger single-variable moves.

Finally, Table 5.10 shows that firms typically modify between two and three
inputs to achieve full efficiency, with the smallest adjustment sets observed for
¢1(1.7 inputs) and the largest for ¢, (3.2 inputs). These results align with the
visual heatmaps: ¢y (Figure 5.3¢) produces dense modification patterns, while ¢,
(Figure 5.3a) and ¢; Figures 5.3 and 5.4 provide a visual overview of the magnitude
and direction of input adjustments for all firms across the three cost-function
configurations ({y, ¢, and ¢5) and the two target efficiency levels (E* = 1.0 and
E* =0.8). Each row corresponds to a firm, and each column represents one of the
input indicators. The color intensity encodes the size of the adjustment, with blue
tones indicating reductions (improvements for environmental indicators such as
Water Use and COy Emissions) and red tones indicating increases (improvements
for social and governance indicators such as Women Managers and Board Gender
Diversity). Darker shades correspond to larger absolute changes, allowing for a
clear visual comparison of adjustment magnitude and distribution.

At the full-efficiency target (E* = 1.0), the heatmaps reveal a denser and
more intense pattern of modifications, particularly for the ¢y configuration, which
applies small but widespread adjustments across most firms and variables. In
contrast, the ¢y configuration remains highly sparse, showing isolated blue or red
patches that correspond to substantial changes in only one or two dimensions per
firm—consistent with its emphasis on minimal, high-impact modifications. The
¢y variant lies between these two extremes, balancing coverage and intensity by
allowing moderate changes across a broader range of inputs.

When the target is relaxed to E* = 0.8, the overall color intensity visibly
diminishes, reflecting the smaller magnitude of adjustments required to reach the
efficiency goal. The /{5 configuration still exhibits a distributed pattern of mild
changes, whereas ¢, and ¢; become even sparser, indicating that fewer variables
need to be modified at this lower efficiency level. This contrast between the two
efficiency targets confirms the quantitative findings: higher performance ambitions
(E* = 1.0) demand more extensive and intense input adjustments, while moderate
targets (E* = 0.8) can be achieved through fewer, less disruptive changes.

Overall, the two sets of heatmaps provide an intuitive visual summary of how
adjustment strategies evolve across configurations and efficiency targets. They
illustrate the core trade-off between sparsity and magnitude: ¢, concentrates effort
on a few key variables, ¢; distributes moderate changes across several, and /s
achieves smooth, system-wide improvements. Together, these figures complement
the numerical analysis by showing at a glance how counterfactual adjustments are
distributed across the ESG input space and how their intensity scales with the
desired efficiency level.
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Figure 5.3: Inputs that change for individual firms under £* = 1.0 across

three cost functions.
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Figure 5.4: Inputs that change for individual firms under £* = 0.8 across the
three cost functions.
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Aggregate counterfactual results for £* = (.8

We now report the aggregate results for the relaxed target efficiency EF* = 0.8. As
expected, when the target is less stringent, more firms can reach the efficiency
threshold with smaller or fewer changes in their inputs. Table 5.11 shows the
percentage of firms in which each input changes under different cost functions,
while Table 5.12 reports the average absolute size of those changes. The overall
number of efficient firms rises from 27 at E* = 1.0 to 41 (see Section 5.3), confirming
that a lower target increases feasibility:.

Table 5.11: Share of firms (%) for which each input changes when desired efficiency

is B =0.8.
Input by Lo+l L b o+l biA-ly Lo+lH-Ls
Women Managers 52.24 16.35 43.91 18.59 16.35 17.31 16.35

CO4 Emissions to Revenues 13.14 37.50 50.00 37.50 37.82 37.18 37.50
Waste Recycled to Total Waste 12.50 8.33 54.49 14.42 8.01 17.31 8.33
Water Use to Revenues 7.05 12.50 22.12 13.14 12.18 16.03 12.50
Board Gender Diversity 9.62 19.87 32.69 18.59 20.19 19.23 19.87

Table 5.12: Average absolute change by input when desired efficiency is £* = 0.8.

Input by Lo+l L b o+l biA-ly Lo+0H-Ls

Women Managers 0.288 0.066 0.090 0.076 0.064 0.071 0.066
CO, Emissions to Revenues 0.075 0.174 0.149 0.170 0.176 0.166 0.174
Waste Recycled to Total Waste 0.059 0.016 0.060 0.021 0.015 0.024 0.044
Water Use to Revenues 0.044 0.044 0.066 0.045 0.042 0.060 0.016
Board Gender Diversity 0.063 0.081 0.057 0.064 0.084 0.055 0.081

Table 5.13: Average number of inputs that change per firm at E* = 0.8.

Cost Function Mean number of inputs changed

Lo 2.21
60—1—62 2.15
£l 2.84
£ 1.52
bo+t1 2.09
b1 +Ly 1.88
Lo+4l1+Cs 2.03
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As expected, relaxing the target from full efficiency to E* = 0.8 reduces the
overall frequency and magnitude of input changes across all cost functions. For
instance, the percentage of firms requiring COy adjustments under ¢, decreases
from 48.1% to 50%, while the average absolute CO, change drops from 0.19-0.21 to
approximately 0.17. In contrast, Women Managers becomes more prominent under
the sparse specification ({y), increasing from 44.9% of firms at E* = 1.0 to 52.2%.
This indicates that at moderate efficiency levels, managerial diversity improvements
serve as a common, lower-cost path to partial efficiency. Waste Recycled remains
the most frequently modified input under the ¢5 configuration (54.5%), confirming
that environmental factors still dominate the adjustment space even under relaxed
targets.

Overall, both the number of changing inputs (Table 5.13) and their average
magnitudes decline slightly compared with E* = 1.0, consistent with the intuition
that smaller efficiency goals can be met through incremental rather than structural
adjustments.

5.4 Conclusion

This chapter presented the empirical validation of the counterfactual-based DEA
framework proposed in this thesis, demonstrating how the model provides inter-
pretable and feasible improvement paths for ESG performance in the logistics
sector. Unlike classical DEA formulations, which measure inefficiency through
proportional input contractions, the counterfactual approach identifies the minimal
and most meaningful adjustments that would make each firm attain a desired
efficiency level. By integrating norm-based cost functions—¥/,, ¢;, and ¢s,—the
framework explicitly encodes managerial preferences between sparsity, proportional-
ity, and smoothness, enabling a richer and more realistic interpretation of efficiency
enhancement strategies.

From the empirical standpoint, the application to 312 logistics firms highlights
several central insights. At full efficiency (E* = 1.0), the model prescribes primarily
environmental adjustments, with significant reductions in CO, emissions and
improved waste recycling ratios being the most frequent and impactful levers
for improvement. These patterns are consistent across smooth (¢3) and mixed
configurations, indicating that environmental efficiency remains the structural
bottleneck in the sector. When the target is relaxed to E* = 0.8, smaller and
more diversified changes become sufficient: moderate improvements in social and
governance dimensions, particularly in the proportion of women managers and
board gender diversity, increasingly contribute to reaching the efficiency goal. This
transition reveals that the model adapts naturally to the ambition of the target,
shifting from large-scale structural interventions to incremental organizational
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adjustments as the required efficiency level decreases.

Beyond its numerical results, the analysis demonstrates that counterfactual
reasoning enhances the explanatory and prescriptive capacity of DEA. Traditional
DEA often yields scalar efficiency scores with limited operational guidance; by
contrast, counterfactual DEA specifies what to change, by how much, and at what
implicit cost. This feature turns DEA into a genuine decision-support instrument
capable of informing ESG policy design and managerial action. Furthermore,
because the counterfactual solutions are grounded in optimization rather than
statistical approximation, they provide concrete, data-consistent recommendations,
bridging the gap between quantitative benchmarking and actionable strategy.

An additional contribution of this research is the potential to scale the method-
ology from individual firms to groups or sectors. Group counterfactual analysis
extends the current firm-level formulation by identifying shared improvement
trajectories that minimize the total cost of adjustment across several DMUs simul-
taneously. Such a model could, for instance, determine coordinated ESG targets for
an entire supply chain, balancing individual firm flexibility with collective progress
toward sustainability benchmarks. This perspective aligns with the growing em-
phasis on systemic efficiency, where the objective is not only to make each firm
efficient in isolation but to guide the whole network toward environmentally and
socially optimal performance.

5.5 Future Work

Several promising research directions arise from this study. First, integrating the
counterfactual DEA framework with modern machine learning techniques—such as
Random Forests and Logistic Regression—could enhance both predictive power
and interpretability. Machine learning models could help identify which ESG
indicators most strongly influence efficiency and predict which firms are most likely
to achieve specific targets, providing a data-driven complement to optimization-
based benchmarking. This hybridization of DEA and machine learning could yield
a new class of models capable of both explaining and forecasting performance
outcomes.

Second, future research could develop group counterfactual formulations that
capture shared adjustment paths across firms or industrial clusters. Such an
extension would allow identifying common leverage points that yield the greatest
collective efficiency gains with minimal aggregate adjustment cost, supporting
collaborative sustainability initiatives and policy design.

Third, the adoption of alternative efficiency measures—including additive, di-
rectional distance, or slack-based models—could provide additional flexibility in
characterizing inefficiency and exploring how different definitions of “distance to
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the frontier” influence counterfactual recommendations. Fourth, accounting for
uncertainty and data variability, for example through stochastic programming or
robust optimization, would increase the credibility of counterfactual suggestions
when ESG indicators are subject to measurement error or reporting noise. Finally,
dynamic counterfactual models could track firms over time, enabling longitudinal
assessment of ESG convergence and quantifying the persistence of improvement
effects across multiple periods.

Overall, this thesis contributes a rigorous and interpretable framework that
advances the methodological boundaries of DEA and its application to sustainability
analysis. By merging optimization-based efficiency evaluation with counterfactual
reasoning, it establishes a bridge between abstract frontier modeling and the tangible
realities of managerial decision-making. The framework not only measures how
far firms are from best practice but also reveals how and through which variables
they can realistically reach it. In doing so, it provides a foundation for transparent,
data-driven, and strategically grounded ESG benchmarking. The insights obtained
from both firm-level and aggregate analyses underscore the broader significance of
counterfactual DEA: it transforms efficiency analysis into a language of actionable
improvement—a necessary step toward embedding analytical rigor into the pursuit
of sustainable development.
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