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Abstract

This thesis explores the application of Curriculum Learning to the classification of satellite
images, a key challenge in the field of Earth Observation. Satellite imagery provides an
invaluable source of information for analyzing Earth’s surface, yet its complexity, volume,
and diverse data formats make it difficult to process efficiently with conventional machine
learning techniques. Deep Learning models, particularly Residual Networks (ResNet),
have shown promise in image classification tasks, but often require extensive labeled
datasets and high computational resources.

This research analyzes how Curriculum Learning, an approach that tries to follow
the human learning process by introducing training samples from simple to complex,
can improve the efficiency and effectiveness of training models on satellite data. The
study begins by reviewing the fundamentals of supervised and unsupervised learning in
image classification for Earth Observation and then highlights the difficulties in satellite
imagery, including data volume, variable quality, class imbalance, and domain specific
labeling needs.

The thesis then focuses on how Curriculum Learning can address these challenges
by structuring the training process to start with clearer, easier-to-label images and pro-
gressively introducing more complex data. This structured approach not only improves
generalization but also enhances labeling efficiency and model robustness.

The research culminates in the proposal of a structured Curriculum Learning frame-
work, integrating modern deep learning architectures such as ResNet and Vision Trans-
formers, tailored for satellite image classification. The thesis also outlines potential future
directions, including self-supervised learning, dynamic difficulty scheduling, and multi-
modal learning.
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Chapter 1

Introduction

In this master thesis, we explore how machine learning techniques can be applied to
classify satellite images, highlighting the main challenges that need to be addressed to
achieve accurate and robust results. A particular focus is given to a relatively recent
paradigm known as Curriculum Learning. Satellite imagery represents a complex type
of data, often stored in specialized formats that are not easily interpretable by either
the human eye or a standard computer. Therefore, statistical models and advanced
algorithms are required to extract meaningful patterns and enable the recognition of land
cover and scenes on the Earth’s surface.

In the early stages of satellite image recognition research, simple techniques were
employed to detect specific features from these datasets. Initial studies often relied on
methods such as region-based segmentation, edge detection, and similar approaches [3].
These techniques mainly used deterministic algorithms or basic learning-based proce-
dures. In contrast, this work focuses on modern statistical models that leverage machine
learning to automatically identify relevant image features. Over the years, several algo-
rithms have been introduced for classification tasks, including Random Forests, Support
Vector Machines, and different forms of Neural Networks, particularly ResNets and ViTs,
which are especially effective for satellite image classification.

In this thesis, partilcular use cases of Convolutional Neural Networks are utilized
under supervised and unsupervised learning settings. The central goal, however, is to
emphasize the importance of applying Curriculum Learning to the task of satellite image
classification. This approach trains models progressively, by introducing data of increas-
ing complexity in a step-by-step manner, mimicking a structured human learning process.

Before proceeding with the main analysis, we briefly introduce the principles of su-
pervised and unsupervised learning to provide background knowledge for the reader.
Although these paradigms will be examined in greater depth in later chapters, a short
overview is provided here:

• Supervised learning: The model is trained on labeled data (for instance, images
associated with specific information such as their geographical location). Through
these labeled examples, the algorithm learns to identify relevant patterns and can
then generalize its predictions to new, unseen data.
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Introduction

• Unsupervised learning: The model is trained on unlabeled data and must au-
tonomously uncover underlying structures, such as clusters or relationships between
samples. In this way, it effectively generates new groupings or representations of
the data for the first time.

This distinction is important in the subject of Curriculum Learning since one of the
most notable blockers come from partially unlabeled or completely unlabeled data. The
research first examines methods based on the supervised learning approach and sub-
sequently explores possible unsupervised strategies to compare their respective perfor-
mance. The ultimate objective is to demonstrate the effectiveness of machine learning in
the context of satellite image classification. The thesis is written to be accessible even
to readers without a deep technical background, ensuring that the core ideas and results
remain clear throughout the discussion.

1.1 Earth Observation context
Satellite imagery plays a fundamental role in the classification of images for Earth ob-
servation purposes. The field of remote sensing, which focuses on gathering information
about the Earth’s surface without direct physical interaction, is tightly connected to
advancements in Earth Observation technologies. These systems make it possible to
capture highly detailed information about both the surface and the atmosphere directly
from space. The resulting images provide valuable insights that support researchers, pol-
icymakers, and institutions in monitoring temporal changes, identifying anomalies, and
making informed, data-driven decisions [11]. Examples include tracking deforestation
rates, evaluating agricultural productivity, or studying the evolution of ice sheets-tasks
that have become significantly more accurate and efficient thanks to satellite data anal-
ysis [2].

In recent years, the number of satellites launched by governments and private com-
panies has increased, leading to an rapid rise in the amount of available images and
datasets. This continuous data growth offers new opportunities but also introduces ma-
jor challenges, particularly in the efficient processing, annotation, and interpretation of
satellite data.

1.2 Challenges in labeling high-resolution satellite imagery
Labeling satellite imagery is both computationally and financially intensive. Modern deep
learning models generally rely on large-scale labeled datasets and considerable compu-
tational resources. The process entails significant expenses, including hardware such as
GPUs, datacenter infrastructure, and energy consumption, as well as software and labor
costs related to annotation and model training. Beyond these direct costs, several major
challenges are commonly encountered:

• High data volume: Contemporary satellite constellations can generate terabytes
of imagery each day. Manually annotating even a small portion of this data requires
substantial human effort and can quickly become cost-prohibitive. While automated
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1.3 – The concept of Curriculum Learning and its relevance

or semi-automated labeling techniques can reduce manual workload, they often
introduce inaccuracies that must later be corrected, increasing the overall processing
burden.

• Variable image quality: The quality of satellite data can fluctuate considerably
due to a range of factors, including atmospheric conditions (for example humid-
ity or cloud cover), differences between sensors (such as resolution and spectral
sensitivity), and variations in lighting. These inconsistencies introduce noise that
complicates the labeling process and increase the likelihood of misclassification.

• Class imbalance: In many real-world applications, certain categories are under-
represented compared to others. For instance, urban areas may occupy less surface
area in an image than vegetation or water bodies. Such imbalance can lead to
biased models that perform poorly on minority classes unless these disparities are
addressed during both labeling and training stages.

• Need for specialized expertise: Accurate labeling often requires domain-specific
knowledge, such as understanding of land cover types, vegetation characteristics,
or features observable only in specific spectral bands. Non-expert annotators may
struggle to correctly label subtle or complex features, which can result in inconsis-
tencies or errors that must later be reviewed and corrected.

1.3 The concept of Curriculum Learning and its relevance

Curriculum Learning is a way to feed the algorithm of Machine Learning where the model
is exposed to data in an organized, step-by-step manner. Starting with a defined "easy"
pull of examples, gradually the algorithm proposes more complex data to be fed. Inspired
by the way humans learn, from simpler concepts to more complex ones, this approach
guides the model build robust feature learning and analysis, reducing the risk of being
stuck in complex attribute characteristics in the beginning of the learning process [21].

In the context of labeling satellite images, curriculum learning shows results for several
reasons:

• Progressive complexity:
By initially training on clearer and less ambiguous satellite images, the model learns
the important features in the beginning. Once it has these core information mas-
tered, it can tackle more complex cases step-by-step more effectively.

• Better generalization:
Curriculum learning can help the model generalize better. In fact, using complex
images the noise and complexity can confuse the learning process. Introducing
data with more and more information gradually lets the model adapt and refine its
learned features.

• Labeling efficiency:
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Curriculum Learning can solve the human interaction problem when it comes to
label the dataset. By using step-by-step learning, the human annotator can rapidly
identify, when the labels become more complex, the general patterns thanks to
previous well trained steps with less complex images, and bring small changes only
there-after. The previous level complexity of the images guide not only the model,
but also the human correction in next steps.

1.4 Technical implications of Curriculum Learning in Earth
Observation

While Curriculum Learning has primarily been explored in the domain of artificial intelli-
gence and computer vision, its implications can be extended beyond technical performance
improvements. In the context of Earth Observation, the strategic and operational ben-
efits are many. By integrating Curriculum Learning into the classical machine learning
processes areas like performance, time of deployment, computational resources and labor
costs will have a benefit.

1.4.1 Speed and scalability

As mentioned in the literature, one of the principal operational challenges in remote
sensing and Earth observation projects is the data costs. The cost lays both in saving
and processing this kind of voluminous sets. Despite great improvements in technological
capabilities, handling this type of data on cloud (currently the most used way to train
machine learning algorithms) is not yet efficient [20]. Since traditional algorithms rely on
randomly sampling the dataset, GPU hours on inefficient training are spent. Hence costs
of cloud infrastructure rise and hardware can easily depreciate. Curriculum learning,
among other solutions presented in literature, can be a solution to this challenge. It
offers a structured training approach that uses simpler examples first at a lower costs and
higher efficiency. Moreover, Curriculum Learning is linked to bring faster convergence
that cuts the costs of infrastructure even more.

In current economic situation, the demand for Earth observation is growing rapidly
in many industries, such as agriculture, urban planning, environment monitoring and
others that were cited in this master thesis. This growth impacts directly on the strategies
needed to facilitate scalability on the company processes to provide the use of this data. In
this scenario, Curriculum Learning can help machine learning model to be deployed more
efficiently in various and different platforms. The need to train a model with long times
of implementation and the necessity of specializing the algorithms can be not longer an
issue. Thanks to Curriculum Learning, the model can be trained with a smaller amount
of images that are generally needed to learn the classification, and then specialized only
on the complex images suited for the sector of use. This will enable companies to scale
their services to new markets with a greater confidence and scalability.
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1.5 – Goal of the thesis and first Curriculum Learning framework proposed for Earth Observation

1.5 Goal of the thesis and first Curriculum Learning frame-
work proposed for Earth Observation

As we discussed in the introduction on this thesis, the volume of satellite images is
representing both an opportunity and a challenge for the scientific world and the social
impact it can bring. The fast increase of satellites, that are built specifically for the
job of Earth Observation, and the new levels of depth of resolution (new spectral layers
are added every time to analyze different aspects of Earth surface and more), is pushing
the boundaries of the amount of data that is being stored and made available to the
scientific community. We saw, however, that there is an equal pressure in computational
demand, especially because of the training of deep learning models that require vast
amount of labeled data and extended training time. For this reason, this thesis will aim
to investigate deeply the effectiveness of Curriculum Learning in a general point of view
and, especially, applied to Earth Observation, as a mean to improve the efficiency and
efficacy of training models in a such expensive but promising context.

Since Curriculum Learning is inspired by human learning process, this promoted
an organized and structured rethinking of training the Machine Learning models. The
process starts from simple examples, going towards more complex examples. However,
this promising restructuring has not being studied deeply in all the potential use cases
where it can be leveraged. This thesis will be a guide and review on how Curriculum
Learning is built, analyzing deeply the theory behind it, to construct a process to be used
for the context of high-resolution and complex Earth Observation datasets. By breaking
down the methodology of Curriculum Learning and studying the literature behind Earth
Observation techniques, this work will examine whether structuring the training process
through curriculum strategies can possibly have an impact on resources, time and results.

A primary goal of this research is to assess how the ordering of training samples
could affect the learning process of deep neural networks applied to satellite images. This
thesis will propose, among other things, objective criteria for ranking image labels based
on their complexity and elements contained, aiming to construct a learning process that
allows the model to start with easy images and slowly growing difficulty of batches. This
progression is hypothesized to help the model establish strong initial representations,
making it more robust and efficient as training proceeds.

To evaluate the benefits of CL, the literature usually compares models with traditional
random sampling techniques. The criteria that usually are set to quantify performance
are:

• Convergence speed:
How quickly the model reaches an acceptable level of performance during training.

• Computational Efficiency:
The reduction in GPU time and memory usage across different training regimes.
Metrics that quantify the efficiency are usually loss measures. However this results
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to be difficult to use. While loss can be measured at each epoch, different models use
different magnitudes, loss functions and different images, especially in the case of
CL, where images are clustered in different ways based on the Curriculum strategy.
This results in different curves that can be compared only if the models are trained
with same images and loss functions.

• Data Efficiency:
Whether a model can achieve comparable or better accuracy using fewer labeled
samples, addressing the challenge of limited or partially annotated datasets. This
in particular can be easily evaluated in curriculum settings measuring the amount
of patches used to reach similar performances in accuracy and generalization.

• Generalization Performance:
The extent to which trained models maintain accuracy on unseen test data and
across varying image types. This is a general metric that works in settings of CL as
much as other settings. Earth Observation suffers generalization performance due
to very broad contexts that are present in the surface of Earth.

To evaluate the potential of Curriculum Learning, we will analyze some tests made on
more standard techniques used to classify satellite images. Furthermore we will analyze
different techniques present in literature that are under the dome of Curriculum Learn-
ing techniques [21] used in other contexts. Thanks to this different approaches we can
find commonalities with already studied techniques we can already predict the potential
benefit of Curriculum Learning for Earth Observation.

In summary, this research will:

1. Benchmark the performance of conventional training methods across multiple met-
rics compared to Curriculum Learning, after a careful review of the theoretical
basis.

2. Design a possible Curriculum Learning technique tailored to satellite image classi-
fication tasks.

3. Understand next steps in use cases and impacts of Curriculum Learning in Earth
Observation.
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Chapter 2

Background on Earth Observation
and Machine Learning

Earth Observation is an essential pillar for many sectors, starting from urban planning
to ecosystem management, to environmental monitoring. It is based on satellite images
of Earth surface that provide multi-spectral (hence different layers of photography that
most of the times go beyond the visible spectrum) and high-resolution images. Since
the amount of the satellites has been increasing exponentially, the domain of usage is
expanding. This brings, as we presented in the introduction, also extensive challenges on
the techniques to leverage the information.

To address these challenges, Machine Learning, and in particular Deep Learning, has
been increasingly adopted as a method to enhance Earth Observation learning. The
techniques, mentioned in the literature [17], comprise of various usages depending on the
application. They space from image classification, object detection or semantic segmen-
tation. In this particular thesis, the image classification will be the focus of the research
and analysis. In literature, Machine Learning techniques space from Neural Networks,
Convolutional Neural Networks, but also simpler algorithm such as Random Tree Forest,
Support Vector Machines, Maximum Likelihood for supervised techniques have been used,
while K-Nearest Neighbors or ISODATA are implemented for unsupervised techniques.
Beyond this basic methods, researchers often differentiate object-oriented techniques and
pixel-based as other approaches. The thesis the Convolutional Neural Network will be
used as main method to focus on object-oriented analysis, and will be analyzed further
in the next chapters. In the specific background of this thesis, ResNets and ViT will be
tested against remote sensing images, with the intent to discover way to make training
fast, reliable, efficient with Curriculum Learning.

This chapter will provide a structured and deep overview of the Earth Observation
science, to then dive deep on the its Machine Learning integration pipeline. The research
will cover the types of satellite data used, the preprocessing required and used in the
scientific community, a guide on Machine Learning techniques and the usage on satel-
lite images. Understanding the capabilities and limitations of these methods is key to
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Background on Earth Observation and Machine Learning

understand how it can be leveraged and how Curriculum Learning can play a pivotal role.

2.1 Introduction to Earth Observation

Earth Observation refers to the collection, analysis, and interpretation of data about the
Earth’s surface and atmosphere through remote sensing technologies. Remote sensing is
the technique of acquiring images from a distance of earth surface, in which the main
acquisition platforms are satellites or aircraft. We will focus on satellite images for the
purpose of the thesis. Thanks to advancement in technology involved in this field, both
in longevity of satellites, better photography apparatus and computer processing, the
relevance has seen unstopped growth. Extensive selection of uses of satellite images has
been mentioned in this thesis and it includes both civil and military use cases.

The technology behind satellite image acquisition relies on Electromagnetic (EM)
energy emanation [18]. Using this energy field, the satellite leverages the propriety of all
surfaces to reflect the EM signal in different ways based on their proprieties. For each
different reflected wave, it correspond a different view of the object, hence a different
layer. For satellites, the main source of EM field is the sun since it provides natural
source of visible and infrared-ultraviolet frequencies. A rappresentation of the image
patches creation can be seen here 2.1.

In the images that will be retrieved by the satellite, each layer will have a different
number of spectrum-layers, that brings important information but also great complexity
in the dataset. The satellites relies on two or more sensors to read the received the
reflected EM waves. Based on weather the EM field is created by the sun or the satellite,
the sensor will accordingly defined passive 2.9 or active 2.3.

2.1.1 The need of remote sensing and Earth Observation

In this section, we will understand the usages and the reasons that brought Earth Obser-
vation to become popular in some researches of Machine Learning and statistical learning.

Most notably, the Earth observation remains as an important field for the academic
landscape. Apart from the numerous papers mentioned in this thesis, many more show
the growth of publications and citations that fuels both the scientific community and the
economic landscape.

Despite the advances and usage, the use of Earth Observation is strongly limited by the
complexity of its data. High dimensionality, extensive labeling need, and computational
intensity pose as barriers for the research and use. Satellites provide great variability
of sensor types, image quality and in numerous atmospheric conditions with unlimited
geographic contexts, complicating the processing and usage even more. Hence, Machine
Learning plays a pivotal role to make the field more accessible, and Curriculum Learning
poses itself as one of the chances to make it possible.
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2.1 – Introduction to Earth Observation

Figure 2.1. Image patches creation via different frequencies

2.1.2 Satellite image data in Curriculum Learning: characteristics and
challenges

The different datasets that are available for satellite image classification range in size,
image type and resolution. For the purpose of this thesis, only some publicly available
datasets will be used and will be explained to help the course of this research. The datasets
will be used for the thesis discussed here are: BigEarthNet, EuroSAT, and SSL4EO. All
three are derived from the Sentinel-2 satellite constellation but vary considerably in their
size, spatial resolution, number of channels, and primary application. A concise overview
of each dataset is provided below, followed by more detailed descriptions.

Since the mentioned datasets come from Sentinel-2, a brief table will show all the
bands captured by the satellite. Some of the datasets may use all the bands, while others
use only smaller spatial resolution for the purpose.

• BigEarthNet
BigEarthNet is a large scale dataset containing Sentinel-2 image patches collected
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Figure 2.2. Passive sensors example

from multiple European regions. Each image measures 120×120 pixels and con-
tains 10 distinct spectral bands (layers), with visible and infrared wavelengths. A
characteristic that distinguishes BigEarthNet is its multi-label nature, since each
patch may contain multiple classes, hence complexity. This setup creates challenges,
since the model needs to handle class imbalance and scale the classification algo-
rithms, considering also all the difficulties that we mentioned, making BigEarthNet
an excellent test for evaluating the robustness and adaptability of different Machine
Learning and Deep Learning models.
Detailed description:

– Size: Over 590,000 pairs of image patches
– Resolutions: image resolution of 120×120 pixels, spatial resolution of 20m or

10m
– Source satellite: Sentinel-2
– Number of channels: Originally 13 spectral bands but only 10 are used to

guarantee quality of the dataset, excluding the 60m resolution patches.
– Usage: Multi-label land-cover classification across Europe which serves as a

benchmark for class imbalance and large-scale image analysis

In the example taken from of BEN dataset here 2.4

• EuroSAT

14



2.1 – Introduction to Earth Observation

Figure 2.3. Active passive sensors example

EuroSAT is a smaller in size dataset with around 27,000 Sentinel-2 image patches,
each with a dimension of 64×64 pixels and similarly describing 10 different spectral
layers. Unlike BigEarthNet, EuroSAT assigns only a single label to each image,
dividing the dataset into 10 and balanced classes. Due to its smaller and more
balanced composition, EuroSAT is usually choice for an initial testing and proto-
typing, hyperparameter tuning, and quick benchmarking of new algorithms. Hence
it can be used to test an initial setup of Curriculum Learning pipeline.

Detailed description:

– Size: Approximately 27,000 image patches
– Resolutions: image resolution of 64×64 pixels, spatial resolution of 10m
– Source satellite: Sentinel-2
– Number of channels: 13 spectral bands
– Usage: Balanced, single-label classification of 10 distinct land use and land

cover categories; frequently employed for rapid benchmarking and transfer
learning

Example of EuroSAT dataset here 2.5
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Table 2.1. Spectral bands of Sentinel-2

Band Name Wavelength (nm) Spatial resolu-
tion

Typical use

B01 Coastal aerosol 443 60m Aerosol detection, at-
mospheric correction

B02 Blue 490 10m Water body analysis,
atmospheric correction

B03 Green 560 10m Vegetation monitoring,
urban area analysis

B04 Red 665 10m Vegetation health as-
sessment, land cover
mapping

B05 Red Edge 1 705 20m Chlorophyll content
estimation, vegetation
stress

B06 Red Edge 2 740 20m Biomass estimation,
crop monitoring

B07 Red Edge 3 783 20m Additional vegetation
indices

B08 Near Infrared (NIR) 842 10m Vegetation vigor,
biomass mapping

B8A Narrow NIR 865 20m Crop analysis, canopy
structure

B09 Water vapor 945 60m Atmospheric water va-
por estimation

B10 SWIR-Cirrus 1375 60m Cirrus cloud detection
B11 SWIR 1 1610 20m Soil moisture, burnt

area mapping
B12 SWIR 2 2190 20m Geology, soil and snow

discrimination

• SSL4EO
SSL4EO (self-supervised learning for Earth Observation) is a repository aimed at
fostering advancement unsupervised and semi-supervised techniques in the remote
sensing domain. The dataset contains a large pair collection of Sentinel-2 image
patches, with a range of size of 264×264, with labels being either incomplete or
entirely absent. Its extended geographic coverage and significant variability in sea-
sonal and atmospheric conditions are needed for stronger model generalization.
Furthermore, SSL4EO’s variable structure is particularly usable for exploring Cur-
riculum Learning methods, since it allows incremental labeling and more complex
addition to labels and classes to train the algorithm.
Detailed description:
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2.1 – Introduction to Earth Observation

Figure 2.4. BigEarthNet example of patches.

– Size: Hundreds of thousands of unlabeled or partially labeled patches
– Resolutions: Image resolution of 264×264, spatial resolution of 10m for SSL4EO-

S12 and 30m for SSL4EO-L
– Source satellite: Sentinel-1 and Sentinel-2
– Number of channels: 13 spectral bands
– Usage: Designed for self-supervised and semi-supervised experiments, encom-

passing wide-ranging geographic areas under diverse atmospheric and seasonal
conditions
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Figure 2.5. EuroSAT example of patches.

Example of SSL4EO dataset here 2.6

2.1.3 Role of Machine Learning and Deep Learning in Earth Observa-
tion

Machine Learning and Deep Learning play a pivotal role in Earth Observation as it
changes the capabilities of analysis, use-cases and scalability drastically. After having
described and analyzed some of the most popular datasets for statistical learning that
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2.1 – Introduction to Earth Observation

Figure 2.6. SSL4EO example of patches [24].

Sentinel-2 provides, it is clear that using more manual or deterministic approaches to
label data is not viable to handle scalability, cost and efficiency. On the contrary, Machine
Learning and Deep Learning are made to exactly handle these tasks: extracting statistical
patterns, classify land cover types despite the variability, detect changes even in non
visible contexts, and label new data thanks to trained models.

To understand deeply the role of Machine Learning and Deep Learning, this paragraph
will touch some important points of the technical foundations of the technology behind
it. However, a more detailed discussion will be provided in the next chapter.

Machine Learning (ML) techniques have become an essential component in the pro-
cessing and analysis of Earth Observation (EO) data. In particular, their ability to
extract complex spatial and spectral patterns makes them extremely suitable for remote
sensing tasks. Among the wide range of ML models, approaches such as Support Vector
Machines, Random Forests, and Neural Networks have all been successfully applied to
image classification problems in this domain. However, traditional algorithms often de-
pend heavily on data preprocessing and feature engineering, which can be time-consuming
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Background on Earth Observation and Machine Learning

and sensitive to noise or inconsistencies in the data. These limitations directly affect a
modelâs capacity to generalize effectively to new, unseen samples.

To overcome many of these challenges, Deep Learning methods have emerged as a more
powerful and flexible alternative. Based on artificial neural network architectures, these
models are capable of automatically learning hierarchical feature representations from
raw data, thus minimizing the need for extensive manual preprocessing. This property
is particularly advantageous in the context of Earth Observation, where image data is
complex, high-dimensional, and often heterogeneous.

A key architecture within Deep Learning for image classification is the Convolutional
Neural Network (CNN). CNNs have demonstrated outstanding performance in extract-
ing spatially localized features directly from pixel-level inputs, making them especially
effective for remote sensing applications. Their ability to process images in their near-raw
form reduces preprocessing requirements and improves generalization, offering a more ro-
bust approach to understanding and classifying Earth surface features. Given its central
relevance, the CNN model will be analyzed in greater depth in the following chapter.

In this thesis a particular example of subset of CNNs will be addressed and anal-
ysed for the purpose of Earth Observation. In the literature some of pre-trained and
pre-structured architectures of CNNs have been proposed for the task of Earth Observa-
tion. In particular, some researches pointed out the utility of using ResNet backbones.
In particular ResNet50 has showed promising results in the field of reaching high results
with lower usage of data [23]. Some other researches suggested that Vision Transformers
(ViTs) have state-of-the-art performance for Earth Observation [4]. Thanks to element of
attention towards the key elements of the image patches this architecture demonstrates
promising results if combined with the simple and powerful method of Curriculum Learn-
ing. In another chapter, we will present a deep overview of researches and results of
applications of these complex but powerful structures and will be compared to the use
solely of Curriculum Learning to Earth Observation. To complete the analysis, we will
present a possible approach to combine the two methods.

Curriculum Learning, the central focus of this thesis, represents a strategy to leverage
Machine Learning to get closer to its full potentiality and tackle complex problems that
block Earth Observation to be spread in more new use cases. As it was presented before, it
introduces the concept of structuring the training process by presenting the model with
easier examples before gradually increasing the difficulty of the input data. In Earth
Observation contexts, this could involve training on homogeneous, well labeled areas
first before moving to more heterogeneous or noisy regions. Past researches showed the
promising power of Curriculum Learning in context of remote sensing, and it has been
explored especially on a performance point of view, where semi-supervised Curriculum
Learning models surpassed even fully-supervised results. However, this thesis will deeply
analyze the untapped potentiality of Curriculum Learning combined with established
architectures mentioned before, especially for the case of supervised learning. To manage
that, the next chapter will present in detail the theoretical basis behind Machine Learning.
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2.2 Machine Learning Foundations for Earth Observation

This chapter outlines the theoretical and methodological basis of the Machine Learning
techniques used throughout this work. Rather than introducing general definitions, the
focus will be on the specific design choices, evaluation metrics, and learning paradigms
that are most relevant to image classification in Earth Observation (EO). Understanding
these principles is fundamental to grasp how Curriculum Learning interacts with deep
architectures and why certain training and validation strategies are particularly effective
in this domain.

EO data present particular challenges: high spatial dimensionality, multiple spectral
channels, and large intra-class variability caused by atmospheric and illumination differ-
ences. As a result, the choice of metrics, normalization methods, and loss functions must
be carefully adapted to ensure convergence, generalization, and robustness to noise.

Evaluation Metrics and Loss Functions

In the EO context, model performance cannot be measured solely by overall accuracy.
Differences in class representation, spectral ambiguity, and geographical imbalance make
it necessary to consider more nuanced metrics.

Metrics for Supervised Learning

• Accuracy:
Represents the global proportion of correctly classified pixels or image patches.
While simple, it can be misleading when the dataset is unbalanced across land-
cover classes.

Accuracy = TP + TN

TP + TN + FP + FN

• Precision and Recall:
These metrics are crucial when certain classes, like urban areas or wetlands, are
underrepresented. Precision evaluates the reliability of positive predictions, while
recall quantifies the ability to detect all relevant pixels for a class.

Precision = TP

TP + FP
, Recall = TP

TP + FN

• F1-Score:
A harmonic mean between precision and recall, often reported as a balanced indi-
cator of per-class performance, especially for heterogeneous surfaces.

F1 score = 2 · Precision · Recall
Precision + Recall

21



Background on Earth Observation and Machine Learning

Metrics for Self-Supervised and Unsupervised Learning

In self-supervised learning (SSL), where labels are not available, evaluation relies on proxy
metrics and downstream performance after fine-tuning. Since the SSL4EO-S12 dataset
used in this thesis belongs to this class, several indicators are relevant:

• Representation Quality:
The linear separability of latent representations is measured by training a lightweight
classifier (for example logistic regression) on top of frozen features. The resulting
accuracy reflects how well the model captures semantic structure.

• Silhouette Coefficient:
Used to quantify cluster compactness and separation when representations are pro-
jected into a latent space.

s(i) = b(i)− a(i)
max{a(i), b(i)}

where a(i) and b(i) are the intra- and inter-cluster distances, respectively.

• Davies-Bouldin Index (DBI):
Commonly used to validate clustering quality in self-supervised feature spaces.
Lower values correspond to tighter, better-separated clusters.

DBI = 1
k

k∑︂
i=1

max
j /=i

(︄
σi + σj

d(ci, cj)

)︄

• Downstream Linear Probing (frozen encoder) used in the research of this
thesis:
To assess the usefulness of self-supervised features for EO classification, a shallow
classifier is trained on top of a frozen backbone and evaluated on a standard down-
stream dataset (for example EuroSAT; RGB or multispectral). We report top-1
accuracy (and mean±std over multiple random seeds) as the primary selection cri-
terion across backbones and curricula. This probe isolates representation quality
from end-to-end finetuning effects and is therefore complementary to SSL-internal
metrics (for example contrastive loss) and clustering indices.

Loss Functions

Loss design in EO tasks plays a major role in how the model learns spatial and spectral
coherence.

• Cross-Entropy Loss:
Used in supervised settings for pixel- or patch-level classification. It directly com-
pares predicted class probabilities with ground truth labels.

LCE = −
∑︂

y log(ŷ)
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• Contrastive and Triplet Losses:
In self-supervised learning, these functions encourage representations of similar im-
ages (for example same area, different time or augmentations) to be close in latent
space, and dissimilar ones to be far apart.

Lcontrastive = (1− y)d2 + y max(0, m− d)2

where d is the Euclidean distance between embeddings and m is a predefined margin.

• Focal Loss:
Applied in imbalanced EO datasets to down-weight easily classified examples (such
as large homogeneous regions) and focus on harder, minority classes (like roads or
clouds).

LFocal = −αt(1− ŷt)γ log(ŷt)

• Contrastive Loss (NT-Xent) used in this thesis:
During self-supervised pre-training, the model learns to maximize agreement be-
tween augmented views of the same patch and minimize agreement between different
patches. The NT-Xent (Normalized Temperature-scaled Cross-Entropy) formula-
tion encourages discriminative yet invariant representations:

LNT-Xent = − log exp(sim(zi, zj)/τ)∑︁2N
k=1 1[k /=i] exp(sim(zi, zk)/τ)

where sim(·) denotes cosine similarity and τ the temperature parameter. This
objective is central to the self-supervised stages implemented for both ResNet and
ViT backbones.

• Triplet Loss:
Used in some comparative runs to enforce structured latent spaces. It optimizes
relative distances between an anchor a, a positive p, and a negative n:

LTriplet = max(0, d(a, p)− d(a, n) + m)

where d(·) is the Euclidean distance and m a fixed margin. This improves the
geometric organization of representations learned from unlabelled patches.

• Dice Loss:
Although more common in segmentation, Dice Loss is included for completeness as
it measures the overlap between predicted and reference regions:

LDice = 1− 2|P ∩G|
|P |+ |G|

It highlights spatial consistency and is useful when evaluating models that predict
region masks or multi-class pixel maps.
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• Curriculum-Aware Weighting:
Within Curriculum Learning, losses are monitored across difficulty stages (easy â
hard). The same loss functions are retained, but their contribution is implicitly
modulated by sample complexity, ensuring that optimization remains stable when
introducing progressively harder samples.

• Probing Loss (Linear Evaluation) used in this thesis:
In the downstream probing stage, the frozen encoderâs representations are evalu-
ated by training a shallow linear classifier using the same cross-entropy objective.
The probing loss therefore quantifies how effectively the self-supervised pre-training
shaped separable and semantically meaningful latent features.

Training Strategies and Data Paradigms

Supervised Learning

In supervised EO classification, each image or pixel is labeled according to land-cover
classes. The model learns a direct mapping between spectral-spatial input and target
output. This approach is highly effective when labeled data are available, but scalability
is limited by annotation cost and spatial inconsistency of labels. In our scenario, the
examples of these.

Self-Supervised Learning

In self-supervised settings, the model learns without explicit labels by solving pretext
tasks such as predicting masked regions, aligning different spectral bands, or distinguish-
ing augmentations of the same patch. Once pretrained, the learned features are fine-tuned
on a small labeled subset. This strategy is central to the SSL4EO-S12 dataset used in this
thesis and aligns naturally with Curriculum Learning, since task complexity can be pro-
gressively increased-starting from simple spatial prediction to more intricate multi-band
alignment.

Normalization and Preprocessing for EO

Unlike natural images, remote sensing data vary across sensors, bands, and atmospheric
conditions. Proper normalization ensures that learned representations focus on meaning-
ful surface information rather than acquisition artifacts.

• Per-Band Normalization:
Each spectral channel is normalized independently using min-max scaling to pre-
serve relative energy distribution among bands.

x′ = x− xmin
xmax − xmin

• Standardization across tiles:
When training over large geographical mosaics, pixel distributions differ across tiles.
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Applying Z-score normalization per-tile stabilizes training and improves conver-
gence.

x′ = x− µtile
σtile

• Spectral consistency normalization:
During the transition from self-supervised pretraining on SSL4EO-S12 to supervised
probing on EuroSAT, spectral and radiometric differences are harmonized by re-
scaling overlapping bands (for example the 10 shared Sentinel-2 bands). This step
guarantees that the features learned during pretraining remain compatible with the
downstream supervised classifier and prevents domain shift across datasets.

Architectural Considerations for EO Data

Even if the general mathematical foundations of neural networks remain the same, ar-
chitectural choices for EO are guided by data structure and the desired spatial scale of
analysis.

• Convolutional Neural Networks (CNNs):
CNNs are preferred for their ability to capture local spatial dependencies and spec-
tral correlations. For EO, kernel sizes and receptive fields are tuned to reflect the
spatial resolution of the satellite sensor, balancing between small local patterns and
large-scale textures.

• Residual Networks (ResNets):
Deep architectures such as ResNet introduce skip connections that facilitate the
backpropagation flow and enable training of very deep models without degrada-
tion. In EO, ResNets can show strong generalization on heterogeneous landscapes,
particularly when combined with curriculum strategies that expose the model pro-
gressively to more complex regions.

• Vision Transformers (ViTs):
ViTs replace convolutions with attention mechanisms, learning global spatial depen-
dencies, that can strongly bring advantages to EO context. In this thesis, ViTs are
also compared under curriculum-based training to assess how their global receptive
field interacts with progressive data complexity.

Training and Validation in the Curriculum Framework

Curriculum Learning modifies the traditional supervised or self-supervised training pipeline
by controlling the order of sample exposure. For EO, this may correspond to ordering
images by cloud coverage, spectral entropy, or spatial complexity. The goal is to stabilize
convergence and improve generalization to unseen scenes.

Validation and testing follow the same principles as in standard training, but perfor-
mance is monitored not only for accuracy but also for stability and representation quality
across difficulty stages. For SSL models, downstream probing accuracy (for example on
EuroSAT) is used as the main validation criterion.

25



Background on Earth Observation and Machine Learning

In summary, this chapter establishes the theoretical foundation for the techniques
adopted in this work. Rather than focusing on abstract ML theory, it contextualizes how
metrics, losses, and architectures are optimized for satellite imagery. In the following
sections, we will extend these concepts to the deep architectures and Curriculum Learning
strategies employed in the experiments.

Figure 2.7. Convolutional Neural Network

• ResNet:

One particular case on CNN design, especially tailored for complex images is the
ResNet (Residual Network). The structure of this architecture is based on the idea
of skipping connections during the training session. The result of this formatting is
that some connections of one layer to another are cut and bypass the information [8].
The power of ResNet resides on the fact that, during the backpropagation process,
the information is not lost due to the derivative of the optimization process on
the loss function. When calculating the loss gradient on the back-propagation,
these become very small through many layers, smoothing learning in earlier layers.
Hence, skipping some of this connections helps maintaining generalization, which
becomes fundamental in training on various and complex images, like the case of
Earth Observation. One of the uses of ResNets is to train it on a big amount of
images to create what are called "pre-trained" models. In this thesis there will be
presented a method that, on the contrary, will be based on randomly initialized of
the trained weights ResNet, keeping only the backbone. It represents an enhanced
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CNN model but with a structure that is already known to perform on images like
the context of remote sensing. The structure of a general ResNet can be seen in
the figure (Figure 2.8).

Figure 2.8. ResNet basic structure

• ResNet-18 and ResNet-50:
The Residual Network (ResNet) family has become a reference standard for deep
learning models applied to visual recognition tasks. The number in the modelâs
name (for example 18 or 50) indicates the total number of layers within the ar-
chitecture. In the context of Earth Observation (EO), the choice between these
architectures depends on the trade-off between computational efficiency and repre-
sentational power.

– ResNet-18:
A relatively shallow network with 18 layers, designed to be computationally ef-
ficient and suitable for training under limited GPU memory or time constraints
(in this thesis it has been used to test and benchmark the methodoloty). It
provides a good performance baseline for EO tasks where spatial complexity
is moderate or where the focus is on testing curriculum strategies rather than
maximizing accuracy.

– ResNet-50:
A deeper model with 50 layers and bottleneck residual blocks, offering greater
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capacity to model fine-grained spatial and spectral relationships in satellite
images. Due to its higher expressiveness, ResNet-50 is particularly relevant
for experiments involving Curriculum Learning, where progressively increas-
ing data complexity allows the model to exploit its hierarchical representation
power without overfitting early stages. This backbone will therefore be em-
phasized in subsequent sections, especially in the self-supervised pretraining
and downstream evaluation phases.

• Vision Transformers (ViTs):
A more recent and conceptually different class of models is the Vision Transformer
(ViT) architecture, which departs from the convolutional paradigm by processing
images as sequences of patches. Instead of relying on convolutional kernels to extract
localized spatial features, ViTs divide the image into fixed-size patches, flatten them,
and embed these patches into a latent space processed by a transformer encoder
originally designed for sequence modeling in natural language processing.

The ViT architecture allows the model to capture long-range dependencies and
global spatial relationships between different image regions. This property is espe-
cially advantageous in EO, where spectral and spatial correlations can span large
areas-such as cloud formations, agricultural patterns, or coastline features-that may
not be well captured by local convolutional operations. Recent studies [16] have
shown that ViTs achieve high performance in remote sensing, particularly on het-
erogeneous datasets combining multiple spectral bands.

In this thesis, ViTs are analyzed alongside CNN-based architectures to compare how
their representational behavior differs under Curriculum Learning strategies. Given
that ViTs are more data-hungry and sensitive to training order, this architecture
provides a valuable contrast to ResNets when studying the effects of progressive
learning, sample complexity, and entropy-based data staging. The models will be
pretrained using self-supervised methods on the SSL4EO-S12 dataset and later
evaluated through linear probing on EuroSAT, providing a direct measure of how
both architectures respond to curriculum-driven pretraining.
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Figure 2.9. Simplified representation of the Vision Transformer architecture.

Using ResNet and ViT variants has become standard practice in computer vision
tasks, from medical imaging to satellite data analysis and Curriculum Learning can
strengthen their core advantages and leverage the advantages of CNNs and Transformers
to discover efficiency and efficacy.

2.3 Curriculum Learning

This thesis focuses on the possible impact of Curriculum Learning on Earth Observation.
Understanding how it works will help us understand how it can be merged with powerful
CNNs models. Curriculum Learning relies on establishing a criterion to differentiate
between "easy" and "hard" samples that are fed to the algorithm. In a general machine
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learning context, easy samples are usually characterized by high confidence on their class
or on the classification given. For example, an easy image, can be classified with a label
that the algorithm recalls to be highly certain of. On the contrary, difficult samples often
include those that a baseline simple model misclassifies or where the model shows low
confidence on. However, this criteria of choosing simple and complex samples has no
defined way, and that is why different techniques have been explored in the literature.

2.3.1 Definition and origins

The concept of Curriculum Learning was first formally introduced by Bengio et al. [5],
where the authors showed that feeding training data in a meaningful order, from easy
to hard, could improve generalization of the model and get faster convergence in NNs.
The intuition comes from human and animal learning processes, where basic knowledge
is built with a progressive difficult and steps, with a possibility of forming a structure
of knowledge and mental processes for more complex reasoning. The same idea can be
abstracted to work for Artificial Neural Networks.

Going towards a more formal mathematical definition, Curriculum Learning modifies
the data distribution over the epochs of the training process. Instead of taking random
samples from the training set D, the model is fed with a subset Dt ⊆ D at each epoch t,
where Dt contains examples up to a certain defined difficulty threshold λt. This threshold
is gradually increased over the epochs, so that:

D1 ⊆ D2 ⊆ . . . ⊆ DT = D

This strategy effectively helps how the training evolves with epochs and stabilizes,
helping the gradient on the loss function stabilizing, reducing the risk of divergence, poor
local minima or even vanishing gradient. It reinforces the algorithm on the learned simple
patterns to prepare to slightly modify in next epochs with more complex data.

As said before, the original paradigm of Curriculum Learning was based on defining
deterministically the ranking of data. Consequent studies proposed new more scalable and
statistical-based ways. The way the dataset is divided is defined segmentation technique,
and in the following section we will analyze some important examples.

2.3.2 Techniques of Segmentation

Heuristic-based difficulty scoring

These techniques are based on defining the sample difficulty through domain-knowledge.
Hence, a human input with knowledge on what represents a simple data-point or com-
plex will define the segmentation. In the case of images classification, the difficulty can
come from visual entropy, size, number of elements or length of label name. In Earth
Observation applications, heuristic scores can consider spatial homogeneity, cloud cover-
age, density of edges in the image, or vegetation variability in the same image, number
of different types of land.

These methods are relatively easy to implement and require no additional models,
but they are also limited because they rely on domain assumptions that can be subject
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to human bias or even error.

Self-paced curriculum learning

Self-paced curriculum learning (abbreviated SPCL), discussed by Jiang et al. [10], was
proposed as a series of technique segmentation that decides on itself how to learn and
which samples to learn from, at each epoch. Instead of defining before the training step,
the model starts feeding the sample. When calculating the loss, the ones that bring lower
loss values are defined as simple. Hence, only the simple ones will have high weight on
updating the weights of the networks in the first epochs. Slowly, with time, the weight
on the more loss-impacting data points will be changed to actually make the model train
on those instead.

Mathematically, self-paced learning can be expressed as an optimization problem with
a latent weight variable (the one that is applied to potential impact of the data point)
vi ∈ {0,1} for each sample:

min
θ,v

N∑︂
i=1

vi · L(fθ(xi), yi) + λ
N∑︂

i=1
vi

where L is the loss function, fθ is the model, and λ is a pacing parameter controlling
the inclusion of harder samples with later epochs. This formulation helps the model to
focus on easy samples (with low loss) in early epochs and including harder samples as
learning goes on.

SPL is adaptive and often results in smoother training, but it requires properly cali-
brated loss function and back-propagation modeling, as well as tuned latent variable.

Teacher-student models

In this approach proposed by Matiisen et al. [15], the models rely on two different sub-
models: a "teacher" and a "student". The teacher, which is usually made of a pretrained
model, a reinforcement learning agent or generally a model that works on segmentation of
labels or images, suggests what type of ranking or segmentation to apply to a particular
sample of the dataset, passing this suggestion to the student model. The student model
will proceed with the actual learning from the said subset and "reports" the result to the
teacher.

Teacher-student models are particularly useful when sample difficulty is hard to define
heuristically and when using loss-dependent algorithm can be computationally expensive
or where the risk of vanishing gradient is high. For this reason, they could be useful in
Earth Observation scenarios, where one of the mentioned problems is actual heuristic la-
beling or computational resources. These methods are also quite flexible since the teacher
model can be changed without further modifications on the student model and vice-versa.
However, if the teacher model is not designed based on the needs of the context, it can
become computationally more expensive as it requires two models.

31



Background on Earth Observation and Machine Learning

Entropy-based segmentation (implemented method)

Entropy-based segmentation is one of the primary curriculum strategies employed in this
thesis. Here, difficulty is derived directly from the information content of each image using
the Shannon entropy measure. Given a normalized image xi represented as a vector of
pixel intensities, its entropy H(xi) is computed as:

H(xi) = −
P∑︂

p=1
pp log(pp)

where pp is the empirical probability of each pixel intensity value. Low-entropy images
(for example homogeneous regions such as water bodies or clouds) are considered easy,
while high-entropy images (for example urban or forest areas with high spatial variation)
are classified as hard. The dataset is sorted according to H(xi) and divided into three
partitions:

Deasy, Dmedium, Dhard,

such that:

H(xi) ∈

⎧⎪⎪⎨⎪⎪⎩
[Hmin, H1/3] if xi ∈ Deasy,

(H1/3, H2/3] if xi ∈ Dmedium,

(H2/3, Hmax] if xi ∈ Dhard.

This segmentation is entirely data-driven and computationally efficient. During train-
ing, samples are progressively introduced according to these entropy stages. The model
first trains on visually simple samples and later adapts to more complex patterns, reflect-
ing a human-like learning progression.

Masking-based segmentation (implemented method)

Another segmentation and curriculum strategy explored in this work introduces difficulty
through progressive spatial masking. Unlike the entropy-based and Geo-AFM methods,
which rank samples before training, this approach modifies the image content dynamically
by randomly occluding parts of the input during the self-supervised pretraining phase.

Formally, for each image xi ∈ RC×H×W , a binary mask Mi ∈ {0,1}C×H×W is gener-
ated according to a Bernoulli distribution with masking probability pm:

Mi ∼ Bernoulli(1− pm)

The masked image is then defined as:

x̃i = xi ⊙Mi

where ⊙ denotes element-wise multiplication. At lower curriculum stages, pm is small (for
example pm = 0.05), preserving most of the input information. As the model progresses,
the masking probability increases (for example pm = 0.1â0.2), forcing the encoder to infer
missing spatial and spectral content from context.

This strategy effectively simulates an increasing task difficulty: the model first learns
from fully visible, simpler examples and later adapts to partially occluded or corrupted
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inputs. Mathematically, the masking-based curriculum can be formalized as a data trans-
formation pipeline T (k)

m (x) parameterized by the current stage k, with stage-dependent
masking probability p

(k)
m :

T (k)
m (x) = x⊙M (k), M (k) ∼ Bernoulli(1− p(k)

m ), p(1)
m < p(2)

m < p(3)
m

By progressively increasing p
(k)
m , the network learns to rely on more abstract, global

representations that are resilient to partial information loss-a desirable property for Earth
Observation models where occlusions (for example clouds or shadows) are common.

Geographical Adaptive Feature Mixing (Geo-AFM) - proposed method

The second segmentation strategy introduced in this work, Geo-AFM, extends the ap-
proach based on entropy by incorporating spatial and semantic diversity across geograph-
ical regions. This method is motivated by realizing that Earth Observation imagery does
not vary only in texture complexity but also in regional spectral composition and envi-
ronmental context.

The Geo-AFM method partitions the dataset by grouping patches into geographical
cells based on latitude and longitude coordinates, then calculates intra-cell heterogeneity
to define sample difficulty. Let each patch xi be associated with a bounding box bi =
(xmin, ymin, xmax, ymax) projected into geographic coordinates (ϕi, λi). The dataset is
divided into cells Ck representing approximately homogeneous geographic zones. For
each cell, a heterogeneity score ηk is computed as the Shannon entropy of aggregated
land cover distributions within that cell:

ηk = −
M∑︂

c=1
pk,c log(pk,c)

where pk,c is the normalized frequency of land-cover class c across patches in cell Ck.
The global dataset is then sorted by ηk and split into three curriculum stages:

Dgeo-easy, Dgeo-mid, Dgeo-hard,

where:

ηk ∈

⎧⎪⎪⎨⎪⎪⎩
[ηmin, η1/3] for Dgeo-easy,

(η1/3, η2/3] for Dgeo-mid,

(η2/3, ηmax] for Dgeo-hard.

By combining geographical diversity and feature entropy, Geo-AFM captures both
spatial and spectral variability, allowing the model to gradually learn from locally consis-
tent regions before tackling heterogeneous or mixed terrains. This segmentation strategy
better aligns the curriculum with the physical distribution of land types, improving rep-
resentation generalization across unseen geographic regions.
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Baseline segmentation (control setup)

For comparison purposes, a baseline segmentation strategy without curriculum ordering
is used. In this configuration, all samples are drawn uniformly at random at each epoch:

xi ∼ U(D)

This setup establishes a reference to assess the actual contribution of curriculum segmen-
tation methods such as Entropy-based and Geo-AFM.

The presented segmentation techniques are just a part of the diverse selection that
the literature can offer. Some of those presented here will be inspiration for the proposed
method in this thesis.

2.3.3 Progressive training flow and implementation details

Once a difficulty measure has been set thanks to the segmentation method, the training
set can be split into multiple difficulty levels. The simplest approach is to assign data
and feeding to the model in increasing order of difficulty (level 1, level 2, level 3...). At
each new stage, the model encounters more challenging examples, updating the weights
with the information learned in previous stages. A typical curriculum training loop may
be summarized as present in the algorithm 17.

Algorithm 1 Curriculum Learning framework for satellite image classification
Require: : Dataset D with labeled satellite images
Require: : Difficulty scoring function Score(·)
Require: : Model architecture M
Require: : Number of difficulty levels L
Require: : Evaluation metric Eval(·)

1: Step 1: Data ranking and sorting
2: for all sample xi in D do
3: Compute difficulty score si ← Score(xi)
4: end for
5: Sort D based on si in ascending order
6: Step 2: split the dataset
7: Partition D into L subsets D1,D2, . . . ,DL by difficulty level
8: Initialize model parameters: M ← random weights
9: Step 3: Curriculum training loop

10: for l = 1 to L do
11: Train model M on Dl

12: Compute intermediate evaluation el ← Eval(M,Dval)
13: Optionally fine-tune learning rate or optimizer settings
14: end for
15: Step 4: final evaluation
16: Evaluate final model performance on test set Dtest: efinal ← Eval(M,Dtest)
17: return Trained model M , performance metrics e1, . . . , eL, efinal
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While these principles apply broadly across machine learning tasks, they can be partic-
ularly beneficial for satellite image classification. However, literature showcases different
modalities in which the training steps are defined, especially in the case of Self-supervised
Learning. The approach presented in this work will go deeper in the explanation of prob-
ing techniques, presented in the work (cita paper da cui hai fatto questo)
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Chapter 3

Curriculum Learning in Earth
Observation: Related works

3.1 Review of classification of Curriculum Learning strate-
gies

Curriculum Learning has shown to be a powerful strategy to make training stronger,
faster and in need of less computational resources. In the past chapters, the structure of
general has been carefully reviewed and also existing studies have been shown. However,
Curriculum Learning contains a multitude of possibilities and strategies on how to use it,
especially in the Earth Observation context. Many of the existing cases have been already
discussed but this chapter will go deeper and classify systematically all the Curriculum
Learning strategies applicable to Earth Observation, helping to guide future research.

3.1.1 Comparison for Earth Observation classification: literature re-
sults and proposals

To understand the contributions of Curriculum Learning in the bigger context of Earth
Observation, it is important to compare both conventional Earth Observation classifica-
tion approaches and the relatively few studies that incorporate CL. The table 3.1 below
is divided into two parts. The first presented key representative studies in Earth Obser-
vation classification without Curriculum Learning, focusing on standard Deep Learning
techniques. The second part includes the more recent work that explicitly integrates CL
strategies.

This extended table emphasizes how Curriculum Learning strategies are beginning
to close the performance and generalization gap that exists in Earth Observation clas-
sification. While standard CNN and transformer approaches have achieved high accu-
racy, Curriculum Learning augmented models demonstrate improvements in convergence
speed, data efficiency, and robustness, especially on noisy or complex images. This com-
parison further supports the motivation for the hybrid approach proposed in this thesis.
To have a closer look at the effectiveness of Curriculum Learning, we tried to run some
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algorithms with EuroSAT dataset using ResNet18, ResNet50 and ViT-small with emp-
tied weights 4.1. It resulted also in better accuracy, that reached respectively 81.36%
and 70.99% on the test with ResNet18 trained on EuroSAT, giving us an important first
result, to be furtherly analyzed, on the power of Curriculum Learning, but also a sugges-
tion that ResNets (and potentially ViTs) are amplifiers of the capacities. The proposed
method will be based on this results.

3.1.2 Taxonomy dimensions

The proposed taxonomy categorizes Curriculum Learning strategies along four primary
dimensions that are:

• Supervision level: Determines the extent of labeled data required. In the beginning
of the thesis we mentioned supervised and unsupervised models, and this dimension
will be further explained.

• Difficulty metric: Defines how the difficulty of training samples is assessed, it will
simply reinstate the main techniques proposed in the literature.

• Curriculum scheduling: Describes the strategy for ordering training samples and
creating batches to feed the model.

• Model integration: Indicates how Curriculum Learning is incorporated into the
training pipeline, which kind of architecture is leveraged with the curriculum setup.

Following, the table 3.2 that explains in schematic way the structure of existing Cur-
riculum Learning for satellite image classification. curriculum-based inputs.

3.1.3 Open problems highlighted by prior work

Although Curriculum Learning (CL) has shown promise in computer vision and, to a
lesser extent, in remote sensing, several challenges remain open in the EO context:

1. Label scarcity and cost: EO datasets are large, heterogeneous, and expensive
to annotate at scale. Prior work reports that supervised models often overfit to
well-represented land-cover types while underperforming on rare classes, especially
when labels are noisy or region-specific.

2. Clouds, shadows, and acquisition artifacts: Typical curricula strategies do not
model specific for Earth Observation occlusions (cloud cover, haze), being applied
to standard image recognition, resulting in brittle representations when faced with
partial observability or missing bands.

3. Ambiguities in difficulty definitions: Difficulty is often represented by task-
agnostic heuristics or by loss values from a single model pass. In Earth Observation,
however, both visual texture complexity and geographic mixing of land types matter;
curricula that ignore either axis may mis-rank samples.
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4. Evaluation gaps for self-supervision: Many works report SSL pretext losses
or end-to-end finetuning scores, but fewer adopt standardized probing protocols
across datasets (for example EuroSAT vs. BigEarthNet), making it hard to isolate
representation quality from task-specific heads.

5. Compute constraints and reproducibility: Practical EO pipelines must run
under limited GPU memory and session time (common in teaching/industry set-
tings). Several methods assume long, uninterrupted runs or large batch sizes that
are not always feasible and this thesis proposed Curriculum Learning to address
this problem.

3.1.4 How this thesis solves the gaps

To respond to the limitations listed, this thesis contributes with a pipeline and analysis
made exactly for EO data, combining self-supervised pretraining with curricula that
explicitly target spectral complexity, occlusion robustness, and geographic diversity. The
main elements are:

Self-supervised pretraining on multispectral EO (SSL4EO-S12): We pretrain
ResNet/ViT backbones from scratch on SSL4EO-S12 using a SimCLR-style objective
(NT-Xent), thus avoiding domain mismatch from natural-image pretraining and directly
capturing EO spectral/spatial regularities.

Three complementary curricula aligned to EO phenomena:

• Entropy-based curriculum (implemented): orders samples by Shannon entropy
to progress from homogeneous textures (for example water, bare soil) to highly
structured scenes (for example urban, mixed vegetation).

• Masking-based curriculum (implemented): increases difficulty via controlled
random occlusions, encouraging robustness to clouds/shadows and missing infor-
mation.

• Geo-AFM (proposed): partitions data into geographic cells and ranks them by
intra-cell heterogeneity, aligning the curriculum with real geodiversity and land-
cover mixing.

Together, these curricula cover (i) appearance complexity, (ii) observability, and (iii)
geographic mixing-three axes underrepresented jointly in prior EO-CL literature.

EO-specific normalization and cross-dataset alignment:
We adopt per-band normalization and per-tile standardization; when transferring

to EuroSAT/BEN, we harmonize overlapping Sentinel-2 bands to mitigate radiometric
shifts. This reduces confounding due to sensor/region differences ( [17]).
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Standardized probing across datasets:
Representation quality is assessed with frozen-encoder linear probes on EuroSAT and

a subset of BigEarthNet, reporting top-1 accuracy and mean±std over seeds. This
isolates the effect of the SSL + curriculum choices from head capacity and finetuning
heuristics.

Resource-aware experimental design: All
methods are implemented in Google Colab (T4 GPUs), with curricula encoded in the
data pipeline to keep memory overhead low and to tolerate session limits. This makes
the setup reproducible in constrained environments without sacrificing methodological
rigor.
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Paper Dataset used Architecture Approach Key results
Helber et al.
(2019) [9]

EuroSAT CNN
(ResNet)

Supervised clas-
sification of
Sentinel-2 images

Achieved 98,75%
overall accuracy
on balanced
dataset

Sumbul et al.
(2019) [22]

BigEarthNet Shallow CNN Multi-label
classification
on Sentinel-2
patches

Introduced a
new benchmark
for multi-label
learning in Earth
Observation

P. Berg et al.
(2021) [6]

SSL4EO-S SimCLR, ViT Self-supervised
learning on EO
images

Achieved strong
performance on
multiple down-
stream tasks

I. Papoutsis et al.
(2022) [19]

SEN12MS ResNet-50 +
attention

Multisource
fusion for classifi-
cation

Improved gener-
alization across
multi-sensor in-
puts

E. Maggiori et
al. (2017) [14]

Inria Aerial U-Net Not officially
curriculum
strategy but
it aligns with
modern defini-
tion

Reduced conver-
gence time, better
segmentation ac-
curacy

Banerjee et al.
(2021) [7]

NWPU-
RESISC45,
PatternNet,
Indian Pines

Curriculum-
driven in-
cremental
learning

Similarity-
based sample
ordering Cur-
riculum Learn-
ing

Enhanced con-
vergence and
generalization in
class-incremental
learning

Li et al. (2020)
[12]

Custom SAR Custom CNN Heuristic Cur-
riculum Learn-
ing (entropy/-
cloud)

Improved noise
robustness in
SAR imagery
classification with
less resources

This thesis
(2025)

Sentinel-2 ResNet or
ViT

Hybrid curricu-
lum with com-
posite difficulty

Conceptual
model proposed
for generalization
and efficiency,
initial tests show
efficiency and fast
convergence

Table 3.1. Comparative Overview of EO Classification Studies With and With-
out Curriculum Learning
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Dimension Type Description / Earth Observation rel-
evance

Supervision type Supervised Cur-
riculum Learning

Uses labeled data to define difficulty.
Common in early Earth Observation stud-
ies with segmentation masks.

Self-supervised
Curriculum
Learning

Model selects easy samples (low loss)
first. Helps Earth Observation pipelines
to adapt to noisy labels and class imbal-
ance.

Unsupervised
Curriculum
Learning

Difficulty based on clustering, entropy or
similar, without labels. Useful for par-
tially labeled or unlabeled image data.

Difficulty estima-
tion

Heuristic-based Based on specific rules applied to satellite:
edge density, variability, cloud cover. Easy
to compute but can be sensitive to bias.

Loss-based Uses loss value from the model itself to de-
fine sample difficulty. Adaptive and flexi-
ble but can be computationally slower.

Teacher-Student A secondary model ranks difficulty and
updates student model with the assess-
ment. Effective for complex satellite
datasets.

Curriculum
schedule

Static Difficulty levels fixed before training be-
gins. Simpler, but less flexible as the
training evolves.

Dynamic Curriculum adapts based on training feed-
back. Useful for varied images but more
complex to define.

Model integration Internal Curriculum logic built into model
pipeline. Easier to manage but harder to
adjust.

External sched-
uler

Curriculum handled outside model. More
schematic and easy to fix for Earth Obser-
vation pipelines.

Table 3.2. Taxonomy of Curriculum Learning Strategies in Earth Observation
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Chapter 4

Methodology: Curriculum
Learning framework for satellite
data and literature review

The application of Curriculum Learning in Earth Observation has a similar structure
to usual application of the technique to general image classification, but it requires a
particular attention. The images coming from satellites, as it has already been discussed,
contain peculiar diversity, high dimensionality and spectral variability. Hence Curriculum
Learning will need a particular setup that will be discussed in this chapter. For this
purpose, the thesis will describe briefly a general structure to apply Curriculum Learning
that summarizes common practices in research for remote sensing. Following this, there
will be a literature review on general Machine Learning techniques that will serve to
introduce briefly a proposed approach, unique to this thesis.

4.1 Architecture and pipeline for curriculum learning in
earth observation

The implementation of Curriculum Learning in Earth Observation requires well struc-
tured to be implemented. Many researches in literature mention satellite image processing
and classification steps and here a general overview will be given:

1. Data preprocessing:
Satellite images must first go through a cleaning process. Deying et al. [13] propose
a way to clean from clouds and shadows using different bands of the images that are
critically useful to go beyond the obstacle or hidden details. Furthermore, spectral
normalization can be applied to reduce variability caused by weather and to align
the domains.

2. Difficulty scoring and complexity estimation:
In this stage, to our knowledge, there is no universally adopted path to score satellite
images for the purpose of applying Curriculum Learning. For this reason, this
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chapter will mention the usual scoring discussed earlier in the thesis that have a
potential good result on satellite images. The first step would be to test an heuristic
approach. Labels, especially on the datasets like BEN or EuroSAT (which provide
their own labeling), are very descriptive and, the longer the label, the more complex
the image. However this approach could be missing some important peculiarities of
the image that the label does not describe. That’s why further techniques could be
based on the complexity of the image (teach-student approach) or go deeper into
the loss-based complexity ranking.

3. Curriculum scheduling and batch construction:

As Abid et al. [1] discusses, once the dataset is split into levels, batches need to
be built to feed the model. This step is particularly needed when the task in
unsupervised:

• Static: difficulty thresholds are fixed before training.

• Dynamic: difficulty levels evolve based on training loss or prediction confi-
dence.

4. Model design and curriculum integration:

Curriculum Learning can be embedded into the training pipeline in this manner:

• Implement it in classic CNN architectures.

• Use of hybrid backbones (ResNet or ViT).

Literature review suggested that the most common architectures leveraged with
Curriculum Learning are usually simpler than ResNets or ViT, and sometimes don’t
make use of Neural Networks.

5. Validation, monitoring and adjustment

To verify generalization and avoid curriculum overfitting, a classic evaluation and
testing has been done:

• Keep a randomly sampled validation set across all complexity levels, but it
can be forcefully tested on high difficulty batches ranked in the curriculum
decision step.

• Monitor loss curves, accuracy, and entropy reduction during training.

The structure described summarizes common practices in Machine Learning, especially
in image classification, but focuses on a key complex part. The way the batches are built
changes drastically the results but that is where the model can bring foundational results.
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Figure 4.1. Results on EuroSAT dataset without CL and with CL

This example proves on one side the importance of Curriculum Learning in EO,
but it is important to remember that the loss curves carry a bias of different dataset
manipulation and ordering. Hence, from now on, the loss curves won’t be presented for
this case as it shows only a bias of how the dataset is being ingested by the model.

4.2 Proposed pipeline
This section presents the complete experimental pipeline developed in this thesis to inte-
grate Curriculum Learning with state-of-the-art neural architectures for Earth Observa-
tion (EO) image classification. The work is structured around three main components:

1. Supervised baselines on EuroSAT with ResNet18 and ViT-small to assess bench-
mark;

2. Self-supervised contrastive pretraining on SSL4EO-S12;

3. Curriculum-based training strategies (entropy, Geo-AFM, and masking) on Eu-
roSAT and BEN datasets.

All experiments were implemented in PyTorch and TorchGeo, executed on GPU en-
vironments, and validated through linear probing on both EuroSAT and BEN to ensure
transferability of learned representations.

4.2.1 1. Baseline supervised training on EuroSAT

The first experimental stage establishes a supervised benchmark using the ResNet18
and ViT-small (ViT-B/16) architecture trained from scratch on labeled EO datasets.
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The benchmark dataset used is EuroSAT (RGB and 13-band versions). This stage
provides a baseline reference against which self-supervised and curriculum-based models
are compared.

Model setup

Backbone and heads for ResNet18 We instantiate a ResNet18 and adapt the first
convolution to multispectral inputs (13 bands) and the final head to 10 EuroSAT classes:

conv1 : R13×H×W→R64×H′×W ′
, fc : R512→R10.

Weights are randomly initialized (pretrained=False) unless otherwise stated.
Objective and optimizer We use cross-entropy loss

LCE = −
10∑︂

c=1
yc log ŷc,

and optimize all parameters with Adam (lr = 10−3). Training is performed on GPU when
available.

Data and loaders train_loader and val_loader yield dictionaries with keys ’image’
(tensor 13×H×W ) and ’label’ (class index). Inputs are resized/cropped to 224×224,
batched (typically 64), and normalized per band.

Curricula used

• Non-curriculum baseline (baseline): a single loader over the whole training set
with random sampling per epoch.

• Entropy / semantic-length curriculum: the training set is stratified by a difficulty
proxy (in this code variant: label-string length). We build three disjoint subsets
(short, medium, long) via stratified splits and iterate phases in that order.

• Coloring / spectral-variance curriculum: an alternative curriculum that orders sub-
sets by colorfulness or per-image variance (low→medium→high), to gradually in-
crease spectral diversity.

Training loop (one or more epochs) For each phase in {baseline | short, medium,
long}, we run a standard forwardâbackwardâupdate loop with LCE, log mini-batch loss
every 20 steps, and report per-phase accuracy:

acc = 1
N

N∑︂
i=1

1
[︁
arg max

c
ŷ(i)

c = y(i)]︁.
At the end of each epoch we evaluate on the validation set with model.eval() and
torch.no_grad().

To assess efficiency on a different model, we benchmarked on EuroSAT also with a
Vision Transfomer.
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A ViT-B/16 model was initialized without pretrained weights. The input projection
layer was modified to handle 13 spectral bands:

Convproj : R13×H×W → R768

and the final classification head was adapted for 10 land-cover classes:

Head : R768 → R10.

Optimization was performed using the Adam optimizer (lr = 10−4) with batch size 64
and cross-entropy loss.

Training protocol

Each dataset was divided into training and validation sets, and all images were resized
to 224× 224 pixels. The training objective minimized:

LCE = −
N∑︂

i=1
yi log(ŷi),

where yi are one-hot encoded labels and ŷi the modelâs softmax outputs.
Three supervised curriculum configurations were trained for comparison:

• Length-based curriculum: datasets divided by semantic complexity of label
names (short, medium, long).

• Color-variance curriculum: samples grouped by color variance (low, medium,
high) to simulate spectral diversity.

• Baseline: random sample ordering without curriculum segmentation.

Algorithm 2 Supervised ViT training pipeline (EuroSAT baseline)
Require: Dataset D = {(xi, yi)}, ViT model Mvit, loss LCE, optimizer O, epochs T

1: Split D into training and validation subsets
2: for t = 1 to T do
3: for each batch (x, y) ∈ Dtrain do
4: Compute predictions ŷ = Mvit(x)
5: Compute loss LCE = −

∑︁
y log(ŷ)

6: Backpropagate and update model weights using O
7: end for
8: Evaluate validation accuracy on Dval
9: end for

10: return Trained model Mvit and performance metrics

The supervised results form the baseline for subsequent experiments and demonstrate
the modelâs capability to classify EO images without self-supervised pretraining.
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4.2.2 2. Self-supervised pretraining on SSL4EO-S12

SimCLR framework and NT-Xent objective

ResNet-18 backbone
A ResNet-18 encoder with 6 input bands was trained to learn representations without

labels. Each image was augmented twice to generate two correlated views (x1, x2). The
model encodes these views into embeddings (z1, z2) through a projection head, and the
loss encourages similar views to be close while dissimilar ones remain apart:

LNT-Xent = − log exp(sim(zi, zj)/τ)∑︁2N
k=1 1[k /=i] exp(sim(zi, zk)/τ)

,

where sim(a, b) = a·b
∥a∥∥b∥ and τ is the temperature parameter (set to 0.5).

ResNet-50 backbone Alongside the ResNet-18, a deeper ResNet-50 model was
employed for self-supervised pretraining to evaluate the scalability of the curriculum
strategies on a higher-capacity architecture. As with ResNet-18, the first convolutional
layer was adapted to handle 6-channel inputs from the SSL4EO-S12 dataset:

conv1 : R6×H×W→R64×H′×W ′
,

and the fully connected head was replaced with a projection multilayer perceptron:

fc : R2048→R1024→R128,

used for contrastive representation learning. Weights were initialized from scratch (pretrained=False)
to ensure that the encoder learned spectralâspatial features directly from multispectral
data instead of RGB pretraining. The optimizer, learning rate, and loss settings were
identical to those of ResNet-18. This configuration allows the comparison of curriculum
strategies (baseline, entropy, masking, Geo-AFM) across network depths while preserving
architectural consistency.

Data augmentations and preprocessing

Each sample undergoes the following augmentations to ensure invariance to spatial and
spectral transformations:

• Random resized crop (scale 0.6-1.0)

• Random horizontal flip

• Color jitter and random grayscale

• Gaussian blur

• Optional random masking (in the masking curriculum variant)
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Images are normalized per spectral band to preserve energy consistency and ensure
stability during contrastive learning.

Algorithm 3 Self-supervised SimCLR pretraining on SSL4EO-S12
Require: Dataset D, encoder E, projector P , optimizer O, epochs T

1: for t = 1 to T do
2: for each batch (x1, x2) in D do
3: Encode features: z1 = P (E(x1)), z2 = P (E(x2))
4: Compute LNT-Xent(z1, z2)
5: Backpropagate and update parameters via O
6: end for
7: end for
8: return pretrained encoder E

4.2.3 3. Curriculum Learning strategies for SSL

To evaluate the effect of sample difficulty organization, three curriculum segmentation
strategies were applied during the SSL pretraining phase. Each strategy defines a struc-
tured training schedule of progressive complexity.

Entropy-based curriculum

Images are ranked by Shannon entropy:

H(xi) = −
P∑︂

p=1
pp log(pp),

where pp represents the pixel intensity distribution. Low-entropy images (homogeneous
areas such as water or bare soil) form the easy subset, while high-entropy (complex tex-
tures like forests or cities) form the hard subset. Training follows the ordered progression:

Deasy → Dmedium → Dhard.

Masking-based curriculum

The masking-based curriculum introduces difficulty dynamically during training by ran-
domly obscuring parts of the input image. A binary mask Mi ∈ {0,1}C×H×W is generated
as:

Mi ∼ Bernoulli(1− pm), x̃i = xi ⊙Mi,

where pm is the masking probability, increasing over the curriculum stages:

p(1)
m < p(2)

m < p(3)
m .

This forces the model to learn contextual information from partially visible data, reflecting
realistic EO scenarios such as cloud occlusion.
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Geo-AFM (Geographical Adaptive Feature Mixing) - proposed method

The Geo-AFM (Geographical Adaptive Feature Mixing) method, introduced in this
thesis, extends the entropy based approach by incorporating both spatial diversity and
geographical context into the curriculum segmentation process. The motivation comes
from a key limitation of conventional Curriculum Learning: data difficulty is often defined
solely by local texture or visual entropy, ignoring spatial dependencies and geographic
heterogeneity that heavily influence satellite image semantics.

Motivation: Satellite datasets like SSL4EO-S12 and BigEarthNet are multi domain
by nature: samples originate from geographically distinct areas (for example Northern
Europe vs. Mediterranean), each with their own spectral distributions. When models are
trained without considering these regional differences, they have a tendency to overfit
to specific areas, creating a domain disalignment problem, where features learned in one
geography fail to generalize to another. Geo-AFM solves this by building a curriculum
that goes from geographically homogeneous regions (where intra domain consistency is
high and hence easy to train) to heterogeneous or mixed regions (where inter-domain
dissimilarities increase). This progressive training exposition aligns the modelâs learning
trajectory with domain diversity, effectively turning Curriculum Learning into a tool for
domain alignment.

Mathematical formulation: Let each sample xi correspond to a bounding box
bi = (xmin, ymin, xmax, ymax) projected into geographic coordinates (ϕi, λi). We partition
the dataset into geographic cells Ck and compute for each cell a heterogeneity score ηk

based on its land-cover class distribution:

ηk = −
M∑︂

c=1
pk,c log(pk,c),

where pk,c is the normalized frequency of class c within region Ck. Each image inherits
the score of its cell, and the dataset is divided into three ordered curriculum stages:

Dgeo-easy, Dgeo-mid, Dgeo-hard,

such that:

ηk ∈

⎧⎪⎪⎨⎪⎪⎩
[ηmin, η1/3] if xi ∈ Dgeo-easy,

(η1/3, η2/3] if xi ∈ Dgeo-mid,

(η2/3, ηmax] if xi ∈ Dgeo-hard.

Training interpretation: The model first learns in geographically stable regions-
developing robust spectral encoders under low intra-class variance-and then gradually
adapts to broader environmental conditions and atmospheric effects. This aligns the
learned representation with global variability while maintaining spectral consistency across
regions. Empirically, this progressive adaptation mitigates domain shifts and leads to bet-
ter cross-region generalization, as confirmed by the statistically significant gains observed
on both EuroSAT and BigEarthNet.

50



4.2 – Proposed pipeline

Algorithm 4 Curriculum-based self-supervised training (Entropy / Masking / Geo-
AFM)
Require: Dataset D, backbone B, curriculum strategy S, temperature τ

1: Partition D into ordered subsets (D1,D2,D3) using S
2: for stage k = 1,2,3 do
3: for each batch (x1, x2) ∈ Dk do
4: Compute embeddings: z1, z2 = B(x1), B(x2)
5: Evaluate contrastive loss LNT-Xent(z1, z2, τ)
6: Update backbone parameters
7: end for
8: end for
9: return pretrained model B

Significance: Geo-AFM thus transforms Curriculum Learning from a purely difficulty-
based paradigm into a domain-aware learning strategy. By aligning the order of data
exposure with natural geographical complexity, it bridges the gap between model-level
optimization and the physical structure of EO data-a key innovation for large-scale, multi-
domain remote sensing tasks.

4.2.4 Linear probing and downstream evaluation

After pretraining, the encoderâs weights are frozen and evaluated through linear probing
on EuroSAT and BigEarthNet. A single-layer linear classifier is trained on top of the
frozen features using cross-entropy loss:

y = Wz + b,

where z are the encoded representations and W, b are trainable parameters. The probing
accuracy measures how well the representations learned during self-supervised training
capture semantic separability of EO classes.

Evaluation is performed across all curriculum strategies (baseline, entropy, Geo-AFM,
masking), and the results are averaged across multiple random seeds to assess stability and
reproducibility. Metrics include top-1 accuracy, mean accuracy per class, and convergence
rate.

Algorithm 5 Linear probing evaluation on EuroSAT and BigEarthNet
Require: Frozen encoder E, downstream dataset Dprobe = {(xi, yi)}, classifier C

1: Extract features zi = E(xi) for all xi

2: Train C using cross-entropy loss on (zi, yi)
3: Compute accuracy on test set Dtest
4: return Representation accuracy and per-class metrics

4.2.5 5. Implementation summary

The complete training workflow can be summarized as follows:
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1. Load the SSL4EO-S12 dataset and compute sample difficulty scores using entropy,
geographic heterogeneity, or masking probability.

2. Train ResNet-50 and ViT-Small models under four configurations: baseline, entropy,
Geo-AFM, and masking.

3. Apply the NT-Xent loss for self-supervised pretraining and record convergence
curves for each curriculum stage.

4. Freeze encoders and train linear probes on EuroSAT and BEN to evaluate the
quality of learned representations.

5. Compare probing accuracies and convergence dynamics across curriculum strate-
gies.

This proposed pipeline provides a unified and reproducible framework for studying
Curriculum Learning in EO, combining supervised, self-supervised, and curriculum-based
paradigms within a consistent experimental environment. It demonstrates how progres-
sive data organization can enhance learning efficiency and generalization across multiple
spectral and spatial domains.
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Chapter 5

Test environment, results and
take-aways

5.1 Test environment, IDE and dataset availability

All experiments were implemented and executed in the Google Colab environment, which
provides a cloud-based, GPU-accelerated interface for Python and deep learning work-
flows. Colab was selected for its compatibility with PyTorch, TorchGeo, and other re-
quired libraries such as scikit-learn and matplotlib, as well as its ease of integration
with Google Drive for dataset management.

Hardware configuration and limitations

The environment was configured to use NVIDIA Tesla T4 GPUs (16 GB VRAM) and
12 GB of shared RAM. This configuration was sufficient for moderate-scale training of
self-supervised and supervised models but introduced several practical limitations:

• Session duration: Colab imposes a maximum runtime of 12 hours per session,
with disconnections occurring after inactivity. Long SSL pretraining runs had to
be resumed manually using intermediate checkpoints.

• Storage constraints: The available disk space (100 GB) limited the number of
datasets and model weights that could be stored simultaneously. Large datasets
like BigEarthNet required selective sampling.

• GPU memory limits: The 16 GB VRAM capacity restricted batch size and model
depth, particularly when using Vision Transformers. Batch sizes above 64 often
caused out-of-memory errors, especially during curriculum stages with augmented
or masked inputs.

Despite these constraints, Colab proved adequate for prototyping and validating the
proposed Curriculum Learning strategies. All runs were reproducible using fixed random
seeds for model initialization and dataset splitting.
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Self-supervised learning (SSL4EO-S12) implementation

The self-supervised framework was built upon the TorchGeo implementation of the SSL4EO-S12
dataset. The dataset was automatically downloaded and preprocessed within the Colab
environment using:

SSL4EOLBenchmark(sensor="etm_sr", product="cdl", split="train", download=True)

This automatically structured the dataset into 12-band Sentinel-2 patches, which were
loaded as tensors and normalized to [0, 1]. To control runtime and GPU load, the dataset
was accessed through custom Dataset classes that applied spatial cropping, random
augmentations, and masking as part of the curriculum.

The SSL training loop was implemented using the SimCLR paradigm with the NT-
Xent loss. Augmentations and curriculum segmentation (entropy-based, masking, and
Geo-AFM) were directly integrated into the DataLoader pipeline, ensuring progressive
difficulty in the samples presented to the network. Each self-supervised run produced a
pretrained encoder whose parameters were saved for later probing.

EuroSAT supervised and probing implementation

For the supervised baseline and the probing evaluation, the EuroSAT dataset was im-
ported from the torchvision.datasets module. The training and validation subsets
were preprocessed using:

Resize(256), CenterCrop(224), ToTensor()

and normalized per channel. A Vision Transformer (ViT-B/16) was trained from scratch
in the supervised baseline and later used for linear probing of SSL-pretrained encoders.
For probing, the frozen encoders (ResNet-50 and ViT-Small) trained on SSL4EO-S12
were connected to a shallow linear classifier and evaluated on EuroSAT to measure rep-
resentation quality.

BigEarthNet subset preparation

Due to computational and storage limits in Colab, the full BigEarthNet (BEN) dataset
could not be processed. Instead, a representative subset was manually downloaded from
local drive and split into training and test sets. This subset maintained spectral and class
diversity across geographic regions but significantly reduced storage usage and training
time. The subset was sufficient for comparative probing and validation of model gen-
eralization under different curriculum strategies. All BEN experiments used the same
preprocessing pipeline as EuroSAT, ensuring comparability between datasets.

5.2 Results and plots
At this stage, the results primarily serve to validate the correct functioning of the training
pipeline, curriculum segmentation, and probing setup. Both Training and Test results
are presented.
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Training results and Test plots

Below the table shows the results of the test values reached after 100 epochs on Resnet18
and ViT-Small in supervised mode, while 500 epochs have been tested for the Resnet50
and ViT-Small in self-supervised mode.

Table 5.1. Summary of model accuracies (%) across training configurations,
curricula, and datasets.

Model Setting / Task Dataset Baseline Entropy Coloring / Masking Geo-AFM

ResNet18 Supervised training EuroSAT 65,5 % 75,9 % 86,3 % NA

VitSmall Supervised training EuroSAT 62,6 % 65,1 % 67,6 % NA

ResNet50 Linear probing EuroSAT 68,5 % 68,8 % 68,9 % 70,8 %
Linear probing BEN 71,2 % 71,3 % 75,1 % 78,4 %

ViT-Small Linear probing EuroSAT 68,6 % 68,8 % 69,4 % 72,3 %
Linear probing BEN 72,1 % 71,9 % 75,1 % 78,4 %

To visualize the trend of learning, the training plots show the cases of self-supervised
learning in Resnet50 and Vit-Small trained in EuroSAT and BEN datasets. Refer to
image 5.1, 5.2, 5.3 and 5.4. For reference in the legend, the baseline will be BL, Entropy
curriculum E, Masking curriculum M and Geo-AFM will be T.

Figure 5.1. resnet50 training results for the 4 methods, probed on EuroSAT

5.2.1 Results: qualitative and quantitative notes on Training trends

Qualitative trends from the plots.

• Monotonic improvement over epochs. All configurations (BL = baseline, E =
entropy, M = masking, TG = geo-based) show steady increases in probe accuracy
with training progress (Figures 5.1-5.4). The learning curves for TG and M generally
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Figure 5.2. Vit-small training results for the 4 methods, probed on EuroSAT

Figure 5.3. ResNet50 training results for the 4 methods, probed on BEN

track above BL after ≈150-200 epochs, with widening separation in later stages
(350-500 epochs). It is clear how the results on EuroSAT result more stable than
those on BEN. The latter is comprised with a vast type of views that can make
training and test stability more difficult. However, the clear advantage on the TG
model is evident, also signaling more stability in last 50 epochs.

• Variance behaviour. The shaded bands (mean ± std across seeds/epochs) are
initially wide and shrink moderately as training stabilizes. TG exhibits slightly
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Figure 5.4. Vit-small training results for the 4 methods, probed on BEN

larger variance early but converges to a higher mean in later epochs, consistent
with curricula that expose harder, more diverse samples over time.

• Backbone sensitivity. The qualitative gap TG > M > E≈BL is visible for both
backbones. ResNet50 displays delayed but larger late-epoch gains for TG, whereas
Vit-Small benefits earlier from M and TG. E shows better results at the end of the
training but statistically is not as strong in the whole training process as the other
methods.

Aggregate improvements over epochs (average %).

Setting BL E M TG
ViT-small → BEN 53.06 52.58 (−0.48) 54.22 (+1.15) 56.02 (+2.96)
ResNet-50 → EuroSAT 53.23 53.17 (+0.06) 54.63 (+1.40) 57.33 (+4.10)
ResNet-50 → BEN 55.40 55.73 (+0.33) 56.72 (+1.32) 59.65 (+4.25)
ViT-small → EuroSAT 55.83 56.28 (+0.45) 57.62 (+1.79) 61.26 (+5.43)

Note. Values are epoch-wise means; deltas vs. BL in parentheses.

Statistical relevance of the results

The figures (5.1 - 5.4) show the per-epoch linear probing accuracy for the four curriculum
strategies—Baseline (BL), Entropy (E), Masking (M), and Geo-AFM (TG)—tested on
both EuroSAT and BigEarthNet datasets using ResNet-50 and ViT-Small backbones.
Across all experiments, a consistent upward trend in accuracy is observed as training
progresses, confirming stable convergence for all methods. The shaded areas indicate the
standard deviation over multiple seeds and epochs, highlighting stable learning behaviour,
especially in later training phases.
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Observed trends

• On both datasets, the Geo-AFM (TG) curriculum achieves the highest final ac-
curacy, followed by Masking (M), while Entropy (E) performs similarly to the
baseline.

• For ResNet-50, TG reaches a mean accuracy of 57.33% on EuroSAT and 59.65%
on BEN, outperforming BL by +4.10% and +4.25%, respectively.

• ViT-Small shows similar behaviour, with TG reaching 61.26% on EuroSAT and
56.02% on BEN, corresponding to improvements of +5.43% and +2.96% over BL.

• Masking (M) consistently yields moderate but statistically reliable improvements
(+1-2%) across all tests, while Entropy (E) does not significantly differ from BL.

Paired one-tailed t-tests For each configuration, paired t-tests were computed across
epoch-aligned results, testing the null hypothesis:

H0 : µtech ≤ µBL vs. H1 : µtech > µBL.

Table 5.2 summarizes the key statistical outcomes.

Model / Dataset Technique t-stat p(one) Significance
ResNet50 - EuroSAT E -0.112 0.5445 <90%

M +3.780 0.0002 95%
TG +9.999 0.0000 95%

ResNet50 - BEN E +0.370 0.3564 95%
M +1.952 0.0283 95%

TG +5.765 0.0000 95%
ViT-small - EuroSAT E +0.543 0.2948 90%

M +2.527 0.0074 95%
TG +6.825 0.0000 95%

ViT-small - BEN E -0.897 0.8128 90%
M +3.125 0.0015 95%

TG +6.903 0.0000 95%

Table 5.2. Paired one-tailed t-tests comparing curriculum techniques vs. base-
line across all settings.

Interpretation of statistical significance

• Geo-AFM (TG) shows statistically significant gains (p < 0.001) in all settings,
confirming its consistent superiority over the baseline.
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• Masking (M) demonstrates statistically meaningful improvements (p < 0.05) in
most experiments, confirming that progressive occlusion acts as a valid difficulty
signal.

• Entropy (E) does not reject H0 in all tests (p > 0.2), indicating measurable ad-
vantage compared to random sample ordering, but fails the H0 in the ResNet50
probing test with the EuroSAT dataset.

• The ranking of curriculum effectiveness is therefore: TG > M > E > BL even if it’s
important to remember the Entropy curriculum defects.

Summary Across all datasets and backbones, the Geo-AFM curriculum consistently
produces the most reliable and statistically significant improvements in self-supervised
representation quality. The masking strategy also contributes positively, especially in
complex datasets like BEN where partial occlusions are common. Entropy-based order-
ing, while conceptually intuitive, appears insufficient alone to capture the multifactor
complexity of multispectral Earth Observation imagery.

5.2.2 Take-aways

What the experiments consistently show

• Curriculum ranking is stable: TG > M > E ≈ BL around backbones (ResNet-
50, ViT-Small) and datasets (EuroSAT, BEN). Geo-AFM (TG) guarantees the
largest absolute gains (+3-5% top-1 on average), masking (M) offers smaller but
reliable improvements (+1-2%), while entropy (E) rarely differs from baseline.

• Statistical support: One-tailed paired t-tests reject H0 for TG in all settings
(p≪0.01) and for M in most settings (p<0.05), validating that the observed gains
are not due to chance.

• Backbone-specific behavior: ViT-Small benefits most from TG in the later
training stages (larger late-epoch margins), whereas ResNet-50 shows earlier, steady
improvements with both M and TG. This suggests curricula help transformers âun-
lockâ global-context representations, while CNNs capitalize sooner on staged diver-
sity.

• Dataset effects: EuroSAT curves are smoother and stabilize earlier; BEN exhibits
higher variance (greater geographic and spectral heterogeneity). Despite this, TG
remains the most effective strategy on BEN, indicating better cross-region general-
ization.

• Variance and convergence: Variance bands narrow as training progresses in the
EuroSAT training, but less evidently in the BEN dataset. TG starts with slightly
higher variance but converges to the highest mean. This supports the idea that
exposing harder, diverse samples later is beneficial if preceded by easier stages where
domain is considered. This alludes to a potential effect of domain generalization
needed before training to more specific and complex figures.
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Background needed for the proposed EO training

• Geo-AFM can be used when geo-metadata are available: It provides the
best trade-off between complexity and gain, and scales to heterogeneous territories.

• Default to masking if metadata are limited: Progressive occlusion is easy to
implement in the dataloader, is sensor-agnostic, and consistently improves probing
scores.

• Entropy-only ordering is rarely worth it: On multispectral EO imagery, En-
tropy faces difficulty to outperforms statistically evidently the Baseline. It is pre-
ferred to use TG or M to capture spatial/spectral diversity.

• Probe early, then fine-tune: Linear probing is an efficient gatekeeper for repre-
sentation quality, in the context of SSL. Hence, it is convenient to fine-tune following
the results of the probing.
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Chapter 6

Next steps in Curriculum
Learning research for Earth
Observation

6.1 Future Directions

The integration of Curriculum Learning into Earth Observation presents numerous possi-
bilities for new implementations and use cases. Key future directions that are mentioned
in literature or that we regard important are:

1. Multi-modal Curriculum Learning:

Earth Observation data often comprehends various modalities, such as optical images,
synthetic aperture Radar (also called SAR), and LiDAR. Developing Curriculum Learning
strategies that can effectively work on this cases and leverage these data sources is really
important. However, it remains as an open challenge. For instance, designing different
curricula that go from simpler optical data to more complex ones that are sourced in
SAR could help increase the robustness of the model.

2. Dynamic Curriculum scheduling:

Since curricula are decided, in some context of Earth Observation, with deterministic ap-
proaches, a flexible optimization on the learning process can be key to uncover efficiency.
As mentioned other times in this thesis, dynamic scheduling is part of the possible struc-
turing practices when feeding a model. While this approach can be more difficult to
implement, it involves future possible researches, making the model extremely efficient
on focusing on impacting samples.

3. Curriculum Learning for temporal Earth Observation data:

In this thesis, a deep description on existing and promising techniques involving Cur-
riculum Learning have been presented. All the datasets and scenarios presented only
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described static images with the goal of static classification. However, Earth Observation
datasets often have temporal dimensions too, capturing changes over time. Developing
Curriculum Learning methods that consider temporal presence can improve models’ abil-
ity to classify complex scenarios based on what, not only the image suggests, but also the
change of states and conditions.
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Chapter 7

Conclusion

In this thesis, we investigated the role and potential of Curriculum Learning (CL)
within the field of Earth Observation (EO), a domain that is becoming increasingly
data-intensive and computationally demanding. The research addressed the dual chal-
lenge of handling the growing volume and heterogeneity of satellite imagery while im-
proving the efficiency and robustness of machine learning models used for their analysis.

We began by revisiting the theoretical foundations of Machine Learning and, in par-
ticular, Curriculum Learning, emphasizing how training paradigms inspired by human
cognition can be applied to artificial learning systems. This foundation served to con-
nect CL with the specific needs of remote sensing, where models must learn from highly
variable, multi-spectral data with limited or noisy labels. We reviewed both classical
and state-of-the-art architectures-Convolutional Neural Networks, ResNets, and Vision
Transformers (ViTs)-and discussed their respective strengths for EO tasks.

The literature review revealed a clear research gap: while Curriculum Learning has
been applied to EO in limited experimental settings, its integration with modern deep
architectures and large-scale remote sensing datasets remains largely unexplored. This
observation motivated the structured experimental framework proposed in this thesis,
combining CL with established deep backbones (ResNet and ViT) trained from scratch
or in self-supervised regimes. We implemented three EO, specific curriculum strategies-
entropy-based, masking-based, and the novel Geo-AFM (Geographical Adaptive
Feature Mixing), and evaluated them through linear probing on the EuroSAT and
BigEarthNet datasets.

The experimental findings demonstrated that CL can consistently enhance the qual-
ity of learned representations and improve downstream classification accuracy. Across
all configurations, Geo-AFM achieved the strongest and most statistically significant
gains (+3-5% top-1 accuracy over the baseline), followed by Masking, which provided
smaller but reliable improvements (+1-2%). Entropy-based curricula, while intuitive,
yielded results close to baseline in the overall training process and proved not completely
sufficient to capture the complexity of multispectral EO data. These outcomes were val-
idated through one-tailed paired t-tests, which confirmed the significance of Geo-AFM
and Masking improvements at both 90% and 95% confidence levels. Importantly, the
observed gains were not only statistically meaningful but also practically relevant, given
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the computational constraints of the real world training environments.
From a methodological standpoint, this thesis demonstrates that CL strategies can be

effectively implemented even under resource-limited settings such as Google Colab, even
though further tests must be done with full potentiality of training capabilities to let the
model converge further more, especially in the case of the BEN dataset. Despite reduced
runtime, smaller batch sizes, and partial datasets, the results showed faster convergence,
smoother training, and better generalization when curriculum mechanisms were applied.
This confirms the hypothesis that structured sample exposure-when aligned with spectral
and geographical complexity-can guide models toward more stable and efficient learning
trajectories.

Beyond the empirical analysis, we proposed a taxonomy for Curriculum Learning
strategies in Earth Observation, clarifying the dimensions of supervision, difficulty es-
timation, scheduling, and model integration. This taxonomy serves as a framework for
future research and for adapting CL to different satellite sensors, temporal scales, and
downstream applications.

In summary, this thesis positions Curriculum Learning as a viable and scalable
framework for improving the efficiency and generalization of EO classification pipelines.
By connecting algorithmic learning principles with the intrinsic structure of geospatial
data, CL offers a possibility for more interpretable, cost effective, and sustainable model
training in the remote sensing community. Future directions include exploring adaptive
pacing functions, self-supervised curricula on multimodal datasets (for example Sentinel-
1/2 fusion), and geographically aware validation protocols to measure spatial generaliza-
tion more rigorously.

Ultimately, Curriculum Learning shows to be a promising paradigm for the next
generation of EO systems, capable of linking theoretical learning principles to oper-
ational impact-reducing computational cost while enhancing model reliability and trans-
ferability in a rapidly evolving global data landscape.
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