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Abstract

This thesis explores the use of custom loss functions to the finetuning of Small
Language Models (SLMs) applied to recipe generation. With the exponential growth
of deep learning, Large Language Models have proven themselves to have incredible
text generation capabilities. Standard training frameworks, however, which employ
Cross-Entropy loss, commonly disappoint in more demanding fields requiring high
accuracy of facts and numbers, for instance the generation of procedural texts
such as cooking recipes. This work tackles the intrinsic limitation of the standard
solution that treats all the words indifferently, giving rise to the model’s inability to
appropriate the important but frequently statistically scarce ingredients of a recipe.

Construction of a valid recipe presents several challenges. It demands a model
to generalize not only linguistic expertise but also procedural logic, recollection
of facts about ingredients, and correct numerical reasoning for amounts, times,
and temperatures. Incorrect generation of these crucial entities renders the output
unusable and identifies a crucial disconnect between a model’s textual coherence and
its real-world practical utility. This paper contends that in order for this gap to be
closed, the training objective itself needs to be modified to better accommodate the
specific needs of the world. The thesis first provides an overview of the foundational
concepts of modern NLP, from the Transformer architecture to the lifecycle and
methodologies for finetuning language models, with a focus on Parameter-Efficient
Finetuning (PEFT) via Low-Rank Adaptation (LoRA). It then details the design
of a composite loss framework, augmenting the standard Cross-Entropy loss with
one of three custom losses: Focal Loss, to address token imbalance; Dice Loss, to
optimize for semantic overlap; and a novel Topological Loss, designed to measure the
geometric similarity between the predicted and ground-truth ingredient lists in the
embedding space.

Lastly, the thesis benchmarks the quality of several SLMs finetuned using such
composite losses relative to a simple Cross-Entropy baseline. The models are assessed
using a comprehensive set of evaluation metrics that includes typical NLP benchmarks
and a series of ad-hoc measures designed to evaluate ingredient recall, numerical
precision, and procedural correctness. The experiments document that training
the objective using the domain-aware custom losses yields statistical gains that
constitute a new and improved manner of finetuning language models for structured,

fact-intensive generation tasks.
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Chapter 1

Introduction

In recent years, Large Language Models (LLMs) have proven to be a truly powerful
technology, able to produce human-like text for a near-universal range of topics.
Conventionally, the adaptation of these generalist models to a particular task depends
upon a simple finetuning regime led by Cross-Entropy loss. This loss-oriented
technique, where the goal is simply to predict the next term in a sequence, has proved
very successful for tasks where linguistic fluency is the overriding criterion of success.
But most real-world applications need something more than fluently written text;
they need the text to be factually accurate, procedurally correct, and bound by a
rigid underlying structure. A particular area that constitutes a novel and intriguing
set of challenges is the generation of cooking recipes.

A recipe is not just creative writing. It is a procedural document in which certain
entities—ingredients, their exact counts, cooking times, and temperatures—are
functionally important. The typical Cross-Entropy model, however, makes the
unrealistic assumption that all words are equally important. This causes it to fail to
properly penalize a model for replacing a crucial ingredient or making a gibbering
quantity because these typically statistically rare tokens have little impact on the
total loss relative to typical grammatical words. This limitation points to a major
gap: the typical training regime for LLMs isn’t specially optimized for those domains
where fact and numerical accuracy are crucial.

LLM application to recipe generation is especially useful because it acts as a
strong test for a model’s capabilities for performing structured, procedural, and
fact-intensive work. A successful recipe generation involves a careful balance between
a creative author and a accurate database. A model needs to create a cohesive tale
of instructions but also needs the factuality of its ingredient list and the numeric
correctness of all its related values. Typical failure modes like poor ingredient recall
or impracticable procedural phases are not merely trivial defects; they cause the
overall output to become unusable.

Given the enormous potential for LLMs to break the generation of content in
this field, these challenges are significant. The most important challenge is the
token skew in the training dataset combined with the inability of the standard loss

function to bias towards the most critical ingredients of a recipe. Most existing
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recipe datasets are also structured for standard language tasks and lack the ad-hoc,
reason-based queries (e.g., recipe scaling or ingredient substitutes) that are needed
to train a model to reason about ingredients of a recipe explicitly. Sidelining the
objective of merely designing a digital chef, the scope of this thesis lies in overcoming
these inherent weaknesses in the LLM finetuning pipeline. More precisely, the
objective lies in introducing and testing a new training paradigm that breaks the
ceiling of the uniform-importance token assumption. We present a sequence of
bespoke loss functions—Focal, Dice, and a new Topological loss—that are crafted
to complement the regular Cross-Entropy loss. The auxiliary losses are designed
to emphasize the learning signal for the most important and oft-neglected aspects
of a recipe: its ingredients and numerical values. Finetuning occurs on a specially
curated set of recipes and expert culinary questions using a family of lightweight
Small Language Models (SLMs) and the Parameter-Efficient Finetuning (PEFT)
paradigm of Low-Rank Adaptation (LoRA). The thesis also comprises four additional
chapters. Chapter 2 gives a detailed background, delving into the basic principles
of Natural Language Processing, the Transformer model architecture, and the life
cycle of Large and Small Language Models, together with the theory underlying
finetuning methods such as PEFT, LoRA, and quantization. Chapter 3 surveys the
related work in the area of recipe generation, putting forth the history of models and
datasets, and pinpointing the lacuna in the literature that the current work shall
address. Chapter 4 covers the methodology, such as the problem statement, the
preparation of the dataset, the mathematical expressions for the loss functions that
we define ourselves, and the complete experiment setup. Chapter 5 gives the analysis
and tabulation of the results of the experiments that we conduct by comparing the
performance of each loss component by using a set of novel and standard evaluation

metrics and concludes by discussing the insights and the direction for future work.



Chapter 2

Background

2.1 Recipe

On casual observation, a recipe is a modest document: a list of ingredients followed
by some instructions. Again, appearances here deceive. A recipe is an interesting
and intricate item of human knowledge, a confluence of procedural text, factual
information, and cultural tradition. It is simultaneously a tale and scientific formula,
creative guide and technical manual. Because it is so complicated, generating recipes
is a surprisingly tricky and insightful test of artificial intelligence. Before we can
create a model that can compose a good recipe, we need to understand and value the
complex structure and subtlety of the domain of recipes as such. This chapter delves
into the realm of recipes, dissecting their parts and explaining why training an Al to

handle them is an important benchmark of contemporary generative models.

2.1.1 Recipes as Structured Knowledge

For centuries, recipes were the chief manner in which we encode and pass along
culinary information. They remain manuals that help us reproduce a dish, instruments
in teaching basic cooking methods, and cultural products that embody the history of
a family or region. They are a type of communication that is meant for action, to be
used in the material world in order to create some tangible, and we hope delicious,
outcome.

Prior to processing or generating a recipe, such a human-oriented concept must
be converted into a form of structured object. A model must also acknowledge a
recipe as being more than a chunk of text, but instead as a collection of separate
data fields with specific roles. In modern applications, a recipe is most typically
stored in the form of a JSON such that it purposefully separates its key components.
As such, the task in this paper instructs the model to generate a recipe with distinct
keys of "ingredients" and "instructions". It is through such a structured form that
the output becomes consistent and easy for a human as well as another computer

program to handle.
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2.1.2 The Anatomy of a Recipe

To make a successful recipe, you must learn to manage its fundamental building

components. Each ingredient presents a new type of problem.

o Title/Metadata: It is also the primary key for the identification of the recipe
(e.g., "Pasta Carbonara"). It may also contain metadata such as serving size,
time of preparation, or cuisine type, all of them providing relevant information

for the user.

e Ingredients: The list of ingredients is the factual nucleus of a recipe. It is
not a suggestion but a precise bill of materials. An item in such a list is a
well-formed piece of information, normally consisting of a quantity, a unit, and
the ingredient’s name, such as "200g Guanciale, cubed". The list is a list of
unalterable entities that must be correct for the recipe to work. Its overriding
importance is reflected in assessment criteria that examine the accuracy of

quantities and recall of ingredients.

e Instructions: The instructions make up the procedural discourse of the
recipe. The instructions comprise a chronologically sequenced set of steps, most
commonly framed in imperative speech (e.g., "Boil salted water.", "Fry the
guanciale."). The steps are more than words, being instituted in combination
with other such important entities, such as precise times and temperatures for

cooking, of whose precision a successful outcome depends.

An example of recipe can be found in Figure 2.1

2.1.3 Challenges in Recipe Generation

The precise nature of recipes makes them a difficult topic for Language models to

learn.

e Procedural and Sequential Dependency: Operation order in a recipe is
crucial. A model must learn that some steps precede some of the others. It
must learn temporal reasoning and causality that is greater than is in typical

language modeling.

e High Density of Named Entities: High density of named entities is present
in the recipes (unit, ingredient, tool), which is statistically uncommon in
ordinary text. It is then hard for a model to learn and recall with precision.
As it turns out, low recall of ingredients is one of the typical failure modes of

models.

e The Grounding Problem: The natural-language description of a recipe is
"grounded" in the real world. The imperative "fry until crisp" is related to a
chemical real-world process. In a model, these implicit physical constraints

need to be learned but the model is never presented with a real-world kitchen.
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Title Carbonara

Ingredients

» 4009 (14 oz) Spaghetti or Rigatoni

» 1509 (5.3 0z) Guanciale (or Pancetta as a substitute), cut into small cubes or strips
» 1009 (3.5 oz) Pecorino Romano cheese, freshly and finely grated
« 2 large whole eggs

2 large egqg yolks

« 1-2 tsp freshly and coarsely ground black pepper

« Salt (for the pasta water)

Instructions

1. Whisk eggs, yolks, Pecorino, and pepper.

2.Cook guanciale in a cold skillet (medium-low heat, 10-15 minutes).
3. Turn off heat.

4.Cook spaghetti in salted boiling water.

5.Reserve 1 cup pasta water.

6.Drain spaghetti.

7. Add spaghetti to the guanciale and fat.

8.Toss pasta.

9.Remove skillet from heat.

10. Pour egg mixture onto pasta.

11. Toss rapidly.

12. Add pasta water for creaminess.

13. Serve immediately.

14. Garnish with Pecorino and pepper.

Figure 2.1: This figure illustrates a recipe for Carbonara as example of main

information needed to process a recipe.

e Structural Enforcement: Consistently producing a well-formed and correct

structure, like constraining a JSON output, is a big technical obstacle.

2.1.4 Evolution of NLP Tasks in the Recipe Domain

The specification of problems in recipes has turned them into a highly popular topic

for NLP/AI research, with the task progressing from basic analysis to advanced

generation.

¢ Recipe Analysis: The initial applications of Al operated on the problem of
processing known recipes. This was the problem of labeling a cuisine type of a
recipe from ingredients or of using information extraction techniques to recover

a structured list of ingredients from an unstructured blog posting.

¢ Reasoning and Factual Manipulation: Such more advanced tasks require
a deeper, almost human-like comprehension of the internal workings of a
specific recipe. These introduce a model’s reasoning about relations between
ingredients. The fine-tuning process in this task, for example, consisted of a

dataset specifically crafted to train such abilities, including such issues as:

— Missing ingredient identification
— Commutativity verification

— Recipe scaling
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— Specifying the amount, time, or temperature for an ingredient or procedure

e Generation of Full Recipes: The Ultimate Challenge: Full recipe
composition is the holy grail because it involves generating all of the above
components simultaneously. It needs to create a correct structure, reproduce
factual entities accurately, form a coherent sequence of instructions, and express
itself in a fluent, natural tone. It’s a complete test of a model’s capability as

both a creative author and as a database of facts.

2.1.5 Conclusion: Why Recipe Generation is a Key Benchmark for
Modern Al

As such, a recipe is much more than a mere text file. It is a highly complex object
that simultaneously tries a generative model on multiple fronts. To successfully
generate a recipe, a delicate balance of linguistic naturalness, factual correctness,
procedural knowledge, and strictness in output format is required. As such, the
domain is an ideal, but difficult benchmark for expanding the limits of contemporary
Al by finding the strengths and weaknesses of the models we build, as well as training

methods we employ to control them.

2.2 Supervised Learning

Supervised learning is the base paradigm for a vast range of tasks in machine learning
[1]. This section establishes the theoretical and practical framework of supervised
learning, providing the necessary mathematical tools and conceptual understanding
required to comprehend the subsequent chapters on customized optimization and

loss functions.

2.2.1 Definition

Supervised learning is defined as the task of inferring a mapping function [2], or
hypothesis, from labeled examples. The term "supervised" specifies that ground-truth

labels are available to serve as the guide, or "supervisor," for the learning algorithm.

2.2.2 Dataset and Goal

We begin with a training dataset composed of N independent and identically dis-
tributed (i.i.d.) examples [3] extracted from an underlying, unknown data distribution
P(x,)):

D = {(=,y )Y,

Here, (") € X is the input vector (e.g., a tokenized text sequence or prompt), and
y e Y is the corresponding desired output (e.g., a target sequence of tokens or a
classification label). The goal is to find a function h : X — ) that minimizes the

expected generalization error, or true risk [4], R(h), which is the average loss over
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the entire data distribution P:

R(h) = Egy)~p[L(y, h(2))]

where L(-,-) is the loss function measuring the penalty for the deviation of the

prediction h(z) from the true label y.

2.2.3 The Empirical Risk Minimization (ERM) Principle

Since the true data distribution P is unknown, we cannot directly minimize R(h).
Instead, supervised learning relies on the Empirical Risk Minimization (ERM) prin-
ciple. ERM substitutes the true risk with the Empirical Risk R(h), which is the

average loss calculated over the finite training set D:
; LS 100 ()

R(h) == Ly, h(z"
() = 5 S Ll i)

The learning problem is thus transformed into finding the hypothesis h* within a

hypothesis space H that minimizes the empirical risk:
h* = argmin R(h
rg min R(h)

The success of supervised learning hinges on the ability of the model that minimizes
the empirical risk R(h) to also perform well on unseen data, meaning R(h) ~ R(h).

This principle is visualized in Figure 2.2

- nested function classes
of increasing complexity

First step: choose a function class

f: function to be learned
A

f: empirical approximation

Second step: minimize the empirical error,
AN ~ .
g is the output of the algorithm

generalization error

Figure 2.2: This figure illustrates the Empirical Risk Minimization Principle, where
we select an optimal function § from a hypothesis class H that minimizes the empirical
error on the training data, thereby approximating the true target function f.

2.2.4 The Learning Objective Function and Regularization

In practice, the model h is a neural network parameterized by a vector of weights 6.
Thus, we seek the optimal parameter set 8*. The full Objective Function J(6) that
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is minimized during training typically includes a Regularization term, designed to

prevent overfitting and improve generalization:
J(0) = R(6) + X - Q(6)

where R(0) is the empirical risk, Q(6) is the regularization term (e.g., Ly norm of the
weights), and A > 0 is the regularization coefficient, a hyperparameter controlling

the strength of the penalty.

2.2.5 Core Components of the Supervised Learning Process

The process of training involves selecting a model architecture, defining the loss

function, and utilizing an optimization algorithm to minimize the objective function

J ().

2.2.6 The Parametric Model: Large Language Models

In the context of modern LLMs, the parametric model hg(z) is almost exclusively
based on the Transformer architecture. This architecture, particularly its decoder-only

variants, is designed for sequence-to-sequence or sequence completion tasks.

2.2.7 The Loss Function: Sequence-Level Negative Log-Likelihood
(NLL)

While traditional supervised learning often uses Mean Squared Error (MSE) for
regression or standard Cross-Entropy for single-label classification, LLM fine-tuning
requires a loss function capable of handling sequences of discrete tokens. The standard
choice is the Sequence-level Negative Log-Likelihood (NLL) [5], which is equivalent
to the average Cross-Entropy loss over the target sequence. For a target sequence

y = (y1,y2,-..,yr) of length T', the loss function L(-,-) is defined as:

T

1
Lnpp(0) = T Zlong(yt|x,y<t)
t=1

Where Py(y:|z,y<¢) is the probability assigned by the model hy to the correct target
token y;, conditioned on the input z and all previously generated tokens y.;. This
loss function promotes the maximum likelihood estimation of the target sequence
[6]. By minimizing this loss, the model’s parameters 0 are adjusted to make the true
sequence of tokens significantly more probable. The success of this standard approach
has led to the development of custom loss functions, which seek to incorporate
additional criteria (such as linguistic quality [7] , safety [8], or adherence to specific
external metrics) beyond simple token match, forming the basis for the advanced

work presented in this thesis.
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2.2.8 Optimization: Stochastic Gradient Descent and its Variants

Optimization is the process of iteratively finding the parameter vector 6* that
minimizes the objective function J(#). The foundation of nearly all deep learning
optimization is Gradient Descent, which dictates that parameters are updated in the

direction opposite to the gradient of the objective function:
9+ = o) — w1 (0®)

Here, 7 is the learning rate. For large datasets like those used in LLM fine-tuning,
Stochastic Gradient Descent (SGD) is employed [9]. Instead of calculating the
gradient over the entire dataset (Vy.J(0)), the gradient is approximated using a small
subset of the data called a mini-batch B C D:

1 . .
1) =91 — v, (B > L(y(l),he(w(l))))

Bl o3y

This mini-batch approach introduces stochasticity, which helps models escape poor
local minima and significantly speeds up training. Modern supervised fine-tuning
heavily utilizes adaptive optimizers like Adam (Adaptive Moment Estimation) [10]
or RMSprop [10], which dynamically adjust the learning rate n for each parameter
based on the history of gradients, leading to faster and more stable convergence. The
iterative path of SGD is depicted in Figure 2.3.

Stochastic Gradient
Descent 0

Figure 2.3: Illustration of Stochastic Gradient Descent (SGD). The elliptical
contours represent the loss function landscape, with the minimum at 0. The orange
arrows depict the iterative path of SGD, demonstrating how it converges towards the
optimal parameters by taking noisy steps in the direction of the negative gradient,
computed using mini-batches or individual samples.
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2.2.9 Generalization and the Bias-Variance Tradeoff

A core challenge in supervised learning is ensuring generalization—the ability of the
model to perform accurately on new, unseen data. This challenge is conceptualized
through the Bias-Variance Tradeoff [11].

o Bias: Represents the error introduced by approximating a real-world problem
with a simplified model. A high-bias model (e.g., an under-trained model or a
model with insufficient capacity) often leads to underfitting, failing to capture

the underlying patterns in the training data.

e Variance: Represents the error due to the model’s excessive sensitivity to small
fluctuations in the training set. A high-variance model (e.g., an over-trained
model) often leads to overfitting, performing exceptionally well on the training

data but poorly on the test data.

The objective in SFT is to strike a balance: achieving low empirical risk R(6) while
maintaining the capacity for generalization, ensuring that the true risk R(#) remains
low. This balance is often managed through hyperparameters such as regularization
strength A, the choice of optimizer, and early stopping criteria [12]. This relationship
is illustrated in Figure 2.4.

A

Total Error

Variance

Optimum Model Complexity

Error

& >
Model Complexity

Figure 2.4: This figure illustrates the classic bias-variance trade-off in machine
learning. As model complexity increases, the model’s bias (its tendency to miss the
true relationship) decreases while its variance (its sensitivity to fluctuations in the
training data) increases. The goal is to find the optimum model complexity that
minimizes the total error, balancing these two competing sources of error.

10
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2.2.10 Supervised Fine-Tuning (SFT) as the Foundation

Supervised Fine-Tuning (which will be better introduced in the next chapters) involves
leveraging the pre-trained knowledge 6y and further minimizing the empirical risk
R(G) calculated via the sequence NLL loss over a specific task dataset. NLL/Cross-
Entropy is mathematically convenient for likelihood maximization; However, it
does not necessarily align with complex human preference metrics (like helpfulness,
truthfulness, coherence) which are inherently non-differentiable. The limitations of
the standard NLL loss in capturing nuanced objectives motivate the exploration of
custom loss functions and advanced techniques introduced in the subsequent chapters

to better optimize LLMSs in the context of recipe generation.

2.3 NLP - Natural Language Processing

For decades, teaching a computer to truly understand human language felt like a
distant goal. This is the challenge at the heart of Natural Language Processing
(NLP), a field of artificial intelligence focused on bridging the between our fluid,
contextual language and the rigid, numerical world of computers. Early attempts
tried to solve this problem by hand-crafting vast encyclopedias of grammatical rules
[13]. However, these systems were fragile; they would break when faced with slang, a
simple typo, or the endless creativity of human expression.

The real breakthrough came with a change of perspective: instead of explicitly
teaching computers the rules of language, we let them learn the patterns themselves
from massive amounts of text data [14]. This data-driven approach is the foundation
of modern NLP and the deep learning models that reached human-level performances,
from translating languages in real-time to writing poetry. This chapter will walk
through the key innovations that made this possible, building up the concepts needed
to understand the core work of this thesis.

The first problem we encounter is the incapability for NLP models to understand
human language since they can only process numerical values. To get a model to
process a recipe, we first need a clever way to translate our words into its native
language of numbers. This translation happens in two main steps: tokenization and
embedding.

Before we can do any complex math, we have to divide our input text into
manageable pieces. This process, called tokenization, breaks down a sentence into
a list of "tokens." While a token can be a whole word, modern models often use
a smarter approach called sub-word tokenization [15]. This allows the model to
break down unfamiliar words into smaller, known pieces. For example, the word
"undercooked" might become "under" and "cooked." This is an elegant solution that
helps the model handle typos and rare words without needing an infinitely large
dictionary.

With our text now a sequence of tokens, we need to convert each one into a vector

of numbers. An early approach was one-hot encoding, which created a huge vector

11
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for each token with a single ’1’ and zeros everywhere else. The problem was that
these vectors were enormous and, even worse, not conveying any semantic meaning.
The vector for "cheese" was no more related to "milk" than it was to "rocket," making
it impossible for a model to learn semantic relationships.

What really revolutionized NLP was the creation of token embeddings [16].
Instead of a sparse, giant vector, an embedding represents a token as a much shorter,
dense vector of meaningful numbers. The real magic is that these vectors are not
fixed; the model learns them during training. By analyzing how words are used
across billions of sentences, the model adjusts these vectors.

This process organizes words into a sort of high-dimensional map, where to-
kens with similar meanings become close neighbors. In this space, "pecorino' and
"parmesan" would cluster together, while "boil" and "fry" would also be nearby. This
direct link between a word’s meaning and its location in a geometric space is the
fundamental concept that powers our topological loss (which will be better introduced
in the next chapters). It allows us to mathematically measure the "distance" between
two lists of ingredients and have that distance mean something real.

For years, NLP models processed text sequentially, like reading a sentence one word
at a time. This struggled with long-range context. The game-changing architecture
that solved this was the Transformer. While we will dedicate an entire chapter to its
design, its potential lies in a mechanism called self-attention. In essence, self-attention
gives the model the ability to look at all the words in a sentence at once and decide
which ones are most important for understanding any given word. The incredible
power and scalability of this design directly paved the way for the Large Language
Models that are central to this thesis.

How does a model actually learn? It needs a teacher, or at least a critic, to tell it
when it’s wrong. This critic is the loss function. After the model makes a prediction,
the loss function calculates a score that represents how big the error was. The entire
goal of training is for the model to slowly adjust its internal parameters to make this
error score as low as possible.

The most common loss function for training models to generate text is Cross-
Entropy [17]. Its job is to look at the probability the model assigned to the correct
next word. If the correct word was "cheese" and the model thought there was a 90%
chance it was "cheese," the loss is very low. If the model only gave it a 1% chance, the
loss is very high. Cross-Entropy assumes that all tokens have similar importance and
frequency in texts and this is a significant issue because natural language famously
follows a Zipfian distribution, or Zipf’s Law [18]. This law states that a few tokens
(like 'the’, ’is’, ’in’) appear with extremely high frequency, while the vast majority of
tokens (like 'pecorino’ or ’guanciale’) are exceptionally rare.

The catch is that Cross-Entropy, when trained on such an imbalanced distribution,
it is incentivized to get the "easy" high-frequency words right, while treating a mistake
on the common word "the" with the same severity as a mistake on the rare, but
crucial, ingredient "pecorino." This limitation is the primary motivation for exploring

the custom loss functions in this work.
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Once the model is trained, we need a "judge" to evaluate its performance. To do
this, we use a set of standard metrics. BLEU [19] acts like a strict grammarian,
checking if the phrases in the generated text match a reference. ROUGE [20]is more
of a fact-checker, seeing if the key individual words are present. Finally, BERTScore
[21] is the semantic evaluator, using its own deep understanding of language to
determine if the generated text means the same thing as the reference, even if the

wording is different.

2.4 Generative Al

For most of its history, artificial intelligence has been a tool for analysis. We have
trained models to find patterns, classify data, and make predictions—basically to act
as a brilliant critic or a tireless judge. But in recent years, Al has made a remarkable
progress in creative capabilities. It has learned not only to analyze the world but
also to contribute to it with novel creations. This new frontier is the domain of
Generative Al, a branch of artificial intelligence focused on creating new, original
content that is indistinguishable from, and sometimes even surpasses, human-made
creations.

From composing music in the style of Bach to designing novel proteins that have
never existed in nature, Generative Al represents a shift in mentality from Al as an
analyst to Al as a creator. This chapter will explore the fundamental principles that
define this exciting field and it will guide through the key architectures that brought
it to life, and survey its transformative impact across industries. Understanding this
broader landscape is essential for the more focused explanation of Large Language
Models that will follow.

2.4.1 Generative vs. Discriminative Models

In order to understand what makes Generative Al so special, it is useful to compare
it with its more traditional counterpart: discriminative AI. This distinction lies at
the very heart of what these models are trained to do.

Think of a discriminative model as a judge. Its primary goal is to learn the
boundary that separates different categories of data. Given an input, it makes a
decision or a prediction. A classic example is an email spam filter; its job is to look
at an email and decide which of two boxes it belongs in: "spam" or "not spam." It
learns the characteristics that differentiate the two but has no idea how to write a
spam email itself. In more formal terms, it learns the probability of a label given an
input, or P(y|x).

A generative model, on the other hand, is an artist. Instead of learning to separate
data, it learns the underlying patterns and structure of the data itself. Its goal is to
understand the data so deeply that it can generate entirely new samples that look
like they could have come from the original dataset. It doesn’t just learn to recognize

a cat; it learns the essence of "cat-ness" so well that it can create a picture of a cat
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that has never existed. Formally, it learns the distribution of the data itself, P(x),
allowing it to create new data points from scratch. A comparison of these two model

types is illustrated in Figure 2.5.
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Figure 2.5: A comparison of generative and discriminative models. Generative
models, shown on the left, learn the underlying distribution of each class to model
how the data was generated. Discriminative models, on the right, learn a decision
boundary that directly separates the classes, without modeling the data distribution
itself.

2.4.2 Architectural Landmarks

Reaching nowadays state-of-the-art performance has been only possible thanks to a
series of brilliant architectural innovations, each solving a crucial aspect of Generative
AT tasks.

2.4.2.1 Early Deep Generative Models: VAEs and GANs

In the early days of the deep learning development, two architectures stood out.
Variational Autoencoders (VAEs) [22] took an elegant approach: they learned to
compress data into a simplified, latent representation and then learned to reconstruct
the original data from this compressed form. By sampling from this latent space, they
could generate new data. VAEs are typically trained by minimizing a combination of
a reconstruction loss (ensuring the output resembles the input) and a KL divergence
loss (ensuring the latent space is well-structured). VAEs are known for producing
diverse and creative outputs, though they sometimes suffer from a tendency to
generate slightly blurry or fuzzy results.

A few years later, a groundbreaking idea emerged: Generative Adversarial Net-
works (GANs) [23]. GANSs introduced a clever cat-and-mouse game between two
neural networks. The first, the Generator, acts like an art forger, trying to create
fake images that look completely real. The second, the Discriminator, acts as an art
critic, trying to tell the difference between the Generator’s fakes and real images from
the training data. These two networks train together using an adversarial loss, where

the Generator tries to minimize the Discriminator’s ability to spot fakes, while the
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Discriminator tries to maximize it. This adversarial process proved to be incredibly
effective, leading to the creation of hyper-realistic images and pushing the boundaries
of what people thought Al could do. Figure 2.6 provides a comparative illustration

of these two architectures.
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Figure 2.6: A comparative illustration of Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs). The VAE (top) consists of an encoder that
maps input data = to a latent space representation, and a decoder that reconstructs
the input (2’ ~ x) from this latent representation, trained with reconstruction and
KL divergence losses. The GAN (bottom) comprises a generator that creates fake
data Z from random noise, and a discriminator that learns to distinguish between
this fake data and real data & from a dataset using an adversarial loss, leading to a
generative model capable of producing realistic outputs.

2.4.2.2 The Transformer’s Role as a Universal Architecture

While VAEs and GANs were powerful, the Transformer architecture, first developed
for language translation, completely reshaped the generative landscape. Its core
innovation, the self-attention mechanism, turned out to be a remarkably versatile tool
for finding patterns in almost any kind of data, not just text. Researchers discovered
that this ability to address the importance of different data points in a sequence could
be applied to pixels in an image, notes in a piece of music, or lines in a computer
program. When applied to generative tasks, especially in the autoregressive setting
(predicting the next element in a sequence), Transformers are typically trained using
a Cross-Entropy loss objective. This discovery began to unify the field, establishing
the Transformer as a universal blueprint for building powerful generative models
across nearly every domain. The complete Transformer architecture is detailed in

Figure 2.7.
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Figure 2.7: Architectural overview of the Transformer model. The model consists
of an encoder stack (left, orange) and a decoder stack (right, purple). Both stacks
utilize multi-head attention mechanisms, feed-forward layers, residual connections,
and layer normalization. The decoder incorporates an additional masked multi-head
attention layer to prevent attending to future tokens and a multi-head cross-attention
layer to attend to the encoder’s output. Positional encodings are added to input
and output embeddings to retain sequential information. The final decoder output
passes through a linear layer and a softmax function to produce output probabilities,
typically trained with Cross-Entropy loss for generative tasks.

2.4.2.3 The GPT Family and Autoregressive Language Modeling

Perhaps the most prominent examples of generative Transformer models are those
in the GPT (Generative Pre-trained Transformer) family, developed by OpenAl
[gpt]. These models, including GPT-2, GPT-3, and subsequent iterations (often
referred to generically as GPT-X), are typically decoder-only Transformers. They
are pre-trained on vast amounts of text data with the simple objective of predicting
the next word (or token) in a sequence. This autoregressive process, optimized using
a standard Cross-Entropy loss (or Negative Log-Likelihood), allows the models to
generate remarkably fluent and coherent text across a wide range of styles and topics.
Their success demonstrated the power of scale and established the foundation for
modern Large Language Models. Figure 2.8 shows the architecture of the GPT
family.

2.4.2.4 Diffusion Models and Stable Diffusion

A more recent, yet incredibly powerful, class of generative architectures is Diffusion
Models. These models have shown state-of-the-art results, particularly in image
generation. The core idea is inspired by thermodynamics: a forward process gradually

adds noise to an image until it becomes pure static, and a reverse process learns to
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Figure 2.8: The architecture of the GPT decoder-only model. The left side shows
the overall structure, including input embeddings, positional encodings, a stack of L
Transformer Blocks, and a final linear layer with softmax for probability output. The
right side details a single Transformer Block, highlighting the masked multi-head
attention and feed-forward network sub-layers, each with residual connections and
pre-layer normalization.

iteratively remove the noise, starting from static, to generate a clean image. Models
like Stable Diffusion are prominent examples of Latent Diffusion Models, which
perform the diffusion process in a compressed latent space for greater efficiency.
The training objective for these models typically involves predicting the noise that
was added at each step, often using a Mean Squared Error (MSE) loss between the
predicted noise and the actual noise. To guide the generation process towards specific
concepts (like generating an image based on a text prompt), these models are often
conditioned using embeddings from other models like CLIP, which connects text
and images. Figure 2.9 visually represent the training procedure for Stable diffusion

models.

2.4.3 Modalities of Generative Al

The versatility of modern architectures means that Generative Al is not limited to a
single type of content. Its capabilities span a wide range of human creativity and

communication:

o Text Generation: This domain is represented by use cases involving chatbots,
automated summarizers, creative writing partners, and, as explored in this

thesis, the generation of recipes.
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Figure 2.9: The training framework for a Latent Diffusion Model (LDM). A pre-
trained autoencoder (comprising encoder E and decoder D) maps an image X into
a compressed latent space, Zy. The forward process adds noise to create Z;. A U-Net
is trained to predict the added noise, conditioned on Z; and an encoded prompt
(e.g., text processed by 7). The denoised latent Zj is estimated by subtracting the
predicted noise from Z;, and the decoder D reconstructs the image Xj.

e Image and Video Generation: This includes text-to-image models that can
turn a simple prompt like "an astronaut riding a horse on Mars" into a stunning
picture, as well as emerging models that can generate short video clips from

text.

e Audio and Music Synthesis: This technology can clone a person’s voice
from a short sample, compose original music in any genre, or generate realistic

sound effects for films and games.

e Code Generation: This domain consists of writing, suggesting and editing
snippets of code in order to accomplish software engineering tasks, improving

software engineers’ productivity.

2.4.4 Applications and Impact

The ability to generate novel content has unlocked applications that were once
unthinkable. In scientific research, Generative Al is being used to design new drugs
and discover stable proteins which accelerated the pace of discovery. In the creative
industries, it is used as a powerful co-pilot for artists, designers, and writers, helping
them brainstorm ideas and produce content more efficiently. In software engineering,
it is boosting developer productivity and lowering the barrier to entry for new
programmers. The impact of this technology is already profound and continues to
grow at an incredible rate.

Generative Al represents therefore a milestone in the capabilities of artificial
intelligence, moving from analysis to creation. It is defined by its ability to learn the
underlying patterns of data and generate new samples, a task made possible by a
series of architectural breakthroughs from VAEs and GANs to the now-dominant

Transformer. The latter is known as one of the key components of models known
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as Large Language Models (LLMs). The next chapter will dive deep into the world
of LLMs, exploring what makes them so powerful and how they can be adapted

for specialized tasks like the one at the core of this research. A comprehensive

comparison of RNN, LSTM and Transformers can be found in table 2.1

Feature RNN LSTM Transformer
Sequence Pro-| Sequential, one ele- | Sequential, like | Parallel, processes
cessing ment at a time via | RNNs, but with | entire sequence via
hidden state. internal gates. self-attention.
Handling Long- | Poor due to vanish- | Improved over | Excellent due to self-
Range Depen- | ing/exploding gradi- | RNNs via gating | attention enabling

dencies ents. mechanism control- | direct connections
ling information | between any ele-

flow. ments.
Parallelization | Difficult due to | Difficult due to | Highly Paral-
sequential computa- | sequential computa- | lelizable due to
tion dependency. tion dependency. independent  com-
putations  within

self-attention.

Key Innovation

Recurrence and hid-
den states for se-
quential data.

Gating mechanisms
(input, forget, out-
put) for improved

Self-attention mech-
anism, eliminating
recurrence for paral-

memory.

memory. lel processing.
Primary N/A (Baseline se-| Addresses RNN’s | Addresses RNN/L-
Limitation quential model). vanishing gradients | STM’s  sequential
Addressed and poor long-range | bottleneck (limits

parallelization) and

long-dependency
issues.

Table 2.1: Comparison of RNN, LSTM, and Transformer Architectures

2.5 Transformer Architecture: principles and implemen-

tation

For years, the most popular style for processing language took inspiration from the
way we human beings do it: sequentially. Models like Recurrent Neural Networks
(RNNs) [24] and their later-to-be-more-popular LSTMs [25], would process a sentence
word by word while maintaining a hidden "memory" of the prior things they’d
processed. Intuitive as this approach is, it had a major bottleneck. The model’s
understanding of the first word’s meaning had to be propagated all the way down a
long chain before it could influence its understanding of the last word, often getting
diluted along the way. This troubled them when they tried to process long-range
dependencies in text. Also being models that were sequential in nature, they were
difficult to parallelize, so training them using enormous datasets was a long and
cumbersome process. The community required a new idea, and in 2017 an innovative
paper titled "Attention Is All You Need" [26] provided it to them: the Transformer.
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2.5.1 The Central Concept: Self-Attention

The Transformer’s revolutionary concept is self-attention. Rather than processing
a sentence word-by-word, the self-attention mechanism lets the model consider all
the words of the input sequence as a whole. For each of the words it’s processing,
it’s able to calculate a "attention" or "relevance" score for every one of the other
words in the sequence in real time. This lets it borrow context from anywhere in the
text without penalty for remoteness. For the sentence "The robot picked up the ball
because it was heavy," self-attention lets the model know that "it" is the "ball" and

not the "robot" by learning to attend disproportionately to the correct nouns.

2.5.2 Formalizing the Attention Mechanism: Query, Key, and Value

To bring this idea into practice, the attention mechanism follows a powerful analogy
from the information retrieval literature that provides three vectors for every input

token:

e Question (Q): This vector is the current word that is querying for information.
It is akin to a query asking the question, "What are the most relevant words in

this sentence to my meaning?"

o Key (K): This vector may be treated like a tag for every word in the sequence.
It previews the type of information a word represents by answering a question

by saying, "This is the type of context I am able to offer."

o Value (V): This vector holds the real content or substance of a word. If the
Key of a word goes well with a Query, its Value is actually what is propagated

to offer context.

2.5.3 Mathematics Formulation for Scaled Dot-Product Attention

Computation of attention from these three vectors is mathematically valid and very

elegant. It involves four primary steps:

: QKT
Attention(Q, K, V') = softmax v
Vi
1. Calculate Scores: The model computes the similarity between the Key vector
of the current word and the Query vector of all the words in the sequence. It
is accomplished by performing the dot-product operation between the matrices

(KQT). A high score means a strong relevance.

2. Scale: For stabilizing the gradients while training the model, the scores are

scaled by normalizing the scores by the square root of the key vector’s dimension

(V).

3. Normalize: We take the scaled scores and apply a softmax function to them.

This normalizes them to a set of positive numbers that add to 1, which we
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can view as the "attention weights." These are exactly the weights that denote

exactly how much attention the current word must pay to each other word.

4. Weighted Sum: We weigh these attention weights by the Value vectors of
individual words. Words that have very high attention weights contribute a
lot of their meaning to the final representation of the current word and hence

infuse it with rich relevant context.

2.5.4 Multi-Head Attention: Parallel Attention

One attention mechanism will potentially learn to attend to a single relationship
type (e.g., subject-verb relationships). To create a stronger model, the Transformer
uses Multi-Head Attention. This is done by running the scaled dot-product attention
mechanism several times in parallel. Each of these runs in parallel is a "head." Before
the process gets underway, the original Query, Key, and Value vectors get divided
into smaller pieces and each head runs on a distinct piece. That way, each of the
heads will potentially learn distinct relationship types of context all simultaneously.
It’s like having a panel of experts read the same sentence where each expert studies
a distinct angle—one the grammar, another the semantics, a third the long-range
dependencies. The output of all the experts is then aggregated together to produce

a stronger and subtler final result.

2.5.5 Positional Encoding: Reinserting Sequence Order

A great side benefit of the self-attention mechanism is that it is order-agnostic by
itself. It views a sentence as a "bag of words" and has no inherent sequence. To cure
this problem, the Transformer incorporates information about the particular position
of each token into the input. This is accomplished through the use of positional
encodings, vectors that represent a token’s particular position in the sequence. The
positional vectors are added to the token embeddings very early in the process so
that the model will notice the difference between "the dog chased the cat" and "the
cat chased the dog."

2.5.6 The Complete Transformer Block: Putting the Parts Together

A Transformer model consists of lining up a number of identical blocks. Each of

these blocks has two major sub-layers:

e The Feed-Forward Network: Following the Multi-Head Attention sub-layer
having computed the inputs and accumulated context, the result is fed through
a plain, fully connected feed-forward network. This network affords further
computational depth and non-linear transformation for the individual token’s

representation.

e Residual Connections and Layer Normalization: Both of the sub-layers

(attention and feed-forward) are encapsulated by two important parts: a
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residual connection and layer normalization. The residual connection (or skip
connection) combines the sub-layer’s input with its output to avoid the vanishing
of gradients in very deep networks. Layer normalization in turn re-scales the
output to a standard distribution. Both of these components together are

important for the stable training of very deep Transformer models.

2.5.7 The Original Architecture: Encoder and Decoder Stacks

The simplest Transformer model was designed for the task of machine translation

and consisted of two sets of blocks:

e The Encoder’s Role: The encoder’s job is to read and understand the input
sentence (e.g., in English). It’s a stack of the encoder blocks that operate over
the entire input sequence in parallel and construct a rich contextual knowledge
of it.

e« The Decoder’s Role and Masked Self-Attention: The decoder’s task is
to produce the output sentence (e.g., the French sentence) token by token. It
has self-attention but it incorporates a very crucial concept named Masked
Self-Attention. This mask prevents the decoder from "cheating" by peeking
ahead of the sequence it is trying to predict. For instance, when it’s trying to
predict the fourth word of the sentence in the output, the mask will see that
the model will be able to attend to nothing but the first, second, and third

words. This is a necessity for autoregressive generation tasks.

2.5.8 Architectural Variants and their Use Cases

Since the initial paper, the community has further extended the Transformer archi-

tecture to a few families:

o Encoder-only Models (e.g., BERT [27]): Encoder-only models employ the
encoder stack and are the champions of understanding language. They are

suitable for sentiment analysis, text classification, and question answering.

o Decoder-only Models (e.g., GPT [28], Qwen, SmolLM): These models
are composed solely of the decoder stack and are text generation masters.
Repeatedly anticipating the next token, they will write essays, generate code,

and create recipes. Models utilized by this thesis fall under this category.

2.5.9 Conclusion: Why the Transformer Dominates Modern NLP

The Transformer’s architecture overcame the major challenges that restrained its
forerunners. Its design is very parallelizable such that it could be trained upon
enormous datasets using current hardware. Its self-attention mechanism is surprisingly
adept at discovering long-range complicated relationships in a piece of text. This

efficiency and potency are why the Transformer has become the undisputed base for
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almost all the state-of-the-art language models that have come into being until the

time of writing this thesis.

2.6 LLM - Large Language Models

The concepts of Generative Al and the Transformer architecture, described in the
previous chapters, come together to create today’s most impactful technology: Large
Language Models (LLM). In recent years, LLMs have captured the public’s attention
and accelerated the pace of Al research like anything before. These models represent
a clear advancement and application of the principles we have discussed, resulting
in systems with an unprecedented ability to understand, generate, and interact
with human language. They have impacted nearly every industry, abandoning pure
academical interests and becoming a globally significant technology. This chapter
will explore what LLMs are, how they are built, their remarkable capabilities, and

their limitations.

2.6.1 What is an LLM?

Why Large Language models are defined as "large"? The term refers to more than
just the simple number of parameters, which can vary from billions to trillions, but
it also takes into account the huge amount of data they are trained on. The increase
in computational resources and data not only results in quantitative improvements,
but it also expands the ability of the model to adapt to new tasks never seen before.
When models grow beyond a certain size and amount data, they begin to show skills
and capabilities that they were never explicitly trained to perform. A model trained
simply to predict the next word in a sentence might learn to translate languages,
write poetry, summarize complex documents, or even perform rudimentary reasoning.
LLMs distinguish themselves from their smaller predecessors due to this capability

of generalization obtained from a simple training objective.

2.6.2 From Statistical Models to Transformers

Modern LLM are the result of decades of research. Early statistical models could
predict the next word based on the previous few, but they missed any real under-
standing of grammar or meaning. The adoption of neural networks, particularly
LSTMs, lead to a better understanding of linguistic nuances, however they suffered
of short-memory issues. The true revolution, however, began with the Transformer
architecture. Models like BERT and the GPT series were the first to combine this
architecture with the "large-scale" philosophy. They demonstrated that by massively
increasing the number of parameters and the amount of training data, a Transformer
model could achieve a remarkably deep and flexible understanding of language. This
discovery started a race to scale that has shaped the last several years of Al research,

leading directly to the powerful models we have today.
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2.6.3 The Two-Stage Training Paradigm

Modern LLMs are obtained by applying two training procedure, each of them with

different objectives in mind: pre-training and post-training, or finetuning.

1. Pre-training: The first stage is pre-training, an incredibly resource-intensive
process where the model is trained on a vast and diverse corpus of text. The
goal here is not to teach the model any specific task, but to force it to learn the
fundamental patterns of language, grammar, reasoning, and factual knowledge
embedded in the data. For months, the model simply learns to predict the next
word in a sentence, and through this simple objective, it builds a comprehensive
internal representation of the world as described in text. The result of this
phase is a foundational or "vanilla" model, which can serve as a performance

lower bound.

2. Fine-tuning: A pre-trained LLM is like a university graduate with a vast
general education but no specific job training. The second stage, finetuning,
is the process of specializing this general model for a particular task. By
continuing the training on a much smaller, curated dataset, we can adapt the
model to become an expert in a specific domain. In the context of this thesis,
finetuning is used to adapt a base model to the specific task of generating
a complete recipe from a given title. To make this process more accessible,
efficient methods like LoRA finetuning are often employed. Figure 2.10 provides

an overview of this entire training pipeline.

2.6.4 Capabilities and Limitations

The capabilities of modern LLMs are vast, but it is just as important to understand
their weaknesses. Beyond their emergent abilities, LLMs have become powerful
tools due to their capacity for in-context learning. They can often perform a
task with just a few examples provided in the prompt, without needing any changes
to their internal parameters, allowing them to be adapted on the fly for a wide
range of linguistic applications. Despite their power, LLMs suffer from several well-
documented challenges. They are prone to hallucinations, where they generate
confident and plausible-sounding information that is completely false. They can
also inherit and amplify the biases present in their training data. For the scope of
this research, a particularly critical weakness is that LLMs often struggle in text
generation tasks where numbers are involved. This difficulty with numerical precision
in a procedural context like recipe generation is a primary motivation for exploring

alternative loss functions.

2.6.5 Taxonomy of LLMs

e Base Models . Instruction-Tuned Models: A base model is the direct

output of the pre-training phase. It is excellent at completing text but does
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Figure 2.10: Overview of the Large Language Model (LLM) training pipeline,
encompassing both pre-training and post-training stages. The process begins with a
dataset that undergoes preprocessing, including filtering, synthetic data generation,
and mixing. This preprocessed data then feeds into the pre-training phase, which
involves techniques such as Q&A format training, long-context stages, continued pre-
training, high-quality data stages, and knowledge distillation. Following pre-training,
the model undergoes post-training, utilizing methods like supervised finetuning (SFT),
reinforcement learning with human feedback (RLHF), direct preference optimization
(DPO), and further knowledge distillation. The final stage involves additional
optimization techniques.

not necessarily know how to follow user instructions or hold a conversation.
An instruction-tuned model (often called a chat model) is a base model that
has undergone an additional finetuning step on a dataset of instructions and
responses, making it much better at being a helpful and interactive assistant.
For instance, models like the base Llama 3 or Mistral 7B serve as foundations,
while their instruction-tuned counterparts, such as Llama 3 Instruct or Mistral
7B Instruct (and proprietary models like OpenAIl’s GPT series which are often
accessed in their instruction-tuned form), are specifically designed for interactive

use.€

¢ Closed-Source vs. Open-Source: Closed-source models are proprietary
and typically accessed only through an API provided by the company that
developed them. In contrast, open-source models release their parameters
publicly, allowing researchers and developers to run, modify, and finetune
them on their own hardware. This research, for instance, utilizes several open-
source models, including Qwen2.5 - 1.5B, SmolLM - 3B, and Qwen3 - 4B. The

differences between base and instruction-tuned models are summarized in Table
29
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Table 2.2: Comparison of features between a Base Large Language Model (LLM)
and an Instruction-Tuned Large Language Model. This table highlights differences
in their purpose, task specialization, response style, consistency, ability to handle
complex tasks, adaptability to tone and format, alignment with user intent, and
example applications.

Feature

Base LLM

Instruction-Tuned LLM

Purpose and
Training Focus

Trained on broad datasets to
learn general language and pat-
terns, but without focus on spe-
cific instructions

Fine-tuned with instruction-
specific data, allowing it to un-
derstand better and respond to
user commands

Task Specializa-
tion

Performs well on broad lan-
guage tasks

Specially optimized for follow-
ing instructions and performing
tasks on demand

Response Style

Outputs general language pat-
terns, less sensitive to variations
in phrasing or context

Focused responses that directly
address user queries, highly sen-
sitive to specific prompts, can
adapt better to user instruc-
tions

Consistency and
Reliability

Response quality and format
can vary across similar prompts
and are less consistent for stan-
dardized tasks

Provides consistent responses
across similar prompts, reliable
for applications requiring uni-
formity

Handling Com-
plex Tasks

Can struggle with multi-step or
layered instructions

Better at managing complex,
multi-step tasks due to instruc-
tion training

Adaptability to
Tone and Format

Can respond to tone requests
but may mneed additional
prompting to adjust style or
structure precisely

More responsive to tone and for-
matting changes; can switch be-
tween casual, formal, bulleted,
or numbered formats

Alignment with
User Intent

May provide indirect answers

Aims for responses aligned with
user intent and preferences

Example Appli-
cations

Broad NLP applications like
language translation, text gen-
eration

Chatbots, virtual assistants,
task-specific agents

2.6.6 Conclusion

Large Language Models represent the culmination of decades of research, combining
the architectural prowess of the Transformer with the brute force of massive-scale
data. Their two-stage lifecycle of pre-training and finetuning makes them both
powerful generalists and adaptable specialists. However, their immense size and
the standard methods used to train them present practical challenges, especially
when aiming for high factual and numerical fidelity. This reality necessitates the
development of more efficient and intelligent adaptation techniques, a topic we will

explore in the next chapter about Finetuning and Parameter-Efficient Finetuning.
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2.7 Small Language Models

2.7.1 Introduction: A New Paradigm of Efficiency and Specializa-

tion

For several years, the story of language models was a simple one: bigger was always
better. Research labs were in a race to the top, scaling models to astronomical sizes
with the belief that pure scale was the primary driver of intelligence. While this
"scaling law" philosophy produced incredibly powerful and generalist models, it also
created a new set of challenges related to cost, accessibility, and practicality. In
response to these challenges, a new and exciting counter-trend has emerged: the rise
of Small Language Models (SLMs). This chapter explores this shift towards efficiency
and specialization, detailing what SLMs are, why they are becoming so important,

and how they represent a more sustainable and accessible future for applied Al.

2.7.2 What is a "Small" Language Model?

The adjective "small" is, naturally, relative. What was huge a few years ago may
count as small these days. An SLM is thus best characterised not by a concrete count
of parameters, but in comparison with the gigantic "frontier" models with hundreds
of billions or trillions of parameters that abound. SLMs fall generally in the range of
several hundred million to some billions of parameters—large enough to be potent,
but small enough to handle. This study, for example, involves a few models that fall
neatly into this range, such as Qwen2.5 - 1.5B, SmolLM-3B, and Qwen3 - 4B.

2.7.3 SLM Philosophy: Data Quality more than Data Volume

Among the key insights behind successful contemporary SLMs is a change in phi-
losophy from "big data" to "good data." The big-data-style strategy of training a
model with a crude, unfiltered scrape of the whole web is being replaced by a finer-
grained strategy. The "less is more" maxim implies that training a small model with
an exhaustively curated, high-quality, diverse set of data can match or exceed the
performance of a larger model trained with lower-quality data. Quality data is the

key to creating successful and reliable SLMs, and that is an important foundation.

2.7.4 Key Techniques for Creating High-Performing SLMs

Other than utilizing improved data, certain significant techniques were devised for

bettering small models’ performance.

« Knowledge Distillation: This is an ingenious technique in which a small
"student" model is trained to reproduce the outputs of a much larger, more
proficient "teacher" model. The student is not only trained from the correct
solutions in a dataset, but from the subtle probabilities and "reasoning" profiles
of the teacher. This, in turn, imprints the advanced knowledge of the large

model in a much more economical and lighter form.
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e Curated Pre-training Corpora: The step of selecting and cleaning the data
with great care before pre-training starts is no longer optional. By eliminating
redundant or low-quality documents and making the data diverse and well-
balanced, data scientists can give the model a better foundation from the
beginning, enabling it to do more from the onset. The process of knowledge

distillation is illustrated in Figure 2.11.

Teacher Model

Figure 2.11: A diagram illustrating the process of knowledge distillation. A larger,
more complex "Teacher Model" is first trained on the data. The "Knowledge" from this
teacher is then distilled and transferred to a smaller, more efficient "Student Model,"
which learns to mimic the teacher’s behavior. This process allows the student model
to achieve a performance level close to the teacher’s, while being more lightweight
and computationally less expensive.

2.7.5 The Central Trade-off: Generalist Giants or Specialist Ex-
perts?

The contrast between a large LLM and a well-tuned SLM can be framed as that
between a specialist and a generalist. The huge LLM has "read" much of the internet;
it possesses a common sense, big-picture grasp of the world and is conversant about
almost anything. Yet, in some cases, knowledge of it is shallower and more error-
prone. An SLM, when it is fine-tuned for a particular domain, becomes a specialist
expert. It knows nothing about history or astrophysics, but it can attain utterly

stunning accuracy and reliability in its own narrow sphere of competence.

2.7.6 The Benefits of Small Language Models

The real-world advantages that spurring SLM adoption are impressive:

e Computing Power and Cost: SLMs need far less computing power for
fine-tuning as well as for running inference. It reduces the financial cost by an
enormous factor and brings them into the realm of far more researchers and

organizations.
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e Lower Latency: Because they’re smaller, SLMs process data, build responses,
and accomplish all that far faster. Lower latency is more important for real-time

interactive applications like chatbots or coding assistants.

e Flexible Deployment: Because SLMs take low footprints, they can deploy
in diverse settings. On-premise, they can run on a firm’s inhouse server, local

desktop computer, or edge devices such as in-car systems or smartphones.

e Privacy and Security: It is only by running a model locally or on a personal
server that sensitive data need never travel through a third-party API, a critical

requirement for most companies.

2.7.7 Limitation and Difficulty

There is, of course, a catch for such efficiency. SLMs cannot replace their large

siblings in all applications.

e« Lower General World Knowledge: SLMs, by their design, can store much

less of the great corpus of facts that large models absorb in pre-training.

o Fewer Emergent Skills: They also generally lack the large, surprising skills
such as multi-step reasoning or advanced creative writing that emerge in the

largest models.

e Catastrophic Forgetting: There is more chance that in finetuning, an SLM
can "forget" some of the initial general competences as it overspecializes for the

new task. It is a problem that needs to be handled with care.

However, such models also tend to specialize because even the largest LLMs also have
their vulnerabilities; for example, it is no secret that LLMs would fail in applications

of text generation with numbers.

2.7.8 SLMSs’ Ideal Use Cases

SLMs are suited best for applications in which deep, consistent knowledge of a narrow
domain is more in preference than the shallower, more broad knowledge. It is suited
for applications such as domain-specialized chatbots, medical records summarization,
and expert content creation. An application such as creating recipes, with issues such
as low recall of ingredients, is a best-suited application for a domain-specialized SLM
that can be highly fine-tuned to learn the specific structure and factual requirements

of a recipe.

2.7.9 The Contribution of SLMs in This Research

The choice of using models in the sub-5-billion parameter count for the purpose of
this thesis was a deliberate one. The models that were selected for these experi-
ments—Qwen2.5 - 1.5B, SmolLM-3B, and Qwen3 - 4B —were specifically chosen

because they fall into that class of fast, flexible, and specialist models. Their small
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sizes make them best suited for fast experimentation, and they allow for rigorous
testing of a range of custom loss functions. Furthermore, they fall into that class of
models most likely to appear in real-world, application-special applications such as

the one analyzed here.

2.7.10 Conclusion: The Future is Both Large and Small

We summarize the key benefits and limits of both Small and Large Language models
in Table 2.3 Ultimately, the scaling race is not concluded by Small Language Models
but rather is their maturation. The AI of the future is not a monolithic system
but an eclectic ecosystem. Into such a world, large, all-purpose "utility" models will
exist side by side with a constantly shifting collection of highly-optimized, specialist
SLMs. These easy-to-use and economical models will fuel the scaling of the next
generation of Al, power innumerable real-world applications, and bring the promise

of the language models into practical reality for all.

Table 2.3: Comparison of Small Language Models (SLMs) and Large Language
Models (LLMs)

Feature Small Language Models | Large Language Models
(SLMs) (LLMs)

Knowledge Specialist: Deep knowledge in a | Generalist: Broad knowledge

Scope narrow domain after finetuning. | across many topics; a "big-

picture" grasp.

Accuracy / Reli-
ability

Can attain high accuracy and
reliability within their special-
ized domain.

Knowledge can be shallower
and potentially more error-
prone, especially in niche areas.

Computational
Cost  (Training
& Inference)

Requires far less computing
power, reducing financial costs
significantly. More accessible.

Requires substantial computing
power and resources, leading to
higher costs.

Latency Lower latency, faster responses, | Higher latency due to larger size
suitable for real-time applica- | and computational demands.
tions.

Deployment Highly flexible: can run on- | Less flexible: typically requires

Flexibility premise, local machines, or edge | significant server infrastructure

devices (smartphones, cars).

or cloud APIs.

Privacy & Secu-
rity

Enhanced privacy/security as
they can run locally, keeping
sensitive data in-house.

Often rely on third-party APIs,
potentially exposing sensitive
data.

Ideal Use Cases

Domain-specific applications re-
quiring deep expertise (e.g., spe-
cialized chatbots, recipe gener-
ation, medical summarization,
on-device Al).

Broad, general-purpose tasks
requiring common sense rea-
soning, wide knowledge, and
creative text generation across
many domains.

30




Background

2.8 Data Analysis Using Topological and Geometric
Methods

2.8.1 Introduction: The Shape of Data, Beyond Traditional Statis-
tics

In a subject as rich and complex as recipes, the structure among recipes can be more
valuable than the recipes themselves. Traditional statistics can describe the mean
number of ingredients or the cook verb most likely used, but too often it misses
the big picture. To view the large-scale patterns we require a different set of tools.
This is where Data Analysis (TDA) comes in. It is a modern field of mathematics
that allows for a very powerful lens in viewing the "shape" in the data and revealing

inherent structure that may otherwise go unseen [29].

2.8.2 From Data Points to Geometric Shapes: The Simplicial Com-
plex

The first step in TDA is translating our cloud of abstract data points, in this case,
recipes, into a shape we can see and handle geometrically. The concept’s something
like cosmic connect-the-dots. We get started with drawing a line segment joining any
two recipes which are extremely close together. Then we finish any three recipes in

which each one’s close to the others with a triangle, and so on.

2.8.2.1 A Formal Definition

This process becomes formalized through the creation of a mathematical structure,
a simplicial complex. The abstract simplicial complex K consists of a collection of
finite sets, such that if the set o belongs to K then any subset ¢ belongs also in K.
Each o contained in K we call a simplex: the 0-simplex is the vertex (a point), a
1-simplex the edge, the 2-simplex the triangle, etc.

Constructing this from data, we normally employ the Vietoris-Rips complex [30].
For a point set X and proximity threshold e for distances, the Vietoris-Rips complex
Ve(X) consists in the set of all point subsets S with the property that the distance

in X from each pair in the subset S does not exceed e.
Vi(X) = {0 C X | Va,y € 0,d(z,y) < e}

2.8.3 Homology: A Language for Describing Shape

Once we have shape, we need a language to describe it. Homology is the algebraic
structure used by TDA in order to count and classify in a systematic fashion the

various types of "holes" in our simplicial complex. [31]

o 0-Dimensional Holes (Connected Components): Counts the number of separate

clusters or islands of data.

31



Background

o 1-Dimensional Holes (Loops): Counts the number of independent loops or

circular patterns.

» Higher-Dimensional Holes (Voids, Cavities): Counts hollow spheres or voids in

higher dimensions.

2.8.3.1 The Algebra of Homology

Mathematically, homology is defined through a sequence of vector spaces and linear
maps. For each dimension ¢, we define the chain group Cj as the vector space of
all formal sums of g-simplices. The boundary operator 9, : C; — Cy—_1 is a linear
map that takes a simplex to the sum of its faces. From this, we define two important

subspaces:

o The cycle group Z; = ker(9,), which contains chains with no boundary (i.e.,

loops).

o The boundary group B, = im(Jy41), which contains chains that are themselves

boundaries of higher-dimensional shapes.

Because every boundary is also a cycle, we have B, C Z,. The ¢-th homology group

is then defined as the quotient vector space:
Hy(K) = Z,(K)/By(K)

The dimension of Hy(K) gives us the number of independent g-dimensional holes in

our shape K.

2.8.4 The Scale Challenge and the Solution of Persistence

The first issue that directly comes up is: how far apart should we select €7 Too
small an € and we get lots and lots and lots of widely scattered points, too large
and everything collapses into one large blob. The key solution to this problem is

Persistent Homology.

2.8.5 Persistent Homology in Detail

Instead of choosing one ¢, persistent homology analyzes the data across *all* possible
scales simultaneously. This is done by creating a filtration, which is a nested sequence

of simplicial complexes as € increases: Ve, CV,, C ... fore; <ey < ....

2.8.5.1 Birth, Death, and Persistence

persistent homology follows the lifespan of topological features along the course of
filtration. When a new hole emerges at some specific distance, we refer to it with its
"birth". Once € keeps increasing, that hole shall finally get filled in, something we
refer to with its "death". The "persistence" for a hole allows us to refer to the time
from its birth till its death.
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2.8.5.2 The Persistence Diagram: Visualizing Topological Features

The final result is a persistence diagram, a 2D plot whose points are the holes, with
the x and y coordinates being its birth and death times. Those features well away

from the diagonal are robust and the significant signals in the data.

2.8.6 From Analyzing a Single Shape to Comparing Two: Optimal
Transport

While persistent homology is perfect for comparing a single point cloud, our thesis
demands that we *compare® two highly disparate point clouds: the one from our
model and the one from the ground truth. Here we refer back to the notion of Optimal
Transport whose basic idea can be described with the analogy of the so-called "Earth
Mover’s Distance" [32] : how can we transport in the optimal way a heap of dirt

from some initial state to some terminal state?

2.8.7 The Wasserstein Distance: Formalizing the Earth Mover’s
Distance

The mathematical formulation behind the idea is the Wasserstein distance. For two

probability distributions p and v the p-Wasserstein distance can be defined as:

1/p
Wp(p,v) = ( inf /d(w,y)pdv(:v,y))
YE(p,v)

Here, II(u, ) represents all admissible transport plans v which describe how the
mass from p can be transported to v, and d(z,y) represents the cost transferring a
single mass unit from point x to point y. The equation computes the plan with the
lowest possible cost. Its key disadvantage resides in the computationally intensive
cost of this optimal problem [33], and so the equation can’t be utilized in training
the model.

2.8.8 Sinkhorn Divergence: Approximating Optimal Transport

Sinkhorn Divergence is a computationally efficient and differentiable approximation

of the Wasserstein distance, making it perfect for deep learning. [34]

2.8.8.1 The Role of Entropic Regularization

The key innovation is adding an entropic regularization term, eH (P), to the opti-

mization objective. The entropy of a transport plan P is defined as:

H(P) == P;log(Py)

1,J
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This term "blurs' the transport plan, making the problem easier to solve. The full

regularized objective is:

W(o.8)=  min ((P.C) - cH(P))

2.8.8.2 The Final Formulation

The Sinkhorn divergence, S., then debiases this value to ensure the distance of a

distribution to itself is zero, making it a well-behaved loss function:
1 1
S€<0[,5) - WG(OC,,B> - §W€(Ct,04) - §W€(/87/8)

2.8.9 The Connection with Topological Loss

Our Topological Loss’s computational engine is the Sinkhorn divergence. It works
off the principle of Optimal Transport, computing a "Wasserstein-like" distance that
assesses the geometric dissimilarity between our model’s predicted "soft" embeddings

point cloud and the point cloud of the ground-truth "hard" embeddings.

2.8.10 Conclusion: A Bridge Between Topology and Deep Learning

This chapter has traced a path from the abstract idea of a data’s "shape" to a
practical algorithm for comparing point clouds. TDA provides a powerful language
for geometric thinking. Optimal Transport offers a principled way to compare shapes.
Finally, Sinkhorn divergence provides the computationally feasible algorithm needed
to implement this comparison as a loss function inside a neural network. The work
in this thesis builds upon this powerful bridge, connecting abstract geometric theory

to the practical art of training better, more factually aware language models.

2.9 Finetuning

The advent of large, pre-trained models created an interesting new challenge for the
AT community. We suddenly had these digital brains with a vast, generalist knowledge
of the world, capable of discussing everything from history to programming. The
question was no longer just about building bigger models, but about how we could
take this powerful, general knowledge and make it useful for specific, expert tasks. To
answer this question, we need to dive into the concept of finetuning, a process that
transforms a model from generalist to specialized. In this chapter we will understand
what is finetuning, what are the main components of it, which variants exist and the

main challenges.

2.9.1 What is Fine-Tuning?

Finetuning is essentially a second phase of training that follows the initial, massive

pre-training stage. You start with a powerful, general-purpose model and continue its
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training, but on a much smaller and highly specialized dataset [35]. The advantage
of this approach is that we don’t need to train a massive model from scratch for
every new task, which would be computationally impossible but instead, we take the
rich, internal representations the model has already learned and simply adapt them
to the specific nuances of our target domain. For this thesis, it’s the process that

teaches a general model the specific language and structure of a good recipe.

2.9.2 Key Components of the Fine-Tuning Process

The source for this specialized training is the finetuning dataset and its quality is
important, as the model’s final performance depends on the quality of the data it
learns from. A popular and effective format, and the one used in this work, is the
instruction-following dataset. Here, the model is presented with thousands of input-
output pairs. In our case this meant showing the model a prompt like "Generate
a recipe for Pasta Carbonara" and the corresponding high-quality JSON output
[36]. This direct approach provides a clear, unambiguous signal, teaching the model
the precise format and style we expect as an outcome. This instruction-following

finetuning process is visualized in Figure 2.12.

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning Model

Model

PROMPT(. . .], COMPLETION]. . .
PROMPTI. . .], COMPLETION]. . .

1
. ] :
Pre-trained Fine-tuned
PROMPTI[. ..], COMPLETION[...] |l—mm—
PROMPT|[. ..], COMPLETIONI. . .] LLM
PROMPT(. . .], COMPLETIONI. . .]
""""""""" 5 S onioteittisentancaitc .
______________ J B e b e
[ EXAMPLE TEXT] [ EXAMPLE TEXT]
[ EXAMPLE COMPLETION ] [ EXAMPLE COMPLETION ]

Figure 2.12: A visual explanation of the process of using prompts to fine-tune
a large language model. A pre-trained LLM is shown being adapted into a fine-
tuned LLM using a dataset of prompt-completion pairs. Examples of these pairs for
different tasks, such as summarization and translation, are provided to illustrate the
instruction-following nature of the fine-tuning process.

2.9.3 Challenges and Strategies

The original approach to this process was direct and conceptually simple: full pa-
rameter finetuning. In this method, every single weight in the massive pre-trained

model is "unfrozen" and allowed to be updated during the second training phase.
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This brute-force technique allows the entire network to adapt to the new data, and
for that reason, it often yields the best possible performance. However, this implies
a huge computational cost. As models scaled into the billions of parameters, the
hardware requirements for full finetuning exploded. The amount of GPU memory
needed simply to load the model, let alone store the gradients and optimizer states for
training, became immense. This created a significant limitation, making it financially
and logistically impractical for most academic labs and even many companies to adapt
these powerful new models. The rapid scaling had created a new problem: these in-

credible models were becoming too big to handle, threatening to slow down innovation.

This challenge started the development of more clever and nuanced finetuning
strategies. One interesting strategy is multi-task fine-tuning, which consists of train-
ing the model on several tasks at once instead of narrowing the focus on a individual
task. The idea is that learning complementary skills can lead to a more robust and
generalized understanding of the core domain. In our own work, for instance, the
models were trained on both recipe generation and a set of related question-answering
tasks. This multi-task approach encourages the model to learn how to deal with
the final application (in this case, recipe generation) by solving different problems
that are important in order to obtain recipes of high quality strengthening its overall
understanding of cooking recipes and its domain. The loss function is the component
that determines the model’s adjustments during training and its choice is critical
because it defines what we consider to be a "good" or "bad" prediction, and thus what
the model should prioritize learning. By augmenting the standard Cross-Entropy with
a custom loss, we can direct the model’s focus towards the elements we care about
most—in our case, improving training accuracy on specific elements of a recipe, for
example numerical values and ingredients. Overall finetuning represents the essential
connection between a general model’s potential and its real-world application. The
brute-force method of updating every parameter is powerful but its cost made it
prohibitive for the majority of innovation makers in the field. The necessity for
efficient specialization has lead to the development of a new family of techniques
knows as Parameter-Efficient Finetuning (PEFT), which offers an elegant solution to

the problem of scaling.

2.10 PEFT - Parameter Efficient Tuning

2.10.1 Introduction: The Efficiency Revolution

The previous chapter left us at a critical juncture: Large Language Models are
incredibly powerful, and finetuning is the key to specializing them, but the huge scale
of these models created a massive computational barrier. The cost of full parameter
finetuning threatened to lock this transformative technology away, accessible only to
a handful of large corporations and research labs. This challenge, however, sparked

an efficiency revolution in the AI community, leading to the development of a new
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family of techniques known collectively as Parameter-Efficient Finetuning, or PEFT
[37]. This chapter explores these clever methods, which have made it possible for
nearly anyone to customize and adapt even the largest models with a fraction of the

resources.

2.10.2 The Core Principle: Freezing the Giant, Training the Spe-
cialist

The basic principle of all PEFT methods is elegance in simplicity. Rather than
recalibrating all of the billions of parameters in a pre-trained model, we fix most of
them. We recognize that a pre-trained model is already a master of language and
reasoning, so we do not touch its basic knowledge. Then, we introduce or unfreeze a
small subset of new, trainable parameters—the "specialist"—and train just these few
parameters on our task-dependent data [38]. As a consequence, we can control the
behavior of the model and fine-specialize knowledge by training far fewer than 1% of
all of its parameters, cutting the required memory and computational power by a

huge margin.

2.10.3 A Taxonomy of PEFT Methods

PEFT is not an algorithm but rather a family of various strategies, each of these
strategies containing a philosophy of how it should, in an efficient manner, train the
specialist parameters. These methods fall into one of the following three categories
[39]:

e Additive Techniques: These introduce new learnable modules or parameters

to the frozen model.

e Selective Methods: These choose a limited, strategic portion of the model’s

starting parameters to "unfreeze" and learn.

« Reparameterization Techniques: These subtle techniques adjust the form of
the model’s layers in order to describe the transformations in a more efficacious
manner, as in LoRA. Figure 2.13 shows a taxonomy of these different PEFT

strategies.

2.10.4 Additive Techniques: Injecting New, Trainable Modules

One of the most frequent techniques is to add small, new modules to the frozen
LLM architecture. Think of it as inserting a small plugin into a large, complex
software program. The base model isn’t changed, but the plugin is adding new,
specialized functionality. In the model, these "adapter" modules would typically be
small neural networks inserted in between the pre-existing Transformer layers [38].
During finetuning, only the weights of these minuscule new adapters are trained, so
that they can learn the specifics of the new task and propel the outputs of the larger,

frozen layers.
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PEFT Methods - For Pretrained Language Models (PLMs)
[ Additive Fine-tuning ] Partial Fine-tuning ] [ ] [ Hybrid Fine-tuning ] [ Unified Fine-Tuning

1

Adapter-based Fine- Bias Update
tuning
- Adapters - BitFit
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Figure 2.13: An overview of various Parameter-Efficient Fine-Tuning (PEFT)
methods for pre-trained language models. The diagram categorizes these methods
into five main groups: Additive Fine-tuning (including adapter-based and soft
prompt-based methods), Partial Fine-tuning (such as bias updating and delta weight
masking), Re-parameterized Fine-tuning (like low-rank decomposition methods),
Hybrid Fine-tuning (using manual combinations), and Unified Fine-tuning.

2.10.5 A Deeper Look into Prompt-Based Tuning

One especially creative form of additive technique is prompt-based tuning. Rather
than altering the internal architecture of the model, these methods aim at the input.
The rationale is that rather than fine-tuning the model’s "brain," we can learn the
ideal "magic words" to achieve the desired output. These aren’t words that humans
would read but instead a series of trainable embedding vectors—a "soft prompt"—that
is added to the front of the input [40]. During training, the model is trained on
the best values for that soft prompt in order to best direct its frozen parameters to
solve some particular task. Figure 2.14 compares this "prompt tuning" approach to

traditional "prompt design".

2.10.6 Selective Methods: Finetuning a Small Subset of Existing
Weights

The most obvious way of performing PEFT is possibly the selective method. The
thought is straightforward: if we cannot possibly train all of the parameters, why
not then choose a small subset of the most relevant parameters and train only them?
Some methods, for instance, include fine-tuning the bias terms in the network but
not the weights, or unfreezing only the last few layers of the model [41]. Simple, the
problem here is then accurately selecting that particular small subset of the roughly

billion parameters that is most relevant to the new task.
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Figure 2.14: A comparison between prompt tuning and prompt design. In prompt
tuning, the pre-trained model is frozen, and a tunable soft prompt is trained to
generate the desired output. In contrast, prompt design also uses a frozen pre-trained
model but relies on an engineered, fixed text prompt to guide the model’s behavior.

2.10.7 Reparameterization Techniques: Another Change of Basis

A more mathematically elegant approach is reparameterization. The core idea here
is a clever trick. A layer in a neural network is defined by a large weight matrix.
Instead of trying to update this entire, massive matrix, we can assume that the
change we need to make is actually very simple and can be represented in a more
efficient way. This is the foundation of LoRA, which approximates this large change

using two much smaller, "low-rank" matrices.

2.10.8 Low-Rank Adaptation (LoRA)

The most prominent and most used reparameterization technique nowadays is Low-
Rank Adaptation [42] (LoRA), with it being the main PEFT technique utilized in
this project. LoRA’s idea is intuitive. Consider the gigantic, pre-trained weight
matrix as a masterpiece artwork. Full fine-tuning would mean replicating parts of the
original masterpiece. LoRA goes in a different direction: it lays a transparent overlay
on top of the masterpiece and performs all of its tweaks on it. Technically, LoRA
freezes the original weight matrix and injects two small randomly initialized matrices
next to it. While training, only the two small matrices are updated. To obtain the
final answer, outputs of the original frozen matrix and the two new trained matrices
are added up. In such a way, we preserve the strong knowledge of the pre-learned

model but efficiently learn a small "adjustment"' that fine-tunes it for our new task.
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2.10.9 Advantages of PEFT: Why It Is a Game-Changer

The development of PEFT was absolutely revolutionary due to the following main

reasons:

e Massively Lower Computational Cost: PEFT methods decrease the GPU
training memory by one order of magnitude, enabling full-size models to be

trained from scratch on single, consumer-level GPUs.

o Efficient Storage: It is an enormous practical advantage. Rather than
maintaining a full, independent, multi-gigabyte copy of the whole model for
every new task, you simply retain the low, frequently just few-megabyte,

specialist parameters. It is then feasible to store hundreds of specialist models.

o« Easy Switching of Tasks: Since the specialist parameters are few and
independent of the base, one could have a large base model and switch, on the
fly, various PEFT adapters in and out in order to move from a task such as

recipe generation, summarization, or coding.

2.10.10 Disadvantages and Real-world Considerations

Of course, there are no methods that come completely dependency-free. While PEFT
methods come very close to achieving the performance of a full fine-tuning, they
occasionally narrowly fall behind on highly complex tasks for which a more basic
change in the knowledge of the model is necessary [43]. Furthermore, they bring with
them new hyperparameters that must be adjusted, as happens with the rank (r) in
LoRA, for example, that determines the dimension of the trainable matrices. Figure
2.15 depicts how Llama-2-7B performs on code and math evaluation dataset when

full-finetuning and LORA are respectively applied.

2.10.11 The Current PEFT Environment: Libraries and Tooling

The rapid spread of PEFT was driven by the availability of highly capable and
user-friendly open-source software. Libraries like Hugging Face’s peft became the
standard for the community, with production-ready, highly optimized, and correct
implementations of most methods, including LoRA. Libraries in turn democratized
the process of finetuning, making it almost accessible to everyone to fine-tune best-

in-class models in a couple of lines of code.

2.10.12 Conclusion: PEFT as the New Standard for Model Adapta-
tion

PEFT was successful in resolving the access crisis brought about by the sheer

magnitude of modern LLMs. By being in a position to provide a suite of techniques

for effectively specializing such models, PEFT is rapidly becoming the gold standard

against which model adaptation is being assessed in research as well as in practice.
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Figure 2.15: Performance comparison between LoRA (with different ranks r =
16,64, 256) and Full Fine-tuning for the Llama-2-7B model across various coding
and math tasks.

2.11 LORA - Low-rank adaptation

2.11.1 Introduction: A Principled Approach to Parameter Efficiency

The problem of scaling billion-parameter models efficiently has bred a whole range of
new techniques. Of these, Low-Rank Adaptation (LoRA) [42] has come to prominence
not as a mere practical hack, but as a principled and mathematically graceful method
of parameter-efficient fine-tuning. It goes beyond adding or freezing parameters
and rather reimagines the very representation of the learning process in a large
model. This chapter is a technical deep dive into the theory behind LoRA, its
mathematical derivation, as well as practical considerations that make it such a

potent tool, warranting its choice as the base methodology for this thesis.

2.11.2 The Theoretical Foundation: The Intrinsic Rank Hypothesis

The whole LoRA methodology is constructed around an intriguing theory called the
Intrinsic Rank Hypothesis. The theory proposes that while a pre-trained language
model is a very complex, high-rank function, the transformation that needs to happen
for it to adapt to a particular task is, unexpectedly, very easy and of low "intrinsic
rank." That is, we wouldn’t need some huge, complex transform from a generalist to

a specialist model. The adaptation, rather, can be described by a much more modest,
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low-dimensional update. LoRA exploits such a hypothesis by assuming that we would
not need to update the whole, complex weight matrix of a layer, but we need only

figure out an optimal way of characterizing such a simple, low-rank adaptation.

2.11.3 The Mechanics of Low-Rank Adaptation: Decomposing the
Weight Update

To understand the mechanics of LoRA, let’s first consider a standard linear layer
in a Transformer. Its behavior is governed by a pre-trained weight matrix, Wy. In
traditional full finetuning, we would update this matrix by adding an update matrix,

AW, which has the same large dimensions as Wj:
Wfinetuned = WO + AW

Training the entire AW matrix is the source of the high computational cost. LoRA’s
innovation is to constrain the structure of this update by decomposing it into two

much smaller, low-rank matrices: a matrix B and a matrix A.
AW =B-A

Here, if the original weight matrix Wy has dimensions d x k, the LoRA matrices are
defined with a small, shared dimension, r, called the rank. The matrix B will have
dimensions d x r, and the matrix A will have dimensions r x k. The rank, r, is a
hyperparameter that is chosen to be much smaller than d or k (i.e., r < min(d, k)).

This decomposition is the key to LoRA’s efficiency.

2.11.4 Mathematical Formulation of the Forward Pass

With this decomposition, the forward pass of a LoRA-enabled layer is modified. The
output, h, for an input, x, is the sum of the output from the original, frozen path
and the new, trainable LoRA path. The pre-trained weights W) are kept frozen and

do not receive gradient updates during training.
h=Wyxr + AWz = Wyx + BAx

In practice, the LoRA path is often scaled by a constant, o, which is typically set to
be the same as the rank, r. This scaling helps to normalize the update’s magnitude.

The final forward pass is therefore:
o
h = Wox + —BAx
r

During training, only the parameters of matrices A and B are optimized, while W
remains unchanged. A diagram illustrating this LoRA update mechanism is provided

in Figure 2.16.
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Figure 2.16: An illustration of the Low-Rank Adaptation (LoRA) method for
parameter-efficient fine-tuning. The process involves keeping the original pre-trained
weights, represented by the matrix W, frozen. A low-rank matrix, decomposed into
two smaller matrices A and B, is trained to adapt to a new task. The output is
a combination of the original forward pass with the pre-trained weights and the
low-rank update, represented as h = Wa + B(Az). This approach significantly
reduces the number of trainable parameters.

2.11.5 The Trainable Parameters: A Quantitative Analysis

The reduction in parameters by such a strategy is enormous. Take a typical weight
matrix in a deep model with the input dimension d and the output dimension k
being 4096.

e Full Finetuning: The number of trainable parameters in the AW matrix is
d x k= 4096 x 4096 = 16,777, 216.

e LoRA Finetuning: If we choose a small rank, for example r = 8, the
number of trainable parameters is the sum of the parameters in A and B:
(dxr)+ (rxk)= (4096 x 8) 4+ (8 x 4096) = 32,768 4 32,768 = 65, 536.

It only needs to train 0.39% of the parameters that it would need for a complete
finetune of that specific layer.
2.11.6 Key Hyperparameters: Rank (r) and Alpha («)

The LoRA’s action is mostly governed by two important hyperparameters:

o Rank (r): This is the most important hyperparameter. It specifies the rank
of the update matrices and consequently the number of parameters that can
be trained. The rank r determines the capacity and expressiveness of the
adaptation. Increasing r enables more complex adaptations but raises the count

of parameters and the danger of overfitting to the data of finetuning. Setting
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the rank low is more economical but may lack sufficient capacity for adapting
the model fully.

o Alpha («): It is a scaling of the LoRA update. Modifying « allows you to
scale the magnitude of adaptation compared to pre-trained weights, much as
you would scale the magnitude of the gradient update by a learning rate. It is

typically simply set equal to 7.

2.11.7 Implementation in Transformer Models in Practice

In practice, LoRA is not typically applied to every weight matrix in a model. Research
has shown that the most critical weights for task adaptation are often located within
the self-attention mechanism. Therefore, a common and effective strategy is to apply
LoRA only to the query (W,), key (W}), value (W,), and output (W,) projection
matrices of the attention blocks, while leaving other layers, such as the feed-forward
networks, completely frozen. This targeted approach further enhances efficiency
while capturing most of the performance benefits. Given its effectiveness, LoRA was

selected as the finetuning methodology for this research.

2.11.8 Merging LoRA Weights for Zero-Latency Inference

One of LoRA’s most significant practical advantages is its behavior during inference.
After training is complete, the learned matrices A and B can be multiplied to produce
the full-rank update matrix AW = BA. This update matrix can then be directly
added to the original pre-trained weights:

Wdeploy =Wy+ BA

The resulting Wiepioy is a single weight matrix with the exact same dimensions as
the original. This means that for deployment, the LoRA model can be "merged"
back into the base architecture. The crucial takeaway is that LoRA introduces zero
additional latency during inference, as there are no extra modules or calculations to
perform. This sets it apart from other methods like adapters, which add a small but

permanent computational overhead.

2.11.9 Technical Advantages

Technically, LoRA enjoys some of the following significant advantages: Massive
Reduction in Trainable Parameters: As quantified above, this leads to lower VRAM
requirements and faster training times. Zero Inference Latency: Since linearly
combining of the weights is possible, the generated model is as inference-fast as the
base model. Orthogonality with Other Methods: LoRA is a generic method that is
extenable with other methods, for instance, with alternative schemes of optimization

or with different methods of quantization.
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2.11.10 Limitations and Theoretical Considerations

There is no technique that is not a compromise of sorts. The LoRA’s key assumption,
the low-rank hypothesis, must not generalize as well to all potential models or tasks.
To achieve more dramatic model knowledge shifts, a low-rank update may potentially
not match the performance of a full finetune. It is typically also an empirical choice
of picking the optimal rank value of r, and experimentation and tuning is required

for each specific task and data set.

2.11.11 Conclusion: LoRA as an Optimal Trade-off

Therefore, in conclusion, Low-Rank Adaptation offers a principled and highly success-
ful solution to the problem of fine-tuning large models. Through reparameterization
of the weight updates with the strong theoretical requirement of low intrinsic rank,
it obtains an impressive decrease in computational cost with no injection of inference
latency. It is the best trade-off among performance, efficiency, and ease of imple-
mentation, and as such, it justifiably occupies a prominent and potent role as an

instrument for fine-tuning large language models for specialized domains.

2.12 Quantization

2.12.1 The Model Deployment Problem

After the process of pre-training and finetuning, a language model is at last complete.
It has acquired the patterns of language and become expert at its assigned task but
has one last, crucial hurdle to overcome: deployment. A model that exists solely
in a research lab is a theoretical triumph but finds its true purpose when it can
be applied to a real-world scenario. Here we hit a very real problem. The very
size that gives these models their power also renders them slow, costly to run, and
hardware-intensive. This is the "last-mile" problem of Al but the key technology
that lets us surmount it is quantization. It’s the crucial process that reduces these
digital giants to a manageable size that is fast, efficient but practicable enough for

day-to-day use.

2.12.2 What is Quantization? The Principle of Lower Precision

Quantization is actually a very basic notion at its core. It is the reduction in the
numerical precision of the model’s parameters. A standard language model keeps its
weights in 32-bit floating-point numbers (FP32), a data type that has the capability
of representing a very large number of values with very high precision. Quantization
turns the higher precision values into a lower, more compact data type, the most
typical form being an 8-bit integer (INTS).

The benefit of this new tack is a huge saving in efficiency. Consider it like a
picture. An FP32 weight is a high-resolution professional photo file, packed with
enormous detail. An INTS8 weight is a high-quality JPEG of the same photo. It’s
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a lot smaller and quicker to load, and for all intents and purposes, the miniscule
details lost in compressing it are hardly perceivable. Quantization applies the same

"good-enough" approximation principle to the numbers in a neural network.

2.12.3 The Mathematics of Quantization: Affine Mapping

The conversion of a high-precision floating-point number to a low-precision integer is
typically done by a linear transformation that is quite a simple one called an affine

mapping [44]. It is given by the equation below.
r=2S(qg—=z)
Let’s break down the components:
e 7 is the true original high-precision value (e.g., a 32-bit float).
o ¢ is the new, quantized low-precision number (e.g., an 8-bit integer).

e S is the Scale factor. It is a positive floating-point number that decides the
"step size" or resolution of our quantization. It gives us how much change in

the real number corresponds to a change of 1 in the quantized number.

e z is the Zero-Point. This is an integer that ensures the true value of 0 can be
represented exactly by some of the integer values from our quantized set. This
is very important for operations like padding where a true zero is needed to

represent the absence of information.

Whereas inferring the model performs its calculations using the fast, low-precision
integers (¢q), and then converts the result back to a floating-point number using the

scale () and the zero-point (z).

2.12.4 A Classification of Methods of Quantization

There are two major philosophies of when to employ this process of quantization [44]:

o Post-Training Quantization (PTQ): This is the easiest method. A model
is fully trained in its typical high-precision form. Once training is complete
and final, a conversion process is run to quantize the weights. It’s like having a

complete item and refining it for efficiency.

o Quantization-Aware Training (QAT): This is a more advanced technique
where the model is made "aware" of the quantization during the training or
finetuning process. The forward pass of the model simulates the effect of
quantization, so the model learns to be robust to the small errors that will be
introduced. This often results in a final quantized model with higher accuracy.

Figure 2.17 provides a workflow comparison of PT(Q and QAT.
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Comparison of Quantization Methods

Post-Training Quantization (PTQ) Quantization-Aware Training (QAT)
" : Train with
Train Model Trained FP32 Optional: Pre-train "
with FP32 Model e ———mFake Quantization
Nodes
G ——= o

Backward: STE

+ Fast process (minutes)

+ No retraining needed + Potential accuracy loss « Better accuracy preservation « Time-consuming (days/weeks)
- Small calibration dataset - Less optimization flexibility - Model adapts to quantization = Full retraining required
« Simple implementation « Not ideal for sensitive models  Finer control over trade-offs * More complex implementation

Figure 2.17: Workflow comparison between Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT). PTQ involves quantizing a pre-trained
FP32 model using a calibration dataset to produce a Quantized INT8 Model, offering
a fast process but with potential accuracy loss. QAT, conversely, integrates fake
quantization nodes during the training process with a full training dataset, leading
to better accuracy preservation and finer control over trade-offs, albeit being more
time-consuming and complex.

2.12.5 A Further Look into Post-Training Quantization (PTQ)

Because of its effectiveness and simplicity, PTQ is the most commonly utilized

technique today. It could also be categorized further into two subtypes:

e Dynamic Quantization: Under this method, the model’s weights are pre-
quantized while the activations (the neurons’ outputs) are quantized "on-the-fly"
when the model is executed for inference. Its benefit is that it’s extremely easy
to implement but it has the penalty of real-time conversion that runs a bit of

computational cost.

e Static Quantization: This is the quicker of the two. Here, the weights and
the activations are all quantized offline, prior to running. To accomplish this
most effectively, the model must be "calibrated" by passing a small sample of
typical data through it in order to establish the optimum scale and zero-point
for the activations. The end result is a complete integer-based model that runs

at top speed.

2.12.6 Exploring Bit Depths: 8-bit to 4-bit and Beyond

The compression level depends upon the bit depth of the object data type.

o INTS8 (8-bit): It is the most popular and well-supported level of quantization.
It provides a 4x model size reduction and memory reduction and may offer
considerable speedups for current hardware but often does so at a negligible

loss in performance.
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o INT4 (4-bit): In the recent past, more aggressive 4-bit quantization has
become very popular. It provides a 8x compression of model size such that very
large models become executable using consumer-level GPUs [45]. But such a
higher compression incurs a higher risk of performance loss because greater

information gets lost while converting.

2.12.7 The Core Benefits: Why Quantize a Model?

The justification for accepting the quantization is pragmatic and overwhelming;:

e Smaller Footprint in Memory: A model that has been quantized is a
smaller file. This is less expensive to store, distribute, and load into limited
CPU or GPU memory.

¢ Faster Inference Speed: For most modern hardware, mathematical opera-
tions by using integers are significantly faster than when using floating-point
numbers. This translates directly to faster latency and a snappy response for

the end-user.

e Improved Energy Efficiency: Computation is also faster when the model is
compact. This means that less power is used for each inference run. This is
important for battery-operated applications and reducing the running expenses

of a high-capacity data center.

2.12.8 The Trade-off that is Unavoidable: Performance vs Efficiency

Note that quantization is a lossy compression scheme. We will inevitably need
to incorporate small amounts of error by rounding the high-precision values to a
lower number of possible integers. The key issues in the field of quantization are
the building of schemes that will keep these accuracy errors to a minimum when it
comes to the end performance of the model. A poorly managed quantization could
decrease a model’s accuracy, so a careful balancing has to be always achieved between

efficiency enhancements and maintenance of performance.

2.12.9 PEFT and Quantization: A Close Relationship

Quantization and Parameter-Efficient Finetuning are complementary concepts but
are otherwise potent technologies that are commonly employed together in order to
have a very efficient end-to-end pipeline. A typical successful pipeline is to initially
finetune a model using a PEFT technique such as LoRA. Once trained, the small
specialist LoRA weights are combined back into the base model. Lastly, Post-Training
Quantization is done to this combined, full-precision model so that it is ready for
efficient deployment. This synergy has led to even more advanced techniques, such
as QLoRA [45]. This innovative method cleverly integrates 4-bit quantization during
the LoRA finetuning process itself, allowing researchers to finetune massive models
with even less memory than standard LoRA. Figure 2.18 compares the memory
workflow of Full Finetuning, LoRA, and QLoRA.
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Figure 2.18: Comparison of finetuning methods: Full Finetuning, LoRA, and
QLoRA. QLoRA leverages 4-bit quantization and paged optimizers for improved
memory efficiency.

2.12.10 Conclusion: Quantization as a Standard for Deploying Al

In today’s Al world, quantization has gone from a specialty optimization trick to a
standard, indispensable step in the deployment pipeline. It’s the bridge that turns
the giant powerful models that are developed in research institutions into the efficient,

usable, and accessible applications that are able to run in the real world.
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Chapter 3

Related Work

3.1 The Evolution of Recipe Generation as an NLG Task

The computerized production of culinary recipes by large language models is a highly
specialized and challenging subfield of Natural Language Generation. It involves
more than just linguistic proficiency, as it needs to follow intricate, unforgiving
structural and logical constraints that belong to the realm of procedural text. To
achieve success, the recipe generator needs to operate, aside from being a proficient

writer, as a very precise, commonsense-dense chef.

3.1.1 Classical Sequence-to-Sequence Approaches and Early Base-

line

First studies in food computing and recipe generation used basic sequence-to-sequence
models, specifically Long Short-Term Memory (LSTM) networks and Recurrent
Neural Networks (RNNs).[46] Although these models set early performance standards
for generating textual outputs, they revealed some inherent shortcomings in tackling
long-range dependencies essential for multi-step culinary instructions.[46] The early
transformer-based systems, like for the case of the Recipel M+ dataset, all started
with basic generation problems such as generating recipes from a list of ingredients.[47]
It was typical for early models to simply be assessed with the typical translation
metrics.[47] The obvious basic flaw, however, was that these neural models, no matter
whether trained with large datasets, could not create text that was "structured,
context- and commonsense-aware".[47] Recipes display procedural dependency, i.e.,
they behave much like a stream of actions where the successful execution of the
present step is dependent solely on the prior steps’ built-up state. It is much like
a structured Markov Decision Process (MDP).[48] Early models’ inability to retain
that procedural context, i.e., forgetting that they’ve already added an ingredient,
meant that the typical training objective was not sufficient to enforce long-distance
procedural correctness rather than just-word accuracy in predicting. This difficulty in
generating logically correct sequences necessitated optimization frameworks that could

penalize executive errors in the procedural sequence and thus became a requirement.
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3.1.2 Shifting Towards Transformer-Based LLMs and Adaptation

The transition to fine-tuning large, pre-trained transformer models, such as the
GPT-2 family, was a huge stride in culinary NLG. Comparison works confirmed the
architectural superiority of transformers compared to recurrent models, obtaining
increases of well over in semantic relevance (BERTScore F1) and substantially reduc-
ing perplexity scores.[46] This established the transformer architecture as the basic
requirement for addressing the complexity of generating recipes. Subsequent studies
explored the impact of model scale, contrasting architectures ranging from smaller,
resource-efficient models like Th-small and SmolLM-135M to larger foundational
models like Phi-2.[49] These comparisons confirmed that while larger, more capable
models provide superior linguistic capacity, domain adaptation remains paramount.
A key technique for addressing domain specificity involved modifying the tokenizer.
Generic subword tokenizers frequently break up crucial recipe elements, such as pre-
cise numerical quantities and fractions (e.g., %), leading to the loss of vital structural
information.[46] To mitigate this, successful domain adaptation strategies include
augmenting the tokenizer vocabulary with custom structural markers and dedicated
fraction tokens, a critical step to prevent numerical and structural degeneration in the
output.[46] While effective, this strategy primarily targets data representation during
preprocessing; this thesis, however, concentrates on altering the learning dynamics
during finetuning by introducing novel loss functions as the primary mechanism for

improvement.

GPT-3, T5, few-shot

TF-IDF, ML classifiers Transformer
prompting

Architecture
Spam filters, keyword

sentiment, basic NER, NMT, QA, long-text
SMT classification,
summarization
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multilingual translation.
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Word2Vec, RNTN, LSTM BERT, GPT-2, fine-tuning GPT-4, Gemini,
multimodal, RLHF
Tree-based sentiment, Contextual QA, text
chatbots, intent detection, generation, semantic Multimodal Al, voice
speech recognition search, document agents, tutors, copilots,
classification document automation

Figure 3.1: Evolution timeline of Al models in NLP domain

3.1.3 Recipe Generation as Constructed and Constrained NLG

Generation of recipes is technically a type of Structured Text Generation (STG), as

the generated text must adhere to strict syntactic and semantic requirements.|[50]
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These in-born requirements are strict and imperative in order to achieve real-world
usefulness. Cookbook texts must be clear and technically explicit, necessitating that
best practices such as listing of ingredients in the order of usage, consistency of units
and measures, and beginning instruction steps with imperative action verbs (e.g.,
"Chop," "Bake," "Mix") must be used.

The constraint enforcement problem is one that is well known in the literature.
Even higher-order language models, when submitted for processing by their APIs,
in their earlier days experienced breakdowns in maintaining format and context,
their outputs reducing to repeated or meaningless combinations of ingredients.[51]
This failure to ensure logical, functional format and factual integrity sets the task
of generating recipes apart from that of the creative text task generally. Because
the constraints, by their very nature, directly affect the safety and executability of
the final product, structured output failures appear as pragmatic, oftentimes mean-
ingless, instructions, thereby highlighting the importance of appropriate constraint

enforcement in optimizing the model.[47]

3.2 Culinary NLG Datasets and Benchmarks

The type and nature of training data significantly affect an LLM’s structuring
of culinary text. The development of the recipe datasets is a trajectory from
multimodal generic materials to text-based, high-fidelity structural norms, thus

directly supporting the choice of the RecipeNLG corpus.

3.2.1 Predecessor Datasets (RecipelM+ and Visual Focus)

First large culinary datasets, such as RecipelM+-, were for the most part authored
with computer vision use cases in mind, i.e., with the objective of associating textual
recipes with appropriate images.[47] This vision-centric prioritization very often
created issues with integrity and validity of the textual data. Visually inspecting
Recipel M+ revealed pervasive structural issues, such as incorrectly created recipe
structures, poor partitioning of instructions (with sentences utilized as steps in an
improper manner), and erratic issues with the malformation or skipping of precise
numerical fractions of ingredients.[47] These aspects made quantitative evaluation of
textual quality unreliable and precluded generative models from being trained on
logically coherent structures of ingredients and instructions.[47]. Some examples of

recipes from RecipelM can be found in Figure 3.2.

3.2.2 The RecipeNLG Dataset

The RecipeNLG dataset was created specifically as an answer to the textual short-
age of the prior datasets. As a continuation of RecipelM+, the design task was
obvious: it was to aim more for the text of the recipes, their composition, and their
reasoning, rather than for visual alignment.[47] Consequently, with well over a million

newly preprocessed, also deduplicated, recipes, RecipeNLG was constructed as the
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Meal Image Ingredient List Instruction List
1. chicken 1. Preheat oven to 370F.
2. garlic 2, Rub salt and pepper to the chicken and set aside for around 10 mins,
3. butter 3. rub half of the butter to the chicken.
4.lemon 4. Mince 1 whole garlic and rub on the chicken.
5. rosemary 5. Rub chicken with Herbs.
6. basil 6. Stuff chicken with lemon, butter, 1 whole garlic, salt, pepper and herbs.

-1

thyme Put chicken in oven covered with foil for 45 mins.

salt and pepper.

=
=

Remove cover and cook for another 45 mins at 400F

o

1. ladyfingers 1. Grease 9 inch (23 an) springform pan.

2. cream cheese 2. Place lady fingers around inside rim and set aside

3. lemon juice 3. Beat cream cheese in large bowl of electric mixer.

4.lemon jelly powder 4. Add lemon juice and rind, beating on low speed until blended.
5. boiling water 5. Dissolve lemon jelly powder in boiling water.

6. ice cubes 6. Add ice cubes, stirring until slightly thickened.

7. cool whip topping 7. Add lemon jelly slowly to cream cheese mixture while beating.
8. fresh raspberries 8. Increase speed and beat just until well blended.

9. jelly powder 9. etc. ...

strawberries

. In blender add strawberries, pineapple, non-dairycreamer
and orange juice and blend until smooth.

non-dairy coffee creamer . . .
’ . Poor into frosted glass and enjoy

b

1.
2. pineapple
3.
4.

orange juice

Figure 3.2: Samples of multimodal recipes from Recipe 1M

largest available, open corpus for semi-structured text generation in the culinary
domain.[47] Initial fine-tuning verified the effectiveness of this structurally improved
corpus, demonstrating that models trained on RecipeNLG produced items with
greater average cosine similarity to the gold standard than did models trained on
RecipelM+.[47] The value of this dataset is that it contains high-fidelity textual
ground truth, enabling a controlled environment for experimentation with advanced
training objectives, such as bespoke loss functions, crafted with the purpose of ap-
plying procedural integrity. By concentrating on RecipeNLG, research can safely
attribute gains in performance to improved modeling of internal textual logic and
structural constraint, separating optimization challenge from the noise of multi-modal
data.[47]

3.2.3 Emerging Multimodal and Procedural Benchmarks

The most recent works were focused on developing multimodal datasets that empha-
size procedure accuracy. RecipeGen, for instance, presents a step-aligned multimodal
dataset that hosts over 21,000 recipes and near-140,000 corresponding images.|[52]
Its most important contribution is the enforcement of a hierarchical evaluation suite
that directly assesses procedure quality by, notably, calculating three significant
measures: Cross-Step Consistency, Ingredient Accuracy, and Interaction Faithful-
ness.[53] These new measures fortify the need to move optimization objectives beyond
basic string similarity. They make it official that logical flow and factual fidelity
are required, supporting the chief argument that basic cross-entropy loss is lacking.
The literature also outlines a key design trade-off in procedural content generation:
fidelity (compliance with necessitated constraints and accuracy), on the one hand, and
novelty or personalization (culinary originality and customization), on the other.[49]

Experiments have remarked that direct imposition of individual constraints, such as
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allergen safety, is liable to make overall coherence of the recipe decay.[49] As such,
an effective custom loss function cannot simply impose an individual constraint but
must instead be a judiciously weighted, multi-faceted objective that manages this
inevitable dilemma by optimizing structural compliance while preserving creativity

divergence. The key characteristics of these datasets are summarized in Table 3.1.

Dataset Primary Scale (Ap-| Key Structural/-
Name Focus prox.) Content Distinc-
tion
RecipelM+ | Multimodal | >1 Million | High frequency of
(Image/Text | Recipes malformed instruc-
Alignment) tion steps, missing
fractions, and seg-
mentation issues.
RecipeNLG | Textual >1 Million | Explicitly corrected
Structure Recipes structure, emphasis
and Logic on text quality, logic,
and consistent entity
representation.
RecipeGen Step- 26,435 Focus on Cross-Step
Aligned Consistency, Ingre-
Multimodal dient Accuracy, and
Benchmark Semantic-Visual
Alignment.

Table 3.1: Key characteristics most common recipe datasets.

3.2.4 Evaluation Metrics for Structured Text Generation

The optimization objective is specified by the evaluation framework. For generative
LLMs, unsuitability of generic text metrics for structured, procedural outputs neces-
sitates the design of domain-oriented metrics, and these metrics in turn warrant the

employment of custom-designed loss functions during training.

3.2.5 Limitations of Classical N-gram

Traditionally, large models were evaluated with token-overlap scores including BLEU
(Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy for
Gisting Evaluation).[49] Although effective for lexical correspondence and measures
of fluency (e.g., Perplexity), these scores were widely criticized as being unsuitable
for specialist NLG applications. Thorough reviews concluded that BLEU scores, in
particular, do not accurately correspond to real-world usability or user satisfaction
when used as evaluative criteria for individual generated samples beyond machine
translation.[54] Importantly, for procedural generation, N-gram scores can’t register
the semantic or factual coherence of generated output. A syntactically natural but
procedurally unacceptable generated step of a procedure (e.g., "strain the sauce"

prior to combining the ingredients) would score highly in BLEU but would be of no
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practical use. This inappropriateness of high scores in the traditional measures and
low practical utility is a common experience in culinary NLG research, and it raises

the need for objective functions that directly register functional correctness.[49]

3.2.6 Domain-Specific Recipe Metrics

In order to overcome the shortcomings of traditional assessment, the literature created
bespoke automated metrics for procedure properties. Some of them include Ingredient
Coverage Tracking, which provides a quantitative score for the optimal use of all
input ingredients by verifying that every item in the ingredient list is actually used
in the instructions, Step Complexity, which assesses whether individual instructions
are simple and atomic, penalizing steps that are overly long or combine too many
distinct actions, and Recipe Coherence, which evaluates the high-level logical flow
of the recipe to ensure steps are in a sensible order and no critical processes (like
preheating an oven) are omitted.[49]

Moving beyond automated proxies, the hierarchical evaluation protocol introduced
by RecipeGen demands verifiable procedural assessment based on three levels. The
first is Cross-Step Consistency, which rigorously tracks the state of ingredients
through the procedure (e.g., an ingredient 'chopped’ in step 2 cannot be ’diced’ in
step 4). The second is Ingredient Accuracy, which measures whether the actions
applied to ingredients are semantically and factually correct (e.g., the model should
instruct to ’boil’ pasta, not 'fry’ it). The third, Interaction Faithfulness, ensures
that the text faithfully describes the procedural action or the state of ingredients,
which is especially critical in multimodal tasks for aligning text with images.[53]
These metrics require the evaluation system to move beyond simple comparison
with reference text, instead demanding structured comprehension of the logical and
factual integrity of the generated sequence. The existence and adoption of such
metrics provide the foundational criteria that the custom loss must internalize. The
procedural metrics essentially define the specific elements of generative success that

the training objective must maximize.

3.3 Novel Recipe Detection Based on Topological Data
Analysis

While our work focuses on improving the generation of recipes with custom loss
functions, we are not alone in thinking that the "space" of recipes has a meaningful
structure. A highly relevant and innovative study by Escolar et al. [55], titled "A
topological analysis of the space of recipes," explores this very idea from a different
angle. Their primary goal was to apply a sophisticated mathematical framework
called Topological Data Analysis (TDA) to the study of culinary recipes. The core
idea was to map the geometric "shape" of all known recipes to find "holes" in this
space—regions that are empty but surrounded by existing recipes, representing

unexplored opportunities for creating entirely novel dishes.
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3.3.1 Mapping the "Shape" of Culinary Space

To describe the food space, the researchers first had to phrase recipes in a language

that geometry can understand. Their pipeline comprised the following key stages:

e Data Representation and Distance: What they started with was reducing
the complexity of recipes all the way down to their very simplest component:
their ingredient list. Then each recipe was translated into a vector in the
0-1 space (one-hot encoding), in which each dimension represents a different
ingredient in the set. To determine how different any two such recipe vectors

were, they employed cosine dissimilarity.

e Detecting Holes with Persistent Homology: With recipes now in the
form of points in high-dimensional space, the researchers applied an algorithm
referred to as persistent homology to examine the structure. The process
involves creating a shape referred to as a Vietoris-Rips complex from the
points in the data. In layman’s terms, the process links recipes that are
close enough to one another so that they create a complicated geometric web.
Persistent homology then examines the web at varied scales to determine robust,
significant "holes" and determine the "representative cycles" in existing recipes

that surround them.

e Developing Original Recipes with Combinatorial Optimization: The
discovery of these holes was more than a theoretical exercise. Escolar et al.
utilized this topological data to come up with new recipes. They would take
all the distinct ingredients from the recipes making up the cycle around the
hole and put them in a candidate pool of ingredients. From this candidate
pool, they would then attempt to find a new ingredient combination which was
mathematically maximally distinct from all existing recipes in their original
dataset. What they were trying to find was some point far in the midst of the

"hole" they’d uncovered.

3.3.2 Experimental Verification and Sensory Testing

The interesting part about their research is that they verified the results in the
real world. The exploration in the paper validated that the bulk of the ingredient
pairs their algorithm generated were, in fact, new and did not exist in the original
collection. To take it one step further, they selected some of the new ingredient
pairings from their approach, which were among the more unusual ones, such as
cream cheese, cranberry, gin, and whole grain wheat flour. From these lists, they
came up with and baked multiple sets of biscuits. These fresh biscuits were then used
in a sensory evaluation study and presented to a panel. The result from the study
confirmed that the biscuits were, in fact, "acceptable enough," which was a good
indication that their topologically-motivated ingredient pairings were more than just

mathematically new, but culinarily possible.
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3.3.3 A Comparison among the Topological Methods

The work of Escolar et al. could not be more timely since it reinforces the essential
philosophy behind this thesis: that the application in the recipe space of topological
concepts can yield powerful understanding. In any case, our work varies and deepens

this idea in several key ways.

3.3.3.1 Contrasting Goals and Methodologies

The main objective of their work is exploratory analysis for the discovery of novelty.
Theirs is an offline pipeline operating on a static dataset to suggest a novel recipe. In
contrast, the objective of this thesis is to enhance the generative fidelity of a language
model. Our method is an training process where a topological measure functions as

a loss function in order to direct the learning process of an LLM in real-time.

3.3.3.2 The Critical Difference: Representation and Differentiability

The basic difference is in the way recipes are represented. Their method depends on
sparse, non-semantic one-hot vectors for ingredient lists. This is the root cause: the
representation can only be discrete and non-differentiable. Due to this fact, their
topological analysis cannot be plugged into the gradient-based training loop in a
neural net. Our method, described in the chapter on methodology, actually lifts this
limitation specifically. By framing the model’s predictions in the form of the "soft"
probabilistic embeddings from the model’s logits, our entire process can be made fully
differentiable. It is this key innovation that allows us to frame the geometric distance
between point clouds of ingredients in the form of a continuous loss function. The
loss can then be optimized with backpropagation, and this permits an end-to-end
kind of training that trains the model directly to respect the semantic and topological

structure of the ingredient space.

3.4 Why custom loss matters?

The main reason for adopting a custom loss function is to bring about the LLM’s
generative policy to follow abstract and procedural constraints, which cannot be

processed by the usual token-level prediction loss.

3.4.1 Standard SFT vs. Custom Loss Functions

Standard fine-tuning of LLMs utilizes Supervised Fine-Tuning (SFT), reducing the
adverse log-likelihood by the Cross-Entropy (CE) loss. SFT is successful in training
fluency and grammar by guessing the sequence’s following token, but it optimizes
automatically for statistical resemblance with training corpus. It is not concerned
with properties of factual truthfulness, executability of procedure, or constraint
satisfaction by abstraction. For such activities as generating recipes, in which the

generated output needs to follow particular, complicated rules (e.g., appropriate
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ingredient use, appropriate procedure sequence), in-training methods, through losses
adjusted during training, intervene by altering the model’s parameters as well as
its internal policy, so that the training objective specifically includes domain-aware

performance measures in addition to typical language modeling objectives.[56]

3.4.2 Metric-Guided Training and Reinforcement Learning from
Human Feedback

When standard Cross-Entropy fails for complex procedural tasks like recipe generation,
metric-guided training using Reinforcement Learning (RL) offers an alternative [57].
The most successful approach is Reinforcement Learning from Human Feedback
(RLHF), which trains a Reward Model (RM) on human preferences to guide LLM
finetuning via RL algorithms like PPO, as illustrated in Figure 3.3 [48]. Effective
RM design, particularly Process-Supervised RMs offering step-by-step feedback, is
crucial for achieving procedural accuracy [57, 48]. While RLHF effectively addresses
procedural errors common in standard Supervised Fine-Tuning (SFT) [47, 53, 57],
its exploration falls outside the scope of this thesis, which instead focuses on directly

augmenting SFT with custom, differentiable loss functions.

%

Initial LLM RL fine-tuning feedback loop

The policy model The reward model
mmmmmmal samples apromptand B computes a reward for —
generates output the <prompt, output> pair

Prompt Dataset (Unlabeled) @
“The Earth is... @3
Reward Model

| Fine-tuned LLM

RL Fine-Tuning, using
reward signal to update
policy model weights

Collect Human Feedback
(Preference) Dataset

0 “The Earth is our beautiful home.”
9 “The Earth is a blue-green planet.”

-0

—

Figure 3.3: Feedback loop of RLHF finetuning loop.

3.5 Training Objectives vs. Inference Constraints: Two
Views Compared

When implementing structural and semantic constraints in generative LLMs, there ex-

ist two dominant methodologies: adjusting the training objective (custom loss/RLHF)

or constraining at decoding time at inference (constrained decoding). It is imperative

to understand the trade-offs behind both strategies in defense of the thesis’s focus.
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3.5.1 Constrained Decoding Techniques

Constrained decoding (a technique used during the process) alters the token produc-
tion process of the LLM by controlling the lower-level numerical probability values
(logits) of each step [56]. The basic mechanism is "masking," or minimizing the prob-
ability of undesirable tokens, such that produced sequences adhere to pre-specified
rules. The most constraining form, Grammar-Constrained Decoding (GCD), employs
Context-Free Grammars (CFGs) to ensure that the LLM’s decoding exactly aligns
with particular syntactic rules, including well-formed JSON, XML, or fixed recipe
templates [50]. While extremely successful at assuring structural correctness—an
imperative for assuring the format of the generated recipes is proper—GCD is com-
putationally not-so-lightweight, frequently necessitating offline precomputation for
aligning the subword vocabulary of the LLM with CFG terminals. More advanced
variations, for example, NeuroStructural Decoding, make efforts at incorporating syn-
tactic constraint by applying dependency parsing on partial generations for applying

richer lexico-syntactic constraints [58].

3.5.2 Trade-offs and Complementarity

The main point of divergence is the strength of constraints they can impose. Con-
strained decoding is typically limited to imposing syntactic correctness—the form
and organization of the text [59]. On the other hand, training-based methods, such as
specifically custom loss/RLHF, need to be used for optimizing semantic constraints
(factual correctness, coherence, procedural rationality, and high-level correspondence)
[60]. Constrained decoding is also computationally cheap at inference time for LLM
development, with a straightforward means of ensuring the output format, but it
cannot ensure the abstract properties of the content itself [61].

The bespoke loss (in-training) needs access to model weights and much higher
training complexity, but it injects the LLM with the internal policy necessary for
deep, meaningful alignment with procedure-oriented goals [61]. Crucially, custom
loss functions, often drawn from domains like computer vision where structured
outputs are common [62], can serve as effective differentiable proxies for complex,
non-differentiable evaluation metrics or abstract procedural requirements, enabling
direct optimization of these desired qualities during training [63]. For the problem of
creating recipes, when fidelity of procedure is paramount (i.e., the generated recipe
must work), a custom loss function is the choice that must be made. Constrained
decoding can help to ensure that generated text is in the correct form for recipes (e.g.,
correct list ordering), but only a custom loss, informed by measures of procedure, such
as Cross-Step Consistency, is able to penalise semantic errors, such as instructing a
user to perform some procedure (such as baking) before completion of necessary prior
actions (such as mixing ingredients). While complexity is high, literature suggests
optimal performance is achieved with a combination of a hybrid strategy, such that
the custom loss reduces abstract, semantic quality, and constrained decoding ensures

rigid syntactic fidelity [61]. The trade-offs between these different optimization
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paradigms are summarized in Table 3.2.

Paradigm Mechanism| | Intervention Strength Limitation
Stage
Supervised Cross- Training Establishes Fails to penalize
Fine-Tuning | Entropy foundational factual  errors,
(SFT) Loss  Mini- fluency and | procedural in-
mization domain-specific | consistencies, or
gramimar. address abstract
quality metrics.
Custom Policy opti- | Training Aligns  genera- | High  training
Loss (RLHF | mized via tion with com- | complexity; re-
or  Metric- | learned Re- plex, abstract, | quires annotated
Guided) ward Model task-specific met- | preference data;
(RM) proxy. rics (Coherence, | guarantees are
Faithfulness, probabilistic, not
Ingredient Accu- | absolute.
racy).
Constrained | Token Logit | Inference Guarantees Cannot enforce
Decoding Masking (Intra- syntactically semantic, proce-
(GCD) (CFG, processing) | valid and strictly | dural, or factual
RegEx). structured out- | rules; limited to
put formats (e.g., | hard syntactic
valid instruc- | constraints.
tion/ingredient
list structure).

Table 3.2: Key characteristics and trade-offs of three optimization paradigms for
structured text generation.

3.6 Gap in Literature and Contribution

The comparison with related work illustrates that although Culinary NLG based
on transformer architecture is the norm for Large Language Models[46], and high-
accuracy text datasets such as RecipeNLG are available[47], it is still a challenge to
match the generative policy with the stringent requirements of procedural fidelity.
Classical SF'T, as fine-tuned through cross-entropy loss, fails inherently to condemn
procedural and factual mistakes and is thus shown in early attempts at research to
introduce inconsistencies.[47] Additionally, cutting-edge evaluation requires procedure-
verifiable measures such as Ingredient Accuracy and Cross-Step Consistency.[53] The
literature also strongly suggests the use of high-level measurable quality attribute
and learnable model’s parameters through advanced training objectives, i.e., for
example, the RLHF-based ones. In particular, for procedural tasks, it is confirmed
as necessary the design of Process-Supervised Reward Model.[57] This thesis bridges
the key literature gap by being the first to rigorously apply a specially-designed loss
function, guided by the procedural evaluation metrics, to fine-tuning an LLM on

structurally enhanced RecipeNLG corpus. This work directly addresses empirically-
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verifiable results such as Ingredient Accuracy and Cross-Step Consistency, and
offers an foundational work in applying metric-driven policy optimization to highly-
constrained, practical, procedural text generation. The methodology established
here is likely to form the basis for further advanced adaptation strategies, such as
multi-task learning models that simultaneously optimize for culinary finesse and

intricate targets such as allergen safety.[49]
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Chapter 4

Methodology

This chapter aims to describe how the dataset has been selected and preprocessed,
the choice of the models, the choice of the custom loss paired to the CE, the choice

of the evaluation metrics, and how the experiments have been performed.

4.1 Problem statement

Creating accurate cooking recipes is a notable challenge for Large Language Models
(LLMs) because these tasks demand precise procedural knowledge and numerical
reasoning. This study seeks to enhance the effectiveness of LLLMs in tackling this
specialized task. While traditional fine-tuning methodologies are effective for general-
purpose text, they demonstrate considerable limitations when applied to procedural
and niche domains like cooking recipes.

More formally, we define the task of structured recipe generation as a mapping
f : Pin = Rout, where Py, is a natural language prompt (e.g., "Generate a recipe
for Pasta Carbonara") and Ry, is a structured text output that must conform to a

specific JSON schema. This output R, = {I, S} consists of two key components:
o A list of ingredients I = {11, Is,...,I,}, where each I; is a string.
o A list of instructions S = {S1,Ss,...,Sn}, where each Sj, is a string.

The objective is to learn a function f that successfully satisfies multiple constraints
simultaneously. These include not only structural correctness (i.e., generating valid
JSON) but also factual, procedural, and numerical accuracy. For example, for the

prompt "Pasta Carbonara," the model must satisfy:

e Factual Constraints: The ingredient list I must be factually correct and

complete, containing items like ’guanciale’, 'pecorino’, ’eggs’, and 'pepper’.
) ) b )

o Numerical Constraints: The entities within I (e.g., quantities like "200g")

and S (e.g., times like "10 minutes") must be plausible and accurate.

e Procedural Constraints: The sequence of instructions S must be logical
and executable (e.g., the guanciale must be cooked before being mixed with

the pasta).
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The fundamental challenge of this task lies in the inherent asymmetry of token
importance. In a recipe, tokens are not of equal value; the generation is governed
by key entities. Recipes are carefully structured guides where "key players"—such
as ingredients, their amounts, and cooking steps—are far more crucial than the
connective words. This deficiency manifests in common failure modes, such as poor
ingredient recall, inaccurate numerical values, and procedurally incorrect instructions,
which ultimately render a generated recipe unusable.

Recognizing that success in this domain is defined by a combination of fluency,
structural integrity, and factual correctness, this study assumes that a standard
training objective is insufficient. Our main objective is to create a finetuning frame-
work that enhances the standard Cross-Entropy loss by incorporating additional,
specialized loss functions. These secondary losses are designed to explicitly target
and amplify the learning signal for the most essential elements of a recipe, forcing
the model to pay closer attention to ingredients and numerical values. This work,
therefore, focuses on the loss function as the most direct lever for influencing model

behavior to solve the limitations of the training process.

4.2 Dataset preparation

The dataset consists of two main parts:
e Recipes

e (Questions related to general cooking knowledge and skills

4.2.1 Recipes

The first part has been obtained as a selection of recipes from the dataset RECIPE-
NLG [47], a large-scale corpus of over 2.2 million cooking recipes developed for
natural language processing (NLP) and semi-structured text generation tasks. It was
created to address the limitations of previous recipe datasets, such as Recipel M+,
which were often designed with computer vision applications in mind and suffered
from structural inconsistencies. We have selected a subset of 4000 recipes related to
pasta, rice, and sandwiches. This specific subset was chosen because these dishes are
not only highly common but also tend to share similar preparation structures and
ingredient types, providing a coherent and focused domain for specialization This
selection is motivated by the fact that preliminary results based on fine-tuning the
model on a subset representative of the entire corpus led to poor results in ingredient
recall, caused by the limited training sample size and time for training. We believe
this was caused not only by the limited training time but, more importantly, by a
significant distributional mismatch between the broad training data and the test
set. To draw a parallel, a model trained broadly might not perform well on specific
categories, much like a chef who only knows how to cook rice-based dishes would
struggle to adapt to fish-based dishes. Therefore, to ensure a more robust validation

by aligning the train and test distributions, we decided to limit the dataset to these
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specific first-course recipes, specializing the model within this category. Besides the
better consistency of RECIPE-NLG compared to RecipelM+, we opted for this
dataset since it provides both a list of ingredients and instructions which is well
suited for structured output as JSON, which we have chosen to perform a smoother

evaluation of the models after fine-tuning.

4.2.2 General Questions

In addition to the recipe collection, we manually curated and added a new dataset of
235 questions related to general knowledge in the cooking domain. We decided to
augment the dataset with this set of questions to allow the model not only to learn
how write recipes in general (which is a task already solved by means of most of
vanilla LLM), but also to allow the model to understand how to better deal with
quantities, ingredients similarities and differences, ingredients proportions, and other
challenges related to recipe generation. The questions have been generated from a
set of humanly written samples that have been augmented using Gemini 2.0 Flash
[64]. The resulting augmented set has been then evaluated by humans for the quality
of questions, diversity in recipes and ingredients involved, and potential data leaks

in relation to the test dataset. The questions can be categorized into the following.
e Missing ingredient identification
e Substitution validation
e Recipe scaling
e Quantity ingredient
e Time

e Temperature

4.2.3 Missing ingredient identification

The following questions consist of the presentation of recipes along with an incomplete
list of ingredients. The questions evaluate therefore the capacity of the model to

identify the missing ingredients and learn the relationships between the ingredients.

Example

Question: You are an expert chef. You have been tasked with generating
a recipe for Carbonara. The following ingredients have been identified:

pasta, pecorino, eggs. Which ingredient(s) are missing?

Answer: pepper, guanciale
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4.2.4 Substitution validation

This set of questions has been inserted to teach the model about similarity and
differences about ingredients. Our aim with this set of questions is to teach the model
how to deal with uncertainty about new recipes and, in case the recipes contains not

the exact ingredients, that at least similar candidates are contained.

Example

Question: You are an expert chef. You have been tasked with generating
a recipe for Carbonara. Pecorino is not available and you have been
asked to propose an alternative ingredient. Which ingredient can best

substitute it?

Answer: Parmesan

4.2.5 Recipe scaling

One of the common problems of SLM (Small Language Models) is their inability to
predict reliable quantities for ingredients, especially when the portions required are
different from the one in the training dataset. The goal of this subset of questions is
to train the model in identifying the scaling rules that are used for different kinds
of ingredients, in particular the differences between main ingredients (for example,

carbohydrates, protein, fibers) and condiments ( for example, oil,butter,salt, herbs).

Example

Question: You are an expert chef. You have been tasked to modify the
following list of ingredients, aimed to be used for two servings, so that it
can be used for 4 servings. Modify the quantities of each ingredient. List

of ingredients: 200g of pasta, 100g of pecorino, 3 yolks, 140g of guanciale.
Answer: 400g of pasta, 100g of pecorino, 3 yolks, 140g of guanciale.

4.2.6 Quantity Ingredient

In relation to the previous set of questions, this set aims to teach the model how to

properly dose ingredients based on the context.

Example

Question: You are an expert chef. How many grams of spaghetti are

needed to prepare a Carbonara for two people?

Answer: 400g
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4.2.7 Time

Recipes not only consist of ingredients, but also of a series of steps to follow in order
to accomplish the final dish. One of the key attributes of these steps is the time
needed to execute that specific step. This set of questions aims to teach the model

how to properly define times in relation to the different steps involved.

Example

Question: You are an expert chef. How much time do you need to boil

pasta?

Answer: 10 minutes.

4.2.8 Temperature

In relation to the previous point, it is also important that the model learns, whenever
necessary, the temperature at which certain ingredients should be exposed in order

to accomplish a specific step. This set of questions aims to do so.

Example

Question: You are an expert chef. At which temperature should you

boil pasta?

Answer: 100 Celsius degrees.

4.3 Dataset preprocessing

Both sections of the dataset have been saved into a unique file in csv format. In order

to be utilized for finetuning, a series of steps have been applied to both of them.

4.3.1 Preprocessing of Recipe dataset

Recipe-NLG contains recipes expressed in a convenient format, as they already
contain two fields called “ingredients” and “instructions” containing a list of the
respective entities. The main aspect that needed to be modified for our experiment
is the conversion of the unit of measure of the ingredients and other entities to the
metric systems. We decided to convert to the metric system to have reliable and
consistent numerical values related to ingredient quantities, time and temperature.
In order to do so, we opted for using an LLM (Gemini 2.0 Flash) to convert all
quantities to the metric system. Finally, the recipes have been saved in JSON format.

The final result can be seen in the following example:

Recipe Example

i
2 "ingredients": |

3 "200g Guanciale, cubed",
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"4 large egg yolks",

"50g Pecorino Romano cheese, grated"',
"320g Spaghetti",

"Coarsely ground black pepper",
"Salt"

instructions": |

"Boil salted water in a large pot.",

"Fry the guanciale in a skillet until crispy.",
"Remove the skillet from the heat.",

"Combine egg yolks, Pecorino, and pepper in a bowl.",

[

"Garnish with extra cheese and pepper.",

"Serve immediately."

4.3.2 Preprocessing of Cooking questions

Since these questions have been generated through LLM augmentation, we had more
flexibility in shaping the samples in the format desired. In this case, questions have
been saved in JSON format containing one field for the question and one for the

answer.

Cooking Question Example

"question": "You are an expert chef. What is the temperature in
Celsius to boil water?"

"answer": "100"

4.3.3 Conversion to Huggingface dataset format

In order to be utilized, both sections of the dataset have been converted to the “mes-
sage” template format of HuggingFace. Regardless of the type of task (recipe,question))
the finetuning sample has been converted from their respective JSON format to a

message template comprising of a user request and an assistant answer.

Example of row in HuggingFace dataset format

{
"role": "user",
"content": "How many minutes should you boil an egg for a jammy
yolk?"
I
{
"role": "assistant",
"content": "T7"
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4.4 Losses

This section describes the loss functions utilized in the experiment section.

4.4.1 Loss functions

4.4.1.1 Cross-Entropy

Cross-Entropy (CE) is a widely used method for training large language models on
generative tasks due to its effectiveness in optimizing model performance. Given its
effectiveness in optimizing model performance, we have decided to use the results
from fine-tuning with pure Cross-Entropy as our primary baseline, as it provides a
standard method for comparison.

Cross-Entropy is used to measure the dissimilarity between the model’s predicted
probability distribution and the ground-truth distribution. The model produces
a vector of raw scores, known as logits (z), which represent the unnormalized
probabilities for every token in its vocabulary, V. These scores are then converted

into a probability distribution, p, using the softmax function:

where p; is the predicted probability for the j-th token. The ground truth is
represented as a one-hot encoded vector, ¢y, where the element corresponding to the
correct token is 1 and all others are 0. The Cross-Entropy loss, H(y,p), is then

formally calculated as:
\4

H(y,p) = —Y_ yilog(p:)
i=1

This formula simplifies to calculating the negative log-probability of the single correct
token, ¢, because in a one-hot encoded vector y, only the correct token has a value of

1, while all others are 0. Therefore, we can rewrite the formula as:

Lcp = —log(pe)

This resulting loss value is low if the model assigned a high probability to the correct
token (i.e., p. is close to 1), but it grows larger as the predicted probability for the
correct token approaches zero. During fine-tuning, the objective of the model is to
adjust its internal parameters to minimize this loss value across the training data.
Building on its foundational role, in this research, Cross-Entropy is used in two key
ways. First, it establishes our baseline performance level. Second, it acts as a core
component in all of our custom loss experiments, where it is combined with the
novel loss functions in a 60/40 weighted average. This highlights its significance as
both a standard for comparison and a stabilizing element, which is important for the

effectiveness of our more advanced loss formulations.
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4.4.1.2 Focal

One of the primary challenge in the fine-tuning of our language model for recipe
generation is the imbalance in token frequency within the training corpus. Standard
training with a Cross-Entropy loss function results in learning extremely common
words and phrases (e.g., "add a pinch of," "mix until combined," "in a large bowl"),
as correctly predicting these high-frequency tokens produces a quick reduction in
the overall loss. This result in a model that is proficient at generating generic
cooking recipes but fails to master the ingredients that define specific dishes, such as
distinguishing between "pancetta" and "guanciale" in a pasta recipe or suggesting
"basmati" for a rice pilaf, as well as correctly generating the related quantities. In
order to mitigate this, we used Focal Loss, originally proposed by Lin et al. (2017).
While this loss is mostly implemented in computer vision tasks, its core principle is
directly applicable to addressing token-level imbalance in language modeling. The
Focal Loss is a dynamic extension of the standard Cross-Entropy (CE) loss. In the

context of an LLM, the CE loss for predicting a target token is:

CE(pt) = —log(pt)

where p; is the model’s predicted probability of the correct next token. The main
issue is that the loss for correctly predicting the common token "the" is treated
with the same importance as the loss for correctly predicting the crucial ingredient
"saffron." Focal Loss addresses this by introducing a modulating factor (1 — p;)” to
the CE loss:

FL(pt) = —(1 — pt)" log(pt)

This factor has two major consequences. When the model correctly predicts a very
common token with high probability (an "easy" prediction, p; — 1), the (1 —p;)” term
approaches zero, effectively silencing the loss for this trivial prediction. In contrast,
when the model is uncertain about a rare but critical token, such as a specific type of
cheese for a sandwich or a particular herb for a rice dish (p; is low), the modulating
factor is close to 1. This makes sure that the model is significantly penalized for
failing to learn the important, low-frequency vocabulary. The focusing parameter,
~v > 0, controls the strength of this effect. By setting v = 2 in our experiments, we
encouraged the model to focus its learning capacity on the challenging and defining
tokens of our recipe dataset, leading to the generation of more accurate, diverse, and

high-quality recipes.

4.4.1.3 Dice

Standard loss functions such as Cross-Entropy concentrate on predicting the correct
sequence of words one by one, we also integrated the Dice Loss to train the model to
have a more holistic understanding of a recipe’s success. This methodology draws
inspiration from techniques used in medical image analysis, but we’ve adapted its

core concept to our task. Rather than penalizing every minor wording deviation,
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Dice Loss encourages the model to produce the correct set of key ingredients and
instructions, bringing it closer to how a human chef thinks.

The Dice Loss is derived from the Sgrensen—Dice Coefficient (DSC), a statistic
developed to measure the similarity between two sets. In essence, it measures the
overlap between the set of keywords in the generated recipe (A) and the set in the
reference recipe (B):

DSC — 2|AN B|

Al + B

The formula is applied in a differentiable form in order to be applied to a neural
network, since they operate on continuous outputs instead of discrete sets.

Let the ground truth be represented by a one-hot vector y of vocabulary size V,
where the single non-zero element corresponds to the correct token. Let the model’s
prediction be the probability vector ¥ produced by the final softmax layer, also of
size V. The intersection term |A N B| is approximated by the dot product of these
two vectors, Z};l 1;y;. This effectively isolates the model’s predicted probability for
the single correct token. The size of the sets, |A| and |B|, are approximated by the
sum of the squares of their vector elements, szzl y? and Zzyz1 §? respectively. This

leads to the differentiable formulation of the Dice Score for a single prediction:

250 Giyi + €
A2 Vo2
Doim1 Ui+ 2 im1Yp T e

DSCsoft =

Here, € is a small smoothing constant that ensures numerical stability and prevents
division by zero, especially in the early stages of training. The final Dice Loss is then
defined as Lpjce =1 — DSCop4.

The minimization of this loss implies the direct optimization of the alignment be-
tween the model’s predicted probability distribution and the ground truth, compelling

it to accurately capture the essential semantic components of a recipe.

4.4.1.4 Topological

One of the main challenges in the generation of recipes consists of understanding the
relationships between ingredients. While standard Cross-Entropy (CE) loss optimizes
for token-level prediction accuracy, it does not inherently grasp the semantic or
geometric relationships between them. For instance, substituting "pecorino" with
"parmesan’ is a semantically plausible error that CE loss would penalize just as
heavily as substituting it with an unrelated ingredient, like "chocolate". To solve this,
we introduce a topological-based loss function designed to operate in the embedding
space which will complemented the CE loss.

The core principle of this loss is to represent the list of ingredients not as a
sequence of tokens, but as a "point cloud" in a high-dimensional space, where each
point is an ingredient’s embedding. The loss then measures the geometric dissimilarity
between the point cloud generated from the model’s prediction and the point cloud

from the ground truth. The intuition is that a semantically correct, although not
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perfectly identical, list of ingredients will form a shape geometrically similar to the
ground truth in the embedding space. The loss is implemented through a three-step

process:

1. generating differentiable representations of the model’s predictions;
2. generating the point clouds;

3. calculating the geometric distance between the two point clouds.

4.4.1.5 Step 1: Generate Soft Probabilistic embeddings

Differentiability is a fundamental requirement for any loss function and a sim-
ple argmax over the model’s output logits to select the predicted token is a non-
differentiable operation therefore, to overcome this, we formulate a "soft" or "proba-
bilistic" embedding for each predicted ingredient token. For a given token position,
we apply a softmax function to the model’s raw logit vector, which converts the

scores into a probability distribution, P, over the entire vocabulary V.
P = softmax(logits), where P € RV

Next, we perform a matrix multiplication of this probability vector with the model’s

RIVIxdems  where d,,, is the dimension of the embed-

token embedding matrix, F €
dings.

embsors = P - E

The resulting emby, s is a weighted average of all token embeddings in the vocabulary,
with the weights being the model’s predicted probabilities. For example, if the model
is 80% confident the ingredient is "sugar" and 20% confident it is "flour," the resulting
soft embedding will be a vector located geometrically much closer to the embedding
for "sugar" but pulled slightly towards the one representing "flour". This process
yields a fully differentiable representation of the model’s prediction for that position.

Figure 77 illustrates this process of generating a soft probabilistic embedding.

4.4.1.6 Step 2: Point Cloud Creation

With a method to derive differentiable embeddings, we are able to construct two
distinct point clouds for comparison. The process is focused exclusively on the
tokens identified as ingredients, using a pre-computed ingredients_mask to select

the relevant positions. Follows a description of the two point clouds:

« Predicted Point Cloud (PC),q): This cloud is formed by applying the soft
embedding process described above to the logit outputs at each ingredient po-
sition, representing the model’s probabilistic prediction of the entire ingredient

list in the embedding space.

« Ground-Truth Point Cloud (PCy): For the ground truth, we simply
perform a standard embedding lookup for the label tokens at the ingredient
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Figure 4.1: The process of generating a Soft Probabilistic Embedding (embsq¢)-
The model’s raw output logits are passed through a softmax function to create a
probability distribution (P) over the vocabulary. This vector is then multiplied by
the full embedding matrix (£). The resulting embg, s is a weighted average of all
token embeddings, yielding a continuous, fully differentiable representation of the
model’s prediction.

positions. This is the "hard" point cloud, representing the ground truth. The

creation of these two comparative point clouds is visualized in Figure 4.2.

model embeddings
soft probabilistic

\guanciale embeddings
bacon

pecorino 7N\ \ - q
¢

\ parmesan

|
\ _ - L €99 | — “ egg
" sl
pasta pasta
Ground truth Prediction

Figure 4.2: The creation of two comparative point clouds in the embedding
space for ingredient tokens. The Ground-Truth Point Cloud (PCygt) is formed by
hard embedding lookups, while the Predicted Point Cloud (PCpreq) uses the Soft
Probabilistic Embeddings. The topological loss minimizes the distance between these
two clouds by forcing the soft prediction points (light gray) to align with the ground
truth points (black).

4.4.1.7 Step 3: Measuring Geometric Distance with Sinkhorn Divergence

The final step consists of the quantification of the dissimilarity between PCy,.cq

and PCy. We utilized the Sinkhorn divergence, a computationally efficient and
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differentiable approximation of the Wasserstein distance, also known as the Earth
Mover’s Distance. The choice of Sinkhorn divergence over the classical Wasserstein

distance is motivated by several key factors essential for deep learning applications:

e« Computational Speed: Standard Wasserstein distance involves solving a
linear programming problem, which is computationally prohibitive for the
iterative nature of model training. Sinkhorn divergence utilizes an entropic

regularization term which allows a faster iterative matrix-scaling algorithm.

o Differentiability: The entropic regularization ensures the objective is strictly
convex, leading to a unique solution and stable gradients essential for back-

propagation.

¢ Regularization: The regularization strength, ¢, acts as a tunable hyper-
parameter that smooths the loss landscape which may lead to more stable

training.

The Sinkhorn divergence stems from the regularized optimal transport cost, W,(«, /),

between two distributions a (our PCy) and 8 (our PCpreq):

We(a, ) = min P,C)—€eH(P

(.8) =, min  ((P.C) = cHT(P)

Where C is the cost matrix (typically the squared Euclidean distance between
embedding points), P is the transport plan, and eH (P) is the entropic regularization
term. The Sinkhorn divergence, S, then debiases this value to ensure the divergence

of a distribution with itself is zero:

Sela B) = Wl ) — 5 Wl 0) — S W(5, ).

Our topological loss consists of the above divergence formula. By minimizing this
geometric distance, we encourage the model not only to predict the correct tokens,
but to generate ingredient lists that are semantically and structurally coherent in
the embedding space. Figure 4.3 illustrates this measurement of geometric distance

using Sinkhorn divergence.

4.5 Model selection

We have selected three specific language models: Qwen2.5 - 1.5B, SmolLM-3B, and
Qwen3 - 4B to perform our experiments. This decision has been taken by considering
our necessity for efficient experimentation. To ensure that we could run and evaluate
many tests quickly, we deliberately chose models with fewer than 5 billion parameters.
Besides speed, this selection was designed to see how well our methods would work
on different types of models. using models with different architectures (Qwen versus
SmolLLM) and of varying sizes (1.5, 3, and 4 billion parameters) allowed us to better
understand if our findings are broadly applicable rather than being specific to just

one model architecture or scale.
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Figure 4.3: Measuring the geometric distance between the Predicted (PCpred)
and Ground-Truth (PCgt) point clouds using Sinkhorn Divergence. This metric
calculates the regularized optimal transport cost (Earth Mover’s Distance) required
to move the predicted distribution (black points) onto the ground truth distribution
(gray points), providing a differentiable loss signal for the model.

4.6 Experiments

The goal of the following set of experiments has been the impact of various custom
loss function on linguistic and numerical properties of recipes, as well as the correct
usage of ingredients. All losses functions have been tested with the three language

models specified in the model section:
e Qwen2.5- 1.5B
e SmolLM-3B
e Qwen3 - 4B

All experiments were conducted using the Low-Rank Adaptation (LoRA) method-
ology, which significantly reduces the number of trainable parameters and memory
requirements, to ensure that the finetuning process was computationally feasible. We
established two key benchmarks to contextualize our results. The performance of the
non-finetuned, "vanilla" models serves as a lower bound, while the primary baseline
for comparison consists of models finetuned using a pure Cross-Entropy (CE) loss
on the recipe generation task. We conducted a series of experiments where each
model was finetuned with a composite loss function. These setups combined the
standard CE loss with one or more of the custom losses introduced earlier. For the
experiments with a single custom loss, the final loss value was a weighted average
of 60% CE and 40% custom loss. The 60-40 proportion was decided empirically, as
considering this factor as an additional hyperparameter would have notably increased

the number of experiments. A final "Mixed Loss" experiment was also conducted
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to test a combination of the two most promising custom losses. The full list of

experimental configurations for each model was as follows::

o Base model (not finetuned);

o Finetuning with 100% Cross-Entropy loss;

o Finetuning with 60% CE + 40% Focal loss

o Finetuning with 60% CE + 40% Dice loss

o Finetuning with 60% CE + 40% Topological loss

e Finetuning with 60% CE + 20% Dice loss + 20% Topological loss
Composite loss functions have been used on samples regarding:

e Recipe generation

e Missing ingredient identification

o Substitution validation

e Recipe scaling

For samples regarding pure numerical predictions (for example, temperature, time and
ingredient quantity), we utilized MSE as loss function. All training procedure have
been optimized keeping into account computational efficiency. While a comprehensive
set of hyperparameters was used, several were particularly important for managing

resource constraints:

o Mixed-Precision Training (bfl6: True): We utilized bfloat16 mixed-
precision training to represents numbers with 16 bits instead of the standard 32,
effectively halving the GPU memory required for model weights and gradients.
This leads to a significant increase in training speed with minimal impact on

final model performance.

o Gradient Accumulation (gradient__accumulation_ steps: 3): To achieve
the stability of a larger batch size without the associated memory cost, we
used gradient accumulation. While the batch size per device was small
(per__device_ train_ batch_size: 2), gradients were accumulated over 3 steps
before a model weight update was performed. This simulates a larger effective

batch size of 6, leading to more stable convergence during training.

o Optimizer (optim: adamw__torch): The adamw_ torch optimizer was
selected for its efficiency and robust performance in training large language
models. The learning rate was set to le-4 across all experiments, and training
was conducted for a total of 2 epochs, as we noticed that further epochs were

not substantially increasing performances.
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4.7 Evaluation and metrics

This section describes the evaluation framework that has been adopted, in particular
the metrics that have been utilized and arrangements applied in order to mitigate

potential issues.

The evaluation consisted of the generation of 1000 recipes in JSON format, fol-
lowing the schema introduced in the dataset section. While generating a recipes as a
simple text could have been more straightforward, we decided to utilize a structured
output to facilitate the extraction and evaluation of ingredients and the steps of the
recipes. One of the challenges that we immediately faced was the inconsistency in the
JSON format, often resulting in unparsable content. To address this limitation, we
opted for the usage of "outlines", an open-source library utilized by organization such
as NVIDIA VLLM, Huggingface to enforce a specific schema at inference time. The
library offers methods to pass different kind of schemas to a language model, as well
as methods for validation and automatic retrial in case of failure. The adoption of this
tool allowed us to completely remove the problem of corrupted and incorrect JSON
structures. Following this, the output of the model has been passed to NER realized
by means of a Small Language Model (Qwen3-4B) to extract attributes from the
ingredients (quantity, unit of measure) and instructions (main action, temperature,
time). We decided to opt for the application of NER after model inference instead of
expanding the JSON schema because we noticed worse performance and instability
of the output when involving a large number of attributes in the JSON schema. The
usage of NER allowed us to keep simple the JSON structure of the output while
allowing us to extract all necessary attributes from the model response. This NER

process is illustrated in Figure 77?.

Grill the salmon fillets NER action: Grill
skin-side down at ——— > temperature: 200°C
200°C for 6 minutes time: 6 minutes

Figure 4.4: Illustration of the Named Entity Recognition (NER) process
applied to extract structured attributes from a natural language instruction. After
generating recipes in a simplified JSON format, a dedicated Small Language Model
(Qwen3-4B) performs NER to extract granular details such as the main action,
temperature, and time. This approach maintains a simple JSON schema for the
primary output while still allowing for detailed attribute extraction, addressing
challenges with model stability when embedding too many attributes directly into
the initial JSON generation.

In order to comprehensively assess the performance of our models, we designed
an evaluation framework consisting of both metrics commonly found in literature as
well as ad-hoc ones designed for these experiments. Standard language generation
metrics are insufficient for a task like recipe generation, where factual accuracy and

procedural correctness are as important as linguistic fluency. Consequently, our
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framework combines established NLP benchmarks with a suite of custom, ad-hoc
metrics specifically tailored to the nuances of recipes. This dual approach allows for a
comprehensive understanding of model capabilities, from semantic coherence to recall
of ingredients and numerical precision. The following metrics are commonly used to
evaluate the quality of machine-generated text by comparing it to a human-written
text.

4.7.1 Traditional metrics

4.7.1.1 BLEU (Bilingual Evaluation Understudy)

BLEU measures the precision of n-grams (contiguous sequences of n words) in the
generated text relative to the reference text and it was originally developed for
machine translation. BLEU considers the proportion of matching n-grams (typically
from 1 to 4) and applies a "brevity penalty", which penalizes generated pieces of texts
that are much shorter than the reference one. BLEU serves therefore as a proxy to
measure grammatical correctness and fluency. A high BLEU score means that the
model’s sentence structure and word choices are similar to the ground truth from a

style perspective.

4.7.1.2 ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

While BLEU is precision-focused, ROUGE is recall-focused. It measures how many
of the n-grams in the reference text appear in the generated output. We specifically
utilize ROUGE-1, which focuses on the overlap of individual words (unigrams).
ROUGE-1 is particularly useful for evaluating if key terms and concepts from the
original recipe are present in the model’s output regardless of the exact sentence

construction.

4.7.1.3 BERTScore

BERTScore uses contextual embeddings from a pre-trained BERT model to represent
each token in the generated and reference texts and it computes the cosine similarity
between token embeddings, matching words based on their meaning in context.
Differently from n-gram based method, it evaluates semantic similarity. A high
BERTScore implies that the generated recipe is semantically close to the ground
truth, even if it uses a different phrasing (e.g., correctly identifying "finely chop" as

similar to "mince").

4.7.2 Ad-Hoc Metrics for Recipe Generation

In order to mitigate the limitation of standard metrics in evaluating the quality of
cooking recipes, we developed a set of custom metrics which target the most critical

components of a recipe.
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4.7.2.1 Ingredient Recall

It measures the fraction of ingredients from the ground-truth recipe that are correctly
listed in the generated output. It is calculated as the size of the intersection of the
two ingredient sets divided by the total number of ingredients in the ground-truth
recipe. A low score indicates the incapacity of the model of understanding which

ingredients are important for a specific recipe.

4.7.2.2 Quantity Precision

This metric measures whether a model is able to handle the numerical quantities
associated with the correctly recalled ingredients. For instance, if the model correctly
recalls "flour" but generates "100g" instead of the correct "200g," it is penalized. This

metric is crucial as incorrect quantities can make a recipe inedible.

4.7.2.3 Action Precision

This metric evaluates the procedural correctness of the instructions. In other words,
it measures the precision of key cooking verbs (e.g., "boil," "fry," "sauté," "bake") in
the generated steps compared to the reference. It is fundamental to identify the set

of actions in order to execute a recipe correctly.

4.7.2.4 Time and Temperature Precision

Similar to quantity precision, these metrics focus on the model’s ability to handle
numerical values within the instructions, in this case temperature and time. They
specifically extract and compare all mentions of cooking durations (e.g., "15 minutes")
and temperatures (e.g., "180°C") against the ground truth. The accuracy of these

parameters is important to execute the recipe successfully.

4.7.2.5 Action Edit Distance

To quantitatively assess the procedural accuracy of the generated instructions, we
have devised a metric based on the concept of edit distance. After extracting the
sequence of primary cooking actions—such as 'boil,” 'fry,” or 'mix’—from both the
predicted and ground-truth recipe, each unique action is then mapped to a distinct
character; This process transforms the entire sequence of instructions of a recipe into
a string. The Levenshtein distance is calculated between on top of the two strings to
determine the minimum number of actions (insertions, deletions, or substitutions)
required to align the two strings. The resulting score measures the differences in the
core cooking steps, where a lower distance indicates a more accurate sequence of

actions.

4.7.2.6 Step Edit Distance

Built on top of the previous concept, the Step Edit Distance provides a more

comprehensive and granular evaluation of the accuracy of the entire sequence of
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instructions. This approach considers not only the cooking actions but also their
critical parameters, such as specified cooking times and temperatures. In this method,
the encoding for each step is more descriptive, meaning that a step like "bake for 30
minutes" is considered fundamentally different from "bake for 45 minutes." Therefore,
this metric penalizes a wider range of procedural errors, keeping into account details
that determine the success of the final dish and offering a more comprehensive

measure of a recipe’s correctness.
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Chapter 5

Results

This chapter presents the results obtained from the application of the different losses
function previously defined to three Small Language Models. The results are presented
in three sections: traditional evaluation metrics (BLEU, ROUGE, BERTScore), ad-
hoc metrics for recipe generations ( precision and recall of different recipe attributes
defined in the evaluation section) and human evaluation. In particular it will be
given a panoramic of which combination performs better in different circumstances
and the reasons behind it. Concerning metrics, the results are reported as bar
plots representing each experiment in the format “Model name - Experiment name”.

Finally an analysis of the statistical significance of these results is presented.

5.1 Traditional metrics

5.1.1 BLEU

We bring to attention the following aspects of the performances on the BLEU metric:

e The application of LORA finetuning is beneficial for all models. The main
reason behind this is the specificity of the task, which is difficult to handle from
the base model as it requires extensive knowledge of the cooking domain as

well as learning how to handle structured outputs.

e Some combination of custom losses always outperforms the baseline established
by the Cross entropy loss. In particular we can notice that CE combined
with either Topological Loss or Dice Loss outperforms pure CE across all
models, while the application of the Focal loss is not beneficial. The increased
performance might suggest that pure CE is not sufficient to learn appropriately

the usage of less common yet critical tokens, such as ingredients and quantities.

« Topological loss performs better than Dice loss across all models. This result,
if remains consistent across all metrics, might suggest that recipe generation
does not only entails learning how to use less common tokens, but also the

topological structure that they compose in a recipe.
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e All models have a performance below 0.5, which could be explained by the
missing of ordering rules in the generation of the ingredients and attributes
in the recipe. Since the BLEU metric heavily depends on n-grams, the miss
of ordering rules (for example, alphabetical) might lead to penalties in such

scores. The results for the BLEU metric are presented in Table 5.1 .

Experiment Name BLEU
Qwen3-4B-Topological 0.303985
Qwen3-4B-DiceLoss 0.283497
Qwen3-4B-Focallngredients 0.275094

SmolLM3-3B-TopologicalL.oss 0.270666
Qwen3-4B-CrossEntropyLoss 0.260293

SmollLM3-3B-DicelLoss 0.250838
SmolLLM3-3B-CrossEntropyLoss  0.243894
SmolLM3-3B-FocalLoss 0.224938
Qwen2-1.5B-TopologicalLoss 0.217590
Qwen2-1.5B-DiceLoss 0.189898
Qwen2-1.5B-CrossEntropyLoss  0.170838
Qwen2-1.5B-FocallLoss 0.160374
Qwen3-4B-Baseline 0.054075
SmolLM3-3B-Baseline 0.049744
Qwen2-1.5B-Baseline 0.020875

Table 5.1: Table of results for BLEU score

5.1.2 ROUGE1

Similar to the evaluation of BLEU metric, the evaluation of ROUGEL1 depicts the
better performance of the combination CE+ Topological over the other experiments
across all models. In this case, we can also observe that the base models do not
accumulate anymore at the right tail but rather they get close to the cluster of

experiments concerning their finetuned counterparts. These results are shown in

Table 5.2.

5.1.3 BERTSCORE

The analysis of BERTScore has highlighted different aspects from what we have
seen until now. As depicted in the figure, we can notice that the finetuning is
not notably increasing the performances of the tested models. These results imply
that base models are already capable of handling in a general way the creation of
recipes and that finetuning should not aim to improve the semantic capabilities of
the model but rather focus on the imbalance of tokens distributions in the responses
and their relative contribution to the correctness of the answer. While we can still

notice better performances when using the Topological Loss when associated to Cross
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experiment,ame ROUGE1
Qwen3-4B-Topological 0.309586
Qwen3-4B-DiceLoss 0.298744
Qwen3-4B-CrossEntropyLoss 0.273048
Qwen3-4B-Focallngredients 0.260949
SmolLM3-3B-TopologicalLoss 0.259079
SmolLM3-3B-DiceLoss 0.230849
Qwen3-4B-Baseline 0.224946
SmolLM3-3B-CrossEntropyLoss ~ 0.218935
SmolLM3-3B-FocalLoss 0.203938
Qwen2-1.5B-TopologicalLoss 0.168577
SmolLM3-3B-Baseline 0.160909
Qwen2-1.5B-DiceLoss 0.143806
Qwen2-1.5B-CrossEntropyLoss 0.140978
Qwen2-1.5B-FocallL.oss 0.139860
Qwen2-1.5B-Baseline 0.094880

Table 5.2: Table of results for ROUGE]1 score

Entropy, we cannot anymore guarantee the statistical significance of these results.
The BERTScore results are shown in Table 5.3.

Experiment Name BERTSCORE F1
Qwen3-4B-Topological 0.909755
Qwen3-4B-DiceLoss 0.904908
Qwen3-4B-CrossEntropyLoss 0.902099
Qwen3-4B-Focallngredients 0.899484
SmolLM3-3B-TopologicalLoss 0.897789
SmolLM3-3B-DiceLoss 0.895904
SmolLLM3-3B-FocallLoss 0.890018
SmolLM3-3B-CrossEntropyLoss 0.887898
Qwen3-4B-Baseline 0.879339
Qwen2-1.5B-TopologicalLoss 0.877860
SmolLM3-3B-Baseline 0.864398
Qwen2-1.5B-DiceLoss 0.854987
Qwen2-1.5B-Baseline 0.854249
Qwen2-1.5B-FocalLoss 0.852535
Qwen2-1.5B-CrossEntropyLoss 0.850986

Table 5.3: Table of results for BERTScore F1 score

5.2 Ad-Hoc metrics

Action precision

In the context of the evaluation of the action precision, we can notice that the usage

of Topological Loss has higher performance then baseline established by the usage of
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pure CE or combined with other loss functions. This is demonstrated in the plot in
Table 5.4.

Experiment Name Action Precision
Qwen3-4B-Topological 0.596869
Qwen3-4B-DiceLoss 0.505969
Qwen3-4B-CrossEntropyLoss 0.450969
Qwen3-4B-Focallngredients 0.410958
SmolLM3-3B-TopologicalLoss 0.375597
SmolLM3-3B-DiceLoss 0.350967
SmolLM3-3B-CrossEntropyLoss 0.348390
SmollLM3-3B-FocalLoss 0.344904
Qwen3-4B-Baseline 0.324096
SmolLLM3-3B-Baseline 0.310831
Qwen2-1.5B-TopologicalLoss 0.298187
Qwen2-1.5B-DiceLoss 0.286090
Qwen2-1.5B-CrossEntropyLoss 0.278700
Qwen2-1.5B-Baseline 0.273960
Qwen2-1.5B-FocalLoss 0.267894

Table 5.4: Table of results for action precision

5.2.1 Quantity precision

The figure confirms similar trends observed in other metrics also for what concerns
the evaluation of quantity precision in recipe generation. We can observe in particular
the major performances observed by using Topological and Dice Loss combined with

Cross-Entropy. The full comparison is shown in Table 5.5.

5.2.2 Ingredient recall

The analysis of the recall of ingredients confirms better performance when using
Topological loss. It is worth noting that the performance of the best models does not
pass the 0.5 threshold. We believe this happens as the task consists of generating
recipes based entirely on the title of the recipe. Since training and test dataset
contain similar but yet different recipe, the model cannot always infer the entire list
of ingredients simply based on a title of the recipe. Table 5.6 depicts the ingredient

recall scores for all experiments.

5.2.3 Action and step edit distance

Action and Step edit distance are metrics similar to each other, therefore they share
similar patterns and conclusions. We can indeed notice how the usage of Topological

loss leads to a minimization of the differences between the target recipe and the
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Experiment Name Quantity Precision
Qwen3-4B-Topological 0.639350
Qwen3-4B-DiceLoss 0.574495
Qwen3-4B-Focallngredients 0.549483
SmolLM3-3B-Topologicall.oss 0.518961
Qwen3-4B-CrossEntropyLoss 0.509490
SmolLM3-3B-DiceLoss 0.495758
SmollLM3-3B-CrossEntropyLoss 0.477397
SmollLM3-3B-FocalLoss 0.473939
Qwen2-1.5B-TopologicalLoss 0.434973
Qwen2-1.5B-DiceLoss 0.426840
Qwen2-1.5B-CrossEntropyLoss 0.417600
Qwen2-1.5B-FocallLoss 0.414877
Qwen3-4B-Baseline 0.250948
SmolLM3-3B-Baseline 0.222941
Qwen2-1.5B-Baseline 0.188897

Table 5.5: Table of results for quantity precision

Experiment Name Ingredient Recall
Qwen3-4B-Topological 0.485976
Qwen3-4B-DiceLoss 0.449086
Qwen3-4B-Focallngredients 0.430958
SmolLLM3-3B-TopologicalL.oss 0.369899
Qwen3-4B-CrossEntropyLoss 0.359849
SmollLM3-3B-DicelL.oss 0.340976
SmolLM3-3B-CrossEntropyLoss 0.320394
SmolLM3-3B-FocalLoss 0.310928
Qwen2-1.5B-TopologicalLoss 0.292870
Qwen2-1.5B-DiceLoss 0.274907
Qwen2-1.5B-CrossEntropyLoss 0.264791
Qwen3-4B-Baseline 0.260958
Qwen2-1.5B-FocalLoss 0.253222
SmollLM3-3B-Baseline 0.220935
Qwen2-1.5B-Baseline 0.148790

Table 5.6: Table of results for ingredient recall

predicted, followed by the application of Dice Loss. The results for action edit
distance are shown in Table 5.7. We can notice an higher error in step distance as it
implies the observations of more attributes in order to consider two steps as identical,
which results more often in dissimilar steps. The step edit distance results are shown
in Table 5.8.
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Experiment Name Action Edit Distance
Qwen3-4B-Topological 0.304959
Qwen3-4B-DiceLoss 0.310949
Qwen3-4B-Focallngredients 0.374093
Qwen3-4B-CrossEntropyLoss 0.378348
SmollLM3-3B-CrossEntropyLoss 0.410928
SmolLLM3-3B-Topologicall.oss 0.415958
SmollLM3-3B-FocalLoss 0.429830
SmolLM3-3B-DiceLoss 0.435958
Qwen2-1.5B-TopologicalLoss 0.453903
Qwen2-1.5B-DiceLoss 0.464897
Qwen2-1.5B-CrossEntropyLoss 0.479685
SmolLM3-3B-Baseline 0.484039
Qwen3-4B-Baseline 0.485094
Qwen2-1.5B-FocallLoss 0.508560
Qwen2-1.5B-Baseline 0.579897

Table 5.7: Table of results for action edit distance (the smaller, the better)

Experiment Name Step Edit Distance
Qwen3-4B-Topological 0.340959
Qwen3-4B-DiceLoss 0.350868
Qwen3-4B-Focallngredients 0.380597
Qwen3-4B-CrossEntropyLoss 0.394859
SmolLLM3-3B-CrossEntropyLoss 0.420928
SmolLM3-3B-TopologicallLoss 0.420973
SmolLM3-3B-FocallL.oss 0.438929
SmolLM3-3B-DiceLoss 0.445958
Qwen2-1.5B-TopologicalLoss 0.519821
Qwen3-4B-Baseline 0.520928
Qwen2-1.5B-DiceLoss 0.526694
Qwen2-1.5B-CrossEntropyLoss 0.555576
SmolLM3-3B-Baseline 0.560939
Qwen2-1.5B-FocallLoss 0.589650
Qwen2-1.5B-Baseline 0.634479

Table 5.8: Table of results for step edit distance (the smaller, the better)

5.2.4 Temperature precision

The analysis of precision in regards to the temperature at which each step should be
performed yields different results from the other steps. Table 5.9 depicts the dice
loss experiment to outperform the topological loss across all models. The reason
behind this might lie in the implementation of the topological loss, which focuses
exclusively on the list of ingredients, while the dice loss is extended to the entire
recipe. Therefore, topological loss does not outperform dice as temperature is not an

attribute related to the ingredient list.
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Experiment Name Temperature Precision
Qwen3-4B-DicelL.oss 0.745886
Qwen3-4B-Topological 0.655969
Qwen3-4B-CrossEntropyLoss 0.619384
Qwen3-4B-Focallngredients 0.596080
SmolLM3-3B-DiceLoss 0.589575
SmolLM3-3B-Topologicalloss 0.579797
SmolLM3-3B-CrossEntropyLoss 0.566698
SmolLM3-3B-FocalLoss 0.563903
Qwen2-1.5B-DiceLoss 0.486987
Qwen2-1.5B-CrossEntropyLoss 0.477866
Qwen2-1.5B-TopologicalLoss 0.470790
Qwen2-1.5B-Focall.oss 0.470004
Qwen3-4B-Baseline 0.398451
SmollLM3-3B-Baseline 0.375040
Qwen2-1.5B-Baseline 0.310980

Table 5.9: Table of results for temperature precision

5.2.5 Time precision

Similarly to the analysis of temperature precision, Table 7?7 shows that Dice loss
outperforms topological loss and the other experiments across all models. We believe
similar conclusions to the one obtained in the previous analysis can be drawn to

motivate these results.

Experiment Name Time Precision
Qwen3-4B-DicelLoss 0.596868
Qwen3-4B-Topological 0.555598
Qwen3-4B-CrossEntropyLoss 0.520938
Qwen3-4B-Focallngredients 0.485298
SmolLLM3-3B-Dicel.oss 0.464484
SmolLLM3-3B-TopologicalLoss 0.458889
SmolLLM3-3B-CrossEntropyLoss 0.444984
SmolLM3-3B-FocalLoss 0.443098
Qwen2-1.5B-DiceLoss 0.429074
Qwen3-4B-Baseline 0.414509
Qwen2-1.5B-TopologicalLoss 0.409097
Qwen2-1.5B-CrossEntropyLoss 0.398967
Qwen2-1.5B-Focall.oss 0.393346
SmolLM3-3B-Baseline 0.373020
Qwen2-1.5B-Baseline 0.330888

Table 5.10: Table of results for time precision
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5.2.6 Combining Topological and Dice Losses

Having noted the differing and also complementary qualities that have been seen
in previous sections—the Topological Loss performs well regarding ingredient-level
metrics, as well as action-related metrics, while the Dice Loss performs well in
numerical qualities such as time and temperature—a final experiment was carried
out in the hopes that a combination of the two aforementioned custom loss functions
would yield a model that performs in a well-rounded fashion.

In order to verify this, a new composite loss was introduced that included both
Dice Loss and Topological Loss, also alongside Cross Entropy. This "Mixed Model"
setup was used to finetune the Qwen3-4B model, and its performance was compared
to those models that were trained only on Dice and Topological loss. The findings
from this are highlighted in Figure 5.1, while numerical values can be observed in
5.11

Mean Metric Scores by Experiment
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Figure 5.1: Performance comparison of the Mixed Model (Topological + Dice)
against the individual Topological Loss and Dice Loss models across all evaluation
metrics.

This analysis of results highlights a complex landscape of trade-offs:

e On the level of linguistic properties (BLEU, ROUGE metrics), it is possible to
observe that Mixed Model performs at least as well as the pure Topological
model and, in several instances, it is actually slightly better. In a similar fashion
to previous experiments, no particular points of interest have emerged in terms

of differences at BERTScore metrics.

e Some of the key metrics in an ad-hoc setting have a Mixed Model as a compro-
mise. In terms of Action Precision, Temperature Precision, Ingredient Recall,
and order/edit distance metrics, a score of the Mixed Model lies in between

that of a Topological model and a Dice model.
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Metric Qwen3 4B Dice Qwen3 4B Mixed Qwen3 4B Topological
BERTSCORE F1 0.904908 0.909940 0.909755
BLEU 0.283497 0.304599 0.303985
ROUGE1 0.298744 0.319045 0.309586
Action Edit Distance 0.310949 0.304959 0.304959
Action Precision 0.505969 0.575984 0.596869
Quantity Precision 0.574495 0.650957 0.639350
Ingredients Recall 0.449086 0.470949 0.485976
Step Edit Distance 0.350868 0.340959 0.340959
Temperature Precision 0.745886 0.678958 0.655969
Time Precision 0.596868 0.619585 0.555598

Table 5.11: Comparison of the results of Mixed loss compared to Dice and Topolog-
ical losses

e Nevertheless, in two critical areas, Quantity Precision and Time Precision, a
synergistic effect is seen in the Mixed Model. In such scenarios, a joint loss
function enabled a better score than those of either a Topological or a Dice

model when trained individually.

Based upon this experiment, we have been able to draw one clear conclusion,
which is that using a combination of custom loss functions will not make it possible
for a model to do well at all aspects at the same time. This combination might work
better than its “parents” in a few conditions, but in most conditions, it enables a

balance between them.

5.2.7 Statistical Significance of Results

In order to be sure that performance differences evident through these finetuned
models are not simply a result of random chance, we performed a rigorous statistical
test. This is in consideration for guaranteeing that these gains evident through our
custom loss functions, particularly our Topological Loss, are significant rather than
simple luck. We compared the output from the top-scoring model, Qwen3-4B, under

different loss settings used for this test.

5.2.7.1 Methodology: Welch’s t-test

In order to compare two independent sample groups’ means (e.g., 1000 recipes created
with Topological Loss with 1000 recipes created with Cross-Entropy), we used Welch’s
t-test. It is a variant of the standard Student’s t-test that is particularly developed
for cases when both groups under comparison may possess different variances. Since
different loss functions can modify consistency as well as distribution of a model’s
output, we cannot presume that the standard deviation of scores for each metric
would be identical for different experimental setups. The Welch’s t-test does not
demand that assumption, along with being more reliable and robust for our analysis

purposes.
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For each comparison, we tested the null hypothesis that the mean scores of two
groups are equal. We set our significance level to a = 0.05. If a resulting p-value
falls below this critical region, then we can reject the null hypothesis and state that
we see a statistically significant difference in what was observed.

The following tables present the statistical comparisons between the Topological
Loss and the two other key configurations: the baseline Cross-Entropy loss and the

next-best custom loss, Dice Loss.

5.2.7.1.1 Topological Loss vs. Cross-Entropy Baseline Firstly, we compare
our best-performing method with fine-tuning baselines of standard methods. The

"Cross-Entropy" is compared with "Topological Loss" in Table 5.12.

Table 5.12: Welch’s t-test results comparing Qwen3-4B finetuned with Cross-
Entropy vs. Topological Loss .

Metric Loss Function Mean Std. Dev. t-statistic p-value Significant?

Cross-Entropy  0.2339 0.0681

BLEU Topological ~ 0.3040  0.1209 109620 <0.0001 Yes
ROUGE-1 %;islo}zgfpy ggggg g:ﬁgg 15.9548 < 0.0001  Yes
BERTScore F1 %EZOE;CZ;’W ggggg gjgﬂé 46318 < 0.0001 Yes
Action Precision gégsosl-f;?s;?py ggggg ggggg 65.9818 < 0.0001 Yes
Quantity Precision ,(Ij‘zgsosl_oi?(z?py ggggg gggig 52.5476 < 0.0001 Yes
Ingredient Recall g;‘;isloEg?s;fpy giiégg 8:(1);1;3 39.3956 < 0.0001 Yes
Temperature Precision gé;isl_olzlils;?py 82228 81(1)(1; 19.3751 < 0.0001 Yes
Time Precision Cross-Entropy  0.4505 0.1209 21.5386 < 0.0001 Yes

Topological 0.5556 0.0958

The results are unmistakable. The Topological Loss model is considerably better
than the Cross-Entropy baseline on every single one of these measures. The p-values
are consistently well below 0.05, thereby substantiating that these improvements are
not due to chance. The extremely large t-statistics for the ad-hoc measures, particu-
larly for Action Precision (t=65.98), Quantity Precision (t=52.55), and Ingredient
Recall (t=39.40), indicate a very large and in practice significant performance gap.
This is compelling evidence that the application of a custom loss was successful in

directing the model’s learning to these critical, domain-specific features.

5.2.7.1.2 Topological Loss vs. Dice Loss Then we compare the top-two
best-performing custom losses to see whether the dominance of the Topological Loss
is also statistically significant. In Table 5.13 we can observe the outcome of the

comparison of the "Dice Loss" with the "Topological Loss".
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Table 5.13: Welch’s t-test results comparing Qwen3-4B finetuned with Dice Loss
vs. Topological Loss .

Metric Loss Function Mean Std. Dev. t-statistic p-value Significant?
s IO s o o
ROUGE-1 %‘;eof:)‘;ial 8:3322 8:(1)?(2)3 2.3695  0.0179 Yes
BERTScore F1 ?é;eoi(;ial 8:3832 8:3}% 12011 0.2299 No
Action Precision ?i;coi(;ial 8:2828 8:183; 19.8691 < 0.0001 Yes
Quantity Precision ?(i)(;)eolI:)ZSiial 82;32 88223 19.4766 < 0.0001 Yes
Ingredient Recall ?i;eolLO‘;ial 8:1;12(1) 8:8223 9.1093 < 0.0001 Yes
Temperature Precision ?é‘;eof;‘;ial gggég 81832 -19.5323 < 0.0001 Yes
Time Precision Dice Loss 0.5969 0.1028 9.2831 < 0.0001 Yes

Topological 0.5556 0.0958

This analysis confirms the nuanced trade-offs observed in the main results. For the
metrics where Topological Loss was superior—BLEU, ROUGE-1, Action Precision,
Quantity Precision, and Ingredient Recall—the improvements are statistically signifi-
cant. Conversely, for Temperature and Time Precision, the stronger performance
of the Dice Loss is also highly significant. Finally, the test validates that the small
difference in BERTScore is not statistically significant (p=0.2299), reinforcing the
conclusion that semantic fluency is not the primary differentiator between these two

advanced loss functions.

5.2.7.1.3 Mixed Loss vs. Dice Loss vs. Topological Loss In examining
these results, we observe an interesting phenomenon. From Table 5.14 , our hypothesis
that the mixed loss is not a universal solution that outperform in all the metrics is
verified. On the contrary, it appears more as a compromise between those two pure
losses. For instance, if we take a look at Action Precision’, it was actually better off
with pure topological loss, whereas in Temperature Precision’, pure Dice loss was
a winner. In such scenarios, our mixed loss was often in the middle of everything.
This is proof that it is handling it well. However, in a few other instances, it actually
performed better than both. This is because in ROUGE—l’, Time Precision’, and
Quantity Precision’, we observe that it led to a definitive and significant improvement
over our previous performance. This indicates that it is a good strategy to incorporate

a mix of a loss in order to obtain a balance that might result in a Sweet spot’.
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Table 5.14: Welch’s t-test results comparing Mixed Loss (Dice + Topological) vs.
pure Topological Loss and pure Dice Loss.

Metric Comparison Mean Std. Dev. t-statistic  p-value Significant?
Mixed 0.3046  0.1109
, 01183  0.9059 No
BLEU Topological  0.3040 0.1209
Mixed 0.3046  0.1109
. . Y
Dice 0.2835  0.1039 4.3910 < 0.0001 es
ROUGE-1 Opoiog : :
Mixed 0.3190  0.1039
Dice 0.2087  0.0929 4.6047 < 0.0001 Yes
¥lxe? el 8‘3832 8'832(1) 0.0888  0.9293 No
BERTScore F1 opological L. :
Mixed 0.9099  0.0491
Dice 0.9049  0.1198 1.2292 02192 No
Mixed 0.5760  0.0984
. . Topological ~ 0.5969  0.1005 -46961 < 0.0001 Yes
Action Precision
Mixed 0.5760  0.0984
Diee 05060 01041 15.4592 < 0.0001 Yes
Mixed 0.6790  0.1119
. 4.8251 < 0.0001 Yes
Temperature Precision Topological  0.6560 0.1008
Mixed 0.6790  0.1119
Do 0aso 01050 137908 <0.0001 Yes
Mixed 0.6196  0.0975
. i, Topological ~ 0.5556  0.0958 14.7958 < 0.0001 Yes
Time Precision
Mixed 0.6196  0.0975
Dice 0.5969  0.1028 5-0677 < 0.0001 Yes
Mixed 0.6510  0.0551
. 0001 Yes
. i, Topological ~ 0.6393  0.0649 4.3101 < 0.000 es
Quantity Precision
Mixed 0.6510  0.0551
Dice i 00899 24.2931 < 0.0001 Yes
1%41}{6? al g'ggg 8'8232 -3.7322  0.0002  Yes
Ingredient Recall opologica ’ )
Mixed 0.4709  0.0948
Dice 0.4491  0.0958 51275 < 0.0001 Yes
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Chapter 6

Conclusions

In this thesis, we have explored the finetuning of Small Language Models on the niche
topic of recipe generation and proposed a novel framework for achieving maximal
factual and procedural correctness. The primary goal of this work was to move
beyond the limitations of standard finetuning methodologies that rely upon a Cross-
Entropy loss poorly suited for tasks where numerical correctness and recall of entities
are paramount. Framing the exploration on a highly structured, fact-rich domain,
this work provided a controlled environment for exploring a concrete alternative
to popular training procedured and revealed the tremendous future potential of
customized loss functions for constructing generative models that are more accurate
and useful.

The major restriction of typical finetuning by the "equal importance" requirement
of Cross-Entropy is why models inevitably fail to learn the important but statistically
rare tokens that define the correctness of a recipe. This token skewness and the lack of
numeric reasoning in the training objective mandate a differently constructed solution
so that true domain expertise may be fostered. Through the combination of a multi-
task dataset and a composite loss setup, the new model has been able to generate
models that have a better understanding of the recipe space. The incorporation
of Focal, Dice, and a new Topological loss that are all meant to compensate for
a particular failing of the baseline has resulted in statistical improvements. Most
prominently, the Topological loss, acting over the geometric relationship between
ingredients in the embedding space, showed the highest performance by far across
the vast majority of our bespoke evaluation measures, from ingredient recall to all
the way through procedural accuracy. Further, the models have been able to achieve
this higher performance while having been trained under the very efficient regime
of the LoRA methodology, and so show that significant improvements are possible
without the unrealistic cost of full parameter finetuning.

Furthermore, a final experiment combining the Dice and Topological losses
revealed a nuanced landscape of trade-offs: while the mixed loss often acts as a
compromise between the two, it can also create a synergistic effect, outperforming
both parent losses in specific metrics like Quantity and Time Precision.

As language models become more deeply integrated into practical, real-world
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applications, the accuracy of facts, reliability, and structural correctness of the output
of these models will become crucial. This work demonstrates that by carefully crafting
the loss function to accommodate a specific domain’s unique needs, we are able to
significantly improve a model’s quality along these crucial axes. The loss functions
carefully constructed for the unique needs of this work, and the Topological loss
in particular, have the potential to be transferred to a great number of domains
where entities’ relationships and factuality are relevant. Future work may entail the
exploration of other topological and computer vision losses, as well as the application

of custom losses on other procedural problems such as prescription of medicines.
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